WorldWideScience

Sample records for bcc fe comparison

  1. Magnetism in bcc Fe-Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M.E. [Sultan Qaboos Univ., Al-Khod (Oman). Dept. of Phys.; Yousif, A.A. [Sultan Qaboos Univ., Al-Khod (Oman). Dept. of Phys.

    1994-11-01

    The magnetic moment {mu}, hyperfine field B{sub hf} and isomer shift IS at the Fe site in bcc Fe-Al alloys were calculated from first principle. Contrary to the belief that Al atoms reside in the iron lattice as magnetic holes, it was found that the local magnetic moment of Fe is decreased when Al is at a nearest neighbour site (NN), while it increases if Al is at a next-nearest neighbour site (NNN). Consequently, the average {mu} per Fe atom was found to be, initially, independent of Al content. Assuming a linear dependence of {mu}{sub Fe} on the number of Al atoms at NN and NNN sites, we calculated the average {mu}, which was found to agree with experimental results of cold worked alloys for disordered Fe-Al alloy. On the other hand, antiferromagnetic coupling appears in the CsCl ordered structures. The average B{sub hf} was also calculated and compared to experimental data and the trends in the IS are considered. (orig.)

  2. Theoretical elastic moduli of ferromagnetic bcc Fe alloys.

    Science.gov (United States)

    Zhang, Hualei; Punkkinen, Marko P J; Johansson, Börje; Vitos, Levente

    2010-07-14

    The polycrystalline elastic parameters of ferromagnetic Fe(1-x)M(x) (M = Al, Si, V, Cr, Mn, Co, Ni, Rh; 0 ≤ x ≤ 0.1) random alloys in the body centered cubic (bcc) crystallographic phase have been calculated using first-principles alloy theory in combination with statistical averaging methods. With a few exceptions, the agreement between the calculated and the available experimental data for the polycrystalline aggregates is satisfactory. All additions considered here decrease the bulk modulus (B) and Poisson's ratio (ν) of bcc Fe. The complex composition dependence of the C(44) single-crystal elastic constant is reflected in the polycrystalline shear modulus (G), Young's modulus (E), and Debye temperature (Θ). The polycrystalline anisotropy of bcc Fe is increased by all additions, and Al, Si, Ni, and Rh yield the largest alloying effects. PMID:21399255

  3. Simulation of atomic mobilities, diffusion coefficients and diffusion paths in bcc-A2 and bcc-B2 phases of the Al–Ni–Fe system

    International Nuclear Information System (INIS)

    Highlights: • Atomic mobilities of bcc-A2 and bcc-B2 Al–Ni–Fe phases were determined. • Experimental interdiffusivities and tracer diffusivities were critically evaluated. • Main diffusivities show minimum around section x(Al) = 50 at.%. • Cross diffusivities show different features for negative and positive values. • The results reveal the importance of full diffusion-distance measurement. - Abstract: The influence of composition and temperature on the atomic mobilities of Al, Ni and Fe in the bcc-A2 and bcc-B2 Al–Ni–Fe phases was investigated based on a recently developed phenomenological model, together with the newly published thermodynamic description. The experimental interdiffusivities and tracer diffusivities of Ni and Fe in various Al–Ni–Fe alloys available in the literature were critically evaluated. The calculated diffusivities can reasonably reproduce the experimental ones. The calculated iso-diffusivity lines in the B2 phase show a minimum around the quasi-binary section at 50 at.% Al for the main diffusivities of both Al and Ni, while for the cross diffusivities of Al and Ni, they show significantly different characteristics when changing from negative to positive values. The obtained atomic mobilities were further used to predict the concentration profiles and diffusion paths in a variety of B2 Al–Ni–Fe diffusion couples. The comparison reveals the importance of full diffusion-distance measurement for the accurate determination of diffusion coefficients

  4. Quasicontinuum simulation of crack propagation in bcc-Fe

    International Nuclear Information System (INIS)

    Highlights: → Multiscale simulation and literature study of fracture in bcc-Fe with 4 orientations. → Investigation of anisotropic vs. isotropic formulations of boundary conditions. → Systematical study of the influence of T-stress on crack tip mechanisms. - Abstract: We have investigated fracture in bcc-Fe through multiscale simulations. The quasicontinuum (QC) method with an embedded atom method (EAM) interatomic potential is applied. The analyses have been carried out assuming different crystallographic orientations and different T-stress under Mode I loading. Both anisotropic and isotropic formulations of the modified boundary layer (MBL) approach has here been investigated and compared. The results show that the mechanisms at the crack tip and the critical stress intensity factor KIc are sensitive to both the crystallographic orientation and whether or not the formulation of the boundary conditions are isotropic or anisotropic. Mechanisms such as cleavage crack propagation, twinning, and dislocation emission are observed in the analyses. A short literature review on atomistic and multiscale simulations of fracture in bcc-Fe has been performed and evaluated, and also compared with the current results.

  5. Strain relief of heteroepitaxial bcc-Fe(001) films

    OpenAIRE

    Wedler, G.; Schneider, C. M.; Trampert, A.; Koch, R.

    2004-01-01

    The strain relief of heteroepitaxial bcc-Fe(001) films, deposited at 520-570 K onto MgO(001), has been investigated by scanning tunneling microscopy. In accordance with real-time stress measurements, the tensile misfit strain is relieved during coalescence of flat, mainly 2-3 monolayers (ML) high Fe islands at the high thickness of similar to20 ML. To accommodate the misfit between merging strain-relaxed islands, a network of 1/2[111] screw dislocations is formed. A strong barrier for disloca...

  6. Computational study of atomic mobility for bcc phase in Ti-Al-Fe system

    OpenAIRE

    Chen, Yi; Li, Jinshan; Tang, Bin; Kou, Hongchao; Segurado Escudero, Javier; Cui, Yuwen

    2014-01-01

    Experimental diffusion data were critically assessed to develop the atomic mobility for the bcc phase of the Ti–Al–Fe system by using the DICTRA software. Good agreements were obtained from comprehensive comparisons made between the calculated and the experimental diffusion coefficients. The developed atomic mobility was then validated by well predicting the interdiffusion behavior observed from the diffusion-couple experiments in available literature.

  7. Ion irradiation effects on high purity bcc Fe and model FeCr alloys

    International Nuclear Information System (INIS)

    FeCr binary alloys are a simple representative of the reduced activation ferritic/martensitic (F-M) steels, which are currently the most promising candidates as structural materials for the sodium cooled fast reactors (SFR) and future fusion systems. However, the impact of Cr on the evolution of the irradiated microstructure in these materials is not well understood in these materials. Moreover, particularly for fusion applications, the radiation damage scenario is expected to be complicated further by the presence of large quantities of He produced by the nuclear transmutation (∼ 10 appm He/dpa). Within this context, an elaborate ion irradiation study was performed at 500 C on a wide variety of high purity FeCr alloys (with Cr content ranging from ∼ 3 wt.% to 14 wt.%) and a bcc Fe, to probe in detail the influence of Cr and He on the evolution of microstructure. The irradiations were performed using Fe self-ions, in single beam mode and in dual beam mode (damage by Fe ions and co-implantation of He), to separate ballistic damage effect from the impact of simultaneous He injection. Three different dose ranges were studied: high dose (157 dpa, 17 appm He/dpa for the dual beam case), intermediate dose (45 dpa, 57 appm He/dpa for dual beam case) and in-situ low dose (0.33 dpa, 3030 appm He/dpa for the dual beam case). The experiments were performed at the JANNuS triple beam facility and dual beam in situ irradiation facility at CEA-Saclay and CSNSM, Orsay respectively. The microstructure was principally characterized by conventional TEM, APT and EDS in STEM mode. The main results are as follows: 1) A comparison of the cavity microstructure in high dose irradiated Fe revealed strong swelling reduction by the addition of He. It was achieved by a drastic reduction in cavity sizes and an increased number density. This behaviour was observed all along the damage depth, up to the damage peak. 2) Cavity microstructure was also studied in the dual beam high dose

  8. Microscopic Origin of Heisenberg and Non-Heisenberg Exchange Interactions in Ferromagnetic bcc Fe.

    Science.gov (United States)

    Kvashnin, Y O; Cardias, R; Szilva, A; Di Marco, I; Katsnelson, M I; Lichtenstein, A I; Nordström, L; Klautau, A B; Eriksson, O

    2016-05-27

    By means of first principles calculations, we investigate the nature of exchange coupling in ferromagnetic bcc Fe on a microscopic level. Analyzing the basic electronic structure reveals a drastic difference between the 3d orbitals of E_{g} and T_{2g} symmetries. The latter ones define the shape of the Fermi surface, while the former ones form weakly interacting impurity levels. We demonstrate that, as a result of this, in Fe the T_{2g} orbitals participate in exchange interactions, which are only weakly dependent on the configuration of the spin moments and thus can be classified as Heisenberg-like. These couplings are shown to be driven by Fermi surface nesting. In contrast, for the E_{g} states, the Heisenberg picture breaks down since the corresponding contribution to the exchange interactions is shown to strongly depend on the reference state they are extracted from. Our analysis of the nearest-neighbor coupling indicates that the interactions among E_{g} states are mainly proportional to the corresponding hopping integral and thus can be attributed to be of double-exchange origin. By making a comparison to other magnetic transition metals, we put the results of bcc Fe into context and argue that iron has a unique behavior when it comes to magnetic exchange interactions. PMID:27284671

  9. Quantum-well states and induced magnetism in Fe/CuN/Fe bcc (001) trilayers

    DEFF Research Database (Denmark)

    Niklasson, A.M.N.; Mirbt, S.; Skriver, Hans Lomholt;

    1996-01-01

    profiles of two single Fe/Cu interfaces. The small deviations from this simple superposition are shown to be a consequence of quantum-well states confined within the paramagnetic spacer. This connection is confirmed by direct calculation of the state density. The results are of conceptual interest for the......We have used a first-principles Green's function technique to investigate the formation of magnetic moments in Fe/Cu-N/Fe bcc (001) trilayers. We show that the magnetic moment in the paramagnetic spacer material to a first approximation may be described as a linear superposition of the magnetic...

  10. Slip transmission in bcc FeCr polycrystal

    Energy Technology Data Exchange (ETDEWEB)

    Patriarca, Luca, E-mail: luca.patriarca@polimi.it [Politecnico di Milano, Department of Mechanical Engineering, Via La Masa 34, I-20156 Milano (Italy); Abuzaid, Wael; Sehitoglu, Huseyin [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206W. Green St., Urbana, IL 61801 (United States); Maier, Hans J. [Institut für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, D-30823 Garbsen (Germany)

    2013-12-20

    Grain boundaries induce heterogeneities in the deformation response of polycrystals. Studying these local variations in response, measured through high resolution strain measurement techniques, is important and can improve our understanding of fatigue damage initiation in the vicinity of grain boundaries and material hardening. In this work, strain fields across grain boundaries were measured using advanced digital image correlation techniques. In conjunction with strain measurements, grain orientations from electron back-scattered diffraction were used to establish the dislocation reactions at each boundary, providing the corresponding residual Burgers vectors due to slip transmission across the interfaces. A close correlation was found between the magnitude of the residual Burgers vector and the local strain change across the boundary. When the residual Burgers vector magnitude (with respect to the lattice spacing) exceeds 1.0, the high strains on one side of the boundary are paired with low strains across the boundary, indicating the difficulties for slip dislocations to penetrate the grain interfaces. When the residual Burgers vector approaches zero, the strain fields vary smoothly across the boundary due to limited resistance to slip transmission. The results suggest that the residual Burgers vector magnitude, which relates to the GB (Grain Boundary) resistance to slip transmission, enables a quantitative analysis of the accumulation of strain at the microstructural level and the development of strain heterogeneities across grain boundaries. The results are presented for FeCr bcc alloy which exhibits single slip per grain making the measurements and dislocation reactions rather straightforward. The work points to the need to incorporate details of slip dislocation–grain boundary interaction (slip transmission) in modeling research.

  11. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Jumpei, E-mail: higuchi@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Ohtake, Mitsuru; Sato, Yoichi [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2011-09-30

    NiFe epitaxial films are prepared on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  12. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    International Nuclear Information System (INIS)

    NiFe epitaxial films are prepared on Cr(211)bcc and Cr(100)bcc underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211)bcc and Cr(100)bcc underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  13. Modeling of the magnetic free energy of self-diffusion in bcc Fe

    Science.gov (United States)

    Sandberg, N.; Chang, Z.; Messina, L.; Olsson, P.; Korzhavyi, P.

    2015-11-01

    A first-principles based approach to calculating self-diffusion rates in bcc Fe is discussed with particular focus on the magnetic free energy associated with diffusion activation. First, the enthalpies and entropies of vacancy formation and migration in ferromagnetic bcc Fe are calculated from standard density functional theory methods in combination with transition state theory. Next, the shift in diffusion activation energy when going from the ferromagnetic to the paramagnetic state is estimated by averaging over random spin states. Classical and quantum mechanical Monte Carlo simulations within the Heisenberg model are used to study the effect of spin disordering on the vacancy formation and migration free energy. Finally, a quasiempirical model of the magnetic contribution to the diffusion activation free energy is applied in order to connect the current first-principles results to experimental data. The importance of the zero-point magnon energy in modeling of diffusion in bcc Fe is stressed.

  14. Formation of dislocation loops during He clustering in bcc Fe

    Science.gov (United States)

    Gao, N.; Van Swygenhoven, H.; Victoria, M.; Chen, J.

    2011-11-01

    The clustering of helium in bcc (body centered cubic) iron and the growth of a helium bubble are simulated at the atomistic level for the helium-rich vacancy-poor condition. It is shown that a \\frac{1}{2}\\langle 111\\rangle dislocation loop is formed as a sequential collection of crowdions, the latter being the most stable self-interstitial atom configuration in the presence of a He cluster.

  15. Formation of dislocation loops during He clustering in bcc Fe

    Energy Technology Data Exchange (ETDEWEB)

    Gao, N; Chen, J [NES-High Temperature Materials, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Van Swygenhoven, H [NUM/ASQ-Materials Science and Simulation, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Victoria, M, E-mail: helena.vanswygenhoven@psi.ch [Lawrence Livermore National Laboratory, PO Box 808 L-370, Livermore, CA 94550 (United States)

    2011-11-09

    The clustering of helium in bcc (body centered cubic) iron and the growth of a helium bubble are simulated at the atomistic level for the helium-rich vacancy-poor condition. It is shown that a 1/2 <111> dislocation loop is formed as a sequential collection of <111> crowdions, the latter being the most stable self-interstitial atom configuration in the presence of a He cluster. (fast track communication)

  16. Mechanosynthesis of supersaturated solid solutions of Sn in near-equiatomic bcc FeCo

    International Nuclear Information System (INIS)

    Highlights: ► (Fe50−x/2Co50−x/2)Snx mixtures are mechanically alloyed for x ≤ 33 at.%. ► As-ground powders are studied by X-ray diffraction and 57Fe and 119Sn Mössbauer spectroscopy. ► Supersaturated solutions of Sn in disordered bcc FeCo alloys are formed in our dynamical conditions up to x ≤ 20 at.%. ► This maximum Sn solubility found is much larger than the equilibrium solubility which is about 0.5 at.%. ► The mean 119Sn hyperfine field in the bcc alloys is essentially constant with x and equal to 9.6 T at room temperature. - Abstract: The mechanosynthesis of Fe–Co–Sn ternary alloys from initial powder mixtures of composition (Fe50−x/2Co50−x/2)Snx is studied for x ≤ 33 at.%. Disordered nanocrystalline bcc solid solutions are formed in that way up to Sn contents as large as ∼20 at.%. The dissolution of Sn in near-equiatomic bcc Fe–Co is unambiguously proven by X-ray diffraction and 57Fe and 119Sn Mössbauer spectroscopy.

  17. Modeling the sublattice magnetizations for the layered bcc nanojunction … Fe[Fe1-cCoc ] ℓ Fe … systems

    Science.gov (United States)

    Ashokan, V.; Abou Ghantous, M.; Khater, A.

    2015-12-01

    Ferromagnetic nanojunctions … Fe[Fe1-cCoc ] ℓ Fe …, with ℓ is the number of layers which constitute the nanojunction, based on Fe/Co alloy are considered for the first time in this work. We model the salient magnetic properties of the layered ferromagnetic nanostructures between magnetically ordered iron leads. The effective field theory (EFT) Ising spin method is used to compute reliable Jav exchange values for the VCA Fe/Co alloy materials in comparison with experimental data and compared to existing DFT calculated exchange interactions. The new set of exchange interaction values between pairs of nearest neighbors atom in the alloy are deduced and agree with previous known measurement of lattice constant for this alloy. Using the combined EFT and mean field theory (MFT) spin methods, the sublattice magnetizations of the Fe and Co sites on the individual bcc basal planes of the layered nanostructures, are calculated and analyzed. The sublattice magnetizations, effective magnetic moments per site, and the possible ferromagnetic order of the layers [Fe1-cCoc ] ℓ on the individual bcc atomic planes of the embedded nanostructures for all temperatures and in particular for TcFe ≤ T ≤Tα→γ are presented as a function of temperature and thicknesses of the layered ferromagnetic nanostructures, for different stable concentrations c=0.25, 0.5 and 0.75. In the absence of first principles calculations for these basic physical variables for the layered nanostructures between iron leads, the combined EFT and MFT approach yields the only available information for them at present in the absence of a possible Curie temperature for these alloys. These variables are necessary for certain spin dynamic computations, as for the ballistic magnon transport across embedded nanojunctions in magnonics. The model is general, and may applied directly to other composite magnetic elements and embedded nanostructures.

  18. Spin dependent transport of hot electrons in bcc Fe(100) and bcc Fe{sub 34}Co{sub 66}(100)

    Energy Technology Data Exchange (ETDEWEB)

    Heindl, Emanuel; Vancea, Johann; Back, Christian H. [Department of Physics, University of Regensburg (Germany)

    2010-07-01

    We investigate hot electron spin filtering in thin bcc Fe(100) and bcc Fe{sub 34}Co{sub 66}(100) layers using Ballistic Electron Emission Microscopy. An STM tip is used as a tunable constant current source of hot electrons being injected into single crystalline metallic spin valve structures. The subsequent ballistic hot electron transport is recorded and separated from thermalized electron transport by means of a metal semiconductor junction whose Schottky barrier acts as a spectrometer. Electron transport is carried out with the main transport axis along the-axis of the ferromagnetic layers at electron energies between 1 eV and 2.5 eV above the Fermi level. Parallel and antiparallel magnetization configurations of the spin valve are readily adjustable with an external magnetic field as revealed by Kerr effect and magnetocurrent measurements. When the Fe{sub 34}Co{sub 66} electrode is replaced by Fe the spin contrast drops by more than a factor of 5 in the studied energy interval. We interpret this observation to the spin asymmetry of unoccupied states and to the electron velocity being distinct for majority and minority spins. By cooling down from room temperature to 130 K ballistic currents become significantly enhanced for both materials in the parallel and the antiparallel magnetization configuration, while hot electron spin polarization is enhanced for Fe{sub 34}Co{sub 66}, only.

  19. Ab initio study of Cr interactions with point defects in bcc Fe

    International Nuclear Information System (INIS)

    Full text of publication follows. Ferritic martensitic steels are candidate structural materials for fast neutron reactors, and in particular high-Cr reduced-activation steels. In Fe-Cr alloys, Cr plays a major role in the radiation-induced evolution of the mechanical properties. Using ab initio calculations based on density functional theory, the properties of Cr in α-Fe have been investigated. The intrinsic point defect formation energies were found to be larger in model bcc Cr as compared to those in ferromagnetic bcc Fe. The interactions of Cr with point defects (vacancy and self interstitials) have been characterised. Single Cr atoms interact weakly with vacancies but significantly with self-interstitial atoms. Mixed interstitials of any interstitial symmetry are bound. Configurations where two Cr atoms are in nearest neighbour position are generally unfavourable in bcc Fe except when they are a part of a interstitial complex. Mixed interstitials do not have as strong directional stability as pure Fe interstitials have. The effects on the results using the atom description scheme of either the ultrasoft pseudo-potential (USPP) or the projector augmented wave (PAW) formalisms are connected to the differences in local magnetic moments that the two methods predict. As expected for the Fe-Cr system, the results obtained using the PAW method are more reliable than the ones obtained with USPP. (authors)

  20. Phase stability of ternary fcc and bcc Fe-Cr-Ni alloys

    OpenAIRE

    Wrobel, Jan S.; Nguyen-Manh, Duc; Lavrentiev, Mikhail Yu.; Muzyk, Marek; Dudarev, Sergei L.

    2014-01-01

    The phase stability of fcc and bcc magnetic binary Fe-Cr, Fe-Ni, Cr-Ni alloys and ternary Fe-Cr-Ni alloys is investigated using a combination of density functional theory (DFT), Cluster Expansion (CE) and Magnetic Cluster Expansion (MCE). Energies, magnetic moments, and volumes of more than 500 alloy structures are evaluated using DFT, and the most stable magnetic configurations are compared with experimental data. Deviations from the Vegard law in fcc Fe-Cr-Ni alloys, associated with non-lin...

  1. Magnetic properties and atomic ordering of BCC Heusler alloy Fe2MnGa ribbons

    Science.gov (United States)

    Xin, Yuepeng; Ma, Yuexing; Luo, Hongzhi; Meng, Fanbin; Liu, Heyan

    2016-05-01

    The electronic structure, atomic disorder and magnetic properties of the Heusler alloy Fe2MnGa have been investigated experimentally and theoretically. BCC Fe2MnGa ribbon samples were prepared. Experimentally, a saturation magnetic moment (3.68 μB at 5 K) much larger than the theoretical value (2.04 μB) has been reported. First-principles calculations indicate that the difference is related to the Fe-Mn disorder between A, B sites, as can also be deduced from the XRD pattern. L21 type Fe2MnGa is a ferrimagnet with antiparallel Fe and Mn spin moments. However, when Fe-Mn disorder occurs, part of Mn moments will be parallel to Fe moments, and the Fe moments also clearly increase simultaneously. All this results in a total moment of 3.74 μB, close to the experimental value.

  2. Hydrogen storage in TiCr1.2(FeV)x BCC solid solutions

    International Nuclear Information System (INIS)

    The Ti-V-based BCC solid solutions have been considered attractive candidates for hydrogen storage due to their relatively large hydrogen absorbing capacities near room temperature. In spite of this, improvements of some issues should be achieved to allow the technological applications of these alloys. Higher reversible hydrogen storage capacity, decreasing the hysteresis of PCI curves, and decrease in the cost of the raw materials are needed. In the case of vanadium-rich BCC solid solutions, which usually have large hydrogen storage capacities, the search for raw materials with lower cost is mandatory since pure vanadium is quite expensive. Recently, the substitutions of vanadium in these alloys have been tried and some interesting results were achieved by replacing vanadium by commercial ferrovanadium (FeV) alloy. In the present work, this approach was also adopted and TiCr1.2(FeV)x alloy series was investigated. The XRD patterns showed the co-existence of a BCC solid solution and a C14 Laves phase in these alloys. SEM analysis showed the alloys consisted of dendritic microstructure and C14 colonies. The amount of C14 phase increases when the amount of (FeV) decreases in these alloys. Concerning the hydrogen storage, the best results were obtained for the TiCr1.2(FeV)0.4 alloy, which achieved 2.79 mass% of hydrogen storage capacity and 1.36 mass% of reversible hydrogen storage capacity

  3. Atomic mechanism of homogeneous melting of bcc Fe at the limit of superheating

    International Nuclear Information System (INIS)

    Atomic mechanism of homogeneous melting of bcc Fe is studied via monitoring spatiotemporal arrangements of the liquid-like atoms, which are detected by the Lindemann criterion of melting, during the heating process. Calculations are performed by molecular dynamics (MD) simulations. Calculations show that liquid-like atoms occur randomly in the crystalline matrix at temperature far below the melting point due to local instability of the crystalline lattice. Number of liquid-like atoms increases with increasing temperature and they have a tendency to form clusters. Subsequently, a single percolated liquid-like cluster is formed in the crystalline model and at the melting point 99% atoms in the model become liquid-like to form a liquid phase. Melting is also accompanied by the sudden changes in various static and thermodynamic quantities. However, total melting is reached just at the point above the melting one. Three characteristic temperatures of the homogeneous melting of bcc Fe are determined.

  4. Diffusion simulation of Cr-Fe bcc systems at atomic level using a random walk algorithm

    Energy Technology Data Exchange (ETDEWEB)

    San Sebastian, I.; Aldazabal, J. [CEIT and Tecnun (University of Navarra), San Sebastian (Spain); Capdevila, C.; Garcia-Mateo, C. [MATERALIA Research Group, Department of Physical Metallurgy, Centro Nacional de Investigaciones Metalurgicas (CENIM-CSIC), Avda. Gregorio del Amo 8, 28040 Madrid (Spain)

    2008-06-15

    This paper proposes a model to simulate the diffusion of impurities in bcc atomic lattices. It works with three-dimensional volume, divided in small cubic elements (voxels), containing more than one atomic cell each. Once the domain is discretized, impurities jump from one voxel to another according to certain probability that takes into account the composition and geometry of the target voxel. In the present work, a model was applied to a prismatic volume and in order to deduce the relationship between the atomic jumping frequency and the temperature two different cases were studied. One consists of a Fe matrix with Cr impurities, and the other is based on a Cr matrix with Fe impurities. Results obtained from these simulations were compared with profiles obtained by Dictra software. Results for the atomic jumping frequencies were fitted to an Arrhenius type equation, as shown in following expressions: From these equations it is possible to obtain an activation energy for the atomic jumping phenomenon of {proportional_to}306 kJ/mol and {proportional_to}411 kJ/mol for the Fe-matrix and Cr-matrix systems, respectively. These energies match the empirical measured values for the diffusion of Cr and Fe impurities, 250 kJ/mol and 407 kJ/mol, respectively. Results obtained in this work assure that the proposed model is suitable for simulating the three-dimensional diffusion of substitutional impurities in Cr and Fe bcc systems. It could be easily expanded to other bcc matrix systems. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Hot electron spin attenuation lengths of bcc Fe34Co66-Room temperature Magnetocurrent of 1200%

    International Nuclear Information System (INIS)

    We investigate spin-dependent hot electron transport through metallic epitaxial spin valves by ballistic electron magnetic microscopy (BEMM). By variation of the thickness of one of the ferromagnetic layers we determine the spin dependent attenuation lengths which reflect hot electron transport along the vicinity of the [1 0 0]-axis of the bcc Fe34Co66 lattice. The majority spin attenuation length is more than 6 times larger than that of the minority spins within the measured energy interval of 1.3 up to 2 eV above the Fermi level. Consequently a Magnetocurrent effect exceeding 1200% accompanied by a monotonic bias voltage behavior is observed at room temperature.

  6. Solute/impurity diffusivities in bcc Fe: A first-principles study

    International Nuclear Information System (INIS)

    Chinese low activation martensitic steel (CLAM) has been designed with decreased W content and increased Ta content to improve performance. We performed first-principles calculations to investigate the diffusion properties of solute element (Cr, W, Mn, V, Ta) and C diffusion with a nearby solute element inside bcc Fe. The self-diffusion coefficients and solute diffusion coefficients in Fe host were derived using the nine-frequency model. A relatively lower diffusivity was observed for W in paramagnetic state, implying enriched W concentration inside Fe host. The solute atom interacts strongly with C impurity, depending on the interatomic distance. According to our calculations, formation of Ta carbide precipitates is energetically preferred by trapping C impurity around Ta atom. Our theoretical results are helpful for investigating the evolution of microstructure of steels for engineering applications

  7. Soft magnetic properties of nanocrystalline bcc Fe-Zr-B and Fe-M-B-Cu (M=transition metal) alloys with high saturation magnetization (invited)

    International Nuclear Information System (INIS)

    A mostly single bcc phase with nanoscale grain sizes of 10 to 20 nm was found to form by annealing amorphous Fe-Zr-B, Fe-Hf-B, and Fe-M-B-Cu(M=Ti, Zr, Hf, Nb, and Ta) alloys for 3.6 ks in the range of 723 to 923 K. The high permeability (μe) above 10 000 at 1 kHz combined with high saturation magnetization (Bs) above 1.5 T was obtained for the bcc alloys. The highest μe and Bs values reach 14 000 and 1.7 T for Fe91Zr7B2, 20 000 and 1.55 T for Fe87Zr7B5Cu1, and 48 000 and 1.52 T for Fe86Zr7B6Cu1. Magnetostriction (λs) decreases significantly by the phase transition from amorphous to bcc phase and is measured to be 1 x 10-6 for the bcc Fe86Zr7B6Cu1 alloy. The small λs as well as the small grain size is concluded to be the reason for the good soft magnetic properties. The lattice parameter of this bcc phase is 0.2870 nm being larger than that of pure α-Fe. The small λs seems to be achieved by the dissolution of solute elements above an equilibrium solubility limit. The bcc Fe86Zr7B6Cu1 alloy also shows the low core loss of 0.066 W/kg at 1 T and 50 Hz, which is considerably smaller than that of amorphous Fe78Si9B13 and bcc Fe-3.5mass%Si alloys in practical uses as core materials in transformer

  8. Spin-polarized scanning tunneling microscopy of magnetic nanostructures at the example of bcc-Co/Fe(110), Fe/Mo(110), and copper phthalocyanine/Fe(1110); Spinpolarisierte Rastertunnelmikroskopie magnetischer Nanostrukturen am Beispiel von bcc-Co/Fe(110), Fe/Mo(110) und Kupfer-Phthalocyanin/Fe(110)

    Energy Technology Data Exchange (ETDEWEB)

    Methfessel, Torsten

    2010-12-09

    This thesis provides an introduction into the technique of spin-polarized scanning tunnelling microscopy and spectroscopy as an experimental method for the investigation of magnetic nanostructures. Experimental results for the spin polarized electronic structure depending on the crystal structure of ultrathin Co layers, and depending on the direction of the magnetization for ultrathin Fe layers are presented. High-resolution measurements show the position-dependent spin polarization on a single copper-phthalocyanine molecule deposited on a ferromagnetic surface. Co was deposited by molecular beam epitaxy on the (110) surface of the bodycentered cubic metals Cr and Fe. In contrast to previous reports in the literature only two layers of Co can be stabilized in the body-centered cubic (bcc) structure. The bcc-Co films on the Fe(110) surface show no signs of epitaxial distortions. Thicker layers reconstruct into a closed-packed structure (hcp / fcc). The bcc structure increases the spin-polarization of Co to P=62 % in comparison to hcp-Co (P=45 %). The temperature-dependent spin-reorientation of ultrathin Fe/Mo(110) films was investigated by spin-polarized spectroscopy. A reorientation of the magnetic easy axis from the [110] direction along the surface normal to the in-plane [001] axis is observed at T (13.2{+-}0.5) K. This process can be identified as a discontinuous reorientation transition, revealing two simultaneous minima of the free energy in a certain temperature range. The electronic structure of mono- and double-layer Fe/Mo(110) shows a variation with the reorientation of the magnetic easy axis and with the direction of the magnetization. The investigation of the spin-polarized charge transport through a copper-phthalocyanine molecule on the Fe/Mo(110) surface provides an essential contribution to the understanding of spin-transport at the interface between metal and organic molecule. Due to the interaction with the surface of the metal the HOMO-LUMO energy

  9. Diffusion behavior of Cr diluted in bcc and fcc Fe: Classical and quantum simulation methods

    International Nuclear Information System (INIS)

    We characterize the atomic mobility behavior driven by vacancies, in bcc and fcc Fe−Cr diluted alloys, using a multi-frequency model. We calculate the full set of the Onsager coefficients and the tracer self and solute diffusion coefficients in terms of the mean jump frequencies. The involved jump frequencies are calculated using a classical molecular static (CMS) technique. For the bcc case, we also perform quantum calculations based on the density functional theory (DFT). There, we show that, in accordance with Bohr's correspondence principle, as the size of the atomic cell (total number of atoms) is increased, quantum results with DFT recover the classical ones obtained with CMS calculations. This last ones, are in perfect agreement with available experimental data for both, solute and solvent diffusion coefficients. For high temperatures, in the fcc phase where no experimental data are yet available, our CMS calculations predict the expected solute and solvent diffusion coefficients. - Graphical abstract: Display Omitted - Highlights: • Comparison of diffusion coefficients obtained from classical and quantum methods. • We perform our calculations in diluted bcc/fcc Fe–Cr alloy. • Magnetic and phonon effects must be taken into account. • Classical calculations are in perfect agreement with experimental data

  10. Diffusion behavior of Cr diluted in bcc and fcc Fe: Classical and quantum simulation methods

    Energy Technology Data Exchange (ETDEWEB)

    Ramunni, Viviana P., E-mail: vpram@cnea.gov.ar [CONICET, Avda. Rivadavia 1917, Cdad. de Buenos Aires C.P. 1033 (Argentina); Comisión Nacional de Energía Atómica, Gerencia Materiales, Av. Del Libertador 8250, C1429BNP Ciudad de Buenos Aires (Argentina); Rivas, Alejandro M.F. [CONICET, Avda. Rivadavia 1917, Cdad. de Buenos Aires C.P. 1033 (Argentina); Comisión Nacional de Energía Atómica, Departamento de Física Teórica, Tandar, Av. Del Libertador 8250, C1429BNP Ciudad de Buenos Aires (Argentina)

    2015-07-15

    We characterize the atomic mobility behavior driven by vacancies, in bcc and fcc Fe−Cr diluted alloys, using a multi-frequency model. We calculate the full set of the Onsager coefficients and the tracer self and solute diffusion coefficients in terms of the mean jump frequencies. The involved jump frequencies are calculated using a classical molecular static (CMS) technique. For the bcc case, we also perform quantum calculations based on the density functional theory (DFT). There, we show that, in accordance with Bohr's correspondence principle, as the size of the atomic cell (total number of atoms) is increased, quantum results with DFT recover the classical ones obtained with CMS calculations. This last ones, are in perfect agreement with available experimental data for both, solute and solvent diffusion coefficients. For high temperatures, in the fcc phase where no experimental data are yet available, our CMS calculations predict the expected solute and solvent diffusion coefficients. - Graphical abstract: Display Omitted - Highlights: • Comparison of diffusion coefficients obtained from classical and quantum methods. • We perform our calculations in diluted bcc/fcc Fe–Cr alloy. • Magnetic and phonon effects must be taken into account. • Classical calculations are in perfect agreement with experimental data.

  11. Trap effect of vacancy on hydrogen diffusivity in bcc-Fe

    Science.gov (United States)

    Zhu, Deqiong; Oda, Takuji

    2016-02-01

    Evaluation of tritium effective diffusivity in structural materials with defects is essential to appropriately estimate the accumulation and leakage of tritium in fusion reactors. In the present work, we focus on the trap effect of vacancy on the diffusivity of hydrogen in bcc-Fe. The hydrogen effective diffusivities in different bcc-Fe systems with varied hydrogen/vacancy ratios (H/V ratios) are evaluated by using molecular statics (MS) and molecular dynamics (MD) simulations, and are compared with that in the system without vacancy. The hydrogen effective diffusivity is obviously decreased due to the vacancy trap effect. The trap effect is more profound in small H/V-ratio systems due to the dependence of V-H binding energy on the number of trapped H atoms. The trapped H atoms hardly contribute to hydrogen diffusivity because of the difficulty in detrapping and small mobility of V-H complex. This fact results in a good correlation between the effective diffusivity of hydrogen and the fraction of H atoms solute in the bulk without being trapped by vacancy.

  12. Fabrication of oriented L10-FeCuPd and composite bcc-Fe/L10-FeCuPd nanoparticles: Alloy composition dependence of magnetic properties

    International Nuclear Information System (INIS)

    Oriented and well-isolated L10-FeCuPd ternary alloy nanoparticles have been fabricated by electron-beam evaporation followed by postdeposition annealing. A single L10 phase was formed in the FeCuPd nanoparticles with (Fe+Cu) content lower than 48 at. %. A strong preferential c-axis orientation along the film normal direction was achieved by Cu addition, which leads to a strong perpendicular magnetic anisotropy. Also, a lowering of the ordering temperature by 50 K compared to the binary L10-FePd nanoparticles was achieved by Cu addition. By contrast, composite particles composed of the bcc Fe and the L10-FeCuPd were formed when the (Fe+Cu) content was higher than 52 at. %. Coexistence of the bcc Fe and the L10-FeCuPd was confirmed by high-resolution transmission electron microscopy and nanobeam electron diffraction. It was found that perpendicular magnetic anisotropy of the L10-FeCuPd nanoparticles on the NaCl substrate is sensitive to the alloy composition

  13. Spin dynamics studies of single Fe and Ni impurity in bcc iron (abstract)

    Energy Technology Data Exchange (ETDEWEB)

    Sabiryanov, R.; Jaswal, S.S. [Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0111 (United States); Antropov, V.P.; Harmon, B.N.; Liu, S. [Ames Laboratory and Physics Department of ISU, Ames, Iowa 50011 (United States)

    1997-04-01

    Spin dynamics based on a quasiclassical approximation is used to study a single Fe or Ni magnetic impurity in ferromagnetic bcc iron. The optimization of the magnetic structure of the impurity includes quantum effects such as spatial spin inhomogeneity and different orbital contributions. The Pauli equation for noncollinear magnetic configuration is solved for each impurity. When rotated from ferromagnetic ordering, Fe and Ni impurities show different behavior. The Fe moment remains almost unchanged through a rotation of 0.6{pi} radians and drops to zero when the rotation is increased to 0.72{pi} radians. This behavior is primarily due to the interplay of more localized e{sub g} states and itinerant t{sub 2g} states. On the other hand, the Ni moment drops continuously with rotation, going to zero at 0.5{pi} radians. The different degrees of localization of Ni and Fe moments are analyzed in terms of different spatial anisotropy of magnetization density. The inhomogeneous spin space configurations are presented and analyzed using corresponding space dependent exchange integrals. {copyright} {ital 1997 American Institute of Physics.}

  14. Hot electron transport in thin bcc FeCo spin valves - room temperature magnetocurrent exceeding 1200%

    Energy Technology Data Exchange (ETDEWEB)

    Kefes, Christoph; Heindl, Emanuel; Vancea, Johann; Back, Christian [Department of Physics, University of Regensburg, 93040 Regensburg (Germany)

    2009-07-01

    We use the tip of a scanning tunneling microscope to create a nonequilibrium unipolar electron distribution in a metal layer and measure the subsequent perpendicular ballistic hot electron transport through thin single crystalline metallic spin valves by employing ballistic electron emission microscopy (BEEM). By variation of the thickness of one of the ferromagnetic layers we can determine the spin dependent attenuation lengths which reflect the bulk hot electron transport along the[100]-axis of the bcc FeCo-layers. While the minority spin attenuation length is found to be energy independent and about 0.8 nm, the majority spin attenuation length is about 6 times larger within the measured energy interval of 1.3 up to 2 eV above the Fermi level. Consequently, a magnetocurrent effect exceeding 1200 % accompanied by a monotonic bias voltage behavior is observed at room temperature.

  15. Synergetic effects of Mn and Si in the interaction with point defects in bcc Fe

    Energy Technology Data Exchange (ETDEWEB)

    Bakaev, A., E-mail: abakaev@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol B2400 (Belgium); Center for Molecular Modeling, Department of Physics and Astronomy, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium); Department of Experimental Nuclear Physics, Institute of Physics, Nanotechnologies and Telecommunications, St. Petersburg State Polytechnical University, 29 Polytekhnicheskaya Str., 195251 St. Petersburg (Russian Federation); Terentyev, D. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol B2400 (Belgium); He, X. [China Institute of Atomic Energy, PO Box 275-51, 102413 Beijing (China); Van Neck, D. [Center for Molecular Modeling, Department of Physics and Astronomy, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium)

    2014-12-15

    The interaction of Mn, Si and Cr with a vacancy and self-interstitial defects in BCC Fe has been analyzed using ab initio calculations. While the interaction of the considered solute clusters with a single vacancy is linearly additive, there is a considerable synergetic effect in the case of self-interstitial atoms, found to bind strongly with Mn–Si pairs. The latter therefore act as deep trapping configurations for self-interstitials. At the same time, the presence of the point defects nearby weakly attractive Mn–Si pairs significantly enhances the solute–solute binding. The revealed effects are rationalized on the basis of charge density and local magnetic moment distributions.

  16. Towards an unbiased comparison of CC, BCC, and FCC lattices in terms of prealiasing

    KAUST Repository

    Vad, Viktor

    2014-06-01

    In the literature on optimal regular volume sampling, the Body-Centered Cubic (BCC) lattice has been proven to be optimal for sampling spherically band-limited signals above the Nyquist limit. On the other hand, if the sampling frequency is below the Nyquist limit, the Face-Centered Cubic (FCC) lattice was demonstrated to be optimal in reducing the prealiasing effect. In this paper, we confirm that the FCC lattice is indeed optimal in this sense in a certain interval of the sampling frequency. By theoretically estimating the prealiasing error in a realistic range of the sampling frequency, we show that in other frequency intervals, the BCC lattice and even the traditional Cartesian Cubic (CC) lattice are expected to minimize the prealiasing. The BCC lattice is superior over the FCC lattice if the sampling frequency is not significantly below the Nyquist limit. Interestingly, if the original signal is drastically undersampled, the CC lattice is expected to provide the lowest prealiasing error. Additionally, we give a comprehensible clarification that the sampling efficiency of the FCC lattice is lower than that of the BCC lattice. Although this is a well-known fact, the exact percentage has been erroneously reported in the literature. Furthermore, for the sake of an unbiased comparison, we propose to rotate the Marschner-Lobb test signal such that an undue advantage is not given to either lattice. © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  17. The electronic structure and bonding of a H-H pair in the vicinity of a BCC Fe bulk vacancy

    Energy Technology Data Exchange (ETDEWEB)

    Juan, A.; Pistonesi, C.; Brizuela, G. [Universidad Nacional del Sur, Bahia Blanca (Argentina). Departamento de Fisica; Garcia, A.J. [Universidad Nacional del Sur, Bahia Blanca (Argentina). Departamento de Ciencias de la Computacion

    2003-09-01

    The H-Fe interaction near a bcc Fe vacancy is analysed using a semi-empirical theoretical method. Calculations were performed using a Fe{sub 86} cluster with a vacancy. Hydrogen atoms are positioned in their local energy minima configurations. Changes in the electronic structure of Fe atoms near a vacancy were analysed for the system without H, with one H and with two H atoms. Fe atoms surrounding the vacancy weaken their bond when hydrogen is present. This is due to the formation of H-Fe bonds. Hydrogen influences only its nearest-neighbour Fe atoms. The H-H interaction was also analysed. For H-H distance of 0.82 Angstrom an H-H association is formed, while H-Fe interaction and Fe-Fe weakening is markedly reduced, when compared with other H-H interactions. (author)

  18. He-induced vacancy formation in bcc Fe solid from first-principles simulation

    International Nuclear Information System (INIS)

    Using first-principles calculations, we investigated the He and H effects on vacancy formation in bcc Fe. From energetic point of view, the presence of interstitial He (H) atom reduces vacancy formation energy and single He prefers to occupy vacancy center. One monovacancy can accommodate at least 20 He (or 5 H) atoms, with He–He (H–H) distances of 1.5–1.7 Å (1.8–2.38 Å) in the Hem–vacancy (Hm–vacancy) complexes. The shorter He–He distance and larger expansion of vacancy space after multiple He insertion may account for more number of He atoms trapped in vacancy with regard to H. Moreover, second vacancy formation energy around the He–vacancy complex decreases remarkably with increasing amount of He atoms. Thus, trapping of multiple He in a Fe monovacancy can induce formation of new vacancy at nearby lattice site, and several vacancy–SIA pairs would form concurrently

  19. Hydrogen storage in TiCr{sub 1.2}(FeV){sub x} BCC solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sydney F. [Institut de Recherche sur l' hydrogene, Universite du Quebec a Trois-Rivieres 3351, Boul. des Forges, Trois-Rivieres, Quebec G9A 5H7 (Canada)], E-mail: sfsantos91@yahoo.com.br; Huot, Jacques [Institut de Recherche sur l' hydrogene, Universite du Quebec a Trois-Rivieres 3351, Boul. des Forges, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-03-20

    The Ti-V-based BCC solid solutions have been considered attractive candidates for hydrogen storage due to their relatively large hydrogen absorbing capacities near room temperature. In spite of this, improvements of some issues should be achieved to allow the technological applications of these alloys. Higher reversible hydrogen storage capacity, decreasing the hysteresis of PCI curves, and decrease in the cost of the raw materials are needed. In the case of vanadium-rich BCC solid solutions, which usually have large hydrogen storage capacities, the search for raw materials with lower cost is mandatory since pure vanadium is quite expensive. Recently, the substitutions of vanadium in these alloys have been tried and some interesting results were achieved by replacing vanadium by commercial ferrovanadium (FeV) alloy. In the present work, this approach was also adopted and TiCr{sub 1.2}(FeV){sub x} alloy series was investigated. The XRD patterns showed the co-existence of a BCC solid solution and a C14 Laves phase in these alloys. SEM analysis showed the alloys consisted of dendritic microstructure and C14 colonies. The amount of C14 phase increases when the amount of (FeV) decreases in these alloys. Concerning the hydrogen storage, the best results were obtained for the TiCr{sub 1.2}(FeV){sub 0.4} alloy, which achieved 2.79 mass% of hydrogen storage capacity and 1.36 mass% of reversible hydrogen storage capacity.

  20. The energetic and structural properties of bcc NiCu, FeCu alloys: a first-principles study

    OpenAIRE

    Xie, Yao-Ping; Zhao, Shi-Jin

    2011-01-01

    Using special quasirandom structures (SQS's), we perform first-principles calculations studying the metastable bcc NiCu and FeCu alloys which occur in Fe-Cu-Ni alloy steels as precipitated second phase. The mixing enthalpies, density of state, and equilibrium lattice parameters of these alloys are reported. The results show that quasi-chemical approach and vegard rule can well predict the energetic and structural properties of FeCu alloys but fail to yield that of NiCu. The reason rests with ...

  1. Electronic structure of nanosized bcc Cu precipitates in Fe-Cu alloys studied by positron 2D-ACAR

    International Nuclear Information System (INIS)

    Based on the finding with the use of the coincidence Doppler measurements that the nanosized Cu precipitates are coherently embedded in the Fe-Cu matrix alloy, taking a bcc structure and acting as efficient positron traps, we measured 2D-ACARs of carefully grown and heat treated single crystals of Fe-Cu. We found that the precipitates have a Fermi surface with 12 necks touching the {110} Bragg planes of the bcc Brillouin zone, which contrasts distinctly with that of the bulk Cu with 8 necks touching the {111} Bragg planes of the fcc Brillouin zone. The 3 dimensional momentum reconstruction of the 2D-ACAR data showed that the Fermi surface cutoff of the Cu precipitates is blurred considerably as compared with that of bulk fcc Cu, suggesting a marked size effect in the momentum distribution. (orig.)

  2. Interactions of solute (3p, 4p, 5p and 6p) with solute, vacancy and divacancy in bcc Fe

    Energy Technology Data Exchange (ETDEWEB)

    You, Yu-Wei; Kong, Xiang-Shan; Wu, Xue-Bang; Liu, Wei [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Liu, C.S., E-mail: csliu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Fang, Q.F. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Chen, J.L.; Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Zhiguang [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-12-15

    Solute–vacancy binding energy is a key quantity in understanding solute diffusion kinetics and phase segregation, and may help choice of alloy compositions for future material design. However, the binding energy of solute with vacancy is notoriously difficult to measure and largely unknown in bcc Fe. With first-principles method, we systemically calculate the binding energies of solute (3p, 4p, 5p and 6p alloying solutes are included) with vacancy, divacancy and solute in bcc Fe. The binding energy of Si with vacancy in the present work is in good consistent with experimental value available. All the solutes considered are able to form stable solute–vacancy, solute–divacancy complexes, and the binding strength of solute–divacancy is about two times larger than that of solute–vacancy. Most solutes could not form stable solute–solute complexes except S, Se, In and Tl. The factors controlling the binding energies are analyzed at last.

  3. Interactions of solute (3p, 4p, 5p and 6p) with solute, vacancy and divacancy in bcc Fe

    International Nuclear Information System (INIS)

    Solute–vacancy binding energy is a key quantity in understanding solute diffusion kinetics and phase segregation, and may help choice of alloy compositions for future material design. However, the binding energy of solute with vacancy is notoriously difficult to measure and largely unknown in bcc Fe. With first-principles method, we systemically calculate the binding energies of solute (3p, 4p, 5p and 6p alloying solutes are included) with vacancy, divacancy and solute in bcc Fe. The binding energy of Si with vacancy in the present work is in good consistent with experimental value available. All the solutes considered are able to form stable solute–vacancy, solute–divacancy complexes, and the binding strength of solute–divacancy is about two times larger than that of solute–vacancy. Most solutes could not form stable solute–solute complexes except S, Se, In and Tl. The factors controlling the binding energies are analyzed at last

  4. Structure and energetics of nanoclusters in bcc-Fe containing copper, nickel and vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Al-Motasem, Ahmed Tamer; Bergner, Frank; Birkenheuer, Uwe [Institute of Safety Research (Germany); Posselt, Matthias [Institute of Ion Beam and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2011-07-01

    Reactor pressure vessel (RPV) steels consist of polycrystalline bcc-Fe containing Cu, Ni and other foreign atoms. The continuous irradiation by fast neutrons leads to supersaturation of vacancies and self-interstitials and enhances the diffusion of Cu and Ni which occurs via the vacancy mechanism. These processes favor the formation of nanoclusters consisting of vacancies, Cu and Ni. The interaction of dislocations with these precipitates is considered to be the main cause of hardening and embrittlement of the RPV steels. In order to model the evolution of the precipitates under irradiation by rate theory, the energetics and thermodynamics of the clusters must be known. These data are hardly obtainable by experiments, however, they can be provided by atomic-level computer simulations. In the present work a combination of on-lattice Monte Carlo simulations and off-lattice Molecular Dynamics calculations is employed to determine structure and energetics of the nanoclusters. The atomistic simulations show that ternary clusters exhibit a shell structure with a core consisting of vacancies followed by a shell of Cu and an outer shell of Ni. Binary vacancy-Cu and Ni-Cu clusters show a similar shell structure, whereas the atomic configuration of vacancy-Ni agglomerates is completely different.

  5. Modelling of primary bcc-Fe crystal growth in a Fe85B15 amorphous alloy

    International Nuclear Information System (INIS)

    A kinetic modelling of primary crystallization in metallic glasses, based on the CALPHAD approach and the moving boundary model, has been applied to the Fe-B system. The DICTRA software has been used to perform numerical calculations. Kinetic and thermodynamic parameters (atomic mobilities and thermodynamic factors) are required and they have been obtained from the literature. Various simulations have been performed in order to evaluate the influence of different parameters choice. The soft impingement effect has been discussed. Furthermore, amorphous Fe85B15 samples have been prepared and examined by differential scanning calorimetry. Calculated and experimental results, both on continuous heating and isothermal conditions, have been compared

  6. First-principles study of the relaxation and energy of bcc-Fe, fcc-Fe and AISI-304 stainless steel surfaces

    International Nuclear Information System (INIS)

    Relaxations and surface energies of bcc-Fe, fcc-Fe and AISI-304 stainless steel surfaces are investigated by using first-principles total energy calculations. The low-index surfaces (1 0 0), (1 1 0), and (1 1 1) are optimized with respect to the atomic coordinates. The calculations are performed within the density functional framework using the projector augmented plane wave (PAW) method. The structural property, surface relaxations and surface energies of bcc-Fe agree well with experimental data from previous computational studies. For bcc-Fe, the order of surface relaxations and surface energies is (1 1 0) < (1 0 0) < (1 1 1). The orders of surface relaxations and energies for fcc-Fe and AISI-304 stainless steel are (1 1 1) < (1 0 0) < (1 1 0) and (1 0 0) < (1 1 1) < (1 1 0), respectively. The surface energies of AISI-304 stainless steel achieved in this study provide a good basis for future experimental application.

  7. Hot electron spin attenuation lengths of bcc Fe34Co66—Room temperature Magnetocurrent of 1200%

    Science.gov (United States)

    Heindl, E.; Kefes, C.; Soda, M.; Vancea, J.; Back, C. H.

    2009-11-01

    We investigate spin-dependent hot electron transport through metallic epitaxial spin valves by ballistic electron magnetic microscopy (BEMM). By variation of the thickness of one of the ferromagnetic layers we determine the spin dependent attenuation lengths which reflect hot electron transport along the vicinity of the [1 0 0]-axis of the bcc Fe34Co66 lattice. The majority spin attenuation length is more than 6 times larger than that of the minority spins within the measured energy interval of 1.3 up to 2 eV above the Fermi level. Consequently a Magnetocurrent effect exceeding 1200% accompanied by a monotonic bias voltage behavior is observed at room temperature.

  8. Interaction of dislocations with carbides in BCC Fe studied by molecular dynamics

    Science.gov (United States)

    Granberg, F.; Terentyev, D.; Nordlund, K.

    2015-05-01

    In this study, the atomic processes involving the interaction of an edge dislocation with carbide precipitates in an iron matrix are investigated by molecular dynamics, utilizing two interatomic potentials (Hepburn, 2008 and Henriksson, 2013). The carbides investigated were Fe3 C and M23C6, where M was either Fe or Cr. The results from spherical precipitates were compared with rod shaped obstacles, to investigate the effect of climb in the unpinning process and the stress related to this process. The rod simulations showed a higher unpinning stress for all investigated sizes and temperatures, which indicates that climb will play a role in the unpinning phenomenon. The results showed, as previous studies, a decrease of the unpinning stress with increasing temperature and that a larger obstacle yields a higher unpinning stress. The Orowan process of dislocation unpinning was observed with both potentials as an increase in the needed unpinning stress in consecutive interactions with the same obstacle. The results showed that the structure of the obstacle does not affect the unpinning stress, as much as temperature, for obstacles ⩾ 2 nm. Comparison of obstacles with the same structure but with different composition, Fe23C6 and Cr23C6, showed that the small shearable chromium carbides were stronger than the corresponding iron carbides, pointing to the importance of the chemical composition of the carbide.

  9. Diffusion simulation of Cr-Fe bcc systems at atomic level using a random walk alogorithm

    OpenAIRE

    San Sebastián, I; Aldazabal, J.; Capdevila, Carlos; García de Andrés, Carlos

    2008-01-01

    This paper proposes a model to simulate the diffusion of impurities in bcc atomic lattices. It works with threedimensional volume divided in small cubic elements (voxels), containing more than one atomic cell each. Once the domain is discretized, impurities jump for one voxel to another according to certain probability that takes into account the composition and geometry of the target voxel. In present work, model was applied to prismatic volume, and in order to ded...

  10. Diffusion of hydrogen within idealised grains of bcc-Fe: A kinetic Monte Carlo study

    OpenAIRE

    Du, Yaojun A.; Rogal, Jutta; Drautz, Ralf

    2012-01-01

    Structural defects in materials such as vacancies, grain boundaries, and dislocations may trap hydrogen and a local accumulation of hydrogen at these defects can lead to the degradation of the materials properties. An important aspect in obtaining insight into hydrogen induced embrittlement on the atomistic level is to understand the diffusion of hydrogen in these materials. In our study we employ kinetic Monte Carlo (kMC) simulations to investigate hydrogen diffusion in bcc iron within diffe...

  11. Hot electron spin attenuation lengths of bcc Fe{sub 34}Co{sub 66}-Room temperature Magnetocurrent of 1200%

    Energy Technology Data Exchange (ETDEWEB)

    Heindl, E. [Department of Physics, University of Regensburg, 93040 Regensburg (Germany)], E-mail: Emanuel.Heindl@physik.uni-r.de; Kefes, C.; Soda, M.; Vancea, J.; Back, C.H. [Department of Physics, University of Regensburg, 93040 Regensburg (Germany)

    2009-11-15

    We investigate spin-dependent hot electron transport through metallic epitaxial spin valves by ballistic electron magnetic microscopy (BEMM). By variation of the thickness of one of the ferromagnetic layers we determine the spin dependent attenuation lengths which reflect hot electron transport along the vicinity of the [1 0 0]-axis of the bcc Fe{sub 34}Co{sub 66} lattice. The majority spin attenuation length is more than 6 times larger than that of the minority spins within the measured energy interval of 1.3 up to 2 eV above the Fermi level. Consequently a Magnetocurrent effect exceeding 1200% accompanied by a monotonic bias voltage behavior is observed at room temperature.

  12. Phase transition from fcc to bcc structure of the Cu-clusters during nanocrystallization of Fe85.2Si1B9P4Cu0.8 soft magnetic alloy

    Directory of Open Access Journals (Sweden)

    Masahiko Nishijima

    2014-05-01

    Full Text Available A role of Cu on the nanocrystallization of an Fe85.2Si1B9P4Cu0.8 alloy was investigated by X-ray absorption fine structure (XAFS and transmission electron microscopy (TEM. The Cu K-edge XAFS results show that local structure around Cu is disordered for the as-quenched sample whereas it changes to fcc-like structure at 613 K. The fcc Cu-clusters are, however, thermodynamically unstable and begin to transform into bcc structure at 638 K. An explicit bcc structure is observed for the sample annealed at 693 K for 600 s in which TEM observation shows that precipitated bcc-Fe crystallites with ∼12 nm are homogeneously distributed. The bcc structure of the Cu-clusters transforms into the fcc-type again at 973 K, which can be explained by the TEM observations; Cu segregates at grain boundaries between bcc-Fe crystallites and Fe3(B,P compounds. Combining the XAFS results with the TEM observations, the structure transition of the Cu-clusters from fcc to bcc is highly correlated with the preliminary precipitation of the bcc-Fe which takes place prior to the onset of the first crystallization temperature, Tx1 = 707 K. Thermodynamic analysis suggests that an interfacial energy density γ between an fcc-Cu cluster and bcc-Fe matrix dominates at a certain case over the structural energy between fcc and bcc Cu, ΔGfcc − bcc, which causes phase transition of the Cu clusters from fcc to bcc structure.

  13. Phase transition from fcc to bcc structure of the Cu-clusters during nanocrystallization of Fe85.2Si1B9P4Cu0.8 soft magnetic alloy

    International Nuclear Information System (INIS)

    A role of Cu on the nanocrystallization of an Fe85.2Si1B9P4Cu0.8 alloy was investigated by X-ray absorption fine structure (XAFS) and transmission electron microscopy (TEM). The Cu K-edge XAFS results show that local structure around Cu is disordered for the as-quenched sample whereas it changes to fcc-like structure at 613 K. The fcc Cu-clusters are, however, thermodynamically unstable and begin to transform into bcc structure at 638 K. An explicit bcc structure is observed for the sample annealed at 693 K for 600 s in which TEM observation shows that precipitated bcc-Fe crystallites with ∼12 nm are homogeneously distributed. The bcc structure of the Cu-clusters transforms into the fcc-type again at 973 K, which can be explained by the TEM observations; Cu segregates at grain boundaries between bcc-Fe crystallites and Fe3(B,P) compounds. Combining the XAFS results with the TEM observations, the structure transition of the Cu-clusters from fcc to bcc is highly correlated with the preliminary precipitation of the bcc-Fe which takes place prior to the onset of the first crystallization temperature, Tx1 = 707 K. Thermodynamic analysis suggests that an interfacial energy density γ between an fcc-Cu cluster and bcc-Fe matrix dominates at a certain case over the structural energy between fcc and bcc Cu, ΔGfcc−bcc, which causes phase transition of the Cu clusters from fcc to bcc structure

  14. Phase transition from fcc to bcc structure of the Cu-clusters during nanocrystallization of Fe85.2Si1B9P4Cu0.8 soft magnetic alloy

    Science.gov (United States)

    Nishijima, Masahiko; Matsuura, Makoto; Takenaka, Kana; Takeuchi, Akira; Ofuchi, Hironori; Makino, Akihiro

    2014-05-01

    A role of Cu on the nanocrystallization of an Fe85.2Si1B9P4Cu0.8 alloy was investigated by X-ray absorption fine structure (XAFS) and transmission electron microscopy (TEM). The Cu K-edge XAFS results show that local structure around Cu is disordered for the as-quenched sample whereas it changes to fcc-like structure at 613 K. The fcc Cu-clusters are, however, thermodynamically unstable and begin to transform into bcc structure at 638 K. An explicit bcc structure is observed for the sample annealed at 693 K for 600 s in which TEM observation shows that precipitated bcc-Fe crystallites with ˜12 nm are homogeneously distributed. The bcc structure of the Cu-clusters transforms into the fcc-type again at 973 K, which can be explained by the TEM observations; Cu segregates at grain boundaries between bcc-Fe crystallites and Fe3(B,P) compounds. Combining the XAFS results with the TEM observations, the structure transition of the Cu-clusters from fcc to bcc is highly correlated with the preliminary precipitation of the bcc-Fe which takes place prior to the onset of the first crystallization temperature, Tx1 = 707 K. Thermodynamic analysis suggests that an interfacial energy density γ between an fcc-Cu cluster and bcc-Fe matrix dominates at a certain case over the structural energy between fcc and bcc Cu, ΔGfcc - bcc, which causes phase transition of the Cu clusters from fcc to bcc structure.

  15. Ab initio calculation of the bcc Fe-Al phase diagram including magnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales-Ormeno, Pablo Guillermo [Facultad de Ciencias Naturales y Matematica, Universidad Nacional Federico Villarreal, Calle San Marcos 351, Pueblo Libre, Lima (Peru); Departamento de Fisica dos Materiais e Mecanica, Instituto de Fisica da Universidade de Sao Paulo, CP 66318, CEP 05315-970 Sao Paulo-SP (Brazil); Computational Materials Science Lab., Departamento de Engenharia Metalurgica e de Materiais, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2463, CEP 05508-900 Sao Paulo-SP (Brazil); Petrilli, Helena Maria [Departamento de Fisica dos Materiais e Mecanica, Instituto de Fisica da Universidade de Sao Paulo, CP 66318, CEP 05315-970 Sao Paulo-SP (Brazil)]. E-mail: hmpetril@macbeth.if.usp.br; Schoen, Claudio Geraldo [Computational Materials Science Lab., Departamento de Engenharia Metalurgica e de Materiais, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2463, CEP 05508-900 Sao Paulo-SP (Brazil)]. E-mail: schoen@usp.br

    2006-04-15

    metastable phase diagram of the body-centered cubic-based ordering equilibria in the Fe-Al system has been calculated by the cluster expansion method, through the combination of the full potential-linear augmented plane wave and cluster variation methods. The results are discussed with reference to the effect of including the spin polarizations of Fe in the thermodynamic model.

  16. Ab initio calculation of the bcc Fe-Al phase diagram including magnetic interactions

    International Nuclear Information System (INIS)

    The metastable phase diagram of the body-centered cubic-based ordering equilibria in the Fe-Al system has been calculated by the cluster expansion method, through the combination of the full potential-linear augmented plane wave and cluster variation methods. The results are discussed with reference to the effect of including the spin polarizations of Fe in the thermodynamic model

  17. Molecular dynamics investigation of the interaction of dislocations with carbides in BCC Fe

    Science.gov (United States)

    Granberg, F.; Terentyev, D.; Nordlund, K.

    2015-06-01

    Different types of carbides are present in many steels used as structural materials. To safely use steel in demanding environments, like nuclear power plants, it is important to know how defects will affect the mechanical properties of the material. In this study, the effect of carbide precipitates on the edge dislocation movement is investigated. Three different types of carbides were investigated by means of molecular dynamics, with a Tersoff-like bond order interatomic potential by Henriksson et al. The obstacles were 4 nm in diameter and were of Fe3C- (cementite-), Fe23C6- and Cr23C6-type. The critical unpinning stress was calculated for each type at different temperatures, to get the temperature-dependent obstacle strength. The results showed a decreasing critical stress with increasing temperature, consistent with previous studies. The critical unpinning stress was seen to be dependent on the type of carbide, but the differences were small. A difference was also observed between the obstacles with the same structure, but with different composition. This study shows the relation between the existing Cr23C6 carbide and the experimentally non-existing Fe23C6 carbide, which needs to be used as a model system for investigations with interatomic potentials not able to describe the interaction of Cr in the Fe-C-system. We found the difference to be a between 7% and 10% higher critical unpinning stress for the chromium carbide, than for the iron carbide of the same type.

  18. A DFT study of atomic structure and adhesion at the Fe(BCC)/Fe3O4 interfaces

    Science.gov (United States)

    Forti, M. D.; Alonso, P. R.; Gargano, P. H.; Balbuena, P. B.; Rubiolo, G. H.

    2016-05-01

    The adhesion at Fe/Fe3O4 interface is one of the critical pieces of information that is often lacking upon designing the protective magnetite layer on the inner surfaces of carbon steel piping or upon modeling the scale removal mechanism for optimization of industrial descaling of the wire or strip surface of carbon steel after hot rolling process. In this context, we have performed ab initio DFT calculations to determine the atomic structure, work of separation (γ), and bonding character of the Fe(001)/Fe3O4(001) interface. Three candidate interface geometries were considered, including Fe and FeO2 terminations of the oxide. The minimization of the forces resulted in substantial changes to the atomic structure of the metal and oxide layer at both side of the interface, and also of the subsurface layer of the oxide in the case of Fe-terminated oxide slab. Moreover, the relaxation of the geometry in one of the two considered Fe-terminated oxide interface leads to completely unstable interface structures. By applying several methods of analysis, we have thoroughly characterized the electronic structure and have determined that the dominant bonding mechanism is the metallic-ionic interaction between the iron atoms of both metal and oxide slabs. Our calculations predict γ ≈ 1.42 J/m2 regardless of the interfacial stoichiometry.

  19. Molecular dynamics investigation of the interaction of dislocations with carbides in BCC Fe

    Energy Technology Data Exchange (ETDEWEB)

    Granberg, F., E-mail: fredric.granberg@helsinki.fi [Department of Physics, P.O. Box 43, FIN-00014 University of Helsinki (Finland); Terentyev, D. [Nuclear Materials Science Institute, SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Nordlund, K. [Department of Physics, P.O. Box 43, FIN-00014 University of Helsinki (Finland)

    2015-06-01

    Different types of carbides are present in many steels used as structural materials. To safely use steel in demanding environments, like nuclear power plants, it is important to know how defects will affect the mechanical properties of the material. In this study, the effect of carbide precipitates on the edge dislocation movement is investigated. Three different types of carbides were investigated by means of molecular dynamics, with a Tersoff-like bond order interatomic potential by Henriksson et al. The obstacles were 4 nm in diameter and were of Fe{sub 3}C- (cementite-), Fe{sub 23}C{sub 6}- and Cr{sub 23}C{sub 6}-type. The critical unpinning stress was calculated for each type at different temperatures, to get the temperature-dependent obstacle strength. The results showed a decreasing critical stress with increasing temperature, consistent with previous studies. The critical unpinning stress was seen to be dependent on the type of carbide, but the differences were small. A difference was also observed between the obstacles with the same structure, but with different composition. This study shows the relation between the existing Cr{sub 23}C{sub 6} carbide and the experimentally non-existing Fe{sub 23}C{sub 6} carbide, which needs to be used as a model system for investigations with interatomic potentials not able to describe the interaction of Cr in the Fe–C-system. We found the difference to be a between 7% and 10% higher critical unpinning stress for the chromium carbide, than for the iron carbide of the same type.

  20. Multi-scale Modelling of bcc-Fe Based Alloys for Nuclear Applications

    International Nuclear Information System (INIS)

    Understanding the basic mechanisms that determine microstructure changes in neutron irradiated steels is vital for a safe lifetime management of existing nuclear reactors and a safe design of future nuclear options. Low-alloyed ferritic steels containing Cu, Ni, Mn and Si as principal solute atoms are used as structural materials for current reactor vessels. The microstructural evolution under irradiation in alloys is decided by the interplay between defect formation and thermodynamic driving forces, together determining the appearance of phase transformations (precipitation, segregation,...) and favouring or delaying the nucleation and growth of point-defect clusters, their diffusion and their mutual recombination or removal at sinks. A reliable description of the production, evolution and accumulation of radiation damage must therefore start from the atomic level and requires being able to describe multicomponent systems for timescales ranging from few picoseconds to years. This goal demands firstly the fabrication of interatomic potentials for alloys that must be both consistent with the thermodynamic properties of the system and capable of reproducing correctly the characteristic solute-point defect interactions, versus ab initio or experimental data. Secondly the performance of extensive molecular dynamics (MD) simulations, to grasp the main mechanisms of defect production, diffusion, mutual interaction, and interaction with solute atoms and impurities. Thirdly, the development of simulation tools capable of describing the microstructure evolution beyond the time-frame and length-scale of MD, while reproducing as much as possible the atomic-level origin of the mechanisms governing the evolution of the system, including phase changes. In this presentation the results of recent efforts made in this direction in the case of Fe-Cu, Fe-Cr and Fe-Ni alloys, as basic model alloys for the description of steels of technological relevance, are highlighted. In particular

  1. A molecular orbital study of H interaction with an edge dislocation in Fe bcc

    Science.gov (United States)

    Irigoyen, B.; Ferullo, R.; Castellani, N.; Juan, A.

    1997-07-01

    We have calculated the total energy curve for an H atom near an edge dislocation interacting with the surface. We have used a cluster to simulate the Fe(100) surface and an edge (100) dislocation. The semi-empirical method based on atom superposition and electron delocalization molecular orbital (ASED-MO) theory was employed. In the ground state, the distorted cluster expands while the H occupies an eccentric position. The H energy in that position is 0.15 eV lower than at the surface. The electronic structure was analysed by local density of states (LDOS). The width of the metal band is increased near the dislocation void because of a higher hybridization and the interaction with the H 1s orbital.

  2. Post-irradiation plastic deformation in bcc Fe grains investigated by means of 3D dislocation dynamics simulations

    Science.gov (United States)

    Gururaj, K.; Robertson, C.; Fivel, M.

    2015-04-01

    Post-irradiation tensile straining is investigated by means of three-dimensional dislocation dynamics simulations adapted to body centred cubic Fe. Namely, 1 μm Fe grains are strained at various temperatures in the 100-300 K range, in absence and in presence of radiation-induced defect dispersions. The defect-induced hardening is consistent with the disperse barrier effect up to 5 ×1021m-3 loops and is weakly dependent on the straining temperature. The dislocation-loops interaction rate augments with the accumulated plastic strain, loop density and strength; while it is mainly independent of the number of active slip systems and thermally activated screw dislocation mobility. An additional, radiation-induced hardening mechanism known as dislocation "decoration" is also implemented and tested for comparison. Those results show that the plastic flow localisation transition depends on the total yield point rise rather than on the lone, dispersed loop density. The simulation results are then rationalized through an original micro-mechanical model relating the grain-scale stress-strain behaviour to dislocation sub-structure formation and spreading. That model combines strain dependent and strain independent hardening mechanisms, which both contribute to the associated stress-strain response and plastic flow spreading.

  3. Phase transition from fcc to bcc structure of the Cu-clusters during nanocrystallization of Fe85.2Si1B9P4Cu0.8 soft magnetic alloy

    OpenAIRE

    Masahiko Nishijima; Makoto Matsuura; Kana Takenaka; Akira Takeuchi; Hironori Ofuchi; Akihiro Makino

    2014-01-01

    A role of Cu on the nanocrystallization of an Fe85.2Si1B9P4Cu0.8 alloy was investigated by X-ray absorption fine structure (XAFS) and transmission electron microscopy (TEM). The Cu K-edge XAFS results show that local structure around Cu is disordered for the as-quenched sample whereas it changes to fcc-like structure at 613 K. The fcc Cu-clusters are, however, thermodynamically unstable and begin to transform into bcc structure at 638 K. An explicit bcc structure is observed for the sample an...

  4. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe

    International Nuclear Information System (INIS)

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in irradiated materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1.0a0 to 3.3a0 have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomic level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a0 by taking the average of the recombination distances from 80 simulation cases. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster. (paper)

  5. Competing mechanisms for ordering tendencies in BCC CuAuZn{sub 2} and FCC AuFe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.D.; Althoff, J.D. [Sandia National Labs., Livermore, CA (United States); Staunton, J.B.; Ling, M.F. [Warwick Univ., Coventry (United Kingdom). Dept. of Physics; Pinski, F.J. [Cincinnati Univ, OH (United States). Dept. of Physics

    1995-07-01

    We have briefly discussed the ASRO (atomic short-range order) in AuFe and CuAuZn{sub 2}. General points are that (1) we have implemented a first-principles theory of ASRO in N-component alloys which allows determination of the electronic origins of said ASRO; (2) such calculations can provide much information on the high- and (sometimes) low-temperature alloys; and (3) this approach has identified the origin for the novel special-point ASRO in AuFe. Displacement effects, i.e., non-rigid lattice effects, as well as the other contributions beyond band-energy, are being incorporated into the multicomponent alloy calculations. Such improvements will allow us to investigate other alloys, where charge effects may play a role, to ``design`, for example, higher temperature intermetallics through alloying.

  6. Ab initio study of symmetrical tilt grain boundaries in bcc Fe: structural units, magnetic moments, interfacial bonding, local energy and local stress

    International Nuclear Information System (INIS)

    We present first-principle calculations on symmetric tilt grain boundaries (GBs) in bcc Fe. Using density functional theory (DFT), we studied the structural, electronic and magnetic properties of Σ3(111) and Σ11(332) GBs formed by rotation around the [110] axis. The optimized structures, GB energies and GB excess free volumes are consistent with previous DFT and classical simulation studies. The GB configurations can be interpreted by the structural unit model as given by Nakashima and Takeuchi (2000 ISIJ 86 357). Both the GBs are composed of similar structural units of three- and five-membered rings with different densities at the interface according to the rotation angle. The interface atoms with larger atomic volumes reveal higher magnetic moments than the bulk value, while the interface atoms with shorter bond lengths have reduced magnetic moments in each GB. The charge density and local density of states reveal that the interface bonds with short bond lengths have more covalent nature, where minority-spin electrons play a dominant role as the typical nature of ferromagnetic Fe. In order to understand the structural stability of these GBs, we calculated the local energy and local stress for each atomic region using the scheme of Shiihara et al (2010 Phys. Rev. B 81 075441). In each GB, the interface atoms with larger atomic volumes and enhanced magnetic moments reveal larger local energy increase and tensile stress. The interface atoms constituting more covalent-like bonds with reduced magnetic moments have lower local energy increase, contributing to the stabilization, while compressive stress is generated at these atoms. The relative stability between the two GBs can be understood by the local energies at the structural units. The local energy and local stress analysis is a powerful tool to investigate the structural properties of GBs based on the behavior of valence electrons. (paper)

  7. Ab initio study of symmetrical tilt grain boundaries in bcc Fe: structural units, magnetic moments, interfacial bonding, local energy and local stress.

