DEFF Research Database (Denmark)
Jensen, Finn Verner; Nielsen, Thomas Dyhre
2016-01-01
and edges. The nodes represent variables, which may be either discrete or continuous. An edge between two nodes A and B indicates a direct influence between the state of A and the state of B, which in some domains can also be interpreted as a causal relation. The wide-spread use of Bayesian networks...
Baldi, Pierre; Rosen-Zvi, Michal
2005-10-01
Machine learning methods that can handle variable-size structured data such as sequences and graphs include Bayesian networks (BNs) and Recursive Neural Networks (RNNs). In both classes of models, the data is modeled using a set of observed and hidden variables associated with the nodes of a directed acyclic graph. In BNs, the conditional relationships between parent and child variables are probabilistic, whereas in RNNs they are deterministic and parameterized by neural networks. Here, we study the formal relationship between both classes of models and show that when the source nodes variables are observed, RNNs can be viewed as limits, both in distribution and probability, of BNs with local conditional distributions that have vanishing covariance matrices and converge to delta functions. Conditions for uniform convergence are also given together with an analysis of the behavior and exactness of Belief Propagation (BP) in 'deterministic' BNs. Implications for the design of mixed architectures and the corresponding inference algorithms are briefly discussed.
Structure learning for Bayesian networks as models of biological networks.
Larjo, Antti; Shmulevich, Ilya; Lähdesmäki, Harri
2013-01-01
Bayesian networks are probabilistic graphical models suitable for modeling several kinds of biological systems. In many cases, the structure of a Bayesian network represents causal molecular mechanisms or statistical associations of the underlying system. Bayesian networks have been applied, for example, for inferring the structure of many biological networks from experimental data. We present some recent progress in learning the structure of static and dynamic Bayesian networks from data.
Konstruksi Bayesian Network Dengan Algoritma Bayesian Association Rule Mining Network
Octavian
2015-01-01
Beberapa tahun terakhir, Bayesian Network telah menjadi konsep yang populer digunakan dalam berbagai bidang kehidupan seperti dalam pengambilan sebuah keputusan dan menentukan peluang suatu kejadian dapat terjadi. Sayangnya, pengkonstruksian struktur dari Bayesian Network itu sendiri bukanlah hal yang sederhana. Oleh sebab itu, penelitian ini mencoba memperkenalkan algoritma Bayesian Association Rule Mining Network untuk memudahkan kita dalam mengkonstruksi Bayesian Network berdasarkan data ...
Model Diagnostics for Bayesian Networks
Sinharay, Sandip
2006-01-01
Bayesian networks are frequently used in educational assessments primarily for learning about students' knowledge and skills. There is a lack of works on assessing fit of Bayesian networks. This article employs the posterior predictive model checking method, a popular Bayesian model checking tool, to assess fit of simple Bayesian networks. A…
An Intuitive Dashboard for Bayesian Network Inference
Reddy, Vikas; Charisse Farr, Anna; Wu, Paul; Mengersen, Kerrie; Yarlagadda, Prasad K. D. V.
2014-03-01
Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++.
Probabilistic Inferences in Bayesian Networks
Ding, Jianguo
2010-01-01
This chapter summarizes the popular inferences methods in Bayesian networks. The results demonstrates that the evidence can propagated across the Bayesian networks by any links, whatever it is forward or backward or intercausal style. The belief updating of Bayesian networks can be obtained by various available inference techniques. Theoretically, exact inferences in Bayesian networks is feasible and manageable. However, the computing and inference is NP-hard. That means, in applications, in ...
Bayesian networks in neuroscience: a survey.
Bielza, Concha; Larrañaga, Pedro
2014-01-01
Bayesian networks are a type of probabilistic graphical models lie at the intersection between statistics and machine learning. They have been shown to be powerful tools to encode dependence relationships among the variables of a domain under uncertainty. Thanks to their generality, Bayesian networks can accommodate continuous and discrete variables, as well as temporal processes. In this paper we review Bayesian networks and how they can be learned automatically from data by means of structure learning algorithms. Also, we examine how a user can take advantage of these networks for reasoning by exact or approximate inference algorithms that propagate the given evidence through the graphical structure. Despite their applicability in many fields, they have been little used in neuroscience, where they have focused on specific problems, like functional connectivity analysis from neuroimaging data. Here we survey key research in neuroscience where Bayesian networks have been used with different aims: discover associations between variables, perform probabilistic reasoning over the model, and classify new observations with and without supervision. The networks are learned from data of any kind-morphological, electrophysiological, -omics and neuroimaging-, thereby broadening the scope-molecular, cellular, structural, functional, cognitive and medical- of the brain aspects to be studied.
Inference in hybrid Bayesian networks
DEFF Research Database (Denmark)
Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael
2009-01-01
Since the 1980s, Bayesian Networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability-techniques (like fault trees...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....
Extended Bayesian Information Criteria for Gaussian Graphical Models
Foygel, Rina
2010-01-01
Gaussian graphical models with sparsity in the inverse covariance matrix are of significant interest in many modern applications. For the problem of recovering the graphical structure, information criteria provide useful optimization objectives for algorithms searching through sets of graphs or for selection of tuning parameters of other methods such as the graphical lasso, which is a likelihood penalization technique. In this paper we establish the consistency of an extended Bayesian information criterion for Gaussian graphical models in a scenario where both the number of variables p and the sample size n grow. Compared to earlier work on the regression case, our treatment allows for growth in the number of non-zero parameters in the true model, which is necessary in order to cover connected graphs. We demonstrate the performance of this criterion on simulated data when used in conjunction with the graphical lasso, and verify that the criterion indeed performs better than either cross-validation or the ordi...
Bayesian Networks and Influence Diagrams
DEFF Research Database (Denmark)
Kjærulff, Uffe Bro; Madsen, Anders Læsø
Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence, offering intuitive, efficient, and reliable methods for diagnosis, prediction, decision making, classification......, troubleshooting, and data mining under uncertainty. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended...
A Gaussian Mixed Model for Learning Discrete Bayesian Networks.
Balov, Nikolay
2011-02-01
In this paper we address the problem of learning discrete Bayesian networks from noisy data. Considered is a graphical model based on mixture of Gaussian distributions with categorical mixing structure coming from a discrete Bayesian network. The network learning is formulated as a Maximum Likelihood estimation problem and performed by employing an EM algorithm. The proposed approach is relevant to a variety of statistical problems for which Bayesian network models are suitable - from simple regression analysis to learning gene/protein regulatory networks from microarray data.
Bayesian network modelling of upper gastrointestinal bleeding
Aisha, Nazziwa; Shohaimi, Shamarina; Adam, Mohd Bakri
2013-09-01
Bayesian networks are graphical probabilistic models that represent causal and other relationships between domain variables. In the context of medical decision making, these models have been explored to help in medical diagnosis and prognosis. In this paper, we discuss the Bayesian network formalism in building medical support systems and we learn a tree augmented naive Bayes Network (TAN) from gastrointestinal bleeding data. The accuracy of the TAN in classifying the source of gastrointestinal bleeding into upper or lower source is obtained. The TAN achieves a high classification accuracy of 86% and an area under curve of 92%. A sensitivity analysis of the model shows relatively high levels of entropy reduction for color of the stool, history of gastrointestinal bleeding, consistency and the ratio of blood urea nitrogen to creatinine. The TAN facilitates the identification of the source of GIB and requires further validation.
Irregular-Time Bayesian Networks
Ramati, Michael
2012-01-01
In many fields observations are performed irregularly along time, due to either measurement limitations or lack of a constant immanent rate. While discrete-time Markov models (as Dynamic Bayesian Networks) introduce either inefficient computation or an information loss to reasoning about such processes, continuous-time Markov models assume either a discrete state space (as Continuous-Time Bayesian Networks), or a flat continuous state space (as stochastic dif- ferential equations). To address these problems, we present a new modeling class called Irregular-Time Bayesian Networks (ITBNs), generalizing Dynamic Bayesian Networks, allowing substantially more compact representations, and increasing the expressivity of the temporal dynamics. In addition, a globally optimal solution is guaranteed when learning temporal systems, provided that they are fully observed at the same irregularly spaced time-points, and a semiparametric subclass of ITBNs is introduced to allow further adaptation to the irregular nature of t...
Stochastic margin-based structure learning of Bayesian network classifiers.
Pernkopf, Franz; Wohlmayr, Michael
2013-02-01
The margin criterion for parameter learning in graphical models gained significant impact over the last years. We use the maximum margin score for discriminatively optimizing the structure of Bayesian network classifiers. Furthermore, greedy hill-climbing and simulated annealing search heuristics are applied to determine the classifier structures. In the experiments, we demonstrate the advantages of maximum margin optimized Bayesian network structures in terms of classification performance compared to traditionally used discriminative structure learning methods. Stochastic simulated annealing requires less score evaluations than greedy heuristics. Additionally, we compare generative and discriminative parameter learning on both generatively and discriminatively structured Bayesian network classifiers. Margin-optimized Bayesian network classifiers achieve similar classification performance as support vector machines. Moreover, missing feature values during classification can be handled by discriminatively optimized Bayesian network classifiers, a case where purely discriminative classifiers usually require mechanisms to complete unknown feature values in the data first.
Bayesian Networks and Influence Diagrams
DEFF Research Database (Denmark)
Kjærulff, Uffe Bro; Madsen, Anders Læsø
Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new...
Maximum margin Bayesian network classifiers.