    Science.gov (United States)

    Bhattacharya, Somesh Kr; Tanaka, Shingo; Shiihara, Yoshinori; Kohyama, Masanori

    2013-04-01

    We present first-principle calculations on symmetric tilt grain boundaries (GBs) in bcc Fe. Using density functional theory (DFT), we studied the structural, electronic and magnetic properties of Σ3(111) and Σ11(332) GBs formed by rotation around the [110] axis. The optimized structures, GB energies and GB excess free volumes are consistent with previous DFT and classical simulation studies. The GB configurations can be interpreted by the structural unit model as given by Nakashima and Takeuchi (2000 ISIJ 86 357). Both the GBs are composed of similar structural units of three- and five-membered rings with different densities at the interface according to the rotation angle. The interface atoms with larger atomic volumes reveal higher magnetic moments than the bulk value, while the interface atoms with shorter bond lengths have reduced magnetic moments in each GB. The charge density and local density of states reveal that the interface bonds with short bond lengths have more covalent nature, where minority-spin electrons play a dominant role as the typical nature of ferromagnetic Fe. In order to understand the structural stability of these GBs, we calculated the local energy and local stress for each atomic region using the scheme of Shiihara et al (2010 Phys. Rev. B 81 075441). In each GB, the interface atoms with larger atomic volumes and enhanced magnetic moments reveal larger local energy increase and tensile stress. The interface atoms constituting more covalent-like bonds with reduced magnetic moments have lower local energy increase, contributing to the stabilization, while compressive stress is generated at these atoms. The relative stability between the two GBs can be understood by the local energies at the structural units. The local energy and local stress analysis is a powerful tool to investigate the structural properties of GBs based on the behavior of valence electrons. PMID:23478447

  8. A simple method for determining the lattice parameter and chemical composition in ternary bcc-Fe rich nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Moya, Javier A., E-mail: jmoya.fi.uba@gmail.com [Grupo Interdisciplinario en Materiales-IESIING, Universidad Católica de Salta, INTECIN UBA-CONICET, Salta (Argentina); Gamarra Caramella, Soledad; Marta, Leonardo J. [Grupo Interdisciplinario en Materiales-IESIING, Universidad Católica de Salta, INTECIN UBA-CONICET, Salta (Argentina); Berejnoi, Carlos [Universidad Nacional de Salta, Facultad de Ingeniería, Salta (Argentina)

    2015-05-15

    Highlights: • A method for determining composition in ternary nanocrystals is presented. • X-ray diffraction and Mössbauer spectroscopy data were employed. • We perform theoretical charts for lattice parameter of Fe-rich ternary alloys. • A linear relationship in lattice parameter for binary alloys is evaluated. • A parabolic relationship is proposed for the Fe–Co–Si alloy. - Abstract: Charts containing lattice parameters of Fe{sub 1−x}(M,N){sub x} ternary systems with M and N = Si, Al, Ge or Co, and 0 ⩽ x ⩽ ∼0.3, were developed by implementing a linear relationship between the respective binary alloys with the same solute content of the ternary one. Charts were validated with experimental data obtained from literature. For the Fe–Co–Si system, the linear relationship does not fit the experimental data. For the other systems (except the Fe–Co–Ge one where no experimental data was found), the lineal relationship constitute a very good approximation. Using these charts and the lattice parameter data obtained from X-ray diffraction technique combining with the solute content data obtained from Mössbauer spectroscopy technique it is possible to determine the chemical composition of nanograins in soft magnetic nanocomposite materials and some examples are provided.

  9. Nonlinear elastic effects in phase field crystal and amplitude equations: Comparison to ab initio simulations of bcc metals and graphene

    Science.gov (United States)

    Hüter, Claas; Friák, Martin; Weikamp, Marc; Neugebauer, Jörg; Goldenfeld, Nigel; Svendsen, Bob; Spatschek, Robert

    2016-06-01

    We investigate nonlinear elastic deformations in the phase field crystal model and derived amplitude equation formulations. Two sources of nonlinearity are found, one of them is based on geometric nonlinearity expressed through a finite strain tensor. This strain tensor is based on the inverse right Cauchy-Green deformation tensor and correctly describes the strain dependence of the stiffness for anisotropic and isotropic behavior. In isotropic one- and two-dimensional situations, the elastic energy can be expressed equivalently through the left deformation tensor. The predicted isotropic low-temperature nonlinear elastic effects are directly related to the Birch-Murnaghan equation of state with bulk modulus derivative K'=4 for bcc. A two-dimensional generalization suggests K2D '=5 . These predictions are in agreement with ab initio results for large strain bulk deformations of various bcc elements and graphene. Physical nonlinearity arises if the strain dependence of the density wave amplitudes is taken into account and leads to elastic weakening. For anisotropic deformation, the magnitudes of the amplitudes depend on their relative orientation to the applied strain.

  10. bcc-Fe等温压缩下相变的微观模拟与分析%SIMULATIONS AND ANALYSIS OF PHASE TRANSFORMATIONS IN bcc-Fe UNDER ISOTHERMAL COMPRESSION

    Institute of Scientific and Technical Information of China (English)

    邵建立; 秦承森; 王裴

    2008-01-01

    使用嵌入原子势分子动力学方法,对bcc-Fe在等温压缩(沿[001]晶向)下的相变(bcc至hcp)的微观过程进行了数值模拟.结果表明,当应力超过相变阈值,hcp相开始形核并沿(011)面长大成片状体系,同时系统进入超应力松弛状态;平均应力及hcp相质量分数在初始形核时发生突变,之后与体系的体积变化近似呈线性关系;纵向偏应力与相变质量分数在整个相变过程保持线性关系;混合相中,hcp相的平均势能高于bcc相.

  11. Crack growth in Fe-2.7 wt% Si single crystals under cyclic loading and 3D atomistic results in bcc iron

    Czech Academy of Sciences Publication Activity Database

    Landa, Michal; Machová, Anna; Uhnáková, Alena; Pokluda, J.; Lejček, Pavel

    Roč. 87, June (216), s. 63-70. ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/0698; GA ČR GAP108/12/0144; GA ČR(CZ) GA15-20666S; GA ČR GA13-13616S Institutional support: RVO:61388998 ; RVO:68378271 Keywords : grack growth * cyclic loading * Bcc iron Subject RIV: JL - Materials Fatigue, Friction Mechanics http://ac.els-cdn.com/S014211231500448X/1-s2.0-S014211231500448X-main.pdf?_tid=96e3e5a0-fb08-11e5-92cb-00000aab0f02&acdnat=1459845181_19fcdd93d31b1f140714e52b835b33d8

  12. Atomic displacements in bcc dilute alloys

    Indian Academy of Sciences (India)

    Hitesh Sharma; S Prakash

    2007-04-01

    We present here a systematic investigation of the atomic displacements in bcc transition metal (TM) dilute alloys. We have calculated the atomic displacements in bcc (V, Cr, Fe, Nb, Mo, Ta and W) transition metals (TMs) due to 3d, 4d and 5d TMs at the substitutional site using the Kanzaki lattice static method. Wills and Harrison interatomic potential is used to calculate the atomic force constants, the dynamical matrix and the impurity-induced forces. We have thoroughly investigated the atomic displacements using impurities from 3d, 4d and 5d series in the same host metal and the same impurity in different hosts. We have observed a systematic pattern in the atomic displacements for Cr-, Fe-, Nb-, Mo-, Ta- and W-based dilute alloys. The atomic displacements are found to increase with increase in the number of d electrons for all alloys considered except for V dilute alloys. The 3d impurities are found to be more easily dissolved in the 3d host metals than 4d or 5d TMs whereas 4d and 5d impurities show more solubility in 4d and 5d TMs. In general, the relaxation energy calculation suggests that impurities may be easily solvable in 5d TM hosts when compared to 3d or 4d TMs.

  13. Gas-bubble superlattice formation in bcc metals

    International Nuclear Information System (INIS)

    The spatial ordering of small helium bubbles (diameter 1.5-2.0 nm) produced in the bcc metals V, W, Mo, Cr, Fe and Ta by ion implantation with 30-50 keV He+ is studied using transmission electron microscopy (TEM) and earlier studies are reappraised. Implantations are at temperatures in the range 300-773 K. Gas-bubble ordering onto {110} planes is observed in all the metals studied. For V, W and Mo, the bubbles order fully in three dimensions to form a bcc gas-bubble superlattice oriented parallel with the metal lattice. A similar conclusion is reached also for Cr, Fe and Ta although the study of these metals is less detailed. The bubble lattice parameters are found from bubble spacings determined from electron diffraction patterns. The results, confirmed from bright-field micrographs, are as follows: V, similar 3.9 nm at 300 K; W, similar 6.2 nm at 775 K; Mo, similar 6.2 nm at 675 K; Cr, similar 5.1 nm at 300 K; Fe, similar 6.0 nm at 300 K; and Ta, similar 6.4 nm at 575 K. The results suggest that ordered bcc bubble superlattices are a consistent feature in bcc metals following high-dose implantation with helium at temperatures ≅0.2Tm, where Tm is the melting temperature of the metal. ((orig.))

  14. bcc cobalt: Metastable phase or forced structure?

    Science.gov (United States)

    Liu, Amy Y.; Singh, David J.

    1993-05-01

    General potential linearized augmented plane wave calculations of the elastic and magnetic properties of body-centered-cubic (bcc) Co are presented and discussed. Particular attention is given to the nature of the stability of bcc Co films that have been grown epitaxially on GaAs substrates. The bcc structural phase of Co, which is not found in nature, is calculated to be unstable with respect to a tetragonal distortion that transforms it continuously into the face-centered-cubic (fcc) phase. This means that bcc Co is not a true metastable phase of bulk Co. The thinner films of bcc Co that have been synthesized are more properly termed forced structures. We speculate that the few existing thick (up to 357 Å) samples of bcc Co are stabilized by the presence of impurities or other defects. This is further supported by discrepancies between the measured and calculated magnetic moments in bcc Co.

  15. Comparison of Fe XVIII and Fe XIX Line Emissions with Spectral Models

    Science.gov (United States)

    Desai, P.; Brickhouse, N. S.; Drake, J. J.; Edgar, R. J.; Hoogerwerf, R.; Kashyap, V.; Wargelin, B. J.; Smith, R. K.; Huenemoerder, D. P.; Liedahl, D. A.

    2005-06-01

    We discuss here the observations of Fe XVIII and XIX emission lines and compare the X-ray, EUV and FUV lines with the spectral codes widely used today (e.g. FAC and APEC). We assess the relative accuracy of these spectral models and try to identify the critical atomic data and processes. Capella with a narrow enhancement in its emission measure distribution at 6 MK provides a unique opportunity to test the Fe XVIII and Fe XIX model emissivities which peak from 6 to 8 MK. We use the summed spectra from Chandra HETG/ACIS-S and LETG/HRC-S, as well as contemporaneous EUVE and FUSE observations, to measure line ratios for comparison with predictions.

  16. Phase equilibria and stability of B2 and L21 ordered phases in the Co-Fe-Ga Heusler alloy system

    International Nuclear Information System (INIS)

    The phase equilibria, A2/B2 and B2/L21 order-disorder transitions and ferromagnetic/paramagnetic transition on the Co-Fe side of the Co-Fe-Ga system were examined by electron probe microanalysis (EPMA), differential scanning calorimetric (DSC) measurement and vibrating sample magnetometer (VSM). The equilibrium compositions of interrelations mainly among γ (A1: disordered fcc-Co), α (A2: disordered bcc-Fe), β (B2: ordered bcc-CoGa or FeGa) and β' (L21 or D03: ordered bcc-Co2FeGa or Fe3Ga) phases were determined using diffusion couples and two-phase bulk specimens. It was confirmed that a bcc single-phase region composed of α, β and β' at 700-1000o C exists in a wide composition range and that the ferromagnetic region appearing on the Co-Fe side extends to the center of the Gibbs triangle with decreasing temperature. On the other hand, the β' phase appears along the Fe3Ga-Co3Ga section and the maximal critical temperature of the B2/L21 order-disorder transformation was determined to be 825 oC at a stoichiometric composition expressed as Co2FeGa. The obtained phase diagram was examined in comparison with that of the Co-Fe-Al system

  17. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    International Nuclear Information System (INIS)

    We have performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a Néel temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1−xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to ≈170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. This is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explain that the Cr2Al–Fe suppression of magnetic order originates from two causes: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al. - Highlights: • We present a comparison of Fe-doping of Cr2Al and bcc Cr. • In bcc Cr, antiferromagnetic behavior is suppressed and ferromagnetism emerges. • For Cr2Al no magnetism is seen after antiferromagnetism is suppressed. • In Cr2Al Fe substitution weakens itinerant magnetism. • In Cr2Al magnetic frustration is present due to parallel alignment of Fe moments

  18. Ab initio calculations of grain boundaries in bcc metals

    Science.gov (United States)

    Scheiber, Daniel; Pippan, Reinhard; Puschnig, Peter; Romaner, Lorenz

    2016-03-01

    In this study, we compute grain boundary (GB) properties for a large set of GBs in bcc transition metals with a special focus on W, Mo and Fe using ab initio density functional theory (DFT) and semi-empirical second nearest neighbour modified embedded atom method (2NN-MEAM) potentials. The GB properties include GB energies, surface energies, GB excess volume and work of separation, which we analyse and then compare to experimental data. We find that the used 2NN-MEAM potentials can predict general trends of GB properties, but do not always reproduce the GB ground state structure and energy found with DFT. In particular, our results explain the experimental finding that W and Mo prefer intergranular fracture, while other bcc metals prefer transgranular cleavage.

  19. First-principles study of interactions between substitutional solutes in bcc iron

    Science.gov (United States)

    Gorbatov, O. I.; Delandar, A. Hosseinzadeh; Gornostyrev, Yu N.; Ruban, A. V.; Korzhavyi, P. A.

    2016-07-01

    Using density functional theory based calculations, employing the locally self-consistent Green's function method and the projected augmented wave method, we develop a database of solute-solute interactions in dilute alloys of bcc Fe. Interactions within the first three coordination shells are computed for the ferromagnetic state as well as for the paramagnetic (disordered local moment) state of the iron matrix. The contribution of lattice relaxations to the defect interaction energy is investigated in the ferromagnetic state. Implications of the obtained results for modeling the phenomena of point defect clustering and phase precipitation in bcc Fe-based alloys and steel are discussed.

  20. BCC single crystal plasticity modeling and its experimental identification

    International Nuclear Information System (INIS)

    A crystal plasticity model for body-centered-cubic (BCC) single crystals, taking into account the plastic anisotropy due to non-planar spreading of screw dislocation cores is presented. In view of the longstanding contradictory statements on the deformation of BCC single crystals and their macroscopic slip planes, recent insights and developments are reported and included in this model. The flow stress of BCC single crystals shows a pronounced dependence on the crystal orientation and the temperature, mostly due to non-planar spreading of a/2(1 1 1) type screw dislocation cores. The main consequence here is the well-known violation of Schmid's law in these materials, resulting in an intrinsic anisotropic effect which is not observed in, for example, FCC materials. Experimental confrontations at the level of a single crystal are generally missing in the literature. To remedy this, uniaxial tension simulations are done at material point level for α-Fe, Mo and Nb single crystals and compared with reported experiments. Material parameters, including non-Schmid parameters, are calibrated from experimental results using a proper identification method. The model is validated for different crystal orientations and temperatures, which was not attempted before in the open literature

  1. Molecular dynamics study on interaction between irradiation induced defects and dislocation in BCC Iron alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Jae Hyeok; Kim, Ji Woo; Lee, Gil Jae [KAIST, Daejeon (Korea, Republic of)

    2007-02-15

    We performed the MD simulations with modified version of the MDCASK code with many-body interatomic potentials by Ackland for the assesment of mobility of dislocation with temperature, the interaction between defects, SiA loops and Cu precipitate and dislocation in BCC iron alloys. The effect of a helium atom on the migration of self-interstitial dislocation loops with a Burgers vector 1/2<111> in bcc Fe has been investigated using molecular statics and molecular dynamics simulations. It is found that an interstitial He atom hinders the migration and coalescence behavior of dislocation loops by strongly binding to the loop on the edge sites. An unstable interstitial He atom on the loop plane easily moves to the stable edge sites by interstitial diffusion. A substitutional He atom does not significantly disturb the migration of dislocation loops, showing weak binding. Molecular dynamics simulations of the interaction between a screw dislocation and a coherent bcc Cu precipitate in bcc Fe indicate that the screw dislocation stress field assists a martensitic transformation into a close-packed structure for precipitate diameters larger than 1.8 nm, resulting in a stronger obstacle to dislocation glide. The observed martensitic transformation mechanism agrees with the Nishiyama-Kajiwara model. For coherent bcc Cu precipitates with diameter larger than 2.5 nm, the screw dislocation bypass mechanism becomes Orowan looping due to the coherency loss of the precipitates during the transformation

  2. The comparison of different approaches to the modeling of the structural properties σ-phase of Fe-Cr system

    Science.gov (United States)

    Udovsky, A. L.; Kupavtsev, M. V.

    2016-04-01

    The three- sub-lattice model (3SLM) for description of atom's distribution of two components with different coordination numbers (12, 14 and 15), into σ-phase structure depended on composition and temperature is depictured in this paper. Energetic parameters of 3SLM were calculated by fitting procedure fixed to results obtained by ab-initio calculations conducted for paramagnetic states of differently ordered complexes stayed at the sigma- phase's crystal structure for Fe-Cr system at 0 K. Respective algorithm and computer program have allowed to calculate an atom distribution of components upon the sub-lattices of σ-phase at 300 - 1100 K. The temperature dependences of filling atoms on the model three sub-lattices for alloys compositions 40, 50 and 60 at. % Fe was calculated. There is satisfactory agreement between calculated results and the experimental data obtained by neutron and structural research methods. The equilibrium between BCC solutions and σ- phase of Fe-Cr system was calculated. The satisfactory consent of results of calculation with experimental data for education temperature σ- phases from BCC- solution and some divergences with experiments is received at 800 K.

  3. Dislocation-cavity interaction in Fe: a comparison between molecular dynamics and dislocation dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hafez Haghighat, S.M.; Schaeublin, R. [CRPP- EPFL, Association EURATOM-Confederation Suisse, ODGA-C103, Villigen-PSI (Switzerland); Fivel, M.C. [SIMAP-GPM2, CNRS/INPG, 38 - St Martin d' Heres (France)

    2007-07-01

    Full text of publication follows: multi-scale modeling, including molecular dynamics (MD) and discrete dislocation dynamics (DDD) methods, appears as a significant tool for the description of plasticity and mechanical properties of materials. This research is on the investigation of the subsequence effects of irradiation on the plasticity of pure Fe and focuses on the interaction of a single dislocation and a spherical cavity, as void or He bubble. Extensive MD simulations of the interaction under imposed strain rate [1, 2] have shown that various temperatures and cavity sizes result in different release stresses depending on dislocation bow out. It appears that a temperature increase and cavity size decrease reduce the cavity strength. MD simulation shows that the elastic field around the cavity is largely anisotropic. This anisotropy may influence the way the dislocation unpins from the cavity. Following the MD simulations, the interaction of a single dislocation and a spherical cavity is now simulated using a DDD discrete dislocation dynamics model. The simulation accounts for the non-Schmidt effect induced by the bcc structure of Fe through local rules derived from MD simulations [3]. The cavity is introduced in the simulation by computing the image forces using a finite element technique. The effective stress applied on the dislocation is then obtained as the superimposition of the applied stress field, the image stress field and the internal stresses. Note that such a model only uses elasticity theory and no core effect of dislocations is taken into account. One of the objectives of this work is to check whether elasticity is responsible of the behaviour observed by MD. Several cases are tested. First an edge dislocation in a (110) plane is pushed against the cavity under a pure shear loading. The local reaction of the dislocations and the cavity are compared to the MD simulations. Then, the case of a screw dislocation is studied. Finally, other loading

  4. Epitaxial growth of bcc transition metal films and superlattices onto MgO (111), (011) and (001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, J.E.; Fullerton, E.E.; Sowers, C.H.; Bader, S.D.

    1994-04-01

    We demonstrate epitaxial growth of the bcc transition metals Nb, Mo, Fe, and Cr via sputtering onto single crystal MgO substrates. The epitaxial growth orientations are (011), (112) and (001) when grown onto MgO (111), (011) and (001), respectively. Further we demonstrate that under appropriate growth conditions, superlattices of these materials (e.g., Fe/Cr, Fe/V and Mo/V) can be grown with the same epitaxial order as the films.

  5. Bcc-fcc structure transition of Te

    International Nuclear Information System (INIS)

    Using the synchrotron radiation x-ray powder diffraction technique, the structure phase transition of Te has been investigated at pressure up to 330 GPa and at 298 K. The phase transition from the bcc (Te-V) to a new high-pressure phase (Te-VI) was found at 100 GPa and the structure of the new phase was suggested to be a superlattice of the fcc structure. The Te-VI phase further transformed to the fcc phase (Te-VII) at 255 GPa with disappearance of satellite peaks. Since for group 16 elements, it has been considered that the structure of the highest pressure phase is bcc, the present results provided new information about the high-pressure behaviour of these elements.

  6. Importance of doping and frustration in itinerant Fe-doped Cr{sub 2}Al

    Energy Technology Data Exchange (ETDEWEB)

    Susner, M.A., E-mail: susnerma@ornl.gov; Parker, D.S.; Sefat, A.S.

    2015-10-15

    We have performed an experimental and theoretical study comparing the effects of Fe-doping of Cr{sub 2}Al, an antiferromagnet with a Néel temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr{sub 1−x}Fe{sub x}){sub 2}Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing T{sub N} to ≈170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. This is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which T{sub N} gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explain that the Cr{sub 2}Al–Fe suppression of magnetic order originates from two causes: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr{sub 2}Al. In pure-phase Cr{sub 2}Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr{sub 2}Al and Fe-doped Cr{sub 2}Al. - Highlights: • We present a comparison of Fe-doping of Cr{sub 2}Al and bcc Cr. • In bcc Cr, antiferromagnetic behavior is suppressed and ferromagnetism emerges. • For Cr{sub 2}Al no magnetism is seen after antiferromagnetism is suppressed. • In Cr{sub 2}Al Fe substitution weakens itinerant magnetism. • In Cr{sub 2}Al magnetic frustration is present due to parallel alignment of Fe moments.

  7. Understanding The Reputation Of Further Education (FE: Some Historical Comparisons

    Directory of Open Access Journals (Sweden)

    Parfitt, Anne

    2014-01-01

    Full Text Available The website ‘FE histories and time line’ was developed from a research study entitled The reputation of English FE – understanding the evolution of the sector (1944-1996 supported by the Esmée Fairbairn Foundation and the University of Exeter. This paper is an opportunity to elaborate further on the phenomenon of reputation with respect to FE colleges during the 1950s and 1960s. Reputation is considered to be a dynamic concept that emerges from the everyday images that individuals form, based on their experiences with an organisation as well as the communications and symbolic messages from the organisation itself (Gosti and Wilson, 2001. Narratives gathered from former college staff members and archival evidence are deployed to show that the reputation of FE colleges was far more firmly and widely established in this previous era than in subsequent decades. This shift is discussed in the light of significant challenges to the connectivity of colleges within local constituencies.

  8. Comparison of LiFePO4 from different sources

    OpenAIRE

    Striebel, Kathryn; Shim, Joongpyo; Srinivasan, Venkat; Newman, John

    2004-01-01

    The lithium iron phosphate chemistry is plagued by the poor conductivity and slow lithium diffusion in the solid phase. In order to alleviate these problems, various research groups have adopted different strategies including decreasing the particle sizes, increasing the carbon content, and adding dopants. In this study we obtained LiFePO4 electrodes from six different sources and used a combined model-experimental approach to compare the performance. Samples ranged from one with no carb...

  9. Comparison of iron species in monometallic (Fe) and bimetallic (Fe, Pt) ferrierites by Miissbauer spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Tabor, Edyta; Jíša, Kamil; Nováková, Jana; Vondrová, Alena; Jakubec, Ivo; Závěta, K.; Lančok, A.; Sobalík, Zdeněk

    Porquerolles : IDECAT, 2009. s. 87-88. [IDECAT Conference on Catalysis, Frontier in Catalysis and Material Chemistry. 19.05.2009-24.05.2009, Porquerolles] Institutional research plan: CEZ:AV0Z40400503 Keywords : Mössbauer study * Fe- FER Subject RIV: CF - Physical ; Theoretical Chemistry

  10. Giant tunneling magnetoresistance up to 410% at room temperature in fully epitaxial Co/MgO/Co magnetic tunnel junctions with bcc Co(001) electrodes

    International Nuclear Information System (INIS)

    Fully epitaxial Co(001)/MgO(001)/Co(001) magnetic tunnel junctions (MTJs) with metastable bcc Co(001) electrodes were fabricated with molecular beam epitaxy. The MTJs exhibited giant magnetoresistance (MR) ratios up to 410% at room temperature, the highest value reported to date. Temperature dependence of the MR ratio was observed to be very small compared with fully epitaxial Fe/MgO/Fe and textured CoFeB/MgO/CoFeB MTJs. The MR ratio of the Co/MgO/Co MTJ showed larger bias voltage dependence than that of the epitaxial Fe/MgO/Fe MTJs, which probably reflects the band structures of bcc Co and Fe for the kparallel=0 direction

  11. Importance of Shear in the bcc-to-hcp Transformation in Iron

    Science.gov (United States)

    Caspersen, Kyle J.; Lew, Adrian; Ortiz, Michael; Carter, Emily A.

    2004-09-01

    Iron shows a pressure-induced martensitic phase transformation from the ground state ferromagnetic bcc phase to a nonmagnetic hcp phase at ≈13 GPa. The exact transformation pressure (TP) and pathway are not known. Here we present a multiscale model containing a quantum-mechanics-based multiwell energy function accounting for the bcc and hcp phases of Fe and a construction of kinematically compatible and equilibrated mixed phases. This model suggests that shear stresses have a significant influence on the bcc↔hcp transformation. In particular, the presence of modest shear accounts for the scatter in measured TPs. The formation of mixed phases also provides an explanation for the observed hysteresis in TP.

  12. Comparison of Al,Fe,Zr Performance on Coagulation

    OpenAIRE

    Prasobhan, Pratheesh

    2014-01-01

    This work addresses an investigation on and comparison of the coagulation performances of aluminium, iron and zirconium coagulants on real wastewater collected in Norway. This work was carried out from January 2014 to May 2014. Coagulation is an essential part of drinking water treatment as well as wastewater treatment. Aluminium and iron coagulants have been in use for many years as part of wastewater treatment. In recent years however, research has been focused on other new coagulants such...

  13. Microfluidic preparation of [18F]FE-SUPPY and [18F]FE-SUPPY:2 - comparison with conventional radiosyntheses

    International Nuclear Information System (INIS)

    Introduction: Recently, first applications of microfluidic principles for radiosyntheses of positron emission tomography compounds were presented, but direct comparisons with conventional methods were still missing. Therefore, our aims were (1) the set-up of a microfluidic procedure for the preparation of the recently developed adenosine A3-receptor tracers [18F]FE-SUPPY [5-(2-[18F]fluoroethyl)2,4-diethyl-3-(ethylsulfanylcarbonyl) -6-phenylpyridine-5-carboxylate] and [18F]FE-SUPPY:2 [5-ethyl-2,4-diethyl-3-((2-[18F]fluoroethyl)sulfanylcarbonyl) -6-phenylpyridine-5-carboxylate] and (2) the direct comparison of reaction conditions and radiochemical yields of the no-carrier-added nucleophilic substitution with [18F]fluoride between microfluidic and conventional methods. Methods: For the determination of optimal reaction conditions within an Advion NanoTek synthesizer, 5-50 μl of precursor and dried [18F]fluoride solution were simultaneously pushed through the temperature-controlled reactor (26oC-180oC) with defined reactant bolus flow rates (10-50 μl/min). Radiochemical incorporation yields (RCIYs) and overall radiochemical yields for large-scale preparations were compared with data from conventional batch-mode syntheses. Results: Optimal reaction parameters for the microfluidic set-up were determined as follows: 170oC, 30-μl/min pump rate per reactant (reaction overall flow rate of 60 μl/min) and 5-mg/ml precursor concentration in the reaction mixture. Applying these optimized conditions, we observed a significant increase in RCIY from 88.2% to 94.1% (P18F]FE-SUPPY and that from 42.5% to 95.5% (P18F]FE-SUPPY:2 using microfluidic instead of conventional heating. Precursor consumption was decreased from 7.5 and 10 mg to 1 mg per large-scale synthesis for both title compounds, respectively. Conclusion: The direct comparison of radiosyntheses data applying a conventional method and a microfluidic approach revealed a significant increase of RCIY using the microfluidic

  14. Atomistic studies of nucleation of He clusters and bubbles in bcc iron

    Science.gov (United States)

    Yang, L.; Deng, H. Q.; Gao, F.; Heinisch, H. L.; Kurtz, R. J.; Hu, S. Y.; Li, Y. L.; Zu, X. T.

    2013-05-01

    Atomistic simulations of the nucleation of He clusters and bubbles in bcc iron at 800 K have been carried out using the newly developed Fe-Fe interatomic potential, along with Ackland potential for the Fe-Fe interactions. Microstructure changes were analyzed in detail. We found that a He cluster with four He atoms is able to push out an iron interstitial from the cluster, creating a Frenkel pair. Small He clusters and self-interstitial atom (SIA) can migrate in the matrix, but He-vacancy (He-V) clusters are immobile. Most SIAs form clusters, and only the dislocation loops with a Burgers vector of b = 1/2 appear in the simulations. SIA clusters (or loops) are attached to He-V clusters for He implantation up to 1372 appm, while the He-V cluster-loop complexes with more than one He-V cluster are formed at the He concentration of 2057 appm and larger.

  15. The Material Orientation Relationship for the BCC-HCP Transition

    OpenAIRE

    Kashchenko, M. P.; Chashchina, V. G.

    2007-01-01

    The dynamical model of forming of martensitic crystals for the bcc-hcp transition is offered. It is shown that all macroscopic morphological characters (the habit plane, the macroshear and the orientational relationship) are expressed through elastic moduluses Cij of an initial bcc phase.

  16. Comparative analysis of termoscale effects, isomerization and stability of TM-nanoclusters (Pd,Ni,Fe and Si in dependence on interatomic potentials. MD-simulations

    Directory of Open Access Journals (Sweden)

    Galashev А.Е.

    2011-05-01

    Full Text Available Basing on the MD-simulated data the comparison of physicochemical properties of TM-nanoclusters (Pd,Ni,Fe, and Si-nanoparticles has been carried on in the purpose to understand the specificity of structure changes in depending on nature of interatomic bonds and initial structures (fcc, bcc, icosahedral – Ih. MDsimulation of thermic evolution including melting of TM- and Si- clusters was carried on up to 2000K.

  17. Metastable bcc phase formation in 3d ferromagnetic transition metal thin films sputter-deposited on GaAs(100) substrates

    International Nuclear Information System (INIS)

    Co100−xFex and Ni100−yFey (at. %, x = 0–30, y = 0–60) films of 10 nm thickness are prepared on GaAs(100) substrates at room temperature by using a radio-frequency magnetron sputtering system. The detailed growth behavior is investigated by in-situ reflection high-energy electron diffraction. (100)-oriented Co and Ni single-crystals with metastable bcc structure are formed in the early stage of film growth, where the metastable structure is stabilized through hetero-epitaxial growth. With increasing the thickness up to 2 nm, the Co and the Ni films start to transform into more stable hcp and fcc structures through atomic displacements parallel to bcc(110) slide planes, respectively. The stability of bcc phase is improved by adding a small volume of Fe atoms into a Co film. The critical thickness of bcc phase formation is thicker than 10 nm for Co100−xFex films with x ≥ 10. On the contrary, the stability of bcc phase for Ni-Fe system is less than that for Co-Fe system. The critical thicknesses for Ni100−yFey films with y = 20, 40, and 60 are 1, 3, and 5 nm, respectively. The Co100−xFex single-crystal films with metastable bcc structure formed on GaAs(100) substrates show in-plane uniaxial magnetic anisotropies with the easy direction along GaAs[011], similar to the case of Fe film epitaxially grown on GaAs(100) substrate. A Co100−xFex film with higher Fe content shows a higher saturation magnetization and a lower coercivity

  18. Comparison study of Cu-Fe-Ti and Co-Fe-Ti oxide catalysts for selective catalytic reduction of NO with NH3 at low temperature.

    Science.gov (United States)

    Zhu, Lin; Zhong, Zhaoping; Yang, Han; Wang, Chunhua

    2016-09-15

    In this paper, a series of Cu-Fe-Ti and Co-Fe-Ti oxide catalysts were prepared by sol gel method. Cu-Fe-Ti and Co-Fe-Ti oxide catalysts showed the moderate catalytic activity for selective catalytic reduction (SCR) of NO with NH3 at low temperature. The catalysts with the molar ratio as 4:1:10 (M:Fe:Ti) were selected as the representatives for comparison of reaction properties and H2O resistance, which were denoted as Cu-Fe/TiO2 and Co-Fe/TiO2 respectively. The characterization results manifested Co-Fe/TiO2 owned more adsorption capacity of the reactants and Cu-Fe/TiO2 had better redox ability. The in situ DRIFTS experiments indicated that adsorbed NH3 species and nitrate species both exhibited reaction activity for Co-Fe/TiO2, while nitric oxide was only be reduced by adsorbed NH3 species through Eley-Rideal mechanism for Cu-Fe/TiO2 at 150°C. Co-Fe/TiO2 exhibited the better resistance to H2O and its temperature window shifted towards the higher temperature in presence of 10vol% H2O, while the SCR activity of Cu-Fe/TiO2 was inhibited significantly in the whole temperature range investigated. The suppression of adsorption and activation for NH3 and NOx might be the reasons for the reversible inactivation, which was confirmed by the inhibitation of catalytic activities for separation NH3 and NO oxidation under the wet condition. We speculated that different thermal stability of adsorbed species and redox capacity of catalysts leaded to the different SCR behavior in absence and presence of H2O. PMID:27280535

  19. Comparison of laser induced plasma and arc discharge emission spectra of Al, Fe, Cu and C

    International Nuclear Information System (INIS)

    Emission spectra of laser induced plasma and arc discharge were measured and compared for Al, Fe, Cu and C. Such a comparison shows a higher presence of ionized transitions, but also a higher background in the emission spectra of laser induced plasma than in arc discharge. It can be concluded that in general it is not possible to predict laser induced plasma for material analysis purposes, calibration by reference laser induced plasma spectra of pure elements in vacuum will be necessary. (Authors)

  20. Comparison of Fe-AlPILC and Fe-ZSM-5 catalysts used for degradation of methomyl

    Science.gov (United States)

    Lázár, Károly; Tomašević, Andjelka; Bošković, Goran; Kiss, Ernő

    2009-07-01

    Catalytic performances of Fe-AlPILC (14 wt.% Fe) and Fe-ZSM-5 (5 wt.% Fe) catalysts are compared in the wet oxidative degradation of methomyl. Fe-ZSM-5 exhibits outstanding whereas Fe-AlPILC shows only mediocre activity. Positions of iron are analysed in the two catalysts by Mössbauer spectroscopy. Iron is in highly dispersed state in Fe-AlPILC whereas in the other case a hematite/ZSM-5 composite is formed. The catalytic activity is attributed to iron located and stabilized in ionic dispersion.

  1. Comparison of Fe-AlPILC and Fe-ZSM-5 catalysts used for degradation of methomyl

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, Karoly [Institute of Isotopes (Hungary); Tomasevic, Andjelka [Pesticide and Environment Research Institute (Serbia); Boskovic, Goran; Kiss, Erno, E-mail: ekiss@tehnol.ns.ac.yu [University of Novi Sad, Faculty of Technology (Serbia)

    2009-07-15

    Catalytic performances of Fe-AlPILC (14 wt.% Fe) and Fe-ZSM-5 (5 wt.% Fe) catalysts are compared in the wet oxidative degradation of methomyl. Fe-ZSM-5 exhibits outstanding whereas Fe-AlPILC shows only mediocre activity. Positions of iron are analysed in the two catalysts by Moessbauer spectroscopy. Iron is in highly dispersed state in Fe-AlPILC whereas in the other case a hematite/ZSM-5 composite is formed. The catalytic activity is attributed to iron located and stabilized in ionic dispersion.

  2. Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li-Mei; Morrison, Christine N.; Kaiser, Jens T. [California Institute of Technology, Pasadena, CA 91125 (United States); Rees, Douglas C., E-mail: dcrees@caltech.edu [California Institute of Technology, Pasadena, CA 91125 (United States); California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-02-01

    Determination of the nitrogenase MoFe protein from C. pasteurianum at 1.08 Å resolution and comparison to its distinct ortholog from A. vinelandii at atomic resolution reveals conserved structural arrangements that are significant to the function of nitrogenase. The X-ray crystal structure of the nitrogenase MoFe protein from Clostridium pasteurianum (Cp1) has been determined at 1.08 Å resolution by multiwavelength anomalous diffraction phasing. Cp1 and the ortholog from Azotobacter vinelandii (Av1) represent two distinct families of nitrogenases, differing primarily by a long insertion in the α-subunit and a deletion in the β-subunit of Cp1 relative to Av1. Comparison of these two MoFe protein structures at atomic resolution reveals conserved structural arrangements that are significant to the function of nitrogenase. The FeMo cofactors defining the active sites of the MoFe protein are essentially identical between the two proteins. The surrounding environment is also highly conserved, suggesting that this structural arrangement is crucial for nitrogen reduction. The P clusters are likewise similar, although the surrounding protein and solvent environment is less conserved relative to that of the FeMo cofactor. The P cluster and FeMo cofactor in Av1 and Cp1 are connected through a conserved water tunnel surrounded by similar secondary-structure elements. The long α-subunit insertion loop occludes the presumed Fe protein docking surface on Cp1 with few contacts to the remainder of the protein. This makes it plausible that this loop is repositioned to open up the Fe protein docking surface for complex formation.

  3. Comparison of hematite/Fe(II) systems with cement/Fe(II) systems in reductively dechlorinating trichloroethylene.

    Science.gov (United States)

    Kim, Hong-Seok; Kang, Wan-Hyup; Kim, Meejeong; Park, Joo-Yang; Hwang, Inseong

    2008-10-01

    Reactive reductants of cement/Fe(II) systems in dechlorinating chlorinated hydrocarbons are unknown. This study initially evaluated reactivities of potential reactive agents of cement/Fe(II) systems such as hematite (alpha-Fe(2)O(3)), goethite (alpha-FeOOH), lepidocrocite (gamma-FeOOH), akaganeite (beta-FeOOH), ettringite (Ca(6)Al(2)(SO(4))(3)(OH)(12)), Friedel's salt (Ca(4)Al(2)Cl(2)(OH)(12)), and hydrocalumite (Ca(2)Al(OH)(6)(OH).3H(2)O) in reductively dechlorinating trichloroethylene (TCE) in the presence of Fe(II). It was found that a hematite/Fe(II) system shows TCE degradation characteristics similar to those of cement/Fe(II) systems in terms of degradation kinetics, Fe(II) dose dependence, and final products distribution. It was therefore suspected that Fe(III)-containing phases of cement hydrates in cement/Fe(II) systems behaved similarly to the hematite. CaO, which was initially introduced as a pH buffer, was observed to participate in or catalyze the formation of reactive reductants in the hematite/Fe(II) system, because its addition enhanced the reactivities of hematite/Fe(II) systems. From the SEM (scanning electron microscope) and XRD (X-ray diffraction) analyses that were carried out on the solids from hematite/Fe(II) suspensions, it was discovered that a sulfate green rust with a hexagonal-plate structure was probably a reactive reductant for TCE. However, SEM analyses conducted on a cement/Fe(II) system showed that hexagonal-plate crystals, which were presumed to be sulfate green rusts, were much less abundant in the cement/Fe(II) than in the hematite/Fe(II) systems. It was not possible to identify any crystalline minerals in the cement/Fe(II) system by using XRD analysis, probably because of the complexity of the cement hydrates. These observations suggest that major reactive reductants of cement/Fe(II) systems may differ from those of hematite/Fe(II) systems. PMID:18597815

  4. DIRECT COMPARISON BETWEEN MODELING AND EXPERIMENT: AN (ALPHA)-Fe ION IMPLANTATION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Marian, J; Wirth, B D; Perlado, J M; Diaz de la Rubia, T; Schaublin, R; Lodi, D; Hernandez, M; de Diego, G; Stoller, R E

    2001-01-25

    Advances in computational capability and modeling techniques, as well as improvements in experimental characterization methods offer the possibility of directly comparing modeling and experiment investigations of irradiation effects in metals. As part of a collaboration among the Instituto de Fusion Nuclear (DENIM), Lawrence Livermore National Laboratory (LLNL) and CIEMAT, single and polycrystalline {alpha}-Fe samples have been irradiated with 150 keV Fe-ions to doses up to several dpa. The irradiated microstructure is to be examined with both transmission electron microscopy (TEM) and positron annihilation spectroscopy (PAS). Concurrently, we have modeled the damage accumulation in Fe under these irradiation conditions using a combination of molecular dynamics (MD) and kinetic Monte Carlo (KMC). We aim to make direct comparison between the simulation results and the experiments by simulating TEM images and estimating positron lifetimes for the predicted microstructures. While the identity of the matrix defect features cannot be determined from TEM observations alone, we propose that both large self-interstitial loops, trapped at impurities within the material, and small, spherical nanovoids form.

  5. Compressibility of Ru and Os in Comparison with Hcp ɛ -Fe; the lowest measured compressibility

    Science.gov (United States)

    Cynn, H.; Yoo, C.; Iota, V.; Baer, B.

    2001-12-01

    The hardness of a material is strongly correlated with its bulk modulus; thus, the search for superhard materials often becomes the search for very low compressibilities. Diamond is the hardest known material and has the highest known bulk modulus, B0 = 443 GPa (or the lowest compressibility, β = 0.226 Mbar-1). In this paper, we present surprising experimental findings that metallic elements like Os, Ir, and Ru are also good candidates for superhard materials based on their measured low compressibilities. We also present the pressure volume relationships of Ru, Os, and Ir to 70 GPa, in comparison with those of ɛ -Fe, W and C. The results are in a systematic agreement with the change of the bulk moduli and also with the first-principles electronic structure calculations. However, the c/a ratios of the 4,5d-transition metals show a slightly different trend from that of 3d ɛ -Fe at high pressures. Because of the similarity in electronic structure of these metals and Fe, the major constituent of the Earth's core, the EOS's and crystal structural parameters of the Group VIIIA transition metals reported in this paper are central to understanding the Earth's core mineral physics. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  6. A comparison of the electrochemical behaviour of Pr-Fe-B and Nd-Fe-B magnets

    International Nuclear Information System (INIS)

    In the present work the electrochemical behaviour of Pr-Fe-B sintered permanent magnets has been studied and compared to that of Nd-fe-B magnets by means of potentiodynamic polarization curves in 0.15 M Na H2 P O4 deaerated solution. A passive film was formed on the magnets during anodic polarization. Successive polarization cycles resulted in increasingly reduction in the passive current density indicating film growth. The results also suggested that passivation characteristics were slightly better for the Pr-Fe-B magnet than for the commercial Nd-Fe-B magnets investigated. (author)

  7. The relationship between the crystallization process and the soft magnetic properties of nanocrystalline Fe endash M endash B endash Cu (M=Zr, Nb) alloy

    International Nuclear Information System (INIS)

    The relationship between the crystallization process and the soft magnetic properties of nanocrystalline Fe84Nb3.5Zr3.5B8Cu1 alloy has been studied by comparison with that of Fe73.5Si13.5B9Nb3Cu1 alloy. When the annealing temperature Ta is slightly above the crystallization temperature, high permeability can only be obtained for Fe endash Nb endash Zr endash B endash Cu after annealing for very short times. The Ta dependence of the coercive force of Fe endash Nb endash Zr endash B endash Cu cannot be explained by the change of the grain size of the bcc phase. The soft magnetic properties of Fe endash Nb endash Zr endash B endash Cu is dominated by not only the grain size but also the Curie temperature of the intergranular amorphous phase. It is concluded that the magnetic softness of Fe endash Nb endash Zr endash B endash Cu is related directly to the degree of the reduction in the apparent anisotropy, while that of Fe endash Si endash B endash Nb endash Cu is strongly affected by the Si content of the bcc phase. copyright 1997 American Institute of Physics

  8. Computational study of atomic mobility for the bcc phase of the U-Pu-Zr ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li Weibang [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Hu Rui, E-mail: lijsh2009@gmail.co [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China); Cui, Y.-W. [Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States); Madrid Institute for Advanced Studies in Materials, IMDEA Materials, C/Profesor Aranguren s/n, 28040 Madrid (Spain); Zhong Hong; Chang Hui; Li Jinshan; Zhou Lian [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an 710072 (China)

    2010-12-31

    Experimental diffusion data in literature has been evaluated to assess the atomic mobility for the bcc phase in the U-Pu-Zr system by means of the DICTRA-type (Diffusion Controlled TRAnsformation) phenomenological treatment. The developed mobility database has been validated by comprehensive comparisons made between the experimental and calculated diffusion coefficients, as well as other interesting details resulting from interdiffusion, e.g. the concentration profile and the diffusion path of diffusion couples.

  9. Computational study of atomic mobility for the bcc phase of the U-Pu-Zr ternary system

    Science.gov (United States)

    Li, Weibang; Hu, Rui; Cui, Y.-W.; Zhong, Hong; Chang, Hui; Li, Jinshan; Zhou, Lian

    2010-12-01

    Experimental diffusion data in literature has been evaluated to assess the atomic mobility for the bcc phase in the U-Pu-Zr system by means of the DICTRA-type (Diffusion Controlled TRAnsformation) phenomenological treatment. The developed mobility database has been validated by comprehensive comparisons made between the experimental and calculated diffusion coefficients, as well as other interesting details resulting from interdiffusion, e.g. the concentration profile and the diffusion path of diffusion couples.

  10. Computational study of atomic mobility for the bcc phase of the U-Pu-Zr ternary system

    International Nuclear Information System (INIS)

    Experimental diffusion data in literature has been evaluated to assess the atomic mobility for the bcc phase in the U-Pu-Zr system by means of the DICTRA-type (Diffusion Controlled TRAnsformation) phenomenological treatment. The developed mobility database has been validated by comprehensive comparisons made between the experimental and calculated diffusion coefficients, as well as other interesting details resulting from interdiffusion, e.g. the concentration profile and the diffusion path of diffusion couples.

  11. Vacancy–solute interactions in ferromagnetic and paramagnetic bcc iron: Ab initio calculations

    International Nuclear Information System (INIS)

    Highlights: ► Interactions of vacancies with 3p, 3d, and 4d impurities in bcc Fe are calculated ab initio. ► Ferromagnetic and disordered paramagnetic states of the Fe matrix are considered. ► Three groups of impurities whose interactions with vacancies strongly depend on magnetic order. ► Compound-formers (Al, Si, P, S), insoluble elements (Cu, Ag), and magnetic elements (Mn, Co, Ni). ► The results are applied to interpret anomalies of vacancy trapping and impurity diffusion. - Abstract: Vacancy–solute interactions play a crucial role in diffusion-controlled processes, such as ordering or decomposition, which occur in alloys under heat treatment or under irradiation. Detailed knowledge of these interactions is important for predicting long-term behavior of nuclear materials (such as reactor steels and nuclear-waste containers) as well as for advancing our general understanding of kinetic processes in alloys. Using first-principles calculations based on the density functional theory and employing the locally self-consistent Green’s function technique, we develop a database of vacancy–solute interactions in dilute alloys of bcc Fe with 3p (Al, Si, P, S), 3d (Sc–Cu), and 4d (Y–Ag) elements. Unrelaxed interactions within the first three coordination shells have been computed in the ferromagnetic state as well as in the paramagnetic (disordered local moment) state of the iron matrix. Magnetism is found to have a strong effect on the vacancy–solute interactions. Implications of the obtained results for interpreting the effects of vacancy trapping and enhanced impurity diffusion are discussed.

  12. Design and Development of bcc-Copper- and B2 Nickel-Aluminium-Precipitation-Strengthened Ferritic Steel

    Science.gov (United States)

    Kapoor, Monica

    A series of high-strength low-carbon bcc-Cu- & B2-NiAl-precipitation-strengthened ferritic steels with Mn, Cu, Ni and Al were studied. The yield strength of these alloys increases with the amount of alloying elements. A maximum strength of 1600 MPa, with 12.40 at. % elements, is achieved which is about 30 % higher than the strength of previously reports NUCu (Northwestern Copper) alloys. All the alloys studied attain a maximum hardness within 1--2 h of aging at 500°C--550°C. Aging at a lower temperature and solution treating at a higher temperature can increase the hardness of all the alloys. The lower aging temperature is limited to 500°C by the slow precipitation kinetics observed at 400°C. The higher solution treatment temperature is limited to 1050°C by the adverse impact on toughness in dilute alloys. The primary strengthening contribution is due to combined precipitation of bcc Cu and NiAl-type intermetallic precipitates. The composition, structure and morphology evolution of the precipitates from the 1600 MPa alloy was studied using atom probe tomography and transmission electron microscopy, as a function of aging time at 550°C. Near the peak hardness, the equiaxed bcc Cu-alloyed precipitates have substantial amounts of Fe and are coherent with the Fe matrix. On subsequent aging, the Cu-alloyed precipitates are progressively enriched with Cu and elongate to transform to the 9R phase. The number density of the Cu-alloyed and NiAl-type precipitate is similar near peak hardness indicating that NiAl-type precipitates nucleate on Cu-alloyed precipitates. Almost all Cu-alloyed precipitates are enveloped on one side by ordered NiAl-type precipitates after aging from 2 h to 100 h. Cu-alloyed precipitates coarsen slower than NiAl-type precipitates because of three possible reasons: interfacial energy differences between the two types of precipitates, slower diffusion kinetics of Cu through the ordered B2 NiAl envelope around the bcc Cu-alloyed precipitate

  13. bcc-to-hcp transformation pathways for iron versus hydrostatic pressure: Coupled shuffle and shear modes

    Science.gov (United States)

    Liu, J. B.; Johnson, D. D.

    2009-04-01

    Using density-functional theory, we calculate the potential-energy surface (PES), minimum-energy pathway (MEP), and transition state (TS) versus hydrostatic pressure σhyd for the reconstructive transformation in Fe from body-centered cubic (bcc) to hexagonal closed-packed (hcp). At fixed σhyd , the PES is described by coupled shear (γ) and shuffle (η) modes and is determined from structurally minimized hcp-bcc energy differences at a set of (η,γ) . We fit the PES using symmetry-adapted polynomials, permitting the MEP to be found analytically. The MEP is continuous and fully explains the transformation and its associated magnetization and volume discontinuity at TS. We show that σhyd (while not able to induce shear) dramatically alters the MEP to drive reconstruction by a shuffle-only mode at ≤30GPa , as observed. Finally, we relate our polynomial-based results to Landau and nudge-elastic-band approaches and show they yield incorrect MEP in general.

  14. Comparison of the solubilities of synthetic hematite (α-FeO3) and maghemite (γ-Fe2O3)

    International Nuclear Information System (INIS)

    The solubilities of hematite (α-Fe2O3) and maghemite (γ-Fe2O3), both of which were prepared by controlled oxidation of magnetite powder, were measured in dilute nitric acid (between 0.01 and 0.05 mol·dm-3). The results yielded an estimated Gibbs energy of transformation from maghemite to hematite of -13.0 ± 1.6 kJ·mol-1. The following thermodynamic quantities for maghemite are derived from our results and literature data: ΔfGo = -731.3 ± 2 kJ·mol-1; ΔfHo = -809 ± kJ·mol-1; So = +a102.4 J·mol·K-1. An anomalous dependence of the apparent solubility products, (Fe3+) (OH-)3, of maghemite, hematite and goethite (α-FeOOH) on ionic strength is discussed. (author)

  15. Shear instabilities in perfect bcc crystals during simulated tensile tests

    Czech Academy of Sciences Publication Activity Database

    Černý, M.; Šesták, P.; Pokluda, J.; Šob, Mojmír

    2013-01-01

    Roč. 87, č. 1 (2013), 014117/1-014117/4. ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP108/12/0311 Institutional support: RVO:68081723 Keywords : instabilities * tensile test * bcc metals * ab initio calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013

  16. Moessbauer spectroscopy of Fe-based nanomaterials

    International Nuclear Information System (INIS)

    There are two opinions concerning the effect of the nanosized grains on magnetic properties and Moessbauer spectra. One of them testifies that nanomaterials have a grain boundary phase (interface region) which decreases the specific saturation magnetization and leads to the additional sextet in the Moessbauer spectrum. The second one treats the changes in spectra by the impurities. In this work the results on a-Fe, Fe90Ge10 and Fe77,5Al22.5 nanocrystalline alloys are presented. The nanostructured (8 nm) powders of Fe, bcc disordered Fe90Ge10 and Fe77,5Al22.5 were produced by mechanical grinding and alloying. The samples were studied by X-ray diffraction, Moessbauer spectroscopy, magnetic measurements and then compared with microstructured ones. With the absence of contamination no changes have been found in the specific saturation magnetization, Curie temperature and hyperfine interaction parameters of the nanomaterials. No additional sextet in the Moessbauer spectra and peculiarities in the temperature dependences of a.c. magnetic susceptibility were found either. We have registered a slight lines broadening (∼ 20%) in Moessbauer spectrum of the nanocrystalline pure Fe. The broadening observed is explained by random in sign and in magnitude anisotropic contribution to the hyperfine magnetic field from the Fe atoms in the interfaces. The conclusion drawn is that the interface of the nanostructure (boundary and close-to-boundary distorted zones) of 1 nm width considerably have the same magnetic properties and hyperfine interaction parameters in comparison with those in the bulk.

  17. Computer simulation of vacancy and interstitial clusters in bcc and fcc metals

    International Nuclear Information System (INIS)

    Interstitial clusters in bcc-Fe and fcc-Cu and vacancy clusters in fcc-Cu have been studied by computer simulation using different types of interatomic potentials such as a short-ranged empirical pair potential of Johnson type, short-ranged many-body potentials of Finnis-Sinclair type and long-ranged pair potentials obtained within the generalized pseudopotential theory. The stability of a self interstitial in bcc-Fe was found to be dependent on the range of potential but not on the type. Thus, both short-ranged potentials simulated left angle 110 right angle dumb-bell as a stable configuration while in the case of the long-ranged potential the stable configuration is the left angle 111 right angle crowdion. Nevertheless the structure and properties of interstitial clusters were found to be qualitatively the same with all the potentials. Up to 50 interstitials, the most stable clusters were found as perfect dislocation loops with Burgers vector vectorb=1/2 left angle 111 right angle. The stability of interstitial clusters in Cu also does not depend on the potential and for the same sizes the most stable configurations are faulted Frank loops 1/3 left angle 111 right angle {111} and edge loops in the {110} plane. The structure and stability of vacancy clusters in fcc-Cu were found to be dependent mainly on both the range of potential and equilibrium conditions. Thus for long-ranged non-equilibrium pair potentials vacancy clusters in the {111} plane collapsed and formed vacancy loops or stacking fault tetrahedra depending on the shape of the initial vacancy platelet. For the short-ranged equilibrium many-body potential vacancy clusters do not collapse into loops or tetrahedra. The process of vacancy clustering in the cascade region has been studied by molecular dynamics. (orig.)

  18. First-principles thermoelasticity of bcc iron under pressure

    OpenAIRE

    Sha, Xianwei; Cohen, R. E.

    2006-01-01

    We investigate the elastic and isotropic aggregate properties of ferromagnetic bcc iron as a function of temperature and pressure by computing the Helmholtz free energies for the volume-conserving strained structures using the first-principles linear response linear-muffin-tin-orbital method and the generalized-gradient approximation. We include the electronic excitation contributions to the free energy from the band structures, and phonon contributions from quasi-harmonic lattice dynamics. W...

  19. Microfluidic preparation of [{sup 18}F]FE-SUPPY and [{sup 18}F]FE-SUPPY:2 - comparison with conventional radiosyntheses

    Energy Technology Data Exchange (ETDEWEB)

    Ungersboeck, Johanna [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Department of Inorganic Chemistry, University of Vienna, A-1090 Vienna (Austria); Philippe, Cecile [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, A-1090 Vienna (Austria); Mien, Leonhard-Key [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Haeusler, Daniela [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, A-1090 Vienna (Austria); Shanab, Karem [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Department of Drug and Natural Product Synthesis, University of Vienna, A-1090 Vienna (Austria); Lanzenberger, Rupert [Department of Psychiatry and Psychotherapy, Medical University of Vienna, A-1090 Vienna (Austria); Spreitzer, Helmut [Department of Drug and Natural Product Synthesis, University of Vienna, A-1090 Vienna (Austria); Keppler, Bernhard K. [Department of Inorganic Chemistry, University of Vienna, A-1090 Vienna (Austria); Dudczak, Robert; Kletter, Kurt [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Mitterhauser, Markus [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, A-1090 Vienna (Austria); Hospital Pharmacy, General Hospital of Vienna, A-1090 Vienna (Austria); Wadsak, Wolfgang, E-mail: wolfgang.wadsak@meduniwien.ac.a [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Department of Inorganic Chemistry, University of Vienna, A-1090 Vienna (Austria)

    2011-04-15

    Introduction: Recently, first applications of microfluidic principles for radiosyntheses of positron emission tomography compounds were presented, but direct comparisons with conventional methods were still missing. Therefore, our aims were (1) the set-up of a microfluidic procedure for the preparation of the recently developed adenosine A{sub 3}-receptor tracers [{sup 18}F]FE-SUPPY [5-(2-[{sup 18}F]fluoroethyl)2,4-diethyl-3-(ethylsulfanylcarbonyl) -6-phenylpyridine-5-carboxylate] and [{sup 18}F]FE-SUPPY:2 [5-ethyl-2,4-diethyl-3-((2-[{sup 18}F]fluoroethyl)sulfanylcarbonyl) -6-phenylpyridine-5-carboxylate] and (2) the direct comparison of reaction conditions and radiochemical yields of the no-carrier-added nucleophilic substitution with [{sup 18}F]fluoride between microfluidic and conventional methods. Methods: For the determination of optimal reaction conditions within an Advion NanoTek synthesizer, 5-50 {mu}l of precursor and dried [{sup 18}F]fluoride solution were simultaneously pushed through the temperature-controlled reactor (26{sup o}C-180{sup o}C) with defined reactant bolus flow rates (10-50 {mu}l/min). Radiochemical incorporation yields (RCIYs) and overall radiochemical yields for large-scale preparations were compared with data from conventional batch-mode syntheses. Results: Optimal reaction parameters for the microfluidic set-up were determined as follows: 170{sup o}C, 30-{mu}l/min pump rate per reactant (reaction overall flow rate of 60 {mu}l/min) and 5-mg/ml precursor concentration in the reaction mixture. Applying these optimized conditions, we observed a significant increase in RCIY from 88.2% to 94.1% (P<.0001, n{>=}11) for [{sup 18}F]FE-SUPPY and that from 42.5% to 95.5% (P<.0001, n{>=}5) for [{sup 18}F]FE-SUPPY:2 using microfluidic instead of conventional heating. Precursor consumption was decreased from 7.5 and 10 mg to 1 mg per large-scale synthesis for both title compounds, respectively. Conclusion: The direct comparison of radiosyntheses data

  20. The comparison of Cu, Cr and Fe elements analysis in biota samples using FNAA and AAS method

    International Nuclear Information System (INIS)

    Quality control of Fast Neutron Activation Analysis (FNAA) and Atomic Absorption Spectroscopy (AAS) method by comparison test of Cu, Cr, and Fe elements in biota samples has been carried out. The comparison test covered instruments optimizing, homogeneity, method validation, uncertainty measurement, t test and F test for both methods. The results of comparison test were then applied to analyze the biota samples. From the comparison test it was obtained that the validity of both FNAA and AAS methods were between 92.69% and 98.12%. The t test result showed that there was no any differences in the average of elements concentration. The F test for both methods also showed that there was no any differences in the accuracy. (author)

  1. Study of the theoretical tensile strength of Fe by a first-principles computational tensile test

    International Nuclear Information System (INIS)

    This paper employs a first-principles total-energy method to investigate the theoretical tensile strengths of bcc and fcc Fe systemically. It indicates that the theoretical tensile strengths are shown to be 12.4, 32.7, 27.5 GPa for bcc Fe, and 48.1, 34.6, 51.2 GPa for fcc Fe in the [001], [110] and [111] directions, respectively. For bcc Fe, the [001] direction is shown to be the weakest direction due to the occurrence of a phase transition from ferromagnetic bcc Fe to high spin ferromagnetic fcc Fe. For fcc Fe, the [110] direction is the weakest direction due to the formation of an instable saddle-point 'bct structure' in the tensile process. Furthermore, it demonstrates that a magnetic instability will occur under a tensile strain of 14%, characterized by the transition of ferromagnetic bcc Fe to paramagnetic fcc Fe. The results provide a good reference to understand the intrinsic mechanical properties of Fe as a potential structural material in the nuclear fusion Tokamak

  2. Electronic structure and magnetism on FeSiAl alloy: A DFT study

    International Nuclear Information System (INIS)

    Density functional theory (DFT) calculation has been performed to study the electronic structure and chemical bonding in FeSiAl alloy. These calculations are useful to understand the magnetic properties of this alloy. Our results show that the mean magnetic moment of Fe atoms decreases due to the crystal structure and the effect of Si and Al. Depending on the environment, the magnetic moment of one Fe site (Fe1) increases to about 14.3% while of the other site (Fe2) decreases to about 25.9% (compared with pure bcc Fe). All metal–metal overlap interactions are bonding and slightly weaker than those found in the bcc Fe structure. The electronic structure (DOS) shows an important hybridization among Fe, Si and Al atoms, thus making asymmetric the PDOS with a very slight polarization of Al and Si atoms. Our study explains the importance of crystal structure in determining the magnetic properties of the alloys. FeSiAl is a good candidate for electromagnetic interference shielding combining low price and good mechanical and magnetic properties. - Highlights: • The mean magnetic moment of the Fe atoms decreases compared to bcc Fe. • There are strong bonding interactions among the Fe, Si and Al atoms. • This structure has a stable ferromagnetism. • The Fe–Fe bonds distances elongates and are weaker than those in the bcc Fe

  3. Electronic structure and magnetism on FeSiAl alloy: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso Schwindt, V.; Sandoval, M.; Ardenghi, J.S.; Bechthold, P.; González, E.A.; Jasen, P.V., E-mail: pjasen@uns.edu.ar

    2015-09-01

    Density functional theory (DFT) calculation has been performed to study the electronic structure and chemical bonding in FeSiAl alloy. These calculations are useful to understand the magnetic properties of this alloy. Our results show that the mean magnetic moment of Fe atoms decreases due to the crystal structure and the effect of Si and Al. Depending on the environment, the magnetic moment of one Fe site (Fe{sub 1}) increases to about 14.3% while of the other site (Fe{sub 2}) decreases to about 25.9% (compared with pure bcc Fe). All metal–metal overlap interactions are bonding and slightly weaker than those found in the bcc Fe structure. The electronic structure (DOS) shows an important hybridization among Fe, Si and Al atoms, thus making asymmetric the PDOS with a very slight polarization of Al and Si atoms. Our study explains the importance of crystal structure in determining the magnetic properties of the alloys. FeSiAl is a good candidate for electromagnetic interference shielding combining low price and good mechanical and magnetic properties. - Highlights: • The mean magnetic moment of the Fe atoms decreases compared to bcc Fe. • There are strong bonding interactions among the Fe, Si and Al atoms. • This structure has a stable ferromagnetism. • The Fe–Fe bonds distances elongates and are weaker than those in the bcc Fe.

  4. Microstructure evolution in undercooled Al–8 wt%Fe melts: Comparison between terrestrial and parabolic flight conditions

    International Nuclear Information System (INIS)

    Highlights: ► A comparison between the solidification using electromagnetic levitation of Al–8 wt%Fe under terrestrial and reduced gravity conditions is shown. ► The microstructure evolution during solidification of Al–8 wt%Fe is formulated with the aid of a comprehensive set of complementary characterization techniques. ► Identification of Al–Fe intermetallics using TEM and Rietveld analysis. -- Abstract: Al–8 wt%Fe, a hypereutectic alloy, was studied under electromagnetic levitation (EML) solidification conditions in both terrestrial and reduced gravity conditions. The latter was carried out on the A300 aircraft using the TEMPUS facility. The solidified samples were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and neutron diffraction techniques. The results are interpreted in the light of the temperature–time measurements taken in situ during the solidification process in the EML. It is shown that both samples experienced some undercooling for the solidification of the primary Al–Fe intermetallic phase, which is likely AlmFe. The solidification path continues with the nucleation and growth of Al13Fe4 followed by primary α-Al. These last two phases do not seem to show any measureable undercooling and recalescence events. Finally, the metastable AlxFe (where x = 5) nucleates starting with the formation of eutectic. This metastable intermetallic continues the eutectic growth as Al13Fe4. The morphology differences of the intermetallics growing under terrestrial and reduced gravity conditions are clear with acicular morphology for the former and a star like morphology for the latter. The primary α-Al has a clear strong textured structure in the reduced gravity sample, while a weak one is observed in the terrestrially processed sample. The difference in texture is attributed to the weaker fluid flow occurring in the droplet under reduced gravity conditions while the difference in the

  5. Microstructure evolution in undercooled Al–8 wt%Fe melts: Comparison between terrestrial and parabolic flight conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J. [Dept. of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G6 (Canada); Lengsdorf, R. [Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln (Germany); Henein, H., E-mail: hhenein@ualberta.ca [Dept. of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G6 (Canada); Herlach, D.M. [Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln (Germany); Dahlborg, U.; Calvo-Dahlborg, M. [GPM, CNRS-UMR 6634, University of Rouen (France)

    2013-04-15

    Highlights: ► A comparison between the solidification using electromagnetic levitation of Al–8 wt%Fe under terrestrial and reduced gravity conditions is shown. ► The microstructure evolution during solidification of Al–8 wt%Fe is formulated with the aid of a comprehensive set of complementary characterization techniques. ► Identification of Al–Fe intermetallics using TEM and Rietveld analysis. -- Abstract: Al–8 wt%Fe, a hypereutectic alloy, was studied under electromagnetic levitation (EML) solidification conditions in both terrestrial and reduced gravity conditions. The latter was carried out on the A300 aircraft using the TEMPUS facility. The solidified samples were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and neutron diffraction techniques. The results are interpreted in the light of the temperature–time measurements taken in situ during the solidification process in the EML. It is shown that both samples experienced some undercooling for the solidification of the primary Al–Fe intermetallic phase, which is likely Al{sub m}Fe. The solidification path continues with the nucleation and growth of Al{sub 13}Fe{sub 4} followed by primary α-Al. These last two phases do not seem to show any measureable undercooling and recalescence events. Finally, the metastable Al{sub x}Fe (where x = 5) nucleates starting with the formation of eutectic. This metastable intermetallic continues the eutectic growth as Al{sub 13}Fe{sub 4}. The morphology differences of the intermetallics growing under terrestrial and reduced gravity conditions are clear with acicular morphology for the former and a star like morphology for the latter. The primary α-Al has a clear strong textured structure in the reduced gravity sample, while a weak one is observed in the terrestrially processed sample. The difference in texture is attributed to the weaker fluid flow occurring in the droplet under reduced gravity conditions

  6. Transonic twins in 3D bcc iron crystal

    Czech Academy of Sciences Publication Activity Database

    Spielmannová, Alena; Machová, Anna; Hora, Petr

    2010-01-01

    Roč. 48, č. 2 (2010), s. 296-302. ISSN 0927-0256 R&D Projects: GA AV ČR KJB200760802; GA ČR GA101/09/1630 Institutional research plan: CEZ:AV0Z20760514 Keywords : transonic twins * bcc iron * molecular dynamic simulation Subject RIV: JG - Metallurgy Impact factor: 1.458, year: 2010 http://apps.isiknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=V1mj77dMKmjeKefm7Db&page=1&doc=1

  7. Exobiopolymer production of Ophiocordyceps dipterigena BCC 2073: optimization, production in bioreactor and characterization

    Directory of Open Access Journals (Sweden)

    Prathumpai Wai

    2010-07-01

    Full Text Available Abstract Background Biopolymers have various applications in medicine, food and petroleum industries. The ascomycetous fungus Ophiocordyceps dipterigena BCC 2073 produces an exobiopolymer, a (1→3-β-D-glucan, in low quantity under screening conditions. Optimization of O. dipterigena BCC 2073 exobiopolymer production using experimental designs, a scale-up in 5 liter bioreactor, analysis of molecular weight at different cultivation times, and levels of induction of interleukin-8 synthesis are described in this study. Results In order to improve and certify the productivity of this strain, a sequential approach of 4 steps was followed. The first step was the qualitative selection of the most appropriate carbon and nitrogen sources (general factorial design and the second step was quantitative optimization of 5 physiological factors (fractional factorial design. The best carbon and nitrogen source was glucose and malt extract respectively. From an initial production of 2.53 g·L-1, over 13 g·L-1 could be obtained in flasks under the improved conditions (5-fold increase. The third step was cultivation in a 5 L bioreactor, which produced a specific growth rate, biomass yield, exobiopolymer yield and exobiopolymer production rate of 0.014 h-1, 0.32 g·g-1 glucose, 2.95 g·g biomass-1 (1.31 g·g-1 sugar, and 0.65 g.(L·d-1, respectively. A maximum yield of 41.2 g·L-1 was obtained after 377 h, a dramatic improvement in comparison to the initial production. In the last step, the basic characteristics of the biopolymer were determined. The molecular weight of the polymer was in the range of 6.3 × 105 - 7.7 × 105 Da. The exobiopolymer, at 50 and 100. μg·mL-1, induced synthesis in normal dermal human fibroblasts of 2227 and 3363 pg·mL-1 interleukin-8 respectively. Conclusions High exobiopolymer yield produced by O. dipterigena BCC 2073 after optimization by qualitative and quantitative methods is attractive for various applications. It induced high

  8. Investigation on the formation of Cu–Fe nano crystalline super-saturated solid solution developed by mechanical alloying

    International Nuclear Information System (INIS)

    Highlights: ► The deformation of the mechanically alloyed Cu–Fe powder is anisotropic. ► The Rietveld method is more proper and results in smaller crystallite size than the Scherer and Williamson–Hall methods. ► A dual phase super saturated solid solution achieved after 96 h of milling of the mixtures with 30, 50 and 70 wt.% of Iron. ► A final proportion of approximately 85% FCC and 15% BCC structure obtained in all of the applied compositions. - Abstract: In this study, the formation of super saturated solid solution in the binary Cu–Fe system was investigated. Three powder blends with 30, 50 and 70 wt.% of Fe were milled for different times to 96 h. The variations of lattice parameter and inter-planar spacing were calculated and analyzed using X-ray diffraction analysis (XDA). The anisotropy of lattice deformation in the FCC phase was studied and the obtained results were compared to milled pure Cu powder. Furthermore, crystallite size was calculated using Scherer formula in comparison with Rietveld full profile refinement method. Considering the previous studies about the formation of non-equilibrium FCC and BCC phases, the phase evolution has been discussed and the proportion of each phase was calculated using Rietveld refinement method. Supplementary studies on the evolution of microstructure and formation of solid solution were carried out using high resolution transmission electron microscopy (HRTEM). Finally, high angle annular dark field (HAADF) imaging was utilized to find out the level of homogeneity in the resulting phases. While true alloying takes place in each phase, the final structure consists of both FCC and BCC nano-crystallites.