Pernkopf, Franz; Wohlmayr, Michael; Tschiatschek, Sebastian
2012-03-01
We present a maximum margin parameter learning algorithm for Bayesian network classifiers using a conjugate gradient (CG) method for optimization. In contrast to previous approaches, we maintain the normalization constraints on the parameters of the Bayesian network during optimization, i.e., the probabilistic interpretation of the model is not lost. This enables us to handle missing features in discriminatively optimized Bayesian networks. In experiments, we compare the classification performance of maximum margin parameter learning to conditional likelihood and maximum likelihood learning approaches. Discriminative parameter learning significantly outperforms generative maximum likelihood estimation for naive Bayes and tree augmented naive Bayes structures on all considered data sets. Furthermore, maximizing the margin dominates the conditional likelihood approach in terms of classification performance in most cases. We provide results for a recently proposed maximum margin optimization approach based on convex relaxation. While the classification results are highly similar, our CG-based optimization is computationally up to orders of magnitude faster. Margin-optimized Bayesian network classifiers achieve classification performance comparable to support vector machines (SVMs) using fewer parameters. Moreover, we show that unanticipated missing feature values during classification can be easily processed by discriminatively optimized Bayesian network classifiers, a case where discriminative classifiers usually require mechanisms to complete unknown feature values in the data first.
Modelling of JET diagnostics using Bayesian Graphical Models
Energy Technology Data Exchange (ETDEWEB)
Svensson, J. [IPP Greifswald, Greifswald (Germany); Ford, O. [Imperial College, London (United Kingdom); McDonald, D.; Hole, M.; Nessi, G. von; Meakins, A.; Brix, M.; Thomsen, H.; Werner, A.; Sirinelli, A.
2011-07-01
The mapping between physics parameters (such as densities, currents, flows, temperatures etc) defining the plasma 'state' under a given model and the raw observations of each plasma diagnostic will 1) depend on the particular physics model used, 2) is inherently probabilistic, from uncertainties on both observations and instrumental aspects of the mapping, such as calibrations, instrument functions etc. A flexible and principled way of modelling such interconnected probabilistic systems is through so called Bayesian graphical models. Being an amalgam between graph theory and probability theory, Bayesian graphical models can simulate the complex interconnections between physics models and diagnostic observations from multiple heterogeneous diagnostic systems, making it relatively easy to optimally combine the observations from multiple diagnostics for joint inference on parameters of the underlying physics model, which in itself can be represented as part of the graph. At JET about 10 diagnostic systems have to date been modelled in this way, and has lead to a number of new results, including: the reconstruction of the flux surface topology and q-profiles without any specific equilibrium assumption, using information from a number of different diagnostic systems; profile inversions taking into account the uncertainties in the flux surface positions and a substantial increase in accuracy of JET electron density and temperature profiles, including improved pedestal resolution, through the joint analysis of three diagnostic systems. It is believed that the Bayesian graph approach could potentially be utilised for very large sets of diagnostics, providing a generic data analysis framework for nuclear fusion experiments, that would be able to optimally utilize the information from multiple diagnostics simultaneously, and where the explicit graph representation of the connections to underlying physics models could be used for sophisticated model testing. This
Bayesian networks and food security - An introduction
Stein, A.
2004-01-01
This paper gives an introduction to Bayesian networks. Networks are defined and put into a Bayesian context. Directed acyclical graphs play a crucial role here. Two simple examples from food security are addressed. Possible uses of Bayesian networks for implementation and further use in decision sup
Plug & Play object oriented Bayesian networks
DEFF Research Database (Denmark)
Bangsø, Olav; Flores, J.; Jensen, Finn Verner
2003-01-01
Object oriented Bayesian networks have proven themselves useful in recent years. The idea of applying an object oriented approach to Bayesian networks has extended their scope to larger domains that can be divided into autonomous but interrelated entities. Object oriented Bayesian networks have b...
Bayesian network approach to spatial data mining: a case study
Huang, Jiejun; Wan, Youchuan
2006-10-01
Spatial data mining is a process of discovering interesting, novel, and potentially useful information or knowledge hidden in spatial data sets. It involves different techniques and different methods from various areas of research. A Bayesian network is a graphical model that encodes causal probabilistic relationships among variables of interest, which has a powerful ability for representing and reasoning and provides an effective way to spatial data mining. In this paper we give an introduction to Bayesian networks, and discuss using Bayesian networks for spatial data mining. We propose a framework of spatial data mining based on Bayesian networks. Then we show a case study and use the experimental results to validate the practical viability of the proposed approach to spatial data mining. Finally, the paper gives a summary and some remarks.
Space Shuttle RTOS Bayesian Network
Morris, A. Terry; Beling, Peter A.
2001-01-01
With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores
Anomaly Detection and Attribution Using Bayesian Networks
2014-06-01
UNCLASSIFIED Anomaly Detection and Attribution Using Bayesian Networks Andrew Kirk, Jonathan Legg and Edwin El-Mahassni National Security and...detection in Bayesian networks , en- abling both the detection and explanation of anomalous cases in a dataset. By exploiting the structure of a... Bayesian network , our algorithm is able to efficiently search for local maxima of data conflict between closely related vari- ables. Benchmark tests using
Compiling Relational Bayesian Networks for Exact Inference
DEFF Research Database (Denmark)
Jaeger, Manfred; Chavira, Mark; Darwiche, Adnan
2004-01-01
We describe a system for exact inference with relational Bayesian networks as defined in the publicly available \\primula\\ tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by evaluating...... and differentiating these circuits in time linear in their size. We report on experimental results showing the successful compilation, and efficient inference, on relational Bayesian networks whose {\\primula}--generated propositional instances have thousands of variables, and whose jointrees have clusters...
Nonparametric Bayesian Modeling of Complex Networks
DEFF Research Database (Denmark)
Schmidt, Mikkel Nørgaard; Mørup, Morten
2013-01-01
Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...... for complex networks can be derived and point out relevant literature....
Learning dynamic Bayesian networks with mixed variables
DEFF Research Database (Denmark)
Bøttcher, Susanne Gammelgaard
This paper considers dynamic Bayesian networks for discrete and continuous variables. We only treat the case, where the distribution of the variables is conditional Gaussian. We show how to learn the parameters and structure of a dynamic Bayesian network and also how the Markov order can be learned....... An automated procedure for specifying prior distributions for the parameters in a dynamic Bayesian network is presented. It is a simple extension of the procedure for the ordinary Bayesian networks. Finally the W¨olfer?s sunspot numbers are analyzed....
Graphical Independence Networks with the gRain Package for R
Directory of Open Access Journals (Sweden)
Soren Hojsgaard
2012-01-01
Full Text Available In this paper we present the R package gRain for propagation in graphical independence networks (for which Bayesian networks is a special instance. The paper includes a description of the theory behind the computations. The main part of the paper is an illustration of how to use the package. The paper also illustrates how to turn a graphical model and data into an independence network
Modeling Diagnostic Assessments with Bayesian Networks
Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego
2007-01-01
This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…
Bayesian Network for multiple hypthesis tracking
W.P. Zajdel; B.J.A. Kröse
2002-01-01
For a flexible camera-to-camera tracking of multiple objects we model the objects behavior with a Bayesian network and combine it with the multiple hypohesis framework that associates observations with objects. Bayesian networks offer a possibility to factor complex, joint distributions into a produ
A COMPOUND POISSON MODEL FOR LEARNING DISCRETE BAYESIAN NETWORKS
Institute of Scientific and Technical Information of China (English)
Abdelaziz GHRIBI; Afif MASMOUDI
2013-01-01
We introduce here the concept of Bayesian networks, in compound Poisson model, which provides a graphical modeling framework that encodes the joint probability distribution for a set of random variables within a directed acyclic graph. We suggest an approach proposal which offers a new mixed implicit estimator. We show that the implicit approach applied in compound Poisson model is very attractive for its ability to understand data and does not require any prior information. A comparative study between learned estimates given by implicit and by standard Bayesian approaches is established. Under some conditions and based on minimal squared error calculations, we show that the mixed implicit estimator is better than the standard Bayesian and the maximum likelihood estimators. We illustrate our approach by considering a simulation study in the context of mobile communication networks.
Bayesian networks in educational assessment
Almond, Russell G; Steinberg, Linda S; Yan, Duanli; Williamson, David M
2015-01-01
Bayesian inference networks, a synthesis of statistics and expert systems, have advanced reasoning under uncertainty in medicine, business, and social sciences. This innovative volume is the first comprehensive treatment exploring how they can be applied to design and analyze innovative educational assessments. Part I develops Bayes nets’ foundations in assessment, statistics, and graph theory, and works through the real-time updating algorithm. Part II addresses parametric forms for use with assessment, model-checking techniques, and estimation with the EM algorithm and Markov chain Monte Carlo (MCMC). A unique feature is the volume’s grounding in Evidence-Centered Design (ECD) framework for assessment design. This “design forward” approach enables designers to take full advantage of Bayes nets’ modularity and ability to model complex evidentiary relationships that arise from performance in interactive, technology-rich assessments such as simulations. Part III describes ECD, situates Bayes nets as ...
Bayesian Inference in Queueing Networks
Sutton, Charles
2010-01-01
Modern Web services, such as those at Google, Yahoo!, and Amazon, handle billions of requests per day on clusters of thousands of computers. Because these services operate under strict performance requirements, a statistical understanding of their performance is of great practical interest. Such services are modeled by networks of queues, where one queue models each of the individual computers in the system. A key challenge is that the data is incomplete, because recording detailed information about every request to a heavily used system can require unacceptable overhead. In this paper we develop a Bayesian perspective on queueing models in which the arrival and departure times that are not observed are treated as latent variables. Underlying this viewpoint is the observation that a queueing model defines a deterministic transformation between the data and a set of independent variables called the service times. With this viewpoint in hand, we sample from the posterior distribution over missing data and model...
Graphical Model Theory for Wireless Sensor Networks
Energy Technology Data Exchange (ETDEWEB)
Davis, William B.
2002-12-08
Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm.
Factorial graphical lasso for dynamic networks
Wit, E C
2012-01-01
Dynamic networks models describe a growing number of important scientific processes, from cell biology and epidemiology to sociology and finance. There are many aspects of dynamical networks that require statistical considerations. In this paper we focus on determining network structure. Estimating dynamic networks is a difficult task since the number of components involved in the system is very large. As a result, the number of parameters to be estimated is bigger than the number of observations. However, a characteristic of many networks is that they are sparse. For example, the molecular structure of genes make interactions with other components a highly-structured and therefore sparse process. Penalized Gaussian graphical models have been used to estimate sparse networks. However, the literature has focussed on static networks, which lack specific temporal constraints. We propose a structured Gaussian dynamical graphical model, where structures can consist of specific time dynamics, known presence or abse...