  9. Strain ordering in BCC metals and the associated anelasticity

    International Nuclear Information System (INIS)

    The BCC to BCT transformation is thought to occur as a consequence of strain ordering due to the interaction between impurity interstitials. A Hamiltonian is given, which involves the interaction energies between the strain fields of the interstitials belonging to three distinct sublattices. In the BCT phase, one of the sublattices is preferentially occupied. The free energy of the system is calculated in the mean field approximation. In this, the BCC to BCT transformation is found to be a first-order transition at a temperature Tsub(p) that is proportional to the concentration of the interstitials and certain basic interaction parameters. The anelastic behaviour of the interacting interstitials is then studied in the region T > Tsub(p). From the anelastic strain, which is proportional to the order parameter associated with the phase transition, the static compliance is obtained. The latter obeys a Curie-Weiss type of law. The creep function, which determines the response to a constant applied stress, is found to exhibit viscous behaviour near Tsub(p). From the creep function, the frequency-dependent compliance and the internal friction are evaluated. The results predict a shift and a broadening of the internal friction peak as Tsub(p) is approached from above. The features show qualitative resemblance with the recent data on Ta-O. (author)

  10. Nanoindentation deformation of a bi-phase AlCrCuFeNi2 alloy

    International Nuclear Information System (INIS)

    Highlights: • The AlCrCuFeNi2 HEA consisted of BCC solid solution and FCC solid solution. • The indentation hardness of the BCC crystals is larger than the FCC crystals. • The contact modulus of the FCC crystals is larger than the BCC crystals. - Abstract: High-entropy alloys (HEA) are multicomponent alloys with lattice structures, which have unique mechanical properties. Using X-ray diffraction, the structure of as cast AlCrCuFeNi2 HEA was characterized. The AlCrCuFeNi2 HEA consisted of body centered-cubic (BCC) solid solution and face centered-cubic (FCC) solid solution. Nanoindentation was used to characterize the indentation deformation of the FCC and BCC crystals in the AlCrCuFeNi2 HEA. Both the indentation hardness and the contact modulus of the FCC and BCC crystals decreased slightly with the increase in the indentation load and became constant for large indentation loads. For the indentation load larger than 500 μN, the contact modulus and the indentation hardness of the BCC crystals are 146 and 4.6 GPa, respectively, and the contact modulus and the indentation hardness of the FCC crystals are 207 and 2.8 GPa, respectively. The plastic energy dissipated in the nanoindentation increased with the indentation load and was proportional to the 1.77 and 1.88 power of the indentation load for the FCC and BCC crystals, respectively. The ratio of the dissipated plastic energy to the total energy in the indentations was a linear function of the ratio of the residual indentation depth to the corresponding maximum indentation depth. The slope of the energy ratio verse the indentation depth ratio for the BCC crystals is larger than that for the FCC crystals

  11. A hierarchical microstructure due to chemical ordering in the bcc lattice: Early stages of formation in a ferritic Fe–Al–Cr–Ni–Ti alloy

    International Nuclear Information System (INIS)

    A hierarchical microstructure is obtained in an alloy with composition Fe–8.1Al–12.2Cr–1.9Mo–18.2Ni–2.0Ti (wt.%) processed by melt-spinning. The evolution of the precipitation pathways is investigated using transmission electron microscopy (TEM) techniques, atom probe tomography (APT) and first-principles thermodynamic calculations. As-solidified ribbons exhibit a random dispersion of B2-ordered precipitates (NiAl-type) in an Fe-based matrix. Subsequent aging at 700 °C yields nucleation and growth of the L21-phase (Ni2TiAl-type) within the primary B2-precipitates, leading to a microstructure exhibiting three types of hierarchy: (i) a structural hierarchy due to chemical ordering, with a chemically disordered matrix of bcc-Fe (A2), the nearest-neighbor (NN) ordered B2-precipitates (NiAl-type) and the next nearest-neighbor (NNN) ordered L21-precipitates (Ni2TiAl-type) within B2, (ii) a dimensional hierarchy with a continuous bcc-Fe matrix, coherently embedded B2-precipitates, with a size range of 60–200 nm and the coherent precipitate substructure, with L21-phase and dimensions of 15–20 nm. (iii) A spatial hierarchy where B2-precipitates are embedded in the bcc-Fe matrix and L21-precipitates nucleate and grow only within B2-precipitates. In addition, it is verified that the interface between B2 and L21 is coherent and adopts a diffuse structural profile. Monte-Carlo simulations reproduce these observations and it is found that interface energies of B2 and L21 reduce from 50 mJ/m2 at 0 K to 11 mJ/m2 at 973 K. Kinetic-Monte-Carlo simulations support the interpretation of the experimental results that the L21 nucleates within the B2 phase

  12. COMPARISON OF FE AND AL ELECTRODES IN THE TREATMENT OF BLUE CA DYE EFFLUENT USING ELECTRO COAGULATION PROCESS.

    OpenAIRE

    VINODHA S; DIEGO CARMEREGO; JEGATHAMBAL P

    2012-01-01

    In this work a comparison between Fe and Al electrodes, for electrocoagulation process was conducted with Blue CA dye. As there is no standard method to measure the colour intensity, a UV-Vis spectrophotometer was used to quantify the absorbance initially before the treatment and after the treatment of the dye solution.Removal efficiencies on the Blue CA were obtained by measuring absorbance of a sample at 588 nm. The percentage of Colour Removal Efficiency (CRE (%)) reached in a maximum of 9...

  13. An Overview of BCC Climate System Model Development and Application for Climate Change Studies

    Institute of Scientific and Technical Information of China (English)

    WU Tongwen; WU Fanghua; LIU Yiming; ZHANG Fang; SHI Xueli; CHU Min; ZHANG Jie; FANG Yongjie; WANG Fang; LU Yixiong; LIU Xiangwen; SONG Lianchun; WEI Min; LIU Qianxia; ZHOU Wenyan; DONG Min; ZHAO Qigeng; JI Jinjun; Laurent LI; ZHOU Mingyu; LI Weiping; WANG Zaizhi; ZHANG Hua; XIN Xiaoge; ZHANG Yanwu; ZHANG Li; LI Jianglong

    2014-01-01

    This paper reviews recent progress in the development of the Beijing Climate Center Climate System Model (BCC-CSM) and its four component models (atmosphere, land surface, ocean, and sea ice). Two recent versions are described: BCC-CSM1.1 with coarse resolution (approximately 2.8125◦×2.8125◦) and BCC-CSM1.1(m) with moderate resolution (approximately 1.125◦×1.125◦). Both versions are fully cou-pled climate-carbon cycle models that simulate the global terrestrial and oceanic carbon cycles and include dynamic vegetation. Both models well simulate the concentration and temporal evolution of atmospheric CO2 during the 20th century with anthropogenic CO2 emissions prescribed. Simulations using these two versions of the BCC-CSM model have been contributed to the Coupled Model Intercomparison Project phase fi ve (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). These simulations are available for use by both national and international communities for investigating global climate change and for future climate pro jections. Simulations of the 20th century climate using BCC-CSM1.1 and BCC-CSM1.1(m) are presented and validated, with particular focus on the spatial pattern and seasonal evolution of precipitation and surface air temperature on global and continental scales. Simulations of climate during the last millennium and pro jections of climate change during the next century are also presented and discussed. Both BCC-CSM1.1 and BCC-CSM1.1(m) perform well when compared with other CMIP5 models. Preliminary analyses in-dicate that the higher resolution in BCC-CSM1.1(m) improves the simulation of mean climate relative to BCC-CSM1.1, particularly on regional scales.

  14. Role of Fe substitution and quenching rate on the formation of various quasicrystalline and related phases

    Indian Academy of Sciences (India)

    Varsha Khare; R S Tiwari; O N Srivastava

    2001-06-01

    We have investigated Fe substituted versions of the quasicrystalline (qc) alloy corresponding to Al65Cu20(Cr, Fe)15 with special reference to the possible occurrence of various quasicrystalline and related phases. Based on the explorations of various compositions it has been found that alloy compositions Al65Cu20Cr12Fe3 and Al65Cu20Cr9Fe6 exhibit interesting structural phases and features at different quenching rates. At higher quenching rates (wheel speed ∼ 25 m/sec) all the alloys exhibit icosahedral phase. For Al65Cu20Cr12Fe3 alloy, however, both the icosahedral and even the decagonal phases get formed at higher quenching rates. At higher quenching rate, alloy having Fe 3 at% exhibits two bcc phases, bccI ( = 8.9 Å) and bccII ( = 15.45 Å). The orientation relationships between icosahedral and crystalline phases are: Mirror plane ∥[001]bcc I and [351]bcc II, 5-fold ∥ [113]bcc II and 3-fold ∥ [110]bcc II. At lower quenching rate, the alloy having Fe 6 at% exhibits orthorhombic phase ( = 23.6 Å, = 12.4 Å, = 20.1 Å). Some prominent orientation relationships of the orthorhombic phase with decagonal phase have also been reported. At lower quenching rate (∼ 10 m/sec), the alloy (Al65Cu22Cr9Fe6) shows the presence of diffuse scattering of intensities along quasiperiodic direction of the decagonal phase. For making the occurrence of the sheets of intensities intelligible, a model based on the rotation and shift of icosahedra has been put forward.

  15. Highly anisotropic sliding at TiN/Fe interfaces: A first principles study

    OpenAIRE

    Kádas, K.; Eriksson, O; Skorodumova, N. V.

    2010-01-01

    By means of first principles density functional theory, we investigate the properties of the TiN(001)/fcc Fe(111) and TiN(001)/bcc Fe(110) interfaces. We demonstrate that along certain directions Fe slides with negligible energy barriers against TiN at both interfaces, whereas sliding along other directions is involved with significant energy barriers. The interface between bcc Fe and TiN has a low energy barrier for sliding along the [110] direction of the TiN lattice, as does sliding along ...

  16. Plastic anisotropy and dislocation trajectory in BCC metals.

    Science.gov (United States)

    Dezerald, Lucile; Rodney, David; Clouet, Emmanuel; Ventelon, Lisa; Willaime, François

    2016-01-01

    Plasticity in body-centred cubic (BCC) metals at low temperatures is atypical, marked in particular by an anisotropic elastic limit in clear violation of the famous Schmid law applicable to most other metals. This effect is known to originate from the behaviour of the screw dislocations; however, the underlying physics has so far remained insufficiently understood to predict plastic anisotropy without adjustable parameters. Here we show that deviations from the Schmid law can be quantified from the deviations of the screw dislocation trajectory away from a straight path between equilibrium configurations, a consequence of the asymmetrical and metal-dependent potential energy landscape of the dislocation. We propose a modified parameter-free Schmid law, based on a projection of the applied stress on the curved trajectory, which compares well with experimental variations and first-principles calculations of the dislocation Peierls stress as a function of crystal orientation. PMID:27221965

  17. Microstructural studies of hydrogen and deuterium in bcc refractory metals

    International Nuclear Information System (INIS)

    Over the past four years this research has been principally concerned with uncovering the microstructural atomic arrangements in alloys of hydrogen and deuterium with bcc refractory metals. Because these are interstitial phases in which the host metal lattice is substantially deformed by the incorporation of the H(D) atoms, there are pronounced x-ray scattering effects. X-ray diffraction has, therefore, been the main structural tool. A main objective of the project has been to determine the degree to which phase relations and solid solution properties in metal-hydride alloys depend upon the hydrogen-hydrogen interaction via the displacement field of the metal atoms. This has often included the elucidation of subtle thermodynamic properties which are revealed in structural studies

  18. Atomistic simulations for multiscale modeling in bcc metal

    Energy Technology Data Exchange (ETDEWEB)

    Belak, J.; Moriarty, J.A.; Soderlind, P.; Xu, W.; Yang, L.H.; Zhu

    1998-09-25

    Quantum-based atomistic simulations are being used to study fundamental deformation and defect properties relevant to the multiscale modeling of plasticity in bcc metals at both ambient and extreme conditions. Ab initio electronic-structure calculations on the elastic and ideal-strength properties of Ta and Mo help constrain and validate many-body interatomic potentials used to study grain boundaries and dislocations. The predicted C(capital Sigma)5 (310)[100] grain boundary structure for Mo has recently been confirmed in HREM measurements. The core structure, (small gamma) surfaces, Peierls stress, and kink-pair formation energies associated with the motion of a/2(111) screw dislocations in Ta and Mo have also been calculated. Dislocation mobility and dislocation junction formation and breaking are currently under investigation.

  19. Atomistic modeling of carbon Cottrell atmospheres in bcc iron

    International Nuclear Information System (INIS)

    Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.

  20. A new mechanism of loop formation and transformation in bcc iron without dislocation reaction

    Science.gov (United States)

    Chen, J.; Gao, N.; Jung, P.; Sauvage, T.

    2013-10-01

    Structure and kinetics of dislocation loops in α-Fe is an active field in material science, due to their implications on fundamental understanding as well as application of structural materials in irradiation environments. Recent computer simulations provoke new conceptions, which call for experimental verification. The present investigation reports transmission electron microscopy of small interstitial dislocation loops (2.5-10 nm diameters) in bcc iron, irradiated with 25 MeV α-particles at 573 K up to 0.13 dpa. The observed and ½ loops have habit planes of (1 0 0), and (1 1 0), (1 1 1) and (2 1 1), respectively. Furthermore it is observed that loops also contain ½{2 1 1} and {1 0 0} components which are considered as intermediate stages of transformation of ½ loops to . Based on these observations, a new mechanism of loop formation and transformation by self-interstitial atoms aggregation is proposed, with concurrent molecular dynamic simulations supporting the kinetic feasibility of the proposed process.

  1. Calculation of the surface energy of bcc-metals with the empirical electron theory

    International Nuclear Information System (INIS)

    We have used the dangling bond analysis method (DBAM) based on the empirical electron theory (EET) to establish a database of surface energy for low index surfaces of the bcc-metals such as V, Cr, Fe, Nb, Mo, Ta, and W. And a brief introduction of the new surface energy models will be presented in this paper. Under the first-order approximation the calculated results are in agreement with experimental and other theoretical values. And the calculated surface energy shows a strong anisotropy. As we predicted, the surface energy of the close-packed (1 1 0) is the lowest one of all index surfaces. It is also found that the dangling bond electron density and the spatial distribution of covalent bonds have a great influence on surface energy of various index surfaces. The new calculation method for the research of surface energy provides a good basis for models of surface science phenomena, and the model may be extended to the surface energy estimation of more metals, alloys, ceramics, and so on, since abundant information about the valence electronic structure (VES) can be generated from EET.

  2. Molecular dynamics simulation of hydrogen-edge dislocation interaction in BCC iron

    Energy Technology Data Exchange (ETDEWEB)

    Nedelcu, S. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Kizler, P. [Staatliche Materialpruefungsanstalt (MPA), Universitaet Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart (Germany)

    2002-09-16

    Hydrogen embrittlement in metals is a complex multi-causal phenomenon, which, on the atomic scale, comprises H diffusion, decohesion, cavity nucleation as well as the interaction between H and dislocations. The present atomic-level simulation uses the embedded atom method (EAM) to describe the energetics of a hydrogen atom during the interaction with a moving edge dislocation in a bcc iron crystal. Particularly, in the chosen framework it is found that an H atom taking a site in the Fe lattice can block the movement of an edge dislocation, while the stress exerted on the dislocation can reach a maximum value of 15.5 MPa. However, it is also found that an interstitial H atom does not impede the movement of the dislocation and exerts a maximum stress of 38.2 MPa at the time when the moving dislocation passes by. These quantitative findings are correlated with the macroscopically observed mechanical behavior of hydrogen charged iron, which had pointed out that hydrogen might cause an increase of the flow stress and/or a local plasticity enhancement. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  3. Comparison of surface and bulk crystallization of the amorphous Fe70Co10B20 alloy

    International Nuclear Information System (INIS)

    The effects of surface and bulk crystallization of the amorphous Fe70Co10B22 alloy are investigated by the aid of optical microscopy, scanning electron microscopy, and Moessbauer spectroscopy after annealings detecting γ-radiation and conversion electrons. The chemical composition of the amorphous matrix and of crystalline particles are determined by energy and wave dispersive analyses of X-rays. Measurements show that eutectic particles of crystallizing phases are observed in the bulk. Besides the non-uniformly distributed eutectic crystallites, an appreciable amount of α-Fe-Co phase is present at the surface of the sample

  4. Coherent interfacial bonding on the FeAs tetrahedron in Fe/Ba(Fe(1-x)Co(x))2As2 bilayers

    OpenAIRE

    Thersleff, Thomas; Iida, Kazumasa; Haindl, Silvia; Kidszun, Martin; Pohl, Darius; Hartmann, Andreas; Kurth, Fritz; Haenisch, Jens; Huehne, Ruben; Rellinghaus, Bernd; Schultz, Ludwig; Holzapfel, Bernhard

    2010-01-01

    We demonstrate the growth of epitaxial Fe/Ba(Fe(1-x)Co(x))2As2 (Fe/Ba-122) bilayers on MgO(001) and LSAT(001) single crystal substrates using Pulsed Laser Deposition (PLD). By exploiting the metallic nature of the FeAs tetrahedron in the Ba-122 crystal structure, we achieve a coherent interfacial bond between bcc iron and Co-doped Ba-122. Tc values for both bilayers were close to that of the PLD target. Direct observation of interfacial bonding between Fe and the Ba-122 FeAs sublattice by ato...

  5. Positron studies of interaction between yttrium atoms and vacancies in bcc iron with relevance for ODS nanoparticles formation

    International Nuclear Information System (INIS)

    The very high calculated binding energy of vacancy (V)–Ysub (1.45 eV) in Fe makes it be one possible earliest formation stage of (Y, Ti, O) nanoclusters in ODS alloy. Our direct slow positrons annihilation observations are used to valid the interaction between V and Y. The pure bcc iron samples have been implanted by 1.2 MeV Y ions at three fluences from 1 × 1014 to 3 × 1015 cm−2. Vacancy clusters are observed for all these three fluences. Their size and concentration decrease with Y concentration measured by using SIMS. Two hypotheses are proposed to explain the results, including the formation of complexes Vm–Yn and/or of precipitates Ym–Xn (X = Y, O, etc.). In addition, vacancy clusters are detected deeper than predicted by SRIM calculation due to, at least for a part, channelling which is confirmed by Marlowe calculation and SIMS measurements

  6. Screw dislocation mobility in BCC metals: the role of the compact core on double-kink nucleation

    International Nuclear Information System (INIS)

    In this work, we examine the kink-nucleation process in BCC screw dislocations using atomistic simulation and transition pathway analysis, with a particular focus on the compact core structure. We observe the existence of a threshold stress, which results in an abrupt change in the minimum energy path of the kink-nucleation process, and hence, a discontinuity in the activation energy versus stress for the process. The magnitude of the discontinuity is found to be related to the degree of metastability of an intermediate split-core structure. This feature appears to be a direct consequence of the so-called 'camel-hump' nature of the Peierls potential, which manifests itself in the existence of a metastable, intermediate split-core structure. The effect is observed in a number of empirical EAM potentials, including Fe, Ta, V, Nb and Mo, suggesting a generality to the observations

  7. Local structures of mechanically alloyed Fe100—xCux solid soulutions studied by X—ray absorption fine structure

    Institute of Scientific and Technical Information of China (English)

    WenshengYan; YuzhiLi; 等

    2001-01-01

    The local structures of the immiscible Fe100-xCux alloys(x=0,10,20,40,60,80and100)produced by mechanical alloying have been investigated by XAFS.For the Fe100-xCux(x≥40) solid solutions,the local structures around Fe atoms change from bcc structure to fcc one and the Cu atoms maintain the original coordination geometry after milling for 160 hours.On the contrary,the local structures around Cu atoms in both of Fe80Cu20 and Fe90 Cu10 alloys appear a transition from fcc to bcc structure.We found that the Debye-waller factor σof fcc Fe-Cu phase is larger than that of bcc F-Cu phase,and the σ(0.099A°)around Fe atoms is larger than that (0.089A°) of Cu in the Fe100-xCux(x≥40)solid solutions,This suggests that the mechanically alloyed Fe100-xCux supersaturated solid solution is not a homogeneous alloy,and consists of Fe-rich and Cu-rich regions for various compositions.A possible mechanism for bcc-to-fcc and fcc-to-bcc changes in Fe100-xCux solid solutions is discussed in relation to the interdiffusion and transition induced by the ball milling.

  8. Energetic stability of solute–carbon–vacancy complexes in bcc iron

    Energy Technology Data Exchange (ETDEWEB)

    Bakaev, Alexander, E-mail: alexander.bakaev@ugent.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol B2400 (Belgium); Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, St. Petersburg State Polytechnical University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation); Center for Molecular Modeling, Department of Physics and Astronomy, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium); Terentyev, Dmitry [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol B2400 (Belgium); Zhurkin, Evgeny E. [Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, St. Petersburg State Polytechnical University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation); Van Neck, Dimitri [Center for Molecular Modeling, Department of Physics and Astronomy, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium)

    2015-06-01

    The strong binding between a vacancy and carbon in bcc iron plays an important role in the evolution of radiation-induced microstructure. Our previous ab initio study points to the fact that the vacancy–carbon (V–C) pair can serve as a nucleus for the solute-rich clusters. Here, we continue the ab initio study by considering the interaction of mixed solute clusters (Mn, Ni and Si) with the V–C pair, and the interaction of typical alloying elements of Fe-based steels (i.e., Mn, Ni, Cu, Si, Cr and P) with di-carbon–vacancy pair (V–C{sub 2}). We have identified the sequence of growth of Ni, Si and Mn solute-rich clusters nucleating on the V–C pair. The mixed-solute–V–C configurations are found to be less stable clusters than pure-solute–V–C clusters with the energy difference up to 0.22 eV per four atoms. The V–C{sub 2} pair is found to be as strong nucleation site for the solute-rich clusters as the V–C pair. Only Si solute atom stands out from the trend showing a weaker affinity to the V–C{sub 2} complex by 0.09 eV compared to the attraction to the V–C pair. The overall results point to the importance of taking into account the existence of both V–C and V–C{sub 2} complexes in studying the formation of solute-rich clusters in Fe-based steels for nuclear applications.

  9. Study of the theoretical tensile strength of Fe by a first-principles computational tensile test

    Institute of Scientific and Technical Information of China (English)

    Liu Yue-Lin; Zhang Ying; Hong Rong-Jie; Lu Guang-Hong

    2009-01-01

    This paper employs a first-principles total-energy method to investigate the theoretical tensile strengths of bcc and fcc Fe systemically. It indicates that the theoretical tensile strengths are shown to be 12.4, 32.7, 27.5 Gpa for bcc Fe, and 48.1, 34.6, 51.2 Gpa for fcc Fe in the [001], [110] and [111] directions, respectively. For bec Fe, the [001] direction is shown to be the weakest direction due to the occurrence of a phase transition from ferromagnetic bcc Fe to high spin ferromagnetic fcc Fe. For fcc Fe, the [110] direction is the weakest direction duc to the formation of an instable saddle-point 'bct structure' in the tensile process. Furthermore, it demonstrates that a magnetic instability will occur under a tensile strain of 14%, characterized by the transition of ferromagnetic bcc Fe to paramagnetic fcc Fe. The results provide a good reference to understand the intrinsic mechanical properties of Fe as a potential structural material in the nuclear fusion Tokamak.

  10. Superparamagnetic Relaxation in Nanocrystalline Fe80Zr7B12Cu1 Alloys

    International Nuclear Information System (INIS)

    Nanocrystalline Fe80Zr7B12Cu1 alloys with different amounts and sizes of bcc precipitates were prepared by appropriate annealing of amorphous ribbons. The 6-10 nm ferromagnetic bcc granules are embedded in a residual amorphous tissue with a thickness at least 4 nm. Above room temperature superparamagnetic relaxation characteristic for small magnetic particles was observed with increasing temperature, as indicated by a significant increase in the width of the Moessbauer lines belonging to the bcc precipitates. It shows the absence of magnetic coupling which is stronger than the dipole-dipole interaction between the ferromagnetic nanoparticles.

  11. Zn-10.2% Fe coating over carbon steel atmospheric corrosion resistance. Comparison with zinc coating

    International Nuclear Information System (INIS)

    Zn-10.2% Fe galvanized coating versus hot galvanized coating over carbon steel corrosion performance has been studied. Different periods of atmospheric exposures in various Valencia Community sites, and salt spray accelerated test have been done. Carbon steel test samples have been used simultaneously in order to classify exposure atmosphere corrosivity, and environmental exposure atmosphere characteristics have been analyzed. Corrosion Velocity versus environmental parameters has been obtained. (Author) 17 refs

  12. Strong impact of lattice vibrations on electronic and magnetic properties of paramagnetic Fe revealed by disordered local moments molecular dynamics

    Science.gov (United States)

    Alling, B.; Körmann, F.; Grabowski, B.; Glensk, A.; Abrikosov, I. A.; Neugebauer, J.

    2016-06-01

    We study the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc iron at finite temperature, employing the disordered local moments molecular dynamics (DLM-MD) method. Vibrations strongly affect the distribution of local magnetic moments at finite temperature, which in turn correlates with the local atomic volumes. Without the explicit consideration of atomic vibrations, the mean local magnetic moment and mean field derived magnetic entropy of paramagnetic bcc Fe are larger compared to paramagnetic fcc Fe, which would indicate that the magnetic contribution stabilizes the bcc phase at high temperatures. In the present study we show that this assumption is not valid when the coupling between vibrations and magnetism is taken into account. At the γ -δ transition temperature (1662 K), the lattice distortions cause very similar magnetic moments of both bcc and fcc structures and hence magnetic entropy contributions. This finding can be traced back to the electronic densities of states, which also become increasingly similar between bcc and fcc Fe with increasing temperature. Given the sensitive interplay of the different physical excitation mechanisms, our results illustrate the need for an explicit consideration of vibrational disorder and its impact on electronic and magnetic properties to understand paramagnetic Fe. Furthermore, they suggest that at the γ -δ transition temperature electronic and magnetic contributions to the Gibbs free energy are extremely similar in bcc and fcc Fe.

  13. The application of photoelectron spectroscopy in the study of corrosion and oxidation mechanisms of alloys: Inconel 182, Fe/Cu(100 and U-Zr-Nb

    International Nuclear Information System (INIS)

    In. this work a study of the oxidation/corrosion process of three systems of metallic materials by Photoemission Spectroscopy is presented. In the first system, it was investigated the corrosion of Ineonel 182 at simulated Pressurized Water Reactor (PWR) environment. Samples with and without surface chemical treatment were exposed to the simulated environment for until 18 weeks. The oxide layer formed on the surfaces of the samples at different conditions was characterized by Scanning Electron Microscopy and XPS coupled with argon ion sputtering. The comparison between the oxide films grown on the samples showed that the oxide layer formed on the chemically treated sample is thinner and relatively Cr-rich. In second system it was studied the initial oxidation at room temperature of epitaxial films of Fe evapored on Cu (100). The films were deposited with two different thicknesses in order to get tbe fcc Fe (100) and bcc Fe (110) surfaces. The results, obtained by photoemission spectroscopy at the TEMPO beamline of the Synchrotron Soleil, showed the formation of distinct oxides films. The surfaces also presented different kinetics of oxidation and the (110) Fe-bcc showed highest reactivity. The analysis of the data indicated the Fe1-xO formation on fcc Fe (100) and suggested the Fe1-xO and FC304 formation on (110) Fe-bcc surface. In the last system, it was investigated the initial oxidation of U-Zr-Nb alloys at room temperature. For this experiment, the alloys were exposed to oxygen in ultra high vacuum. The analysis of the U 4f peak showed the fast formation of U)2 on the surfaces and similar kinetics of oxidation between the U and the U-Zr-Nb alloy. The alloying elements showed slower oxidation. The Zr 3d peak suggested the zr02 formation while the Nb 3d peak showed a remarkable enlargement that became necessary a deconvolution which indicated the formation ofNhO, Nb02 and N205. (author)

  14. Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9Co0.1O3 perovskite oxides as oxygen carrier for partial oxidation of methane

    Institute of Scientific and Technical Information of China (English)

    Xiaoping Dai; Changchun Yu; Qiong Wu

    2008-01-01

    Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9Co0.1O3 perovskite oxides as oxygen cartier for partial oxidation of methane in the absence of gaseous oxygen was investigated by continuous flow reaction and sequential redox reaction. Methane was oxidized to syngas with high selectivity by oxygen species of perovskite oxides in the absence of gaseous oxygen. The sequential redox reaction revealed that the structural stability and continuous oxygen supply in redox re-action decreased over La0.8Sr0.2Fe0.9Co0.1O3 oxide, while LaFeO3 and Lao.sSro.2FeO3 exhibited excellent structural stability and continuous oxygen supply.

  15. Effects of Zn additions to highly magnetoelastic FeGa alloys

    International Nuclear Information System (INIS)

    Fe1−xMx (M = Ga, Ge, Si, Al, Mo and x ∼ 0.18) alloys offer an extraordinary combination of magnetoelasticity and mechanical properties. They are rare-earth-free, can be processed using conventional deformation techniques, have high magnetic permeability, low hysteresis, and low magnetic saturation fields, making them attractive for device applications such as actuators and energy harvesters. Starting with Fe-Ga as a reference and using a rigid-band-filling argument, Zhang et al. predicted that lowering the Fermi level by reducing the total number of electrons could enhance magnetoelasticity. To provide a direct experimental validation for Zhang's hypothesis, elemental additions with lower-than-Ga valence are needed. Of the possible candidates, only Be and Zn have sufficient solubility. Single crystals of bcc Fe-Ga-Zn have been grown with up to 4.6 at. % Zn in a Bridgman furnace under elevated pressure (15 bars) in order to overcome the high vapor pressure of Zn and obtain homogeneous crystals. Single-crystal measurements of magnetostriction and elastic constants allow for the direct comparison of the magnetoelastic coupling constants of Fe-Ga-Zn with those of other magnetoelastic alloys in its class. The partial substitution of Ga with Zn yields values for the magnetoelastic coupling factor, −b1, comparable to those of the binary Fe-Ga alloy

  16. Effects of Zn additions to highly magnetoelastic FeGa alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lograsso, Thomas A., E-mail: lograsso@ameslab.gov [Division of Materials Sciences and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States); Jones, Nicholas J.; Wun-Fogle, Marilyn; Restorff, James B. [Metallurgy and Fasteners Branch, Naval Surface Warfare Center, Carderock Division, Maryland 20817 (United States); Schlagel, Deborah L. [Division of Materials Sciences and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Petculescu, Gabriela [University of Louisiana at Lafayette, Louisiana 70504 (United States); Clark, Arthur E. [Clark Associates, Adelphi, Maryland 20783 (United States); Hathaway, Kristl B. [Spectrum Technology Group, Inc., Gaithersburg, Maryland 20877 (United States)

    2015-05-07

    Fe{sub 1−x}M{sub x} (M = Ga, Ge, Si, Al, Mo and x ∼ 0.18) alloys offer an extraordinary combination of magnetoelasticity and mechanical properties. They are rare-earth-free, can be processed using conventional deformation techniques, have high magnetic permeability, low hysteresis, and low magnetic saturation fields, making them attractive for device applications such as actuators and energy harvesters. Starting with Fe-Ga as a reference and using a rigid-band-filling argument, Zhang et al. predicted that lowering the Fermi level by reducing the total number of electrons could enhance magnetoelasticity. To provide a direct experimental validation for Zhang's hypothesis, elemental additions with lower-than-Ga valence are needed. Of the possible candidates, only Be and Zn have sufficient solubility. Single crystals of bcc Fe-Ga-Zn have been grown with up to 4.6 at. % Zn in a Bridgman furnace under elevated pressure (15 bars) in order to overcome the high vapor pressure of Zn and obtain homogeneous crystals. Single-crystal measurements of magnetostriction and elastic constants allow for the direct comparison of the magnetoelastic coupling constants of Fe-Ga-Zn with those of other magnetoelastic alloys in its class. The partial substitution of Ga with Zn yields values for the magnetoelastic coupling factor, −b{sub 1}, comparable to those of the binary Fe-Ga alloy.

  17. Fractal-like behaviour of the BCC/FCC phase separation in the iron-gold alloys.

    Science.gov (United States)

    Błachowski, A; Ruebenbauer, K; Rakowska, A; Kac, S

    2010-03-01

    Iron-gold alloys with compositions Fe(70)Au(30) and Fe(50)Au(50) were prepared by arc melting. The alloys were investigated by means of the high-resolution scanning electron microscopy (SEM-FEG) in the as-cast state and upon annealing in two steps, i.e. at 250 degrees C for 24 h and subsequently at 500 degrees C for 48 h. The alloys were composed of two phases, i.e. a BCC phase rich in iron and a FCC phase rich in gold. The single-phase regions have equivalent diameter of about 50 nm. SEM images show self-similar structure for the spatial distribution of the above phases on scales ranging from about 1 mm till about 100 nm. The roughness of the images has been used to estimate a fractal dimension of the phase mixture. For larger scales of the as-cast samples one finds fractal dimension of about 1.7 for Fe(70)Au(30) composition, i.e. very close to the dimension of typical diffusion limited aggregation (DLA) fractals. For annealed samples, dimension 1.1 was found. PMID:20500404

  18. Comparison of subset-based local and FE-based global digital image correlation: Theoretical error analysis and validation

    Science.gov (United States)

    Pan, B.; Wang, B.; Lubineau, G.

    2016-07-01

    Subset-based local and finite-element-based (FE-based) global digital image correlation (DIC) approaches are the two primary image matching algorithms widely used for full-field displacement mapping. Very recently, the performances of these different DIC approaches have been experimentally investigated using numerical and real-world experimental tests. The results have shown that in typical cases, where the subset (element) size is no less than a few pixels and the local deformation within a subset (element) can be well approximated by the adopted shape functions, the subset-based local DIC outperforms FE-based global DIC approaches because the former provides slightly smaller root-mean-square errors and offers much higher computation efficiency. Here we investigate the theoretical origin and lay a solid theoretical basis for the previous comparison. We assume that systematic errors due to imperfect intensity interpolation and undermatched shape functions are negligibly small, and perform a theoretical analysis of the random errors or standard deviation (SD) errors in the displacements measured by two local DIC approaches (i.e., a subset-based local DIC and an element-based local DIC) and two FE-based global DIC approaches (i.e., Q4-DIC and Q8-DIC). The equations that govern the random errors in the displacements measured by these local and global DIC approaches are theoretically derived. The correctness of the theoretically predicted SD errors is validated through numerical translation tests under various noise levels. We demonstrate that the SD errors induced by the Q4-element-based local DIC, the global Q4-DIC and the global Q8-DIC are 4, 1.8-2.2 and 1.2-1.6 times greater, respectively, than that associated with the subset-based local DIC, which is consistent with our conclusions from previous work.

  19. COMPARISON OF FE AND AL ELECTRODES IN THE TREATMENT OF BLUE CA DYE EFFLUENT USING ELECTRO COAGULATION PROCESS.

    Directory of Open Access Journals (Sweden)

    VINODHA S

    2012-05-01

    Full Text Available In this work a comparison between Fe and Al electrodes, for electrocoagulation process was conducted with Blue CA dye. As there is no standard method to measure the colour intensity, a UV-Vis spectrophotometer was used to quantify the absorbance initially before the treatment and after the treatment of the dye solution.Removal efficiencies on the Blue CA were obtained by measuring absorbance of a sample at 588 nm. The percentage of Colour Removal Efficiency (CRE (% reached in a maximum of 92.45% for iron and 40.35% for aluminium. Removal was found highly dependent upon important parameters such as NaCl concentration, current density, time of treatment and initial pH. The obtained results showed that the colour removal optimal conditions are the following: initial pH of about 7.5, current density of 120 mA, 40 minutes of -electrolysis time, and 3% of concentration of NaCl, for 0.04% of dye with Fe. With iron electrode the CRE was high, about 93% for the optimized set, and for aluminium electrode the CRE was low about 40% for the same conditions that of iron electrode

  20. FE-analysis and comparison with the experimental results of the reinforced LCT-coil

    International Nuclear Information System (INIS)

    The reinforced LCT-coil was loaded up to a current of I=19.6 kA corresponding to a magnetic field of 11 Tesla. The experiment was to demonstrate that large superconducting NbTi coils are capable for reliable operation at levels up to 11 Tesla. All the measured values like strains and displacements are in very good agreement with the FE-analysis. The prediction of the maximum stresses at the coil case and at the winding could be confirmed. (orig.)

  1. Antimicrobial compounds from endophytic Streptomyces sp. BCC72023 isolated from rice (Oryza sativa L.).

    Science.gov (United States)

    Supong, Khomsan; Thawai, Chitti; Choowong, Wilunda; Kittiwongwattana, Chokchai; Thanaboripat, Dusanee; Laosinwattana, Chamroon; Koohakan, Prommart; Parinthawong, Nonglak; Pittayakhajonwut, Pattama

    2016-05-01

    An endophytic actinomycete strain BCC72023 was isolated from rice (Oryza sativa L.) and identified as the genus Streptomyces, based on phenotypic, chemotaxonomic and 16S rRNA gene sequence analyses. The strain showed 99.80% similarity compared with Streptomyces samsunensis M1463(T). Chemical investigation led to the isolation of three macrolides, efomycins M (1), G (2) and oxohygrolidin (3), along with two polyethers, abierixin (4) and 29-O-methylabierixin (5). To our knowledge, this is the first report of efomycin M being isolated from a natural source. The compounds were identified using spectroscopic techniques and comparison with previously published data. All compounds exhibited antimalarial activity against the Plasmodium falciparum, K-1 strain, a multidrug-resistant strain, with IC50 values in a range of 1.40-5.23 μg/ml. In addition, these compounds were evaluated for biological activity against Mycobacterium tuberculosis, Bacillus cereus, Colletotrichum gloeosporioides and Colletotrichum capsici, as well as cytotoxicity against both cancerous (MCF-7, KB, NCI-H187) and non-cancerous (Vero) cells. PMID:26809052

  2. Behaviour of bcc technical superconductors under dynamic mechanical stress

    International Nuclear Information System (INIS)

    The behavior of bcc technical superconductors NbTi, NbZr and Nb under dynamic mechanical stress was investigated using two measuring techniques. In shot-sample training experiments the load was measured at which, in wire samples with a transport current applied, normal transitions occured in succesive straining cycles. Complementary, the acoustic emission from superconductors was monitored during strain at 4.2 K. A mechanism based on the formation of a stress induced shear transformation was proposed to account for the training behavior. This partially reversible shearing of the lattice is not sufficient to furnish the required energy for transition in the normal state but it may be detected by means of acoustic emission. On the other hand, a time correlation between acoustic emission and normal transition was found although training behavior and emission responded differently to the same metallurgical treatment. The experiments strongly indicate that the mechanism directly responsible for local energy release is microyielding, induced by the shear transformation. The stress relaxation which accompanies this transformation results in an increased load on the rest of the sample cross-section. Consequently microyielding caused by the transformation could occur in that region of the sample without being detected on the stress-strain curve. This would result in a sufficient release of energy to increase the sample temperature above its critical value. (orig./HP)

  3. Isothermal compression of bcc transition metals to 100 kbar

    International Nuclear Information System (INIS)

    Pressure-volume relationships for the bcc transition metals in the groups VB (V, Nb, and Ta) and VIB (Cr, Mo, and W) were determined under hydrostatic pressure to 100 kbar at room temperature by means of x-ray diffraction, employing diamond-anvil pressure cell and the ruby (R1 line) fluorescence calibration technique. Using the measured ultrasonic K'0 values, where K0 is the bulk modulus at ambient pressure, for five metals and the deduced shock-wave K'0 value for Cr, the values of K0 for V, Nb, Ta, Mo, W, and Cr are calculated to be 1.54, 1.71, 1.94, 2.67, 3.07, and 1.93 Mbar, respectively, by least-squares fit of the experimental P-V data to the Birch-Murnaghan equation. The K0 values thus determined are in good agreement with the ultrasonic and shock-wave values for V, Nb, Ta, Mo, and W. For Cr, the K0 value (1.93 Mbar) is in agreement with the shock-wave value (1.92 Mbar) but not with the ultrasonic value (1.65 Mbar). This discrepancy can be explained in view of the paramagnetic→antiferromagnetic transition in Cr in the temperature proximity of the ultrasonic measurements (Neel temperature T/sub N/approx.311 0K at 1 bar) and by the negative pressure dependence of T/sub N/

  4. Defect energetics in Fe-Cr alloys from empirical interatomic potentials

    International Nuclear Information System (INIS)

    Fe-Cr based alloys are considered as candidate structural materials in the design of next generation reactors. A good knowledge of the behavior under irradiation of these compounds is needed in order to have the best possible safety and longer lifetime in future nuclear plants. Density functional theory (DFT) calculations are only available for a few hundreds of atoms and in order to increase time and length scales it is necessary to have appropriate tools to continue the study in larger systems. In this work we perform a comparative study between two empirical interatomic potentials specially developed to study Fe-Cr alloys. The dependence of the calculated formation energy for vacancy, self- and mixed interstitials is investigated for both potentials in pure bcc Fe and pure bcc Cr. These results are compared to DFT values in the literature. Some small Cr clusters in substitutional positions have also been studied in bcc Fe.

  5. Defect energetics in Fe-Cr alloys from empirical interatomic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Sampedro, Jesus M. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, c/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain); Rio, Emma del, E-mail: emma.delrio@upm.es [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, c/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain); Caturla, Maria J., E-mail: MJ.Caturla@ua.es [Departamento de Fisica Aplicada, Facultad de Ciencias, Fase II, Universidad de Alicante, Alicante E-03690 (Spain); Victoria, Max; Manuel Perlado, J. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, c/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain)

    2011-10-01

    Fe-Cr based alloys are considered as candidate structural materials in the design of next generation reactors. A good knowledge of the behavior under irradiation of these compounds is needed in order to have the best possible safety and longer lifetime in future nuclear plants. Density functional theory (DFT) calculations are only available for a few hundreds of atoms and in order to increase time and length scales it is necessary to have appropriate tools to continue the study in larger systems. In this work we perform a comparative study between two empirical interatomic potentials specially developed to study Fe-Cr alloys. The dependence of the calculated formation energy for vacancy, self- and mixed interstitials is investigated for both potentials in pure bcc Fe and pure bcc Cr. These results are compared to DFT values in the literature. Some small Cr clusters in substitutional positions have also been studied in bcc Fe.

  6. Cesium under pressure: First-principles calculation of the bcc-to-fcc phase transition

    Science.gov (United States)

    Carlesi, S.; Franchini, A.; Bortolani, V.; Martinelli, S.

    1999-05-01

    In this paper we present the ab initio calculation of the structural properties of cesium under pressure. The calculation of the total energy is done in the local-density approximation of density-functional theory, using a nonlocal pseudopotential including the nonlinear core corrections proposed by Louie et al. The calculation of the pressure-volume diagram for both bcc and fcc structures allows us to prove that the transition from bcc to fcc structure is a first-order transition.

  7. Noncollinear magnetism of Mn nanowires on Fe(1 1 0).

    Science.gov (United States)

    Igarashi, R N; Miranda, I P; Eleno, L T F; Klautau, A B; Petrilli, H M

    2016-08-17

    Magnetic properties of Mn linear nanochains on a bcc Fe(1 1 0) surface have been studied using the first-principles real space-linear muffin-tin orbital atomic sphere approximation (RS-LMTO-ASA) method. We have considered up to nine Mn atoms deposited on bcc Fe(1 1 0). Our ab initio calculations reveal the competition between the antiferromagnetic Mn-Mn and Mn-Fe couplings, presenting a behavior which is very different from Mn nanowires on Fe(0 0 1), as shown in a previous publication. Due to this competition and non-negligible Dzyaloshinskii-Moriya interaction, noncollinear magnetic structures are stabilized as ground states for the Mn nanochains on Fe(1 1 0). PMID:27346457

  8. North-South comparison of the Fe layer in the upper polar atmosphere

    Science.gov (United States)

    Wörl, Raimund; Höffner, Josef; Viehl, Timo P.; Lübken, Franz-Josef

    2016-04-01

    In cooperation with the Australian Antarctic Division mesopause temperatures, iron densities and NLC were measured at Davis, Antarctica (69°S) by the mobile Fe-Doppler-Lidar of the IAP. From 2010 to 2012 more than 2900 hours of observations have been obtained throughout the season. We present quasi-continuous measurements of temperature profiles in the southern hemisphere mesopause region. In a period of 120 days around summer solstice we have performed lidar observations for a total of 736 hours. The mesopause region is unexpected high and cold. Over a two week period around solstice a very strong short term depletion in Fe densities is observed. Surprisingly we found regular tides between 80 and 100 km altitude throughout all months of the year. In 2015 the lidar system was installed at the corresponding co-latitude Andenes, Norway (69°N) at the ALOMAR observatory. More than 1300 hours of observations are already available and are compared with the southern hemisphere observations. The measurements already cover the whole season including the important summer months with the cold summer mesopause. The temperature measurements are in good agreement with rocket borne observations of temperature (falling sphere) which have been obtained about many years at this latitude.

  9. Role of the Fe-zeolite structure and iron state in the N2O decomposition: Comparison of Fe-FER, Fe-BEA, and Fe-MFI catalysts

    Czech Academy of Sciences Publication Activity Database

    Jíša, Kamil; Nováková, Jana; Schwarze, Michael; Vondrová, Alena; Sklenák, Štěpán; Sobalík, Zdeněk

    2009-01-01

    Roč. 262, č. 1 (2009), s. 27-34. ISSN 0021-9517 R&D Projects: GA AV ČR 1ET400400413; GA AV ČR 1QS400400560 Institutional research plan: CEZ:AV0Z40400503 Keywords : Fe in FER * BEA a MFI * N2O decomposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.288, year: 2009

  10. Fine structure at the diffusion welded interface of Fe3Al/Q235 dissimilar materials

    Indian Academy of Sciences (India)

    Wang Juan; Li Yajiang; Wu Huiqiang

    2001-12-01

    The interface of Fe3Al/Q235 dissimilar materials joint, which was made by vacuum diffusion welding, combines excellently. There are Fe3Al, FeAl phases and -Fe (Al) solid solution at the interface of Fe3Al/Q235. Aluminum content decreases from 28% to 1.5% and corresponding phase changes from Fe3Al with DO3 type body centred cubic (bcc) structure to -Fe (Al) solid solution with B2 type bcc structure. All phases are present in sub-grain structure level and there is no obvious brittle phases or micro-defects such as pores and cracks at the interface of Fe3Al/Q235 diffusion joint.

  11. Comparison of Fe and Ni opacity calculations for a better understanding of pulsating stellar envelopes

    CERN Document Server

    Gilles, D; Loisel, G; Piau, L; Ducret, J -E; Poirier, M; Blenski, T; Thais, F; Blancard, C; Cossé, P; Faussurier, G; Gilleron, F; Pain, J -C; Porcherot, Q; Guzik, J A; Kilcrease, D P; Magee, N H; Harris, J; Busquet, M; Delahaye, F; Zeippen, C J; Bastiani-Ceccotti, S; 10.1016/j.hedp.2011.06.001

    2012-01-01

    Opacity is an important ingredient of the evolution of stars. The calculation of opacity coefficients is complicated by the fact that the plasma contains partially ionized heavy ions that contribute to opacity dominated by H and He. Up to now, the astrophysical community has greatly benefited from the work of the contributions of Los Alamos [1], Livermore [2] and the Opacity Project (OP) [3]. However unexplained differences of up to 50% in the radiative forces and Rosseland mean values for Fe have been noticed for conditions corresponding to stellar envelopes. Such uncertainty has a real impact on the understanding of pulsating stellar envelopes, on the excitation of modes, and on the identification of the mode frequencies. Temperature and density conditions equivalent to those found in stars can now be produced in laboratory experiments for various atomic species. Recently the photo-absorption spectra of nickel and iron plasmas have been measured during the LULI 2010 campaign, for temperatures between 15 and...

  12. Dislocation-void interaction in Fe: A comparison between molecular dynamics and dislocation dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hafez Haghighat, S.M. [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, CH 5232 Villigen PSI (Switzerland)], E-mail: masood.hafez@psi.ch; Fivel, M.C. [SIMAP-GPM2, CNRS/INPG, BP 46, 38402 St Martin d' Heres cedex (France); Fikar, J.; Schaeublin, R. [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, CH 5232 Villigen PSI (Switzerland)

    2009-04-30

    Multiscale modeling, including molecular dynamics (MD) and discrete dislocation dynamics (DDD) methods, appears as a significant tool for the description of plasticity and mechanical properties of materials. This research concerns the influence of irradiation on the plasticity of pure Fe and focuses on the interaction of a single dislocation with a spherical void at various geometries. MD simulation shows that the void strengthening is proportional to the interaction area. Stress field around the void influences also the dislocation passage. DDD calculation coupled to finite element method (FEM) is used to simulate the interaction of an edge dislocation with a void. DDD calculations present a good match to the MD simulation results at the near-atomic scale. They highlight the impact of image forces on the dislocation due to the free internal surface of the void and the one of its surrounding stress field.

  13. Compressibility of nanostructured Fe-Cu materials prepared by mechanical milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Olsen, J.S.; Gerward, Leif;

    1999-01-01

    The compressibility of nanostructured Fe-Cu materials prepared by mechanical milling has been investigated by in-situ high-pressure x-ray diffraction using synchrotron radiation. It is found that the bulk modulus of both fcc-Cu and bcc-Fe phases decreases with decreasing grain sizes. The unstable...

  14. Nd2Fe14B/α-Fe和Pr2Fe14B/α-Fe型纳米晶永磁合金工艺与性能的对比研究%Comparison Study of Nd2Fe14B/α-Fe and Pr2Fe14B/α-Fe Nanocrystalline Permanent Magnetic Alloys in Producing Process and Magnetic Properties

    Institute of Scientific and Technical Information of China (English)

    王浩颉; 孙光飞; 陈菊芳; 强文江; 胡国辉; 杨白; 蔺朝晖

    2003-01-01

    对快淬法制备的Nd2Fe14B/α-Fe和Pr2Fe14B/α-Fe型双相纳米晶永磁在快淬条件和晶化过程中的软、硬磁相之间晶粒的形核长大行为作了对比,发现PrFeB系更容易得到较好磁性能.

  15. Plasticity and Failure in Nanocrystalline BCC Metals via MD Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, R E

    2010-02-12

    Advances in the ability to generate extremely high pressures in dynamic experiments such as at the National Ignition Facility has motivated the need for special materials optimized for those conditions as well as ways to probe the response of these materials as they are deformed. We need to develop a much deeper understanding of the behavior of materials subjected to high pressure, especially the effect of rate at the extremely high rates encountered in those experiments. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum at pressures less than 100 GPa to investigate the processes associated with plastic deformation for strains up to 100%. We focus on 3D polycrystalline systems with typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures. We also present some results on void growth in nanocrystalline BCC metals under tension.

  16. Magnetic Compton profiles of Fe by effective potentials

    Energy Technology Data Exchange (ETDEWEB)

    Tokii, M; Matsumoto, M [Graduate School of Library, Information and Media Studies, University of Tsukuba, Tsukuba-shi, Ibaraki 305-8550 (Japan)

    2006-04-19

    Many studies of the ferromagnetic metal Fe have been reported and discussed, such as spin-polarized band calculations, photoemissions, dHvA (de Haas-van Alphen) experiments and Compton profiles experiments. However, theoretical magnetic Compton profiles (MCPs) of bcc Fe are not in good agreement with experimental results, especially in the low momentum region. It is said that this discrepancy is caused in the local spin density approximation (LSDA). Kubo et al calculated the MCPs of bcc Fe with full-potential linearized augmented plane wave (FLAPW) method and lowering the centre of gravity of the p-states. Their results are in good agreement with the experimental one. Recently, we suggested a new LSDA +U method which is effective for metals. For nonmagnetic state bcc V and bcc Cr, the shape of the Fermi surfaces and the population of the d {epsilon} orbital are improved. In this paper, we show that our LSDA +U method improves the size of the N-centred hole pocket and MCPs for ferromagnetic Fe. We used a modified WIEN97 package by adding two kinds of LSDA +U versions, LSDA +U{sup DFT} and LSDA +U{sup 1.0}. In the self-consistent field (SCF) calculation, the fixed-spin-moment scheme is applied.

  17. Magnetic Compton profiles of Fe by effective potentials

    International Nuclear Information System (INIS)

    Many studies of the ferromagnetic metal Fe have been reported and discussed, such as spin-polarized band calculations, photoemissions, dHvA (de Haas-van Alphen) experiments and Compton profiles experiments. However, theoretical magnetic Compton profiles (MCPs) of bcc Fe are not in good agreement with experimental results, especially in the low momentum region. It is said that this discrepancy is caused in the local spin density approximation (LSDA). Kubo et al calculated the MCPs of bcc Fe with full-potential linearized augmented plane wave (FLAPW) method and lowering the centre of gravity of the p-states. Their results are in good agreement with the experimental one. Recently, we suggested a new LSDA +U method which is effective for metals. For nonmagnetic state bcc V and bcc Cr, the shape of the Fermi surfaces and the population of the d ε orbital are improved. In this paper, we show that our LSDA +U method improves the size of the N-centred hole pocket and MCPs for ferromagnetic Fe. We used a modified WIEN97 package by adding two kinds of LSDA +U versions, LSDA +UDFT and LSDA +U1.0. In the self-consistent field (SCF) calculation, the fixed-spin-moment scheme is applied

  18. Mixed structural face-centered cubic and body-centered cubic orders in near stoichiometric Fe2MnGa alloys

    Science.gov (United States)

    Kudryavtsev, Y. V.; Perekos, A. E.; Uvarov, N. V.; Kolchiba, M. R.; Synoradzki, K.; Dubowik, J.

    2016-05-01

    Magnetic and transport properties of near stoichiometric metastable FexMnyGaz alloys (46 ≤ x ≤ 52, 17 ≤ y ≤ 25, 26 ≤ z ≤ 30) with face-centered cubic (FCC), body-centered cubic (BCC), and two-phase (FCC + BCC) structures are investigated. The experimental results are analyzed in terms of first-principles calculations of stoichiometric Fe2MnGa alloy with the L21, L12, and the tetragonally distorted L21 structural orderings. It is shown that the pure BCC and FCC phases have distinct magnetic and transport properties. Two-phase Fe2MnGa alloys have magnetic and transport properties typical of the mixed BCC and FCC phases. Among the investigated alloys, Fe46Mn24Ga30 has a martensitic transformation accompanied with significant changes of its magnetic and transport properties.

  19. Time evolution of morphology in mechanically alloyed Fe-Cu

    KAUST Repository

    Wille, Catharina Gabriele

    2011-05-01

    Being widely accessible as well as already utilised in many applications, Fe-Cu acts as an ideal binary model alloy to elaborate the enforced nonequilibrium enhanced solubility in such a solution system that shows a limited regime of miscibility and characterised by a large positive heat of mixing. In addition to the detailed analysis of ball milled Fe-Cu powders by means of Atom Probe Tomography (APT), site specific structural analysis has been performed in this study using Transmission Electron Microscopy (TEM).In this contribution results on powders with low Cu concentrations (2.5-10 at%) are presented. Combining a ductile element (Cu, fcc) and a brittle one (Fe, bcc), striking differences in morphology were expected and found on all length-scales, depending on the mixing ratio of the two elements. However, not only could the atomic mixing of Fe and Cu be evaluated, but also the distribution of impurities, mostly stemming from the fabrication procedure. The combination of APT and TEM enables a correlation between the structural evolution and the chemical mixing during the milling process. For the first time, a clear distinction can be drawn between the morphological evolution at the surface and in the interior of the powder particles. This became possible owing to the site specific sample preparation of TEM lamellae by Focussed Ion Beam (FIB). Surprisingly, the texture arising from the ball milling process can directly be related to the classical rolling texture of cold rolled Fe. In addition, full homogeneity can be achieved even on the nano-scale for this material as shown by APT, resulting in an extended miscibility region in comparison to the equilibrium phase diagram. Grain sizes were determined by means of XRD and TEM. The strain corrected XRD results are in very good agreement with the values derived by TEM, both confirming a truly nanocrystalline structure. © 2011 Elsevier B.V.

  20. Comparison of Fe and Ni opacity calculations for a better understanding of pulsating stellar envelopes

    Science.gov (United States)

    Gilles, D.; Turck-Chièze, S.; Loisel, G.; Piau, L.; Ducret, J.-E.; Poirier, M.; Blenski, T.; Thais, F.; Blancard, C.; Cossé, P.; Faussurier, G.; Gilleron, F.; Pain, J. C.; Porcherot, Q.; Guzik, J. A.; Kilcrease, D. P.; Magee, N. H.; Harris, J.; Busquet, M.; Delahaye, F.; Zeippen, C. J.; Bastiani-Ceccotti, S.

    2011-12-01

    Opacity is an important ingredient of the evolution of stars. The calculation of opacity coefficients is complicated by the fact that the plasma contains partially ionized heavy ions that contribute to opacity dominated by H and He. Up to now, the astrophysical community has greatly benefited from the work of the contributions of Los Alamos [1], Livermore [2] and the Opacity Project (OP) [3]. However unexplained differences of up to 50% in the radiative forces and Rosseland mean values for Fe have been noticed for conditions corresponding to stellar envelopes. Such uncertainty has a real impact on the understanding of pulsating stellar envelopes, on the excitation of modes, and on the identification of the mode frequencies. Temperature and density conditions equivalent to those found in stars can now be produced in laboratory experiments for various atomic species. Recently the photo-absorption spectra of nickel and iron plasmas have been measured during the LULI 2010 campaign, for temperatures between 15 and 40 eV and densities of ˜3 mg/cm3. A large theoretical collaboration, the "OPAC", has been formed to prepare these experiments. We present here the set of opacity calculations performed by eight different groups for conditions relevant to the LULI 2010 experiment and to astrophysical stellar envelope conditions.

  1. Anisotropy effects in magnetic hyperthermia: A comparison between spherical and cubic exchange-coupled FeO/Fe{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khurshid, H., E-mail: khurshid@usf.edu, E-mail: sharihar@usf.edu; Nemati, Z.; Phan, M. H.; Mukherjee, P.; Srikanth, H., E-mail: khurshid@usf.edu, E-mail: sharihar@usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Alonso, J. [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); BCMaterials Edificio No. 500, Parque Tecnológico de Vizcaya, Derio 48160 (Spain); Fdez-Gubieda, M. L.; Barandiarán, J. M. [BCMaterials Edificio No. 500, Parque Tecnológico de Vizcaya, Derio 48160 (Spain); Depto. Electricidad y Electrónica, Universidad del País Vasco, Leioa 48940 (Spain)

    2015-05-07

    Spherical and cubic exchange-coupled FeO/Fe{sub 3}O{sub 4} nanoparticles, with different FeO:Fe{sub 3}O{sub 4} ratios, have been prepared by a thermal decomposition method to probe anisotropy effects on their heating efficiency. X-ray diffraction and transmission electron microscopy reveal that the nanoparticles are composed of FeO and Fe{sub 3}O{sub 4} phases, with an average size of ∼20 nm. Magnetometry and transverse susceptibility measurements show that the effective anisotropy field is 1.5 times larger for the cubes than for the spheres, while the saturation magnetization is 1.5 times larger for the spheres than for the cubes. Hyperthermia experiments evidence higher values of the specific absorption rate (SAR) for the cubes as compared to the spheres (200 vs. 135 W/g at 600 Oe and 310 kHz). These observations point to an important fact that the saturation magnetization is not a sole factor in determining the SAR and the heating efficiency of the magnetic nanoparticles can be improved by tuning their effective anisotropy.

  2. Vibrational properties of vacancy in bcc transition metals using embedded atom method potentials

    Indian Academy of Sciences (India)

    Vandana Gairola; P D Semalty; P N Ram

    2013-06-01

    The embedded atom method (EAM) potentials, with the universal form of the embedding function along with the Morse form of pair potential, have been employed to determine the potential parameters for three bcc transition metals: Fe, Mo, and W, by fitting to Cauchy pressure $(C_{12} − C_{44})/2$, shear constants $G_{v} = (C_{11} − C_{12} + 3C_{44})/5$ and 44, cohesive energy and the vacancy formation energy. The obtained potential parameters are used to calculate the phonon dispersion spectra of these metals. Large discrepancies are found between the calculated results of phonon dispersion using the EAM and the experimental phonon dispersion results. Therefore, to overcome this inadequacy of the EAM model, we employ the modified embedded atom method (MEAM) in which a modified term along with the pair potential and embedding function is added in the total energy. The phonon dispersions calculated using potential parameters obtained from the MEAM show good agreement with experimental results compared to those obtained from the EAM. Using the calculated phonons, we evaluate the local density of states of the neighbours of vacancy using the Green’s function method. The local frequency spectrum of first neighbours of vacancy in Mo shows an increase at higher frequencies and a shift towards the lower frequencies whereas in Fe and W, the frequency spectrum shows a small decrease towards higher frequency and small shift towards lower frequency. For the second neighbours of vacancy in all the three metals, the local frequency spectrum is not much different from that of the host atom. The local density of states of the neighbours of the vacancy has been used to calculate the mean square displacements and the formation entropy of vacancy. The calculated mean square displacements of the first neighbours of vacancy are found to be higher than that of the host atom, whereas it is lower for the second neighbours. The calculated results of the formation entropy of the vacancy

  3. Computer simulation of reactions between self-interstitial atom clusters in BCC-FE

    International Nuclear Information System (INIS)

    Irradiation with high-energy particles, such as neutrons, ions and electrons, produces microstructural changes in materials. This happens because point defects, i.e. SIA (self-interstitial atoms) and vacancies, are generated in quantities well above the thermodynamic equilibrium concentration and aggregate to form clusters (dislocation loops and small cavities) and then more complex structures (dislocation networks, ...) or interact with impurities and solute atoms, thereby enhancing or inducing phenomena such as precipitation and phase segregation. These microstructural changes will in turn affect the macroscopic properties of the material. It is therefore of fundamental importance, in order to understand and possibly predict the behaviour of materials under irradiation, to be able to model the corresponding microstructural evolution. This evolution is driven mainly by processes taking place at the atomic level, thus at the scale of nanometers and pico- or nanoseconds, and in many cases it is experimentally impossible to obtain detailed information about them. For the study of these processes atomistic computer simulation is therefore a powerful tool and in fact often the only one that can be used. The most important class of structural materials for nuclear applications are iron alloys and for this reason atomistic computer simulation has been extensively applied to the study of radiation damage in these materials. Yet, there are still features of their microstructural evolution under irradiation that are not fully understood. As a matter of fact, TEM (transmission electron microscopy) studies of irradiated iron, both pure and alloyed, revealed already 40 years ago that two types of dislocation loops can be created in these materials

  4. Exchange interactions in the bcc Fe/TaW(001) system

    Czech Academy of Sciences Publication Activity Database

    Drchal, Václav; Ondráček, Martin; Kudrnovský, Josef; Bengone, O.; Turek, Ilja; Máca, František

    2010-01-01

    Roč. 8, - (2010), s. 157-160. ISSN 1348-0391 R&D Projects: GA ČR GA202/07/0456; GA AV ČR IAA100100616 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521; CEZ:AV0Z20410507 Keywords : density functional calculations * surface electronic phenomena * iron * Ta-W alloy * magnetic films Subject RIV: BM - Solid Matter Physics ; Magnetism

  5. TEM characterization of dislocation loops in irradiated bcc Fe-based steels

    Energy Technology Data Exchange (ETDEWEB)

    Yao, B., E-mail: bo555252@gmail.com [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Edwards, D.J.; Kurtz, R.J. [Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

    2013-03-15

    In this study, we describe a methodology to examine dislocation loops in irradiated steels based on a combination of crystallographic information and g⋅b invisibility criteria. Dislocation loops in transmission electron microscope (TEM) images can be conveniently analyzed using this method. Through this analysis approach, dislocation loops in reduced activation ferritic/martensitic (RAFM) steels irradiated at 400 °C have been examined. The predominant types of loops found in irradiated RAFM steels were 〈1 0 0〉{2 0 0} and 1/2〈1 1 1〉{1 1 1}. The size, density, and density anisotropy of these two types of dislocation loops were quantified. It was observed that the 〈1 0 0〉{2 0 0} loop density is more than twice that of 1/2〈1 1 1〉{1 1 1} loops. A large density anisotropy of 〈1 0 0〉{2 0 0} loops was identified.

  6. TEM characterization of dislocation loops in irradiated bcc Fe-based steels

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Bo; Edwards, Danny J.; Kurtz, Richard J.

    2012-12-08

    In this study, we describe a methodology to examine dislocation loops in irradiated steels based on a combination of crystallographic information and g*b invisibility criteria. Dislocation loops in transmission electron microscope (TEM) images can be conveniently analyzed using this method. Through this analysis approach, dislocation loops in reduced activation ferritic/martensitic (RAFM) steels irradiated at 400 *C have been examined. The predominant types of loops found in irradiated RAFM steels were h100i{200} and 1/2h111i 111. The size, density, and density anisotropy of these two types of dislocation loops were quantified. It was observed that the h100i{200} loop density is more than twice that of 1/2h111i{111} loops. A large density anisotropy of h100i{200} loops was identified.

  7. Geochemical control of microbial Fe(III) reduction potential in wetlands: Comparison of the rhizosphere to non-rhizosphere soil

    Science.gov (United States)

    Weiss, J.V.; Emerson, D.; Megonigal, J.P.

    2004-01-01

    We compared the reactivity and microbial reduction potential of Fe(III) minerals in the rhizosphere and non-rhizosphere soil to test the hypothesis that rapid Fe(III) reduction rates in wetland soils are explained by rhizosphere processes. The rhizosphere was defined as the area immediately adjacent to a root encrusted with Fe(III)-oxides or Fe plaque, and non-rhizosphere soil was 0.5 cm from the root surface. The rhizosphere had a significantly higher percentage of poorly crystalline Fe (66??7%) than non-rhizosphere soil (23??7%); conversely, non-rhizosphere soil had a significantly higher proportion of crystalline Fe (50??7%) than the rhizosphere (18??7%, Prhizosphere Fe(III)-oxide pool in 4 h compared to 23% of the soil Fe(III)-oxide pool. Similarly, microbial reduction consumed 75-80% of the rhizosphere pool in 10 days compared to 30-40% of the non-rhizosphere soil pool. Differences between the two pools persisted when samples were amended with an electron-shuttling compound (AQDS), an Fe(III)-reducing bacterium (Geobacter metallireducens), and organic carbon. Thus, Fe(III)-oxide mineralogy contributed strongly to differences in the Fe(III) reduction potential of the two pools. Higher amounts of poorly crystalline Fe(III) and possibly humic substances, and a higher Fe(III) reduction potential in the rhizosphere compared to the non-rhizosphere soil, suggested the rhizosphere is a site of unusually active microbial Fe cycling. The results were consistent with previous speculation that rapid Fe cycling in wetlands is due to the activity of wetland plant roots. ?? 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

  8. The annealing temperature dependences of microstructures and magnetic properties in electro-chemical deposited CoNiFe thin films

    Science.gov (United States)

    Suharyadi, Edi; Riyanto, Agus; Abraha, Kamsul

    2016-04-01

    CoNiFe thin films with various compositions had been successfully fabricated using electro-chemical deposition method. The crystal structure of Co65Ni15Fe20, Co62Ni15Fe23, and Co55Ni15Fe30 thin films was fcc, bcc-fcc mix, and bcc, respectively. The difference crystal structure results the difference in magnetic properties. The saturation magnetic flux density (Bs) of Co65Ni15Fe20, Co62Ni15Fe23, and Co55Ni15Fe30 thin films was 1.89 T, 1.93 T, and 2.05 T, respectively. An optimal annealing temperature was determined for controlling the microstructure and magnetic properties of CoNiFe thin films. Depending on annealing temperature, the ratio of bcc and fcc structure varied without changing the film composition. By annealing at temperature of T ≥ 350°C, the intensity ratio of X-ray diffraction peaks for bcc(110) to fcc(111) increased. The increase of phase ratio of bcc(110) to fcc(111) caused the increase of Bs, from 1.89 T to 1.95 T. Coercivity (Hc) also increased after annealing, from 2.6 Oe to 18.6 Oe for fcc phase thin films, from 2.0 Oe to 12.0 Oe for fcc-bcc mix phase thin films, and 7.8 Oe to 8 Oe for bcc phase thin films. The changing crystal structures during annealing process indicated that the thermal treatment at high temperature cause the changing crystallinity and atomic displacement. The TEM bright-field images with corresponding selected-area electron diffraction (SAED) patterns showed that there are strongly effects of thermal annealing on the size of fcc and bcc phase crystalline grain as described by size of individual spot and discontinuous rings. The size of crystalline grains increased by thermal annealing. The evolution of bcc and fcc structures of CoNiFe during annealing is though to be responsible for the change of magnetic properties.

  9. A Simulation of the Upper-Tropospheric Temperature Pattern in BCC_CSM1.1

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bo-Yao; ZHANG Li

    2012-01-01

    A simulation of the upper-tropospheric temperature (UTT) by the Beijing Climate Center Climate System Model version 1.1 (BCC_CSM1.1) model is evaluated through a comparison with NCEP/NCAR reanalysis data. It is shown that this model has the ability to simulate the climate pattern of the UTT in all four seasons. The spatial correlation on the climatological distribution between the simulation and the observation is 0.92, 0.93, 0.90, and 0.93 for spring, summer, autumn, and winter, respectively. The first leading mode of the UTT in the simulation agrees with that in the observation, except that the simulated second leading mode corresponds to the observed first leading mode in spring. The standard deviation distribution of the simulation is also roughly consistent with the observation, with a pattern coefficient of 0.82, 0.78, 0.82, and 0.82 in spring, summer, autumn, and winter, respectively. The potential UTT change in the second half of the 21st century under the Representative Concentration Pathway 8.5 (RCP8.5) scenario is examined. The prominent change is that the summer UTT will increase over Eurasia and decrease over the North Pacific compared with the present, indicating that the zonal thermal contrast between Asia and the North Pacific will be strengthened within the context of future global warming. The intensity of the interannual variability of the UTT over the Asian-Pacific region is also generally increased. The zonal thermal contrast between Asia and the North Pacific will tend to be enhanced in winter, concurrent with the intensified interannual variability.

  10. bcc transition metals under pressure: results from ultrasonic interferometry and diamond-cell experiments

    International Nuclear Information System (INIS)

    Hydrostatic pressure derivatives of the single-crystal elastic moduli, dC/sub ij//dP, have been measured ultrasonically for b.c.c. Nb--Mo and Ta--W solid solutions. The composition dependence of various electronic properties of these alloys is known to be reasonably well approximated by a rigid-electron-band filling model where e/a, the electron per atom ratio, is the primary parameter. The results indicate that the elastic moduli and their pressure derivatives may also be calculated in such a model. In particular, the dC/sub ij//dP show relatively sharp increases at e/a compositions of 5.4 for Nb--Mo and 5.7 for Ta--W. Both compositions correspond to changes in Fermi surface topology, as deduced from existing band calculations and the rigid band assumption. The results are discussed in the light of related electronic properties and possible geophysical applications. A comparison is also made between ultrasonic results and X-ray diffraction data for Nb. Using diamond-anvil pressure cell, compression of Nb was determined by X-ray diffraction up to 55 kbar in a liquid medium under purely hydrostatic conditions, and up to 175 kbar in a solid medium under nonhydrostatic conditions. The data obtained under hydrostatic conditions agree well with the ultrasonic equation of state and shock wave data, whereas the nonhydrostatic results tend to imply either a higher bulk modulus K/sub s/ or a higher (par. deltaK/sub s//par. deltaP)/sub T/

  11. Comparison of Fe2O3 and Fe2CoO4 core-shell plasmonic nanoparticles for aptamer mediated SERS assays

    Science.gov (United States)

    Marks, Haley; Mabbott, Samuel; Huang, Po-Jung; Jackson, George W.; Kameoka, Jun; Graham, Duncan; Coté, Gerard L.

    2016-03-01

    Conjugation of oligonucleotides or aptamers and their corresponding analytes onto plasmonic nanoparticles mediates the formation of nanoparticle assemblies: molecularly bound bundles of nanoparticles which cause a measurable change in the colloid's optical properties. Here, we present further optimization of a "SERS off" competitive binding assay utilizing plasmonic and magnetic nanoparticles for the detection of the toxin bisphenol A (BPA). The assay involves 1) a `target' silver nanoparticle functionalized with a Raman reporter dye and PEGylated BPA-binding DNA aptamers, and 2) a version of the toxin BPA, bisphenol A diglycidyl ether (BADGE), PEGylated and immobilized onto a silver coated magnetic 'probe' nanoparticle. When mixed, these target and probe nanoparticles cluster into magnetic dimers and trimers and an enhancement in their SERS spectra is observed. Upon introduction of free BPA in its native form, target AgNPs are competitively freed; reversing the nanoparticle assembly and causing the SERS signal to "turn-off" and decrease in response to the competitive binding event. The assay particles were housed inside two types of optofluidic chips containing magnetically active nickel pads, in either a straight or spotted pattern, and both Fe2O3 and Fe2CoO4 were compared as magnetic cores for the silver coated probe nanoparticle. We found that the Ag@ Fe2O3 particles were, on average, more uniform in size and more stable than Ag@ Fe2CoO4, while the addition of cobalt significantly improved the collection time of particles within the magnetic chips. Using 3D Raman mapping, we found that the straight channel design with the Ag@ Fe2O3 particles provided the most uniform nanoparticle organization, while the spotted channel design with Ag@ Fe2CoO4 demonstrated a larger SERS enhancement, and thus a lower limit of detection.

  12. On the stability of rhenium up to 1 TPa pressure against transition to the bcc structure

    Indian Academy of Sciences (India)

    A K Verma; P Ravindran; R S Rao; B K Godwal; R Jeanloz

    2003-01-01

    We have carried out electronic structure total energy calculations on rhenium in the hexagonal close packed (hcp) and body centred cubic (bcc) phases, by the full potential linear muffin–tin orbital method, in order to verify the stability of the ambient pressure hcp phase against transition to the bcc structure at high pressures. As per our results, no hcp to bcc structural transition can occur up to 1 TPa pressures. Moreover, our Bain path calculations show that face centred cubic and body centred tetragonal structures are also not energetically preferred over hcp in this pressure range. The axial ratio (/) of Re changes by less than 0.33% in the pressure range studied.

  13. Time evolution of morphology in mechanically alloyed Fe-Cu

    International Nuclear Information System (INIS)

    Being widely accessible as well as already utilised in many applications, Fe-Cu acts as an ideal binary model alloy to elaborate the enforced nonequilibrium enhanced solubility in such a solution system that shows a limited regime of miscibility and characterised by a large positive heat of mixing. In addition to the detailed analysis of ball milled Fe-Cu powders by means of Atom Probe Tomography (APT), site specific structural analysis has been performed in this study using Transmission Electron Microscopy (TEM). In this contribution results on powders with low Cu concentrations (2.5-10 at%) are presented. Combining a ductile element (Cu, fcc) and a brittle one (Fe, bcc), striking differences in morphology were expected and found on all length-scales, depending on the mixing ratio of the two elements. However, not only could the atomic mixing of Fe and Cu be evaluated, but also the distribution of impurities, mostly stemming from the fabrication procedure. The combination of APT and TEM enables a correlation between the structural evolution and the chemical mixing during the milling process. For the first time, a clear distinction can be drawn between the morphological evolution at the surface and in the interior of the powder particles. This became possible owing to the site specific sample preparation of TEM lamellae by Focussed Ion Beam (FIB). Surprisingly, the texture arising from the ball milling process can directly be related to the classical rolling texture of cold rolled Fe. In addition, full homogeneity can be achieved even on the nano-scale for this material as shown by APT, resulting in an extended miscibility region in comparison to the equilibrium phase diagram. Grain sizes were determined by means of XRD and TEM. The strain corrected XRD results are in very good agreement with the values derived by TEM, both confirming a truly nanocrystalline structure. -- Research highlights: → Morphology and homogeneity of ball milled Fe-Cu were followed by XRD

  14. The influences of electrodeposited temperature on the morphology and magnetic properties of Fe/Fe-dimethylsulfoxide nanocables

    International Nuclear Information System (INIS)

    Arrays of nanocables were electrodeposited into anodic aluminum oxide template at 40 deg. C in the solution of dimethylsulfoxide (DMSO) with 17 g/l FeCl3. The transmission electron microscope result clearly shows that the nanocables consist of light Fe-DMSO sheaths and dark Fe nanowire cores. The Fe nanowire cores are bcc structure with a preferred orientation of (1 1 0) and the sheaths of Fe-DMSO are coordination compounds of Fe with DMSO. The chemical bonds of Fe-DMSO are instable at high-temperature solution, so the content of Fe-DMSO decreases and that of Fe increases with the enhancing of electrodeposited temperature. All arrays of nanocables at different electrodeposited temperatures show an obvious anisotropy with the easy magnetizing axial parallel to the length of nanocable. With the applied field along the nanocable, the anisotropy, coercivity and squareness increase with the raise of electrodeposited temperature

  15. Preparation of metastable bcc permalloy epitaxial thin films on GaAs(011){sub B3} single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru, E-mail: ohtake@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Higuchi, Jumpei; Yabuhara, Osamu [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2011-09-30

    Permalloy (Py) single-crystal films with bcc structure were obtained on GaAs(011){sub B3} single-crystal substrates by ultra high vacuum rf magnetron sputtering. The film growth and the detailed film structures were investigated by refection high energy electron diffraction and pole figure X-ray diffraction. bcc-Py films epitaxially grow on the substrates in the orientation relationship of Py(011)[011-bar]{sub bcc} || GaAs(011)[011-bar]{sub B3}. The lattice constant of bcc-Py film is determined to be a = 0.291 nm. With increasing the film thickness, parts of the bcc crystal transform into more stable fcc structure by atomic displacement parallel to the bcc{l_brace}011{r_brace} close-packed planes. The resulting film thus consists of a mixture of bcc and fcc crystals. The phase transformation mechanism is discussed based on the experimental results. The in-plane magnetization properties reflecting the magnetocrystalline anisotropy of bcc-Py crystal are observed for the Py films grown on GaAs(011){sub B3} substrates.

  16. Preparation of metastable bcc permalloy epitaxial thin films on GaAs(011)B3 single-crystal substrates

    International Nuclear Information System (INIS)

    Permalloy (Py) single-crystal films with bcc structure were obtained on GaAs(011)B3 single-crystal substrates by ultra high vacuum rf magnetron sputtering. The film growth and the detailed film structures were investigated by refection high energy electron diffraction and pole figure X-ray diffraction. bcc-Py films epitaxially grow on the substrates in the orientation relationship of Py(011)[011-bar]bcc || GaAs(011)[011-bar]B3. The lattice constant of bcc-Py film is determined to be a = 0.291 nm. With increasing the film thickness, parts of the bcc crystal transform into more stable fcc structure by atomic displacement parallel to the bcc{011} close-packed planes. The resulting film thus consists of a mixture of bcc and fcc crystals. The phase transformation mechanism is discussed based on the experimental results. The in-plane magnetization properties reflecting the magnetocrystalline anisotropy of bcc-Py crystal are observed for the Py films grown on GaAs(011)B3 substrates.

  17. Investigation on the structural and magnetic properties of sputtered TbFe2/Fe3Ga heterostructures

    OpenAIRE

    Ranchal Sánchez, Rocío; González-Martín, V.

    2011-01-01

    We have analyzed the structural and magnetic properties of as-grown and annealed [TbFe2/Fe3Ga]n heterostructures grown by sputtering. Evidence of the bcc structure in the Fe3Ga layers has been found. The diffraction peak related to this structure shifts to high angles with the annealing temperature. Also, we have observed a change in the microstructure of the Tb-Fe layers when the thickness layer is reduced in the as-grown heterostructures. Moreover, the Tb content is lower than 33% of the Tb...

  18. Atomistic tensile deformation mechanisms of Fe with gradient nano-grained structure

    Directory of Open Access Journals (Sweden)

    Wenbin Li

    2015-08-01

    Full Text Available Large-scale molecular dynamics (MD simulations have been performed to investigate the tensile properties and the related atomistic deformation mechanisms of the gradient nano-grained (GNG structure of bcc Fe (gradient grains with d from 25 nm to 105 nm, and comparisons were made with the uniform nano-grained (NG structure of bcc Fe (grains with d = 25 nm. The grain size gradient in the nano-scale converts the applied uniaxial stress to multi-axial stresses and promotes the dislocation behaviors in the GNG structure, which results in extra hardening and flow strength. Thus, the GNG structure shows slightly higher flow stress at the early plastic deformation stage when compared to the uniform NG structure (even with smaller grain size. In the GNG structure, the dominant deformation mechanisms are closely related to the grain sizes. For grains with d = 25 nm, the deformation mechanisms are dominated by GB migration, grain rotation and grain coalescence although a few dislocations are observed. For grains with d = 54 nm, dislocation nucleation, propagation and formation of dislocation wall near GBs are observed. Moreover, formation of dislocation wall and dislocation pile-up near GBs are observed for grains with d = 105 nm, which is the first observation by MD simulations to our best knowledge. The strain compatibility among different layers with various grain sizes in the GNG structure should promote the dislocation behaviors and the flow stress of the whole structure, and the present results should provide insights to design the microstructures for developing strong-and-ductile metals.

  19. Atomistic tensile deformation mechanisms of Fe with gradient nano-grained structure

    International Nuclear Information System (INIS)

    Large-scale molecular dynamics (MD) simulations have been performed to investigate the tensile properties and the related atomistic deformation mechanisms of the gradient nano-grained (GNG) structure of bcc Fe (gradient grains with d from 25 nm to 105 nm), and comparisons were made with the uniform nano-grained (NG) structure of bcc Fe (grains with d = 25 nm). The grain size gradient in the nano-scale converts the applied uniaxial stress to multi-axial stresses and promotes the dislocation behaviors in the GNG structure, which results in extra hardening and flow strength. Thus, the GNG structure shows slightly higher flow stress at the early plastic deformation stage when compared to the uniform NG structure (even with smaller grain size). In the GNG structure, the dominant deformation mechanisms are closely related to the grain sizes. For grains with d = 25 nm, the deformation mechanisms are dominated by GB migration, grain rotation and grain coalescence although a few dislocations are observed. For grains with d = 54 nm, dislocation nucleation, propagation and formation of dislocation wall near GBs are observed. Moreover, formation of dislocation wall and dislocation pile-up near GBs are observed for grains with d = 105 nm, which is the first observation by MD simulations to our best knowledge. The strain compatibility among different layers with various grain sizes in the GNG structure should promote the dislocation behaviors and the flow stress of the whole structure, and the present results should provide insights to design the microstructures for developing strong-and-ductile metals

  20. Ferromagnetism of Fe86Mn14-yCuy alloys

    International Nuclear Information System (INIS)

    The magnetic properties of disordered Fe86Mn14-yCuy alloys were investigated with several experimental techniques. The results of X-ray diffraction showed that these alloys are single phase with the A2 (BCC) structure. These are ferromagnetic alloys at room temperature, and the Curie temperature decreases with the increase of the Cu content. An abrupt loss of magnetization was observed below TC at a temperature which increases with the reduction of the Mn content in the alloys. The addition of manganese enhances the solubility of copper in iron matrix and retains the BCC structure in iron-rich alloys. The behavior of the magnetization with temperature and its composition dependence indicate that an antiferromagnetic coupling is expected between the Fe and Mn atoms. The magnetic moments of both Fe and Mn atoms are expected to vary strongly with composition in these alloys

  1. Photocatalytic degradation of gaseous toluene over bcc-In2O3 hollow microspheres

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The bcc-In2O3 hollow microspheres were synthesized as photocatalyst. • Structural and photocatalytic properties of samples are tested. • Degradation of gaseous toluene over the bcc-In2O3 hollow microspheres. - Abstract: In this work, the body-centered cubic indium oxide (bcc-In2O3) hollow microspheres were prepared via a P123-assisted solvothermal process. The structural properties of samples were investigated by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, UV–visible diffusive reflectance spectroscopy, and nitrogen adsorption-desorption isotherms. The photocatalytic effects of degrading gaseous toluene were evaluated by gas chromatography and in situ Fourier transform infrared (FTIR) spectra under a irradiation of a 500 W high pressure xenon lamp. The results indicated that the as-prepared bcc-In2O3 hollow microspheres exhibited a high degradation efficiency towards toluene within a short reaction time. Besides, the preliminary mechanism therein was inferred with the aid of in situ FTIR and electron spin-paramagnetic resonance techniques to understand the degradation process

  2. In situ TEM straining of bcc twins – unexpected modes of slip transfer

    Czech Academy of Sciences Publication Activity Database

    Gemperle, Antonín; Gemperlová, Juliana; Zárubová, Niva; Dlabáček, Zdeněk

    Villigen : Paul Scherrer Institute, 2005, s. 298-298. ISBN N. ISSN 1019-6447. [Dreiländertagung Microscopy Conference (MC 2005). Davos (CH), 28.08.2005-02.09.2005] Institutional research plan: CEZ:AV0Z10100520 Keywords : in situ TEM experiments * slip transfer * twins in bcc Subject RIV: BM - Solid Matter Physics ; Magnetism

  3. Microbiological assessment of Burkholderia cepacia complex (Bcc isolates in Alexandria Main University Hospital

    Directory of Open Access Journals (Sweden)

    Nancy Omar

    2015-03-01

    Minimal Inhibitory Concentration (MIC determining tests showed that only 11.5% were resistant to meropenem at MIC > 16 μg/ml, while 40% of the strains were resistant to ceftazidime at MIC > 32 μg/ml. Those results for the time being indicate that meropenem is the best therapeutic option for Bcc infections in AMUH.

  4. Positron studies of interaction between yttrium atoms and vacancies in bcc iron with relevance for ODS nanoparticles formation

    Energy Technology Data Exchange (ETDEWEB)

    He, C.W., E-mail: chenwei.he@cnrs-orleans.fr [CNRS, CEMHTI UPR3079, Univ. Orléans, F-45071 Orléans (France); Barthe, M.F.; Desgardin, P. [CNRS, CEMHTI UPR3079, Univ. Orléans, F-45071 Orléans (France); Akhmadaliev, S. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, BautznerLandstr. 400, D-01328 Dresden (Germany); Behar, M. [Instituto de Fisica, Av. Bento Gonçalves 9500, Agronomia, Porto Alegre (Brazil); Jomard, F. [GEMac, Univ. Versailles, 45 avenue des Etats Unis, 78035 Versailles cedex (France)

    2014-12-15

    The very high calculated binding energy of vacancy (V)–Y{sub sub} (1.45 eV) in Fe makes it be one possible earliest formation stage of (Y, Ti, O) nanoclusters in ODS alloy. Our direct slow positrons annihilation observations are used to valid the interaction between V and Y. The pure bcc iron samples have been implanted by 1.2 MeV Y ions at three fluences from 1 × 10{sup 14} to 3 × 10{sup 15} cm{sup −2}. Vacancy clusters are observed for all these three fluences. Their size and concentration decrease with Y concentration measured by using SIMS. Two hypotheses are proposed to explain the results, including the formation of complexes V{sub m}–Y{sub n} and/or of precipitates Y{sub m}–X{sub n} (X = Y, O, etc.). In addition, vacancy clusters are detected deeper than predicted by SRIM calculation due to, at least for a part, channelling which is confirmed by Marlowe calculation and SIMS measurements.

  5. Study of the unusual increase in the Curie temperature of the residual amorphous phase in nanocrystalline Fe90Zr7B2Cu1

    International Nuclear Information System (INIS)

    Nanocrystalline Fe90Zr7B2Cu1 with ferromagnetic BCC nanocrystals of about 10-20 nm size embedded in a residual amorphous matrix was produced from amorphous precursor by partial crystallization. A significant increase in the Curie temperature of the residual amorphous phase (TC) as compared to that of the amorphous precursor was found by combined bulk magnetic and Moessbauer measurements. The unusual increase of TC for alloys with different nanocrystalline fractions correlates with the quantity of the BCC phase

  6. Thermodynamic assessment of the Fe-Hf binary system

    International Nuclear Information System (INIS)

    The Fe-Hf system was critically assessed by means of the Calphad approach. The solution phases (liquid, BCC, FCC and HCP) were described with the sublattice formalism and the excess model with the Redlich-Kister equation by imposing additional constraints to avoid the appearance of unwanted inverted miscibility gap in the liquid phase during the phase diagram calculation up to 6000 K. The λ sub-stoichiometric intermetallic compound, which melts congruently and has an homogeneity range, was treated as the usual C14 Laves phases, with the formula (Fe)0.6667(Hf,Fe)0.3333, by a two-sublattice model with Fe alone in the first sublattice and Fe and Hf in the second one. The others polytypes Fe2HfHT, Fe2HfLT as well as FeHf2 were treated as stoichiometric compounds. The calculated phase diagram and thermodynamic properties are in good agreement with the experimental data

  7. The effect of prolonged irradiation on defect production and ordering in Fe-Cr and Fe-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Voertler, K; Juslin, N; Nordlund, K [Association EURATOM-Tekes, Department of Physics, University of Helsinki, PO Box 43, FIN-00014 (Finland); Bonny, G; Malerba, L, E-mail: katharina.vortler@helsinki.fi [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium)

    2011-09-07

    The understanding of the primary radiation damage in Fe-based alloys is of interest for the use of advanced steels in future fusion and fission reactors. In this work Fe-Cr alloys (with 5, 6.25, 10 and 15% Cr content) and Fe-Ni alloys (with 10, 40, 50 and 75% Ni content) were used as model materials for studying the features of steels from a radiation damage perspective. The effect of prolonged irradiation (neglecting diffusion), i.e. the overlapping of single 5 keV displacement cascade events, was studied by molecular dynamics simulation. Up to 200 single cascades were simulated, randomly induced in sequence in one simulation cell, to study the difference between fcc and bcc lattices, as well as initially ordered and random crystals. With increasing numbers of cascades we observed a saturation of Frenkel pairs in the bcc alloys. In fcc Fe-Ni, in contrast, we saw a continuous accumulation of defects: the growth of stacking-fault tetrahedra and a larger number of self-interstitial atom clusters were seen in contrast to bcc alloys. For all simulations the defect clusters and the short range order parameter were analysed in detail depending on the number of cascades in the crystal. We also report the modification of the repulsive part of the Fe-Ni interaction potential, which was needed to study the non-equilibrium processes. (paper)

  8. Dislocation core reconstruction induced by carbon segregation in bcc iron

    Science.gov (United States)

    Ventelon, Lisa; Lüthi, B.; Clouet, E.; Proville, L.; Legrand, B.; Rodney, D.; Willaime, F.

    2015-06-01

    The relative stability of dislocation core configurations in body-centered-cubic metals is profoundly modified by the presence of solutes. Considering the Fe(C) system, we demonstrate by using density functional theory that carbon atoms destabilize the usual easy core to the benefit of the hard core configuration of the screw dislocation, which is unstable in pure metals. The carbon atom is at the center of a regular prism in a cementitelike local environment. The same dislocation core reconstruction is also found with other solutes (B, N, O) and in W(C). This unexpected low-energy configuration induces a strong solute-dislocation attraction, leading to dislocation core saturation by solute atoms, even for very low bulk solute concentrations. This core reconstruction will constitute an essential factor to account for in solute-segregation related phenomena, such as strain aging.

  9. Heat treatment influence on the structural and magnetic properties of the intermetallic Fe56.25Al43.75 alloy prepared by mechanical alloying and arc-melted

    International Nuclear Information System (INIS)

    Alloys of the Fe56.25Al43.75 system were prepared by mechanical alloying (MA) using a high energy planetary ball mill, with milling times in the range from 12 up to 96 h named MA0 samples. The sample milled for 48 hours was heat treated at 700 °C for 9 days. Then this sample was milled for times of 1, 4, 8, 12, 24, and 48 h, named MA1 samples. Additionally, and for comparison, it was prepared a Fe56.25Al43.75 sample by arc-melting method. For all samples, the structural and magnetic study was conducted by X-rays diffraction (XRD) and Mössbauer spectrometry (MS). The XRD results show that the system is nanostructured and the MA0 samples present only the BCC disordered phase, whose lattice parameter remains relatively constant with milling time. For MA1 samples it was identify the FeAl, Fe3Al, FeO and α-Fe phases. The Mössbauer spectra for all samples were fitted by using a hyperfine magnetic field distribution (HMFD), and a paramagnetic site for all the times used here. The ferromagnetism increases when milling time increases, and this is a consequence of the structural disorder induced by mechanical alloying

  10. Heat treatment influence on the structural and magnetic properties of the intermetallic Fe56.25Al43.75 alloy prepared by mechanical alloying and arc-melted

    Science.gov (United States)

    Trujillo Hernández, J. S.; Tabares, J. A.; Pérez Alcázar, G. A.

    2014-04-01

    Alloys of the Fe56.25Al43.75 system were prepared by mechanical alloying (MA) using a high energy planetary ball mill, with milling times in the range from 12 up to 96 h named MA0 samples. The sample milled for 48 hours was heat treated at 700 °C for 9 days. Then this sample was milled for times of 1, 4, 8, 12, 24, and 48 h, named MA1 samples. Additionally, and for comparison, it was prepared a Fe56.25Al43.75 sample by arc-melting method. For all samples, the structural and magnetic study was conducted by X-rays diffraction (XRD) and Mössbauer spectrometry (MS). The XRD results show that the system is nanostructured and the MA0 samples present only the BCC disordered phase, whose lattice parameter remains relatively constant with milling time. For MA1 samples it was identify the FeAl, Fe3Al, FeO and α-Fe phases. The Mössbauer spectra for all samples were fitted by using a hyperfine magnetic field distribution (HMFD), and a paramagnetic site for all the times used here. The ferromagnetism increases when milling time increases, and this is a consequence of the structural disorder induced by mechanical alloying.

  11. BCc1, the novel antineoplastic nanocomplex, showed potent anticancer effects in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Kalanaky S

    2015-12-01

    Full Text Available Somayeh Kalanaky,1,2 Maryam Hafizi,1–3 Saideh Fakharzadeh,1 Mohammad Vasei,4 Ladan Langroudi,5 Ehsan Janzamin,6 Seyed Mahmoud Hashemi,7 Maryam Khayamzadeh,2 Masoud Soleimani,6 Mohammad Esmaeil Akbari,2 Mohammad Hassan Nazaran1 1Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran; 2Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 3Stem Cell Technology Research Center, Tehran, Iran; 4Department of Pathology, Tehran University of Medical Sciences, Tehran, Iran; 5Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; 6Department of Haematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; 7Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran Purpose: In spite of all the efforts and researches on anticancer therapeutics, an absolute treatment is still a myth. Therefore, it is necessary to utilize novel technologies in order to synthesize smart multifunctional structures. In this study, for the first time, we have evaluated the anticancer effects of BCc1 nanocomplex by vitro and in vivo studies, which is designed based on the novel nanochelating technology.Methods: Human breast adenocarcinoma cell line (MCF-7 and mouse embryonic fibroblasts were used for the in vitro study. Antioxidant potential, cell toxicity, apoptosis induction, and CD44 and CD24 protein expression were evaluated after treatment of cells with different concentrations of BCc1 nanocomplex. For the in vivo study, mammary tumor-bearing female Balb/c mice were treated with different doses of BCc1 and their effects on tumor growth rate and survival were evaluated.Results: BCc1 decreased CD44 protein expression and increased CD24 protein expression. It induced MCF-7 cell apoptosis but at the same concentrations did not have negative effects on mouse embryonic fibroblasts viability and protected

  12. Interaction between dislocations in bcc iron at high temperature

    International Nuclear Information System (INIS)

    When a crystal deforms plastically, sources within, such as the Frank-Read source, emit dislocations, which then glide in response to the applied stress. As the dislocations move away from the source, they may encounter an obstacle, for example a grain boundary, impurity atom or locked dislocation, which they cannot overcome. As more dislocations are emitted, they 'pile up' near the obstacle, until their own stress fields acting back on the source prevent more dislocations from being produced, unless the external applied stress is increased. The properties of these pile-ups strongly influence the deformation of the crystal as a whole giving rise to the Hall-Petch effect [E. Hall, Proc. Phys. Soc. B 64 (1951) 747-753, N. Petch, J. Iron and Steel Institute 173 (1953) 25-28.] relating yield strength to grain size. In this paper we investigate how the observed strong variation of elastic constants as functions of temperature affects the strength of interactions between dislocations, and mechanisms of plastic deformation of iron at elevated temperatures. We find that the observed severe softening of the tetragonal shear modulus C' at high temperature gives rise to a drastic reduction in the repulsion between parallel like edge dislocations, and hence to a greatly increased number of dislocations in pile-ups, especially those in the (0 0 1) configuration. The associated increase in plastic strain will lead in turn to a conspicuous reduction in tensile strength as C' falls. The phenomenon is inherently anisotropic, and this work underlines the importance of including anisotropic elastic effects when modelling Fe at high temperatures.

  13. Electronic correlations in Fe at Earth's inner core conditions: Effects of alloying with Ni

    Science.gov (United States)

    Vekilova, O. Yu.; Pourovskii, L. V.; Abrikosov, I. A.; Simak, S. I.

    2015-06-01

    We have studied the body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal close-packed (hcp) phases of Fe alloyed with 25 at.% of Ni at Earth's core conditions using an ab initio local density approximation + dynamical mean-field theory approach. The alloys have been modeled by ordered crystal structures based on the bcc, fcc, and hcp unit cells with the minimum possible cell size allowing for the proper composition. Our calculations demonstrate that the strength of electronic correlations on the Fe 3 d shell is highly sensitive to the phase and local environment. In the bcc phase, the 3 d electrons at the Fe site with Fe only nearest neighbors remain rather strongly correlated, even at extreme pressure-temperature conditions, with the local and uniform magnetic susceptibility exhibiting a Curie-Weiss-like temperature evolution and the quasiparticle lifetime Γ featuring a non-Fermi-liquid temperature dependence. In contrast, for the corresponding Fe site in the hcp phase, we predict a weakly correlated Fermi-liquid state with a temperature-independent local susceptibility and a quadratic temperature dependence of Γ. The iron sites with nickel atoms in the local environment exhibit behavior in the range between those two extreme cases, with the strength of correlations gradually increasing along the hcp-fcc-bcc sequence. Further, the intersite magnetic interactions in the bcc and hcp phases are also strongly affected by the presence of Ni nearest neighbors. The sensitivity to the local environment is related to modifications of the Fe partial density of states due to mixing with Ni 3 d states.

  14. Structure and magnetism of bulk Fe and Cr: from plane waves to LCAO methods

    International Nuclear Information System (INIS)

    Magnetic, structural and energetic properties of bulk Fe and Cr were studied using first-principles calculations within density functional theory (DFT). We aimed to identify the dependence of these properties on key approximations of DFT, namely the exchange-correlation functional, the pseudopotential and the basis set. We found a smaller effect of pseudopotentials (PPs) on Fe than on Cr. For instance, the local magnetism of Cr was shown to be particularly sensitive to the potentials representing the core electrons, i.e. projector augmented wave and Vanderbilt ultrasoft PPs predict similar results, whereas standard norm-conserving PPs tend to overestimate the local magnetic moments of Cr in bcc Cr and in dilute bcc FeCr alloys. This drawback is suggested to be closely correlated to the overestimation of Cr solution energy in the latter system. On the other hand, we point out that DFT methods with very reduced localized basis sets (LCAO: linear combination of atomic orbitals) give satisfactory results compared with more robust plane-wave approaches. A minimal-basis representation of '3d' electrons comes to be sufficient to describe non-trivial magnetic phases including spin spirals in both fcc Fe and bcc Cr, as well as the experimental magnetic ground state of bcc Cr showing a spin density wave (SDW) state. In addition, a magnetic 'spd' tight binding model within the Stoner formalism was proposed and validated for Fe and Cr. The respective Stoner parameters were obtained by fitting to DFT data. This efficient semiempirical approach was shown to be accurate enough for studying various collinear and non-collinear phases of bulk Fe and Cr. It also enabled a detailed investigation of different polarization states of SDW in bcc Cr, where the longitudinal state was suggested to be the ground state, consistent with existing experimental data.

  15. Structure and magnetism of bulk Fe and Cr: from plane waves to LCAO methods.

    Science.gov (United States)

    Soulairol, R; Fu, Chu-Chun; Barreteau, C

    2010-07-28

    Magnetic, structural and energetic properties of bulk Fe and Cr were studied using first-principles calculations within density functional theory (DFT). We aimed to identify the dependence of these properties on key approximations of DFT, namely the exchange-correlation functional, the pseudopotential and the basis set. We found a smaller effect of pseudopotentials (PPs) on Fe than on Cr. For instance, the local magnetism of Cr was shown to be particularly sensitive to the potentials representing the core electrons, i.e. projector augmented wave and Vanderbilt ultrasoft PPs predict similar results, whereas standard norm-conserving PPs tend to overestimate the local magnetic moments of Cr in bcc Cr and in dilute bcc FeCr alloys. This drawback is suggested to be closely correlated to the overestimation of Cr solution energy in the latter system. On the other hand, we point out that DFT methods with very reduced localized basis sets (LCAO: linear combination of atomic orbitals) give satisfactory results compared with more robust plane-wave approaches. A minimal-basis representation of '3d' electrons comes to be sufficient to describe non-trivial magnetic phases including spin spirals in both fcc Fe and bcc Cr, as well as the experimental magnetic ground state of bcc Cr showing a spin density wave (SDW) state. In addition, a magnetic 'spd' tight binding model within the Stoner formalism was proposed and validated for Fe and Cr. The respective Stoner parameters were obtained by fitting to DFT data. This efficient semiempirical approach was shown to be accurate enough for studying various collinear and non-collinear phases of bulk Fe and Cr. It also enabled a detailed investigation of different polarization states of SDW in bcc Cr, where the longitudinal state was suggested to be the ground state, consistent with existing experimental data. PMID:21399309

  16. Structure and magnetism of bulk Fe and Cr: from plane waves to LCAO methods

    Energy Technology Data Exchange (ETDEWEB)

    Soulairol, R; Fu, Chu-Chun [CEA, DEN, Service de Recherches de Metallurgie Physique, F-91191 Gif-sur-Yvette (France); Barreteau, C, E-mail: chuchun.fu@cea.f [CEA Saclay, DSM/DRECAM/SPCSI, Batiment 462, F-91191 Gif-sur-Yvette (France)

    2010-07-28

    Magnetic, structural and energetic properties of bulk Fe and Cr were studied using first-principles calculations within density functional theory (DFT). We aimed to identify the dependence of these properties on key approximations of DFT, namely the exchange-correlation functional, the pseudopotential and the basis set. We found a smaller effect of pseudopotentials (PPs) on Fe than on Cr. For instance, the local magnetism of Cr was shown to be particularly sensitive to the potentials representing the core electrons, i.e. projector augmented wave and Vanderbilt ultrasoft PPs predict similar results, whereas standard norm-conserving PPs tend to overestimate the local magnetic moments of Cr in bcc Cr and in dilute bcc FeCr alloys. This drawback is suggested to be closely correlated to the overestimation of Cr solution energy in the latter system. On the other hand, we point out that DFT methods with very reduced localized basis sets (LCAO: linear combination of atomic orbitals) give satisfactory results compared with more robust plane-wave approaches. A minimal-basis representation of '3d' electrons comes to be sufficient to describe non-trivial magnetic phases including spin spirals in both fcc Fe and bcc Cr, as well as the experimental magnetic ground state of bcc Cr showing a spin density wave (SDW) state. In addition, a magnetic 'spd' tight binding model within the Stoner formalism was proposed and validated for Fe and Cr. The respective Stoner parameters were obtained by fitting to DFT data. This efficient semiempirical approach was shown to be accurate enough for studying various collinear and non-collinear phases of bulk Fe and Cr. It also enabled a detailed investigation of different polarization states of SDW in bcc Cr, where the longitudinal state was suggested to be the ground state, consistent with existing experimental data.

  17. Formation of ball-milled Fe-Mo nanostructured powders

    Energy Technology Data Exchange (ETDEWEB)

    Moumeni, H. [Laboratoire de Magnetisme et de Spectroscopie des Solides, LM2S, Departement de Physique, Faculte des Sciences, Universite de Annaba, B.P. 12, 23000 Annaba-Algerie (Algeria) and Departement de Physique, Faculte des Sciences et de l' Ingenierie, Universite de Guelma, B.P. 401, 24000 Guelma-Algerie (Algeria)]. E-mail: hmoumeni@yahoo.fr; Alleg, S. [Laboratoire de Magnetisme et de Spectroscopie des Solides, LM2S, Departement de Physique, Faculte des Sciences, Universite de Annaba, B.P. 12, 23000 Annaba-Algerie (Algeria); Greneche, J.M. [Laboratoire de Physique de l' Etat Condense, UMR CNRS 6087, Universite du Maine, Faculte des Sciences, F-72085, Le Mans Cedex 9 (France)

    2006-08-10

    Nanostructured Fe-6 wt.%Mo powders were prepared by mechanical alloying in a high-energy planetary ball-mill. The structural changes and the kinetics of Mo dissolution were studied by using X-ray diffraction. The crystallite size reduction down to about 11 nm is accompanied by the introduction of internal strains up to 1.1% (root-mean square strain, rms). After 24 h of milling, a bcc Fe(Mo) solid solution is formed. The kinetics of Mo dissolution into the Fe matrix during the milling process can be described by two regimes characterized by small values of Avrami parameter which do not exceed unit.

  18. Direct comparison of the performance of a bio-inspired synthetic nickel catalyst and a [NiFe]-hydrogenase, both covalently attached to electrodes.

    Science.gov (United States)

    Rodriguez-Maciá, Patricia; Dutta, Arnab; Lubitz, Wolfgang; Shaw, Wendy J; Rüdiger, Olaf

    2015-10-12

    The active site of hydrogenases has been a source of inspiration for the development of molecular catalysts. However, direct comparisons between molecular catalysts and enzymes have not been possible because different techniques are used to evaluate both types of catalysts, minimizing our ability to determine how far we have come in mimicking the enzymatic performance. The catalytic properties of the [Ni(P(Cy) 2 N(Gly) 2 )2 ](2+) complex with the [NiFe]-hydrogenase from Desulfovibrio vulgaris immobilized on a functionalized electrode were compared under identical conditions. At pH 7, the enzyme shows higher activity and lower overpotential with better stability, while at low pH, the molecular catalyst outperforms the enzyme in all respects. This is the first direct comparison of enzymes and molecular complexes, enabling a unique understanding of the benefits and detriments of both systems, and advancing our understanding of the utilization of these bio-inspired complexes in fuel cells. PMID:26140506

  19. Extended Finnis-Sinclair potential for bcc and fcc metals and alloys

    International Nuclear Information System (INIS)

    We propose an extended Finnis-Sinclair (FS) potential by extending the repulsive term into a sextic polynomial for enhancing the repulsive interaction and adding a quartic term to describe the electronic density function. It turns out that for bcc metals the proposed potential not only overcomes the 'soft' behaviour of the original FS potential, but also performs better than the modified FS one by Ackland et al, and that for fcc metals the proposed potential is able to reproduce the lattice constants, cohesive energies, elastic constant, vacancy formation energies, equations of state, pressure-volume relationships, melting points and melting heats. Moreover, for some fcc-bcc systems, e.g. the Ag-refractory metal systems, the lattice constants, cohesive energies and elastic constants of some alloys are reproduced by the proposed potential and are quite compatible with those directly determined by ab initio calculations

  20. Analytic bond-order potentials for the bcc refractory metals Nb, Ta, Mo and W

    International Nuclear Information System (INIS)

    Bond-order potentials (BOPs) are based on the tight-binding approximation for determining the energy of a system of interacting atoms. The bond energy and forces are computed analytically within the formalism of the analytic BOPs. Here we present parametrizations of the analytic BOPs for the bcc refractory metals Nb, Ta, Mo and W. The parametrizations are optimized for the equilibrium bcc structure and tested for atomic environments far from equilibrium that had not been included in the fitting procedure. These tests include structural energy differences for competing crystal structures; tetragonal, trigonal, hexagonal and orthorhombic deformation paths; formation energies of point defects as well as phonon dispersion relations. Our tests show good agreement with available experimental and theoretical data. In practice, we obtain the energetic ordering of vacancy, [1 1 1], [1 1 0], and [1 0 0] self-interstitial atom in agreement with density functional theory calculations. (paper)

  1. Monte Carlo simulation of atomic aggregates formation in model bcc binary alloys. Preliminary report

    International Nuclear Information System (INIS)

    By means of the Monte Carlo simulation an atomistic description of the structure of model bcc binary alloys was made. We used ABV model of the alloy where the approach of pair interaction to first neighbours with constant ordering energy is assumed. The dynamics was introduced by means of a vacancy that interchanges of place with nearest neighbouring atoms. The simulations were made in a bcc lattice with 128, 1024, 8192 and 16000 sites, applying periodic boundary conditions to avoid edge effects. We calculate the formation probabilities of different atomic aggregate A9-m Bm (m = 0, 1, 2,... 9) as function of concentration of the components and the temperature. In some regions of temperature and concentration, compositional and thermal polymorphism of aggregates is observed. (author)

  2. First-principles calculation on Peierls stress of a screw dislocation in BCC molybdenum

    International Nuclear Information System (INIS)

    Predicting atomistic properties of a dislocation is a first step toward an understanding of plastic behavior of materials, in particular BCC metals. The core structure and Peierls stress of a screw dislocation in BCC molybdenum have been studied over the years using the first-principles and empirical methods, however, their conclusions vary due to the inefficiency of the methods. We have executed the first-principles calculation based on the density functional method, employing the most accurate 1 × 1 × 20 k-point samplings, to determine Peierls stress of the a0/2[111] screw dislocation of molybdenum. We have determined the value of 1.8 GPa for the simple shear stress along (-110)<111>. (author)

  3. Multi-scale modeling of the iron bcc arrow hcp martensitic phase transformation

    Science.gov (United States)

    Caspersen, Kyle; Carter, Emily; Lew, Adrian; Ortiz, Michael

    2004-03-01

    Pressures exceeding 10 GPa induce a martensitic phase transformation in iron, where ferro-magnetic bcc transforms into non-magnetic hcp. The transition pressure is not known precisely, but is thought to depend strongly on shear. To investigate the properties of this transformation and the role of shear, we have developed a multi-scale iron model. This model contains a free energy derived from an ab-initio based non-linear elastic expansion, a kinematically compatible spinodal decomposition of phases, ab-initio based interfacial energies, and a dependence on the bcc rightarrow hcp transformation path(s). The model shows spinodal decomposition behavior (with a slight expected deviation) as well as predicting 10 GPa to be the transformation pressure. Additionally, the model predicted that the inclusion of shear facilitates the transformation, causing transformation pressure to decrease.

  4. Boundary Conditions for Dislocation Dynamics Simulations and Stage 0 of BCC Metals at Low Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tang, M; Kubin, L P

    2001-05-01

    In order to study the dislocation density evolution of body centered cubic (bcc) crystals at low temperature by dislocation dynamics (DD) simulations, we investigated carefully three different boundary conditions (BC) for DD, i.e., the quasi-free surface BC, the flux-balanced BC, and the periodic BC. The latter two BCs can account for the dislocation loss from the boundary of the finite simulation box. PBC can also eliminate the influence of surfaces and improve the line connectivity. We have found that the PBC provides a convenient and effective boundary condition for DD simulations and have applied it to the study of dislocation density evolution of bcc metals during stage 0 deformation at low temperature.

  5. A molecular dynamics study of grain boundary free energies, migration mechanisms and mobilities in a bcc Fe–20Cr alloy

    International Nuclear Information System (INIS)

    Curvature driven migration of a series of 〈1 1 0〉 tilt grain boundaries in a bcc Fe–20Cr alloy is simulated using molecular dynamics to investigate the relationship between the atomic migration mechanism and mobility at medium to high temperatures. The boundaries studied include low angle boundaries (LAGB), high angle boundaries (HAGB) and singular boundaries, such as coherent twins. The steady-state boundary shape and curvature are compared with a simple analytical model which incorporates the dependence of absolute mobility and free energy on boundary inclination. The comparison indicates that the 109.5° (11¯2) Σ3 coherent twin boundary will have relatively low energy but high mobility. This result is attributed to a particularly effective repeated shuffle mechanism which occurs on the twinning plane. Two other migration mechanisms are observed, one involving the motion of 〈1 1 1〉 glissile dislocations in LAGB and the other involving uncorrelated atomic shuffles in HAGB, sometimes associated with interfacial steps.

  6. Comparison of the Oxidation Behaviors of High FeO Chromite and Magnetite Concentrates Relevant to the Induration of Ferrous Pellets

    Science.gov (United States)

    Zhu, Deqing; Yang, Congcong; Pan, Jian; Li, Xiaobo

    2016-08-01

    Oxidation process plays an important role in producing sufficiently strong ferrous pellets for blast furnace, and the oxidation behavior of pellet feed greatly affects the quality of pellets. As a supplementary research to earlier published work, the present study fixes its particular attention on the fundamental oxidation behavior of a high FeO South African chromite concentrate in comparison to that of typical magnetite concentrate using differential scanning calorimetry, X-ray diffraction analysis, and thermogravimetry at various temperatures ranging from 473 K to 1273 K (200 °C to 1000 °C). The reaction mechanism and phase transformation during the oxidation process of chromite spinel is further explained by thermodynamics calculation performed by FactSage software. Besides, routine laboratory preheating-roasting test of single ore pellets is also conducted to reveal the relevance of oxidizability to the consolidation of pellets. The results show that the chromite spinel possesses much poorer oxidizability than magnetite, usually accompanying complex phase transformations via a preferential nucleation of Fe-rich sesquioxide from the chromite spinel matrix at low temperatures and thereafter the formation of Cr-rich sesquioxide on the substrate of Fe-rich phase at high temperatures. The oxidation of chromite spinel is inferior to that of magnetite from the viewpoint of thermodynamics and dynamic kinetics. Good inherent oxidizability of raw materials is found to have a positive effect on the induration process of pellet.

  7. Critical currents in A-15 structure Nb3Al converted from cold-worked bcc structure

    International Nuclear Information System (INIS)

    Nb3Al prepared in the ductile bcc phase by quenching, followed by mechanical working, followed by conversion to the A-15 structure is found to carry currents above 109 A/m2 in fields near 20 T. These critical currents are comparable to those found in Nb3Ge and V3Ga, the closest competing materials for use in high fields. Further enhancement of J/sub c/ is possible if thermal treatments are optimized

  8. Stress dependence of the Peierls barrier of 1/2111 screw dislocations in BCC metals

    Czech Academy of Sciences Publication Activity Database

    Gröger, Roman; Vitek, V.

    2013-01-01

    Roč. 61, č. 17 (2013), s. 6362-6371. ISSN 1359-6454 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR GAP204/10/0255 Institutional support: RVO:68081723 Keywords : Screw dislocation * Peierls barrier * Nudged elastic band * BCC metals * Peierls stress Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.940, year: 2013

  9. Which stresses affect the glide of screw dislocations in bcc metals?

    Czech Academy of Sciences Publication Activity Database

    Gröger, Roman

    2014-01-01

    Roč. 94, č. 18 (2014), s. 2021-2030. ISSN 1478-6435 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Grant ostatní: Marie Curie Actions(CZ) 247705 MesoPhysDel Institutional support: RVO:68081723 Keywords : Peierls stress * screw dislocation * bcc metal * non-glide stress * yield criterion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.825, year: 2014

  10. Lattice dynamics and thermodynamics of bcc iron at pressure: first-principles linear response study

    OpenAIRE

    Sha, Xianwei; Cohen, R. E.

    2005-01-01

    We compute the lattice-dynamical and thermal equation of state properties of ferromagnetic bcc iron using the first principles linear response linear-muffin-tin-orbital method in the generalized-gradient approximation. The calculated phonon dispersion and phonon density of states, both at ambient and high pressures, show good agreement with inelastic neutron scattering data. We find the free energy as a function of volume and temperature, including both electronic excitations and phonon contr...

  11. THE CHANGES OF BARRIER ENERGY IN FCC→BCC PHASE TRANSFORMATION BY SHEAR STRESSES

    OpenAIRE

    Kazanç, Sefa; ÖZGEN, Soner

    2010-01-01

    ABSTRACT The Lattice energy of a cubic nickel crystal has been calculated by using the embedded atom method. The embedding energy has been determined by means of quantum mechanical approximations. The lattice energy changes of the static structure including 864 atoms with Bain  and shear stresses have been obtained. The energies of the fcc and bcc phases caused by Bain stress have been compared. The variation of the barrier energy required for the transition between these structures has ...

  12. Crack-induced stress, dislocations and acoustic emission by 3-D atomistic simulation in bcc iron

    Czech Academy of Sciences Publication Activity Database

    Spielmannová, Alena; Machová, Anna; Hora, Petr

    2009-01-01

    Roč. 57, č. 14 (2009), s. 4065-4073. ISSN 1359-6454 R&D Projects: GA ČR GA101/09/1630; GA AV ČR KJB200760802; GA ČR(CZ) GA101/07/0789 Institutional research plan: CEZ:AV0Z20760514 Keywords : bcc iron * crack * dislocation emisision Subject RIV: JG - Metallurgy Impact factor: 3.760, year: 2009

  13. Dislocations in C11.sub.B./sub. and BCC lattices

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav; Vitek, V.

    Budapest: Eötvös University, 2012, s. 23-28. ISBN 978-615-5270-01-7. [International conference on fundamental properties of dislocations /4./. Budapest (HU), 27.08.2012-31.08.2012] R&D Projects: GA AV ČR IAA100100920 Institutional support: RVO:68378271 Keywords : dislocation cores * bcc metals * C11 B intermetallics Subject RIV: BM - Solid Matter Physics ; Magnetism

  14. An alternative explanation for epitaxial growth. The case of fcc(111) on bcc(110)

    DEFF Research Database (Denmark)

    Grey, F.; Bohr, J.

    Starting from basic observations concerning commensurate structures, a simple explanation is given for the existence of energetically stable states of an fcc(111) adsorbate on a bcc(110) substrate, as a function of the mismatch and relative orientation of the two lattices. Numerical simulations a...... used to show how epitaxially rotated phases are favoured due to finite-size effects, and how adsorbate relaxation stabilizes higher-order commensurate structures....

  15. Control of bcc and fcc phase formation during mechanical alloying of Ti-Al-Nb

    International Nuclear Information System (INIS)

    A Ti-Al-Nb alloy was processed by ball milling or mechanical alloying in a high energy shaker mill in an attempt to produce a fine grained BCC alloy. Previous studies of this alloy resulted in the formation of an amorphous phase followed by a 100% FCC alloy (probably a nitride phase). In the present study, ball milling was conducted in two different laboratories with nitride- and oxide-free starting powders in each location. Two types of starting powders were used: pre-alloyed powders and mixed elemental powders of the same composition. The production of a 90% BCC/10% FCC alloy was accomplished indicating that the production of 100% BCC alloy may be possible. The methods used to prevent the formation of nitrides and oxides of these very reactive constituents during mechanical alloying are discussed and x-ray diffraction results of the mechanically alloyed powders milled by various techniques are presented. The most important factor leading to amorphization and FCC phase formation appears to be contamination associated with periodic sampling of the alloy during ball milling even when dry, inert gas gloveboxes are used for powder transfer

  16. Lattice defects in V–Ti BCC alloys before and after hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Junko, E-mail: junko.matsuda@i2cner.kyushu-u.ac.jp [International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Akiba, Etsuo [International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2013-12-25

    Highlights: •Strain contrast with spacing smaller than 20 nm is observed in as-cast and hydrogenated V–Ti alloys. •Twin boundaries and stacking faults are introduced into the V–Ti alloys after hydrogenation. •These planar defects are formed due to accommodation of shear stress during hydrogenation. •Densities of twin boundaries are higher in the alloys with smaller contents of V. •Effective absorbing capacities at ambient condition depend on the densities of twin boundaries. -- Abstract: Microstructures of V–Ti BCC alloys before and after hydrogenation/dehydrogenation are investigated using transmission electron microscopy. Strain contrast with spacing smaller than 20 nm is observed both in the as-cast alloys and hydrogenated alloys. Twin boundaries and stacking faults with spacing of 5–20 nm are introduced into the V–Ti BCC alloys after hydrogenation. These are parallel to {11"¯1} planes of FCC hydrides. The twin boundaries and stacking faults are formed due to the accommodation of shear stress during hydrogenation accompanied by large anisotropic expansion along the c-axis direction in V–Ti BCC alloys. Density of twin boundaries is high in the alloys with small contents of V, which have a small effective hydrogen capacity at ambient condition. Dependence of microstructure evolution in the V–Ti alloys during hydrogenation on the V/Ti ratio is also discussed with the thermodynamic stabilities from measurements of Pressure–Composition isotherms and mechanical properties.

  17. Titanium's high-temperature elastic constants through the hcp-bcc phase transformation

    International Nuclear Information System (INIS)

    The five independent elastic constants of hexagonal monocrystal titanium were determined up to the phase-transformation temperature, and the two isotropic elastic constants of polycrystalline titanium were determined beyond, up to 1300 K. Anomalous temperature dependences were observed just below the phase-transformation temperature: C11 and C66 increase with increasing temperature whereas C33 and C44 remarkably decrease, for example. To determine the Cij, we used the free-vibration resonance frequencies obtained by electromagnetic acoustic resonance. After the phase transformation, the resonance frequencies changed little with the temperature increase, showing that the bcc-phase elastic constants change little with temperature. The polycrystalline elastic constants remained unchanged up to 1300 K after the phase transformation. The anomalous temperature dependence near the transformation is interpreted in terms of the small c/a ratio of the hcp phase and change of the atomic distances to meet the Burgers lattice relationship. Temperature-insensitive elastic constants in the bcc phase suggest the stabilizing of the bcc phase with increasing temperature

  18. Using ab initio calculations in designing bcc Mg-Li alloys for ultra-lightweight applications

    International Nuclear Information System (INIS)

    Ab initio calculations are becoming increasingly useful to engineers interested in designing new alloys, because these calculations are able to accurately predict basic material properties only knowing the atomic composition of the material. In this paper, single crystal elastic constants of 11 bcc Mg-Li alloys are calculated using density functional theory (DFT) and compared with available experimental data. Based on DFT determined properties, engineering parameters such as the ratio of bulk modulus over shear modulus (B/G) and the ratio of Young's modulus over mass density (Y/ρ) are calculated. Analysis of B/G and Y/ρ shows that bcc Mg-Li alloys with 30-50 at.% Li offer the most potential as lightweight structural material. Compared with fcc Al-Li alloys, bcc Mg-Li alloys have a lower B/G ratio, but a comparable Y/ρ ratio. An Ashby map containing Y/ρ vs B/G shows that it is not possible to increase both Y/ρ and B/G by changing only the composition of a binary alloy

  19. Influence of reaction stresses induced by dislocation slips on the orientation evolution in bcc metals

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A plastic deformation model for bcc metals is proposed in consideration of reaction stresses. The shear strains and the corresponding reaction stresses induced by the activation of dislocations are calculated in the model, which will influence the following dislocation activation. The rolling texture in bcc metals is simulated up to 80% reduction, while the ratio of critical resolved shear stresses between the dislocations slipping on the {110} and {112} planes is chosen as 0.95. The corresponding calculation is also conducted with the activation of second dislocation, if the difference between the orientation factor of the two dislocations with maximal orientation factors is lower than 5%. It is shown that the simulated texture is closer to that of the 80% rolled interstitial free steels than other modeling. It is believed that the new model can give more attention to both of the strain and stress continuities during the plastic deformation of polycrystalline metals, and therefore approaches closer to the real deformation process in bcc metals.

  20. Reflectance Spectra of Synthetic Ortho- and Clinoenstatite in the UV, VIS, and IR for Comparison with Fe-poor Asteroids

    Science.gov (United States)

    Markus, Kathrin; Arnold, Gabriele; Hiesinger, Harald; Rohrbach, Arno

    2016-04-01

    Major rock forming minerals like pyroxenes are very common in the solar system and show characteristic absorption bands due to Fe2+ in the VIS and NIR [e.g., 1, 2]. The Fe-free endmember enstatite is also a common mineral on planetary surfaces like asteroids and probably Mercury [3] and a major constituent of meteorites like aubrites [4] and enstatite chondrites [5]. Reflectance spectra of these meteorites as well as the enstatite-rich or generally Fe-poor asteroids like the asteroidal targets of the Esa Rosetta mission (2867) Steins [6] and (21) Lutetia [7] are often featureless in the VIS and NIR lacking the absorption features associated with iron incorporated into the crystal structure of silicates. Fe-bearing orthopyroxenes show diagnostic absorption bands at ˜1 μm and ˜2 μm. While systematic changes in positions and depths of these bands with changes in Fe- and Ca-content of orthopyroxenes have been extensively studied [e.g., 2, 8], almost Fe-free enstatite is so far only spectroscopically investigated by [2]. For a better understanding of these Fe-poor bodies the availability of laboratory spectra of Fe-free silicates as analog materials are crucial but terrestrial samples of enstatite usually contain several mol% of FeO with pure enstatite being extremely rare. For easy availability of larger amounts of pure enstatite we developed a technique for synthesis of enstatite. These enstatite samples can be used as analog materials for laboratory studies for e.g. producing mixtures with other mineral samples. Enstatite has 3 stable polymorphs with clinoenstatite, orthoenstatite, and protoenstatite being stable at low (600° C), and high (>1000° C) temperatures [9]. Orthoenstatite and protoenstatite are orthorhombic, while clinoenstatite is monoclinic. Orthoenstatite is abundant in terrestrial rocks and in meteorites. Clinoenstatite is known from meteorites [5, 9]. Both polymorphs of enstatite therefore exist on the parent bodies of aubrites and enstatite

  1. Physical properties of FeRh alloys: The antiferromagnetic to ferromagnetic transition

    Science.gov (United States)

    Kudrnovský, J.; Drchal, V.; Turek, I.

    2015-01-01

    The electronic, magnetic, thermodynamical, and transport properties of FeRh alloys are studied from first principles. We present a unified approach to the phase stability, an estimate of exchange interactions in various magnetic phases, and transport properties including the effect of temperature which are all based on the same electronic-structure model. Emphasis is put on the transition between the ferromagnetic (FM) and antiferromagnetic (AFM) phases. Such a study is motivated by a recent suggestion of FeRh as a room-temperature antiferromagnetic memory resistor. The theory predicts the order-disorder transformation from the hypothetical disordered bcc phase into ordered B2 phase. Comparison of exchange interactions in the magnetically ordered FM and AFM phases with corresponding spin-disordered counterparts allows us to identify relevant interactions which are precursors of magnetically ordered phases. The most important result is the explanation of a dramatic decrease of the resistivity accompanying the AFM to FM phase transition which is due to the spin disorder present in the system. The study of the anisotropic magnetoresistance in the AFM phase found recently experimentally is extended also to finite temperatures.

  2. Nd-Fe-B-Cu hot deformation processing: a comparison of deformation modes, microstructural development and magnetic properties

    International Nuclear Information System (INIS)

    Due to its relative simplicity and low cost the hot deformation of Nd-Fe-B ingots is rapidly reaching the status of a valid alternative to sintering. Among the possible deformation modes, pressing, rolling and forging are perhaps the most successful. This paper describes the research programme undertaken so far, by discussing the relationship between deformation mode, microstructure and magnetic properties of magnets produced by hot deformation mode, microstructure and magnetic properties of magnets produced by hot deformation of a number of Nd-fe-B-Cu alloys. Microstructural observation showed that both pressed and forged samples are characterized by a heterogeneous microstructure and from magnetic measurements it was concluded that magnetic properties differ when taken in the center or in the periphery of the sample. On the other hand roller magnets were homogeneous both in terms of microstructure and magnetic properties, and interpretations of the mechanisms of texture development and of microstructural development of hot deformed magnets is put forward. (author)

  3. A comparison of mathematical models for phase-change in high-rate LiFePO4 cathodes

    International Nuclear Information System (INIS)

    We construct a two-scale mathematical model for modern, high-rate LiFePO4 cathodes. We attempt to validate against experimental data using two forms of the phase-field model developed recently to represent the concentration of Li+ in nano-sized LiFePO4 crystals. We also compare this with the shrinking-core based model we developed previously. Validating against high-rate experimental data, in which electronic and electrolytic resistances have been reduced is an excellent test of the validity of the crystal-scale model used to represent the phase-change that may occur in LiFePO4 material. We obtain poor fits with the shrinking-core based model, even with fitting based on “effective” parameter values. Surprisingly, using the more sophisticated phase-field models on the crystal-scale results in poorer fits, though a significant parameter regime could not be investigated due to numerical difficulties. Separate to the fits obtained, using phase-field based models embedded in a two-scale cathodic model results in “many-particle” effects consistent with those reported recently

  4. Microstructure evolution in austenitic Fe-Cr-Ni alloys irradiated with rotons: comparison with neutron-irradiated microstructures

    Science.gov (United States)

    Gan, J.; Was, G. S.

    2001-08-01

    Irradiation-induced microstructures of high purity and commercial purity austenitic stainless steels were investigated using proton-irradiation. For high purity alloys, Fe-20Cr-9Ni (HP 304 SS), Fe-20Cr-24Ni and Ni-18Cr-9Fe were irradiated using 3.2 MeV protons between 300°C and 600°C at a dose rate of 7×10 -6 dpa/ s to doses up to 3.0 dpa. The commercial purity alloys, CP 304 SS and CP 316 SS were irradiated at 360°C to doses between 0.3 and 5.0 dpa. The dose, temperature and composition dependence of the number density and size of dislocation loops and voids were characterized. The changes in yield strength due to irradiation were estimated from Vickers hardness measurements and compared to calculations using a dispersed-barrier-hardening (DBH) model. The dose and temperature dependence of proton-irradiated microstructure (loops, voids) and the irradiation hardening are consistent with the neutron-data trend. Results indicate that proton-irradiation can accurately reproduce the microstructure of austenitic alloys irradiated in LWR cores.

  5. Structural variety beyond appearance: high-pressure phases of CrB4 in comparison with FeB4.

    Science.gov (United States)

    Zhang, Yunkun; Wu, Lailei; Wan, Biao; Zhao, Yan; Gao, Rui; Li, Zhiping; Zhang, Jingwu; Gou, Huiyang; Mao, Ho-kwang

    2016-01-28

    Employing particle swarm optimization (PSO) combined with first-principles calculations, we systemically studied high-pressure behaviors of hard CrB4. Our predictions reveal a distinct structural evolution under pressure for CrB4 despite having the same initial structure as FeB4. CrB4 is found to adopt a new P2/m structure above 196 GPa, another Pm structure at a pressure range of 261-294 GPa and then a Pmma structure beyond 294 GPa. Instead of puckering boron sheets in the initial structure, the high-pressure phases have planar boron sheets with different motifs upon compression. Comparatively, FeB4 prefers an I41/acd structure over 48 GPa with tetrahedron B4 units and a P213 structure above 231 GPa having equilateral triangle B3 units. Significantly, CrB4 exhibits persistent metallic behavior in contrast with the semiconducting features of FeB4 upon compression. The varied pressure response of hard tetraborides studied here is of importance for understanding boron-rich compounds and designing new materials with superlative properties. PMID:26692374

  6. A comparison of the metallurgical behaviour of dispersion fuels with uranium silicides and U6Fe as dispersants

    International Nuclear Information System (INIS)

    In the past few years metallurgical studies have been carried out to develop fuel dispersions with U-densities up to 7.0 Mg U m-3. Uranium silicides have been considered to be the prime candidates as dispersants; U6Fe being a potential alternative on account of its higher U-density. The objective of this paper is to compare the metallurgical behaviour of these two material combinations with regard to the following aspects: (1) preparation of the compounds U3Si, U3Si2 and U6Fe; (2) powder metallurgical processing to miniature fuel element plates; (3) reaction behaviour under equilibrium conditions in the relevant portions of the ternary U-Si-Al and U-Fe-Al systems; (4) dimensional stability of the fuel plates after prolonged thermal treatment; (5) thermochemical behaviour of fuel plates at temperatures near the melting point of the cladding. Based on this data, the possible advantages of each fuel combination are discussed. (author)

  7. Paramagnetic properties of Fe-Mn and Fe-V alloys: a DMFT study.

    Science.gov (United States)

    Belozerov, Alexander S; Anisimov, Vladimir I

    2016-09-01

    We calculate magnetic susceptibility of paramagnetic bcc Fe-Mn and Fe-V alloys by two different approaches. The first approach employs the coherent potential approximation (CPA) combined with the dynamical mean-field theory (DMFT). The material-specific Hamiltonians in the Wannier function basis are obtained by density functional theory. In the second approach, we construct supercells modeling the binary alloys and study them using DMFT. Both approaches lead to a qualitative agreement with experimental data. In particular, the decrease of Curie temperature with Mn content and a maximum at about 10 at.% V are well described in units of the Curie temperature of pure iron. In contrast to the Mn impurities, the V ones are found to be antiferromagnetically coupled to Fe atoms. Our calculations for the two-band Anderson-Hubbard model indicate that the antiferromagnetic coupling is responsible for a maximum in the concentration dependence of Curie temperature in Fe-V alloys. PMID:27355416

  8. Paramagnetic properties of Fe-Mn and Fe-V alloys: a DMFT study

    Science.gov (United States)

    Belozerov, Alexander S.; Anisimov, Vladimir I.

    2016-09-01

    We calculate magnetic susceptibility of paramagnetic bcc Fe-Mn and Fe-V alloys by two different approaches. The first approach employs the coherent potential approximation (CPA) combined with the dynamical mean-field theory (DMFT). The material-specific Hamiltonians in the Wannier function basis are obtained by density functional theory. In the second approach, we construct supercells modeling the binary alloys and study them using DMFT. Both approaches lead to a qualitative agreement with experimental data. In particular, the decrease of Curie temperature with Mn content and a maximum at about 10 at.% V are well described in units of the Curie temperature of pure iron. In contrast to the Mn impurities, the V ones are found to be antiferromagnetically coupled to Fe atoms. Our calculations for the two-band Anderson–Hubbard model indicate that the antiferromagnetic coupling is responsible for a maximum in the concentration dependence of Curie temperature in Fe-V alloys.

  9. Enhancement of Fe Magnetic Moments in Fe/Co (001 Multilayers

    Directory of Open Access Journals (Sweden)

    Marienette Morales

    2004-12-01

    Full Text Available In order to investigate the electronic and magnetic properties of a bcc Fe/Co (001 multilayer, we have performed electronic structure calculations employing the total energy full-potential linear muffin tin orbital method. The magnetic moments of the layers are calculated. Based on these results, the magnetization profiles and the microscopic origin of the enhancement of Fe moments in the multilayers of the same Co content but with different interface qualities are reported. Large enhancement of magnetic moment is observed in the Fe monolayer located at the interface, and an even greater increase is obtained for the multilayer with one monolayer of intermixing between Fe and Co layers. The Co atoms were found to have similar magnetic moments in the bulk and at the interface.

  10. Atomic structure and thermal stability of Pt-Fe bimetallic nanoparticles: from alloy to core/shell architectures.

    Science.gov (United States)

    Huang, Rao; Wen, Yu-Hua; Shao, Gui-Fang; Sun, Shi-Gang

    2016-06-22

    Bimetallic nanoparticles comprising noble metal and non-noble metal have attracted intense interest over the past few decades due to their low cost and significantly enhanced catalytic performances. In this article, we have explored the atomic structure and thermal stability of Pt-Fe alloy and core-shell nanoparticles by molecular dynamics simulations. In Fe-core/Pt-shell nanoparticles, Fe with three different structures, i.e., body-centered cubic (bcc), face-centered cubic (fcc), and amorphous phases, has been considered. Our results show that Pt-Fe alloy is the most stable configuration among the four types of bimetallic nanoparticles. It has been discovered that the amorphous Fe cannot stably exist in the core and preferentially transforms into the fcc phase. The phase transition from bcc to hexagonal close packed (hcp) has also been observed in bcc-Fe-core/Pt-shell nanoparticles. In contrast, Fe with the fcc structure is the most preferred as the core component. These findings are helpful for understanding the structure-property relationships of Pt-Fe bimetallic nanoparticles, and are also of significance to the synthesis and application of noble metal based nanoparticle catalysts. PMID:27297782

  11. Computer simulation of strain-induced phase transformations in thin Fe films

    International Nuclear Information System (INIS)

    Using molecular-dynamics simulation and the Meyer–Entel potential, we study the response of thin Fe films (thickness ⩽10 nm) to tensile in-plane strain. The simulations are performed at a temperature slightly below the equilibrium phase transition temperature. For the four surface orientations studied, we typically find the following sequence of transformations in the strained films: (i) a bcc → hcp transition; (ii) the partial back transformation to the bcc phase; (iii) grain refinement: (iv) finally, intergranular fracture occurs. The bcc → hcp transformation follow the Burgers path in all cases. The role of twinning and dislocation formation is minor compared to that of phase transformation. Film thickness does not play a major role in the sequence of occurring film transformations. However, thinner films allow for a faster nucleation of the new phase. Nucleation starts at the surface; the role of homogeneous nucleation in the film interior is minor. (paper)

  12. Atomic model of liquid pure Fe

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using a θ-θX-ray diffractometer, the liquid structure of pure Fewas investigated and the diffraction intensity, structure factor, pair distribution function as well as the coordination number and atomic distance were obtained. The experimental results showed that there was also a pre-peak on the curve of the structure factor of liquid pure Fe. The pre-peak is a mark of medium-range order in melts. According to the characteristics of pre-peak, an atomic model of liquid pure Fe is constructed, namely, the structure of liquid pure Fe is a combination of clusters consisting of bcc cells with shared vertexes and other atoms with random dense atom distribution.

  13. Structure and Microstructure Properties of Ball Milled Fe-Zn

    Directory of Open Access Journals (Sweden)

    Bensalem R.

    2013-09-01

    Full Text Available Nanocrystalline Fe10%Zn and Fe30%Zn alloys have been prepared from pure elemental powders by mechanical alloying processing in a high energy planetary ball-mill. Microstructural, structural, and magnetic characterizations of the powders were investigated by X-ray diffraction, and vibrating sample magnometer. The crystallite size reduction to the nanometer scale is accompanied by an increase in the atomic level strain. The reaction between Fe and Zn leads to the formation of a bcc Fe(Zn solid solution with a lattice parameter close to (0.2912 nm for Fe30%Zn and 0,2885 nm for Fe10%Zn after 5 h of milling. The complete dissolution of the elemental Zn powders in the α-Fe lattice gives rise to the formation of a highly disordered Fe(Zn solid solution, where α-Fe(Zn nanograins have a crystallite size of (229,29 Å for Fe10%Zn (24h 30,09 Å for Fe30%Zn (24h, on prolonged milling time. The coercivity and magnetization values are 18,90 (Fe10%ZnOe and 26,59(Fe30%Zn emu/g, respectively, after 24 h of milling.

  14. Experimental determination of phase equilibria in the Fe-Nb-V ternary system

    International Nuclear Information System (INIS)

    The phase equilibria in the Fe-Nb-V ternary system were investigated by means of optical microscopy, electron probe microanalysis and X-ray diffraction. Four isothermal sections in the Fe-Nb-V ternary system at 1000 deg. C, 1100 deg. C, 1200 deg. C and 1300 deg. C were firstly experimentally established. Present experimental results indicate that: (1) there is a large (Nb, V) continuous bcc solid solution; (2) there are the larger solubilities of V in the FeNb and Fe2Nb phases. The newly determined phase equilibria in this system will provide important support for the development of hydrogen storage materials and microalloyed steels.

  15. Integration and Comparison of Clementine and Lunar Prospector Data: Global Scale Multielement Analysis1 (Fe, Ti, and Th) of the Lunar Surface

    Science.gov (United States)

    Chevrel, S. D.; Pinet, P. C.; Daydou, Y.; Feldman, W. C.

    2002-11-01

    In this paper, we present (1) a statistical analysis, based on a systematic clustering method, of a dataset integrating the global abundance maps of the three elements iron, titanium, and thorium derived from Clementine and Lunar Prospector and (2) a comparison of iron abundances between Clementine and Lunar Prospector. Homogeneous geologic units are compositionally characterized and spatially defined in relation to the major rock types sampled on the Moon. With the lowest abundances of Fe, Ti, and Th found on the Moon, the lunar highland terrains are quite homogeneous with two major large feldspathic units, one being slightly more mafic than the other. Two distinct regions with unique compositions are unambiguously identified: the Procellarum KREEP Terrane (PKT) and the South Pole-Aitken (SPA). The PKT, which includes all the units with Th abundances higher than 3.5 ppm (KREEP-rich materials), is delimited by an almost continuous ringlike unit. In particular, it includes the western nearside maria, except for Mare Humorum. With concentrations in Fe, Ti, and Th enhanced relative to the surrounding highlands, the South Pole-Aitken basin floor represents a large mafic anomaly on the far side, suggesting wide deposits of lower crust and possible mantle materials. However, due to indirect residual latitude effects in the CSR (Clementine spectral reflectance) measurements, iron abundances might have been overestimated in SPA, thus implying that crustal materials, rather than mantle materials, might represent the dominant contributor to the mafic component exposed on the basin floor.

  16. Calculation of thermodynamic equilibrium between bcc disordered solid solutions U and Mo

    International Nuclear Information System (INIS)

    There is actually an interest to develop a new fuel with higher density for research reactors. Fuel plates would be obtained by dispersion, a method that requires both a very dense fuel dispersant (>15.0 g U/cm3 ) and a very high volume loading of the dispersant (>55%). Dispersants based in gamma (BCC) stabilized uranium alloys are being investigated, as they are able to reach uranium densities of 17.0 g U/cm3. Among them, we focus in U(Mo) bcc solid solutions with the addition of ternary elements to stabilize gamma phase. Transition metals, 4d and 5d, of groups VII and VIII are good candidates for the ternary alloy U - Mo - X. Their relative power to stabilize gamma phase seems to be in close relation with bonding energies between atoms in the alloy. A first approach to the calculation of these energies has been performed by the semi empiric method of Miedema where only bonds between pairs are considered, neglecting ternary and quaternary bonds. There is also a lack of information concerning solubilities of the ternary elements in the ternary cubic phase. In this work we aim to calculate bonding energies between atoms in the alloy using a cluster expansion of the formation energy (T=0 K) of a series of bcc ordered compounds in the systems U-Mo-X. Then the calculation of the equilibrium phase diagram by the Cluster Variation Method will be done (CVM). We show here the first part of the investigation devoted to calculation of phases equilibria in the U Mo system Formation energies of the ordered compounds were obtained by the first principles methods TB-LMTO-ASA and FP-LAPW. Another set of bonding energies was calculated in order to fit the known experimental diagram and new formation energies for the ordered compounds were derived from them. Discrepancies between both sets are discussed. (author)

  17. Simulation of He embrittlement at grain boundaries in bcc transition metals

    Science.gov (United States)

    Suzudo, Tomoaki; Yamaguchi, Masatake

    2015-10-01

    To investigate what atomic properties largely determine vulnerability to He embrittlement at grain boundaries (GB) of bcc metals, we introduce a computational model composed of first principles density functional theory and a He segregation rate theory model. Predictive calculations of He embrittlement at the first wall of the future DEMO fusion concept reactor indicate that variation in the He embrittlement originated not only from He production rate related to neutron irradiation, but also from the He segregation energy at the GB that has a systematic trend in the periodic table.

  18. Superconductivity and the b.c.c. to A-15 transformation in Nb-Au alloys

    International Nuclear Information System (INIS)

    Nb-Au alloys near the composition Nb3Au can be quenched from the high temperature α solid solution phase field, retaining the b.c.c. structure. Results are reported on their superconducting, mechanical and physical properties as a function of composition. Short low temperature anneals transform these materials to the equilibrium A-15 structure with Tsub(c) up to 11 K. Results are reported on the superconducting and physical properties of the transformed A-15 structure materials and the way in which the properties of the transformed materials are affected by annealing temperature and time is described. (author)

  19. Study of BCC and FCC crystal atomic structure under instant plastic deformation

    International Nuclear Information System (INIS)

    Evolution of atomic structure of BCC and FCC crystals under conditions of pulsed external loads and great plastic deformations on the basis of computerized experiments is studied. Deformation of crystals was carried out stage-by-stage up to 32%. The results of computerized experiments showed that by instantaneous external loads plastic deformation, depending on its stage, may proceed either on the account of partial dislocations motion, or on account of twinning , or by means of atomic planes turn and shift. Regularities of the system potential energy turn angle of atomic planes change in dependence on the value of the crystal plastic deformation are determined

  20. A numerical study of crack initiation in a bcc iron system based on dynamic bifurcation theory

    International Nuclear Information System (INIS)

    Crack initiation under dynamic loading conditions is studied under the framework of dynamic bifurcation theory. An atomistic model for BCC iron is considered to explicitly take into account the detailed molecular interactions. To understand the strain-rate dependence of the crack initiation process, we first obtain the bifurcation diagram from a computational procedure using continuation methods. The stability transition associated with a crack initiation, as well as the connection to the bifurcation diagram, is studied by comparing direct numerical results to the dynamic bifurcation theory [R. Haberman, SIAM J. Appl. Math. 37, 69–106 (1979)].

  1. A numerical study of crack initiation in a bcc iron system based on dynamic bifurcation theory

    Science.gov (United States)

    Li, Xiantao

    2014-10-01

    Crack initiation under dynamic loading conditions is studied under the framework of dynamic bifurcation theory. An atomistic model for BCC iron is considered to explicitly take into account the detailed molecular interactions. To understand the strain-rate dependence of the crack initiation process, we first obtain the bifurcation diagram from a computational procedure using continuation methods. The stability transition associated with a crack initiation, as well as the connection to the bifurcation diagram, is studied by comparing direct numerical results to the dynamic bifurcation theory [R. Haberman, SIAM J. Appl. Math. 37, 69-106 (1979)].

  2. A numerical study of crack initiation in a bcc iron system based on dynamic bifurcation theory

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiantao, E-mail: xli@math.psu.edu [Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-10-28

    Crack initiation under dynamic loading conditions is studied under the framework of dynamic bifurcation theory. An atomistic model for BCC iron is considered to explicitly take into account the detailed molecular interactions. To understand the strain-rate dependence of the crack initiation process, we first obtain the bifurcation diagram from a computational procedure using continuation methods. The stability transition associated with a crack initiation, as well as the connection to the bifurcation diagram, is studied by comparing direct numerical results to the dynamic bifurcation theory [R. Haberman, SIAM J. Appl. Math. 37, 69–106 (1979)].

  3. Coupled Simulations of Texture Evolution during Deformation and Recrystallization of FCC and BCC Metals

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, Balasubramaniam [ORNL; Gorti, Sarma B [ORNL

    2008-01-01

    Thermo-mechanical processing to produce optimum grain structure and texture is key to the successful utilization of commercial aluminum alloys and steels as sheet products. Several modeling techniques have been developed in the past with a reasonably good predictive capability for bulk deformation textures. However, prediction of texture evolution during recrystallization remains very challenging because of uncertainties involved in predicting the mechanisms that lead to nuclei formation and crystallographic orientations of the nuclei, and the uncertainties involved in predicting the grain boundary properties that determine the growth kinetics of the nuclei. We present some of our recent work in modeling the recrystallization textures following hot deformation in polycrystalline BCC and FCC metals.

  4. Investigating the geographical distribution of skin cancer (BCC type) in Ardabil province via GIS

    OpenAIRE

    Alireza Mohebbipour; Saeid Alipour; Saeid Sadeghiyeh Ahari; Firouz Amani; Esmaeil Farzaneh

    2015-01-01

    Background: Skin cancer is the most common type of cancer in most countries and it holds the first or the second place in terms of frequency in different areas of the country. BCC is the most usual type of tumor in the white skinned people, and its incidence rate rises as individuals get older, especially after age 40.Thistype of skin cancer mostly occurs in the white skinned people and, in85% of cases; it develops on the head and neck. This study aimed at examining the geographical distribut...

  5. Subseasonal variability and predictability of the Arctic Oscillation/North Atlantic Oscillation in BCC_AGCM2.2

    Science.gov (United States)

    Zuo, Jinqing; Ren, Hong-Li; Wu, Jie; Nie, Yu; Li, Qiaoping

    2016-09-01

    The subseasonal variability and predictability of the Arctic Oscillation/North Atlantic Oscillation (AO/NAO) is evaluated using a full set of hindcasts generated from the Beijing Climate Center Atmospheric General Circulation Model version 2.2 (BCC_AGCM2.2). It is shown that the predictability of the monthly mean AO/NAO index varies seasonally, with the highest predictability during winter (December-March) and the lowest during autumn (August-November), with respect to both observations and BCC_AGCM2.2 results. As compared with the persistence prediction skill of observations, the model skillfully predicts the monthly mean AO/NAO index with a one-pentad lead time during all winter months, and with a lead time of up to two pentads in December and January. During winter, BCC_AGCM2.2 exhibits an acceptable skill in predicting the daily AO/NAO index of ∼9 days, which is higher than the persistence prediction skill of observations of ∼4 days. Further analysis suggests that improvements in the simulation of storm track activity, synoptic eddy feedback, and troposphere-stratosphere coupling in the Northern Hemisphere could help to improve the prediction skill of subseasonal AO/NAO variability by BCC_AGCM2.2 during winter. In particular, BCC_AGCM2.2 underestimates storm track activity intensity but overestimates troposphere-stratosphere coupling, as compared with observations, thus providing a clue to further improvements in model performance.