Compiling Relational Bayesian Networks for Exact Inference
DEFF Research Database (Denmark)
Jaeger, Manfred; Darwiche, Adnan; Chavira, Mark
2006-01-01
We describe in this paper a system for exact inference with relational Bayesian networks as defined in the publicly available PRIMULA tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference...... by evaluating and differentiating these circuits in time linear in their size. We report on experimental results showing successful compilation and efficient inference on relational Bayesian networks, whose PRIMULA--generated propositional instances have thousands of variables, and whose jointrees have clusters...
Learning Bayesian networks for discrete data
Liang, Faming
2009-02-01
Bayesian networks have received much attention in the recent literature. In this article, we propose an approach to learn Bayesian networks using the stochastic approximation Monte Carlo (SAMC) algorithm. Our approach has two nice features. Firstly, it possesses the self-adjusting mechanism and thus avoids essentially the local-trap problem suffered by conventional MCMC simulation-based approaches in learning Bayesian networks. Secondly, it falls into the class of dynamic importance sampling algorithms; the network features can be inferred by dynamically weighted averaging the samples generated in the learning process, and the resulting estimates can have much lower variation than the single model-based estimates. The numerical results indicate that our approach can mix much faster over the space of Bayesian networks than the conventional MCMC simulation-based approaches. © 2008 Elsevier B.V. All rights reserved.
The Diagnosis of Reciprocating Machinery by Bayesian Networks
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
A Bayesian Network is a reasoning tool based on probability theory and has many advantages that other reasoning tools do not have. This paper discusses the basic theory of Bayesian networks and studies the problems in constructing Bayesian networks. The paper also constructs a Bayesian diagnosis network of a reciprocating compressor. The example helps us to draw a conclusion that Bayesian diagnosis networks can diagnose reciprocating machinery effectively.
An introduction to Gaussian Bayesian networks.
Grzegorczyk, Marco
2010-01-01
The extraction of regulatory networks and pathways from postgenomic data is important for drug -discovery and development, as the extracted pathways reveal how genes or proteins regulate each other. Following up on the seminal paper of Friedman et al. (J Comput Biol 7:601-620, 2000), Bayesian networks have been widely applied as a popular tool to this end in systems biology research. Their popularity stems from the tractability of the marginal likelihood of the network structure, which is a consistent scoring scheme in the Bayesian context. This score is based on an integration over the entire parameter space, for which highly expensive computational procedures have to be applied when using more complex -models based on differential equations; for example, see (Bioinformatics 24:833-839, 2008). This chapter gives an introduction to reverse engineering regulatory networks and pathways with Gaussian Bayesian networks, that is Bayesian networks with the probabilistic BGe scoring metric [see (Geiger and Heckerman 235-243, 1995)]. In the BGe model, the data are assumed to stem from a Gaussian distribution and a normal-Wishart prior is assigned to the unknown parameters. Gaussian Bayesian network methodology for analysing static observational, static interventional as well as dynamic (observational) time series data will be described in detail in this chapter. Finally, we apply these Bayesian network inference methods (1) to observational and interventional flow cytometry (protein) data from the well-known RAF pathway to evaluate the global network reconstruction accuracy of Bayesian network inference and (2) to dynamic gene expression time series data of nine circadian genes in Arabidopsis thaliana to reverse engineer the unknown regulatory network topology for this domain.
CausalTrail: Testing hypothesis using causal Bayesian networks.
Stöckel, Daniel; Schmidt, Florian; Trampert, Patrick; Lenhof, Hans-Peter
2015-01-01
Summary Causal Bayesian Networks are a special class of Bayesian networks in which the hierarchy directly encodes the causal relationships between the variables. This allows to compute the effect of interventions, which are external changes to the system, caused by e.g. gene knockouts or an administered drug. Whereas numerous packages for constructing causal Bayesian networks are available, hardly any program targeted at downstream analysis exists. In this paper we present CausalTrail, a tool for performing reasoning on causal Bayesian networks using the do-calculus. CausalTrail's features include multiple data import methods, a flexible query language for formulating hypotheses, as well as an intuitive graphical user interface. The program is able to account for missing data and thus can be readily applied in multi-omics settings where it is common that not all measurements are performed for all samples. Availability and Implementation CausalTrail is implemented in C++ using the Boost and Qt5 libraries. It can be obtained from https://github.com/dstoeckel/causaltrail.
Fuzzy Functional Dependencies and Bayesian Networks
Institute of Scientific and Technical Information of China (English)
LIU WeiYi(刘惟一); SONG Ning(宋宁)
2003-01-01
Bayesian networks have become a popular technique for representing and reasoning with probabilistic information. The fuzzy functional dependency is an important kind of data dependencies in relational databases with fuzzy values. The purpose of this paper is to set up a connection between these data dependencies and Bayesian networks. The connection is done through a set of methods that enable people to obtain the most information of independent conditions from fuzzy functional dependencies.
Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter
2017-02-01
It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.
Graphicality transitions in scale-free networks
Del Genio, Charo I; Bassler, Kevin E
2011-01-01
We study the graphicality of power-law distributed degree sequences, showing that the fraction of graphical sequences undergoes two sharp transitions at the values 0 and 2 of the power-law exponent. We characterize these transitions as first-order, and provide an analytic explanation of their nature. Further numerical calculations, based on extreme value arguments, verify this treatment, and introduce a method to determine transition points for any given degree distribution. Our results reveal a fundamental reason why scale-free networks with no constraints on minimum and maximum degree must be sparse for positive power-law exponents, and dense otherwise.
Planning of O&M for Offfshore Wind Turbines using Bayesian Graphical Models
DEFF Research Database (Denmark)
Nielsen, Jannie Jessen; Sørensen, John Dalsgaard
2010-01-01
The costs to operation and maintenance (O&M) for offshore wind turbines are large, and riskbased planning of O&M has the potential of reducing these costs. This paper presents how Bayesian graphical models can be used to establish a probabilistic damage model and include data from imperfect...
Bayesian Networks: Aspects of Approximate Inference
Bolt, J.H.
2008-01-01
A Bayesian network can be used to model consisely the probabilistic knowledge with respect to a given problem domain. Such a network consists of an acyclic directed graph in which the nodes represent stochastic variables, supplemented with probabilities indicating the strength of the influences betw
Communication cost in Distributed Bayesian Belief Networks
Gosliga, S.P. van; Maris, M.G.
2005-01-01
In this paper, two different methods for information fusionare compared with respect to communication cost. These are the lambda-pi and the junction tree approach as the probability computing methods in Bayesian networks. The analysis is done within the scope of large distributed networks of computi
Neural network classification - A Bayesian interpretation
Wan, Eric A.
1990-01-01
The relationship between minimizing a mean squared error and finding the optimal Bayesian classifier is reviewed. This provides a theoretical interpretation for the process by which neural networks are used in classification. A number of confidence measures are proposed to evaluate the performance of the neural network classifier within a statistical framework.
Automatic Thesaurus Construction Using Bayesian Networks.
Park, Young C.; Choi, Key-Sun
1996-01-01
Discusses automatic thesaurus construction and characterizes the statistical behavior of terms by using an inference network. Highlights include low-frequency terms and data sparseness, Bayesian networks, collocation maps and term similarity, constructing a thesaurus from a collocation map, and experiments with test collections. (Author/LRW)
Diagnosis of Subtraction Bugs Using Bayesian Networks
Lee, Jihyun; Corter, James E.
2011-01-01
Diagnosis of misconceptions or "bugs" in procedural skills is difficult because of their unstable nature. This study addresses this problem by proposing and evaluating a probability-based approach to the diagnosis of bugs in children's multicolumn subtraction performance using Bayesian networks. This approach assumes a causal network relating…
Bayesian Networks as a Decision Tool for O&M of Offshore Wind Turbines
DEFF Research Database (Denmark)
Nielsen, Jannie Jessen; Sørensen, John Dalsgaard
2010-01-01
Costs to operation and maintenance (O&M) of offshore wind turbines are large. This paper presents how influence diagrams can be used to assist in rational decision making for O&M. An influence diagram is a graphical representation of a decision tree based on Bayesian Networks. Bayesian Networks...... offer efficient Bayesian updating of a damage model when imperfect information from inspections/monitoring is available. The extension to an influence diagram offers the calculation of expected utilities for decision alternatives, and can be used to find the optimal strategy among different alternatives...
Learning Bayesian Networks from Correlated Data
Bae, Harold; Monti, Stefano; Montano, Monty; Steinberg, Martin H.; Perls, Thomas T.; Sebastiani, Paola
2016-05-01
Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between observations within the same cluster and ignoring this correlation typically inflates the rate of false positive associations. We describe a novel parameterization of Bayesian networks that uses random effects to model the correlation within sample units and can be used for structure and parameter learning from correlated data without inflating the Type I error rate. We compare different learning metrics using simulations and illustrate the method in two real examples: an analysis of genetic and non-genetic factors associated with human longevity from a family-based study, and an example of risk factors for complications of sickle cell anemia from a longitudinal study with repeated measures.
Learning Bayesian Networks from Correlated Data.
Bae, Harold; Monti, Stefano; Montano, Monty; Steinberg, Martin H; Perls, Thomas T; Sebastiani, Paola
2016-05-05
Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between observations within the same cluster and ignoring this correlation typically inflates the rate of false positive associations. We describe a novel parameterization of Bayesian networks that uses random effects to model the correlation within sample units and can be used for structure and parameter learning from correlated data without inflating the Type I error rate. We compare different learning metrics using simulations and illustrate the method in two real examples: an analysis of genetic and non-genetic factors associated with human longevity from a family-based study, and an example of risk factors for complications of sickle cell anemia from a longitudinal study with repeated measures.
Distributed Bayesian Networks for User Modeling
DEFF Research Database (Denmark)
Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang
2006-01-01
by such adaptive applications are often partial fragments of an overall user model. The fragments have then to be collected and merged into a global user profile. In this paper we investigate and present algorithms able to cope with distributed, fragmented user models – based on Bayesian Networks – in the context...... of Web-based eLearning platforms. The scenario we are tackling assumes learners who use several systems over time, which are able to create partial Bayesian Networks for user models based on the local system context. In particular, we focus on how to merge these partial user models. Our merge mechanism...... efficiently combines distributed learner models without the need to exchange internal structure of local Bayesian networks, nor local evidence between the involved platforms....
From arguments to constraints on a Bayesian network
Bex, F.J.; Renooij, S.
2016-01-01
In this paper, we propose a way to derive constraints for a Bayesian Network from structured arguments. Argumentation and Bayesian networks can both be considered decision support techniques, but are typically used by experts with different backgrounds. Bayesian network experts have the mathematical
On local optima in learning bayesian networks
DEFF Research Database (Denmark)
Dalgaard, Jens; Kocka, Tomas; Pena, Jose
2003-01-01
This paper proposes and evaluates the k-greedy equivalence search algorithm (KES) for learning Bayesian networks (BNs) from complete data. The main characteristic of KES is that it allows a trade-off between greediness and randomness, thus exploring different good local optima. When greediness...
Posterior Predictive Model Checking in Bayesian Networks
Crawford, Aaron
2014-01-01
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…
Face detection by aggregated Bayesian network classifiers
Pham, T.V.; Worring, M.; Smeulders, A.W.M.
2002-01-01
A face detection system is presented. A new classification method using forest-structured Bayesian networks is used. The method is used in an aggregated classifier to discriminate face from non-face patterns. The process of generating non-face patterns is integrated with the construction of the aggr
Most frugal explanations in Bayesian networks
Kwisthout, J.H.P.
2015-01-01
Inferring the most probable explanation to a set of variables, given a partial observation of the remaining variables, is one of the canonical computational problems in Bayesian networks, with widespread applications in AI and beyond. This problem, known as MAP, is computationally intractable (NP-ha
Modelling crime linkage with Bayesian networks
J. de Zoete; M. Sjerps; D. Lagnado; N. Fenton
2015-01-01
When two or more crimes show specific similarities, such as a very distinct modus operandi, the probability that they were committed by the same offender becomes of interest. This probability depends on the degree of similarity and distinctiveness. We show how Bayesian networks can be used to model
GPU Implementation of Bayesian Neural Network Construction for Data-Intensive Applications
Perry, Michelle; Prosper, Harrison B.; Meyer-Baese, Anke
2014-06-01
We describe a graphical processing unit (GPU) implementation of the Hybrid Markov Chain Monte Carlo (HMC) method for training Bayesian Neural Networks (BNN). Our implementation uses NVIDIA's parallel computing architecture, CUDA. We briefly review BNNs and the HMC method and we describe our implementations and give preliminary results.
A General Structure for Legal Arguments about Evidence Using Bayesian Networks
Fenton, Norman; Neil, Martin; Lagnado, David A.
2013-01-01
A Bayesian network (BN) is a graphical model of uncertainty that is especially well suited to legal arguments. It enables us to visualize and model dependencies between different hypotheses and pieces of evidence and to calculate the revised probability beliefs about all uncertain factors when any piece of new evidence is presented. Although BNs…
From least squares to multilevel modeling: A graphical introduction to Bayesian inference
Loredo, Thomas J.
2016-01-01
This tutorial presentation will introduce some of the key ideas and techniques involved in applying Bayesian methods to problems in astrostatistics. The focus will be on the big picture: understanding the foundations (interpreting probability, Bayes's theorem, the law of total probability and marginalization), making connections to traditional methods (propagation of errors, least squares, chi-squared, maximum likelihood, Monte Carlo simulation), and highlighting problems where a Bayesian approach can be particularly powerful (Poisson processes, density estimation and curve fitting with measurement error). The "graphical" component of the title reflects an emphasis on pictorial representations of some of the math, but also on the use of graphical models (multilevel or hierarchical models) for analyzing complex data. Code for some examples from the talk will be available to participants, in Python and in the Stan probabilistic programming language.
Bayesian Overlapping Community Detection in Dynamic Networks
Ghorbani, Mahsa; Khodadadi, Ali
2016-01-01
Detecting community structures in social networks has gained considerable attention in recent years. However, lack of prior knowledge about the number of communities, and their overlapping nature have made community detection a challenging problem. Moreover, many of the existing methods only consider static networks, while most of real world networks are dynamic and evolve over time. Hence, finding consistent overlapping communities in dynamic networks without any prior knowledge about the number of communities is still an interesting open research problem. In this paper, we present an overlapping community detection method for dynamic networks called Dynamic Bayesian Overlapping Community Detector (DBOCD). DBOCD assumes that in every snapshot of network, overlapping parts of communities are dense areas and utilizes link communities instead of common node communities. Using Recurrent Chinese Restaurant Process and community structure of the network in the last snapshot, DBOCD simultaneously extracts the numbe...
Bayesian network learning for natural hazard assessments
Vogel, Kristin
2016-04-01
Even though quite different in occurrence and consequences, from a modelling perspective many natural hazards share similar properties and challenges. Their complex nature as well as lacking knowledge about their driving forces and potential effects make their analysis demanding. On top of the uncertainty about the modelling framework, inaccurate or incomplete event observations and the intrinsic randomness of the natural phenomenon add up to different interacting layers of uncertainty, which require a careful handling. Thus, for reliable natural hazard assessments it is crucial not only to capture and quantify involved uncertainties, but also to express and communicate uncertainties in an intuitive way. Decision-makers, who often find it difficult to deal with uncertainties, might otherwise return to familiar (mostly deterministic) proceedings. In the scope of the DFG research training group „NatRiskChange" we apply the probabilistic framework of Bayesian networks for diverse natural hazard and vulnerability studies. The great potential of Bayesian networks was already shown in previous natural hazard assessments. Treating each model component as random variable, Bayesian networks aim at capturing the joint distribution of all considered variables. Hence, each conditional distribution of interest (e.g. the effect of precautionary measures on damage reduction) can be inferred. The (in-)dependencies between the considered variables can be learned purely data driven or be given by experts. Even a combination of both is possible. By translating the (in-)dependences into a graph structure, Bayesian networks provide direct insights into the workings of the system and allow to learn about the underlying processes. Besides numerous studies on the topic, learning Bayesian networks from real-world data remains challenging. In previous studies, e.g. on earthquake induced ground motion and flood damage assessments, we tackled the problems arising with continuous variables
Software Health Management with Bayesian Networks
Mengshoel, Ole; Schumann, JOhann
2011-01-01
Most modern aircraft as well as other complex machinery is equipped with diagnostics systems for its major subsystems. During operation, sensors provide important information about the subsystem (e.g., the engine) and that information is used to detect and diagnose faults. Most of these systems focus on the monitoring of a mechanical, hydraulic, or electromechanical subsystem of the vehicle or machinery. Only recently, health management systems that monitor software have been developed. In this paper, we will discuss our approach of using Bayesian networks for Software Health Management (SWHM). We will discuss SWHM requirements, which make advanced reasoning capabilities for the detection and diagnosis important. Then we will present our approach to using Bayesian networks for the construction of health models that dynamically monitor a software system and is capable of detecting and diagnosing faults.
Integrative bayesian network analysis of genomic data.
Ni, Yang; Stingo, Francesco C; Baladandayuthapani, Veerabhadran
2014-01-01
Rapid development of genome-wide profiling technologies has made it possible to conduct integrative analysis on genomic data from multiple platforms. In this study, we develop a novel integrative Bayesian network approach to investigate the relationships between genetic and epigenetic alterations as well as how these mutations affect a patient's clinical outcome. We take a Bayesian network approach that admits a convenient decomposition of the joint distribution into local distributions. Exploiting the prior biological knowledge about regulatory mechanisms, we model each local distribution as linear regressions. This allows us to analyze multi-platform genome-wide data in a computationally efficient manner. We illustrate the performance of our approach through simulation studies. Our methods are motivated by and applied to a multi-platform glioblastoma dataset, from which we reveal several biologically relevant relationships that have been validated in the literature as well as new genes that could potentially be novel biomarkers for cancer progression.
Learning Bayesian networks using genetic algorithm
Institute of Scientific and Technical Information of China (English)
Chen Fei; Wang Xiufeng; Rao Yimei
2007-01-01
A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not.Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach.
Bayesian belief networks in business continuity.
Phillipson, Frank; Matthijssen, Edwin; Attema, Thomas
2014-01-01
Business continuity professionals aim to mitigate the various challenges to the continuity of their company. The goal is a coherent system of measures that encompass detection, prevention and recovery. Choices made in one part of the system affect other parts as well as the continuity risks of the company. In complex organisations, however, these relations are far from obvious. This paper proposes the use of Bayesian belief networks to expose these relations, and presents a modelling framework for this approach.
Node Augmentation Technique in Bayesian Network Evidence Analysis and Marshaling
Energy Technology Data Exchange (ETDEWEB)
Keselman, Dmitry [Los Alamos National Laboratory; Tompkins, George H [Los Alamos National Laboratory; Leishman, Deborah A [Los Alamos National Laboratory
2010-01-01
Given a Bayesian network, sensitivity analysis is an important activity. This paper begins by describing a network augmentation technique which can simplifY the analysis. Next, we present two techniques which allow the user to determination the probability distribution of a hypothesis node under conditions of uncertain evidence; i.e. the state of an evidence node or nodes is described by a user specified probability distribution. Finally, we conclude with a discussion of three criteria for ranking evidence nodes based on their influence on a hypothesis node. All of these techniques have been used in conjunction with a commercial software package. A Bayesian network based on a directed acyclic graph (DAG) G is a graphical representation of a system of random variables that satisfies the following Markov property: any node (random variable) is independent of its non-descendants given the state of all its parents (Neapolitan, 2004). For simplicities sake, we consider only discrete variables with a finite number of states, though most of the conclusions may be generalized.