  6. Inherited textures in the bcc phase furnish information about the type of transformation from the fcc phase

    International Nuclear Information System (INIS)

    Drawing annealed cylindric 18/8 Cr Ni steels, which are originally free of textures, produces the transformed phases - hcp and bcc - both showing major texture contributions with increasing stretching of the cylindric specimens. After stretching the original fcc-phase shows two orientations: [100]fcc vertical stroke vertical stroke cylinder axis and [111]fcc vertical stroke vertical stroke cylinder axis, i.e. direction of stress. In both cases the martensitic phase is produced by gliding and shear in the sequence fcc → hcp → bcc by Nishiyama-Wasserman (N-W) or Kurdjumov-Sachs (K-S) transformation in the (111)fcc planes, which enclose a small angle with direction of stress, i.e. cylinder axis. The calculated orientation distributions of the (110)bcc reflex are compared with the distribution measured by neutron diffraction to get information on the bulk material. The special K-S transformation with only 6 (110)bcc orientations shows relatively good agreement with the measured distribution, except at small angles ω between the cylinder axis and the scattering vector. This might be caused by the isotropic fraction of the fcc phase producing an anisotropic (110)bcc orientation distribution. (orig.)

  7. COMPARISON OF DIFFERENT EXTRACTION METHODS REPRESENTING AVAILABLE AND TOTAL CONCENTRATIONS OF Cd, Cu, Fe, Mn and Zn IN SOIL

    Directory of Open Access Journals (Sweden)

    Vladimir Ivezić

    2013-06-01

    Full Text Available Various extraction methods are used to predict plant uptake of trace metals. Most commonly it is total concentration that is used for risk assessment and evaluation of trace metal availability. However, recent studies showed that total concentration is a poor indicator of availability while concentrations in soil solution show good correlation with plant uptake. Present study was conducted on magricultural soils with low levels of trace metals where 45 soil samples were collected from different soil types. The main objective was to compare four different extraction methods and examine how total and reactive (EDTA trace metal concentrations correlate ,with soil solution concentration (in this study determined by water extraction. The samples were analyzed by four extraction methods: strong acid extraction (ultra-pure HNO3 extraction and aqua regia, weak acid extraction by EDTA and the most available fraction, fraction in soil solution, were represented by water extraction (weakest extractant. Five elements were investigated (Cd, Cu, Fe, Mn and Zn. Water extraction significantly correlated with EDTA extraction for Cu, Fe and Mn, while total extraction (HNO3 extraction and aqua regia correlated significantly with water extraction only for Cu. No correlation between water extraction and total extraction confirmed poor role of total concentration as an indicator of availability. EDTA extraction can be used to represent reactive pool of trace metals in soil but it should be also taken with caution when using it to describe available fraction.

  8. Comparison and development of new extraction procedures for 239Pu, Ca, Fe and Cu organic complexes in soil

    International Nuclear Information System (INIS)

    Two new extraction methods - the silylation of the organic constituents of soil with trimethylchlorosilane (TMCS) and triethylchlorosilane (TECS) in the presence of dimethylformamide (DMF) -have been developed for mobilization of the organic complexes of Ca, Fe, Cu and Pu which might exist in some soils. By silylation of the carboxylic, phenolic, alcoholic and perhaps the amino moieties of humic and fulvic acids (the principal organic constituents of soils) the authors have modified the solubility of the humic substances with perhaps a minimum perturbation of the humate-metal ion complexes. These new extraction procedures, which used a non-aqueous solvent, have been compared with a variety of aqueous extraction procedures (sodium hydroxide, 1 M potassium chloride and diethylene triaminepentaacetic acid solution) and found to be superior in the release of the elements from soils. (author)

  9. Comparison of LiF and FeSO4 dosimetry with cavity theory for high-energy electrons

    International Nuclear Information System (INIS)

    Using FeSO4 dosimetry in a comparative study, the response of LiF dosimeter rods 1 mm in diameter by 6 mm in length to electron beams of initial energies in the range 5 to 39 MeV was investigated. The electron beam cavity theories of T. E. Burlin, R. J. Shelling, and B. Owen (1969), P. R. Almond and K. McCray (1970), and L. H. Bragg-Gray (1937) were employed in the estimation of absorbed doses. The LiF dosimeter was found energy independent over the range of electron energies covered. Bragg-Gray's and Almond's electron beam theories confirm this finding within 2 percent. The overall experimental error in the work is within 2 percent. Burlin's electron beam theory gave values that were considerably out, especially at the lower end of the range of energy covered

  10. First-principles calculation on core structures and Peierls stress of a screw dislocation in BCC iron

    International Nuclear Information System (INIS)

    Predicting atomistic properties of a dislocation is a first step toward an understanding of plastic behavior of materials, in particular BCC metals. The core structure and Peierls stress of a screw dislocation in BCC iron have been determined using the first-principles calculations based on the density functional theory with the large-scale supercell containing 231 atoms. For the a0/2[111] screw dislocation of BCC iron, the core structure was found, using 1 × 1 × 4 k-point samplings, to be a symmetric displacement field with no broken symmetry, and the Peierls stress was determined to be 1.1 GPa for the simple shear stress along (-110)<111>. (author)

  11. Direct Comparison of the Performance of a Bio-inspired Synthetic Nickel Catalyst and a [NiFe]-Hydrogenase, Both Covalently Attached to Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Macia, Patricia; Dutta, Arnab; Lubitz, Wolfgang; Shaw, Wendy J.; Rudiger, Olaf

    2015-10-12

    The active site of hydrogenases has been a source of inspiration for the development of molecular catalysts. However, direct comparisons between molecular catalysts and enzymes have not been possible because different techniques are used to evaluate both types of catalysts, minimizing our ability to determine how far we’ve come in mimicking the impressive enzymatic performance. Here we directly compare the catalytic properties of the [Ni(PCy2NGly2)2]2+ complex with the [NiFe]-hydrogenase from Desulfobivrio vulgaris Miyazaki F (DvMF) immobilized to a functionalized electrode under identical conditions. At pH=7, the enzyme has higher performance in both activity and overpotential, and is more stable, while at low pH, the molecular catalyst outperforms the enzyme in all respects. The Ni complex also has increased tolerance to CO. This is the first direct comparison of enzymes and molecular complexes, enabling a unique understanding of the benefits and detriments of both systems, and advancing our understanding of the utilization of these bioinspired complexes in fuel cells. AD and WJS acknowledge the Office of Science Early Career Research Program through the US Department of Energy (US DOE), Office of Science, Office of Basic Energy Sciences (BES), and Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US DOE.

  12. Relative stability of bcc structures in ternary alloys with Ti50Al25Mo25 composition

    International Nuclear Information System (INIS)

    In reviewing the literature that concerns the CsCl-type intermetallic compound Ti2AlMo (B2), the question arises if this compound is preferably formed with respect to the high-temperature bcc completely disordered structure (A2). Our present work takes an ab initio approach to this subject. The first-principles linear-muffin-tin-orbital method was used to calculate the total energy of a series of bcc structures in the ternary system Ti-Al-Mo. Second, a cluster expansion in the tetrahedron approximation was calculated for each formation energy. Finally, a Connolly-Williams-like inversion scheme was used to obtain the formation energy of both the A2 phase and the partially ordered structure B2. From the calculations, the B2 formation energy came out to be approx. 10 mRy/atom lower than the A2 energy, suggesting a relative greater stability. The relative stability of other possible structures with the same global composition Ti50Al25Mo25 is discussed

  13. Co thin film with metastable bcc structure formed on GaAs(111 substrate

    Directory of Open Access Journals (Sweden)

    Minakawa Shigeyuki

    2014-07-01

    Full Text Available Co thin films are prepared on GaAs(111 substrates at temperatures ranging from room temperature to 600 ºC by radio-frequency magnetron sputtering. The growth behavior and the detailed resulting film structure are investigated by in-situ reflection high-energy electron diffraction and X-ray diffraction. In early stages of film growth at temperatures lower than 200 ºC, Co crystals with metastable A2 (bcc structure are formed, where the crystal structure is stabilized through hetero-epitaxial growth. With increasing the film thickness beyond 2 nm, the metastable structure starts to transform into more stable A1 (fcc structure through atomic displacements parallel to the A2{110} close-packed planes. The crystallographic orientation relationship between the A2 and the transformed A1 crystals is A1{111} || A2{110}. When the substrate temperature is higher than 400 ºC, Ga atoms of substrate diffuse into the Co films and a Co-Ga alloy with bcc-based ordered structure of B2 is formed.

  14. Change in the thermophysical properties of BCC iron during isothermal compression

    Science.gov (United States)

    Magomedov, M. N.

    2015-11-01

    Equation of state P( V/ V 0, T) and baric dependences of the thermodynamic properties of bcc iron are obtained using the Mie-Lennard-Jones interatomic pair potential and the Einstein model of a crystal without any adjustable parameters. The calculations performed along two isotherms at 300 and 1500 K from P = 0 to 8000 kbar = 800 GPa (i.e., to V/ V 0 = 0.5) show good agreement with the experimental data. Baric graphical dependences are obtained for the following properties: isothermal bulk modulus B T and B'( P), isochoric specific heat C v and C v ' ( P), isobaric specific heat C p , thermal expansion coefficient α p and α p ' ( P), and specific surface energy of (100) face σ and σ'( P). Analytical approximations are obtained for baric dependences B'( P), α p ( P), and σ'( P). It is shown that, at P → ∞, functions B T ( P) and σ( P) for bcc iron change linearly and function α p ' ( P) tends toward zero.

  15. Influence of orientation on the size effect in bcc pillars with different critical temperatures

    International Nuclear Information System (INIS)

    Research highlights: → Crystallographic orientation has no effect on the stress-strain behavior of bcc micro-and nanopillars. → Size dependence of bcc pillars correlates with the material specific critical temperature. → Dependence on critical temperature shows importance of screw dislocation mobility. → Contribution of screw dislocations is verified by the loading rate dependence of the yield stress and calculated activation volumes. - Abstract: The size effect in body-centered cubic metals is comprehensively investigated through micro/nano-compression tests performed on focused ion beam machined tungsten (W), molybdenum (Mo) and niobium (Nb) pillars, with single slip [2 3 5] and multiple slip [0 0 1] orientations. The results demonstrate that the stress-strain response is unaffected by the number of activated slip systems, indicating that dislocation-dislocation interaction is not a dominant mechanism for the observed diameter dependent yield strength and strain hardening. Furthermore, the limited mobility of screw dislocations, which is different for each material at ambient temperature, acts as an additional strengthening mechanism leading to a material dependent size effect. Nominal values and diameter dependence of the flow stress significantly deviate from studies on face-centered cubic metals. This is demonstrated by the correlation of size dependence with the material specific critical temperature. Activation volumes were found to decrease with decreasing pillar diameter further indicating that the influence of the screw dislocations decreases with smaller pillar diameter.

  16. Molecular dynamics simulation of dislocation-void interactions in BCC Mo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyon-Jee [Department of Nuclear Engineering, University of California, Berkeley, CA (United States)], E-mail: hyon-jee@nuc.Berkeley.EDU; Wirth, Brian D. [Department of Nuclear Engineering, University of California, Berkeley, CA (United States)

    2009-04-30

    Molecular dynamics (MD) and molecular statics (MS) simulations have been performed to simulate the motion of a screw dislocation and its interaction with voids in irradiated body centered cubic (BCC) Mo. Considering the unique non-planar core structures of the screw dislocation in BCC metals, the behavior of screw dislocation motion as a function of temperature and applied shear stress is first discussed. A transition from smooth to rough motion of the screw dislocation is observed with increasing shear stress, as well as a change of dislocation glide plane from {l_brace}1 1 0{r_brace} to {l_brace}1 1 2{r_brace} with increasing temperature. The interaction of a screw dislocation with nanometer-sized voids observed in both dynamic and static conditions is then reported. The obstacle strength calculated from MS calculations shows a large increase in critical resolved shear stress for void diameter larger than about 3 nm. However, the MD results indicate that the screw dislocation interaction with void occurs via a simple shear mechanism.

  17. Molecular dynamics simulation of dislocation-void interactions in BCC Mo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.J. [California Univ., Berkeley, Dept. NE/ERL, CA (United States); Osetksy, Y.N. [Oak Ridge National Laboratory, Computer Sciences and Mathematics Div., TN, AK (United States); Wirth, B. [California Univ., Berkeley, Nuclear Engineering Dept., UC, AK CA (United States)

    2007-07-01

    Full text of publication follows: The interaction between moving dislocations and nano-meter-sized radiation defect clusters controls the yield strength, ductility and flow localization behavior of structural materials under irradiation. To understand plastic deformation processes in body centered cubic (BCC) Mo, molecular Dynamics (MD) and molecular statics (MS) simulations have been performed. Considering the unique non-planar core structures of BCC screw dislocation, we first report the behavior of screw dislocation motion as a function of temperature and applied shear stress. A transition from smooth to rough motion of the screw dislocation is observed with increasing shear stress. The double kink nucleation and migration occurs in the smooth motion regime while interstitial clusters, prismatic dislocation loops, and vacancies are produced in the rough motion regime. As well, the screw dislocation glide plane is observed to change from {l_brace}110{r_brace} to {l_brace}112{r_brace} with increasing temperature. Then, we introduce the commonly observed radiation obstacles into the system and observe their interaction behavior with screw dislocations in both dynamic and static conditions. The initial results indicate that the screw dislocation interaction with void occurs via a simple shear mechanism, which shears the void by one Burgers vector per each passage. However, the obstacle strength calculated from molecular statics (MS) calculations of the energetics of the interaction shows a large increase in critical resolved shear stress for void diameter larger than about 3 nm. (authors)

  18. Equation of state of bcc-Mo by static volume compression to 410 GPa

    International Nuclear Information System (INIS)

    Unit cell volumes of Mo and Pt have been measured simultaneously to ≈400 GPa by x-ray powder diffraction using a diamond anvil cell and synchrotron radiation source. The body-centered cubic (bcc) phase of Mo was found to be stable up to 410 GPa. The equation of state (EOS) of bcc-Mo was determined on the basis of Pt pressure scale. A fit of Vinet EOS to the volume compression data gave K0 = 262.3(4.6) GPa, K0′ = 4.55(16) with one atmosphere atomic volume V0 = 31.155(24) A3. The EOS was in good agreement with the previous ultrasonic data within pressure difference of 2.5%–3.3% in the multimegabar range, though the EOS of Mo proposed from a shock compression experiment gave lower pressure by 7.2%–11.3% than the present EOS. The agreement would suggest that the Pt pressure scale provides an accurate pressure value in an ultra-high pressure range

  19. Structural origin for the local strong anisotropy in melt-spun Fe-Ga-Tb: Tetragonal nanoparticles

    International Nuclear Information System (INIS)

    Soluting rare earth atoms Tb or Dy into body centered cubic (BCC) Fe-Ga through rapid cooling significantly enhances the magnetostriction due to strong localized magnetocrystalline anisotropy. Origin of the local strong anisotropy, however, awaits comprehensive microstructural investigation. In this letter, formation of tetragonal nanoparticles with c/a ∼ 0.979 has been found in the giant magnetostrictive ribbons Fe82.89Ga16.88Tb0.23 due to local symmetry breaking of the BCC lattice using high resolution transmission electronic microscopy. First principal calculations suggest that random replacement of Tb atoms for Fe or Ga in the ordered DO3 superlattice is beneficial in the formation of such tetragonal symmetry. Exchange couplings between the nearest Tb-Fe or Tb-Tb pairs of the tetragonal nanoparticles might generate strong localized magnetocrystalline anisotropy, leading to extraordinary magnetostriction enhancement

  20. Sound velocity of hcp-Fe at high pressure: experimental constraints, extrapolations and comparison with seismic models

    Science.gov (United States)

    Antonangeli, Daniele; Ohtani, Eiji

    2015-12-01

    Determining the sound velocity of iron under extreme thermodynamic conditions is essential for a proper interpretation of seismic observations of the Earth's core but is experimentally challenging. Here, we review techniques and methodologies used to measure sound velocities in metals at megabar pressures, with specific focus on the compressional sound velocity of hexagonal close-packed iron. A critical comparison of literature results, coherently analyzed using consistent metrology (pressure scale, equation of state), allows us to propose reference relations for the pressure and density dependence of the compressional velocity of hexagonal close-packed iron at ambient temperature. This provides a key base line upon which to add complexity, including high-temperature effects, pre-melting effects, effects of nickel and/or light element incorporation, necessary for an accurate comparison with seismic models, and ultimately to constrain Earth's inner core composition.

  1. High temperature x ray diffraction determination of the body-centered-cubic-face-centered-cubic transformation temperature in (Fe{sub 70}Ni{sub 30}){sub 88}Zr{sub 7}B{sub 4}Cu{sub 1} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ipus, J. J.; McHenry, M. E. [Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Herre, P. [Institute for Metallic Materials, IFW Dresden, Helmholtzstrasse 20, Dresden D-01069 (Germany); Ohodnicki, P. [National Energy Technology Laboratory, U.S. Department of Energy, Pittsburgh, Pennsylvania 15236 (United States)

    2012-04-01

    In situ high-temperature x ray diffraction and magnetization measurements were performed on a melt-spun (Fe{sub 70}Ni{sub 30}){sub 88}Zr{sub 7}B{sub 4}Cu{sub 1} amorphous alloy to follow its structural evolution. At 728 K, a bcc-FeNi phase was observed as the primary crystallization product followed by transformation to an fcc phase {approx}773 K. During cooling to room temperature, the fcc-to-bcc transformation was not observed, and the metastable fcc-NiFe phase was retained at room temperature.

  2. In vivo detection of basal cell carcinoma: comparison of a reflectance confocal microscope and a multiphoton tomograph

    Science.gov (United States)

    Ulrich, Martina; Klemp, Marisa; Darvin, Maxim E.; König, Karsten; Lademann, Jürgen; Meinke, Martina C.

    2013-06-01

    The standard diagnostic procedure for basal cell carcinoma (BCC) is invasive tissue biopsy with time-consuming histological examination. To reduce the number of biopsies, noninvasive optical methods have been developed providing high-resolution skin examination. We present direct comparison of a reflectance confocal microscope (RLSM) and a multiphoton tomograph (MPT) for BCC diagnosis. Both systems are applied to nine patients prior to surgery, and the results are analyzed, including histological results. Both systems prove suitable for detecting typical characteristics of BCC in various stages. The RLSM allows large horizontal overview images to be obtained, enabling the investigator to find the regions of interest quickly, e.g., BCC nests. Elongated cells and palisading structures are easily recognized using both methods. Due to the higher resolution, changes in nucleus diameter or cytoplasm could be visualized with the MPT. Therefore, the nucleus diameter, nucleus/cytoplasm ratio, and cell density are estimated for normal and BCC cells using the MPT. The nucleus of elongated BCC cells is significantly longer than other measured normal skin cells, whereas the cell density and nucleus/cytoplasm ratio of BCC cannot be significantly distinguished from granular cells.

  3. Electrodeposited NiCoFe films from electrolytes with different Fe ion concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Kockar, Hakan, E-mail: hkockar@balikesir.edu.tr [Balikesir Universitesi, Fen Edebiyat Fakultesi, Fizik Bolumu, Cagıs Yerleskesi, 10145 Balikesir (Turkey); Demirbas, Ozen, E-mail: ozendemirbas@hotmail.com [Balikesir Universitesi, Fen Edebiyat Fakultesi, Fizik Bolumu, Cagıs Yerleskesi, 10145 Balikesir (Turkey); Kuru, Hilal, E-mail: htopcu@balikesir.edu.tr [Balikesir Universitesi, Fen Edebiyat Fakultesi, Fizik Bolumu, Cagıs Yerleskesi, 10145 Balikesir (Turkey); Alper, Mursel, E-mail: malper@uludag.edu.tr [Uludag Universitesi, Fen Edebiyat Fakultesi, Fizik Bolumu, 16059 Gorukle, Bursa (Turkey); Karaagac, Oznur, E-mail: karaagac@balikesir.edu.tr [Balikesir Universitesi, Fen Edebiyat Fakultesi, Fizik Bolumu, Cagıs Yerleskesi, 10145 Balikesir (Turkey); Haciismailoglu, Murside, E-mail: msafak@uludag.edu.tr [Uludag Universitesi, Fen Edebiyat Fakultesi, Fizik Bolumu, 16059 Gorukle, Bursa (Turkey); Ozergin, Ercument, E-mail: ercumentz@yahoo.com [Balikesir Universitesi, Fen Edebiyat Fakultesi, Fizik Bolumu, Cagıs Yerleskesi, 10145 Balikesir (Turkey)

    2014-06-01

    Ternary NiCoFe films, relating their magnetic and magnetoresistance properties with film composition, and the corresponding crystal structure were investigated in terms of different Fe ion concentrations in the electrolyte. The current–time transients were recorded to control the growth of proper films. The film composition by energy dispersive X-ray spectroscopy revealed that as the Fe ion concentration in the electrolyte was increased, the Fe and Co contents in the films increased and Ni content decreased. From the structural analysis by X-ray diffraction, all films had a face-centred cubic structure and, no reflection from body-centred cubic (bcc) Fe was existed in all samples due to <12 at% Fe. The saturation magnetisation increased from 865 emu/cm{sup 3} to 1080 emu/cm{sup 3} and the coercivities decreased from 60 Oe to 13 Oe with increasing Fe and Co contents and decreasing Ni content in the films. All NiCoFe films showed anisotropic magnetoresistance. The longitudinal magnetoresistance magnitudes decreased from 6.3% to 2.2% with increasing Fe and Co contents and decreasing Ni in the films while the magnitudes of transverse magnetoresistance stayed almost constant at ∼5.0%. The variations in magnetic and magnetoresistive properties related to the crystal structure were attributed to the compositional changes caused by the variation of the Fe ion concentration in the electrolyte. - Highlights: • Structural and magnetic properties of electrodeposited NiCoFe films were studied. • The Fe and Co increased and Ni decreased with increasing Fe concentration. • All films had a face-centred cubic structure irrespective of the film content. • The M{sub s} increased and H{sub c} decreased with the change of film content. • All films showed AMR.

  4. Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III-reducer Rhodoferax ferrireducens

    Directory of Open Access Journals (Sweden)

    Daugherty Sean

    2009-09-01

    Full Text Available Abstract Background Rhodoferax ferrireducens is a metabolically versatile, Fe(III-reducing, subsurface microorganism that is likely to play an important role in the carbon and metal cycles in the subsurface. It also has the unique ability to convert sugars to electricity, oxidizing the sugars to carbon dioxide with quantitative electron transfer to graphite electrodes in microbial fuel cells. In order to expand our limited knowledge about R. ferrireducens, the complete genome sequence of this organism was further annotated and then the physiology of R. ferrireducens was investigated with a constraint-based, genome-scale in silico metabolic model and laboratory studies. Results The iterative modeling and experimental approach unveiled exciting, previously unknown physiological features, including an expanded range of substrates that support growth, such as cellobiose and citrate, and provided additional insights into important features such as the stoichiometry of the electron transport chain and the ability to grow via fumarate dismutation. Further analysis explained why R. ferrireducens is unable to grow via photosynthesis or fermentation of sugars like other members of this genus and uncovered novel genes for benzoate metabolism. The genome also revealed that R. ferrireducens is well-adapted for growth in the subsurface because it appears to be capable of dealing with a number of environmental insults, including heavy metals, aromatic compounds, nutrient limitation and oxidative stress. Conclusion This study demonstrates that combining genome-scale modeling with the annotation of a new genome sequence can guide experimental studies and accelerate the understanding of the physiology of under-studied yet environmentally relevant microorganisms.

  5. Ethylbenzene dehydrogenation over Mg3Fe0.5−xCoxAl0.5 catalysts derived from hydrotalcites: Comparison with Mg3Fe0.5−yNiyAl0.5 catalysts

    KAUST Repository

    Atanda, Luqman A.

    2011-04-01

    A series of Mg3Fe0.5-xCoxAl0.5 (x = 0-0.5) catalysts were prepared from hydrotalcite precursors and their activities in the dehydrogenation of ethylbenzene were compared with those of a series of Mg3Fe0.5-yNiyAl0.5 (y = 0-0.5) catalysts also derived from hydrotalcite. The hydrotalcites prepared by co-precipitation were calcined at 550 °C to the mixed oxides with a high surface area of 150-240m2gcat-1; they were composed of Mg(Fe,Me,Al)O periclase and Mg(Me)(Fe,Al)2O4 spinel (Me = Co or Ni). Bimetallic Fe3+-Co2+ system showed a synergy, i.e., an increase in the activity, whereas Fe3+-Ni2+ bimetallic system showed no synergy. The high styrene yield was obtained on Mg 3Fe0.1Co0.4Al0.5; however, a large substitution of Fe3+ with Co2+ caused a decrease in styrene selectivity along with coking on the catalysts, due to an isolation of CoOx on the catalyst surface. The highest yield as well as the highest selectivity for styrene production was obtained at x = 0.25 at time on stream of 30 min. The coprecipitation at pH = 10.0 and the composition of Mg3Fe0.25Co0.25Al0.5 were the best for preparing the active catalyst. This is partly due to the formation of a good hydrotalcite structure. On this catalyst, the active Fe3+ species was reduced at a low temperature by the Fe3+-Co2+ bimetal formation, leading to a high activity. Simultaneously, the amount of reducible Fe3+ was the smallest, resulting in a high stability of the active Fe3+ species. It is likely that the dehydrogenation was catalyzed by the reduction-oxidation between Fe3+ and Fe2+ and that Co2+ assisted the reduction-oxidation by forming Fe 3+-Co2+ (1/1) bimetallic active species. © 2011 Elsevier B.V. All rights reserved.

  6. Organometallic Routes into the Nanorealms of Binary Fe-Si Phases

    Directory of Open Access Journals (Sweden)

    Teddy M. Keller

    2010-02-01

    Full Text Available The Fe-Si binary system provides several iron silicides that have varied and exceptional material properties with applications in the electronic industry. The well known Fe-Si binary silicides are Fe3Si, Fe5Si3, FeSi, a-FeSi2 and b-FeSi2. While the iron-rich silicides Fe3Si and Fe5Si3 are known to be room temperature ferromagnets, the stoichiometric FeSi is the only known transition metal Kondo insulator. Furthermore, Fe5Si3 has also been demonstrated to exhibit giant magnetoresistance (GMR. The silicon-rich b-FeSi2 is a direct band gap material usable in light emitting diode (LED applications. Typically, these silicides are synthesized by traditional solid-state reactions or by ion beam-induced mixing (IBM of alternating metal and silicon layers. Alternatively, the utilization of organometallic compounds with reactive transition metal (Fe-carbon bonds has opened various routes for the preparation of these silicides and the silicon-stabilized bcc- and fcc-Fe phases contained in the Fe-Si binary phase diagram. The unique interfacial interactions of carbon with the Fe and Si components have resulted in the preferential formation of nanoscale versions of these materials. This review will discuss such reactions.

  7. MD modeling of screw dislocation influence upon initiation and mechanism of BCC-HCP polymorphous transition in iron

    Science.gov (United States)

    Dremov, V. V.; Ionov, G. V.; Sapozhnikov, F. A.; Smirnov, N. A.; Karavaev, A. V.; Vorobyova, M. A.; Ryzhkov, M. V.

    2015-09-01

    The present work is devoted to classical molecular dynamics investigation into microscopic mechanisms of the bcc-hcp transition in iron. The interatomic potential of EAM type used in the calculations was tested for the capability to reproduce ab initio data on energy evolution along the bcc-hcp transformation path (Burgers deformation + shuffe) and then used in the large-scale MD simulations. The large-scale simulations included constant volume deformation along the Burgers path to study the origin and nature of the plasticity, hydrostatic volume compression of defect free samples above the bcc to hcp transition threshold to observe the formation of new phase embryos, and the volume compression of samples containing screw dislocations to study the effect of the dislocations on the probability of the new phase critical embryo formation. The volume compression demonstrated high level of metastability. The transition starts at pressure much higher than the equilibrium one. Dislocations strongly affect the probability of the critical embryo formation and significantly reduce the onset pressure of transition. The dislocations affect also the resulting structure of the samples upon the transition. The formation of layered structure is typical for the samples containing the dislocations. The results of the simulations were compared with the in-situ experimental data on the mechanism of the bcc-hcp transition in iron.

  8. Investigation of irradiation strengthening of b.c.c. metals and their alloys. Progress report, January 1976--October 1976

    International Nuclear Information System (INIS)

    Research on irradiation of bcc metals and alloys is reported. Data and information are presented in appendixes on low temperature neutron irradiation of Nb, effects of tritium on the yield stress of Nb, multiple dislocation motion, dislocation group motion, dislocation kinetics, and computer simulation of dislocation motion

  9. Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice.

    Science.gov (United States)

    Gao, Lei; Chang, Jiadong; Chen, Ruijie; Li, Hubo; Lu, Hongfei; Tao, Longxing; Xiong, Jie

    2016-12-01

    Iron (Fe) is essential for rice growth and humans consuming as their staple food but is often deficient because of insoluble Fe(III) in soil for rice growth and limited assimilation for human bodies, while cadmium (Cd) is non-essential and toxic for rice growth and humans if accumulating at high levels. Over-accumulated Cd can cause damage to human bodies. Selecting and breeding Fe-rich but Cd-free rice cultivars are ambitious, challenging and meaningful tasks for researchers. Although evidences show that the mechanisms of Fe/Cd uptake and accumulation in rice are common to some extent as a result of similar entry routes within rice, an increasing number of researchers have discovered distinct mechanisms between Fe/Cd uptake and accumulation in rice. This comprehensive review systematically elaborates and compares cellular mechanisms of Fe/Cd uptake and accumulation in rice, respectively. Mechanisms for maintaining Fe homeostasis and Cd detoxicification are also elucidated. Then, effects of different fertilizer management on Fe/Cd accumulation in rice are discussed. Finally, this review enumerates various approaches for reducing grain Cd accumulation and enhancing Fe content in rice. In summary, understanding of discrepant cellular mechanisms of Fe/Cd accumulation in rice provides guidance for cultivating Fe-fortified rice and has paved the way to develop rice that are tolerant to Cd stress, aiming at breeding Fe-rich but Cd-free rice. PMID:27502932

  10. Interactions of foreign interstitial and substitutional atoms in bcc iron from ab initio calculations

    International Nuclear Information System (INIS)

    C and N atoms are the most frequent foreign interstitial atoms (FIAs), and often incorporated into the surface layers of steels to enhance their properties by thermochemical treatments. Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Nb and Mo are the most common alloying elements in steels, also can be called foreign substitutional atoms (FSAs). The FIA and FSA interactions play an important role in the diffusion of C and N atoms, and the microstructures and mechanical properties of surface modified layers. Ab initio calculations based on the density functional theory are carried out to investigate FIA interactions with FSA in ferromagnetic bcc iron. The FIA–FSA interactions are analyzed systematically from five aspects, including interaction energies, density of states (DOS), bond populations, electron density difference maps and local magnetic moments

  11. The effect of hydrogen on the electronic structure of kink in bcc iron

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The electronic structures of kinks in the [100](010) and 1/2[111](-110) edge dislocations in bcc iron containing hydrogen are investigated by means of the first-principles DMol method and the discrete variational method.The effects of hydrogen on the kinks are discussed.The results show that hydro-gen forms weak bonding states with its neighboring host atoms,and since hydrogen draws charge from its neighboring host atoms,the interactions between most of the host atoms are weakened com-pared with those of the corresponding atomic pairs in the clean kinks.This indicates that the migration of kink,i.e.the motion of dislocation,is easier in the doping hydrogen kink than in the clean kink,which may be the solid solution softening effect resulting from the impurity hydrogen.

  12. Nature of the interfaces between the constituent phases in the high entropy alloy CoCrCuFeNiAl

    International Nuclear Information System (INIS)

    The interfaces between the phase separated regions in the dendritic grains of laser-deposited samples of the high entropy alloy CoCrCuFeNiAl have been studied using aberration-corrected analytical (scanning) transmission electron microscopy ((S)TEM). The compositional variations have been determined using energy dispersive x-ray spectroscopy (EDS) in (S)TEM. It was found that between B2, consisting mainly of Al, Ni, Co, and Fe, and disordered bcc phase, consisting mainly of Cr and Fe, there is a transition region, approximately 1.5 nm in width, over which the chemical composition changes from the B2 to that of the bcc phase. The crystal structure of this interfacial region is also B2, but with very different sublattice occupancy than that of the adjacent B2 compound. The structural aspects of the interface between the ordered B2 phase and the disordered bcc phase have been characterized using high angle annular dark-field (HAADF) imaging in STEM. It has been determined that the interfaces are essentially coherent, with the lattice parameters of the two B2 regions and the disordered bcc phase being more or less the same, the uncertainty arising from possible relaxations from the proximity of the surfaces of the thin foils used in imaging of the microstructures. Direct observations show that there is a planar continuity between all three constituent phases. - Highlights: • In the dendritic grains, there are two dominant phases, one with the ordered B2 structure, and the other disordered bcc. • From the intensity ratios in HAADF, the B2 phase appears to have a stoichiometry of the form Al(Ni, Co, and Fe). • Energy dispersive x-ray spectroscopy reveals the presence of an ordered interface transition region between the two phases. • Nanodiffraction in the Titan shows that the interface region is also ordered with the B2 crystal structure based on C

  13. Interaction of He and He–V clusters with self-interstitials and dislocations defects in bcc Fe

    Energy Technology Data Exchange (ETDEWEB)

    Terentyev, Dmitry, E-mail: dterenty@sckcen.be [SCK-CEN, Nuclear Material Science Institute, Boeretang 200, B-2400 Mol (Belgium); Anento, Napoleón; Serra, Anna [Department Matemàtica Aplicada III, E.T.S. Enginyeria de Camins, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona (Spain); Ortiz, C.J. [Laboratorio Nacional de Fusión por Confinamiento Magnético, CIEMAT, 28040 Madrid (Spain); Zhurkin, E.E. [Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, St. Petersburg State Polytechnical University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation)

    2015-03-15

    The understanding of helium effects in synergy with radiation damage is crucial for the development of structural steels for fusion applications. Recent investigations in ultra-pure iron, taken as a basic model, have shown a drastic impact of dual beam (helium and iron) exposure on the accumulation of radiation-induced dislocation loops in terms of strong bias towards a{sub 0}/2〈1 1 1〉 loops, while a{sub 0}〈1 0 0〉 loops are mostly observed upon iron ion beam. In this work we perform a series of atomistic studies to rationalize possible mechanisms through which He could affect the evolution of microstructure and bias the population of a{sub 0}/2〈1 1 1〉 loops. It is shown that He atoms are dragged by gliding a{sub 0}/2〈1 1 1〉 loops. This strongly suppresses loop diffusivity and in turn it prohibits the mutual interaction of a{sub 0}/2〈1 1 1〉 loops, being prerequisite of the formation of a{sub 0}〈1 0 0〉 loops, as well as it reduces the disappearance of a{sub 0}/2〈1 1 1〉 loops at sinks. A scenario for the microstructural evolution in the single- and dual-beam conditions is discussed.

  14. Interaction of He and He-V clusters with self-interstitials and dislocations defects in bcc Fe

    OpenAIRE

    Terentyev, Dimitry; Anento Moreno, Napoleón; Serra Tort, Ana María; Ortiz, C. J.; Zhurkin, E. E.

    2015-01-01

    The understanding of helium effects in synergy with radiation damage is crucial for the development of structural steels for fusion applications. Recent investigations in ultra-pure iron, taken as a basic model, have shown a drastic impact of dual beam (helium and iron) exposure on the accumulation of radiation-induced dislocation loops in terms of strong bias towards a(0)/2 loops, while a(0) loops are mostly observed upon iron ion beam. In this work we perform a series of atom...

  15. Interaction of He and He-V clusters with self-interstitials and dislocations defects in bcc Fe

    Science.gov (United States)

    Terentyev, Dmitry; Anento, Napoleón; Serra, Anna; Ortiz, C. J.; Zhurkin, E. E.

    2015-03-01

    The understanding of helium effects in synergy with radiation damage is crucial for the development of structural steels for fusion applications. Recent investigations in ultra-pure iron, taken as a basic model, have shown a drastic impact of dual beam (helium and iron) exposure on the accumulation of radiation-induced dislocation loops in terms of strong bias towards a0/2 loops, while a0 loops are mostly observed upon iron ion beam. In this work we perform a series of atomistic studies to rationalize possible mechanisms through which He could affect the evolution of microstructure and bias the population of a0/2 loops. It is shown that He atoms are dragged by gliding a0/2 loops. This strongly suppresses loop diffusivity and in turn it prohibits the mutual interaction of a0/2 loops, being prerequisite of the formation of a0 loops, as well as it reduces the disappearance of a0/2 loops at sinks. A scenario for the microstructural evolution in the single- and dual-beam conditions is discussed.

  16. Electrodeposited NiCoFe films from electrolytes with different Fe ion concentrations

    International Nuclear Information System (INIS)

    Ternary NiCoFe films, relating their magnetic and magnetoresistance properties with film composition, and the corresponding crystal structure were investigated in terms of different Fe ion concentrations in the electrolyte. The current–time transients were recorded to control the growth of proper films. The film composition by energy dispersive X-ray spectroscopy revealed that as the Fe ion concentration in the electrolyte was increased, the Fe and Co contents in the films increased and Ni content decreased. From the structural analysis by X-ray diffraction, all films had a face-centred cubic structure and, no reflection from body-centred cubic (bcc) Fe was existed in all samples due to 3 to 1080 emu/cm3 and the coercivities decreased from 60 Oe to 13 Oe with increasing Fe and Co contents and decreasing Ni content in the films. All NiCoFe films showed anisotropic magnetoresistance. The longitudinal magnetoresistance magnitudes decreased from 6.3% to 2.2% with increasing Fe and Co contents and decreasing Ni in the films while the magnitudes of transverse magnetoresistance stayed almost constant at ∼5.0%. The variations in magnetic and magnetoresistive properties related to the crystal structure were attributed to the compositional changes caused by the variation of the Fe ion concentration in the electrolyte. - Highlights: • Structural and magnetic properties of electrodeposited NiCoFe films were studied. • The Fe and Co increased and Ni decreased with increasing Fe concentration. • All films had a face-centred cubic structure irrespective of the film content. • The Ms increased and Hc decreased with the change of film content. • All films showed AMR

  17. The comparison of microstructure and nanocluster evolution in proton and neutron irradiated Fe-9%Cr ODS steel to 3 dpa at 500 °C

    Science.gov (United States)

    Swenson, M. J.; Wharry, J. P.

    2015-12-01

    A model Fe-9%Cr oxide dispersion strengthened (ODS) steel was irradiated with protons or neutrons to a dose of 3 displacements per atom (dpa) at a temperature of 500 °C, enabling a direct comparison of ion to neutron irradiation effects at otherwise fixed irradiation conditions. The irradiated microstructures were characterized using transmission electron microscopy and atom probe tomography including cluster analysis. Both proton and neutron irradiations produced a comparable void and dislocation loop microstructure. However, the irradiation response of the Ti-Y-O oxide nanoclusters varied. Oxides remained stable under proton irradiation, but exhibited dissolution and an increase in Y:Ti composition ratio under neutron irradiation. Both proton and neutron irradiation also induced varying extents of Si, Ni, and Mn clustering at existing oxide nanoclusters. Protons are able to reproduce the void and loop microstructure of neutron irradiation carried out to the same dose and temperature. However, since nanocluster evolution is controlled by both diffusion and ballistic impacts, protons are rendered unable to reproduce the nanocluster evolution of neutron irradiation at the same dose and temperature.

  18. Structural comparison between MgO/Fe(0 0 1) and MgO/Fe(0 0 1)–p(1 × 1)O interfaces for magnetic tunneling junctions: An Auger electron diffraction study

    International Nuclear Information System (INIS)

    Magnetic tunnel junctions based on MgO(0 0 1) barriers and ferromagnetic electrodes, such as Fe/MgO/Fe, represent a very popular and widely investigated subject in the field of spin-electronics because of the large values of magnetoresistance shown by these systems. In this paper, the structural properties of MgO thin films grown onto Fe(0 0 1) and MgO/Fe(0 0 1)–p(1 × 1)O surfaces, with MgO thickness ranging from 2 to 14 equivalent monolayers, have been investigated by means of Auger electron diffraction. The structural order and the crystal quality of the MgO films result practically independent from the template, the latter being either the clean Fe(0 0 1) surface or the oxidized Fe(0 0 1)–p(1 × 1)O one. This is confirmed by numerical simulations, showing that, apart from the first two MgO layers close to the interface, the structure is unaffected by the choice of the starting surface. By a structural point of view, we can conclude that Fe(0 0 1)–p(1 × 1)O is a good candidate for the role of bottom electrode for the realization of MgO-based magnetic tunnelling junctions, also considering its higher chemical stability and reproducibility if compared to the clean Fe(0 0 1) surface.

  19. Exchange coupling and magnetic anisotropy at Fe/FePt interfaces

    Science.gov (United States)

    Aas, C. J.; Hasnip, P. J.; Cuadrado, R.; Plotnikova, E. M.; Szunyogh, L.; Udvardi, L.; Chantrell, R. W.

    2013-11-01

    We perform fully relativistic first-principles calculations of the exchange interactions and the magnetocrystalline anisotropy energy (MAE) in an Fe/FePt/Fe sandwich system in order to elucidate how the presence of Fe/FePt (soft/hard magnetic) interfaces impacts on the magnetic properties of Fe/FePt/Fe multilayers. Throughout our study we make comparisons between a geometrically unrelaxed system and a geometrically relaxed system. We observe that the Fe layer at the Fe/FePt interface plays a crucial role inasmuch as its (isotropic) exchange coupling to the soft (Fe) phase of the system is substantially reduced. Moreover, this interfacial Fe layer has a substantial impact on the MAE of the system. We show that the MAE of the FePt slab, including the contribution from the Fe/FePt interface, is dominated by anisotropic intersite exchange interactions. Our calculations indicate that the change in the MAE of the FePt slab with respect to the corresponding bulk value is negative, i.e., the presence of Fe/FePt interfaces appears to reduce the perpendicular MAE of the Fe/FePt/Fe system. However, for the relaxed system, this reduction is marginal. It is also shown that the relaxed system exhibits a reduced interfacial exchange. Using a simple linear chain model, we demonstrate that the reduced exchange leads to a discontinuity in the magnetization structure at the interface.

  20. High temperature stabilities of interoxides in the system Fe-Sb-O and their comparison with the interoxides in other M-Sb-O (M=Cr, Ni or Co) systems

    International Nuclear Information System (INIS)

    An isothermal section of the phase diagram of the system Fe-Sb-O at 873 K was established by isothermal equilibration and XRD analyses of quenched samples. Two ternary oxides namely FeSb2O4 and FeSbO4 were identified. Making use of the phase diagram, the oxygen potentials of the ternary phases were measured by employing the following solid electrolyte based galvanic cells:(I)Chromel, Mo, Sb, Fe3O4, FeSb2O4|15 CSZ|NiO, Ni, Mo, Chromel(II)Pt, Fe3O4, FeSb2O4, FeSbO4|15 CSZ|air (PO2=0.21 atm), Pt(III)Pt, FeSb2O4, FeSbO4, Sb2O3|15 CSZ|air (PO2=0.21 atm), Ptwhere 15 CSZ stands for ZrO2 stabilized by 15 mol% CaO. The least-squares regression analyses of the emfs of the galvanic cells I, II and III (split into two ranges) measured over the temperature ranges 771-911, 771-921 and 787-981 K, respectively, can be represented by the expressionsEI+/-0.39 (mV)=152.8-0.04728 T (K)EII+/-0.22 (mV)=1010.0-0.4172 T (K)EIIIA+/-0.46 (mV)=870.1-0.3665 T (K)EIIIB+/-0.31 (mV)=809.3-0.2992 T (K)These emf expressions were used to derive the standard Gibbs' energies of formation of FeSb2O4 and FeSbO4 and are given byΔGfo (FeSb2O4)+/-3.5 (kJ mol-1)=-1068.7+0.3561 T (K)ΔGfo (FeSbO4)+/-5.5 (kJ mol-1)=-976.9+0.3289 T (K)The emf of the cell III exhibited a break corresponding to the liquidus temperature of Sb2O3. The cell III was used to assess the internal consistency of ΔGfo (FeSbO4) derived from cell II. The consistency of ΔGfo data for these two interoxides with the relevant tie-lines in Fe-Sb-O system is highlighted. Comparison of iron interoxide stabilities with those of six other interoxides in the systems M-Sb-O where M is Cr, Co or Ni reported earlier in the literature revealed FeSb2O4 to be the most stable interoxide with respect to the equilibrium oxygen dissociation pressure in the corresponding set of coexisting phases. Hence, this interoxide is proposed to substitute Sb2O3 in the auxiliary neutron source of liquid metal cooled fast breeder reactors subject to meeting other

  1. Calibration of Recoil-In-Vacuum attenuations from first principles: comparison with recent experimental data on Fe isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Nicholas James, E-mail: n.stone@physics.ox.ac.uk; Stone, Jirina Rikovska [University of Tennessee, Department of Physics and Astronomy (United States); Stuchbery, Andrew E. [Australian National University, Department of Nuclear Physics (Australia); Jonsson, Per [Malmo University (Sweden)

    2015-04-15

    Precession of aligned nuclear spin systems in ions recoiling from the target into vacuum (RIV) with consequent attenuation of angular distributions of emitted radiation is, in principle, a versatile method for measurement of g-factors of nuclear excited states of lifetimes in the pico-second range (Stone et al., Phys. Rev. Lett., 94, 192501, 2005 and Stuchbery and Stone, Phys. Rev. C, 76, 034307, 2007). Calibration of the observed attenuations has been achieved in favourable cases through comparison with measurements on states having previously known g-factors and lifetimes. The general lack of suitable states with known g-factors has limited application of the RIV method. This paper concerns the present status of efforts to describe the states of excited ions recoiling into vacuum in detail so that the average interaction can be estimated with useful precision from a-priori theory. The calculations use the GRASP2K package (Froese-Fischer et al. 1997 and Jonsson, Comp. Phys. Comm., 177, 597, 2007 & 184, 2197, 2013) to obtain, for each recoiling ion change state, the individual possible electronic states, their configurations, lifetimes and hyperfine interactions. It is assumed that all possible ionic states are produced, up to a chosen excitation energy. This energy is selected to approximate the energy at which all states have lifetimes far shorter than the nuclear state of interest. It is further assumed that the ionic state total electron angular momenta are randomly oriented in space. The first estimates of the average attenuation of emission distributions, as a function of the product g τ of the nuclear state g-factor and mean lifetime, used an averaged precession frequency obtained neglecting transitions between electronic states. Improved calculations, which include such transitions, are described.

  2. Atomic structure of Fe thin-films on Cu(0 0 1) studied with stereoscopic photography

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Azusa N. [Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0192 (Japan); Fujikado, M. [Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0192 (Japan); Uchida, T. [Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0192 (Japan); Okamoto, S. [Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0192 (Japan); Fukumoto, K. [Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0192 (Japan); Guo, F.Z. [Japan Synchrotron Radiation Research Institute, Kouto, Mikazuki, Sayo, Hyogo 679-5198 (Japan); Matsui, F. [Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0192 (Japan); CREST, Japan Science and Technology Agency (Japan); Nakatani, K. [Japan Synchrotron Radiation Research Institute, Kouto, Mikazuki, Sayo, Hyogo 679-5198 (Japan); Matsushita, T. [Japan Synchrotron Radiation Research Institute, Kouto, Mikazuki, Sayo, Hyogo 679-5198 (Japan); Hattori, K. [Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0192 (Japan); CREST, Japan Science and Technology Agency (Japan); Daimon, H. [Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0192 (Japan); CREST, Japan Science and Technology Agency (Japan)

    2004-10-15

    The complex magnetic properties of Fe films epitaxially grown on Cu(0 0 1) have been discussed in relation to their atomic structure. We have studied the Fe films on Cu(0 0 1) by a new direct method for three-dimensional (3D) atomic structure analysis, so-called 'stereoscopic photography'. The forward-focusing peaks in the photoelectron angular distribution pattern excited by the circularly polarized light rotate around the light axis in either clockwise or counterclockwise direction depending on the light helicity. By using a display-type spherical mirror analyzer for this phenomenon, we can obtain stereoscopic photographs of atomic structure. The photographs revealed that the iron structure changes from bcc to fcc and almost bcc structure with increasing iron film thickness.

  3. Crystal structure of cesium salt of Fe(3) thiosemicarbazonate complex at 298 and 103 K. Comparison of geometrical parameters of Fe3S2O2N2 octahedral coordination fragment in high- and low-spin complexes

    International Nuclear Information System (INIS)

    The crystal structure of a high spin cesium salt of the Fe(3), thiosemicarbazonate complex, Cs[Fe(tsa)2], (tsa-salicyl aldehyde thiosemicarbazone) at room temperature and 103 K, is determined. The parameters of the rhombic cell are: a=15, 285(3), b=13.402(4), c=9.449(8)A at 298 K and a=15.161(3), b=13.340(3), c=9.394(7)A at 103 K. The space group is Pna21, Z=4, the final values of R-factors are 0.054 (298 K, 1232 reflections) and 0.041 (103 K, 1597 reflections) taking into account the absorption of X-rays using the method of calculating corrections according to the crystal form and the anomalous scattering of Cs, Fe, S atoms. The structure is built of Cs+ cations and complex anions [Fe(tsa)2]-. The specific intermolecular interactions are absent. Fe-S and Fe-N bond lengths and the values of some inner angles of the coordination polyhedron of iron atom are taken as structural characteristics during the diagnostics of the Fe(3) ion spin state in thiosemicarbazonate complexes

  4. Transmission Mössbauer spectroscopy and x-ray diffraction studies on the structure of nanocrystalline Fe-Cu-Si-B alloys

    Science.gov (United States)

    Liu, X. D.; Lu, K.; Hu, Z. Q.; Ding, B. Z.; Zhu, J.; Jiang, J.

    1994-04-01

    Nanocrystalline Fe-Cu-Si-B alloys with grain sizes of 25-90 nm were synthesized by crystallization of the amorphous alloy. Two nanocrystalline phases of α-Fe(Si) and Fe2B were observed in all tested samples. Transmission Mössbauer spectroscopy investigation on the structure of nanocrystalline Fe-Cu-Si-B alloys showed that Si atoms are completely and substitutionally dissolved in Fe bcc lattice and the arrangement of the Si atoms in the α-Fe(Si) phase shows short range order (SRO), whereas 8.5-9.7 at. % of the B atoms were found as Fe2B and the remainder were located in the interfaces. When grains grow larger, the arrangement of the Si atoms in the α-Fe(Si) phase changes. Interestingly, x-ray diffraction results reveal that the lattice constant of α-Fe(Si) phase decreases rapidly with grain coarsening. Based on the thermodynamic analysis, the changes in the lattice constant of the α-Fe(Si) phase and SRO of Si atoms in bcc Fe lattices were attributed to the lattice expansion as a result of the variation of vacancy concentration in α-Fe(Si) solid solution. Meanwhile, owing to the interface contribution, the alloy with small grain size is found to exhibit large values of half linewidth (HLW) and isomer shift (IS) in the Mössbauer spectra. The results from electrical resistivity measurements agree and confirm the strong effects of the lattice distortion and interfaces.

  5. Heterogeneous nucleation in the polyol process for the synthesis of FeCo alloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Uk Rae; Lee, Dong Gun; Ahn, Byung Hyun; Lee, Je Hyun; Koo, Bon Heun [Changwon National University, Changwon (Korea, Republic of)

    2014-05-15

    Here, we report a polyol method to prepare monodispersed FeCo alloy particles with Pt seeds added in the production of nanoparticles. The prepared samples were characterized by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and magnetic measurements. Structural studies revealed that the FeCo nanoparticles had a body-centered cubic (BCC) structure. FE-SEM analysis demonstrated a sphere morphology for the FeCo alloy particles. The size of the FeCo nanoparticles could be well tuned by changing the number of Pt-seed partices in the FeCo alloy. The magnetic properties of the FeCo alloys were investigated as a function of the Pt-seed concentration and temperature. The saturation magnetization and coercivity of the FeCo nanoparticles were found to depend on the molar ratio of Fe/Co, as well as the number of Pt-seeds, and increased with increasing FeCo concentration. A higher value of the saturation magnetization, 218 emu/g, was obtained for the 0.07-M concentration of FeCo alloy. In the process of producing an FeCo alloy powder by heterogeneous nucleation, a powder having minute sizes could be produced under the experimental conditions of a Pt-seed-added temperature of 90 .deg. C and a Pt/FeCo mole ratio of 8 x 10{sup -5}, and showed far superior properties.

  6. A new method for development of bond-order potentials for transition bcc metals

    International Nuclear Information System (INIS)

    A new development of numerical bond-order potentials (BOPs) for the non-magnetic transition metals V, Nb, Ta, Cr, Mo and W is presented. The principles on which the BOPs have been set up are the same as in earlier developments (Aoki et al 2007 Prog. Mater. Sci. 52 154). However, the bond integrals are based on the recently advanced method of parametrization of tight-binding from DFT calculations (Madsen et al 2011 Phys. Rev. B 83 4119, Urban et al 2011 Phys. Rev. B 84 155119) and do not require any screening. At the same time, the functional form of the environmentally dependent repulsion is identified with the functional form of the repulsion arising from the overlap of s and p electrons in argon as proposed in Aoki and Kurokawa (2007 J. Phys.: Condens. Matter 19 136228). This is justified by the same physical origin of the environment dependent repulsion, which in transition metals arises from the overlap of s electrons that are being squeezed into the ion core regions under the influence of the strong covalent d bonds. The testing of the developed BOPs involves investigation of alternative higher energy structures, transformation paths connecting the bcc structure with other structures via continuously distorted configurations, evaluation of the vacancy formation energy and calculation of phonon spectra. In all cases, the BOP calculations are in more than satisfactory agreement with either DFT calculations and/or available experimental data. The calculated γ-surfaces for {1 0 1} planes all suggest that the core of 1/2〈1 1 1〉 screw dislocations is non-degenerate in the transition metals. This is also in full agreement with available calculations that account fully for the quantum-mechanical nature of the d electrons that provide the bulk of the bonding in transition metals. The testing of developed BOPs clearly demonstrates that they are transferable to structures well outside the regime of the ideal bcc lattice and are suitable for investigating the

  7. Phase relations in the Fe-FeSi system at high pressures and temperatures

    Science.gov (United States)

    Fischer, Rebecca A.; Campbell, Andrew J.; Reaman, Daniel M.; Miller, Noah A.; Heinz, Dion L.; Dera, Przymyslaw; Prakapenka, Vitali B.

    2013-07-01

    The Earth's core is comprised mostly of iron and nickel, but it also contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is important to understand the high pressure, high temperature properties and behavior of alloys in the Fe-FeSi system, such as their phase diagrams. We determined melting temperatures and subsolidus phase relations of Fe-9 wt% Si and stoichiometric FeSi using synchrotron X-ray diffraction at high pressures and temperatures, up to ~200 GPa and ~145 GPa, respectively. Combining this data with that of previous studies, we generated phase diagrams in pressure-temperature, temperature-composition, and pressure-composition space. We find the B2 crystal structure in Fe-9Si where previous studies reported the less ordered bcc structure, and a shallower slope for the hcp+B2 to fcc+B2 boundary than previously reported. In stoichiometric FeSi, we report a wide B2+B20 two-phase field, with complete conversion to the B2 structure at ~42 GPa. The minimum temperature of an Fe-Si outer core is 4380 K, based on the eutectic melting point of Fe-9Si, and silicon is shown to be less efficient at depressing the melting point of iron at core conditions than oxygen or sulfur. At the highest pressures reached, only the hcp and B2 structures are seen in the Fe-FeSi system. We predict that alloys containing more than ~4-8 wt% silicon will convert to an hcp+B2 mixture and later to the hcp structure with increasing pressure, and that an iron-silicon alloy in the Earth's inner core would most likely be a mixture of hcp and B2 phases.

  8. First-principles calculation for the effect of hydrogen atoms on the mobility of a screw dislocation in BCC iron

    International Nuclear Information System (INIS)

    Effect of hydrogen atoms on the mobility of a screw dislocation in BCC iron has been evaluated using the first-principles calculation. The stable position of a hydrogen atom is found to be near the screw dislocation core and inside the core respectively when the dislocation is at the easy-core or hard-core configuration in BCC iron. The intrinsically unstable hard-core configuration of the screw dislocation is stabilized when a hydrogen atom is trapped inside the core. On the basis of this first-principles result, an elastic string model of a dislocation is developed to predict the kink motion in the presence of a hydrogen atom. It is found that a double-kink formation is facilitated when a hydrogen atom is located near a dislocation line, however, a kink motion is retarded when a hydrogen atom is behind the kink. (author)

  9. First-principles calculation on the interaction of an interstitial hydrogen atom with a screw dislocation in BCC iron

    International Nuclear Information System (INIS)

    The interaction of an interstitial hydrogen atom with a screw dislocation in BCC iron has been determined using the first principles calculation. The calculation was carried out for a pair of screw dislocations using the large-scale supercell containing 231 atoms and 1 x 1 x 4 k-point samplings. It is found that a hydrogen atom at an octahedral site near the screw dislocation attracts the dislocation core under the applied shear stress condition. However, the resultant stress-strain relation in the presence of a hydrogen atom is found to be almost the same with that of no hydrogen case. This indicates clearly that a significant enhancement of dislocation mobility, previously reported in Al, is not observed in BCC iron. (author)

  10. Observation of quasi-fast diffusion process in sup 3 He- sup 4 He solid solutions near BCC-HCP

    CERN Document Server

    Mikhin, N P; Rudavskij, E Y

    2001-01-01

    By means of pulsed NMR one investigated into diffusion processes i sup 3 He dilute solid solution in sup 4 He at the BCC-HCP phase equilibrium line and in a melting-point curve. The applied techniques of the spin echo enabled to separate contributions made by all co-existing phases. It is determined that alongside with the contributions relevant to the equilibrium phases a secondary diffusion process characterized by anomalously high value of the diffusion coefficient manifests itself. It is shown to be close to the value of diffusion coefficient for liquid helium while diffusion is a spatially restricted one. One assumes that the observed effect may be associated with occurrence of liquid drops in the BCC-HCP transition process

  11. Impact of Intragranular Substructure Parameters on the Forming Limit Diagrams of Single-Phase B.C.C. Steels

    Directory of Open Access Journals (Sweden)

    Gérald Franz

    2013-11-01

    Full Text Available An advanced elastic-plastic self-consistent polycrystalline model, accounting for intragranular microstructure development and evolution, is coupled with a bifurcation-based localization criterion and applied to the numerical investigation of the impact of microstructural patterns on ductility of single-phase steels. The proposed multiscale model, taking into account essential microstructural aspects, such as initial and induced textures, dislocation densities, and softening mechanisms, allows us to emphasize the relationship between intragranular microstructure of B.C.C. steels and their ductility. A qualitative study in terms of forming limit diagrams for various dislocation networks, during monotonic loading tests, is conducted in order to analyze the impact of intragranular substructure parameters on the formability of single-phase B.C.C. steels.

  12. The nanostructure and hydrogenation reaction of Mg50Co50 BCC alloy prepared by ball-milling

    Science.gov (United States)

    Matsuda, J.; Shao, H.; Nakamura, Y.; Akiba, E.

    2009-05-01

    Mg50Co50 alloy before and after hydrogenation was investigated by means of transmission electron microscopy (TEM). Mg50Co50 alloy before hydrogenation was found to contain crystals not larger than 5 nm in size. Selected-area electron diffraction patterns (SAEDPs) revealed that these nanocrystals have a body-centered cubic (BCC) structure with a lattice parameter of about 0.3 nm. Distribution of Mg and Co elements in the Mg50Co50 alloy was uniform, indicated by energy dispersive x-ray spectroscopy (EDS) analysis. Crystallization and decomposition occurred in the Mg50Co50 alloy during hydrogenation. A large number of crystals larger than 10 nm were observed in the hydrogenated sample. The SAEDPs showed polycrystalline rings corresponding to the BCC phase and the Co metal phase. The existence of Mg-rich Mg-Co crystals and Co particles was also confirmed by TEM-EDS analysis.

  13. First-principles calculation on the diffusion of hydrogen along a screw dislocation core in BCC iron

    International Nuclear Information System (INIS)

    The new boundary condition for a single screw dislocation core in BCC iron has been devised to calculate the diffusion of hydrogen using the first principles calculation. It is found that the core structure of a screw dislocation changes drastically by extension due to the presence of high density hydrogen atoms in the core region. Also, we searched the diffusion path of a hydrogen atom from the surrounding trapping lattice site to the core of a screw dislocation, and found that there is the large energy barrier of 0.25eV. We conclude that the diffusion of hydrogen atoms along the core of a screw dislocation is very unlikely to occur in BCC iron. (author)

  14. A systematic study on the interfacial energy of O-line interfaces in fcc/bcc systems

    International Nuclear Information System (INIS)

    Habit planes between face-centered cubic (fcc)/body-centered cubic (bcc) phases usually exhibit irrational orientations, which often agree with the O-line criterion. Previously, energy calculation was made to test whether the habit planes were energetically favorable, but the values of the energy were found very sensitive to the initial atomic configuration in an irrationally orientated interface. In this paper, under the O-line condition, simple selection criteria are proposed to define and remove interfacial interstitials and vacancies in the initial atomic configuration. The criteria are proved to be effective in obtaining robust energy results. Interfacial energies of two types of O-line interfaces in fcc/bcc systems are calculated following the criteria. The observed transformation crystallography of precipitates in Ni–Cr and Cu–Cr systems can be explained consistently as the irrational habit plane in each system is associated with the lowest energy O-line interface. (paper)

  15. Theoretical Investigation of Stabilizing Mechanism by Boron in Body-Centered Cubic Iron Through (Fe,Cr)23(C,B)6 Precipitates

    Science.gov (United States)

    Sahara, Ryoji; Matsunaga, Tetsuya; Hongo, Hiromichi; Tabuchi, Masaaki

    2016-05-01

    Small amounts of boron improve the mechanical properties in high-chromium ferritic heat-resistant steels. In this work, the stabilizing mechanism by boron in body-centered cubic iron (bcc Fe) through (Fe,Cr)23(C,B)6 precipitates was investigated by first-principles calculations. Formation energy analysis of (Fe,Cr)23(C,B)6 reveals that the compounds become more stable to elemental solids as the boron concentration increases. Furthermore, the interface energy of bcc Fe(110) || Fe23(C,B)6(111) also decreases with boron concentration in the compounds. The decreased interface energy caused by boron addition is explained by the balance between the change in the phase stability of the precipitates and the change in the misfit parameter for the bcc Fe matrix and the precipitates. These results show that boron stabilizes the microstructure of heat-resistant steels, which is important for understanding the origins of the creep strength in ferritic steels.

  16. TEM study of microstructural development during heating in a nanolaminated amorphous ZrAlCuFe/crystalline CuCoFeNi composite structure

    International Nuclear Information System (INIS)

    Highlights: • Microstructural transformation in amorphous/crystalline structure was studied. • Amorphous/crystalline structure was stable during heating up to 600 °C. • Transformation of the amorphous/crystalline structure occurred at temperatures above 600 °C. • Heating of the non-equilibrium multicomponent system produced complex patterns. • Heating at 900 °C produced a new morphologically complex nanocomposite structure. - Abstract: A nanolaminated amorphous/crystalline composite structure with a mean lamellar thickness of around 10 nm was fabricated on a Cu plate. The crystalline phase was a multicomponent non-equilibrium face-centered cubic (fcc) Cu(CoFeNi) solid solution, and the amorphous phase was a Zr-based compound containing Al, Cu, and Fe. The composite’s thermal stability and microstructural transformation was studied over the temperature range of 200–900 °C. The lamellae maintained their shape during heating up to 600 °C. Transformation of the structure began with separation of the elements inside the crystalline lamellae. In early stages of the transformation, hardening occurred. At 600 °C, an interconnected CoFe phase started to appear with an ordered body-centered cubic (bcc) crystal structure. When the temperature was increased further, the nanolaminated structure degraded and the bcc CoFe phase grew. At 750 °C, the bcc CoFe phase formed a complex network that surrounded the formerly amorphous regions, and the bcc CoFe phase started transforming to the fcc configuration. The Cu atoms segregated to the grain boundaries of the fcc CoFe(Ni) phase. The amorphous phase gradually crystallized into nanometer-sized polycrystalline grains that were attributed to the Zr(Al)O2 phase. As a result of these transformations, heating at 900 °C produced a morphologically complex nanocomposite structure consisting of branched grains of Zr(Al)O2 and fcc CoFe(Ni) with Cu inclusions. When the nanolaminated structure had completely transformed

  17. TEM study of microstructural development during heating in a nanolaminated amorphous ZrAlCuFe/crystalline CuCoFeNi composite structure

    Energy Technology Data Exchange (ETDEWEB)

    Romankov, S., E-mail: romankovs@mail.ru [Chonbuk National University, 664-14 Duckjin-dong, Jeonju 561756 (Korea, Republic of); Park, Y.C., E-mail: parkyc@nnfc.re.kr [National Nanofab Center, 53-3 Eoeun-dong, Daejeon 305806 (Korea, Republic of)

    2015-01-15

    Highlights: • Microstructural transformation in amorphous/crystalline structure was studied. • Amorphous/crystalline structure was stable during heating up to 600 °C. • Transformation of the amorphous/crystalline structure occurred at temperatures above 600 °C. • Heating of the non-equilibrium multicomponent system produced complex patterns. • Heating at 900 °C produced a new morphologically complex nanocomposite structure. - Abstract: A nanolaminated amorphous/crystalline composite structure with a mean lamellar thickness of around 10 nm was fabricated on a Cu plate. The crystalline phase was a multicomponent non-equilibrium face-centered cubic (fcc) Cu(CoFeNi) solid solution, and the amorphous phase was a Zr-based compound containing Al, Cu, and Fe. The composite’s thermal stability and microstructural transformation was studied over the temperature range of 200–900 °C. The lamellae maintained their shape during heating up to 600 °C. Transformation of the structure began with separation of the elements inside the crystalline lamellae. In early stages of the transformation, hardening occurred. At 600 °C, an interconnected CoFe phase started to appear with an ordered body-centered cubic (bcc) crystal structure. When the temperature was increased further, the nanolaminated structure degraded and the bcc CoFe phase grew. At 750 °C, the bcc CoFe phase formed a complex network that surrounded the formerly amorphous regions, and the bcc CoFe phase started transforming to the fcc configuration. The Cu atoms segregated to the grain boundaries of the fcc CoFe(Ni) phase. The amorphous phase gradually crystallized into nanometer-sized polycrystalline grains that were attributed to the Zr(Al)O{sub 2} phase. As a result of these transformations, heating at 900 °C produced a morphologically complex nanocomposite structure consisting of branched grains of Zr(Al)O{sub 2} and fcc CoFe(Ni) with Cu inclusions. When the nanolaminated structure had completely

  18. Metabolism and autoradiographic evaluation of [{sup 18}F]FE-CIT: a Comparison with [{sup 123}I]{beta}-CIT and [{sup 123}I]FP-CIT

    Energy Technology Data Exchange (ETDEWEB)

    Ettlinger, Dagmar E. [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Haeusler, Daniela; Wadsak, Wolfgang [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Girschele, Friedrich; Sindelar, Karoline M. [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Mien, Leonhard-Key [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Ungersboeck, Johanna [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Viernstein, Helmut; Kletter, Kurt; Dudczak, Robert [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Mitterhauser, Markus [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria); Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna (Austria)], E-mail: markus.mitterhauser@meduniwien.ac.at

    2008-05-15

    Purpose: Since the late 1980s, cocaine analogues based on the phenyltropane structure, such as [{sup 11}C]CFT and [{sup 123}I]{beta}-CIT have been used for the imaging of the dopamine transporter. FE-CIT (fluoropropyl ester) and FP-CIT (N-fluoropropyl derivative) are further analogues. The aim of this study was to (1) evaluate and compare the metabolic stability of {beta}-CIT, FP-CIT and FE-CIT against carboxyl esterases and (2) evaluate selectivity of [{sup 18}F]FE-CIT compared to [{sup 123}I]{beta}-CIT and [{sup 123}I]FP-CIT using autoradiography. Methods: In vitro enzymatic hydrolysis assays were performed using different concentrations of {beta}-CIT, FE-CIT and FP-CIT with constant concentrations of carboxyl esterase. Autoradiography was performed on coronal 20-{mu}m rat brain sections incubated with different radioactivity concentrations of [{sup 123}I]{beta}-CIT, [{sup 123}I]FP-CIT or [{sup 18}F]FE-CIT and, additionally, with 3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile [serotonin transporter (SERT)] and nisoxetine [norepinephrine transporter (NET)] for blocking experiments. Results: In vitro assays showed Michaelis-Menten constants of 175 {mu}mol ({beta}-CIT), 183 {mu}mol (FE-CIT) and 521 {mu}mol (FP-CIT). Limiting velocities were 0.1005 {mu}mol/min ({beta}-CIT), 0.1418 {mu}mol/min (FE-CIT) and 0.1308 {mu}mol/min (FP-CIT). This indicates a significantly increased stability of FP-CIT, whereas carboxyl esterase stability of {beta}-CIT and FE-CIT showed no significant difference. Autoradiographic analyses revealed a good correlation between dopamine transporter (DAT)-rich regions and the uptake pattern of FE-CIT. Blocking experiments showed a higher DAT selectivity for [{sup 18}F]FE-CIT than for the other two tracers. Conclusion: We found that (1) the metabolic stability of FE-CIT was comparable to that of {beta}-CIT, whereas FP-CIT showed higher resistance to enzymatic hydrolysis; and (2) the overall uptake pattern of [{sup 18}F]FE-CIT on

  19. Growth of a brittle crack (001) in 3D bcc iron crystal with a Cu nano-particle

    Czech Academy of Sciences Publication Activity Database

    Uhnáková, Alena; Machová, Anna; Hora, Petr; Červená, Olga

    2014-01-01

    Roč. 83, February (2014), s. 229-234. ISSN 0927-0256 R&D Projects: GA ČR GA101/09/1630 Institutional support: RVO:61388998 Keywords : brittle crack extension * 3D * mode I * bcc iron * Cu nano-particle * molecular dynamics * acoustic emission Subject RIV: JG - Metallurgy Impact factor: 2.131, year: 2014 http://www.sciencedirect.com/science/article/pii/S0927025613006575

  20. Research on China’s Regional Cultural Industries’ Efficiency Based on Factor Analysis and BCC & Super Efficiency Model

    OpenAIRE

    Yuxian Fan; Xiaoling Yuan; Jie Qin

    2013-01-01

    Cultural industries are becoming important drivers for global economic growth. Competitiveness of cultural industries lies in its performance. This paper takes deep research on the cultural industries’ performance of 31 regions in China by the methods of factor analysis and super BCC efficiency model, using the whole statement data of 2010 from cultural industries. As the study shows, there are only 7 provinces which are efficient DMUS in DEA, and inefficacy in scale is one of the most import...

  1. Study of loop-loop and loop-edge dislocation interactions in bcc iron

    International Nuclear Information System (INIS)

    Recent theoretical calculations and atomistic computer simulations have shown that one-dimensional glissile clusters of self-interstitial atoms (SIAs) play an important role in the evolution of microstructure in metals and alloys under cascade damage conditions. Recently, it has been proposed that the evolution of heterogeneities such as dislocation decoration and rafts has serious impacts on the mechanical properties on neutron-irradiated metals. In the present work, atomic-scale computer modelling (ASCM) has been applied to study the mechanisms for the formation of such microstructure in bcc iron. It is shown that glissile clusters with parallel Burgers vectors interact strongly and can form extended immobile complexes, i.e., rafts. Similar attractive interaction exists between dislocation loops and an edge dislocation. These two mechanisms may be responsible for the formation of extended complexes of dislocation loops below the extra half-plane of edge dislocations. The interaction energies between loops and between an edge dislocation and loops has been calculated as a function of distance using ASCM and the results for long-range interactions are in good agreement with the results of isotropic elasticity calculations

  2. Vacancy properties in 5d bcc transition metals: Ab initio study at finite electron temperature

    International Nuclear Information System (INIS)

    The self-diffusion constants for the monovacancy mechanism in the 5d transition-metals with bcc structure (β-Hf, Ta and W) are investigated by first-principles pseudopotential calculations within the framework of the Local Density Functional Theory. The formation and migration energies, calculated for relaxed configurations using supercells containing 27 and 54 atomic sites, are in quite good agreement with experimental data in Ta and W, with a discrepancy lower than 10%. Preliminary results in β-Hf using smaller supercells suggest very large and relaxation energies. The effects of finite electron-temperature is shown to be quite important, and very different from one element to the other: the electron contribution to the activation entropy is negative in Ta and positive in W, reaching respectively -2 kB and 2 kB at the melting temperature. Using simple estimates for the attempt frequencies and the vibrational formation entropies, the calculated self-diffusion coefficient is in exceptional agreement with experiments in W, and clearly reproduces an accelerated diffusivity in Ta

  3. Elastic constants of bcc shape-memory binary alloys: Effect of the configurational ordering

    Science.gov (United States)

    Castán, T.; Planes, A.