Filtering in hybrid dynamic Bayesian networks
DEFF Research Database (Denmark)
Andersen, Morten Nonboe; Andersen, Rasmus Ørum; Wheeler, Kevin
2004-01-01
We demonstrate experimentally that inference in a complex hybrid Dynamic Bayesian Network (DBN) is possible using the 2-Time Slice DBN (2T-DBN) from (Koller & Lerner, 2000) to model fault detection in a watertank system. In (Koller & Lerner, 2000) a generic Particle Filter (PF) is used...... that the choice of network structure is very important for the performance of the generic PF and the EKF algorithms, but not for the UKF algorithms. Furthermore, we investigate the influence of data noise in the watertank simulation. Theory and implementation is based on the theory presented in (v.d. Merwe et al...
Filtering in hybrid dynamic Bayesian networks (center)
DEFF Research Database (Denmark)
Andersen, Morten Nonboe; Andersen, Rasmus Ørum; Wheeler, Kevin
We demonstrate experimentally that inference in a complex hybrid Dynamic Bayesian Network (DBN) is possible using the 2-Time Slice DBN (2T-DBN) from (Koller & Lerner, 2000) to model fault detection in a watertank system. In (Koller & Lerner, 2000) a generic Particle Filter (PF) is used...... that the choice of network structure is very important for the performance of the generic PF and the EKF algorithms, but not for the UKF algorithms. Furthermore, we investigate the influence of data noise in the watertank simulation. Theory and implementation is based on the theory presented in (v.d. Merwe et al...
Filtering in hybrid dynamic Bayesian networks (left)
DEFF Research Database (Denmark)
Andersen, Morten Nonboe; Andersen, Rasmus Ørum; Wheeler, Kevin
We demonstrate experimentally that inference in a complex hybrid Dynamic Bayesian Network (DBN) is possible using the 2-Time Slice DBN (2T-DBN) from (Koller & Lerner, 2000) to model fault detection in a watertank system. In (Koller & Lerner, 2000) a generic Particle Filter (PF) is used...... that the choice of network structure is very important for the performance of the generic PF and the EKF algorithms, but not for the UKF algorithms. Furthermore, we investigate the influence of data noise in the watertank simulation. Theory and implementation is based on the theory presented in (v.d. Merwe et al...
Bayesian Recurrent Neural Network for Language Modeling.
Chien, Jen-Tzung; Ku, Yuan-Chu
2016-02-01
A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.
Bayesian information fusion networks for biosurveillance applications.
Mnatsakanyan, Zaruhi R; Burkom, Howard S; Coberly, Jacqueline S; Lombardo, Joseph S
2009-01-01
This study introduces new information fusion algorithms to enhance disease surveillance systems with Bayesian decision support capabilities. A detection system was built and tested using chief complaints from emergency department visits, International Classification of Diseases Revision 9 (ICD-9) codes from records of outpatient visits to civilian and military facilities, and influenza surveillance data from health departments in the National Capital Region (NCR). Data anomalies were identified and distribution of time offsets between events in the multiple data streams were established. The Bayesian Network was built to fuse data from multiple sources and identify influenza-like epidemiologically relevant events. Results showed increased specificity compared with the alerts generated by temporal anomaly detection algorithms currently deployed by NCR health departments. Further research should be done to investigate correlations between data sources for efficient fusion of the collected data.
Improved Sampling for Diagnostic Reasoning in Bayesian Networks
Hulme, Mark
2013-01-01
Bayesian networks offer great potential for use in automating large scale diagnostic reasoning tasks. Gibbs sampling is the main technique used to perform diagnostic reasoning in large richly interconnected Bayesian networks. Unfortunately Gibbs sampling can take an excessive time to generate a representative sample. In this paper we describe and test a number of heuristic strategies for improving sampling in noisy-or Bayesian networks. The strategies include Monte Carlo Markov chain sampling...
Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data
2015-07-01
Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data Guy Van den Broeck∗ and Karthika Mohan∗ and Arthur Choi and Adnan...We propose a family of efficient algorithms for learning the parameters of a Bayesian network from incomplete data. Our approach is based on recent...algorithms like EM (which require inference). 1 INTRODUCTION When learning the parameters of a Bayesian network from data with missing values, the
Inference-less Density Estimation using Copula Bayesian Networks
Elidan, Gal
2012-01-01
We consider learning continuous probabilistic graphical models in the face of missing data. For non-Gaussian models, learning the parameters and structure of such models depends on our ability to perform efficient inference, and can be prohibitive even for relatively modest domains. Recently, we introduced the Copula Bayesian Network (CBN) density model - a flexible framework that captures complex high-dimensional dependency structures while offering direct control over the univariate marginals, leading to improved generalization. In this work we show that the CBN model also offers significant computational advantages when training data is partially observed. Concretely, we leverage on the specialized form of the model to derive a computationally amenable learning objective that is a lower bound on the log-likelihood function. Importantly, our energy-like bound circumvents the need for costly inference of an auxiliary distribution, thus facilitating practical learning of highdimensional densities. We demonstr...
Andrade, Daniel
2012-01-01
We present a new method to propagate lower bounds on conditional probability distributions in conventional Bayesian networks. Our method guarantees to provide outer approximations of the exact lower bounds. A key advantage is that we can use any available algorithms and tools for Bayesian networks in order to represent and infer lower bounds. This new method yields results that are provable exact for trees with binary variables, and results which are competitive to existing approximations in credal networks for all other network structures. Our method is not limited to a specific kind of network structure. Basically, it is also not restricted to a specific kind of inference, but we restrict our analysis to prognostic inference in this article. The computational complexity is superior to that of other existing approaches.
Seeded Bayesian Networks: Constructing genetic networks from microarray data
Directory of Open Access Journals (Sweden)
Quackenbush John
2008-07-01
Full Text Available Abstract Background DNA microarrays and other genomics-inspired technologies provide large datasets that often include hidden patterns of correlation between genes reflecting the complex processes that underlie cellular metabolism and physiology. The challenge in analyzing large-scale expression data has been to extract biologically meaningful inferences regarding these processes – often represented as networks – in an environment where the datasets are often imperfect and biological noise can obscure the actual signal. Although many techniques have been developed in an attempt to address these issues, to date their ability to extract meaningful and predictive network relationships has been limited. Here we describe a method that draws on prior information about gene-gene interactions to infer biologically relevant pathways from microarray data. Our approach consists of using preliminary networks derived from the literature and/or protein-protein interaction data as seeds for a Bayesian network analysis of microarray results. Results Through a bootstrap analysis of gene expression data derived from a number of leukemia studies, we demonstrate that seeded Bayesian Networks have the ability to identify high-confidence gene-gene interactions which can then be validated by comparison to other sources of pathway data. Conclusion The use of network seeds greatly improves the ability of Bayesian Network analysis to learn gene interaction networks from gene expression data. We demonstrate that the use of seeds derived from the biomedical literature or high-throughput protein-protein interaction data, or the combination, provides improvement over a standard Bayesian Network analysis, allowing networks involving dynamic processes to be deduced from the static snapshots of biological systems that represent the most common source of microarray data. Software implementing these methods has been included in the widely used TM4 microarray analysis package.
Learning Local Components to Understand Large Bayesian Networks
DEFF Research Database (Denmark)
Zeng, Yifeng; Xiang, Yanping; Cordero, Jorge
2009-01-01
Bayesian networks are known for providing an intuitive and compact representation of probabilistic information and allowing the creation of models over a large and complex domain. Bayesian learning and reasoning are nontrivial for a large Bayesian network. In parallel, it is a tough job for users...... (domain experts) to extract accurate information from a large Bayesian network due to dimensional difficulty. We define a formulation of local components and propose a clustering algorithm to learn such local components given complete data. The algorithm groups together most inter-relevant attributes...... in a domain. We evaluate its performance on three benchmark Bayesian networks and provide results in support. We further show that the learned components may represent local knowledge more precisely in comparison to the full Bayesian networks when working with a small amount of data....
A Bayesian Approach to Network Modularity
Hofman, Jake M
2007-01-01
We present an efficient, principled, and interpretable technique for inferring module assignments and identifying the optimal number of modules in a given network. We show how several existing methods for finding modules can be described as variant, special, or limiting cases of our work, and how related methods for complexity control -- identification of the true number of modules -- are outperformed. Our approach is based on Bayesian methods for model selection which have been used with success for almost a century, implemented using a variational technique developed only in the past decade. We apply the technique to synthetic and real networks, including networks of up to $10^4$ nodes, and outline how the method naturally allows model selection among generative models.
Release and Dynamic Management of CAD Network Graphics Library
Institute of Scientific and Technical Information of China (English)
XU Mao-feng; ZHANG Yi; LIU Fang; LI Ai-jun
2003-01-01
We aimed at the release and dynamic management of CAD network graphics library (NGL). The characteristics of realization on network of CAD graphics are analysed, while the existing problems of the presenting share methods of graphics file are also discussed. Release and dynamic management are accomplished with the B/S combined with C/S as well as the file organization based on attribute information, which have essential practical sense to the establishment of CAD NGL, share and cooperation in tech-design as well as the distance education of engineering graphics.
Inference of Gene Regulatory Network Based on Local Bayesian Networks.
Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan
2016-08-01
The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce
Bayesian Network Based XP Process Modelling
Directory of Open Access Journals (Sweden)
Mohamed Abouelela
2010-07-01
Full Text Available A Bayesian Network based mathematical model has been used for modelling Extreme Programmingsoftware development process. The model is capable of predicting the expected finish time and theexpected defect rate for each XP release. Therefore, it can be used to determine the success/failure of anyXP Project. The model takes into account the effect of three XP practices, namely: Pair Programming,Test Driven Development and Onsite Customer practices. The model’s predictions were validated againsttwo case studies. Results show the precision of our model especially in predicting the project finish time.
A Bayesian network approach to the database search problem in criminal proceedings
Directory of Open Access Journals (Sweden)
Biedermann Alex
2012-08-01
Full Text Available Abstract Background The ‘database search problem’, that is, the strengthening of a case - in terms of probative value - against an individual who is found as a result of a database search, has been approached during the last two decades with substantial mathematical analyses, accompanied by lively debate and centrally opposing conclusions. This represents a challenging obstacle in teaching but also hinders a balanced and coherent discussion of the topic within the wider scientific and legal community. This paper revisits and tracks the associated mathematical analyses in terms of Bayesian networks. Their derivation and discussion for capturing probabilistic arguments that explain the database search problem are outlined in detail. The resulting Bayesian networks offer a distinct view on the main debated issues, along with further clarity. Methods As a general framework for representing and analyzing formal arguments in probabilistic reasoning about uncertain target propositions (that is, whether or not a given individual is the source of a crime stain, this paper relies on graphical probability models, in particular, Bayesian networks. This graphical probability modeling approach is used to capture, within a single model, a series of key variables, such as the number of individuals in a database, the size of the population of potential crime stain sources, and the rarity of the corresponding analytical characteristics in a relevant population. Results This paper demonstrates the feasibility of deriving Bayesian network structures for analyzing, representing, and tracking the database search problem. The output of the proposed models can be shown to agree with existing but exclusively formulaic approaches. Conclusions The proposed Bayesian networks allow one to capture and analyze the currently most well-supported but reputedly counter-intuitive and difficult solution to the database search problem in a way that goes beyond the traditional
Greiner, Matthias; Smid, Joost; Havelaar, Arie H; Müller-Graf, Christine
2013-05-15
Quantitative microbiological risk assessment (QMRA) models are used to reflect knowledge about complex real-world scenarios for the propagation of microbiological hazards along the feed and food chain. The aim is to provide insight into interdependencies among model parameters, typically with an interest to characterise the effect of risk mitigation measures. A particular requirement is to achieve clarity about the reliability of conclusions from the model in the presence of uncertainty. To this end, Monte Carlo (MC) simulation modelling has become a standard in so-called probabilistic risk assessment. In this paper, we elaborate on the application of Bayesian computational statistics in the context of QMRA. It is useful to explore the analogy between MC modelling and Bayesian inference (BI). This pertains in particular to the procedures for deriving prior distributions for model parameters. We illustrate using a simple example that the inability to cope with feedback among model parameters is a major limitation of MC modelling. However, BI models can be easily integrated into MC modelling to overcome this limitation. We refer a BI submodel integrated into a MC model to as a "Bayes domain". We also demonstrate that an entire QMRA model can be formulated as Bayesian graphical model (BGM) and discuss the advantages of this approach. Finally, we show example graphs of MC, BI and BGM models, highlighting the similarities among the three approaches.
Bayesian Network Enhanced with Structural Reliability Methods: Methodology
Straub, Daniel; Der Kiureghian, Armen
2012-01-01
We combine Bayesian networks (BNs) and structural reliability methods (SRMs) to create a new computational framework, termed enhanced Bayesian network (eBN), for reliability and risk analysis of engineering structures and infrastructure. BNs are efficient in representing and evaluating complex probabilistic dependence structures, as present in infrastructure and structural systems, and they facilitate Bayesian updating of the model when new information becomes available. On the other hand, SR...
Introduction to Graphical Modelling
Scutari, Marco
2010-01-01
The aim of this chapter is twofold. In the first part we will provide a brief overview of the mathematical and statistical foundations of graphical models, along with their fundamental properties, estimation and basic inference procedures. In particular we will develop Markov networks (also known as Markov random fields) and Bayesian networks, which comprise most past and current literature on graphical models. In the second part we will review some applications of graphical models in systems biology.
Bayesian networks for evaluating forensic DNA profiling evidence: a review and guide to literature.
Biedermann, A; Taroni, F
2012-03-01
Almost 30 years ago, Bayesian networks (BNs) were developed in the field of artificial intelligence as a framework that should assist researchers and practitioners in applying the theory of probability to inference problems of more substantive size and, thus, to more realistic and practical problems. Since the late 1980s, Bayesian networks have also attracted researchers in forensic science and this tendency has considerably intensified throughout the last decade. This review article provides an overview of the scientific literature that describes research on Bayesian networks as a tool that can be used to study, develop and implement probabilistic procedures for evaluating the probative value of particular items of scientific evidence in forensic science. Primary attention is drawn here to evaluative issues that pertain to forensic DNA profiling evidence because this is one of the main categories of evidence whose assessment has been studied through Bayesian networks. The scope of topics is large and includes almost any aspect that relates to forensic DNA profiling. Typical examples are inference of source (or, 'criminal identification'), relatedness testing, database searching and special trace evidence evaluation (such as mixed DNA stains or stains with low quantities of DNA). The perspective of the review presented here is not exclusively restricted to DNA evidence, but also includes relevant references and discussion on both, the concept of Bayesian networks as well as its general usage in legal sciences as one among several different graphical approaches to evidence evaluation.
Non-homogeneous dynamic Bayesian networks for continuous data
Grzegorczyk, Marco; Husmeier, Dirk
2011-01-01
Classical dynamic Bayesian networks (DBNs) are based on the homogeneous Markov assumption and cannot deal with non-homogeneous temporal processes. Various approaches to relax the homogeneity assumption have recently been proposed. The present paper presents a combination of a Bayesian network with c
Towards an inclusion driven learning of Bayesian Networks
Castelo, R.; Kocka, T.
2002-01-01
Two or more Bayesian Networks are Markov equivalent when their corresponding acyclic digraphs encode the same set of conditional independence (= CI) restrictions. Therefore, the search space of Bayesian Networks may be organized in classes of equivalence, where each of them consists of a particular
Bayesian Inference Networks and Spreading Activation in Hypertext Systems.
Savoy, Jacques
1992-01-01
Describes a method based on Bayesian networks for searching hypertext systems. Discussion covers the use of Bayesian networks for structuring index terms and representing user information needs; use of link semantics based on constrained spreading activation to find starting points for browsing; and evaluation of a prototype system. (64…
Implementing Relevance Feedback in the Bayesian Network Retrieval Model.
de Campos, Luis M.; Fernandez-Luna, Juan M.; Huete, Juan F.
2003-01-01
Discussion of relevance feedback in information retrieval focuses on a proposal for the Bayesian Network Retrieval Model. Bases the proposal on the propagation of partial evidences in the Bayesian network, representing new information obtained from the user's relevance judgments to compute the posterior relevance probabilities of the documents…
Fuzzy Naive Bayesian for constructing regulated network with weights.
Zhou, Xi Y; Tian, Xue W; Lim, Joon S
2015-01-01
In the data mining field, classification is a very crucial technology, and the Bayesian classifier has been one of the hotspots in classification research area. However, assumptions of Naive Bayesian and Tree Augmented Naive Bayesian (TAN) are unfair to attribute relations. Therefore, this paper proposes a new algorithm named Fuzzy Naive Bayesian (FNB) using neural network with weighted membership function (NEWFM) to extract regulated relations and weights. Then, we can use regulated relations and weights to construct a regulated network. Finally, we will classify the heart and Haberman datasets by the FNB network to compare with experiments of Naive Bayesian and TAN. The experiment results show that the FNB has a higher classification rate than Naive Bayesian and TAN.
Application of Bayesian Network Learning Methods to Land Resource Evaluation
Institute of Scientific and Technical Information of China (English)
HUANG Jiejun; HE Xiaorong; WAN Youchuan
2006-01-01
Bayesian network has a powerful ability for reasoning and semantic representation, which combined with qualitative analysis and quantitative analysis, with prior knowledge and observed data, and provides an effective way to deal with prediction, classification and clustering. Firstly, this paper presented an overview of Bayesian network and its characteristics, and discussed how to learn a Bayesian network structure from given data, and then constructed a Bayesian network model for land resource evaluation with expert knowledge and the dataset. The experimental results based on the test dataset are that evaluation accuracy is 87.5%, and Kappa index is 0.826. All these prove the method is feasible and efficient, and indicate that Bayesian network is a promising approach for land resource evaluation.
Peterson, Christine B; Stingo, Francesco C; Vannucci, Marina
2016-03-30
In this work, we develop a Bayesian approach to perform selection of predictors that are linked within a network. We achieve this by combining a sparse regression model relating the predictors to a response variable with a graphical model describing conditional dependencies among the predictors. The proposed method is well-suited for genomic applications because it allows the identification of pathways of functionally related genes or proteins that impact an outcome of interest. In contrast to previous approaches for network-guided variable selection, we infer the network among predictors using a Gaussian graphical model and do not assume that network information is available a priori. We demonstrate that our method outperforms existing methods in identifying network-structured predictors in simulation settings and illustrate our proposed model with an application to inference of proteins relevant to glioblastoma survival.
Using consensus bayesian network to model the reactive oxygen species regulatory pathway.
Hu, Liangdong; Wang, Limin
2013-01-01
Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.
Learning Bayesian Networks from Data by Particle Swarm Optimization
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Learning Bayesian network is an NP-hard problem. When the number of variables is large, the process of searching optimal network structure could be very time consuming and tends to return a structure which is local optimal. The particle swarm optimization (PSO) was introduced to the problem of learning Bayesian networks and a novel structure learning algorithm using PSO was proposed. To search in directed acyclic graphs spaces efficiently, a discrete PSO algorithm especially for structure learning was proposed based on the characteristics of Bayesian networks. The results of experiments show that our PSO based algorithm is fast for convergence and can obtain better structures compared with genetic algorithm based algorithms.
Learning Bayesian network structure with immune algorithm
Institute of Scientific and Technical Information of China (English)
Zhiqiang Cai; Shubin Si; Shudong Sun; Hongyan Dui
2015-01-01
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa-per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further-more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Final y, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.