    1988-10-01

    The relationship between the elastic shear modulus C'=1/2(C11-C12) and the atomic order state in a shape-memory binary alloy AxB1-x above its martensitic transition temperature is analyzed. We first present a simple method to evaluate the elastic constants in binary alloys, assuming the atoms interact via a two-body Morse potential. For CuZn and AgZn alloys, the potential parameters corresponding to the different A-A, B-B, and A-B pairs are determined from experimental data of the elastic constant C' for different alloy compositions. We next calculate C' at 0 K as a function of the ordering state. To do this, we use atomic configurations obtained with a Monte Carlo simulation of the Ising model for a bcc binary alloy, at each temperature Ti. We obtain a linear relationship between C' and the short-range-order parameter η. We also show that the deviations from the linear behavior observed when C' is represented against the square of the long-rang-order parameter come mainly from the critical behavior of the system near the order-disorder temperature Tc.

  4. X-Ray Microdiffraction Characterization of Deformation Heterogeneities in BCC Crystals

    International Nuclear Information System (INIS)

    The deformation behavior of BCC metals is being investigated by x-ray microdiffraction measurements (mu XRD) for the purpose of characterizing the dislocation structure that results from uniaxial compression experiments. The high brilliance synchrotron source at the Advanced Light Source (Lawrence Berkeley National Lab) and the micron resolution of the focusing optics allow for the mapping of Laue diffraction patterns across a sample. These measurements are then analyzed in order to map the distribution of residual stresses in the crystal. An important finding is the observation of Laue spot ''streaking'', which indicates localized rotations in the lattice. These may represent an accumulation of same-sign dislocations. Theoretical modeling of the diffraction response for various slip systems is presented, and compared to experimental data. Preliminary results include orientation maps from a highly strained Ta bicrystal and a less highly strained Mo single crystal. The orientation maps of the bicrystal indicate a cell-like structure of dense dislocation walls. This deformation structure is consistent with previous OIM studies of the same crystal. The results suggest that mu XRD may be a particularly useful tool for microscale studies of deformation patterns in a multi-scale investigation of the mechanisms of deformation that ranges from macroscopic deformation tests to high resolution TEM studies of dislocation structures

  5. 3D dislocation dynamics: stress-strain behavior and hardening mechanisms in fcc and bcc metals

    International Nuclear Information System (INIS)

    A dislocation dynamics (DD) model for plastic deformation, connecting the macroscopic mechanical properties to basic physical laws governing dislocation mobility and related interaction mechanisms, has been developed. In this model there is a set of critical reactions that determine the overall results of the simulations, such as the stress-strain curve. These reactions are annihilation, formation of jogs, junctions, and dipoles and cross-slip. In this paper, we discuss these reactions and the manner in which they influence the simulated stress-strain behavior of fcc and bcc metals. In particular, we examine the formation (zipping) and strength of dipoles and junctions, and effect of jogs, using the dislocation dynamics model. We show that the strengths (unzipping) of these reactions for various configurations can be determined by direct evaluation of the elastic interactions. Next, we investigate the phenomenon of hardening in metals subjected to cascade damage. The investigated microstructure consists of small dislocation loops decorating the mobile dislocations. Preliminary results reveal that these loops act as hardening agents, trapping the dislocations and resulting in increased yield stress

  6. Dislocation dynamics modelling of brittle-ductile transitions in BCC metals

    Energy Technology Data Exchange (ETDEWEB)

    Tarleton, E.; Roberts, S.; Novokshanov, R. [Oxford Univ., Dept. of Materials (United Kingdom)

    2007-07-01

    Full text of publication follows: Bend tests on single crystals of BCC metals (Tungsten, Iron and Iron Chromium alloys) show the brittle ductile transition temperature of a pre-cracked specimen under 4 point bending decreases by around 10 K for each order of magnitude decrease in strain rate. At higher temperatures or lower strain rates large numbers of dislocations are produced which are able to shield the crack from the external loading. This increased plasticity in the region of the crack tip can delay or even prevent brittle fracture meaning the specimen is ductile. These experiments have been modelled using a 2D dislocation dynamics code which simulates the nucleation and motion of dislocations around a loaded crack, and their effect of the crack-tip stress intensity factor. At high simulated temperatures or low simulated loading rates, dislocations can shield the crack tip sufficiently to prevent fracture. The model gives excellent agreement between predicted and experimental value of BDT temperatures and the variation with loading rate. However this good agreement occurs only the slip direction is at 70 degrees to the crack plane, rather than the 45 degree angle imposed by the crystallography of the real test specimens. 3D modelling of a crack is currently being performed to see if cross slip can account for an effective slip plane angle close to 70 degrees. (authors)

  7. Atomic-scale simulations of material behaviors and tribology properties for BCC metal film

    Science.gov (United States)

    H, D. Aristizabal; P, A. Parra; P, López; E, Restrepo-Parra

    2016-01-01

    This work has two main purposes: (i) introducing the basic concepts of molecular dynamics analysis to material scientists and engineers, and (ii) providing a better understanding of instrumented indentation measurements, presenting an example of nanoindentation and scratch test simulations. To reach these purposes, three-dimensional molecular dynamics (MD) simulations of nanoindentation and scratch test technique were carried out for generic thin films that present BCC crystalline structures. Structures were oriented in the plane (100) and placed on FCC diamond substrates. A pair wise potential was employed to simulate the interaction between atoms of each layer and a repulsive radial potential was used to represent a spherical tip indenting the sample. Mechanical properties of this generic material were obtained by varying the indentation depth and dissociation energy. The load-unload curves and coefficient of friction were found for each test; on the other hand, dissociation energy was varied showing a better mechanical response for films that present grater dissociation energy. Structural change evolution was observed presenting vacancies and slips as the depth was varied. Project supported by la DirecciónNacional de Investigación of the Universidad Nacional de Colombia, “the Theoretical Study of Physical Properties of Hard Materials for Technological Applications” (Grant No. 20101007903).

  8. Lattice relaxations and hyperfine fields of heavy impurities in Fe

    OpenAIRE

    Korhonen, T.; Settels, A.; Papanikolaou, N.; Zeller, R.; Dederichs, P. H.

    2000-01-01

    We present first-principles calculations of the lattice relaxations and hyperfine fields of heavy impurities in bcc Fe. We consider impurities of the 5sp and 6sp series, containing the largest atoms in the periodic table. As an application we calculate the hyperfine fields of these impurities and in particular the effects of lattice relaxations on these fields. The calculations are based on a full-potential Korringa-Kohn-Rostoker Green's-function method for defects and employ the local spin-d...

  9. Comparison in the electronic structure of YBa2Fe3O8 insulator with YBa2Cu3O7 and SmFeAsO0.8F0.2 superconductors

    International Nuclear Information System (INIS)

    Highlights: • The electronic structure of YBa2Fe3O8, YBa2Cu3O7 and SmFeAsO0.8F0.2 were investigated by XPS. • The core-level and valence-band structures of these systems are different. • The density of states at Fermi level is related to the superconductivity. -- Abstract: The electronic structure and chemical states of relevant elements of YBa2Fe3O8 are investigated using X-ray photoemission spectroscopy (XPS), compared with those of YBa2Cu3O7 and SmFeAsO0.8F0.2 superconductors. The typical differences and similarities in core-level and valence-band structures of these systems have been detected, strongly suggesting that the superconductivity have the finite density of states around Fermi level. Several features of O1s, Y3d, Ba3d, and Fe2p core lines in XPS spectra are also carefully compared and analyzed

  10. Phonon density of states in nanocrystalline 57Fe

    Indian Academy of Sciences (India)

    Ranber Singh; S Prakash; R Meyer; P Entel

    2003-03-01

    The Born–von Karman model is used to calculate phonon density of states (DOS) of nanocrystalline bcc Fe. It is found that there is an anisotropic stiffening in the interatomic force constants and hence there is shrinking in the nearest-neighbour distances in the nanophase. This leads to additional vibrational modes above the bulk phonons near the bottom of the phonon band. It is found that the high energy phonon modes of nanophase Fe are the surface modes. The calculated phonon DOS closely agree with the experimental data except a peak at 37 meV. The calculated phonon dispersion relations are also compared with those of the bulk phonons and anomalous behaviour is discussed in detail. The specific heat in nanophase enhances as compared to bulk phase at low temperatures and the calculated Debye temperature agrees with the experimental results. It is predicted that the nanocrystalline Fe may consist of about 14 GPa pressure.

  11. Low temperature study of mechanically alloyed Fe{sub 67.5}Ni{sub 32.5} Invar sample

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, J.L. [Departamento de Física, Universidad del Valle, A. A. 25360, Cali (Colombia); Valderruten, J.F. [Departamento de Ingeniería, Universidad Cooperativa de Colombia, Bucaramanga (Colombia); Pérez Alcázar, G.A., E-mail: gpgeperez@gmail.com [Departamento de Física, Universidad del Valle, A. A. 25360, Cali (Colombia); Colorado, H.D. [Departamento de Física, Universidad del Valle, A. A. 25360, Cali (Colombia); Romero, J.J. [Instituto de Microelectrónica de Madrid, CNM, CSIC, C/Isaac Newton 8, Tres Cantos, 28760 Madrid (Spain); González, J.M. [Unidad Asociada ICMM-IMA, Apdo. 155, Las Rozas, 28230 Madrid (Spain); Greneche, J.M. [LUNAM, Université du Maine, Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, 72085 Le Mans, Cedex 9 (France); Marco, J.F. [Instituto de Química-Física ' ' Rocasolano' ' , CSIC, C/Serrano 119, 28006 Madrid (Spain)

    2015-07-01

    The study at low temperatures of powder of the Invar alloy, Fe{sub 67.5}Ni{sub 32.5}, produced by mechanical alloying, shows that the sample presents two structural phases, the Fe–Ni BCC and the Fe–Ni FCC. The {sup 57}Fe Mössbauer spectra obtained in this sample at different temperatures were fitted considering two hyperfine magnetic field distributions. The first one having the larger mean field and only one peak (at ca. 35 T, varying with T), is associated with the BCC phase, and the second one, presenting several broad peaks (distributed between 10 and 35 T), is associated to the FCC phase. A singlet, which is associated to low spin Fe sites of the FCC phase, was also considered. The mean hyperfine magnetic field of the BCC phase increases monotonically as temperature decreases, while that of the FCC phase presents an anomaly near 75 K. The real part of the ac magnetic susceptibility temperature scans presents a peak whose position increases from 31 to 39 K, when the ac field frequency increases from 100 to 5000 Hz. These results permit to associate the detected anomaly to the occurrence of a reentrant spin glass transition. - Highlights: • XRD detect the BCC and FCC nanocrystalline phases in the Invar Fe{sub 67.5}Si{sub 32.5}. • Mössbauer spectra were fitted with two HMFDs and a singlet. • The MHMF and the isomer shift of the FCC structure present a kink near 61 K. • Magnetic susceptibility proved that this anomaly corresponds to a RSG- F transition. • The Invar composition of the MA Fe{sub 67.5}Si{sub 32.5} alloy presents the frustration phenomena.

  12. Phonon density of states in epitaxial Fe/Cr(001) superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Ruckert, T.; Keune, W.; Sturhahn, W.; Hu, M. Y.; Sutter, J. P.; Toellner, T. S.; Alp, E. E.

    1999-10-21

    Incoherent nuclear resonant absorption of synchrotron radiation at the 14.413 keV nuclear resonance of {sup 57}Fe was employed to measure directly the Fe-projected (partial) photon density of states (DOS) in epitaxial [Fe(8.7ML)/Cr(8ML)]{sub 200} superlattices and alloy films MBE-grown on MgO(001). Isotopically depleted {sup 56}Fe was used which gives no resonance signal. 0.7 monolayers (ML) thick {sup 57}Fe-probe layer (1{angstrom}) of 95.5% enrichment were placed either at the {sup 56}Fe-on-Cr interfaces or at the center of the {sup 56}Fe layers, thus providing a nuclear resonance signal from different places in the films. In addition, the authors prepared an epitaxial film which contains only a 1{angstrom}-thick {sup 57}Fe submonolayer in Cr(001) and no {sup 56}Fe layers. Moreover, they prepared a 7000 {angstrom}-thick epitaxial {sup 57}Fe{sub 0.03}Cr{sub 0.97}(001) alloy film. The measurements were performed at 300 K with 2.3 meV energy resolution around 14.413 keV. The phonon DOS of the center site was found to be very similar to that of bulk bcc Fe. Compared to the center site, the DOS of the other samples show distinct differences. In particular, longitudinal vibrations of Fe atoms are suppressed at the Fe/Cr interfaces.

  13. Selective dissolution in AlFeNb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Drensler, Stefanie; Mardare, Cezarina Cela; Hassel, Achim Walter [Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University, Linz (Austria); Milenkovic, Srdjan [IMDEA Materials, Parque Cientifico de la Universidad Carlos III de Madrid, Avda. del mar Mediterraneo 22, 28918 Leganes (Spain)

    2012-05-15

    Three different AlFeNb alloys of various compositions were prepared by arc melting. X-ray diffraction (XRD) investigation of the melted samples proved the presence of two phases identified as a bcc {alpha}(Fe,Al) solid solution and a hexagonal C14 (Fe,Al){sub 2}Nb Laves phase. Subsequent electrochemical treatment allowed for a selective dealloying of the {alpha}(Fe,Al) or respective FeAl phase and resulted in releasing differently microstructured surfaces. These structures ranged from regular lamellar structures towards branched, fibrous structures. Scanning electron microscope (SEM) characterisation along with a local energy dispersive X-ray spectroscopic (EDX) analysis of the samples and atomic absorption spectrometry (AAS) analysis of the electrolyte revealed a preferential Fe dissolution and the passive nature of the Nb. The results demonstrate that the phases present in the alloys strongly depend on the production and heat treatment history of the sample. SEM micrograph of (A) Fe-15Al-10Nb and (B) Fe-26Al-4Nb after anodisation in 0.4 M borate buffer. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Thermodynamic assessment of the La-Fe-O system

    DEFF Research Database (Denmark)

    Povoden-Karadeniz, E.; Grundy, A.N.; Chen, Ming;

    2009-01-01

    -sublattice model for ionic liquids. The calculated La-Fe phase diagram, LaO1.5-FeO x phase diagrams at different oxygen partial pressures, and phase equilibria of the La-Fe-O system at 873, 1073, and 1273 K as a function of oxygen partial pressures are presented.......The La-Fe and the La-Fe-O systems are assessed using the Calphad approach, and the Gibbs energy functions of ternary oxides are presented. Oxygen and mutual La and Fe solubilities in body-centered cubic (bcc) and face-centered cubic (fcc) structured metallic phases are considered in the modeling....... Oxygen nonstoichiometry of perovskite-structured La1±x Fe1±y O3−δ is modeled using the compound energy formalism (CEF), and the model is submitted to a defect chemistry analysis. The contribution to the Gibbs energy of LaFeO3 due to a magnetic order-disorder transition is included in the model...

  15. Density functional theory studies of screw dislocation core structures in bcc metals

    DEFF Research Database (Denmark)

    Frederiksen, Søren Lund; Jacobsen, Karsten Wedel

    2003-01-01

    The core structures of (I 11) screw dislocations in bee metals are studied using density functional theory in the local-density approximation. For Mo and Fe, direct calculations of the core structures show the cores to be symmetric with respect to 180degrees rotations around an axis perpendicular...... to the dislocation line. The magnetic moment in the Fe core is shown to be reduced relative to the bulk value. Calculations of gamma surfaces and the elastic constants B, C' and c(44) are reported for Fe and all group VB and VIB metals. Using a criterion suggested by Vitek and Duesbery the...

  16. Evolution of structure, microstructure and hyperfine properties of nanocrystalline Fe50Co50 powders prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Nanostructured Fe50Co50 powders were prepared by mechanical alloying of Fe and Co elements in a vario-planetary high-energy ball mill. The structural properties, morphology changes and local iron environment variations were investigated as a function of milling time (in the 0-200 h range) by means of X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray analysis and 57Fe Moessbauer spectroscopy. The complete formation of bcc Fe50Co50 solid solution is observed after 100 h milling. As the milling time increases from 0 to 200 h, the lattice parameter decreases from 0.28655 nm for pure Fe to 0.28523 nm, the grain size decreases from 150 to 14 nm, while the meal level of strain increases from 0.0069% to 1.36%. The powder particle morphology at different stages of formation was observed by SEM. The parameters derived from the Moessbauer spectra confirm the beginning of the formation of Fe50Co50 phase at 43 h of milling. After 200 h of milling the average hyperfine magnetic field of 35 T suggests that a disordered bcc Fe-Co solid solution is formed. - Highlights: → Nanostructured Fe50Co50 powders were successfully prepared by mechanical alloying process. → Final average grain size value achieved after 200 h of milling was 14 nm. → For the longest milling time the majority of particle grains observed by SEM exhibits a round shape with small diameter.

  17. Mass Effects on Optical Phonons in L12-Ordered Pt357Fe and Pd357Fe

    International Nuclear Information System (INIS)

    Inelastic nuclear resonant scattering spectra of 57Fe atoms were measured on Pt357Fe and Pd357Fe with the L12 crystal structure, and with the same crystallographic sites for 57Fe atoms. Phonon partial density of states curves for 57Fe were obtained from these spectra. In comparison to the non-dispersive Einstein-like optical modes in Pt357Fe, the optical modes in Pd357Fe are broader. This difference can be understood in terms of the difference in mass of Pd and Pt.

  18. Alpha particle induced reactions on natCr up to 39 MeV: Experimental cross-sections, comparison with theoretical calculations and thick target yields for medically relevant 52gFe production

    International Nuclear Information System (INIS)

    Thin natCr targets were obtained by electroplating, using 23.75 μm Cu foils as backings. In five stacked foil irradiations, followed by high resolution gamma spectroscopy, the cross sections for production of 52gFe, 49,51cumCr, 52cum,54,56cumMn and 48cumV in Cr and 61Cu,68Ga in Cu were measured up to 39 MeV incident α-particle energy. Reduced uncertainty is obtained by simultaneous remeasurement of the natCu(α,x)67,66Ga monitor reactions over the whole energy range. Comparisons with the scarce literature values and results from the TENDL-2013 on-line library, based on the theoretical code family TALYS-1.6, were made. A discussion of the production routes for 52gFe with achievable yields and contamination rates was made

  19. The physical and mechanical metallurgy of advanced O+BCC titanium alloys

    Science.gov (United States)

    Cowen, Christopher John

    deformation mechanisms as a function of stress, temperature, and strain rate. Microstructure-creep relationships for Ti-Al-Nb-xB alloys were developed with the understanding gained. A rule-of-mixtures empirical model based on constituent phase volume fractions and strain rates was developed to predict the minimum creep rates of two-phase O+BCC microstructures. The most innovative results of this thesis were produced through the development of an in-situ creep testing methodology. The creep deformation evolution was chronicled in-situ during high temperature creep experiments, while creep displacement versus time data was simultaneously obtained. The in-situ experiments revealed that prior-BCC grain boundaries were the locus of damage accumulation during creep deformation. A methodology that allows in-situ observation of surface creep deformation as a function of creep displacement has yet to be presented in the literature.

  20. First-principles investigation into the effect of Cr on the segregation of multi-H at the Fe Σ3 (1 1 1) grain boundary

    International Nuclear Information System (INIS)

    First-principles calculations were carried out to investigate the effect of Cr on segregation of multiple H atoms in the Σ3 (1 1 1) grain boundary in bcc Fe. In the absence of Cr, four H atoms can be trapped at the interstitial site of the Fe grain boundary (areal density: 28 nm−2), and no H2 molecules are formed. The presence of Cr, however, suppresses the segregation tendency of H and only two H atoms can be trapped at this grain boundary. Although the volume expansion associated with the segregation of Cr to the grain boundary promotes H segregation, such a booting effect is unable to remedy the repulsion of H resulted from charge density increase in the grain boundary core. As a consequence, Cr mitigates H aggregation at the Σ3 (1 1 1) grain boundary in bcc Fe

  1. Thermodynamic assessments of the Cu-Mn-X (X: Fe, Co) systems

    International Nuclear Information System (INIS)

    The thermodynamic assessments of the Cu-Mn binary, Cu-Mn-Fe and Cu-Mn-Co ternary systems were carried out by using CALPHAD (calculation of phase diagrams) method on the basis of the experimental data including the thermodynamic properties and phase equilibria. The Gibbs free energies of the liquid, bcc, fcc, hcp (αMn) and (βMn) phases are described by the subregular solution model. The thermodynamic parameters of the Cu-Mn binary, Cu-Mn-Fe and Cu-Mn-Co ternary systems have been optimized for reproducing the experimental results in each system, respectively. An agreement between the calculated results and experimental data is obtained

  2. Dissolving, trapping and detrapping mechanisms of hydrogen in bcc and fcc transition metals

    Directory of Open Access Journals (Sweden)

    Yu-Wei You

    2013-01-01

    Full Text Available First-principles calculations are performed to investigate the dissolving, trapping and detrapping of H in six bcc (V, Nb, Ta, Cr, Mo, W and six fcc (Ni, Pd, Pt, Cu, Ag, Au metals. We find that the zero-point vibrations do not change the site-preference order of H at interstitial sites in these metals except Pt. One vacancy could trap a maximum of 4 H atoms in Au and Pt, 6 H atoms in V, Nb, Ta, Cr, Ni, Pd, Cu and Ag, and 12 H atoms in Mo and W. The zero-point vibrations never change the maximum number of H atoms trapped in a single vacancy in these metals. By calculating the formation energy of vacancy-H (Vac-Hn complex, the superabundant vacancy in V, Nb, Ta, Pd and Ni is demonstrated to be much more easily formed than in the other metals, which has been found in many metals including Pd, Ni and Nb experimentally. Besides, we find that it is most energetically favorable to form Vac-H1 complex in Pt, Cu, Ag and Au, Vac-H4 in Cr, Mo and W, and Vac-H6 in V, Nb, Ta, Pd and Ni. At last, we examine the detrapping behaviors of H atoms in a single vacancy and find that with the heating rate of 10 K/min a vacancy could accommodate 4, 5 and 6 H atoms in Cr, Mo and W at room temperature, respectively. The detrapping temperatures of all H atoms in a single vacancy in V, Nb, Ta, Ni, Pd, Cu and Ag are below room temperature.

  3. Development of a new formulation of interferons (HEBERPAG for BCC treatment

    Directory of Open Access Journals (Sweden)

    Bello-Rivero I

    2013-12-01

    Full Text Available Purpose: This work is aimed to show briefly, the clinical development of a new pharmaceutical formulation of interferons for the treatment of basal cell carcinoma. Methods: A rationale design of the combination of IFN-α2b and -γ based in their anti-proliferative synergism on several tumors cell lines identified adequate proportions to be combined to obtain the best clinical results. The potential mechanism of antitumoral effect was studied by qPCR mRNA quantification. HEBERPAG (anti-proliferative synergistic combination of co-formulated recombinant interferons-α2b and –γ was used in clinical trials in adult patients with non-melanoma skin cancer. Trials were conducted after approval by the ethics review boards of the institutions participating in trials; and the patients gave their written informed consent to be enrolled in the studies and receive HEBERPAG. Results: HEBERPAG inhibits the proliferation of several tumor cell lines in vitro and in vivo. The combination has improved pharmacodinamic properties. Several clinical trials have demonstrated the efficacy of HEBERPAG in BCC, with excellent cosmetic effect and well tolerable, mild side effects. HEBERPAG was approved by State Control Center for Drug, Medical Equipment and Devises in Cuba, for the treatment of basal cell carcinoma of any subtype, size and localization, and adjuvant to other treatments, surgical or not. After 3-year follow-up, a recurrence rate of 0.03% was detected in treated patients. Conclusions: HEBERPAG is a novel formulation of IFNs, more potent than separated IFNs for the treatment of basal cell carcinoma, with more rapid and prolonged clinical effect and excellent cosmetic effect and safety profile.

  4. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure

    International Nuclear Information System (INIS)

    Research highlights: → The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. → The elastic moduli and constants were measured by several resonant methods. → The crystal shows significant elastic asymmetry in tension and compression. → The crystal exhibits weak nonlinear elasticity with large elastic strain ∼2.5%. → The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the , and oriented single crystals, and C11, C12 and C44 of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the crystals: tension caused elastic softening with a large reversible strain of ∼4% and a stress plateau of ∼250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The crystals exhibited weak nonlinear elasticity with a large elastic strain of ∼2.5% and a high strength, approaching ∼20% and ∼30% of its ideal shear and ideal tensile strength respectively. The crystals showed linear elasticity with a small elastic strain of ∼1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.

  5. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.W.; Li, S.J.; Obbard, E.G.; Wang, H.; Wang, S.C. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Hao, Y.L., E-mail: ylhao@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Yang, R. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2011-05-15

    Research highlights: > The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. > The elastic moduli and constants were measured by several resonant methods. > The < 1 1 0> crystal shows significant elastic asymmetry in tension and compression. > The <1 0 0> crystal exhibits weak nonlinear elasticity with large elastic strain {approx}2.5%. > The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the <1 0 0>, <1 1 0> and <1 1 1> oriented single crystals, and C{sub 11}, C{sub 12} and C{sub 44} of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the <1 1 0> crystals: tension caused elastic softening with a large reversible strain of {approx}4% and a stress plateau of {approx}250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The <1 0 0> crystals exhibited weak nonlinear elasticity with a large elastic strain of {approx}2.5% and a high strength, approaching {approx}20% and {approx}30% of its ideal shear and ideal tensile strength respectively. The <1 1 1> crystals showed linear elasticity with a small elastic strain of {approx}1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.

  6. Plasticity and Failure in Nanocrystalline BCC Metals via Molecular Dynamics Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, R E

    2010-09-29

    Advances in the ability to generate extremely high pressures in dynamic experiments such as at the National Ignition Facility has motivated the need for special materials optimized for those conditions as well as ways to probe the response of these materials as they are deformed. We need to develop a much deeper understanding of the behavior of materials subjected to high pressure, especially the effect of rate at the extremely high rates encountered in those experiments. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum at pressures less than 100 GPa to investigate the processes associated with plastic deformation for strains up to 100%. We focus on 3D polycrystalline systems with typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures. We also present some results on void growth in nanocrystalline BCC metals under tension.

  7. Contribution of di-SIA to mass transport in Fe-Cr alloys

    Science.gov (United States)

    Ryabov, V. A.; Pechenkin, V. A.; Molodtsov, V. L.; Terentyev, D.

    2016-04-01

    Molecular dynamics simulations have been performed to study the diffusion characteristics of di-self interstitial atom (di-SIA) in BCC Fe-Cr alloys and corresponding mass transport of Fe and Cratoms in the temperature range 600-1000 K in the alloys with Cr content 5-25 at%, which is relevant for ferritic/martensitic steels. An original treatment is proposed in this work to account for a mixed migration mode composed of the diffusion of the cluster itself and break-up into a pair of independent SIAs. The ratio of self-diffusion coefficients of Cr and Fe is found to exceed unity in Fe-5Cr and Fe-10Cr alloys, which implies that under cascade-producing damage, 3D-migrating small SIA clusters will effectively contribute to the segregation of Cr to neutral and SIA-preferential sinks, eventually causing radiation induced segregation.

  8. Investigations of Local Corrosion Behavior of Plasma-Sprayed FeCr Nanocomposite Coating by SECM

    Science.gov (United States)

    Shi, Xi; Shu, Mingyong; Zhong, Qingdong; Zhang, Junliang; Zhou, Qiongyu; Bui, Quoc Binh

    2016-02-01

    FeCr alloy coating can be sprayed on low-carbon steel to improve the corrosion resistance because of FeCr alloy's high anti-corrosion capacity. In this paper, Fe microparticles/Cr nanoparticles coating (NFC) and FeCr microparticles coating (MFC) were prepared by atmospheric plasma spraying and NFC was heat-treated under hydrogen atmosphere at 800 °C (HNFC). EDS mapping showed no penetration of Ni in MFC and NFC while penetration of Ni occurred in HNFC. X-ray diffraction results indicated the form of the NiCrFe (bcc) solid solution in HNFC. SECM testing in 3.5 (wt.%) NaCl revealed that the anti-corrosion capacity of NFC improved compared with MFC, while HNFC improved further.

  9. Lattice location of O18 in ion implanted Fe crystals by Rutherford backscattering spectrometry, channeling and nuclear reaction analysis

    Science.gov (United States)

    Vairavel, Mathayan; Sundaravel, Balakrishnan; Panigrahi, Binaykumar

    2016-09-01

    There are contradictory theoretical predictions of lattice location of oxygen interstitial atom at tetrahedral and octahedral interstices in bcc Fe. For validating these predictions, 300 keV O18 ions with fluence of 5 × 1015 ions/cm2 are implanted into bcc Fe single crystals at room temperature and annealed at 400 °C. The Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA)/channeling measurements are carried out with 850 keV protons. The lattice location of implanted O18 is analysed using the α-particles yield from O18(p,α)N15 nuclear reaction. The tilt angular scans of α-particle yield along and axial directions are performed at room temperature. Lattice location of O18 is found to be at tetrahedral interstitial site by comparing the experimental scan with simulated scans using FLUX7 software.

  10. Magnetic Properties of Nanocrystalline Fe{sub x}Cu{sub 1-x} Alloys Prepared by Ball Milling

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, A.; Bouziane, K., E-mail: bouzi@squ.edu.om; Elzain, M. E. [Sultan Qaboos University, Physics Department, College of Science (Oman); Ren, X.; Berry, F. J. [The Open University, Department of Chemistry (United Kingdom); Widatallah, H. M. [Sudan Atomic Energy Commission, Institute of Nuclear Research (Sudan); Al Rawas, A.; Gismelseed, A.; Al-Omari, I. A. [Sultan Qaboos University, Physics Department, College of Science (Oman)

    2004-12-15

    X-ray diffraction, Moessbauer and magnetization measurements were used to study Fe{sub x}Cu{sub 1-x} alloys prepared by ball-milling. The X-ray data show the formation of a nanocrystalline Fe-Cu solid solution. The samples with x{>=}0.8 and x{<=}0.5 exhibit bcc or fcc phase, respectively. Both the bcc and fcc phases are principally ferromagnetic for x{>=}0.2, but the sample with x=0.1 remains paramagnetic down to 78 K. The influence of the local environment on the hyperfine parameters and the local magnetic moment are discussed using calculations based on the discrete-variational method in the local density approximation.

  11. Creep properties of annealed Zr-Nb-O and stress-relieved Zr-Nb-Sn-Fe cladding tubes and their performance comparison

    International Nuclear Information System (INIS)

    Creep properties of annealed Zr-Nb-O and stress-relieved Zr-Nb-Sn-Fe cladding tubes were studied and compared. The creep rates of the annealed Zr-Nb-O alloy were found to be greater than those of the stress-relieved Zr-Nb-Sn-Fe alloy. Zr-Nb-O alloy was found to have stress exponents of 5-7 independent of stress level whereas Zr-Nb-Sn-Fe alloy exhibited the transition of the stress exponent from 6.5 to 7.5 in the lower stress region to ∼4.2 in the higher stress region. The reduction of stress exponent at high stresses in Zr-Nb-Sn-Fe can be explained in terms of the dynamic solute-dislocation effect caused by Sn atoms. The constancy of stress exponent without the transition was observed in Zr-Nb-O alloy, supporting that the decrease of the stress exponent with increasing stress in Zr-Nb-Sn-Fe is associated with Sn atoms. The difference of creep life between annealed Zr-Nb-O and stress-relieved Zr-Nb-Sn-Fe is not large considering the large difference of strength level between annealed Zr-Nb-O and annealed stress-relieved Zr-Nb-Sn-Fe. The better-than-expected creep life of annealed Zr-Nb-O alloy can be attributable to the combined effects of creep ductility enhancement associated with softening and the decreased contribution of grain boundary diffusion due to the increased grain size.

  12. Magnetostrictive behaviors of Fe-Si(001) single-crystal films under rotating magnetic fields

    Science.gov (United States)

    Kawai, Tetsuroh; Aida, Takuya; Ohtake, Mitsuru; Futamoto, Masaaki

    2015-05-01

    Magnetostrictive behaviors under rotating magnetic fields are investigated for bcc(001) single-crystal films of Fe100-x-Six(x = 0, 6, 10 at. %). The magnetostriction observation directions are along bcc[100] and bcc[110] of the films. The magnetostriction waveform varies greatly depending on the observation direction. For the observation along [100], the magnetostriction waveform of all the films is bathtub-like and the amplitude stays at almost constant even when the magnetic field is increased up to the anisotropy field. On the other hand, the waveform along [110] is triangular and the amplitude increases with increasing magnetic field up to the anisotropy field and then saturates. In addition, the waveform of Fe90Si10 film is distorted triangular when the applied magnetic fields are less than its anisotropy field. These magnetostrictive behaviors under rotating magnetic fields are well explained by employing a proposed modified coherent rotation model where the anisotropy field and the magnetization reversal field are determined by using measured magnetization curves. The results show that magnetocrystalline anisotropy plays important role on magnetostrictive behavior under rotating magnetic fields.

  13. Influence of atomic ordering on sigma phase precipitation of the Fe{sub 50}Cr{sub 50} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Vélez, G.Y., E-mail: g.y.velezcastillo@gmail.com [Universidad del Valle, Departamento de Física, A.A. 25360 Cali (Colombia); Instituto de Física, Universidad Autónoma de San Luis Potosí, avenida Manuel Nava 6, zona universitaria, 78290 San Luis Potosí, SLP México (Mexico); Pérez Alcázar, G.A. [Universidad del Valle, Departamento de Física, A.A. 25360 Cali (Colombia)

    2015-09-25

    Highlights: • σ-FeCr phase can be delayed when α-FeCr phase is ordered. • The formation of σ phase is favored by concentration gradients of α phase. • We determine the iron occupation number of the five sites of σ-Fe{sub 50}Cr{sub 50}. - Abstract: In this work we report a study of the kinetic of the formation of the σ-Fe{sub 50}Cr{sub 50} alloy which is obtained by heat treatment of α-FeCr samples with different atomic ordering. Two α-FeCr alloys were obtained, one by mechanical alloying and the other by arc-melting. Both alloys were heated at 925 K for 170 h and then quenched into ice water. Before heat treatment both alloys exhibit α-FeCr disordered structure with greater ferromagnetic behavior in the alloy obtained by mechanical alloying due to its higher atomic disorder. The sigma phase precipitation is influenced by the atomic ordering of the bcc samples: in the alloy obtained by mechanical alloying, the bcc phase is completely transformed into the σ phase; in the alloy obtained by melted the α–σ transformation is partial.

  14. The Integrated Calcium II Triplet as a Metallicity Indicator: Comparisons with High Resolution [Fe/H] in M31 Globular Clusters

    CERN Document Server

    Sakari, Charli M

    2015-01-01

    Medium resolution (R=4,000 to 9,000) spectra of the near infrared Ca II lines (at 8498, 8542, and 8662 A) in M31 globular cluster integrated light spectra are presented. In individual stars the Ca II triplet (CaT) traces stellar metallicity; this paper compares integrated CaT strengths to well determined, high precision [Fe/H] values from high resolution integrated light spectra. The target globular clusters cover a wide range in metallicity (from [Fe/H] = -2.1 to -0.2). While most are older than 10 Gyr, some may be of intermediate age (2-6 Gyr). A handful (3-6) have detailed abundances (e.g. low [Ca/Fe]) that indicate they may have been accreted from dwarf galaxies. Using various measurements and definitions of CaT strength, it is confirmed that for GCs with [Fe/H] < -0.4 and older than 2 Gyr the integrated CaT traces cluster [Fe/H] to within about 0.2 dex, independent of age. CaT lines in metal rich GCs are very sensitive to nearby atomic lines (and TiO molecular lines in the most metal rich GCs), largel...

  15. Increased magnetic moment induced by lattice expansion from α-Fe to α′-Fe{sub 8}N

    Energy Technology Data Exchange (ETDEWEB)

    Dirba, Imants, E-mail: dirba@fm.tu-darmstadt.de; Komissinskiy, Philipp; Alff, Lambert, E-mail: alff@oxide.tu-darmstadt.de [Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Gutfleisch, Oliver [Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Fraunhofer-Projektgruppe für Wertstoffkreisläufe und Ressourcenstrategie IWKS, 63457 Hanau (Germany)

    2015-05-07

    Buffer-free and epitaxial α-Fe and α′-Fe{sub 8}N{sub x} thin films have been grown by RF magnetron sputtering onto MgO (100) substrates. The film thicknesses were determined with high accuracy by evaluating the Kiessig fringes of X-ray reflectometry measurements allowing a precise volume estimation. A gradual increase of the nitrogen content in the plasma led to an expansion of the iron bcc unit cell along the [001] direction resulting finally in a tetragonal distortion of about 10% corresponding to the formation of α′-Fe{sub 8}N. The α-Fe lattice expansion was accompanied by an increase in magnetic moment to 2.61 ± 0.06μ{sub B} per Fe atom and a considerable increase in anisotropy. These experiments show that—without requiring any additional ordering of the nitrogen atoms—the lattice expansion of α-Fe itself is the origin of the increased magnetic moment in α′-Fe{sub 8}N.

  16. Epitaxial growth of MgO and Fe/MgO/Fe magnetic tunnel junctions on (100)-Si by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Epitaxial growth of MgO barrier on Si is of technological importance due to the symmetry filtering effect of the MgO barrier in conjunction with bcc-ferromagnets. We study the epitaxial growth of MgO on (100)-Si by molecular beam epitaxy. MgO matches Si with 4:3 cell ratio, which renders Fe to be 45 deg. rotated relative to Si, in sharp contrast to the direct epitaxial growth of Fe on Si. The compressive strains from Si lead to the formation of small angle grain boundaries in MgO below 5 nm, and also affect the transport characteristics of Fe/MgO/Fe magnetic tunnel junctions formed on top

  17. Influence of composition on hyperfine interactions in FeMoCuB nanocrystalline alloys

    International Nuclear Information System (INIS)

    Influence of varying Fe/B ratio upon hyperfine interactions is investigated in the Fe91-xMo8Cu1Bx rapidly quenched alloy. The latter is studied both in the as quenched (amorphous) state as well as after one-hour annealing at different temperatures ranging from 330 grad C up to 650 grad C. Such heat treatment causes significant structural changes featuring formation of nanocrystalline bcc-Fe grains during the first crystallization step. At higher annealing, grain-growth of bcc-Fe and occurrence of additional crystalline phases is observed. Relative fraction of crystalline phase governs the development of magnetic hyperfine fields in the residual amorphous matrix even if this was fully paramagnetic in the as-quenched state. The development of hyperfine interactions is discussed as a function of annealing temperature and composition of the measured alloys. 57Fe Moessbauer spectrometry was used as a principal analytical method. Additional information related to structural arrangement is obtained from X-ray diffractometry. It is shown that in the as-quenched state the relative fraction of magnetic hyperfine interactions increases as the amount of B rises. In partially crystalline samples, the contribution of magnetic hyperfine interactions inside the retained amorphous matrix increases with annealing temperature even though the relative fraction of amorphous magnetic regions decreases. (authors)

  18. Studies of magnetic properties of permalloy (Fe-30%Ni) prepared by SLM technology

    International Nuclear Information System (INIS)

    In the present study, a high permeability induction Fe-30%Ni alloy cubic bulk was prepared by the selective laser melting process. In order to reveal the microstructure effect on soft magnetic properties, the microstructure and magnetic properties of the Fe-30%Ni alloy were carefully investigated by scanning electron microscopy, X-ray diffraction and hysteresis measurements. The bcc-Fe (Ni) phase formation is identified by X-ray diffraction. Meanwhile, it was found that low bcc lattice parameter and high grain size could be obtained when high laser scanning velocity and low laser power were used. Moreover, the lowest value of coercivity is 88 A/m, and the highest value of saturation magnetization is 565 Am2/kg, which can be obtained at a low laser scanning velocity of 0.4 m/s and high laser power input at 110 W. - Highlights: → Proper Fe-30%Ni alloy (permalloy) using selective laser melting technology. → Microstructure of Fe-30%Ni alloy exhibits fine cellular structure of approximately 100 nm. → Magnetic properties can be controlled by laser parameter. → Lowest coercivity is 88 A/m and highest saturation magnetization is 565 Am2/kg.

  19. Effect of heat treatment on structure and magnetic properties of FeCoNi/CNTs nanocomposites

    Indian Academy of Sciences (India)

    H Q Wu; D M Xu; Q Wang; Y Z Yao; Q Y Wang; G Q Su

    2008-10-01

    Fe46Co35Ni19/CNTs nanocomposites have been prepared by an easy two-step route including adsorption and heat treatment processes. We investigated the effect of heat treatment conditions on structure, morphology, nanoparticle sizes and magnetic properties of the Fe46Co35Ni19 alloy nanoparticles attached on the carbon nanotubes by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy-disperse X-ray spectroscopy (EDS) and vibrating sample magnetometer (VSM). When the reducing temperature changes from 300–450°С, a transition of the crystalline structure from bcc phase to – dual phase and an increase in particle size of Fe46Co35Ni19 nanoparticles together with a local maximum at 350°С are observed. Meanwhile, the saturation magnetization (s) for Fe46Co35Ni19 nanoparticles increases with the increase of reducing temperature and the coercivity (c) decreases rapidly with a local minimum at 350°С. When the reducing time () changes from 2–5 h, bcc phase is predominant in the Fe46Co35Ni19 alloy particles. Both the particle size and s have a maximum at = 3 h, and the c reaches a maximum at = 4 h.

  20. The Amounts of As, Au, Br, Cu, Fe, Mo, Se and Zn in Normal and Uraemic Human whole Blood. A. Comparison by Means of Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Quantitative determination of the elements As, Au, Br, Cu, Fe, Mo, Se and Zn have been performed in normal and uraemic human whole blood by means of H2SO4 - H-O- digestion, distillation and ion exchange, combined with gamma-spectrometric analysis. The uraemic blood was found to contain about 10 times as much As and twice as much Mo as did the normal blood. As regards Fe, the uraemic blood contained slightly less than the normal blood. For the other elements there were no detectable difference

  1. Density-functional study of bcc U–Mo, Np–Mo, Pu–Mo, and Am–Mo alloys

    International Nuclear Information System (INIS)

    Density-functional theory, previously used to describe phase equilibria in the γ-U–Mo alloys [A. Landa, P. Söderlind, P.E.A. Turchi, J. Nucl. Mater. 414 (2011) 132], is extended to study ground-state properties of the bcc-based (γ) X–Mo (X = Np, Pu, and Am) solid solutions. We discuss how the heat of formation correlates with the charge transfer between the alloy components, and how magnetism influences the deviation from Vegard’s law for the equilibrium atomic volume

  2. Choosing weights in optimal solutions for DEA-BCC models by means of a N-dimensional smooth frontier

    Directory of Open Access Journals (Sweden)

    Flávia Badini Nacif

    2009-12-01

    Full Text Available The DEA (Data Envelopment Analysis smoothed frontier was introduced to solve the problem of multiple optimal solutions in the extreme efficient DMUs (Decision Making Units, which hinders the knowledge of the substitution rates (tradeoffs. It consists of changing the original frontier (piecewise linear for a smoothed one, being as close as possible to the original one, and having continuous partial derivates at every point. First, a solution was developed only for the BCC (Banker, Charnes and Cooper model with either a single input or a single output. Then, it was generalized for the N-dimensional BCC model with simultaneous multiplicity of inputs and outputs, but limited by the fact that the polynomial of the output needs to be a linear one. The present article presents a general model, which not only expunges the limitations of the previous models but also includes them.A suavização da fronteira DEA (Data Envelopment Analysis - Análise Envoltória de Dados surgiu como uma solução do problema das múltiplas soluções ótimas nas DMUs (Decision Making Units - Unidades Tomadoras de Decisão extremo-eficientes, o que impossibilita o conhecimento das razões de substituição (tradeoffs. Ela consiste na substituição da fronteira original (linear por partes por outra suavizada, de modo que esta fronteira suavizada seja próxima da original, e que tenha derivadas contínuas em todos os pontos. Inicialmente foi desenvolvida solução apenas para o caso do modelo BCC (Banker, Charnes e Cooper com apenas um input, ou apenas um output. Em seguida obteve-se uma generalização da solução para o caso BCC N-dimensional com multiplicidade simultânea dos inputs e dos outputs, porém com a limitação da linearidade do polinômio dos outputs. O presente artigo vem apresentar um modelo geral, que elimina as limitações dos modelos anteriores, e também os engloba.

  3. First-principles calculation on binding energy of an interstitial hydrogen atom around a screw dislocation in BCC iron

    International Nuclear Information System (INIS)

    The binding energy of an interstitial hydrogen atom at various lattice sites around the a0/2[111] screw dislocation core in BCC iron has been determined using the first-principles calculation. The calculation was based on the core structure of a screw dislocation with symmetric displacement field, which was obtained using the large-scale supercell containing 231 atoms and 1 x 1 x 4 k-point samplings. The binding or trapping energy of a hydrogen atom at both the t-site (tetrahedral site) and o-site (octahedral site) near a core is found to be approximately 0.2 eV. (author)

  4. A new parameterization for ice cloud optical properties used in BCC-RAD and its radiative impact

    International Nuclear Information System (INIS)

    A new parameterization of the solar and infrared optical properties of ice clouds that considers the multiple habits of ice particles was developed on the basis of a prescribed dataset. First, the fitting formulae of the bulk extinction coefficient, single-scatter albedo, asymmetry factor, and δ-function forward-peak factor at the given 65 wavelengths as a function of effective radius were created for common scenarios, which consider a greater number of wavelengths and are more accurate than those used previously. Then, the band-averaged volume extinction and absorption coefficients, asymmetry factor and forward-peak factor of ice cloud were derived for the BCC-RAD (Beijing Climate Center radiative transfer model) using a parameter reference table. Finally, the newly developed and the original schemes in the BCC-RAD and the commonly used Fu Scheme of ice cloud were all applied to the BCC-RAD. Their influences on radiation calculations were compared using the mid-latitude summer atmospheric profile with ice clouds under no-aerosol conditions, and produced a maximum difference of approximately 30.0 W/m2 for the radiative flux, and 4.0 K/d for the heating rate. Additionally, a sensitivity test was performed to investigate the impact of the ice crystal density on radiation calculations using the three schemes. The results showed that the maximum difference was 68.1 W/m2 for the shortwave downward radiative flux (for the case of perpendicular solar insolation), and 4.2 K/d for the longwave heating rate, indicating that the ice crystal density exerts a significant effect on radiation calculations for a cloudy atmosphere. - Highlights: • A new parameterization of the radiative properties of ice cloud was obtained. • More accurate fitting formulae of them were created for common scenarios. • The band-averaged of them were derived for our radiation model of BCC-RAD. • We found that there exist large differences of results among different ice schemes. • We found

  5. Temperature dependence of enthalpies and entropies of formation and migration of mono-vacancy in BCC iron

    International Nuclear Information System (INIS)

    Entropies and enthalpies of vacancy formation and diffusion in BCC iron are calculated for each temperature directly from free-energies using phase-space trajectories obtained from spin–lattice dynamics simulations. Magnon contributions are found to be particularly substantial in the temperature regime near the α−β (ferro/para-magnetic) transition. Strong temperature dependence and singular behavior can be seen in this temperature regime, reflecting magnon softening effects. Temperature dependence of the lattice component in this regime is also much more significant compared to previous estimations based on Arrhenius-type fitting. Similar effects on activation processes involving other irradiation-produced defects in magnetic materials are expected

  6. In-situ TEM observation of dynamic interaction between dislocation and cavity in BCC metals in tensile deformation

    Science.gov (United States)

    Tougou, Kouichi; Shikata, Akihito; Kawase, Uchu; Onitsuka, Takashi; Fukumoto, Ken-ichi

    2015-10-01

    To investigate the effect of irradiation hardening of structural materials due to cavity formation in BCC metals for nuclear applications, an in-situ transmission electron microscopy (TEM) observation in tensile test was performed for the helium ion-irradiated specimens of pure molybdenum and pure iron. The obstacle barrier strength, α was calculated from the bow-out dislocation based on line tension model, and the obstacle barrier strengths of cavity in pure molybdenum and pure iron were about 0.5-0.7. The fractions of cross-slip generation of dislocation of screw type due to interaction with the cavities were about 16-18 % for pure molybdenum.

  7. Electronic structure of disordered Fe-V alloys

    International Nuclear Information System (INIS)

    The first-principles discrete variational method is employed to investigate the electronic structure and local magnetic properties of disordered Fe-V alloys. The spin-polarized case is considered in the formalism of the local-spin-density approximation, with the exchange-correlation term of von Barth endash Hedin. The effect on the local magnetic properties of adding V atoms in the immediate neighborhood of iron atoms is investigated. The partial density of states, hyperfine field (Hc), magnetic moment (μ), and isomer shift are obtained for the central atom of the cluster. For the impurity V atom in the bcc iron host the calculated values for Hc and μ are -203 kG and -0.86μB, respectively. The isolated Fe atom in a bcc vanadium host exhibits a collapsed moment and acts as a receptor for electrons. In ordered alloys the calculations indicate also a vanishing moment at iron sites. copyright 1998 The American Physical Society

  8. Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy

    International Nuclear Information System (INIS)

    The influence of Ti addition and sintering method on the microstructure and mechanical behavior of a medium-entropy alloy, Al0.6CoNiFe alloy, was studied in detail. Alloying behavior, microstructure, phase evolution and mechanical properties of Al0.6CoNiFe and Ti0.4Al0.6CoNiFe alloys were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as by mechanical testing. During the mechanical alloying (MA) process, a supersaturated solid solution consisting of both BCC and FCC phases was formed in the Al0.6CoNiFe alloy. With Ti addition, the Ti0.4Al0.6CoNiFe alloy exhibited a supersaturated solid solution with a single FCC phase. Following hot pressing (HP), the HP sintered (HP’ed) Al0.6CoNiFe bulk alloy was composed of a major BCC phase and a minor FCC phase. The HP’ed Ti0.4Al0.6CoNiFe alloy exhibited a FCC phase, two BCC phases and a trace unidentified phase. Nanoscale twins were present in the HP’ed Ti0.4Al0.6CoNiFe alloy, where deformation twins were observed in the FCC phase. Our results suggest that the addition of Ti facilitated the formation of nanoscale twins. The compressive strength and Vickers hardness of HP’ed Ti0.4Al0.6CoNiFe alloy were slightly lower than the corresponding values of the HP’ed Al0.6CoNiFe alloy. In contrast with HP’ed Al0.6CoNiFe alloy, spark plasma sintered (SPS’ed) Al0.6CoNiFe alloy exhibited a major FCC phase and a minor BCC phase. Moreover, the SPS’ed Al0.6CoNiFe alloy exhibited a lower compressive strength and Vickers hardness, but singificantly higher plasticity, as compared to those of the HP’ed counterpart material

  9. Mechanical properties testing of several 800 MeV proton irradiated BCC metals and alloys

    International Nuclear Information System (INIS)

    A spallation neutron source for the 600-MeV proton accelerator facility at the Swiss Institute for Nuclear Research (SIN) consists of a vertical cylinder filled with molten Pb-Bi. The proton beam enters the cylinder, passing upward through a window in contact with the Pb-Bi eutectic liquid. Investigations are underway at the 800-MeV proton accelerator at LAMPF to test the performance of candidate SIN window materials. Based on considerations of chemical compatibility with molten Pb-Bi, as well as radiation damage mechanisms, Fe, Ta, Fe-2.25Cr-1Mo, and Fe-12Cr-1Mo (Ht-9) were chosen as candidate materials. Sheet tensile samples were sealed inside capsules containing Pb-Bi and were proton-irradiated at LAMPF to two fluences, 4.8 and 54 x 1023 p/m2. The beam current was approximately equal to the 1 mA anticipated for the upgraded SIN accelerator. Yield and ultimate strengths increased upon irradiation in all materials, while the ductility decreased. The pure metals, Ta and Fe, exhibited the greatest radiation hardening and embrittlement. The HT-9 alloy showed the smallest changes in strength and ductility

  10. On the segregation behavior of tin and antimony at grain boundaries of polycrystalline bcc iron

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Šandera, P.; Horníková, J.; Pokluda, J.; Godec, M.

    2016-01-01

    Roč. 363, Feb (2016), 140-144. ISSN 0169-4332 R&D Projects: GA ČR GAP108/12/0144 Institutional support: RVO:68378271 Keywords : grain boundary segregation * tin * antimony * Fe based alloy * AES quantification Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014

  11. The c/a Ratio in Quenched Fe-C and Fe-N steels - a Heuristic Story

    Energy Technology Data Exchange (ETDEWEB)

    Sherby, O; Wadsworth, J; Lesuer, D; Syn, C

    2006-01-31

    The body-centered tetragonal (BCT) structure in quenched Fe-C steels is usually illustrated to show a linear change in the c and a axes with an increase in carbon content from 0 to 1.4%C. The work of Campbell and Fink, however, shows that this continuous linear relationship is not correct. Rather, it was shown that the body-centered-cubic (BCC) structure is the stable structure from 0 to 0.6 wt%C with the c/a ratio equal to unity. An abrupt change in the c/a ratio to 1.02 occurs at 0.6 wt%C. The BCT structure forms, and the c/a ratio increases with further increase in carbon content. An identical observation is noted in quenched Fe-N steels. This discontinuity is explained by a change in the transformation process. It is proposed that a two-step transformation process occurs in the low carbon region, with the FCC first transforming to HCP and then from HCP to BCC. In the high carbon region, the FCC structure transforms to the BCT structure. The results are explained with the Engel-Brewer theory of valence and crystal structure of the elements. An understanding of the strength of quenched iron-carbon steels plays a key role in the proposed explanation of the c/a anomaly based on interstitial solutes and precipitates.

  12. Short-range order in Fe-based metallic glasses: Wide-angle X-ray scattering studies

    International Nuclear Information System (INIS)

    The local atomic structure of the Fe80B20, Fe70Nb10B20 and Fe62Nb8B30 glasses prepared in the form of ribbons has been studied by wide-angle X-ray scattering. Structural information about the amorphous ribbons has been derived from analysis of the radial distribution functions using the least-squares curve-fitting method. The obtained structural parameters indicate that Fe–Fe, Fe–B, Fe–Nb and Nb–B contributions are involved in the near-neighbor coordination spheres. The possible similarities of the local atomic arrangement in the investigated glasses and the crystalline Fe3B, Fe23B6 and bcc Fe structures are also discussed. - Graphical abstract: Pair distribution functions (a) and best-fit model and experimental radial distribution functions for Fe80B20 (b), Fe70Nb10B20 (c) and Fe62Nb8B30 (d) metallic glasses. - Highlights: • The short-range ordering in the Fe-based metallic glasses is presented. • The results of RDF function have been analyzed using the least-squares method. • The Fe–Fe, Fe–B, Fe–Nb or Nb–B contributions are involved in coordination spheres. • The structural unit is distorted triangular prism containing B, Fe or Nb atoms. • Similarities of atomic arrangement in glassy and crystalline structures are discussed

  13. Microstructure, hardness and corrosion properties investigation of Ti and Nb Added FeNiAICuCrTixNby high entropy alloys

    International Nuclear Information System (INIS)

    Traditional metallic alloying theory suggests that multiple alloying elements in an alloy may lead to the formation of many compounds with complex microstructure and poor mechanical properties. To overcome this problem, new type of metallic alloys called High Entropy Alloy (HEA) with at least 5 elements with equimolar ratios were developed. In this study, FeNiAICuCrTixNby (x=0, 0.5, 1.0, 1.5 and y= 0, 0.5, 1.0, 1.5) alloys have been prepared using arc melting technique in Ar atmosphere. Microstructural studies using scanning electron microscope (SEM) showed gray equiaxed grains and bright grain boundary phases. With the increase in Ti content, amount of grain boundary phases is seen to decrease. X-Ray diffraction (XRD) results of Ti containing samples showed that the samples have two BCC phases (BCC1 and BCC2) suggesting that both the phases observed in SEM are BCC phases with different lattice parameters. Grain boundary phase is found to be rich in Cu and could be attributed to the positive mixing enthalpy of Cu with the rest of the elements in the alloy. SEM micrographs showed that Nb containing samples have dendritic and interdendritic phases and the niobium is mostly found in the dendritic phase. XRD investigation showed that Nb is FCC stabilizer and amount of grain boundary BCC phase is seen to decrease with the increase in the Nb content. Samples with both Nb and Ti addition showed FCC and BCC structure with Nb rich FCC dendritic phase as dominant phase. Though, individual Nb and Ti additions have resulted in increase in hardness, combined addition have resulted in highest hardness of 797 HV. Polarization corrosion test have showed that Ti and Nb addition have resulted in decreased corrosion resistance. (author)

  14. Equilibrium fluid-crystal interfacial free energy of bcc-crystallizing aqueous suspensions of polydisperse charged spheres

    Science.gov (United States)

    Palberg, Thomas; Wette, Patrick; Herlach, Dieter M.

    2016-02-01

    The interfacial free energy is a central quantity in crystallization from the metastable melt. In suspensions of charged colloidal spheres, nucleation and growth kinetics can be accurately measured from optical experiments. In previous work, from these data effective nonequilibrium values for the interfacial free energy between the emerging bcc nuclei and the adjacent melt in dependence on the chemical potential difference between melt phase and crystal phase were derived using classical nucleation theory (CNT). A strictly linear increase of the interfacial free energy was observed as a function of increased metastability. Here, we further analyze these data for five aqueous suspensions of charged spheres and one binary mixture. We utilize a simple extrapolation scheme and interpret our findings in view of Turnbull's empirical rule. This enables us to present the first systematic experimental estimates for a reduced interfacial free energy, σ0 ,b c c, between the bcc-crystal phase and the coexisting equilibrium fluid. Values obtained for σ0 ,b c c are on the order of a few kBT . Their values are not correlated to any of the electrostatic interaction parameters but rather show a systematic decrease with increasing size polydispersity and a lower value for the mixture as compared to the pure components. At the same time, σ0 also shows an approximately linear correlation to the entropy of freezing. The equilibrium interfacial free energy of strictly monodisperse charged spheres may therefore be still greater.

  15. Magnetic properties of Fe{sub 90}Sc{sub 10} nanoglass

    Energy Technology Data Exchange (ETDEWEB)

    Witte, Ralf [Technische Universitaet Darmstadt, Gemeinschaftslabor Nanomaterialien, Petersenstr. 23, D-64287 Darmstadt (Germany); Karlsruher Institut fuer Technologie, Institut fuer Nanotechnologie, D-76344 Eggenstein-Leopoldshafen (Germany); Fang, Jixiang; Ghafari, Mohammad; Kruk, Robert; Brand, Richard A.; Hahn, Horst; Gleiter, Herbert [Karlsruher Institut fuer Technologie, Institut fuer Nanotechnologie, D-76344 Eggenstein-Leopoldshafen (Germany)

    2011-07-01

    We report on our work on magnetic properties and their correlation with local structure in Fe-Sc nanoglasses. Samples were synthesized with a nominal composition of Fe{sub 90}Sc{sub 10} in an inert-gas condensation (IGC) process. X-ray diffraction, Moessbauer spectroscopy as well as magnetometric characterization methods were applied to characterize the samples. Magnetometric measurements revealed a significant change of magnetic properties in the Fe rich compound marked by an increase of the Curie point to temperatures well above 300 K, which is much higher than the transition temperature in regular metallic glasses of similar composition. The maximum magnetic hyperfine field obtained from low temperature Moessbauer spectroscopy was about 37.5 T, which is much more than observed in bcc-Fe. This newly identified ferromagnetic phase is attributed to the modified short-range-order in the interfaces of adjacent amorphous nanoparticles.

  16. Connection between the microstructure of steels Fe-23 % Ni, Fe-33 % Ni, Fe-23 % Ni-0.4 % C and Fe-Cr-Ni 18-10 in the austenitic or martensitic state and their behaviour after cathodic loading with tritium

    International Nuclear Information System (INIS)

    The hydrogen trapping phenomenon is studied by high resolution autoradiography and the subsequent crack formation is also studied. The aim is to improve the knowledge of hydrogen embrittlement in bcc and fcc lattices, allowing a better use of industrial iron base alloys, especially stainless steels and austenitic steels with a high nickel content used in the nuclear industry. The influence of trapped hydrogen in the microstructure is studied in the following structures: an alloy with a high density of dislocations Fe-23 % Ni, a twinned martensite in Fe-23 % Ni - 0.4 % C and in Fe-33 % Ni and some austenitic alloys (austenitic stainless steel and Fe-Ni alloys). In the first chapter microstructural behaviour is recalled for studied alloys and a brief bibliography on hydrogen embrittlement of metals is presented. In the second chapter experimental techniques, are described. Experimental results and discussions will be exposed later in the second part

  17. A Study about Fe-Ni Mechanical Alloying Process by Dry and Wet Method

    Institute of Scientific and Technical Information of China (English)

    ZHOU Pei-heng; DENG Long-jiang; XIE Jian-liang; LIANG Di-fei; CHEN Liang

    2005-01-01

    The evolutions of microstructure of Fe0.85Ni0.15 products, which were prepared by mechanical alloying (MA) with and without process control agent (PCA), were studied using X-ray diffraction and scanning electron microscopy respectively. After MA without PCA (dry method) for 30h, Fe0.85Ni0.15 nanocrystalline alloy powders with bcc-Fe(Ni) phase were obtained; however, powders milled with PCA (wet method) from 20 to 90 h, were unalloyed Fe-Ni mixtures with balanced morphology. It seems that dry method works efficiently in nanocrystalline alloying while wet method postpones MA but functionally fines the morphology of materials. Finally, the results were discussed considering the MA kinetics.

  18. Cu clustering stage before the crystallization in Fe-Si-B-Nb-Cu amorphous alloys

    DEFF Research Database (Denmark)

    Ohnuma, M.; Hono, K.; Onodera, H.;

    1999-01-01

    The Cu clustering stage before the crystallization of Fe-Si-B-Nb-Cu amorphous alloys have been studied by three dimensional atom probe (3DAP) small-angle neutron scattering (SANS) and high sensitive differential calorimetry (DSC). Cu clustering occurs prior to the onset of the primary...... crystallization reaction. The number of the clusters estimated by 3DAP is large enough to provide heterogeneous nucleation sites to all bcc/D0(3) Fe-Si crystals which appear at higher temperatures. This fact indicates that the distribution of nanocrystalline Fe-Si is strongly affected by that of the Cu......-enriched clusters. The average diameter and interparticle distance of the Cu-enriched clusters have also been estimated by SANS. An exothermic reaction is observed above the Curie Temperature in the DSC curves of the Fe-Si-B-Nb-Cu alloys. The onset temperature of the exothermic reaction is shifted to lower...

  19. Surface damage in TEM thick α-Fe samples by implantation with 150 keV Fe ions

    International Nuclear Information System (INIS)

    We have performed molecular dynamics simulations of implantation of 150 keV Fe ions in pure bcc Fe. The thickness of the simulation box is of the same order of those used in in situ TEM analysis of irradiated materials. We assess the effect of the implantation angle and the presence of front and back surfaces. The number and type of defects, ion range, cluster distribution and primary damage morphology are studied. Results indicate that, for the very thin samples used in in situ TEM irradiation experiments the presence of surfaces affect dramatically the damage produced. At this particular energy, the ion has sufficient energy to damage both the top and the back surfaces and still leave the sample through the bottom. This provides new insights on the study of radiation damage using TEM in situ

  20. Investigation of high strength metastable hypereutectic ternary Ti-Fe-Co and quaternary Ti-Fe-Co-(V, Sn) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Louzguine-Luzgin, Dmitri V. [Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577 (Japan)]. E-mail: dml@imr.tohoku.ac.jp; Louzguina-Luzgina, Larissa V. [SORST Project, Japan Science and Technology Agency, Sendai 985-8577 (Japan); Kato, Hidemi [Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577 (Japan); Inoue, Akihisa [Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577 (Japan)

    2007-05-31

    The high strength metastable Ti-Fe-Co alloys were produced by arc-melting in the shape of distorted semi-spherical ingots with the dimensions of about 25-30 mm in diameter and 7-10 mm in height. The structure of the hypereutectic Ti-Fe-Co alloys (at Fe/Co ratio {>=}1) studied by X-ray diffractometry and scanning electron microscopy consisted of the primary dendrites of an ordered cP2 Ti(Fe, Co) compound and an eutectic consisting of the cP2 Ti(Fe, Co) compound and a disordered BCC cI2 {beta}-Ti solid solution. The strongest Ti-Fe-Co alloys have a hypereutectic structure and exhibit a high strength exceeding 2000 MPa and a plastic deformation of about 15%. The quaternary Ti{sub 67}Fe{sub 14}Co{sub 14}Sn{sub 5} alloy exhibits a high strength of 1830 MPa and the largest plastic strain of 24%. The deformation behavior and the fractography of Ti-Fe-Co and Ti-Fe-Co-Sn alloys are studied in detail. The formation of a composite-like structure with hard carcass of the intermetallic phase in the relatively soft eutectic matrix enabled both high strength and ductility. The accommodation deformation can be explained by the intergranular sliding of the primary Ti(Fe, Co) dendrites in the softer eutectic matrix. Rough primary dendrites and eutectic rods of the cP2 intermetallic phase act as efficient barriers for shear strain and cracks propagation, while fine eutectic rods of submicron size are quite effortlessly cut by deformation bands and cracks. It is shown that the high strength and ductility values for Ti-based alloys can be achieved without using the injection mould casting or rapid solidification procedure.

  1. Comparison of dynamic and optical properties of Fe3O4 ferrofluid emulsion in water and oleic acid under magnetic field

    International Nuclear Information System (INIS)

    The Fe3O4 ferrofluid emulsions in both distilled water and oleic acid were prepared by using Fe3O4 ferrofluid (SMG018), the sodium dodecyl sulfate (SDS), and distilled water or oleic acid. The optical transmission of these emulsions has been investigated as a function of incident optical wavelengths between 450 and 750 nm and applied magnetic fields up to 141 Oe. The transmittance increases as the applied magnetic fields increase. This phenomenon is more manifest with shorter incident wavelength. The transmittance for samples in oleic acid is much higher than that of samples in distilled water. Under the same perpendicular applied magnetic field, the area covered by the droplets of the emulsions for samples in oleic acid is smaller than that of samples in distilled water. These phenomena can be explained due to the different aggregation abilitation of the ferrofluid emulsions in both distilled water and oleic acid

  2. Numerical analysis of drop test of bicycle helmet: Comparison of hand-made FE model to model based on 3D scanning

    Czech Academy of Sciences Publication Activity Database

    Kunecký, Jiří; Micka, Michal

    Praha: Czech Technical University in Prague, 2008 - (Bohumil, K.; Jírová, J.; Jacura, M.; Vyčichl, J.), s. 23-24 ISBN 978-80-01-04056-0. [Současnost a budoucnost dopravy. Praha (CZ), 12.05.2008-13.05.2008] Institutional research plan: CEZ:AV0Z20710524 Keywords : FE model * drop test * sportive helmets Subject RIV: FI - Traumatology, Orthopedics

  3. On the structural and mechanical properties of Fe-filled carbon nanotubes-a computer simulation approach

    International Nuclear Information System (INIS)

    The structural and mechanical properties of single-and multi-walled carbon nanotubes filled with iron nanowires are studied using a recent parameterization of the modified embedded atom model. We have analyzed the effect of different crystal structures of iron (bcc and fcc) inside carbon nanotubes of different topographies. We have computed strain energy versus strain curves for pure systems: Fe nanowires, carbon and Fe-filled carbon nanotubes. A noticeable difference is found when these monatomic systems are joined to form iron-capped nanowires and where multi-layers of graphite are added to the nanotubes.

  4. Stability of Ferromagnetism in Fe, Co, and Ni Metals under High Pressure with GGA and GGA+U

    Energy Technology Data Exchange (ETDEWEB)

    Shoaib Mohammed, Yousif [State key Laboratory for Superhard Materials and Department of Physics, Jilin University, Changchun 130012 (China); Department of Physics, University of Dalanj, Dalanj (Sudan); Yan Yu, E-mail: yanyu@jlu.edu.c [State key Laboratory for Superhard Materials and Department of Physics, Jilin University, Changchun 130012 (China); Wang Hongxia; Li Kai; Du Xiaobo [State key Laboratory for Superhard Materials and Department of Physics, Jilin University, Changchun 130012 (China)

    2010-03-15

    The stability of the ferromagnetic state in Fe, Co, and Ni metals under high pressure is investigated using generalized gradient approximation (GGA) and GGA+U within the density functional theory (DFT). It is found that the ferromagnetic state under pressure is very different for Fe, Co, and Ni metals, and is closely associated with the crystal structure. In the case of Fe, a ferromagnetic bcc ground state is obtained at ambient pressure and a nonmagnetic hcp ground state is found at pressure around 12 and 115 GPa for GGA and GGA+U, respectively. For Co, the phase transition from a ferromagnetic hcp to a nonmagnetic fcc is found around 107 GPa for GGA. In contrast to Fe and Co, a ferromagnetic fcc state in Ni is maintained even at 200 GPa. The calculated results suggest that the suppression of ferromagnetism in Fe, Co, and Ni is due to pressure-induced decrease of the density of state at the Fermi level.

  5. Crystallization and Hardness of Melt Spun Fe73Si13B9Nb4Cu1 Alloy

    Institute of Scientific and Technical Information of China (English)

    J.I.Akhter; M.Iqbal; M.Siddique; M.Abmad; M.A.Haq; M.A.Shaikh; Z.Q.Hu

    2009-01-01

    An alloy having composition Fe73Si13B9Nb4Cu1 was synthesized by melt spinning to investigate the kinetics of crystallization. Techniques of differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Mossbauer spectroscopy were employed to characterize the phases produced due to annealing at various temperatures. High temperature DSC revealed two stage crystallization reactions. First stage, crystallization occurs at temperature around 514℃ with the production of α-Fe (bcc) and Fe3Si phases. In the second stage, Fe2B and α-Fe (Si,Nb) phases were produced. Mossbauer results revealed the formation of Fe3Si, Fe13Si3 and Fe7Si1 in the first stage and Fe3Si, Fe13Si3, Fe2B and α-Fe (Si,Nb) phases in the second stage of crystallization. An abrupt change in average internal magnetic field was observed at 500℃. The maximum hardness value was found for the sample heat-treated at 500℃.

  6. Structure of Ag, Fe and Ge microclusters

    International Nuclear Information System (INIS)

    The structures of Ag, Fe and Ge microclusters were determined using EXAFS. The measurements were performed over a wide range of clusters sizes. The clusters were prepared using the gas aggregation technique and isolated in solid argon at 4.2 K. The measurements were performed at the National Synchrotron Light Source (NSLS) at beam line X-18B. A strong contraction of the interatomic distances was observed for Ag dimers and multimers. Silver clusters larger than 12 A mean diameter show a small contraction of the nn distance and a structure consistent with an fcc lattice. By contrast clusters smaller than 12 A show the presence of a small expansion and a strong reduction or absence of nnn in the EXAFS signal. This points towards a different crystallographic structure for Ag microclusters with diameter less than 12 A. In iron clusters we observe a gradual reduction of the nn distance as the cluster size decreases. The interatomic distance for iron dimers was determined to be 1.94 A, in good agreement with earlier measurements. The iron microclusters show a bcc structure down to a mean diameter of 9 A. Iron clusters with 9 A mean diameter show a structure inconsistent with a bcc lattice. The new structure is consistent with an fcc or hcp lattice. The measurements on Ge clusters show the presence of only nearest neighbors. There was clear evidence of temporal annealing as determined by variations in the near edge structure of the K-absorption edge. Absorption edge measurements were also performed for free Ge clusters travelling perpendicular to the direction of the synchrotron radiation beam. The measurements performed on the free clusters were consistent with those obtained for matrix isolated clusters. (orig.)

  7. Ab initio calculations of mechanical properties of bcc W–Re–Os random alloys: effects of transmutation of W

    Science.gov (United States)

    Li, Xiaojie; Schönecker, Stephan; Li, Ruihuan; Li, Xiaoqing; Wang, Yuanyuan; Zhao, Jijun; Johansson, Börje; Vitos, Levente

    2016-07-01

    To examine the effect of neutron transmutation on tungsten as the first wall material of fusion reactors, the elastic properties of W1‑x‑y  Re x  Os y (0  ⩽  x, y  ⩽  6%) random alloys in body centered cubic (bcc) structure are investigated systematically using the all-electron exact muffin-tin orbitals (EMTO) method in combination with the coherent-potential approximation (CPA). The calculated lattice constant and elastic properties of pure W are consistent with available experiments. Both Os and Re additions reduce the lattice constant and increase the bulk modulus of W, with Os having the stronger effect. The polycrystalline shear modulus, Young’s modulus and the Debye temperature increase (decrease) with the addition of Re (Os). Except for C 11, the other elastic parameters including C 12, C 44, Cauchy pressure, Poisson ratio, B/G, increase as a function of Re and Os concentration. The variations of the latter three parameters and the trend in the ratio of cleavage energy to shear modulus for the most dominant slip system indicate that the ductility of the alloy enhances with increasing Re and Os content. The calculated elastic anisotropy of bcc W slightly increases with the concentration of both alloying elements. The estimated melting temperatures of the W–Re–Os alloy suggest that Re or Os addition will reduce the melting temperature of pure W solid. The classical Labusch–Nabarro model for solid-solution hardening predicts larger strengthening effects in W1‑y  Os y than in W1‑x  Re x . A strong correlation between C‧ and the fcc–bcc structural energy difference for W1‑x‑y  Re x  Os y is revealed demonstrating that canonical band structure dictates the alloying effect on C‧. The structural energy difference is exploited to estimate the alloying effect on the ideal tensile strength in the [0 0 1] direction.