Modelling crime linkage with Bayesian networks.
de Zoete, Jacob; Sjerps, Marjan; Lagnado, David; Fenton, Norman
2015-05-01
When two or more crimes show specific similarities, such as a very distinct modus operandi, the probability that they were committed by the same offender becomes of interest. This probability depends on the degree of similarity and distinctiveness. We show how Bayesian networks can be used to model different evidential structures that can occur when linking crimes, and how they assist in understanding the complex underlying dependencies. That is, how evidence that is obtained in one case can be used in another and vice versa. The flip side of this is that the intuitive decision to "unlink" a case in which exculpatory evidence is obtained leads to serious overestimation of the strength of the remaining cases.
Logistic regression against a divergent Bayesian network
Directory of Open Access Journals (Sweden)
Noel Antonio Sánchez Trujillo
2015-01-01
Full Text Available This article is a discussion about two statistical tools used for prediction and causality assessment: logistic regression and Bayesian networks. Using data of a simulated example from a study assessing factors that might predict pulmonary emphysema (where fingertip pigmentation and smoking are considered; we posed the following questions. Is pigmentation a confounding, causal or predictive factor? Is there perhaps another factor, like smoking, that confounds? Is there a synergy between pigmentation and smoking? The results, in terms of prediction, are similar with the two techniques; regarding causation, differences arise. We conclude that, in decision-making, the sum of both: a statistical tool, used with common sense, and previous evidence, taking years or even centuries to develop; is better than the automatic and exclusive use of statistical resources.
Approximation methods for efficient learning of Bayesian networks
Riggelsen, C
2008-01-01
This publication offers and investigates efficient Monte Carlo simulation methods in order to realize a Bayesian approach to approximate learning of Bayesian networks from both complete and incomplete data. For large amounts of incomplete data when Monte Carlo methods are inefficient, approximations are implemented, such that learning remains feasible, albeit non-Bayesian. The topics discussed are: basic concepts about probabilities, graph theory and conditional independence; Bayesian network learning from data; Monte Carlo simulation techniques; and, the concept of incomplete data. In order to provide a coherent treatment of matters, thereby helping the reader to gain a thorough understanding of the whole concept of learning Bayesian networks from (in)complete data, this publication combines in a clarifying way all the issues presented in the papers with previously unpublished work.
ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM
Directory of Open Access Journals (Sweden)
Santosh Kumar Chaudhari
2011-06-01
Full Text Available A Network Management System (NMS plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to NMS services, namely, making an NMS energy aware. We propose a Decision Management System (DMS framework which uses a machine learning technique called Bayesian Belief Networks (BBN, to make the NMS energy aware. The DMS is capable of analysing and making control decisions based on network traffic. We factor in the cost of rerouting and power saving per port. Simulations are performed on standard network topologies, namely, ARPANet and IndiaNet. It is found that ~2.5-6.5% power can be saved.
Graphic Simulation of a Jackson Network.
1986-09-01
Z which are algebraic combinations of other point estimates. For example, the quantity W1 is estimated using the quotient L1’/R. If at the point in...will run on IBM Compatible machines. C. TIE PROGRAMMING LANGUAGE JACKQUE is written in IBM Advanced Basic ( BASICA ). This language is provided with PC... BASICA has been loaded from DOS, and if the machine is coniigur d with a color, graphics adapter. * Printing the title screen. o Loading user defined
Filtering in Hybrid Dynamic Bayesian Networks
Andersen, Morten Nonboe; Andersen, Rasmus Orum; Wheeler, Kevin
2000-01-01
We implement a 2-time slice dynamic Bayesian network (2T-DBN) framework and make a 1-D state estimation simulation, an extension of the experiment in (v.d. Merwe et al., 2000) and compare different filtering techniques. Furthermore, we demonstrate experimentally that inference in a complex hybrid DBN is possible by simulating fault detection in a watertank system, an extension of the experiment in (Koller & Lerner, 2000) using a hybrid 2T-DBN. In both experiments, we perform approximate inference using standard filtering techniques, Monte Carlo methods and combinations of these. In the watertank simulation, we also demonstrate the use of 'non-strict' Rao-Blackwellisation. We show that the unscented Kalman filter (UKF) and UKF in a particle filtering framework outperform the generic particle filter, the extended Kalman filter (EKF) and EKF in a particle filtering framework with respect to accuracy in terms of estimation RMSE and sensitivity with respect to choice of network structure. Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. Furthermore, we investigate the influence of data noise in the watertank simulation using UKF and PFUKD and show that the algorithms are more sensitive to changes in the measurement noise level that the process noise level. Theory and implementation is based on (v.d. Merwe et al., 2000).
Filtering in Hybrid Dynamic Bayesian Networks
Andersen, Morten Nonboe; Andersen, Rasmus Orum; Wheeler, Kevin
2004-01-01
We demonstrate experimentally that inference in a complex hybrid Dynamic Bayesian Network (DBN) is possible using the 2 - T i e Slice DBN (2T-DBN) from [Koller & Lerner, 20001 to model fault detection in a watertank system. In [Koller & Lerner, 20001 a generic Particle Filter (PF) is used for inference. We extend the experiment and perform approximate inference using The Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). Furthermore, we combine these techniques in a 'non-strict' Rao-Blackwellisation framework and apply it to the watertank system. We show that UKF and UKF in a PF framework outperfom the generic PF, EKF and EKF in a PF framework with respect to accuracy and robustness in terms of estimation RMSE. Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. We also show that the choice of network structure is very important for the performance of the generic PF and the EKF algorithms, but not for the UKF algorithms. Furthermore, we investigate the influence of data noise in the water[ank simulation. Theory and implementation is based on the theory presented.
Teaching Heat Exchanger Network Synthesis Using Interactive Microcomputer Graphics.
Dixon, Anthony G.
1987-01-01
Describes the Heat Exchanger Network Synthesis (HENS) program used at Worcester Polytechnic Institute (Massachusetts) as an aid to teaching the energy integration step in process design. Focuses on the benefits of the computer graphics used in the program to increase the speed of generating and changing networks. (TW)
Factorial graphical lasso for dynamic networks
Wit, E. C.; Abbruzzo, A.
2012-01-01
Dynamic networks models describe a growing number of important scientific processes, from cell biology and epidemiology to sociology and finance. There are many aspects of dynamical networks that require statistical considerations. In this paper we focus on determining network structure. Estimating
NetDiff - Bayesian model selection for differential gene regulatory network inference.
Thorne, Thomas
2016-12-16
Differential networks allow us to better understand the changes in cellular processes that are exhibited in conditions of interest, identifying variations in gene regulation or protein interaction between, for example, cases and controls, or in response to external stimuli. Here we present a novel methodology for the inference of differential gene regulatory networks from gene expression microarray data. Specifically we apply a Bayesian model selection approach to compare models of conserved and varying network structure, and use Gaussian graphical models to represent the network structures. We apply a variational inference approach to the learning of Gaussian graphical models of gene regulatory networks, that enables us to perform Bayesian model selection that is significantly more computationally efficient than Markov Chain Monte Carlo approaches. Our method is demonstrated to be more robust than independent analysis of data from multiple conditions when applied to synthetic network data, generating fewer false positive predictions of differential edges. We demonstrate the utility of our approach on real world gene expression microarray data by applying it to existing data from amyotrophic lateral sclerosis cases with and without mutations in C9orf72, and controls, where we are able to identify differential network interactions for further investigation.
Macroscopic Models of Clique Tree Growth for Bayesian Networks
National Aeronautics and Space Administration — In clique tree clustering, inference consists of propagation in a clique tree compiled from a Bayesian network. In this paper, we develop an analytical approach to...
Developing Large-Scale Bayesian Networks by Composition
National Aeronautics and Space Administration — In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale...
Designing Resource-Bounded Reasoners using Bayesian Networks
National Aeronautics and Space Administration — In this work we are concerned with the conceptual design of large-scale diagnostic and health management systems that use Bayesian networks. While they are...
Using Consensus Bayesian Network to Model the Reactive Oxygen Species Regulatory Pathway
Liangdong Hu; Limin Wang
2013-01-01
Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks...
Bayesian network approach for modeling local failure in lung cancer
Oh, Jung Hun; Craft, Jeffrey; Al-Lozi, Rawan; Vaidya, Manushka; Meng, Yifan; Deasy, Joseph O; Bradley, Jeffrey D; Naqa, Issam El
2011-01-01
Locally advanced non-small cell lung cancer (NSCLC) patients suffer from a high local failure rate following radiotherapy. Despite many efforts to develop new dose-volume models for early detection of tumor local failure, there was no reported significant improvement in their application prospectively. Based on recent studies of biomarker proteins’ role in hypoxia and inflammation in predicting tumor response to radiotherapy, we hypothesize that combining physical and biological factors with a suitable framework could improve the overall prediction. To test this hypothesis, we propose a graphical Bayesian network framework for predicting local failure in lung cancer. The proposed approach was tested using two different datasets of locally advanced NSCLC patients treated with radiotherapy. The first dataset was collected retrospectively, which is comprised of clinical and dosimetric variables only. The second dataset was collected prospectively in which in addition to clinical and dosimetric information, blood was drawn from the patients at various time points to extract candidate biomarkers as well. Our preliminary results show that the proposed method can be used as an efficient method to develop predictive models of local failure in these patients and to interpret relationships among the different variables in the models. We also demonstrate the potential use of heterogenous physical and biological variables to improve the model prediction. With the first dataset, we achieved better performance compared with competing Bayesian-based classifiers. With the second dataset, the combined model had a slightly higher performance compared to individual physical and biological models, with the biological variables making the largest contribution. Our preliminary results highlight the potential of the proposed integrated approach for predicting post-radiotherapy local failure in NSCLC patients. PMID:21335651
BAYESIAN NETWORKS FOR SUB-GROUPS OF MULTIPLE SCLEROSIS
2013-01-01
In this study, patients with multiple sclerosis "sub-groups" characteristics in relation to detection of a statistically (SPSS) and are provided in the Bayesian network. The main objective of this study, regarding the appearance of MRI lesions in patients with Multiple Sclerosis information and / or EDSS scores to investigate the possible attack of multiple sclerosis subgroups. Bayesian networks, reflects the level of sub-groups in multiple sclerosis patients. Analyzes were conducted...