  8. Relative crystal stability of AlxFeNiCrCo high entropy alloys from XRD analysis and formation energy calculation

    International Nuclear Information System (INIS)

    Electronic structure of AlxFeNiCrCo (x ≤ 3) high-entropy alloys (HEAs) was calculated using the Korringa–Kohn–Rostoker method combined with the coherent potential approximation (KKR-CPA). Total energy minimization was performed for bcc and fcc structures in each alloy composition. The phase stability was investigated from the total energy analysis, which finally allowed to determine the bcc–fcc phase transition for aluminium concentration close to 13 at%. It inspired us to synthesize AlxFeNiCrCo (0 ≤ x ≤ 1.5) using two procedures based on arc melting and sintering to allow for observation of entropy effect on phase formation. The XRD measurements evidently proved an occurence of fcc or bcc structure and their coexistence, depending on Al concentration and temperature. This finding remains in good agreement with theoretical results from free energy analysis, when accounting for KKR-CPA total energy as well as entropy terms. Furthermore, the structure preference, from fcc to bcc HEAs, with increasing Al content was discussed in view of total and atomic-dependent density of states computed in non-magnetic and paramagnetic-like states. - Highlights: • Crystal stability and electronic properties of high entropy alloys from KKR-CPA. • Influence of configuration entropy on phase preference (or coexistence). • Effect of configuration entropy on phase stability: arc melting viz. sintering. • Ab initio calculations (accounting for disorder) of phase preference in HEA

  9. Alpha particle induced reactions on {sup nat}Cr up to 39 MeV: Experimental cross-sections, comparison with theoretical calculations and thick target yields for medically relevant {sup 52g}Fe production

    Energy Technology Data Exchange (ETDEWEB)

    Hermanne, A.; Adam Rebeles, R. [Cyclotron Laboratory, Vrije Universiteit Brussel, Brussel 1090 (Belgium); Tárkányi, F.; Takács, S. [Institute of Nuclear Research, Hungarian Academy of Science, 4026 Debrecen (Hungary)

    2015-08-01

    Thin {sup nat}Cr targets were obtained by electroplating, using 23.75 μm Cu foils as backings. In five stacked foil irradiations, followed by high resolution gamma spectroscopy, the cross sections for production of {sup 52g}Fe, {sup 49,51cum}Cr, {sup 52cum,54,56cum}Mn and {sup 48cum}V in Cr and {sup 61}Cu,{sup 68}Ga in Cu were measured up to 39 MeV incident α-particle energy. Reduced uncertainty is obtained by simultaneous remeasurement of the {sup nat}Cu(α,x){sup 67,66}Ga monitor reactions over the whole energy range. Comparisons with the scarce literature values and results from the TENDL-2013 on-line library, based on the theoretical code family TALYS-1.6, were made. A discussion of the production routes for {sup 52g}Fe with achievable yields and contamination rates was made.

  10. Comparison of Catalytic Activities for Sonocatalytic, Photocatalytic and Sonophotocatalytic Degradation of Methylene Blue in the Presence of Magnetic Fe3O4/CuO/ZnO Nanocomposites

    Science.gov (United States)

    Taufik, Ardiansyah; Tju, Hendry; Saleh, Rosari

    2016-04-01

    Fe3O4/CuO/ZnO nanocomposites with different molar ratio were synthesized using sol-gel method. The as-synthesized samples were characterized by X-ray diffraction (XRD), UV-visible spectroscopy, BET surface area analyszer, and Electron Spin Resonance (ESR). The sonocatalytic-photocatalytic-sonophotocatalytic activity of as-synthesized samples was investigated based on methylene blue degradation. Moreover, the role of active species was investigated using scavenger technique. The results showed that hole plays an important key role in sono-photo-sonophotocatalytic degradation of methylene blue.

  11. Comparison of explicit calculations for n = 3 to 8 dielectronic satellites of the FeXXV Kα resonance line with experimental data from the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Dielectronic satellite spectra of the FeXXV Kα resonance line observed from the Tokamak Fusion Test Reactor (TFTR) plasmas have been compared with recent explicit calculations for the n = 3 to 8 dielectronic satellites as well as the earlier theoretical predictions, which were based on the 1/n3 scaling law for n > 4 satellites. The analysis has been performed by least-squares fits of synthetic spectra to the experimental data. The synthetic spectra constructed from both theories are in good agreement with the observed data. However, the electron temperature values obtained from the fit of the present explicit calculations are in better agreement with independent measurements. 20 refs., 4 figs

  12. Homogeneous (Fe(III) and Heterogeneous (TiO2) Photocatalysts for Pollutants Removal from the Aquatic Compartment: Comparison and Complementarity

    Czech Academy of Sciences Publication Activity Database

    Měšťánková, H.; Mailhot, G.; Krýsa, J.; Jirkovský, Jaromír; Bolte, M.

    Goslar : CUTEC, 2004 - (Vogelpohl, A.), s. 198-203 [International Conference on Oxidation Technologies for Water and Wastewater Treatment /3./. Goslar (DE), 18.05.2003-22.05.2003] R&D Projects: GA ČR GA203/02/0983; GA ČR GA104/02/0662 Grant ostatní: Barrande(FR) 203/20 Institutional research plan: CEZ:AV0Z4040901 Keywords : Fe(III) aquacomplexes * photocatalyst * photodegradation process Subject RIV: CF - Physical ; Theoretical Chemistry

  13. Thermodynamic Assessment and Experimental Investigation of Fe-Al-C System

    Institute of Scientific and Technical Information of China (English)

    Weiyan L(U); Lin LI; Li WANG; Yanlin HE; Shuigen HUANG

    2008-01-01

    Phase diagram information of the Fe-C, Fe-AI and AI-C systems are reviewed and the Fe-Al-C system is assessed. A FeAIC database is created by combining a set of thermodynamic parameters established by Kumar and SSOL database in Thermo-Calc software package. Ternary phase diagrams are calculated with FeAlC and the newly developed Thermo-Calc databases SSOL2 and SSOL4. The FeAIC database is the best one to describe the Fe-Al-C system. A1 and A3 values on the vertical section containing 1.5 wt pct Al are calculated with the FeAIC database in this work. To.validate the thermodynamic calculation, critical temperatures Ac1 and Ac3 are determined by using dilatometer analysis. There exist some errors between the calculated values and the experimental results. So further optimization of the Fe-Al-C system regarding bcc and fcc phases is necessary. The experimental data in this work could be of some value in further optimization.

  14. Ab initio calculation of the bcc Mo-Al (molybdenum-aluminium) phase diagram: Implications for the nature of the {zeta}{sub 2}-MoAl phase

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales-Ormeno, Pablo Guillermo [Computational Materials Science Laboratory, Departamento de Engenharia Metalurgica e de Materiais, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2463-CEP 05508-900 Sao Paulo-SP (Brazil); Petrilli, Helena Maria [Departamento de Fisica dos Materiais e Meca-hat nica, Instituto de Fisica da Universidade de Sao Paulo, CP 66318, CEP 05315-970 Sao Paulo-SP (Brazil)]. E-mail: hmpetril@macbeth.if.usp.br; Schoen, Claudio Geraldo [Computational Materials Science Laboratory, Departamento de Engenharia Metalurgica e de Materiais, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2463-CEP 05508-900 Sao Paulo-SP (Brazil)]. E-mail: schoen@usp.br

    2005-09-15

    The metastable phase diagram of the bcc-based ordering equilibria in the Mo-Al system has been calculated by the cluster expansion method, through the combination of FP-LAPW and CVM. The results are discussed with reference to the structure and stability of the {zeta}{sub 2}-MoAl high temperature phase.

  15. Elastic modulus of F.C.C. and B.C.C crystals investigated by a statistical moment method at low temperature range

    International Nuclear Information System (INIS)

    In our past studies, we used the moment method to investigate the elastic moduli of anharmonic fcc and bcc crystals. The present paper shows more accurate results. These results are applied to a wide numbers of metals at low temperature range. (author)

  16. 3D atomistic studies of fatigue behaviour of edge crack (0 0 1) in bcc iron loaded in mode i and II

    Czech Academy of Sciences Publication Activity Database

    Machová, Anna; Pokluda, J.; Uhnáková, Alena; Hora, Petr

    2014-01-01

    Roč. 66, September (2014), s. 11-19. ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/0698 Institutional support: RVO:61388998 Keywords : fatigue crack growth * bcc iron * 3D atomistic simulations * molecular dynamics Subject RIV: JQ - Machines ; Tools Impact factor: 2.275, year: 2014 www.elsevier.com/locate/ijfatigue

  17. Beyond chemical accuracy: The pseudopotential approximation in diffusion Monte Carlo calculations of the HCP to BCC phase transition in beryllium

    CERN Document Server

    Shulenburger, Luke; Desjarlais, M P

    2015-01-01

    Motivated by the disagreement between recent diffusion Monte Carlo calculations and experiments on the phase transition pressure between the ambient and beta-Sn phases of silicon, we present a study of the HCP to BCC phase transition in beryllium. This lighter element provides an oppor- tunity for directly testing many of the approximations required for calculations on silicon and may suggest a path towards increasing the practical accuracy of diffusion Monte Carlo calculations of solids in general. We demonstrate that the single largest approximation in these calculations is the pseudopotential approximation. After removing this we find excellent agreement with experiment for the ambient HCP phase and results similar to careful calculations using density functional theory for the phase transition pressure.

  18. Interplay between intrinsic point defects and low-angle grain boundary in bcc tungsten: effects of local stress field

    International Nuclear Information System (INIS)

    We have used molecular statics in conjunction with an embedded atom method to explore the interplay between native point defects (vacancies and self-interstitials (SIAs)) and a low-angle grain boundary (GB) in bcc tungsten. The low-angle GB has biased absorption of SIAs over vacancies. We emphasize the significance of phenomena such as vacancy delocalization and SIA instant absorption around the GB dislocation cores in stabilizing the defect structures. Interstitial loading into the GB can dramatically enhance the interaction strength between the point defects and the GB due to SIA clustering (SIA cloud formation) or SIA vacancy recombination. We propose that the ‘maximum atom displacement’ can complement the ‘vacancy formation energy’ in evaluating unstable vacancy sites. Calculations of point defect migration barriers in the vicinity of GB dislocation cores show that vacancies and SIAs preferentially migrate along the pathways in the planes immediately above and below the core, respectively. (paper)

  19. The Role of Shear in the Onset of Iron's bcc to hcp Stress--Induced Phase Transition

    Science.gov (United States)

    Lew, A.; Caspersen, K.; Ortiz, M.; Carter, E.

    2003-12-01

    Iron presents a martensitic phase transition from bcc to hcp at an approximate pressure of 13 GPa. The exact onset pressure has been determined to have values ranging from 9 to 16 GPa by several different experimental results. We propose a multiscale model for Iron, with all necessary quantities computed exclusively from first--principles. In this model, we account for all shear components of the deformation, finding that they play a crucial role in its onset, even for very small amounts of shear. Briefly, the model consists of constructing the energy landscape in all six-components of strain. Then, for a given deformation of a representative sample, we minimize its energy by possibly accomodating martensitic laminates inside it, in the spirit of a spinodal decomposition. We will describe the model in detail and show how the onset pressure varies when shear is present, as well as the mixed states encoutered upon transformation.

  20. Assessment of hardening due to dislocation loops in bcc iron: Overview and analysis of atomistic simulations for edge dislocations

    Science.gov (United States)

    Bonny, G.; Terentyev, D.; Elena, J.; Zinovev, A.; Minov, B.; Zhurkin, E. E.

    2016-05-01

    Upon irradiation, iron based steels used for nuclear applications contain dislocation loops of both and ½ type. Both types of loops are known to contribute to the radiation hardening and embrittlement of steels. In the literature many molecular dynamics works studying the interaction of dislocations with dislocation loops are available. Recently, based on such studies, a thermo-mechanical model to threat the dislocation - dislocation loop (DL) interaction within a discrete dislocation dynamics framework was developed for ½ loops. In this work, we make a literature review of the dislocation - DL interaction in bcc iron. We also perform molecular dynamics simulations to derive the stress-energy function for loops. As a result we deliver the function of the activation energy versus activation stress for loops that can be applied in a discrete dislocation dynamics framework.

  1. Microstructural studies of hydrogen and deuterium in bcc refractory metals. Progress report, 1 May 1979-31 July 1980

    International Nuclear Information System (INIS)

    Over the past four years this research has been principally concerned with uncovering the microstructural atomic arrangements in alloys of hydrogen and deuterium with bcc refractory metals. Because these are interstitial phases in which the host metal lattice is substantially deformed by the incorporation of the H(D) atoms, there are pronounced x-ray scattering effects. X-ray diffraction has, therefore, been the main structural tool. A main objective of the project has been to determine the degree to which phase relations and solid solution properties in metal-hydride alloys depend upon the hydrogen-hydrogen interaction via the displacement field of the metal atoms. This has often included the elucidation of subtle thermodynamic properties which are revealed in structural studies

  2. Structure and magnetic properties of Fe nanoparticles embedded in a Cr matrix

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, M.T. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Department of Physics, Hazara University, Mansehra (Pakistan); Baker, S.H. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Binns, C., E-mail: cb12@le.ac.uk [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Roy, M. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Laureti, S.; Fiorani, D.; Peddis, D. [ISM-CNR, Area della Ricerca, Via salaria Km 29,500, P.B. 10-00016, Monterotondo Scalo, Roma (Italy)

    2015-03-15

    The structure of 2 nm diameter (340 atoms) Fe nanoparticles embedded in a Cr matrix was determined using X-ray Absorption Fine Structure (EXAFS) and the magnetic properties studied by Superconducting Quantum Interference Device (SQUID) magnetometry. The thin films were produced by the co-deposition of pre-formed gas-phase Fe clusters synthesised by a gas aggregation source with an atomic vapour of Cr produced by an MBE source. The behaviour was studied as a function of Fe nanoparticle volume fraction in the range 5–20% and was compared to previous results on ferromagnetic nanoparticles in antiferromagnetic matrices. EXAFS showed that the atomic structure in the Cr-embedded Fe nanoparticles is the same as the bulk bcc structure. Whereas alloying between the nanoparticles and matrix material has previously been shown to be very pronounced for Co nanoparticles in antiferromagnetic Mn, it was found that any alloying between Fe nanoparticles and Cr matrix material is limited. For dilute samples of Fe nanoparticles in Cr the measured saturation magnetisation (M{sub S}) was 1µ{sub B}/Fe atom, which is significantly less than the bulk M{sub S} value of 2.22µ{sub B}/Fe atom indicating that the surface of Fe nanoparticles is either antiferromagnetic or non-magnetic. An increase in the volume fraction produces an increase in the value of M{sub S} and at a volume fraction of 20%, M{sub S} exceeds the value of bulk Fe showing that some Cr spins provide a ferromagnetic contribution. After field cooling below 30 K, all films show Exchange Bias (EB) and an increase of coercivity, which are both much larger for the most concentrated sample. The Cr spins at the surface of the Fe particles play a key role in determining the overall magnetic behaviour. - Highlights: • Fe nanoparticles in Cr matrices at low volume fraction have bcc structure. • Fe nanoparticles in Cr at low volume fraction have a magnetic moment of 1µB/atom. • At a volume fraction of 20% the interfacial Cr

  3. Comparison of the oxidation state of Fe in comet 81P/Wild 2 and chondritic-porous interplanetary dust particles

    Energy Technology Data Exchange (ETDEWEB)

    Ogliore, Ryan C.; Butterworth, Anna L.; Fakra, Sirine C.; Gainsforth, Zack; Marcus, Matthew A.; Westphal, Andrew J.

    2010-07-16

    The fragile structure of chondritic-porous interplanetary dust particles (CP-IDPs) and their minimal parent-body alteration have led researchers to believe these particles originate in comets rather than asteroids where aqueous and thermal alterations have occurred. The solar elemental abundances and atmospheric entry speed of CP-IDPs also suggest a cometary origin. With the return of the Stardust samples from Jupiter-family comet 81P/Wild 2, this hypothesis can be tested. We have measured the Fe oxidation state of 15 CP-IDPs and 194 Stardust fragments using a synchrotron-based x-ray microprobe. We analyzed {approx}300 ng of Wild 2 material - three orders of magnitude more material than other analyses comparing Wild 2 and CP-IDPs. The Fe oxidation state of these two samples of material are > 2{sigma} different: the CP-IDPs are more oxidized than the Wild 2 grains. We conclude that comet Wild 2 contains material that formed at a lower oxygen fugacity than the parent-body, or parent bodies, of CP-IDPs. If all Jupiter-family comets are similar, they do not appear to be consistent with the origin of CP-IDPs. However, comets that formed from a different mix of nebular material and are more oxidized than Wild 2 could be the source of CP-IDPs.

  4. Comparison of the Oxidation State of Fe in Comet 81P/Wild 2 and Chondritic-Porous Interplanetary Dust Particles

    CERN Document Server

    Ogliore, R C; Fakra, S C; Gainsforth, Z; Marcus, M A; Westphal, A J

    2010-01-01

    The fragile structure of chondritic-porous interplanetary dust particles (CP- IDPs) and their minimal parent-body alteration have led researchers to believe these particles originate in comets rather than asteroids where aqueous and thermal alteration have occurred. The solar elemental abundances and atmospheric entry speed of CP-IDPs also suggest a cometary origin. With the return of the Stardust samples from Jupiter-family comet 81P/Wild 2, this hypothesis can be tested. We have measured the Fe oxidation state of 15 CP-IDPs and 194 Stardust fragments using a synchrotron-based x-ray microprobe. We analyzed ~300 nanograms of Wild 2 material - three orders of magnitude more material than other analyses comparing Wild 2 and CP-IDPs. The Fe oxidation state of these two samples of material are >2{\\sigma} different: the CP-IDPs are more oxidized than the Wild 2 grains. We conclude that comet Wild 2 contains material that formed at a lower oxygen fugacity than the parent body, or parent bodies, of CP-IDPs. If all J...

  5. The Crystal Structure of Ba 3CuRu 2O 9 and Comparison to Ba 3MRu 2O 9 ( M=In, Co, Ni, and Fe)

    Science.gov (United States)

    Rijssenbeek, J. T.; Huang, Q.; Erwin, R. W.; Zandbergen, H. W.; Cava, R. J.

    1999-08-01

    The crystal structure of Ba3CuRu2O9, determined by powder neutron diffraction, is reported for temperatures of 18-295 K. Structural refinements by powder neutron diffraction for the previously reported compounds Ba3MRu2O9 for M=Fe, Co, Ni, and In are also reported. All structures consist of pairs of face-shared RuO6 octahedra interconnected by corner-sharing MO6 octahedra. For Ba3CuRu2O9, Jahn-Teller distortion of the CuO6 octahedra leads to an orthorhombic symmetry structure of space group Cmcm with a=5.6723(1), b=10.1722(3), and c=14.1575(3) Å at 295 K. For Ba3FeRu2O9, site occupancy disorder is found. Magnetic ordering is observed below 100, 105, and 110 K for M=Cu, Ni, and Co, respectively. The magnetic structures at low temperatures for M=Co and Ni are described and compared to previous reports.

  6. The anisotropic quantum spin-1/2 Heisenberg antiferromagnet in the presence of a longitudinal field on a bcc lattice

    International Nuclear Information System (INIS)

    In this work we study the critical behavior of the quantum spin-1/2 anisotropic Heisenberg antiferromagnet in the presence of a longitudinal field on a body centered cubic (bcc) lattice as a function of temperature, anisotropy parameter (Δ) and magnetic field (H), where Δ=0 and 1 correspond the isotropic Heisenberg and Ising models, respectively. We use the framework of the differential operator technique in the effective-field theory with finite cluster of N=4 spins (EFT-4). The staggered ms=(mA−mB)/2 and total m=(mA+mB)/2 magnetizations are numerically calculated, where in the limit of ms→0 the critical line TN(H,Δ) is obtained. The phase diagram in the T−H plane is discussed as a function of the parameter Δ for all values of H∈[0,Hc(Δ)], where Hc(Δ) correspond the critical field (TN=0). Special focus is given in the low temperature region, where a reentrant behavior is observed around of H=Hc(Δ)≥Hc(Δ=1)=8J in the Ising limit, results in accordance with Monte Carlo simulation, and also was observed for all values of Δ∈[0,1]. This reentrant behavior increases with increase of the anisotropy parameter Δ. In the limit of low field, our results for the Heisenberg limit are compared with series expansion values. - Highlights: ► In the lat decade there has been a great interest in the physics of the quantum phase transition in spins system. ► Effective-field theory in cluster with N=4 spins is generalized to treat the quantum spin-1/2 Heisenberg model. ► We have obtained phase diagram at finite temperature for the quantum spin-1/2 antiferromagnet Heisenberg model as a bcc lattice.

  7. Structural Analysis and Magnetic Properties of FeCo Alloys Obtained by Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    F. Sánchez-De Jesús

    2016-01-01

    Full Text Available A systematic study on the structural and magnetic properties of Fe100-xCox alloys (10Fe and Co mixed in an adequate weight ratio were milled at room temperature in a shaker mixer mill using vials and balls of hardened steel as milling media with a ball : powder weight ratio of 12 : 1. The mixtures were milled for 3 h. The results show that, after milling, for almost all the composition (up to x=60, solid solutions based on bcc structures were obtained. For Co-rich alloys (x≥70, different phases were found, revealing the formation of a metastable intermetallic phase (FeCo, wairauite together with fcc-Co and hcp-Co phases. The specific saturation magnetization increases by increasing Co content, reaching a maximum value of 225 emu/g for hcp-Fe70Co30, and then it shows a diminution up to 154 emu/g for bcc-Fe30Co70. All studied alloys (Fe100-xCox present low coercivity, in the range from 0 to 65 Oe, which is lower than reported. The coercivity increases with the increment in Co, reaching a maximum of 64.1 Oe for Fe40Co60. After that, the coercivity falls up to 24.5 Oe for Co-rich alloys, which make them a very low coercive material.

  8. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted Al{sub x}CoCrFeNi high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Jithin, E-mail: jithin@deakin.edu.au [Institute for Frontier Materials, Deakin University, Waurn Ponds 3216 (Australia); Jarvis, Tom; Wu, Xinhua [Monash Centre for Additive Manufacturing, Monash University, Clayton 3168 (Australia); Stanford, Nicole; Hodgson, Peter; Fabijanic, Daniel Mark [Institute for Frontier Materials, Deakin University, Waurn Ponds 3216 (Australia)

    2015-05-01

    High entropy alloys (HEA) are a relatively new metal alloy system that have promising potential in high temperature applications. These multi-component alloys are typically produced by arc-melting, requiring several remelts to achieve chemical homogeneity. Direct laser fabrication (DLF) is a rapid prototyping technique, which produces complex components from alloy powder by selectively melting micron-sized powder in successive layers. However, studies of the fabrication of complex alloys from simple elemental powder blends are sparse. In this study, DLF was employed to fabricate bulk samples of three alloys based on the Al{sub x}CoCrFeNi HEA system, where x was 0.3, 0.6 and 0.85 M fraction of Al. This produced FCC, FCC/BCC and BCC crystal structures, respectively. Corresponding alloys were also produced by arc-melting, and all microstructures were characterised and compared longitudinal and transverse to the build/solidification direction by x-ray diffraction, glow discharge optical emission spectroscopy and scanning electron microscopy (EDX and EBSD). Strong similarities were observed between the single phase FCC and BCC alloys produced by both techniques, however the FCC/BCC structures differed significantly. This has been attributed to a difference in the solidification rate and thermal gradient in the melt pool between the two different techniques. Room temperature compression testing showed very similar mechanical behaviour and properties for the two different processing routes. DLF was concluded to be a successful technique to manufacture bulk HEA's.

  9. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys

    International Nuclear Information System (INIS)

    High entropy alloys (HEA) are a relatively new metal alloy system that have promising potential in high temperature applications. These multi-component alloys are typically produced by arc-melting, requiring several remelts to achieve chemical homogeneity. Direct laser fabrication (DLF) is a rapid prototyping technique, which produces complex components from alloy powder by selectively melting micron-sized powder in successive layers. However, studies of the fabrication of complex alloys from simple elemental powder blends are sparse. In this study, DLF was employed to fabricate bulk samples of three alloys based on the AlxCoCrFeNi HEA system, where x was 0.3, 0.6 and 0.85 M fraction of Al. This produced FCC, FCC/BCC and BCC crystal structures, respectively. Corresponding alloys were also produced by arc-melting, and all microstructures were characterised and compared longitudinal and transverse to the build/solidification direction by x-ray diffraction, glow discharge optical emission spectroscopy and scanning electron microscopy (EDX and EBSD). Strong similarities were observed between the single phase FCC and BCC alloys produced by both techniques, however the FCC/BCC structures differed significantly. This has been attributed to a difference in the solidification rate and thermal gradient in the melt pool between the two different techniques. Room temperature compression testing showed very similar mechanical behaviour and properties for the two different processing routes. DLF was concluded to be a successful technique to manufacture bulk HEA's

  10. Magnetism of U/Fe multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, M.F.; Beesley, A.M.; Bouchenoire, L.; Brown, S.D.; Thompson, P.; Herring, A.D.F.; Lander, G.H.; Langridge, S.; Stirling, W.G.; Ward, R.C.C.; Zochowski, S.W

    2004-04-28

    Magnetic multilayers are known to have behaviour shaped by the intrinsic magnetic properties of their constituents and of their interactions. Multilayers composed of Uranium (5f electrons) and transition metal (3d electrons) provide the unique combination of a potentially large orbital moment with strong electronic hybridisation effects between the extended 5f states and the strongly magnetic 3d states. In this study U/Fe multilayers with layer thicknesses 20 AFe<140 A were fabricated by dc sputtering in a UHV chamber. X-ray reflectivity (XRR) spectra show good layer structure with little interdiffusion at interfaces. We have investigated the magnetic moment profile normal to the layers by polarised neutron reflectivity (PNR) and specifically whether magnetic moments are induced on the uranium layers by the proximity of the iron layers. The PNR results show a magnetic moment on the iron layers reduced from that of pure bcc iron and they set an upper limit on any moment on the U layers. A more sensitive search for the U moment has involved resonant X-ray magnetic reflectivity measurements at energies around the UM{sub IV} edge using different geometries of circular polarisation helicity and applied magnetic field. Some evidence of U moments has been observed.

  11. Natural and Treated FeS2 in Li/FeS2 Coin Cell

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Treated FeS2 samples were prepared by natural FeS2 samples which were ground first,heated in nitrogen and then washed in acid. The levels of impurity elements, primarily present as metallic oxides and sulfides, are higher in the natural FeS2 than those in the treated sample. Scanning electron microscopy shows that the grain sizes of treated FeS2 particles are smaller than those of natural FeS2 particles. The electrochemical performance of Li/treated FeS2 cells is attributed to the smaller grain sizes and higher purity of treated FeS2 particles in comparison to the natural FeS2sample.

  12. Dynamics of the HCP/BCC phase transition and of the diffusion in zirconium: a model based on a tight-binding potential

    International Nuclear Information System (INIS)

    We have developed an N-body interatomic potential, based on the second moment approximation of the tight-binding scheme, by fitting its four adjustable parameters to the cohesive energy, atomic volume, and elastic constants of hcp-Zr. We then showed that various properties of this potential compare favorably with those of zirconium in both the low temperatures hcp phase and the high temperature bcc phase. Such is the case in particular for the elastic constants, the phonon dispersion curves, the thermal expansion, and the melting temperature. We reproduced by molecular dynamics (MD) simulations on this potential the hcp/bcc phase transformation in both ways. It indeed occurs following the mechanism predicted by Burgers. We find a vibrational entropy of transformation equal to 0.13 kB. Our calculations suggest that in real zirconium the electronic contribution to the transformation entropy is important. We show that some interatomic potential lead to a higher value of the vibrational entropy in the hcp phase than in the bcc phase. We specified the dynamics of the vacancy migration in the bcc phase. The atomic jumps are almost exclusively nearest neighbour ones. The walk of the vacancy becomes strongly correlated at high temperatures. The vacancy jump frequency is very large and has a perfectly arrhenian behaviour. There is no evicence of a dynamical lowering of the vacancy migration barrier: the static and dynamic values of the vacancy migration energy are almost equal, both being unusually small (0.3 eV). The self diffusion coefficent of our model for the vacancy mechanism reproduces an anomalous fast diffusion close to that measured experimentally in bcc-Zr. In our model at high temperatures the time interval between successive jumps is almost equal to the time of flight. The migration events will therefore influence the formation of the vacancies

  13. Monte Carlo simulations for bcc alloys under irradiation: Phase stability and microstructural evolutions

    International Nuclear Information System (INIS)

    When a compound is maintained in far for equilibrium configurations by nuclear collisions under irradiation, the steady-state properties of the system can no longer be predicted from equilibrium thermodynamics. Here the authors propose Monte Carlo simulations for addressing the question of phase stability under irradiation. They are based on a kinetic model with two dynamics acting in parallel: thermally activated jumps of vacancies and ballistic events induced by nuclear collisions. Two transformations are studied: the A2-B2 order-disorder transition and the precipitation of copper in iron. In the former case a shift from second to first order of the A2-B2 transition, predicted by the model, has been experimentally checked by 1 MeV electron irradiations of a FeAl alloy. In the latter case, the precipitation kinetics are determined by Monte Carlo simulations and are found to be in very good agreement with available experimental data

  14. Scalar-product cluster variation method layer formulation for the irregular tetrahedron cluster in bcc lattices

    International Nuclear Information System (INIS)

    The scalar-product cluster variation method (SP-CVM) for calculation of antiphase boundary (APB) energies has been extended for application to {001} APBs in the body-centered cubic lattice using the irregular tetrahedron cluster approximation. In order to do so, the proof of the SP-CVM relation has been updated to include the cases where the domain interface consists of more than one plane of atoms (i.e., it consists of a layer of atoms). The algorithm has been developed for the cases of thermal APBs with APB vectors a0A2 and a0A2/2. It is then applied, as an illustration, to the determination of APB energies in isothermal calculations in the Fe-Al system

  15. Properties of He clustering in α-Fe grain boundaries

    International Nuclear Information System (INIS)

    Classical molecular dynamics and density functional theory calculations are performed to study the impact of two distinct Fe grain boundaries (GBs) on the clustering properties of helium (He) and the possible He effect on GB decohesion. Several He concentrations are considered. Common properties of He clustering are found for the both GBs, which are visibly different from the bcc bulk. In particular, He clusters in the GBs are always elongated in the directions parallel to the interface and contracted in the direction normal to the GB plane, while they are isotropic in the bcc bulk. When the He number in the clusters is sufficiently large, the strong local pressure promotes the occurrence of loop punching, which is easier to trigger in the GBs than in the bulk, resulting in a lower He-to-vacancy ratio in the GB clusters. The emitted self-interstitial atoms (SIAs) can more easily dissociate from the clusters in the GBs than in the bulk, leading to relatively lower local pressures around the clusters in the GBs, and facilitating the clusters growth. He is found to decrease GB cohesion, and the embrittling effect of He increases with its concentration. But interestingly, this effect decreases with He clustering. The present findings are fully compatible with existing experimental evidence, for instance, for a stronger GB embrittlement due to He at rather low temperatures than at higher temperatures

  16. Electron-impact excitation of Fe2+: A comparison of intermediate coupling frame transformation, Breit-Pauli and Dirac R-matrix calculations

    International Nuclear Information System (INIS)

    Modeling the spectral emission of low-charge iron group ions enables the diagnostic determination of the local physical conditions of many cool plasma environments such as those found in H II regions, planetary nebulae, active galactic nuclei, etc. Electron-impact excitation drives the population of the emitting levels and, hence, their emissivities. By carrying-out Breit-Pauli and intermediate coupling frame transformation (ICFT) R-matrix calculations for the electron-impact excitation of Fe2+, which both use the exact same atomic structure and the same close-coupling expansion, we demonstrate the validity of the application of the powerful ICFT method to low-charge iron group ions. This is in contradiction to the finding of Bautista et al., who carried-out ICFT and Dirac R-matrix calculations for the same ion. We discuss possible reasons.

  17. Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties

    International Nuclear Information System (INIS)

    In this work the cobalt ferrite (CoFe2O4) nanoparticles are synthesized using three different methods; combustion, coprecipitation, and precipitation. Size, structural, and magnetic properties were determined and compared using X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). XRD data analysis showed an average size of 69.5 nm for combustion, 49.5 nm for coprecipitation, and 34.7 nm for precipitation samples which concorded with SEM images. XRD data further revealed a reverse cubic spinel structure with the space group Fd-3m in all three samples. VSM data of samples showed a saturation point in the magnetic field of less than 15 kOe. Magnetization saturation (Ms) was 56.7 emu/g for combustion synthestized samples, 55.8 emu/g for coprecipitation samples, and 47.2 emu/g for precipitation samples. Coercivity (Hc) was 2002 Oe for combustion synthestized samples, 850 Oe for coprecipitation samples, and 233 Oe for precipitation samples. These results show that various methods of nanoparticle synthesis can lead to different particle sizes and magnetic properties. Hc and Ms are greatest in the combustion method and least in precipitation method. - Highlights: • CoFe2O4 nanoparticles were made by combustion, coprecipitation, and precipitation. • Size, structural, and magnetic properties were determined and compared. • XRD, SEM, and VSM measurements were carried out. • Nanoparticle synthesis method affects particle sizes and magnetic properties. • Hc and Ms are greatest in the combustion method and least in precipitation method

  18. AFM and Moessbauer spectrometry investigation of crystallization process in Fe-Mo-Cu-B alloy

    International Nuclear Information System (INIS)

    In this presentation, the effect of temperature annealing on the development of surface nano-crystallization of the Fe79Mo8Cu1B12 alloy is investigated. The surface morphology is examined using tapping mode atomic force microscopy (AFM). The results are compared with those obtained by means of transmission Moessbauer spectroscopy, CEMS and XRD. It was found that the sample is not fully amorphous even in the as-quenched state. Minor amounts of bcc-Fe grains were detected. AFM results indicate large variations in morphology of density and size of surface protrusions. They are different at the top- (air side) and bottom-(wheel) side of the ribbon. The amount and size of nanocrystals increases with annealing temperature. The onset of the first crystallization is observed after annealing at 410 grad C when bcc-Fe nanograins (ca. 15 nm in size) are much better developed. More intense growth is evidenced at higher temperatures. The second crystallization which is characterized by occurrence of additional crystalline phases appears after annealing at 650 grad C. (authors)

  19. Microstructures and mechanical properties of AlxCrFeNiTi0.25 alloys

    International Nuclear Information System (INIS)

    Aiming to lower the cost and improve mechanical properties of AlCoCrFeNiTix high-entropy alloys that were studied previously, the present research investigated the effect of removing Co and lowering Ti contents at various Al contents, namely AlxCrFeNiTi0.25. The microstructures were investigated using optical microscopy, scanning electron microscopy, energy disperse spectroscopy, X-ray diffraction and transmission electron microscopy. Compression tests were conducted at room temperature. The present study showed that with increasing Al contents, the phase structures of the alloys changed from FCC + BCC to double BCC as the main phases. Among the alloys studied, all of them exhibit distinguished work hardening. Especially the Al0.5CrFeNiTi0.25 alloy has the highest fracture strength and plastic-strain limit of 3.47 GPa and 40%, respectively with a yield strength of 1.88 GPa. The observed microstructure is analyzed using CALPHAD calculations.

  20. Soft magnetic CoNiFe films electrodeposited under centrifugal forces

    International Nuclear Information System (INIS)

    Physical and magnetic properties of soft magnetic CoNiFe films electrodeposited under centrifugal forces were investigated. It was demonstrated that employing an external centrifugal force during the deposition process provides stronger magnetic properties of the soft magnet electrodeposited. Based on the approach proposed, preparation of soft magnetic CoNiFe film with Bs higher than 2.1 T and Hc lower than 1.1 Ωe is possible. For a conventional CoNiFe film with Bs of 1.96 T (electrodeposited under Earth's gravity), the saturation induction can be increased to 2.14 T by applying a 290g centrifugal force during the electrodeposition process, while the Hc approximately remained the same. It is thought that this enhancement provided by an applied centrifugal force is due to the increase of bcc/fcc ratio, where this increase is not associated with a significant crystallite growth in this case

  1. Struetural and Magnetic Properties of Electrodeposited Ni70Fe30 Nanowire Array

    Institute of Scientific and Technical Information of China (English)

    XU Jinxia; WANG Keyu

    2008-01-01

    Ordered Ni70Fe30 nanowire array was fabricated in a porous alumina template by altemating current electrodeDositiOn.The structural and magnetic properties of the as-obtained nanowire array were investigated by SEM,TEM,XRD,EDS and VSM.The results indicate that the as-obtained Ni70Fe30 nanowires exhibit a diameter of about 69.9 nm and aspect ratio of more than 60.Meanwhile,a preferred orientation[110]of bcc lattice was observed.The as-obtained nanowire array has an obvious magnetic anisotropy,of which the easy direction is perpendicular to the surface of the array.Moreover,after annealed,the Ni70Fe30 nanowire array exhibits an enhanced magnetic anisotropy.

  2. Microstructure and mechanical behavior of a novel Co20Ni20Fe20Al20Ti20 alloy fabricated by mechanical alloying and spark plasma sintering

    International Nuclear Information System (INIS)

    A novel equiatomic Co20Ni20Fe20Al20Ti20 (at%) alloy was designed and synthesized to study the effect of high atomic concentrations of Al and Ti elements on the microstructure, phase composition and mechanical behavior of high-entropy alloys (HEAs) fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). Following the MA process, the Co20Ni20Fe20Al20Ti20 alloy was composed of a primary body-centered cubic (BCC) supersaturated solid solution and a face-centered cubic (FCC) supersaturated solid solution. However, following SPS, a primary FCC solid-solution phase, a BCC solid-solution phase and a trace amount of Al3Ti intermetallics were observed. Transmission electron microscopy (TEM) results confirmed the presence of the FCC solid-solution phase, the BCC (B2-type) solid-solution phase and Al3Ti intermetallics in the bulk alloy. The FCC and B2-type phases are ultrafine-grained, and Al3Ti intermetallics is nano/ultrafine-grained. Our results suggest that consideration of a single existing empirical design criterion is inadequate to explain phase formation in the Co20Ni20Fe20Al20Ti20 alloy. Solid-solution strengthening, grain-boundary strengthening, twin-boundary strengthening, the presence of the strong B2-type BCC phase, and precipitate strengthening due to the presence of a trace amount of Al3Ti are responsible for the ultra-high compressive strength of ~2988 MPa and hardness of ~704 Hv. The strain-to-failure of ~5.8% with visible ductility is dominated by the FCC solid-solution phase

  3. Properties of Ni{sub 1-x}Fe{sub x} (0.1 < x < 0.9) and Invar (x = 0.64) alloys obtained by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Tabakovic, Ibro, E-mail: ibro.m.tabakovic@seagate.co [Seagate Technology, 7801 Computer Avenue South, Bloomington, MN 55435 (United States); Inturi, Venkateswara; Thurn, Jeremy; Kief, Mark [Seagate Technology, 7801 Computer Avenue South, Bloomington, MN 55435 (United States)

    2010-09-01

    Electrodeposition of Ni{sub 1-x}Fe{sub x} (x = 0.1-0.9) films was carried out from a chloride plating solution containing saccharin as an organic additive at a constant current density (5 mA/cm{sup 2}) and a controlled pH of 2.5. X-ray diffraction studies revealed the existence of an fcc, or {gamma} phase, in the range of 10-58 wt.% Fe, a mixed fcc/bcc phase in the range of 59-60 wt.% Fe, and a bcc, or {alpha} phase in the range of 64-90 wt.% Fe. The saturation magnetization, B{sub s}, of electrodeposited Ni{sub 1-x}Fe{sub x} alloys at the room temperature was found to increase with the increase of Fe-content and follows the Slater-Pauling curve, but deviates from as-cast bulk NiFe alloys. The coefficient of thermal expansion, CTE, of electrodeposited alloys at room temperature also deviates from as-cast bulk NiFe alloys. Annealing of {alpha}-Ni{sub 36}Fe{sub 64} alloy results in a martensitic {alpha} {yields} {gamma} phase transformation, which takes place between 300 and 400 {sup o}C. It was demonstrated that thermal treatment above 400 {sup o}C was necessary to obtain magnetic and mechanical properties similar to those to conventional Invar alloy. Annealing of {alpha}-Ni{sub 36}Fe{sub 64} alloy at 700 {sup o}C brings about a decrease of B{sub s} from 1.75 to 0.45 T. By controlling the annealing conditions of {alpha} {yields} {gamma} martensitic transformation, it is possible to adjust the CTE of Ni{sub 36}Fe{sub 64} alloy over the broad limits from 2.7 to 8.7 x 10{sup -6}/{sup o}C.

  4. Preparation of a bulk Fe83B17 soft magnetic alloy by undercooling and copper-mold casting methods

    International Nuclear Information System (INIS)

    Bulk Fe83B17 eutectic alloy rods with diameters up to 3 mm were prepared by undercooling solidification combined with Cu-mold casting. The results showed that the rapid solidification led to an increase in the nucleation rate, an inhibition of the grain growth and a competition between a stable Fe2B phase and a metastable Fe3B phase. Then, pure nano-lamellar eutectic microstructures and the metastable Fe3B phase were successfully obtained in as-solidified alloys, which resulted in improved soft magnetic properties. - Highlights: • Pure nano-lamellar eutectic structure was directly formed in the bulk Fe-B alloys. • The metastable Fe3B phase was directly formed in the bulk Fe-B alloys. • Undercooling solidification combined with Cu-mold casting was applied. • The information on bcc Fe, Fe2B and Fe3B-magnetism relationship was provided. • Nano-lamellar eutectic structures enhance the soft magnetic properties

  5. Ultrafast demagnetization dynamics of thin Fe/W(110) films: comparison of time and spin-resolved photoemission with time resolved magneto-optic experiments

    International Nuclear Information System (INIS)

    We use two complementary experimental approaches to probe ultrafast magnetization dynamics. Using a 1.55 eV pump laser pulse we demagnetize 7 monolayer (ML) thin Fe films epitaxially grown on W(110). We probe the temporal evolution of the magnetization using time-resolved magneto-optical Kerr effect (TR-MOKE) at a probe photon energy of 3.1 eV. In addition we use time- and spin- resolved photoemission (TR-SPES) to probe the evolution of the spin polarization of the film (probe photon energy 5.9 eV). With TR-MOKE for all the observed quenching the demagnetization times have the same value (within the error bars) equal to the expected cross-correlation of the pump and probe pulses (about 250 fs). However TR-SPES measurements show demagnetization times limited by the cross-correlation (about 320 fs) only for quenching below 33%. Indeed, for greater quenching we find a significant increase in the demagnetization times to about 500 fs. We explain this behavior as a clear indication of the bandstructure importance in the demagnetization process.

  6. Comparison of Fe-Al-modified natural materials by an electrochemical method and chemical precipitation for the adsorption of F(-) and As(V).

    Science.gov (United States)

    Vázquez Mejía, G; Martínez-Miranda, V; Fall, C; Linares-Hernández, I; Solache-Ríos, M

    2016-03-01

    The adsorption of fluoride and arsenic ions by modified natural materials may have an impact on the removal of F(-) and As(V) from waters. In this work, a zeolitic material and pozzolan (commonly known as pumicite) were modified with aluminium an iron by an electrochemical method and chemical precipitation, respectively. The adsorbents were characterized by X-ray diffraction, scanning electron microscopy with energy X-ray disperse spectroscopy analysis and the point of zero charge (pHzpc). F(-) and As(V) adsorption properties of both materials were investigated. Adsorption kinetic data were best fitted to pseudo-second-order model and equilibrium data to the Langmuir isotherm model. The highest F(-) and As(V) sorption capacities were obtained for modified zeolitic (0.866 mg/g) and pozzolan (3.35 mg/g) materials, respectively, with initial F(-) or As(V) concentrations of 10 mg/L. It was found that the unmodified materials did not show either adsorption of F(-) ions or As(V), which indicated that Al and Fe in the adsorbents are responsible for the adsorption of these ions. In general, both modified materials show similar capacities for the adsorption of F(-) and As(V). PMID:26362939

  7. Sr2FeNbO6 Applied in Solid Oxide Electrolysis Cell as the Hydrogen Electrode: Kinetic Studies by Comparison with Ni-YSZ

    International Nuclear Information System (INIS)

    Double-perovskite Sr2FeNbO6 (SFN) has been introduced to the solid oxide electrolysis cell (SOEC) supported by 8 mol% yttria stabilized zirconia (YSZ) electrolyte (500 μm thick) with the cell composition of SFN-YSZ/YSZ/LSM-YSZ (La0.8Sr0.2MnO3, LSM). Five groups of contrast tests are designed to investigate the differences between SFN and Ni in electrochemical behavior. The reaction mechanisms of the H2O reduction in Ni-YSZ and SFN-YSZ electrodes are discussed. The results show that the conductivity of SFN in H2/H2O (80 vol% H2O) atmosphere (2.215 S cm−1 at 850 °C) is much higher than that in air (0.049 S cm−1 at 850 °C). The electrochemical impedance spectroscopy (EIS) measurement results indicate that, compared with Ni-YSZ, SFN-YSZ is more suitable for high temperature steam electrolysis as the hydrogen electrode. X-ray photoelectron spectroscopy (XPS) analysis suggests that the surface of SFN can also be one of the electrode reaction places besides the triple phase boundary (TPB), which greatly accelerates the reaction process, lowers the energy barrier of the charge transfer process and results in a better performance of SFN-YSZ than Ni-YSZ in the SOEC mode

  8. A Comparison of Fully Automated Methods of Data Analysis and Computer Assisted Heuristic Methods in an Electrode Kinetic Study of the Pathologically Variable [Fe(CN) 6 ] 3–/4– Process by AC Voltammetry

    KAUST Repository

    Morris, Graham P.

    2013-12-17

    Fully automated and computer assisted heuristic data analysis approaches have been applied to a series of AC voltammetric experiments undertaken on the [Fe(CN)6]3-/4- process at a glassy carbon electrode in 3 M KCl aqueous electrolyte. The recovered parameters in all forms of data analysis encompass E0 (reversible potential), k0 (heterogeneous charge transfer rate constant at E0), α (charge transfer coefficient), Ru (uncompensated resistance), and Cdl (double layer capacitance). The automated method of analysis employed time domain optimization and Bayesian statistics. This and all other methods assumed the Butler-Volmer model applies for electron transfer kinetics, planar diffusion for mass transport, Ohm\\'s Law for Ru, and a potential-independent Cdl model. Heuristic approaches utilize combinations of Fourier Transform filtering, sensitivity analysis, and simplex-based forms of optimization applied to resolved AC harmonics and rely on experimenter experience to assist in experiment-theory comparisons. Remarkable consistency of parameter evaluation was achieved, although the fully automated time domain method provided consistently higher α values than those based on frequency domain data analysis. The origin of this difference is that the implemented fully automated method requires a perfect model for the double layer capacitance. In contrast, the importance of imperfections in the double layer model is minimized when analysis is performed in the frequency domain. Substantial variation in k0 values was found by analysis of the 10 data sets for this highly surface-sensitive pathologically variable [Fe(CN) 6]3-/4- process, but remarkably, all fit the quasi-reversible model satisfactorily. © 2013 American Chemical Society.

  9. Microstructure and solidification behavior of multicomponent CoCrCu{sub x}FeMoNi high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P.H. [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China); Liu, N., E-mail: lnlynn@126.com [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China); Yang, W. [School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063 (China); Zhu, Z.X. [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China); Lu, Y.P. [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, X.J. [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China)

    2015-08-26

    (Fe, Co, Ni) rich dendrites nucleate primarily in CoCrFeMoNi and CoCrCu{sub 0.1}FeMoNi alloys, followed by peritetic and eutectic reactions. The quasi-peritectic reaction occurs between the primary Mo-rich dendrites and liquids in the CoCrCu{sub 0.3}FeMoNi melts, and transfers to a eutectic coupled-growth at the edge of the quasi-peritectic structure. Subsequently, eutectic reaction happens in the remnant liquids. Liquid-phase separations have occurred in CoCrCu{sub x}FeMoNi alloys when x≥0.5. Meanwhile, some nanoscale precipitates are obtained in the Cu-rich region. Two crystal structures, FCC and BCC, are identified in CoCrCu{sub x}FeMoNi high entropy alloys. Amazingly, a pretty high plastic strain (51.6%) is achieved in CoCrCu{sub 0.1}FeMoNi alloy when the compressive strength reaches to 3012 Mpa. With the increase of Cu content, atomic size difference (ΔR) and electro-negativity difference (ΔX) decrease while valence electron concentration (VEC), mixing enthalpy (ΔH) and mixing entropy (ΔS) increase. Consequently, the valence electron concentration (VEC) values range for the formation of mixture of FCC and BCC structures can be enlarged to 6.87–8.35 based on the study of this paper. It is the positive enthalpies of mixing that causes the liquid-phase separation in CoCrCu{sub x}FeMoNi high entropy alloys.

  10. Microstructure and solidification behavior of multicomponent CoCrCuxFeMoNi high-entropy alloys

    International Nuclear Information System (INIS)

    (Fe, Co, Ni) rich dendrites nucleate primarily in CoCrFeMoNi and CoCrCu0.1FeMoNi alloys, followed by peritetic and eutectic reactions. The quasi-peritectic reaction occurs between the primary Mo-rich dendrites and liquids in the CoCrCu0.3FeMoNi melts, and transfers to a eutectic coupled-growth at the edge of the quasi-peritectic structure. Subsequently, eutectic reaction happens in the remnant liquids. Liquid-phase separations have occurred in CoCrCuxFeMoNi alloys when x≥0.5. Meanwhile, some nanoscale precipitates are obtained in the Cu-rich region. Two crystal structures, FCC and BCC, are identified in CoCrCuxFeMoNi high entropy alloys. Amazingly, a pretty high plastic strain (51.6%) is achieved in CoCrCu0.1FeMoNi alloy when the compressive strength reaches to 3012 Mpa. With the increase of Cu content, atomic size difference (ΔR) and electro-negativity difference (ΔX) decrease while valence electron concentration (VEC), mixing enthalpy (ΔH) and mixing entropy (ΔS) increase. Consequently, the valence electron concentration (VEC) values range for the formation of mixture of FCC and BCC structures can be enlarged to 6.87–8.35 based on the study of this paper. It is the positive enthalpies of mixing that causes the liquid-phase separation in CoCrCuxFeMoNi high entropy alloys

  11. Phase evolution during crystallization of nanocomposite alloys with Co:Fe ratios in the two-phase region of the binary Fe-Co phase diagram

    International Nuclear Information System (INIS)

    A series of alloys was prepared to investigate the crystallization of Co-rich HiTPerm-type alloys [(Co1-xFex)88Zr7B4Cu1] with Fe:Co ratios within or near the two-phase (bcc+fcc) region of the binary phase diagram. The goal of this work is to better understand the phase evolution and crystallization of alloys in which the Fe-Co binary phase diagram predicts more than one transition metal rich primary crystalline phase to be present in equilibrium at the primary crystallization temperature. X-ray diffraction, transmission electron microscopy, and high-temperature vibrating-sample magnetometry have been performed to identify the first phase to crystallize and to follow the evolution of phases during crystallization. The bcc phase appears to be the primary crystalline phase that forms first after annealing at 450 degree sign C for 1 h, in agreement with previous work on Co-rich nanocomposite alloys. We observe that as the Co concentration is increased, the fcc crystalline phase forms at lower annealing temperatures and its volume fraction increases for a given annealing temperature

  12. The anisotropic quantum spin-1/2 Heisenberg antiferromagnet in the presence of a longitudinal field on a bcc lattice

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Minos A., E-mail: minos@pq.cnpq.br [Departamento de Fisica, Universidade Federal do Amazonas, 3000, Japiim, Manaus, 69077-000 AM (Brazil); Roberto Viana, J., E-mail: vianafisica@bol.com.br [Departamento de Fisica, Universidade Federal do Amazonas, 3000, Japiim, Manaus, 69077-000 AM (Brazil); Ricardo de Sousa, J., E-mail: jsousa@edu.ufam.br [Departamento de Fisica, Universidade Federal do Amazonas, 3000, Japiim, Manaus, 69077-000 AM (Brazil); National Institute of Science and Technology for Complex Systems, 3000, Japiim, Manaus, 69077-000 AM (Brazil)

    2012-08-15

    In this work we study the critical behavior of the quantum spin-1/2 anisotropic Heisenberg antiferromagnet in the presence of a longitudinal field on a body centered cubic (bcc) lattice as a function of temperature, anisotropy parameter ({Delta}) and magnetic field (H), where {Delta}=0 and 1 correspond the isotropic Heisenberg and Ising models, respectively. We use the framework of the differential operator technique in the effective-field theory with finite cluster of N=4 spins (EFT-4). The staggered m{sub s}=(m{sub A}-m{sub B})/2 and total m=(m{sub A}+m{sub B})/2 magnetizations are numerically calculated, where in the limit of m{sub s}{yields}0 the critical line T{sub N}(H,{Delta}) is obtained. The phase diagram in the T-H plane is discussed as a function of the parameter {Delta} for all values of H Element-Of [0,H{sub c}({Delta})], where H{sub c}({Delta}) correspond the critical field (T{sub N}=0). Special focus is given in the low temperature region, where a reentrant behavior is observed around of H=H{sub c}({Delta}){>=}H{sub c}({Delta}=1)=8J in the Ising limit, results in accordance with Monte Carlo simulation, and also was observed for all values of {Delta} Element-Of [0,1]. This reentrant behavior increases with increase of the anisotropy parameter {Delta}. In the limit of low field, our results for the Heisenberg limit are compared with series expansion values. - Highlights: Black-Right-Pointing-Pointer In the lat decade there has been a great interest in the physics of the quantum phase transition in spins system. Black-Right-Pointing-Pointer Effective-field theory in cluster with N=4 spins is generalized to treat the quantum spin-1/2 Heisenberg model. Black-Right-Pointing-Pointer We have obtained phase diagram at finite temperature for the quantum spin-1/2 antiferromagnet Heisenberg model as a bcc lattice.

  13. Overlapping solid solubility in mechanically alloyed Fe-Ni and Fe-Cu

    Science.gov (United States)

    Schilling, P. J.; Palshin, V.; Tittsworth, R. C.; He, J. H.; Ma, E.

    2003-12-01

    Solid solutions formed by mechanical alloying in the negative heat of mixing Fe-Ni system and the positive heat of mixing Fe-Cu system were studied. X-ray absorption near edge structure (XANES) spectroscopy data were analyzed to obtain the phase fractions and phase compositions for various overall compositions across the bcc/fcc two-phase region. For both systems, at each nominal composition of the powder mixture, the two solutions formed both have the same composition as the overall alloy. It is concluded that the two-phase coexistence represents an extended region of overlapping solubility for the two phases, rather than the usual two-phase region or a clear switchover at the concentration where the two phases have the same free energy. In terms of these features, the two binary systems, one with negative heat of mixing and one with positive heat of mixing, behave the same way. The external forcing action of mechanical alloying at low temperatures drives the system toward composition homogenization. There is no stable or metastable equilibrium, and the common tangent construction and lever rule are not applicable. What results is a novel two-phase coexistence which is defined by a region of overlapping solubility, rather than the normal solubility gap. That there can be two polymorphs at each composition even after the long ball-milling treatment represents a new type of steady-state two-phase coexistence that is completely different from the normal two-phase region dictated by thermodynamics.

  14. Overlapping solid solubility in mechanically alloyed Fe-Ni and Fe-Cu

    International Nuclear Information System (INIS)

    Solid solutions formed by mechanical alloying in the negative heat of mixing Fe-Ni system and the positive heat of mixing Fe-Cu system were studied. X-ray absorption near edge structure (XANES) spectroscopy data were analyzed to obtain the phase fractions and phase compositions for various overall compositions across the bcc/fcc two-phase region. For both systems, at each nominal composition of the powder mixture, the two solutions formed both have the same composition as the overall alloy. It is concluded that the two-phase coexistence represents an extended region of overlapping solubility for the two phases, rather than the usual two-phase region or a clear switchover at the concentration where the two phases have the same free energy. In terms of these features, the two binary systems, one with negative heat of mixing and one with positive heat of mixing, behave the same way. The external forcing action of mechanical alloying at low temperatures drives the system toward composition homogenization. There is no stable or metastable equilibrium, and the common tangent construction and lever rule are not applicable. What results is a novel two-phase coexistence which is defined by a region of overlapping solubility, rather than the normal solubility gap. That there can be two polymorphs at each composition even after the long ball-milling treatment represents a new type of steady-state two-phase coexistence that is completely different from the normal two-phase region dictated by thermodynamics

  15. Phase relations in the Fe-FeSi system at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Rebecca A.; Campbell, Andrew J.; Reaman, Daniel M.; Miller, Noah A.; Heinz, Dion L.; Dera, Przymyslaw; Prakapenka, Vitali B. (UC); (Maryland)

    2016-07-29

    The Earth's core is comprised mostly of iron and nickel, but it also contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is important to understand the high pressure, high temperature properties and behavior of alloys in the Fe–FeSi system, such as their phase diagrams. We determined melting temperatures and subsolidus phase relations of Fe–9 wt% Si and stoichiometric FeSi using synchrotron X-ray diffraction at high pressures and temperatures, up to ~200 GPa and ~145 GPa, respectively. Combining this data with that of previous studies, we generated phase diagrams in pressure–temperature, temperature–composition, and pressure–composition space. We find the B2 crystal structure in Fe–9Si where previous studies reported the less ordered bcc structure, and a shallower slope for the hcp+B2 to fcc+B2 boundary than previously reported. In stoichiometric FeSi, we report a wide B2+B20 two-phase field, with complete conversion to the B2 structure at ~42 GPa. The minimum temperature of an Fe–Si outer core is 4380 K, based on the eutectic melting point of Fe–9Si, and silicon is shown to be less efficient at depressing the melting point of iron at core conditions than oxygen or sulfur. At the highest pressures reached, only the hcp and B2 structures are seen in the Fe–FeSi system. We predict that alloys containing more than ~4–8 wt% silicon will convert to an hcp+B2 mixture and later to the hcp structure with increasing pressure, and that an iron–silicon alloy in the Earth's inner core would most likely be a mixture of hcp and B2 phases.

  16. Effects of PEO-PPO diblock impurities on the cubic structure of aqueous PEO-PPO-PEO pluronics micelles: fcc and bcc ordered structures in F127

    DEFF Research Database (Denmark)

    Mortensen, Kell; Pedersen, Walther Batsberg; Hvidt, S.

    2008-01-01

    We report on structural properties of PEO-PPO-PEO type of triblock block copolymers (Pluronics F127) with special emphasis on the effect of diblock PEO-PPO impurities on the ordered gel phase. Commercial F127 polymers contain as received roughly 20% PEO-PPO diblock and 80% PEO-PPO-PEO triblock...... copolymers. Aqueous solutions of F127 copolymers used as received form fee ordered micellar structure. Copolymers depleted with respect to the diblock impurity, resulting in a pure PEO-PPO-PEO triblock copolymer system, form bcc ordered micelles within the major parts of the gel phase. However, close to the...... disorder-to-order transition, the purified F 127 copolymer system also forms fcc structure, thus giving rise to a novel sequence of micellar phases: disorder-fcc-bcc. This is the phase sequence predicted theoretically for pure block copolymer melts....

  17. The effect of shear deformations on the transition onset pressure of the bcc to hcp pressure induced martensitic phase transformation in iron.

    Science.gov (United States)

    Caspersen, K.; Lew, A.; Ortiz, M.; Carter, E.

    2003-12-01

    At a pressure of approximately 13 GPa iron undergoes a martensitic phase transition from ground state ferro-magnetic bcc to a non-magnetic hcp structure. The exact transformation varies between experiments and is postulated to have a strong dependence on shear stresses during the loading process. To study this shear dependence we have developed a multi-scale model of iron, in which we employ a quantum mechanics based free energy, a kinematically compatible spinodal decomposition of phases, and a dependence on the bcc{}hcp transition path(s). Using this model we see that that the predicted transformation pressure for pure hydrostatic compression is much higher than expected, however with the inclusion of small initial shear deformations we see the predicted transformation pressure drop considerably and into the experimentally determined pressure range.

  18. Interstitial Fe in MgO

    CERN Document Server

    Mølholt, T E; Gunnlaugsson, H P; Svane, A; Masenda, H; Naidoo, D; Bharuth-Ram, K; Fanciulli, M; Gislason, H P; Johnston, K; Langouche, G; Ólafsson, S; Sielemann, R; Weyer, G

    2014-01-01

    Isolated Fe-57 atoms were studied in MgO single-crystals by emission Mossbauer spectroscopy following implantation of Mn-57 decaying to Fe-57. Four Mossbauer spectral components were found corresponding to different Fe lattice positions and/or charge states. Two components represent Fe atoms substituting Mg as Fe2+ and Fe3+, respectively; a third component is due to Fe in a strongly implantation-induced disturbed region. The fourth component, which is the focus of this paper, can be assigned to Fe at an interstitial site. Comparison of its measured isomer shift with ab initio calculations suggests that the interstitial Fe is located on, or close to, the face of the rock-salt MgO structure. To harmonize such an assignment with the measured near-zero quadrupole interaction a local motion process (cage motion) of the Fe has to be stipulated. The relation of such a local motion as a starting point for long range diffusion is discussed.

  19. Comparative study of radiation damage accumulation in Cu and Fe

    Science.gov (United States)

    Caturla, M. J.; Soneda, N.; Alonso, E.; Wirth, B. D.; Díaz de la Rubia, T.; Perlado, J. M.

    2000-01-01

    Bcc and fcc metals exhibit significant differences in behavior when exposed to neutron or heavy ion irradiation. Transmission electron microscopy (TEM) observations reveal that damage in the form of stacking fault tetrahedra (SFT) is visible in copper irradiated to very low doses, but that no damage is visible in iron irradiated to the same total dose. In order to understand and quantify this difference in behavior, we have simulated damage production and accumulation in fcc Cu and bcc Fe. We use 20 keV primary knock-on atoms (PKAs) at a homologous temperature of 0.25 of the melting point. The primary damage state was calculated using molecular dynamics (MD) with empirical, embedded-atom interatomic potentials. Damage accumulation was modeled using a kinetic Monte Carlo (kMC) algorithm to follow the evolution of all defects produced in the cascades. The diffusivities and binding energies of defects are input data for this simulation and were either extracted from experiments, the literature, or calculated using MD. MD simulations reveal that vacancy clusters are produced within the cascade core in the case of copper. In iron, most of the vacancies do not cluster during cooling of the cascade core and are available for diffusion. In addition, self-interstitial atom (SIA) clusters are produced in copper cascades but those observed in iron are smaller in number and size. The combined MD/kMC simulations reveal that the visible cluster densities obtained as a function of dose are at least one order of magnitude lower in Fe than in Cu. We compare the results with experimental measurements of cluster density and find excellent agreement between the simulations and experiments when small interstitial clusters are considered to be mobile as suggested by recent MD simulations.

  20. Atomic level mixing induced by Kr irradiation of FeCo/Cu multilayers

    International Nuclear Information System (INIS)

    The effects of Kr ion irradiation of FexCo1-x/Cu multilayers are investigated by means of magnetic and x-ray measurements. The irradiation was performed at room temperature with 600 keV of Kr, and the fluences were ranged from 1x1015 to 5x1015 ions/cm2. X-ray diffraction patterns show that the irradiation was able to produce a significant grain growth and, at the same time, it triggered a strain release. The x-ray absorption measurements around Fe K edge have shown that the FeCo environment changed from bcc, for the as-deposited multilayer, to fcc after appropriate fluence, depending on the Cu thickness and on the Fe/Co content. For 50 A of Cu, the phase transformation occurs even for the lowest fluence, regardless the Fe/Co concentration. For 25 A of Cu, it depends on the Fe/Co concentration. After irradiation, the saturation magnetization suffers a strong decrease, especially for 50 A of Cu. The temperature for the onset of irreversibility also decreases with irradiation, again being the effect stronger for 50 A of Cu. These data indicate that Kr irradiation induced mixing between Cu and FeCo, even though Cu is immiscible with Fe and Co in the equilibrium state

  1. Effect of Applied Current Density on Morphological and Structural Properties of Electrodeposited Fe-Cu Films

    Institute of Scientific and Technical Information of China (English)

    Umut Sarac; M. Celalettin Baykul

    2012-01-01

    A detailed study has been carried out to investigate the effect of applied current density on the composition, crystallographic structure, grain size, and surface morphology of Fe-Cu films. X-ray diffraction (XRD) results show that the films consist of a mixture of face-centered cubic (fcc) Cu and body centered cubic (bcc) ~-Fe phases. The average crystalline size of both Fe and Cu particles decreases as the applied current density becomes more negative. Compositional analysis of Fe-Cu films indicates that the Fe content within the films increases with decreasing current density towards more negative values. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to investigate the surface morphology of Fe-Cu films. It is observed that the surface morphology of the films changes from dendritic structure to a cauliflower structure as the applied current density becomes more negative. The surface roughness and grain size of the Fe-Cu films decrease with decreasing applied current density towards more negative values.

  2. Oscillatory interlayer magnetic coupling and induced magnetism in Fe/Nb multilayers

    Indian Academy of Sciences (India)

    Nitya Nath Shukla; R Prasad

    2003-01-01

    We present an ab initio calculation of interlayer magnetic coupling for Fe/Nb multilayers using the self-consistent full-potential linearized augmented-plane-wave (FLAPW) method. For this calculation, we have constructed supercells consisting of bcc Fe and Nb multilayers in Fe/Nb/Fe sandwich geometry stacked along (001) direction. In the supercells two Fe layers are separated by Nb layers ranging from 1 to 11 layers. We have calculated the total energy of the system as a function of Nb spacer layer thickness. For each spacer layer thickness, we have done three calculations corresponding to para, ferro and antiferromagnetic ordering of Fe atoms. The interlayer magnetic coupling is obtained from the energy difference of the systems in which Fe layers are antiferromagnetically and ferromagnetically ordered. We find that the interlayer magnetic coupling oscillates with increasing Nb spacer thickness in agreement with the experimental results. The induced magnetic moment is also found to be oscillating with increasing Nb spacer layer thickness.

  3. Magnetic Properties of Co and Ni Substituted ε-Fe3N Nanoparticles

    International Nuclear Information System (INIS)

    In the present work, the nanostructured pseudo-binary ε-Fe3-xCoxN and ε-Fe3-xNixN (x = 0.0-0.8) systems (10-20 nm) are studied in detail for their intrinsic magnetic properties. These systems are indexed based on the hexagonal ε-Fe3N phase with the space group P63/mmc. However, for the cobalt containing samples, x 0.4-0.8, a mixture of hexagonal ε-Fe3-xCoxN and bcc α-Fe phases are formed and for the nickel containing systems, x = 0.5-0.8, small amount of cubic γ'-Fe4-yNiyN is precipitated and these facts are supported by X-ray diffraction and 57Fe Moessbauer spectroscopy studies. Moessbauer studies also confirm the random occupation of the substituent elements and the superparamagnetic nature of these particles. The intrinsic magnetic properties (σs, Tc) are observed to vary with the Co and Ni contents. The low temperature magnetic properties are dominated by exchange bias phenomena and spin-glass like ordering, for these compositions.

  4. Grain size engineering of bcc refractory metals: Top-down and bottom-up-Application to tungsten

    International Nuclear Information System (INIS)

    We have used two general methodologies for the production of ultrafine grained (UFG) and nanocrystalline (NC) tungsten (W) metal samples: top-down and bottom-up. In the first, Equal channel angular extrusion (ECAE), coupled with warm rolling has been used to fabricate UFG W, and high pressure torsion (HPT) was used to fabricate NC W. We demonstrate an abrupt shift in the deformation mechanism, particularly under dynamic compressive loading, in UFG and NC W. This novel deformation mechanism, a dramatic transition from a uniform deformation mode to that of localized shearing, is shared by other UFG and NC body-centerd cubic (BCC) metals. We have also conducted a series of bottom-up experiments to consolidate powdered UFG W precursors into solid bodies. The bottom-up approach relies on rapid, high-temperature consolidation, specifically designed for UFG and NC W powders. The mechanical property results from the top-down UFG and NC W were used as minimum property benchmarks to guide and design the experimental protocols and parameters for use in the bottom-up procedures. Preliminary results, showing rapid grain growth during the consolidation cycle, did not achieve full density in the W samples. Further development of high-purity W nanopowders and appropriate grain-growth inhibitors (e.g., Zener pinning) will be required to successfully produce bulk-sized UFG and NC W samples

  5. Formation of Superlattices of Gold Nanoparticles Using Ostwald Ripening in Emulsions: Transition from fcc to bcc Structure.

    Science.gov (United States)

    Schmitt, Julien; Hajiw, Stéphanie; Lecchi, Amélie; Degrouard, Jéril; Salonen, Anniina; Impéror-Clerc, Marianne; Pansu, Brigitte

    2016-06-30

    An efficient method to form 3D superlattices of gold nanoparticles inside oil emulsion droplets is presented. We demonstrate that this method relies on Ostwald ripening, a well-known phenomenon occurring during the aging of emulsions. The key point is that the nanoparticle concentration inside the smaller droplets is increasing very slowly with time, thus inducing the crystallization of the nanoparticles into superlattices. Using oil-in-water emulsions doped with hydrophobic gold nanoparticles, we demonstrate that this method is efficient for different types of oils (toluene, cyclohexane, dodecane, and hexadecane). 3D superlattices of the nanoparticles are obtained, with dimensions reaching a hundred nanometers. The kinetics of the crystallization depends on the solubility of the oil in water but also on the initial concentration of the gold nanoparticles in oil. This method also provides an innovative way to obtain the complete phase diagram of nanoparticle suspensions with concentration. Indeed, during this slow crystallization process, a transition from a disordered suspension to a fcc structure is observed, followed by a transition toward a bcc structure. This evolution with time provides key results to understand the role played by the ligands located at the surface of the nanoparticles in order to control the type of superlattices which are formed. PMID:27267312

  6. The effect of hydrogen atoms on the screw dislocation mobility in bcc iron: A first-principles study

    International Nuclear Information System (INIS)

    We investigate the effect of hydrogen on the mobility of a screw dislocation in body-centered cubic (bcc) iron using first-principles calculations, and show that an increase of screw dislocation velocity is expected for a limited temperature range. The interaction energy between a screw dislocation and hydrogen atoms is calculated for various hydrogen positions and dislocation configurations with careful estimations of the finite-size effects, and the strongest binding energy of a hydrogen atom to the stable screw dislocation configuration is estimated to be 256 ± 32 meV. These results are incorporated into a line tension model of a curved dislocation line to elucidate the effect of hydrogen on the dislocation migration process. Both the softening and hardening effect of hydrogen, caused by the reduction of kink nucleation enthalpy and kink trapping, respectively, are evaluated. A clear transition between softening and hardening behavior at the lower critical temperature is predicted, which is in qualitative agreement with experimental observation

  7. Interaction of a screw dislocation with Cu-precipitates, nanovoids and Cu–vacancy clusters in BCC iron

    International Nuclear Information System (INIS)

    In a previous work we studied the interaction of a ½〈1 1 1〉{1 1 0} edge dislocation with Cu-rich precipitates containing also vacancies and Ni, thereby mimicking precipitates known to form in RPV steels. Here, we extend the study and consider the interaction of the Cu-rich precipitates with ½〈1 1 1〉 screw dislocations, known to govern the slip in BCC metals and alloys below room temperature. The results show that three different mechanisms take place upon interaction of a screw dislocation with pure Cu precipitates, nanovoids and Cu–vacancy clusters. Pure Cu precipitates are always sheared, while in the reaction with nanovoids local climb, especially at high temperature, is also observed. The interaction mechanisms studied at various temperatures reveal that the penetration of the screw dislocation into Cu–vacancy clusters leads to absorption of the majority of the vacancies on the dislocation line, with the consequent formation of a helical turn. The removal of the helical turn, even a very small one, from the dislocation line requires as high stress as for the passage through a row of nanovoids of comparable size.

  8. Relative crystal stability of Al{sub x}FeNiCrCo high entropy alloys from XRD analysis and formation energy calculation

    Energy Technology Data Exchange (ETDEWEB)

    Jasiewicz, K.; Cieslak, J.; Kaprzyk, S.; Tobola, J., E-mail: tobola@ftj.agh.edu.pl

    2015-11-05

    Electronic structure of Al{sub x}FeNiCrCo (x ≤ 3) high-entropy alloys (HEAs) was calculated using the Korringa–Kohn–Rostoker method combined with the coherent potential approximation (KKR-CPA). Total energy minimization was performed for bcc and fcc structures in each alloy composition. The phase stability was investigated from the total energy analysis, which finally allowed to determine the bcc–fcc phase transition for aluminium concentration close to 13 at%. It inspired us to synthesize Al{sub x}FeNiCrCo (0 ≤ x ≤ 1.5) using two procedures based on arc melting and sintering to allow for observation of entropy effect on phase formation. The XRD measurements evidently proved an occurence of fcc or bcc structure and their coexistence, depending on Al concentration and temperature. This finding remains in good agreement with theoretical results from free energy analysis, when accounting for KKR-CPA total energy as well as entropy terms. Furthermore, the structure preference, from fcc to bcc HEAs, with increasing Al content was discussed in view of total and atomic-dependent density of states computed in non-magnetic and paramagnetic-like states. - Highlights: • Crystal stability and electronic properties of high entropy alloys from KKR-CPA. • Influence of configuration entropy on phase preference (or coexistence). • Effect of configuration entropy on phase stability: arc melting viz. sintering. • Ab initio calculations (accounting for disorder) of phase preference in HEA.

  9. Stress localization in BCC polycrystals and its implications on the probability of brittle fracture

    International Nuclear Information System (INIS)

    Highlights: → Intergranular stress distributions in a bainitic steel. → Comparison of local mean stress field with neutron diffraction results. → Application of the local stress distribution in a brittle fracture model. - Abstract: The evaluation of the reliability of pressure vessels in nuclear plants relies on the evaluation of failure probability models. Micromechanical approaches are of great interest to refine their description, to better understand the underlying mechanisms leading to failure, and finally to improve the prediction of these models. The main purpose of this paper is to introduce the stress heterogeneities arising within the polycrystal in a probabilistic modeling of brittle fracture. Stress heterogeneities are evaluated from Finite-Element simulations performed on a large number of Statistical Volume Elements. Results are validated both on the measured averaged behavior and on the averaged stresses measured by neutron diffraction in five specific orientations. A probabilistic model for brittle fracture is then presented accounting for the carbide distribution and the stress distribution evaluated previously inside an elementary volume V0. Results are compared to a 'Beremin type' approach, assuming a homogeneous stress state inside V0.

  10. Effects of additive Pd on the structures and electrochemical hydrogen storage properties of Mg67Co33-based composites or alloys with BCC phase

    International Nuclear Information System (INIS)

    Highlights: • Additive Pd in Mg67Co33 benefits to form a ternary BCC alloy. • Introducing 5.0 at.% Pd in Mg67Co33 lifts the initial discharge capacity from 10 mAh/g to maximum 530 mAh/g. • Exchange current density was increased due to the homogeneously dispersed Pd. • Additive Pd slightly enhances the hydrogen diffusion coefficient of Mg-Co-Pd composites or alloys. - Abstract: Mg67Co33 and Mg67Co33-Pd composites/alloys prepared by ball milling for 120 h possess nano-crystalline with body-centered cubic (BCC) structure, which was verified by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) analyses. The introduced 5.0 at.% Pd significantly lifts the initial discharge capacity from 10 mAh g-1 of Mg67Co33 to maximum 530 mAh g-1. Pd also drives the Mg67Co33-Pd composite forming a full BCC alloy during ball milling. The distribution of Pd gradually becomes homogeneous with the augmentation of the ball milling time according to the analyses by scanning electron microscopy-energy dispersive spectrometer (SEM-EDS). Exchange current density increased with the milling time and can be ascribed to the homogeneously dispersion of Pd over the surface. The introduced Pd also enhances the hydrogen diffusion coefficient of the Mg67Co33-Pd composites/alloys

  11. Thermal-hydraulic study of fixed bed nuclear reactor (FBNR), in FCC, BCC and pseudo-random configurations of the core through CFD method

    International Nuclear Information System (INIS)

    The study of thermal-hydraulic performance of a fixed bed nuclear reactor (FBNR) core and the effect of the porosity was studied by the CFD method with 'SolidWorks' software. The representative sections of three different packed beds arrangements were analyzed: face-centered cubic (FCC), body-centered cubic (BCC), and a pseudo-random, with values of porosity of 0.28, 0.33 and 0.53 respectively. The minimum coolant flow required to avoid the phase change for each one of the configurations was determined. The results show that the heat transfer rate increases when the porosity value decreases, and consequently the minimum coolant flow in each configuration. The results of minimum coolant flow were: 728.51 kg/s for the FCC structure, 372.72 kg/s for the BCC, and 304.96 kg/s for the pseudo-random. Meanwhile, the heat transfer coefficients in each packed bed were 6480 W/m2*K, 3718 W/m2*K and 3042 W/m2*K respectively. Finally the pressure drop was calculated, and the results were 0.588 MPa for FCC configuration, 0.033 MPa for BCC and 0.017 MPa for the pseudo-random one. This means that with a higher porosity, the fluid can circulate easier because there are fewer obstacles to cross, so there are fewer energy losses. (authors)

  12. Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: Compression experiments and dislocation dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Greer, Julia R. [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125-8100 (United States)], E-mail: jrgreer@caltech.edu; Weinberger, Christopher R.; Cai, Wei [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-4040 (United States)

    2008-10-15

    We compare mechanical strength of f.c.c. gold and b.c.c. molybdenum single crystal pillars of sub-micrometer diameter in uniaxial compression tests. Both crystals show an increase of flow stress with decreasing diameter, but the change is more pronounced in Au than in Mo. The ratio between the observed maximum flow stress and the theoretical strength is much larger in Au pillars than in Mo pillars. Dislocation dynamics simulations also reveal different dislocation behavior in these two metals. While in a f.c.c. crystal a dislocation loop nucleated from the surface simply moves on its glide plane and exits the pillar, in a b.c.c. crystal it can generate multiple new dislocations due to the ease of screw dislocations to change slip planes. We postulate that this difference in dislocation behavior is the fundamental reason for the observed difference in the plastic deformation behavior of f.c.c. and b.c.c. pillars.

  13. A Mössbauer and magnetic study of ball milled Fe-doped ZnO Powders

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, Ligia E., E-mail: ligia.zamora@correounivalle.edu.co; Paz, J. C.; Piamba, J. F.; Tabares, J. A.; Alcázar, G. A. Pérez [Universidad del Valle, Departamento de física (Colombia)

    2015-06-15

    The structural and magnetic properties of Fe-doped ZnO are reported in this study, as obtained by mechanical alloying from elemental powders of ZnO and Fe. The properties of Zn{sub 0.90}Fe{sub 0.10}O samples alloying while varying the milling time (6, 12, 24 and 36 h) are also reported. The Rietveld refinement of X-ray Diffraction (XRD) patterns revealed that the system presents two structures: the würtzite structure of ZnO and the bcc structure of α-Fe. The Mössbauer spectra show that the samples present three components: a ferromagnetic component, associated with the Fe phase and two paramagnetic components, associated with the Fe atoms, which penetrate inside the ZnO matrix behaving as Fe{sup 3+} and Fe{sup 2+}. The milling time contributes to an increase in the paramagnetic sites, and a solubility limit of the Fe atoms in the ZnO lattice was detected. The VSM measurements at room temperature detected ferromagnetic behavior with a saturation magnetization of 11 emu/g and a coercive field of 330 Oe for the sample alloyed over 24 h. A similar behavior was shown by the other samples.

  14. Mössbauer study of alloy Fe67.5Ni32.5, prepared by mechanical alloying

    Science.gov (United States)

    Benitez Rodríguez, Edson Daniel; Bustos Rodríguez, Humberto; Oyola Lozano, Dagoberto; Rojas Martínez, Yebrail Antonio; Pérez Alcázar, German Antonio

    2015-06-01

    We present the study of effect of the particle size on the structural and magnetic properties of the Fe67.5Ni32.5 alloy, prepared by mechanical alloying (MA). After milling the powders during 10 hours they were separated by sieving using different meshes. The refinement of the X-ray patterns showed the coexistence of the BCC (Body Centered Cubic) and the FCC (Face Centered Cubic) phases in all samples with lattice parameters and crystallite sizes independent of the mean particle size. However, big particles presented bigger volumetric fraction of BCC grains. The Mossbauer spectra were fitted with a broad sextet corresponding to the ferromagnetic BCC phase, a hyperfine magnetic field distribution and a broad singlet which correspond to the ferromagnetic and paramagnetic sites of the FCC phase, respectively. Hysteresis loops showed a magnetically, soft behavior for all the samples, however, the saturation magnetization values are smaller for the original powder and for the powders with small, mean, particle size due to the dipolar magnetic interaction and the smaller mean magnetic moment, respectively. These effects were proved by Henkel plots that were made to the samples.

  15. Does the fcc phase exist in the Fe bcc–hcp transition? A conclusion from first-principles studies

    International Nuclear Information System (INIS)

    Despite considerable experimental and theoretical efforts, the underlying atomistic process of the body-centered cubic (bcc) to hexagonal close-packed (hcp) phase transition in Fe is still not clear. In particular, whether an intermediate fcc phase exists in the transition has long been controversial. In this work, we carry out a study on this problem from the viewpoint of energy based on accurate first-principles calculations. The results indicate that the occurrence of the metastable fcc state in the transition is energetically unfavorable, which can explain why no fcc phase was observed in recent in situ x-ray diffraction experiments. A transition mechanism that mainly consists of simultaneous shear and shuffle of the (1 1 0)bcc planes together with reduction of the (1 1 0)bcc interplane distance is proposed. It can explain both the anomalous structures and the temperature dependence of the c/a ratio of the hcp phase observed at the beginning of the transition in diamond anvil cell (DAC) experiments. Therefore, a metastable fcc state, which was proposed by Wang and Ingalls, is not needed to account for those observations in the DAC experiments. Moreover, we find that the fcc phase appearing in molecular dymanics simulations may be just an artifact of the semiempirical potential being employed, by which the differences between fcc and hcp are not well described. (paper)

  16. Neutron powder thermo-diffraction in mechanically alloyed Fe64Ni36 invar alloy

    International Nuclear Information System (INIS)

    Nanostructured Fe64Ni36 alloy has been obtained using high-energy ball milling for 35 h of milling time, Fe64Ni36 MA-35 h. The initial as-milled Fe64Ni36 MA-35 h powders are inhomogeneous, showing a majority phase with a face-centred cubic (fcc) crystal structure [88(2)%] and a minority phase with body-centred cubic (bcc) crystal structure [7(2)%]. The evolution of the microstructure with temperature between 300 K and 1100 K has been followed by means of in situ neutron powder thermo-diffraction experiments. The room temperature values for the mean crystalline size and the mechanical-induced microstrain of the fcc phase in the as-milled sample are ∼10 nm and ∼0.7%, respectively. Moreover, after heating the Fe64Ni36 MA-35 h powders up to 1100 K, an increase of around 65 K in the Curie temperature respect to that of the commercial coarse-grained alloy of the same composition is observed. The latter together with the observed temperature dependence of the lattice parameter suggests that the Fe64Ni36 MA-35 h sample subjected to the heating process exhibits invar behaviour. On heating up to 1100 K thermal relaxation of the microstructure occurs giving rise to grain growth above 100 nm, nearly vanishing values for the maximum strain, and the transformation of the bcc phase into the fcc one above 800 K, being the latter stable in subsequent heating-cooling processes.

  17. Longitudinally Jointed Edge-wise Compression Honeycomb Composite Sandwich Coupon Testing and FE Analysis: Three Methods of Strain Measurement, and Comparison

    Science.gov (United States)

    Farrokh, Babak; AbdulRahim, Nur Aida; Segal, Ken; Fan, Terry; Jones, Justin; Hodges, Ken; Mashni, Noah; Garg, Naman; Sang, Alex; Gifford, Dawn; Froggatt, Mark

    2013-01-01

    Three means (i.e., typical foil strain gages, fiber optic sensors, and a digital image correlation (DIC) system) were implemented to measure strains on the back and front surfaces of a longitudinally jointed curved test article subjected to edge-wise compression testing, at NASA Goddard Space Flight Center, according to ASTM C364. The Pre-test finite element analysis (FEA) was conducted to assess ultimate failure load and predict strain distribution pattern throughout the test coupon. The predicted strain pattern contours were then utilized as guidelines for installing the strain measurement instrumentations. The strain gages and fiber optic sensors were bonded on the specimen at locations with nearly the same strain values, as close as possible to each other, so that, comparisons between the measured strains by strain gages and fiber optic sensors, as well as the DIC system are justified. The test article was loaded to failure (at approximately 38 kips), at the strain value of approximately 10,000mu epsilon As a part of this study, the validity of the measured strains by fiber optic sensors is examined against the strain gage and DIC data, and also will be compared with FEA predictions.

  18. A comparative structural and magnetic study of Fe100−xPdx(x=15, 20 and 36) thin films deposited on Si (100) and glass substrates

    International Nuclear Information System (INIS)

    Various structural and magnetic characterization techniques have been used to investigate Fe100−xPdx (x=15, 20 and 36) thin films deposited onto silicon and glass substrates, by thermal evaporation technique. X-ray diffraction analysis shows the presence of supersaturated solid solution with bcc structure for Pd concentrations of 15% and 20%. However, for 36% of Pd, in addition to the supersaturated α-FePd (bcc) phase, another disordered FePd3 phase with fcc structure is present. At 20 at% Pd, the magnetic characterization shows a saturation of the bcc (α-FePd) phase and the appearance of the fcc phase. The correlation between the structure and magnetic properties allows us to compare the two substrates effects on deposited thin films. As results, the measurements indicate that the grain size D, the thin film thickness and the d(110) spacing significantly affect the magnetic coercivity HC. The Fe–Pd alloys deposited on a monocrystalline Si (100) and glass substrate show that the coercivity HC is given by the random anisotropy model. - Highlights: • Comparative study of Fe100−xPdx thin films deposited on the Si (100) and glass substrates. • The films grown on Si (100) substrate shown that the coercivity is proportional to D6. • Films grown on glass substrate shown that the coercivity is linearly proportional to 1/D. • For Si substrate, a linear variation is obtained between the coercitivity and the d(110) spacing. • For glass substrate, a linear variation is obtained between coercitivity and 1/d(110) spacing

  19. Role of the Surface in Solid-Solid Phase Transitions: Molecular Dynamics Study of the α-γ Transition in Fe

    Science.gov (United States)

    Wang, Binjun; Urbassek, Herbert M.

    2016-05-01

    Using classical molecular dynamics simulation, we study the role of surfaces on solid-solid phase transformations. We contrast the transformation behavior of a thin film (two free surfaces) with a bulk system and with a system containing only one free surface. We focus on bcc Fe and induce the transformation from the bcc to the fcc phase by applying biaxial strain. We find that the critical strain at which the material transforms is independent of whether the system has a free surface or not. However, the nucleation mechanism of the new phase and also the transformation speed are strongly influenced by the existence of surfaces. While bulk systems fail early (after phase transformation to a polycrystal) under the applied load, systems with a free surface show a considerably higher ductility.

  20. Analysis and diagnosis of basal cell carcinoma (BCC) via infrared imaging

    Science.gov (United States)

    Flores-Sahagun, J. H.; Vargas, J. V. C.; Mulinari-Brenner, F. A.

    2011-09-01

    In this work, a structured methodology is proposed and tested through infrared imaging temperature measurements of a healthy control group to establish expected normality ranges and of basal cell carcinoma patients (a type of skin cancer) previously diagnosed through biopsies of the affected regions. A method of conjugated gradients is proposed to compare measured dimensionless temperature difference values (Δ θ) between two symmetric regions of the patient's body, that takes into account the skin, the surrounding ambient and the individual core temperatures and doing so, the limitation of the results interpretation for different individuals become simple and nonsubjective. The range of normal temperatures in different regions of the body for seven healthy individuals was determined, and admitting that the human skin exhibits a unimodal normal distribution, the normal range for each region was considered to be the mean dimensionless temperature difference plus/minus twice the standard deviation of the measurements (Δθ±2σ) in order to represent 95% of the population. Eleven patients with previously diagnosed basal cell carcinoma through biopsies were examined with the method, which was capable of detecting skin abnormalities in all cases. Therefore, the conjugated gradients method was considered effective in the identification of the basal cell carcinoma through infrared imaging even with the use of a low optical resolution camera (160 × 120 pixels) and a thermal resolution of 0.1 °C. The method could also be used to scan a larger area around the lesion in order to detect the presence of other lesions still not perceptible in the clinical exam. However, it is necessary that a temperature differences mesh-like mapping of the healthy human body skin is produced, so that the comparison of the patient Δ θ could be made with the exact region of such mapping in order to possibly make a more effective diagnosis. Finally, the infrared image analyzed through the

  1. Nature of impurities in fertilizers containing EDDHMA/Fe(3+), EDDHSA/Fe(3+), and EDDCHA/Fe(3+) chelates.

    Science.gov (United States)

    Alvarez-Fernández, Ana; Cremonini, Mauro A; Sierra, Miguel A; Placucci, Giuseppe; Lucena, Juan J

    2002-01-16

    Iron chelates derived from ethylenediaminedi(o-hydroxyphenylacetic) acid (EDDHA), ethylenediaminedi(o-hydroxy-p-methylphenylacetic) acid (EDDHMA), ethylenediaminedi(2-hydroxy-5-sulfophenylacetic) acid (EDDHSA), and ethylenediaminedi(5-carboxy-2-hydroxyphenylacetic) acid (EDDCHA) are remarkably efficient in correcting iron chlorosis in plants growing in alkaline soils. This work reports the determination of impurities in commercial samples of fertilizers containing EDDHMA/Fe(3+), EDDHSA/Fe(3+), and EDDCHA/Fe(3+). The active components (EDDHMA/Fe(3+), EDDHSA/Fe(3+), and EDDCHA/Fe(3+)) were separated easily from other compounds present in the fertilizers by HPLC. Comparison of the retention times and the UV-visible spectra of the peaks obtained from commercial EDDHSA/Fe(3+) and EDDCHA/Fe(3+) samples with those of standard solutions showed that unreacted starting materials (p-hydroxybenzenesulfonic acid and p-hydroxybenzoic acid, respectively) were always present in the commercial products. 1D and 2D NMR experiments showed that commercial fertilizers based on EDDHMA/Fe(3+) contained impurities having structures tentatively assigned to iron chelates of two isomers of EDDHMA. These findings suggest that current production processes of iron chelates used in agriculture need to be improved. PMID:11782196

  2. The effect of voids on the hardening of body-centered cubic Fe

    Science.gov (United States)

    Nakai, Ryosuke; Yabuuchi, Kiyohiro; Nogami, Shuhei; Hasegawa, Akira

    2016-04-01

    The mechanical properties of metals are affected by various types of defects. Hardening is usually described through the interaction between dislocations and obstacles, in the so-called line tension theory. The strength factor in the line tension theory represents the resistance of a defect against the dislocation motion. In order to understand hardening from the viewpoint of the microstructure, an accurate determination of the strength factor of different types of defects is essential. In the present study, the strength factor of voids in body-centered cubic (BCC) Fe was investigated by two different approaches: one based on the Orowan equation to link the measured hardness with the average size and density of voids, and the other involving direct observation of the interaction between dislocations and voids by transmission electron microscope (TEM). The strength factor of voids induced by ion irradiation estimated by the Orowan equation was 0.6, whereas the strength factor estimated by the direct TEM approach was 0.8. The difference in the strength factors measured by the two approaches is due to the positional relationship between dislocations and voids: the central region of a void is stronger than the tip. Moreover, the gliding plane and the direction of dislocation may also affect the strength factor of voids. This study determined the strength factor of voids in BCC Fe accurately, and suggested that the contribution of voids to the irradiation hardening is larger than that of dislocation loops and Cu-rich precipitates.

  3. A negative working potential supercapacitor electrode consisting of a continuous nanoporous Fe-Ni network

    Science.gov (United States)

    Xie, Yunsong; Chen, Yunpeng; Zhou, Yang; Unruh, Karl M.; Xiao, John Q.

    2016-06-01

    A new class of electrochemical electrodes operating in a negative voltage window has been developed by sintering chemically prepared Fe-Ni nanoparticles into a porous nanoscale mixture of an Fe-rich BCC Fe(Ni) phase and a Ni-rich FCC Fe-Ni phase. The selective conversion of the Fe-rich phase to hydroxides provides the electrochemically active component of the electrodes while the Ni-rich phase provides high conductivity and structural stability. The compositionally optimized electrodes exhibit a specific capacitance in excess of 350 F g-1 (all normalizations are to the total electrode mass rather than the much smaller electrochemically active mass) and retain more than 85% of their maximum specific capacitance after 2000 charging/discharging cycles. In addition to their inexpensive constituents, these electrodes are self-supporting and their thickness and mass loading density of about 65 μm and 20 mg cm-2 are compatible with the established manufacturing processes. This desirable combination of physical and electrochemical properties suggests that these electrodes may be useful as the negative electrode in high performance asymmetric supercapacitors.A new class of electrochemical electrodes operating in a negative voltage window has been developed by sintering chemically prepared Fe-Ni nanoparticles into a porous nanoscale mixture of an Fe-rich BCC Fe(Ni) phase and a Ni-rich FCC Fe-Ni phase. The selective conversion of the Fe-rich phase to hydroxides provides the electrochemically active component of the electrodes while the Ni-rich phase provides high conductivity and structural stability. The compositionally optimized electrodes exhibit a specific capacitance in excess of 350 F g-1 (all normalizations are to the total electrode mass rather than the much smaller electrochemically active mass) and retain more than 85% of their maximum specific capacitance after 2000 charging/discharging cycles. In addition to their inexpensive constituents, these electrodes are

  4. Dynamic shear deformation in high purity Fe

    Energy Technology Data Exchange (ETDEWEB)

    Cerreta, Ellen K [Los Alamos National Laboratory; Bingert, John F [Los Alamos National Laboratory; Trujillo, Carl P [Los Alamos National Laboratory; Lopez, Mike F [Los Alamos National Laboratory; Gray, George T [Los Alamos National Laboratory

    2009-01-01

    The forced shear test specimen, first developed by Meyer et al. [Meyer L. et al., Critical Adiabatic Shear Strength of Low Alloyed Steel Under Compressive Loading, Metallurgical Applications of Shock Wave and High Strain Rate Phenomena (Marcel Decker, 1986), 657; Hartmann K. et al., Metallurgical Effects on Impact Loaded Materials, Shock Waves and High Strain rate Phenomena in Metals (Plenum, 1981), 325-337.], has been utilized in a number of studies. While the geometry of this specimen does not allow for the microstructure to exactly define the location of shear band formation and the overall mechanical response of a specimen is highly sensitive to the geometry utilized, the forced shear specimen is useful for characterizing the influence of parameters such as strain rate, temperature, strain, and load on the microstructural evolution within a shear band. Additionally, many studies have utilized this geometry to advance the understanding of shear band development. In this study, by varying the geometry, specifically the ratio of the inner hole to the outer hat diameter, the dynamic shear localization response of high purity Fe was examined. Post mortem characterization was performed to quantify the width of the localizations and examine the microstructural and textural evolution of shear deformation in a bcc metal. Increased instability in mechanical response is strongly linked with development of enhanced intergranular misorientations, high angle boundaries, and classical shear textures characterized through orientation distribution functions.

  5. Phase equilibria in the Ni-Fe-Ga alloy system

    International Nuclear Information System (INIS)

    The phase equilibria, A2/B2 and B2/L21 (or D03) order-disorder transitions and martensitic transformation on the Ni-Fe side of the Ni-Fe-Ga system were examined by electron probe microanalysis (EPMA) and differential scanning calorimetric (DSC) measurement. The equilibrium compositions of interrelations mainly among the α (A2), β (B2), β' (L21 or D03), γ (A1) and γ' (L12) phases were determined using diffusion triples which were fabricated by two-step diffusion coupling. It was confirmed that a bcc single-phase region composed of α, β and β' at 850-1000 deg. C exists in a wide composition range and that the critical temperature of the B2/L21 order-disorder transformation in the Fe3Ga-Ni3Ga pseudo-binary section gradually increases with increasing Ni content. The existing composition region of the martensite phase at room temperature was also determined by the diffusion triple method

  6. Variation of structure and magnetic properties with thickness of thin Co59Fe26Ni15 films

    International Nuclear Information System (INIS)

    Variations of phase composition and magnetic properties of electrodeposited nanocrystalline Co-Fe-Ni films with film thickness in the range of 50-500nm were analyzed. The samples were magnetically soft with coercivity in the range Hc=2-20Oe and uniaxial magnetic anisotropy up to Hk=20Oe. It was found that Hc decreases and Hk increases with increasing film thickness. The BCC phase dominates at small film thickness up to about 80nm and the FCC phase increases when the film growths to a larger thickness. The increase of FCC phase correlates with the improvement of the ultrasoft magnetic properties

  7. Enhancement in soft magnetic and ferromagnetic ordering behaviour through nanocrystallisation in Al substituted CoFeSiBNb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohanta, Ojaswini [Council for Scientific and Industrial Research, National Metallurgical Laboratory, Jamshedpur 831 007 (India); Basumallick, A. [Bengal Engineering and Science University, Shibpur, West Bengal (India); Mitra, A. [Council for Scientific and Industrial Research, National Metallurgical Laboratory, Jamshedpur 831 007 (India); Panda, A.K., E-mail: akpanda@nmlindia.or [Council for Scientific and Industrial Research, National Metallurgical Laboratory, Jamshedpur 831 007 (India)

    2010-01-15

    The effect of substituting Al for Si in Co{sub 36}Fe{sub 36}Si{sub 4-x}Al{sub x}B{sub 20}Nb{sub 4}, (X=0, 0.5, 1.0, 1.5, 2.0 at%) alloys prepared in the form of melt-spun ribbons have been investigated. All the alloys were amorphous in their as-cast state. The onset of crystallization as observed using differential scanning calorimetry (DSC) was found to rise at low Al content up to X=1 at% beyond which there was a decreasing trend. The alloys also exhibited glass transition at 'T{sub g}'. Microstructural studies of optimally annealed samples indicated finer dispersions of nanoparticles in amorphous matrix which were identified as bcc-(FeCo)Si and bcc-(FeCo)SiAl nanophases by X-ray diffraction technique. Alloy with optimum content of Al around X=1 at% exhibited stability in coercivity at elevated temperatures. Though Al addition is known to lower magnetostriction, such consistency in coercivity may also be attributed towards lowering in the nanoparticle size compared to X=0 alloy. In the nanostructured state, the alloy containing optimum Al content (X=1) exhibited further enhancement in ferromagnetic ordering or the Curie temperature by 100 K compared to alloy without Al. Such addition also attributed to better frequency response of coercivity and low core losses.

  8. Enhancement in soft magnetic and ferromagnetic ordering behaviour through nanocrystallisation in Al substituted CoFeSiBNb alloys

    Science.gov (United States)

    Mohanta, Ojaswini; Basumallick, A.; Mitra, A.; Panda, A. K.

    2010-01-01

    The effect of substituting Al for Si in Co 36Fe 36Si 4-xAl xB 20Nb 4, ( X=0, 0.5, 1.0, 1.5, 2.0 at%) alloys prepared in the form of melt-spun ribbons have been investigated. All the alloys were amorphous in their as-cast state. The onset of crystallization as observed using differential scanning calorimetry (DSC) was found to rise at low Al content up to X=1 at% beyond which there was a decreasing trend. The alloys also exhibited glass transition at ' Tg'. Microstructural studies of optimally annealed samples indicated finer dispersions of nanoparticles in amorphous matrix which were identified as bcc-(FeCo)Si and bcc-(FeCo)SiAl nanophases by X-ray diffraction technique. Alloy with optimum content of Al around X=1 at% exhibited stability in coercivity at elevated temperatures. Though Al addition is known to lower magnetostriction, such consistency in coercivity may also be attributed towards lowering in the nanoparticle size compared to X=0 alloy. In the nanostructured state, the alloy containing optimum Al content ( X=1) exhibited further enhancement in ferromagnetic ordering or the Curie temperature by 100 K compared to alloy without Al. Such addition also attributed to better frequency response of coercivity and low core losses.

  9. The effects of rapid solidification on microstructure and hydrogen sorption properties of binary BCC Ti–V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Suwarno, S., E-mail: S.Suwarno@uu.nl [Department of Materials Science and Engineering, NTNU, NO-7491, Trondheim (Norway); Solberg, J.K. [Department of Materials Science and Engineering, NTNU, NO-7491, Trondheim (Norway); Maehlen, J.P. [Institute for Energy Technology, P.O. Box 40, NO-2027, Kjeller (Norway); Krogh, B. [Statoil ASA Research Centre, Rotvoll, NO-7005, Trondheim (Norway); Yartys, V.A. [Department of Materials Science and Engineering, NTNU, NO-7491, Trondheim (Norway); Institute for Energy Technology, P.O. Box 40, NO-2027, Kjeller (Norway)

    2014-01-05

    Highlights: • Effect of quenching rate and Ti/V ratio on the phase-structural composition. • Grain size refinement in the rapidly solidified Ti–V alloys. • Hydrogen storage properties of rapidly solidified binary Ti–V. • Mechanism of phase transformations in the hydrides of the RS Ti–V alloys. -- Abstract: The main purpose of the present work was to study the effect of rapid solidification (RS) on the microstructure and hydrogen storage properties of body centred cubic (BCC) Ti rich Ti–V alloys (Ti{sub 1−x}V{sub x}, x = 0.1–0.3). Ribbons were prepared by melt spinning at spinner rotation velocities of 1000–3000 rpm. Ribbon morphology and microstructure were found to depend on the vanadium content and spinner velocity. For Ti{sub 0.8}V{sub 0.2}, the relation between the ribbon thickness and velocity can be expressed as a power law function, indicating that, during solidification of the Ti–V ribbons, heat transfer at the interface between spinner and ribbon controls the heat extraction. Temperature desorption spectroscopy (TDS) and in situ synchrotron (SR-XRD) studies of the RS alloys showed that hydrogen desorption from the RS alloy hydrides occurred at lower temperatures than from the as cast alloys. RS caused a microscale chemical element separation in the alloys, which depends on the vanadium content and the spinner velocity. In addition, ribbon recalescence was observed to cause nanoscale chemical redistribution trough spinodal decomposition. These two last features were proposed to be the reasons for the observed thermal destabilisation.

  10. Atomistic simulation of ideal shear strength, point defects, and screw dislocations in bcc transition metals: Mo as a prototype

    International Nuclear Information System (INIS)

    Using multi-ion interatomic potentials derived from first-principles generalized pseudopotential theory, we have studied ideal shear strength, point defects, and screw dislocations in the prototype bcc transition metal molybdenum (Mo). Many-body angular forces, which are important to the structural and mechanical properties of such central transition metals with partially filled d bands, are accounted for in the present theory through explicit three- and four-ion potentials. For the ideal shear strength of Mo, our computed results agree well with those predicted by full electronic-structure calculations. For point defects in Mo, our calculated vacancy-formation and activation energies are in excellent agreement with experimental results. The energetics of six self-interstitial configurations have also been investigated. The left-angle 110 right-angle split dumbbell interstitial is found to have the lowest formation energy, in agreement with the configuration found by x-ray diffuse scattering measurements. In ascending order, the sequence of energetically stable interstitials is predicted to be left-angle 110 right-angle split dumbbell, crowdion, left-angle 111 right-angle split dumbbell, tetrahedral site, left-angle 001 right-angle split dumbbell, and octahedral site. In addition, the migration paths for the left-angle 110 right-angle dumbbell self-interstitial have been studied. The migration energies are found to be 3 endash 15 times higher than previous theoretical estimates obtained using simple radial-force Finnis-Sinclair potentials. Finally, the atomic structure and energetics of left-angle 111 right-angle screw dislocations in Mo have been investigated. We have found that the so-called open-quote open-quote easy close-quote close-quote core configuration has a lower formation energy than the open-quote open-quote hard close-quote close-quote one, consistent with previous theoretical studies. (Abstract Truncated)

  11. Microstructural Characterization of Dislocation Networks During Harper-Dorn Creep of fcc, bcc, and hcp Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Przystupa, Marek A.

    2007-12-13

    Harper-Dorn (H-D) creep is observed in metals and geological materials exposed to very low stresses at temperatures close to the melting point. It is one of several types of creep processes wherein the steady-state strain rate is proportional to the applied stress, Nabarro-Herring creep and Coble creep being two other important processes. H-D creep can be somewhat insidious because the creep rates are much larger than those expected for Nabarro-Herring or Coble creep. Since the working conditions of structural components of power plants and propulsion systems, as well as the motion of the earth’s mantle all involve very low stresses, an understanding of the factors controlling H-D creep is critical in preventing failures associated with those higher-than-expected creep rates. The purpose of this investigation was to obtain missing microstructural information on the evolution of the dislocation structures during static annealing of materials with fcc, bcc and hcp structure and use obtained results to test predictive capabilities of the dislocation network theory of H-D creep. In our view the evolutionary processes during static annealing and during Harper-Dorn creep are intimately related. The materials used in this study were fcc aluminum, hcp zinc and bcc tin. All characterizations of dislocation structures, densities and dislocation link length distributions were carried out using the etch pit method. To obtain quantitative information on the evolution of the dislocation networks during annealing the pure fcc aluminum samples were pre-deformed by creep at 913 and 620 K and then annealed. The higher deformation temperature was selected to generate starting dislocation networks similar to those forming during Harper-Dorn creep and the lower, to obtain higher dislocation densities suitable for reliable estimates of the parameters of the network growth law. The measured experimental link length distribution were, after scaling, (1) the same for all annealing

  12. Chemical synthesis, characterizations and magnetic properties of nanocrystalline Fe50Co50 alloy

    International Nuclear Information System (INIS)

    Nanocrystalline Fe50Co50 alloy has been synthesized successfully by chemical reduction route using superhydride as reducing agent and oleic acid and oleylamine as capping agents. Phase purity, crystallite size and lattice parameters of the synthesized NPs are determined by X-ray powder diffraction method. FeCo alloy crystallizes in body centered cubic (bcc) structure having crystallite size equal to 29 nm and lattice parameters equal to 2.8546 Å. The size and shape morphologies of the material were studied by SEM analysis. SEM micrograph study shows the average particle size to be 60 nm and indicates the appearance of agglomerates of the nano-particles consisting of several crystallites. The room temperature magnetic hysteresis studies indicate ferromagnetic behavior of the materials. The values of saturation magnetization and coercivity were 65 emu/g and 460 Oe, respectively. Magnetic properties of the material were interpreted on the basis of fine particle magnetism

  13. Surfactant-assisted epitaxial growth and magnetism of Fe films on Cu(111)

    Energy Technology Data Exchange (ETDEWEB)

    Nino, M A; Camarero, J; Miguel, J J de; Miranda, R [Departamento de Fisica de la Materia Condensada and Instituto de Ciencia de Materiales ' Nicolas Cabrera' , Universidad Autonoma de Madrid, Cantoblanco, 28049-Madrid (Spain); Gomez, L [Facultad de Ciencias Exactas, IngenierIa y Agrimensura, Instituto de Fisica Rosario, 2000-Rosario (Argentina); Ferron, J [Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Departamento de Materiales, Facultad de IngenierIa Quimica, UNL, 3000 Santa Fe (Argentina)

    2008-07-02

    The magnetic properties of thin epitaxial layers of Fe grown on Cu(111) depend sensitively on the films' structure and morphology. A combination of experiments and numerical simulations reveals that the use of a surfactant monolayer (ML) of Pb during molecular beam epitaxy (MBE) growth at room temperature reduces the amount of interdiffusion at the Cu-Fe interface, retards the fcc-to-bcc transformation by about 2 ML and substantially increases the films' coercivity. The origin of all these alterations to the magnetic behavior can be traced back to the structural modifications provoked by the surfactant during the early growth stages. These results open the way for the controlled fabrication of custom-designed materials with specific magnetic characteristics.

  14. Modeling of structural and thermodynamics properties of sigma-phase for the Fe-Cr system

    Directory of Open Access Journals (Sweden)

    Udovskya A.

    2012-01-01

    Full Text Available The three- sub-lattice model (3SLM for description of atom’s distribution of two components with different coordination numbers (12, 14 and 15, into s-phase structure depended on composition and temperature is depictured in this paper. Energetic parameters of 3SLM were calculated by fitting procedure fixed to results obtained by ab-initio calculations conducted for paramagnetic states of differently ordered complexes stayed at the sigma-phase’s crystal structure for Fe-Cr system at 0 K. Respective algorithm and computer program have allowed to calculate an atom distribution of components upon the sub-lattices of s-phase at 300 - 1100 K. There is satisfactory agreement between calculated results and the experimental data obtained by neutron and structural research methods. Obtained results demonstrate satisfactory agreement between calculated and experimental data of BCC solutions and sigma - phase of the Fe-Cr system stayed at an equilibrium state.

  15. Stacking faults and structure analysis of ball-milled Fe-50%Co powders

    Energy Technology Data Exchange (ETDEWEB)

    Moumeni, Hayet, E-mail: hmoumeni@yahoo.fr [Departement de Physique, Faculte des Sciences et de l' Ingenierie, Universite 08 Mai 1945 de Guelma, B.P. 401, Guelma 24000 (Algeria); Laboratoire de Magnetisme et de Spectroscopie des Solides, Departement de Physique, Faculte des Sciences, Universite de Annaba, B.P. 12, Annaba 23000 (Algeria); Nemamcha, Abderrafik [Departement de Chimie Industrielle, Faculte des Sciences et de l' Ingenierie, Universite 08 Mai 1945 de Guelma, B.P. 401, Guelma 24000 (Algeria); Alleg, Safia [Laboratoire de Magnetisme et de Spectroscopie des Solides, Departement de Physique, Faculte des Sciences, Universite de Annaba, B.P. 12, Annaba 23000 (Algeria); Greneche, Jean Marc [Laboratoire de Physique de l' Etat Condense, UMR CNRS 6087, Universite du Maine, Faculte des Sciences, F-72085 Le Mans Cedex 9 (France)

    2010-08-01

    Stacking faults probability, structure and microstructure parameters of different phases of ball milled Fe-50%Co powders have been quantitatively evaluated by X-ray diffraction profile analysis. It is observed that after short milling time, Co is found to undergo an allotropic transformation from FCC to HCP form. The Rietveld whole profile fitting results reveal an increase of the stacking fault probability with increasing milling time and that twin faults are more prevalent than deformation ones. In addition to the reduction of crystallite size to the nanometer level and the increase of internal strain, prolonged milling leads to the formation of a BCC Fe(Co) solid solution with a high dislocations density (3.8 x 10{sup 17} m{sup -2}).

  16. Enthalpy of formation of quasicrystalline phase and ternary solid solutions in the Al-Fe-Cu system

    Institute of Scientific and Technical Information of China (English)

    I.A. Tomilin; S.D. Kaloshkin; V. V. Tcherdyntsev

    2006-01-01

    Standard enthalpies of formation of quasicrystalline phase and the ternary solid solutions in the Al-Fe-Cu system and the intermetallic compound FeAl were determined by the means of solution calorimetry. The quasicrystalline phase was prepared using two different methods. The first method (Ⅰ) consisted of ball milling the mixture of powders of pure aluminum copper and iron in a planetary mill with subsequent compacting by hot pressing and annealing. The second method (Ⅱ) consisted of arc melting of the components in argon atmosphere followed by annealing. The latter method was used for preparing the compound FeAl and the solid solutions. The phases were identified using the XRD method. The enthalpy of the formation was determined for the quasicrystalline phase of the composition Al62Cu25.5Fe12.5 and the ternary BCC solid solutions Al35Cu14Fe51, Al40Cu17Fe43, and Al50.4Cu19.6Fe30. The measured enthalpy of formation of the intermetallic com pound FeAl is in good agreement with the earlier published data. The enthaipies of formation of the quasicrystalline phases prepared using two different methods are close to each other, namely, -22.7±3.4 (method Ⅰ) and -21.3±2.1 (method Ⅱ)k J/mol.

  17. Comparison of Three Methods of Measuring CA/C Ratios

    Directory of Open Access Journals (Sweden)

    David A. Goss, OD, PhD

    2015-02-01

    Full Text Available Background: Clinical determination of convergence accommodation to convergence (CA/C ratios may be useful for analysis of accommodation and vergence disorders, but there are no standard clinical methods of measurement of CA/C ratios. This study compared two potential clinical CA/C measurement methods to a laboratory procedure. Methods: CA/C ratios were measured for 19 young adult subjects using procedures in which accommodation was measured with the binocular cross cylinder (BCC test, Nott dynamic retinoscopy, and an eccentric photorefractor. Vergence was stimulated with prism, and the resultant change in accommodation was used to calculate CA/C ratios. Results: The mean CA/C ratios were 0.036 D/Δ with BCC and BI prism, -0.004 D/Δ with BCC and BO prism, 0.023 D/Δ with Nott retinoscopy and BI prism, 0.036 D/Δ with Nott retinoscopy and BO prism, and 0.115 D/Δ with eccentric photorefraction and BO prism. The differences between each pair of tests were statistically significant by paired t-test except for the comparison of the BCC BI prism CA/C ratio with the Nott BI prism CA/C ratio. The means and standard deviations of the paired differences were all high relative to the measurements themselves. Conclusion: The CA/C ratios obtained in the present study did not show good agreement with each other. The use of CA/C ratios in clinical analysis would therefore require further evaluation and standardization of measurement methods, establishment of norms, and development of analysis procedures in concert with AC/A ratios and other clinical findings.

  18. Complementary Studies of Phase Formation During Fabrication of Fe0.65Co0.35 Nanoparticles by Mechanical Alloying

    Science.gov (United States)

    Manh, Do Hung; Tung, D. K.; Phong, L. T. H.; Phuc, Nguyen Xuan; Phong, P. T.; Jutimoosik, Jaru; Yimnirun, Rattikorn

    2016-05-01

    Fe-Co nanoparticles were prepared by mechanical alloying in air with various milling times from 0 h to 10 h and annealing temperatures in the range from 773 K to 973 K. The combined use of both conventional x-ray diffraction (XRD) and synchrotron x-ray absorption spectroscopy (XAS) techniques allowed us to obtain accurate data on the phase formation and the oxidation state of the materials. XRD patterns reveal a secondary phase of Fe3O4 that is present in as-milled samples and those annealed in Ar + H2 (5%) at temperatures of up to 600°C. This secondary phase disappeared for annealing temperatures of over 700°C. Meanwhile, analyses of Fe K-edge x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) spectra clearly showed that the local structure around Fe of all samples were of a bcc structure and had the oxidation state of +0. Most importantly, the ratio of bcc and hcp structures was also extracted from the Co K-edge XANES and the measured K-weighted EXAFS spectra of the alloyed Fe-Co samples. Moreover, magnetization measurements at room temperature indicated that the saturation magnetization ( M s) increased with increasing milling time and annealing temperature. While the former behavior is assigned to the Fe-Co alloy formation, we believe the effects of reducing the oxidation of the annealed samples to be the major cause of the enhanced M s. The dependence of coercivity ( H c) on milling time and annealing temperature was also investigated and discussed.

  19. Inelastic neutron scattering investigation of ball-milled FeSiB described as a magnetic nanoglass-like structure

    International Nuclear Information System (INIS)

    Highlights: • Inelastic neutron scattering on FeSiB obtained by milling from amorphous ribbon. • Minor fraction of bcc-Fe detected by XRD and Mössbauer spectroscopy. • Reduction of the neutron magnetic cross section upon milling. • Alterations of the ferromagnetic order resulting in a nanoglass-like structure. - Abstract: An inelastic neutron scattering study has been carried out to assess the effects of mechanical milling treatments (10, 20 and 70 h) on an amorphous melt-spun FeSiB ribbon. Faint traces of crystallization were observed after 10 and 20 h milling by X-ray diffraction and Mössbauer spectroscopy and a minor fraction of bcc-Fe was clearly detected after 70 h. Whilst the neutron spectrum S(E) of the 10 h-milled sample, at temperature T = 300 K, does not differ from that of the precursor FeSiB ribbon, the area of the inelastic region of S(E) decreases more and more after 20 and 70 h milling. Moreover, in the samples milled for 20 and 70 h, also the area of the elastic region of the S(E) spectrum is definitely smaller than the one of the FeSiB ribbon. This is consistent with a reduction of the magnetic cross section upon milling and it agrees also with magnetization measurements. We interpret this behavior assuming that the milling treatment causes local alterations of the short-range atomic order within the amorphous phase, and hence of the precursor collinear ferromagnetic order, finally giving rise to a sort of magnetic nanoglass structure

  20. Microstructure and mechanical behavior of a novel Co{sub 20}Ni{sub 20}Fe{sub 20}Al{sub 20}Ti{sub 20} alloy fabricated by mechanical alloying and spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Zhiqiang, E-mail: kopyhit@163.com [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640 (China); Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616 (United States); Chen, Weiping [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640 (China); Wen, Haiming [Characterization Department, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Morgan, Sam [Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616 (United States); Chen, Fei [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Zheng, Baolong; Zhou, Yizhang [Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616 (United States); Zhang, Lianmeng [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Lavernia, Enrique J., E-mail: lavernia@uci.edu [Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697 (United States)

    2015-09-17

    A novel equiatomic Co{sub 20}Ni{sub 20}Fe{sub 20}Al{sub 20}Ti{sub 20} (at%) alloy was designed and synthesized to study the effect of high atomic concentrations of Al and Ti elements on the microstructure, phase composition and mechanical behavior of high-entropy alloys (HEAs) fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). Following the MA process, the Co{sub 20}Ni{sub 20}Fe{sub 20}Al{sub 20}Ti{sub 20} alloy was composed of a primary body-centered cubic (BCC) supersaturated solid solution and a face-centered cubic (FCC) supersaturated solid solution. However, following SPS, a primary FCC solid-solution phase, a BCC solid-solution phase and a trace amount of Al{sub 3}Ti intermetallics were observed. Transmission electron microscopy (TEM) results confirmed the presence of the FCC solid-solution phase, the BCC (B2-type) solid-solution phase and Al{sub 3}Ti intermetallics in the bulk alloy. The FCC and B2-type phases are ultrafine-grained, and Al{sub 3}Ti intermetallics is nano/ultrafine-grained. Our results suggest that consideration of a single existing empirical design criterion is inadequate to explain phase formation in the Co{sub 20}Ni{sub 20}Fe{sub 20}Al{sub 20}Ti{sub 20} alloy. Solid-solution strengthening, grain-boundary strengthening, twin-boundary strengthening, the presence of the strong B2-type BCC phase, and precipitate strengthening due to the presence of a trace amount of Al{sub 3}Ti are responsible for the ultra-high compressive strength of ~2988 MPa and hardness of ~704 Hv. The strain-to-failure of ~5.8% with visible ductility is dominated by the FCC solid-solution phase.

  1. Preparation of a bulk Fe{sub 83}B{sub 17} soft magnetic alloy by undercooling and copper-mold casting methods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Changlin, E-mail: ycl@nwpu.edu.cn; Sheng, Gang; Chen, Guiyun; Liu, Feng

    2013-11-15

    Bulk Fe{sub 83}B{sub 17} eutectic alloy rods with diameters up to 3 mm were prepared by undercooling solidification combined with Cu-mold casting. The results showed that the rapid solidification led to an increase in the nucleation rate, an inhibition of the grain growth and a competition between a stable Fe{sub 2}B phase and a metastable Fe{sub 3}B phase. Then, pure nano-lamellar eutectic microstructures and the metastable Fe{sub 3}B phase were successfully obtained in as-solidified alloys, which resulted in improved soft magnetic properties. - Highlights: • Pure nano-lamellar eutectic structure was directly formed in the bulk Fe-B alloys. • The metastable Fe{sub 3}B phase was directly formed in the bulk Fe-B alloys. • Undercooling solidification combined with Cu-mold casting was applied. • The information on bcc Fe, Fe{sub 2}B and Fe{sub 3}B-magnetism relationship was provided. • Nano-lamellar eutectic structures enhance the soft magnetic properties.

  2. X-ray Absorption Spectroscopy and Density Functional Theory Studies of [(H3buea)FeIII-X]n1 (X= S2-, O2-,OH-): Comparison of Bonding and Hydrogen Bonding in Oxo and Sulfido Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Abhishek; Hocking, Rosalie K.; /Stanford U., Chem. Dept.; Larsen, Peter; Borovik, Andrew S.; /Kansas U.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.; /SLAC,

    2006-09-27

    Iron L-edge, iron K-edge, and sulfur K-edge X-ray absorption spectroscopy was performed on a series of compounds [Fe{sup III}H{sub 3}buea(X)]{sup n-} (X = S{sup 2-}, O{sup 2-}, OH{sup -}). The experimentally determined electronic structures were used to correlate to density functional theory calculations. Calculations supported by the data were then used to compare the metal-ligand bonding and to evaluate the effects of H-bonding in Fe{sup III}-O vs Fe{sup III-}S complexes. It was found that the Fe{sup III-}O bond, while less covalent, is stronger than the FeIII-S bond. This dominantly reflects the larger ionic contribution to the Fe{sup III-}O bond. The H-bonding energy (for three H-bonds) was estimated to be -25 kcal/mol for the oxo as compared to -12 kcal/mol for the sulfide ligand. This difference is attributed to the larger charge density on the oxo ligand resulting from the lower covalency of the Fe-O bond. These results were extended to consider an Fe{sup IV-}O complex with the same ligand environment. It was found that hydrogen bonding to Fe{sup IV-}O is less energetically favorable than that to Fe{sup III-}O, which reflects the highly covalent nature of the Fe{sup IV-}O bond.

  3. Thermodynamic approach to the stability of multi-phase systems: application to the Y2O3–Fe system

    International Nuclear Information System (INIS)

    Oxide-metal systems are important in many practical applications, and they are undergoing extensive study using a wide range of techniques. The most accurate theoretical approaches are based on density functional theory (DFT), which is limited to ∼102 atoms. Multi-scale approaches, e.g. DFT + Monte Carlo, are often used to model oxide metal systems at the atomic level. These approaches can qualitatively describe the kinetics of some processes but not the overall stability of individual phases. In this article, we propose a thermodynamic approach to study equilibrium in multi-phase systems, which can be sequentially enhanced by considering different defects and microstructures. We estimate the thermodynamic equilibrium by minimization of the free energy of the whole multi-phase system using a limited set of defects and microstructural objects for which the properties are calculated by DFT. As an example, we consider Y2O3 + bcc Fe with vacancies in both the Y2O3 and bcc Fe phases, Y substitutions and O interstitials in Fe, Fe impurities, and antisite defects in Y2O3. The output of these calculations is the thermal equilibrium concentration of all the defects for a particular temperature and composition. The results obtained confirmed the high temperature stability of yttria in iron. Model development toward more accurate calculations is discussed. (paper)

  4. Evolution of structure, microstructure and hyperfine properties of nanocrystalline Fe{sub 50}Co{sub 50} powders prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Akkouche, K. [LMMC, M' hamed Bougara University, Boumerdes 35000 (Algeria); Guittoum, A., E-mail: guittoum@yahoo.fr [Nuclear Research Centre of Algiers, 2 Bd Frantz Fanon, BP399 Alger-Gare, Algiers (Algeria); Boukherroub, N. [LMMC, M' hamed Bougara University, Boumerdes 35000 (Algeria); Souami, N. [Nuclear Research Centre of Algiers, 2 Bd Frantz Fanon, BP399 Alger-Gare, Algiers (Algeria)

    2011-11-15

    Nanostructured Fe{sub 50}Co{sub 50} powders were prepared by mechanical alloying of Fe and Co elements in a vario-planetary high-energy ball mill. The structural properties, morphology changes and local iron environment variations were investigated as a function of milling time (in the 0-200 h range) by means of X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray analysis and {sup 57}Fe Moessbauer spectroscopy. The complete formation of bcc Fe{sub 50}Co{sub 50} solid solution is observed after 100 h milling. As the milling time increases from 0 to 200 h, the lattice parameter decreases from 0.28655 nm for pure Fe to 0.28523 nm, the grain size decreases from 150 to 14 nm, while the meal level of strain increases from 0.0069% to 1.36%. The powder particle morphology at different stages of formation was observed by SEM. The parameters derived from the Moessbauer spectra confirm the beginning of the formation of Fe{sub 50}Co{sub 50} phase at 43 h of milling. After 200 h of milling the average hyperfine magnetic field of 35 T suggests that a disordered bcc Fe-Co solid solution is formed. - Highlights: > Nanostructured Fe{sub 50}Co{sub 50} powders were successfully prepared by mechanical alloying process. > Final average grain size value achieved after 200 h of milling was 14 nm. > For the longest milling time the majority of particle grains observed by SEM exhibits a round shape with small diameter.

  5. Effects of additive Pd on the structures and electrochemical hydrogen storage properties of Mg{sub 67}Co{sub 33}-based composites or alloys with BCC phase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yao; Zhuang, Xiangyang [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Zhu, Yunfeng [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China); Zhan, Leyu [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Pu, Zhenggan [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China); Wan, Neng [SEU-FEI Nano Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronics Science and Engineering, Southeast University, Nanjing 210096 (China); Li, Liquan [College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009 (China)

    2015-02-15

    Highlights: • Additive Pd in Mg{sub 67}Co{sub 33} benefits to form a ternary BCC alloy. • Introducing 5.0 at.% Pd in Mg{sub 67}Co{sub 33} lifts the initial discharge capacity from 10 mAh/g to maximum 530 mAh/g. • Exchange current density was increased due to the homogeneously dispersed Pd. • Additive Pd slightly enhances the hydrogen diffusion coefficient of Mg-Co-Pd composites or alloys. - Abstract: Mg{sub 67}Co{sub 33} and Mg{sub 67}Co{sub 33}-Pd composites/alloys prepared by ball milling for 120 h possess nano-crystalline with body-centered cubic (BCC) structure, which was verified by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) analyses. The introduced 5.0 at.% Pd significantly lifts the initial discharge capacity from 10 mAh g{sup -1} of Mg{sub 67}Co{sub 33} to maximum 530 mAh g{sup -1}. Pd also drives the Mg{sub 67}Co{sub 33}-Pd composite forming a full BCC alloy during ball milling. The distribution of Pd gradually becomes homogeneous with the augmentation of the ball milling time according to the analyses by scanning electron microscopy-energy dispersive spectrometer (SEM-EDS). Exchange current density increased with the milling time and can be ascribed to the homogeneously dispersion of Pd over the surface. The introduced Pd also enhances the hydrogen diffusion coefficient of the Mg{sub 67}Co{sub 33}-Pd composites/alloys.

  6. Basal Cell Carcinoma (BCC)

    Science.gov (United States)

    ... epithelioma, is the most common form of skin cancer. Basal cell carcinoma usually occurs on sun-damaged skin, especially ... other health issues. Infiltrating or morpheaform basal cell carcinomas: Infiltrating basal cell carcinomas can be more aggressive and locally destructive ...

  7. Study of the reaction of astrophysical interest 60Fe(n,γ)61Fe via (d,pγ) transfer reaction

    International Nuclear Information System (INIS)

    60Fe is of special interest in nuclear astrophysics. Indeed the recent observations of 60Fe characteristic gamma-ray lines by the RHESSI and INTEGRAL spacecrafts allowed to measure the total flux of 60Fe over the Galaxy. Moreover the observation in presolar grains of an excess of the daughter-nuclei of 60Fe, 60Ni, gives constraints on the conditions of formation of the early solar system. However, the cross-sections of some reactions involved in 60Fe nucleosynthesis and included to stellar models are still uncertain. The destruction reaction of 60Fe, 60Fe(n, γ)61Fe, is one of them. The total cross-section can be separate into two contributions: the direct one, involving states below the neutron separation threshold of 61Fe, and the resonant one.We improved 61Fe spectroscopy in order to evaluate the direct capture part of the 60Fe(n, γ)61Fe reaction cross-section. 60Fe(n, γ)61Fe was thus studied via d(60Fe, pγ)61Fe transfer reaction with the CATS/MUST2/EXOGAM setup at LISE-GANIL. DWBA analysis of experimental proton differential cross-sections allowed to extract orbital angular momentum and spectroscopic factors of different populated states identified below the neutron threshold. A comparison of experimental results for 61Fe with experimental results for similar nuclei and with shell-model calculations was also performed. (author)

  8. Magnetic properties of the ammonolysis product of α-Fe powder containing a small amount of aluminum

    International Nuclear Information System (INIS)

    Magnetite was prepared containing a small amount of aluminum and its nitride was generated through low temperature ammonolysis following reduction under hydrogen. The nitrided product was determined by XRD to be a mixture of “α″-Fe16N2” having a slightly deformed crystal structure from α″-Fe16N2 and the residual α-Fe. Magnetic coercivity of the mixture was decreased from the value of 150 mT obtained for the nitride product made without aluminum, due to the precipitation of nonmagnetic amorphous alumina in the low temperature nitrided bcc (Fe1−xAlx) with x≤0.03. The aluminum-doped nitride product in which the “α″-Fe16N2” fraction was 30 at% exhibited magnetization at 1.5 T of approximately 200 Am2kg−1 at room temperature and its magnetic coercivity was 20 mT. - Graphical abstract: Magnetic iron nitride particles were separated by nonmagnetic amorphous γ-alumina. Magnetic coercivity was decreased by reducing the magnetic interaction between the particles. - Highlights: • Magnetic coercivity decreased in α”-Fe16N2 like compound as a soft magnet. • Small amount of Al addition was effective in its preparation. • Magnetic interaction decreased between the “α”-Fe16N2” particles

  9. Eutectic Al-Si-Cu-Fe-Mn alloys with enhanced mechanical properties at room and elevated temperature

    International Nuclear Information System (INIS)

    Highlights: → Fabricated a kind of high performance Al-Si alloy with low production costs. → Clarified two different morphologies of α-Fe and corresponding crystal structures. → Analyzed the crystallography of Cu-rich phases before and after T6 treatment. → Fracture mechanism of precipitates in experimental alloys during tensile process. -- Abstract: In this paper, we report a novel kind of eutectic Al-Si-Cu-Fe-Mn alloy with ultimate tensile strength up to 336 MPa and 144.3 MPa at room temperature and 300 oC, respectively. This kind of alloy was prepared by metal mold casting followed by T6 treatment. The microstructure is composed of eutectic and primary Si, α-Fe, Al2Cu and α-Al phases. Iron-rich phases, which were identified as BCC type of α-Fe (Al15(Fe,Mn)3Si2), exist in blocky and dendrite forms. Tiny blocky Al2Cu crystals disperse in α-Fe dendrites or at the grain boundaries of α-Al. During T6 treatment, Cu atoms aggregate from the super-saturation solid solution to form GP zones, θ'' or θ'. Further analysis found that the enhanced mechanical properties of the experimental alloy are mainly attributed to the formation of α-Fe and copper-rich phases.

  10. Properties of Fe8−NCoN nanoribbons and nanowires: A DFT approach

    International Nuclear Information System (INIS)

    The structural configurations and magnetic properties of zig-zag nanoribbons and nanowires of Fe8−NCoN, for 0≤N≤8, are calculated within the density functional theory. Both, for the zig-zag nanoribbons and the nanowires, there is a tendency towards forming Fe–Co bonds, while segregation of the Fe and Co is energetically unfavorable. For the nanowire structures a transition from bcc Fe to hcp Co spatial arrangements is observed when N is increased from 4 to 6, in spite of the small size of the systems under investigation. The energy minimization was performed taking into consideration the electronic and magnetic structures, since for each crystalline structure, chemical composition, and short range order, particular magnetic properties of these systems do correspond. The magnetocrystalline anisotropy energy is calculated, and it is found that the easy axis changes from a transverse direction in Fe-rich systems, to the axial direction as the Co concentration increases. It is also found that although there are important variations of the local magnetic moment of the components, and their particular location in the system, the average magnetic moment is an almost linear function of N. - Highlights: ► Properties of Fe8−NCoN nanoribbons and nanowires are calculated ab initio. ► Structural and magnetic properties of nanoribbons and nanowires are calculated. ► Shape and crystalline anisotropies of nanoribbons and nanowires are contrasted

  11. Efficacy of an inactivated FeLV vaccine compared to a recombinant FeLV vaccine in minimum age cats following virulent FeLV challenge.

    Science.gov (United States)

    Stuke, Kristin; King, Vickie; Southwick, Kendra; Stoeva, Mira I; Thomas, Anne; Winkler, M Teresa C

    2014-05-01

    The aim of the study was to determine the efficacy of an inactivated feline leukemia virus (FeLV) vaccine (Versifel(®) FeLV, Zoetis.) compared to a recombinant FeLV vaccine (Purevax(®) FeLV, Merial Animal Health) in young cats, exposed under laboratory conditions to a highly virulent challenge model. The study was designed to be consistent with the general immunogenicity requirements of the European Pharmacopoeia 6.0 Monograph 01/2008:1321-Feline Leukaemia Vaccine (Inactivated) with the exception that commercial-strength vaccines were assessed. Fifty seronegative cats (8-9 weeks old) were vaccinated subcutaneously on two occasions, three weeks apart, with either placebo (treatment group T01), Versifel FeLV Vaccine (treatment group T02), or Purevax FeLV Vaccine (treatment group T03) according to the manufacturer's directions. Cats were challenged three weeks after the second vaccination with a virulent FeLV isolate (61E strain). Persistent FeLV antigenemia was determined from 3 to 15 weeks postchallenge. Bone marrow samples were tested for the presence of FeLV proviral DNA to determine FeLV latent infection. At week 15 after challenge with the virulent FeLV 61E strain, the Versifel FeLV Vaccine conferred 89.5% protection against FeLV persistent antigenemia and 94.7% protection against FeLV proviral DNA integration in bone marrow cells. In comparison, the Purevax FeLV Vaccine conferred 20% protection against FeLV persistent antigenemia and 35% protection against FeLV proviral DNA integration in bone marrow cells following challenge. The data from this study show that the Versifel FeLV Vaccine was efficacious in preventing both FeLV persistent p27 antigenemia and FeLV proviral DNA integration in bone marrow cells of cats challenged with this particular challenge model under laboratory conditions and provided better protection than Purevax FeLV in this experimental challenge model with highly virulent FeLV. PMID:24662705

  12. Collinear spin-density-wave ordering in Fe/Cr multilayers and wedges

    International Nuclear Information System (INIS)

    Several recent experiments have detected a spin-density wave (SDW) within the Cr spacer of Fe/Cr multilayers and wedges. We use two simple models to predict the behavior of a collinear SDW within an Fe/Cr/Fe trilayer. Both models combine assumed boundary conditions at the Fe-Cr interfaces with the free energy of the Cr spacer. Depending on the temperature and the number N of Cr monolayers, the SDW may be either commensurate (C) or incommensurate (I) with the bcc Cr lattice. Model I assumes that the Fe-Cr interface is perfect and that the Fe-Cr interaction is antiferromagnetic. Consequently, the I SDW antinodes lie near the Fe-Cr interfaces. With increasing temperature, the Cr spacer undergoes a series of transitions between I SDW phases with different numbers n of nodes. If the I SDW has n=m nodes at T=0, then n increases by one at each phase transition from m to m-1 to m-2 up to the C phase with n=0 above TIC(N). For a fixed temperature, the magnetic coupling across the Cr spacer undergoes a phase slip whenever n changes by one. In the limit N→∞, TIC(N) is independent of the Fe-Cr coupling strength. We find that TIC(∞) is always larger than the bulk Nacute eel transition temperature and increases with the strain on the Cr spacer. These results explain the very high IC transition temperature of about 600 K extrapolated from measurements on Fe/Cr/Fe wedges. Model II assumes that the I SDW nodes lie precisely at the Fe-Cr interfaces. This condition may be enforced by the interfacial roughness of sputtered Fe/Cr multilayers. As a result, the C phase is never stable and the transition temperature TN(N) takes on a seesaw pattern as n≥2 increases with thickness. In agreement with measurements on both sputtered and epitaxially grown multilayers, model II predicts the I phase to be unstable above the bulk Nacute eel temperature. Model II also predicts that the I SDW may undergo a single phase transition from n=m to m-1 before disappearing above TN(N). This behavior

  13. Mössbauer study of alloy Fe{sub 67.5}Ni{sub 32.5}, prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Benitez Rodríguez, Edson Daniel, E-mail: edbenitezr@ut.edu.co; Bustos Rodríguez, Humberto; Oyola Lozano, Dagoberto; Rojas Martínez, Yebrail Antonio [University of Tolima, Department of Physics (Colombia); Pérez Alcázar, German Antonio [University of Valle, Department of Physics (Colombia)

    2015-06-15

    We present the study of effect of the particle size on the structural and magnetic properties of the Fe{sub 67.5}Ni{sub 32.5} alloy, prepared by mechanical alloying (MA). After milling the powders during 10 hours they were separated by sieving using different meshes. The refinement of the X-ray patterns showed the coexistence of the BCC (Body Centered Cubic) and the FCC (Face Centered Cubic) phases in all samples with lattice parameters and crystallite sizes independent of the mean particle size. However, big particles presented bigger volumetric fraction of BCC grains. The Mossbauer spectra were fitted with a broad sextet corresponding to the ferromagnetic BCC phase, a hyperfine magnetic field distribution and a broad singlet which correspond to the ferromagnetic and paramagnetic sites of the FCC phase, respectively. Hysteresis loops showed a magnetically, soft behavior for all the samples, however, the saturation magnetization values are smaller for the original powder and for the powders with small, mean, particle size due to the dipolar magnetic interaction and the smaller mean magnetic moment, respectively. These effects were proved by Henkel plots that were made to the samples.

  14. Neutron powder thermo-diffraction in mechanically alloyed Fe{sub 64}Ni{sub 36} invar alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gorria, Pedro, E-mail: pgorria@uniovi.e [Departamento de Fisica, Universidad de Oviedo, Avda. Calvo Sotelo s/n, Oviedo 33007, Asturias (Spain); Martinez-Blanco, David [Unidad de Magnetometria, SCT' s, Universidad de Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Blanco, Jesus A. [Departamento de Fisica, Universidad de Oviedo, Avda. Calvo Sotelo s/n, Oviedo 33007, Asturias (Spain); Smith, Ronald I. [ISIS Facility, RAL, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    2010-04-16

    Nanostructured Fe{sub 64}Ni{sub 36} alloy has been obtained using high-energy ball milling for 35 h of milling time, Fe{sub 64}Ni{sub 36} MA-35 h. The initial as-milled Fe{sub 64}Ni{sub 36} MA-35 h powders are inhomogeneous, showing a majority phase with a face-centred cubic (fcc) crystal structure [88(2)%] and a minority phase with body-centred cubic (bcc) crystal structure [7(2)%]. The evolution of the microstructure with temperature between 300 K and 1100 K has been followed by means of in situ neutron powder thermo-diffraction experiments. The room temperature values for the mean crystalline size and the mechanical-induced microstrain of the fcc phase in the as-milled sample are {approx}10 nm and {approx}0.7%, respectively. Moreover, after heating the Fe{sub 64}Ni{sub 36} MA-35 h powders up to 1100 K, an increase of around 65 K in the Curie temperature respect to that of the commercial coarse-grained alloy of the same composition is observed. The latter together with the observed temperature dependence of the lattice parameter suggests that the Fe{sub 64}Ni{sub 36} MA-35 h sample subjected to the heating process exhibits invar behaviour. On heating up to 1100 K thermal relaxation of the microstructure occurs giving rise to grain growth above 100 nm, nearly vanishing values for the maximum strain, and the transformation of the bcc phase into the fcc one above 800 K, being the latter stable in subsequent heating-cooling processes.

  15. A comparative structural and magnetic study of Fe{sub 100−x}Pd{sub x}(x=15, 20 and 36) thin films deposited on Si (100) and glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bahamida, S. [Research unit UR-MPE, University of Boumerdes, 1 Avenue de l’Independance, Boumerdes 35000 (Algeria); Groupe de Physique des Matériaux, Université et INSA de Rouen - UMR CNRS 6634 - Normandie Université, F-76801 Saint Etienne du Rouvray (France); Fnidiki, A., E-mail: abdeslem.fnidiki@univ-rouen.fr [Groupe de Physique des Matériaux, Université et INSA de Rouen - UMR CNRS 6634 - Normandie Université, F-76801 Saint Etienne du Rouvray (France); Laggoun, A. [Research unit UR-MPE, University of Boumerdes, 1 Avenue de l’Independance, Boumerdes 35000 (Algeria); Guittoum, A. [Nuclear Research Centre of Algiers, 2 Bd Frantz Fanon, BP 399, Algiers (Algeria)

    2015-10-15

    Various structural and magnetic characterization techniques have been used to investigate Fe{sub 100−x}Pd{sub x} (x=15, 20 and 36) thin films deposited onto silicon and glass substrates, by thermal evaporation technique. X-ray diffraction analysis shows the presence of supersaturated solid solution with bcc structure for Pd concentrations of 15% and 20%. However, for 36% of Pd, in addition to the supersaturated α-FePd (bcc) phase, another disordered FePd{sub 3} phase with fcc structure is present. At 20 at% Pd, the magnetic characterization shows a saturation of the bcc (α-FePd) phase and the appearance of the fcc phase. The correlation between the structure and magnetic properties allows us to compare the two substrates effects on deposited thin films. As results, the measurements indicate that the grain size D, the thin film thickness and the d{sub (110)} spacing significantly affect the magnetic coercivity H{sub C}. The Fe–Pd alloys deposited on a monocrystalline Si (100) and glass substrate show that the coercivity H{sub C} is given by the random anisotropy model. - Highlights: • Comparative study of Fe{sub 100−x}Pd{sub x} thin films deposited on the Si (100) and glass substrates. • The films grown on Si (100) substrate shown that the coercivity is proportional to D{sup 6}. • Films grown on glass substrate shown that the coercivity is linearly proportional to 1/D. • For Si substrate, a linear variation is obtained between the coercitivity and the d{sub (110)} spacing. • For glass substrate, a linear variation is obtained between coercitivity and 1/d{sub (110)} spacing.

  16. 2004■2005 Prices Comparison of Neodymia

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Global NdFeB magnetic materials industry grows at over20% every year, strongly stimulating the production ofneodymia and Nd metal. In 2005, NdFeB in global market is3,000 - 4,000 tons short of supply. Prices comparison ofneodymia at the same period of this year and last year isshown in Table 1.Table 1 2004 2005 Prices Comparison of Neodymia2004■2005 Prices Comparison of Neodymia

  17. Twin nucleation and migration in FeCr single crystals

    International Nuclear Information System (INIS)

    Tension and compression experiments were conducted on body-centered cubic Fe -47.8 at pct. Cr single crystals. The critical resolved shear stress (CRSS) magnitudes for slip nucleation, twin nucleation and twin migration were established. We show that the nucleation of slip occurs at a CRSS of about 88 MPa, while twinning nucleates at a CRSS of about 191 MPa with an associated load drop. Following twin nucleation, twin migration proceeds at a CRSS that is lower than the initiation stress (≈ 114–153 MPa). The experimental results of the nucleation stresses indicate that the Schmid law holds to a first approximation for the slip and twin nucleation cases, but to a lesser extent for twin migration particularly when considerable slip strains preceded twinning. The CRSSs were determined experimentally using digital image correlation (DIC) in conjunction with electron back scattering diffraction (EBSD). The DIC measurements enabled pinpointing the precise stress on the stress–strain curves where twins or slip were activated. The crystal orientations were obtained using EBSD and used to determine the activated twin and slip systems through trace analysis. - Highlights: ► Digital image correlation allows to capture slip/twin initiation for bcc FeCr. ► Crystal orientations from EBSD allow slip/twin system indexing. ► Nucleation of slip always precedes twinning. ► Twin growth is sustained with a lower stress than required for nucleation. ► Twin-slip interactions provide high hardening at the onset of plasticity.

  18. Nanocrystalline structure formation at crystallization of Fe-Nd films

    International Nuclear Information System (INIS)

    Fe100-xNdx films (x=33,50,75,83) were prepared by vacuum evaporation technique. The TEM data show that initial films contain amorphous phase. Maximal quantity of amorphous phase was found for x=33. The diffraction of amorphous phase differs from ones of as-quenched alloys. The films were treated by electron beam treatment in-situ at multistage regime. The crystallization process was registered step by step. The different behavior at various intensity of treatment was observed. During the first stage of treatment the nanosize precipitations (7-50 nm) are found to form. Relatively stable nanocrystalline structure at x=33 consists of α-Fe precipitations in amorphous matrix. Fine dispersed nanosize structure appears at first stage of crystallization in films with x=75. During electron beam treatment the last structure transforms in local spherical areas. In films at x=83 the bcc-Nd based solid solution and/or fcc γ-phase appear. (orig.)

  19. Reaction of coadsorbed NO and CO on fcc ultra-thin Fe films grown on a Rh(100) surface

    Science.gov (United States)

    Egawa, C.; Katayama, S.; Oki, S.

    1997-11-01

    We have studied the reaction of coadsorbed NO and CO on ultra-thin Fe films (1-3 ML, ML = monolayer) grown on Rh(100) surface in order to examine the reactivity of Fe thin-films having fcc structure. TD spectra obtained from NO adsorbed Fe thin-films gave an evolution of N 2 below 300 K concomitant with a desorption of NO at 350 K and a recombinative desorption of atomic nitrogen above 800 K. The peak temperature of the recombinative desorption shifted from 800 K to 1000 K with increasing Fe coverage from 1 to 3 ML. Similarly, the desorption temperature of dissociatively adsorbed CO moved from 700 K to 900 K upon the increase in film thickness. These are correlated with a growth of the electronic density of states just below the Fermi level observed for these Fe thin-films. The coverage of dissociatively adsorbed CO is always less than 0.05 on 1 and 3 ML films, which is only one-fourth of that reported on bcc Fe(100) surface. It indicates that the dissociation of CO does not effectively proceed on fcc Fe thin-films. TPR spectra of NO and CO coadsorbed Fe thin-films show the dependence of position and shape of product peaks on the film thickness. In particular, TPR spectra from Fe thin-films with nearly equal amounts of coadsorbed NO and CO display a sharp desorption of CO and CO 2 above 500 K followed by a broad evolution of CO 2 and N 2. The increase of Fe coverage induced the higher temperature shift and intensity growth of this sharp desorption. XPS and UPS spectra show that this is derived from molecularly adsorbed CO coexisting with dissociated N and O atoms. These results strongly suggest an attractive interaction between a pair of CO molecule and N atom in a mixed phase through surface Fe layer or a formation of surface complex like NCO species.

  20. The nucleation process and the roles of structure and density fluctuations in supercooled liquid Fe

    International Nuclear Information System (INIS)

    We observed homogeneous nucleation process of supercooled liquid Fe by molecular dynamics simulations. Using bond-orientational order parameters together with Voronoi polyhedron method, we characterized local structure, calculated the volume of Voronoi polyhedra of atoms and identified the structure and density fluctuations. We monitored the formation of nucleus and analyzed its inner structure. The birth and growth of the pre-nucleus and nucleus are accompanied with aggregating and disaggregating processes in the time scale of femtosecond. Only the initial solid-like clusters (ISLC), ranging from 1 to 7 atoms, pop up directly from liquid. The relation between the logarithm of number of clusters and the cluster size was found to be linear for ISLCs and was observed to be parabolic for all solid-like clusters (SLC) due to aggregating and disaggregating effects. The nucleus and pre-nuclei mainly consist of body centered cubic (BCC) and hexagonal close packed atoms, while the BCC atoms tend to be located at the surface. Medium-range structure fluctuations induce the birth of ISLCs, benefit the aggregation of embryos and remarkably promote the nucleation. But density fluctuations contribute little to nucleation. The lifetime of most icosahedral-like atoms (ICO) is shorter than 0.7 ps. No obvious relationship was found between structure/density fluctuations and the appearance of ICO atoms