Risk Based Maintenance of Offshore Wind Turbines Using Bayesian Networks
DEFF Research Database (Denmark)
Nielsen, Jannie Jessen; Sørensen, John Dalsgaard
2010-01-01
This paper presents how Bayesian networks can be used to make optimal decisions for repairs of offshore wind turbines. The Bayesian network is an efficient tool for updating a deterioration model whenever new information becomes available from inspections/monitoring. The optimal decision is found...... such that the preventive maintenance effort is balanced against the costs to corrective maintenance including indirect costs to reduced production. The basis for the optimization is the risk based Bayesian decision theory. The method is demonstrated through an application example....
Using Bayesian Networks to Improve Knowledge Assessment
Millan, Eva; Descalco, Luis; Castillo, Gladys; Oliveira, Paula; Diogo, Sandra
2013-01-01
In this paper, we describe the integration and evaluation of an existing generic Bayesian student model (GBSM) into an existing computerized testing system within the Mathematics Education Project (PmatE--Projecto Matematica Ensino) of the University of Aveiro. This generic Bayesian student model had been previously evaluated with simulated…
Study of Online Bayesian Networks Learning in a Multi-Agent System
Directory of Open Access Journals (Sweden)
Yonghui Cao
2013-01-01
Full Text Available This paper introduces online Bayesian network learning in detail. The structural and parametric learning abilities of the online Bayesian network learning are explored. The paper starts with revisiting the multi-agent self-organization problem and the proposed solution. Then, we explain the proposed Bayesian network learning, three scoring functions, namely Log-Likelihood, Minimum description length, and Bayesian scores.
HEURISTIC DISCRETIZATION METHOD FOR BAYESIAN NETWORKS
Directory of Open Access Journals (Sweden)
Mariana D.C. Lima
2014-01-01
Full Text Available Bayesian Network (BN is a classification technique widely used in Artificial Intelligence. Its structure is a Direct Acyclic Graph (DAG used to model the association of categorical variables. However, in cases where the variables are numerical, a previous discretization is necessary. Discretization methods are usually based on a statistical approach using the data distribution, such as division by quartiles. In this article we present a discretization using a heuristic that identifies events called peak and valley. Genetic Algorithm was used to identify these events having the minimization of the error between the estimated average for BN and the actual value of the numeric variable output as the objective function. The BN has been modeled from a database of Bit’s Rate of Penetration of the Brazilian pre-salt layer with 5 numerical variables and one categorical variable, using the proposed discretization and the division of the data by the quartiles. The results show that the proposed heuristic discretization has higher accuracy than the quartiles discretization.
Multiple quantitative trait analysis using bayesian networks.
Scutari, Marco; Howell, Phil; Balding, David J; Mackay, Ian
2014-09-01
Models for genome-wide prediction and association studies usually target a single phenotypic trait. However, in animal and plant genetics it is common to record information on multiple phenotypes for each individual that will be genotyped. Modeling traits individually disregards the fact that they are most likely associated due to pleiotropy and shared biological basis, thus providing only a partial, confounded view of genetic effects and phenotypic interactions. In this article we use data from a Multiparent Advanced Generation Inter-Cross (MAGIC) winter wheat population to explore Bayesian networks as a convenient and interpretable framework for the simultaneous modeling of multiple quantitative traits. We show that they are equivalent to multivariate genetic best linear unbiased prediction (GBLUP) and that they are competitive with single-trait elastic net and single-trait GBLUP in predictive performance. Finally, we discuss their relationship with other additive-effects models and their advantages in inference and interpretation. MAGIC populations provide an ideal setting for this kind of investigation because the very low population structure and large sample size result in predictive models with good power and limited confounding due to relatedness.
A Bayesian Networks in Intrusion Detection Systems
Directory of Open Access Journals (Sweden)
M. Mehdi
2007-01-01
Full Text Available Intrusion detection systems (IDSs have been widely used to overcome security threats in computer networks. Anomaly-based approaches have the advantage of being able to detect previously unknown attacks, but they suffer from the difficulty of building robust models of acceptable behaviour which may result in a large number of false alarms caused by incorrect classification of events in current systems. We propose a new approach of an anomaly Intrusion detection system (IDS. It consists of building a reference behaviour model and the use of a Bayesian classification procedure associated to unsupervised learning algorithm to evaluate the deviation between current and reference behaviour. Continuous re-estimation of model parameters allows for real time operation. The use of recursive Log-likelihood and entropy estimation as a measure for monitoring model degradation related with behavior changes and the associated model update show that the accuracy of the event classification process is significantly improved using our proposed approach for reducing the missing-alarm.
Bayesian networks for maritime traffic accident prevention: benefits and challenges.
Hänninen, Maria
2014-12-01
Bayesian networks are quantitative modeling tools whose applications to the maritime traffic safety context are becoming more popular. This paper discusses the utilization of Bayesian networks in maritime safety modeling. Based on literature and the author's own experiences, the paper studies what Bayesian networks can offer to maritime accident prevention and safety modeling and discusses a few challenges in their application to this context. It is argued that the capability of representing rather complex, not necessarily causal but uncertain relationships makes Bayesian networks an attractive modeling tool for the maritime safety and accidents. Furthermore, as the maritime accident and safety data is still rather scarce and has some quality problems, the possibility to combine data with expert knowledge and the easy way of updating the model after acquiring more evidence further enhance their feasibility. However, eliciting the probabilities from the maritime experts might be challenging and the model validation can be tricky. It is concluded that with the utilization of several data sources, Bayesian updating, dynamic modeling, and hidden nodes for latent variables, Bayesian networks are rather well-suited tools for the maritime safety management and decision-making.
Impact assessment of extreme storm events using a Bayesian network
den Heijer, C.(Kees); Knipping, Dirk T.J.A.; Plant, Nathaniel G.; van Thiel de Vries, Jaap S. M.; Baart, Fedor; van Gelder, Pieter H. A. J. M.
2012-01-01
This paper describes an investigation on the usefulness of Bayesian Networks in the safety assessment of dune coasts. A network has been created that predicts the erosion volume based on hydraulic boundary conditions and a number of cross-shore profile indicators. Field measurement data along a large part of the Dutch coast has been used to train the network. Corresponding storm impact on the dunes was calculated with an empirical dune erosion model named duros+. Comparison between the Bayesian Network predictions and the original duros+ results, here considered as observations, results in a skill up to 0.88, provided that the training data covers the range of predictions. Hence, the predictions from a deterministic model (duros+) can be captured in a probabilistic model (Bayesian Network) such that both the process knowledge and uncertainties can be included in impact and vulnerability assessments.
Overlapping community detection in weighted networks via a Bayesian approach
Chen, Yi; Wang, Xiaolong; Xiang, Xin; Tang, Buzhou; Chen, Qingcai; Fan, Shixi; Bu, Junzhao
2017-02-01
Complex networks as a powerful way to represent complex systems have been widely studied during the past several years. One of the most important tasks of complex network analysis is to detect communities embedded in networks. In the real world, weighted networks are very common and may contain overlapping communities where a node is allowed to belong to multiple communities. In this paper, we propose a novel Bayesian approach, called the Bayesian mixture network (BMN) model, to detect overlapping communities in weighted networks. The advantages of our method are (i) providing soft-partition solutions in weighted networks; (ii) providing soft memberships, which quantify 'how strongly' a node belongs to a community. Experiments on a large number of real and synthetic networks show that our model has the ability in detecting overlapping communities in weighted networks and is competitive with other state-of-the-art models at shedding light on community partition.
Identifying gene regulatory network rewiring using latent differential graphical models.
Tian, Dechao; Gu, Quanquan; Ma, Jian
2016-09-30
Gene regulatory networks (GRNs) are highly dynamic among different tissue types. Identifying tissue-specific gene regulation is critically important to understand gene function in a particular cellular context. Graphical models have been used to estimate GRN from gene expression data to distinguish direct interactions from indirect associations. However, most existing methods estimate GRN for a specific cell/tissue type or in a tissue-naive way, or do not specifically focus on network rewiring between different tissues. Here, we describe a new method called Latent Differential Graphical Model (LDGM). The motivation of our method is to estimate the differential network between two tissue types directly without inferring the network for individual tissues, which has the advantage of utilizing much smaller sample size to achieve reliable differential network estimation. Our simulation results demonstrated that LDGM consistently outperforms other Gaussian graphical model based methods. We further evaluated LDGM by applying to the brain and blood gene expression data from the GTEx consortium. We also applied LDGM to identify network rewiring between cancer subtypes using the TCGA breast cancer samples. Our results suggest that LDGM is an effective method to infer differential network using high-throughput gene expression data to identify GRN dynamics among different cellular conditions.
Sparse time series chain graphical models for reconstructing genetic networks
Abegaz, Fentaw; Wit, Ernst
2013-01-01
We propose a sparse high-dimensional time series chain graphical model for reconstructing genetic networks from gene expression data parametrized by a precision matrix and autoregressive coefficient matrix. We consider the time steps as blocks or chains. The proposed approach explores patterns of co
Graphical user interface for wireless sensor networks simulator
Paczesny, Tomasz; Paczesny, Daniel; Weremczuk, Jerzy
2008-01-01
Wireless Sensor Networks (WSN) are currently very popular area of development. It can be suited in many applications form military through environment monitoring, healthcare, home automation and others. Those networks, when working in dynamic, ad-hoc model, need effective protocols which must differ from common computer networks algorithms. Research on those protocols would be difficult without simulation tool, because real applications often use many nodes and tests on such a big networks take much effort and costs. The paper presents Graphical User Interface (GUI) for simulator which is dedicated for WSN studies, especially in routing and data link protocols evaluation.
Empirical evaluation of scoring functions for Bayesian network model selection.
Liu, Zhifa; Malone, Brandon; Yuan, Changhe
2012-01-01
In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world applications rather than from random processes used in previous studies and learning algorithms to select high-scoring structures rather than selecting random models. Other findings of our study support existing work, e.g., large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to the parameter settings; and the fNML performs pretty well on small datasets. We also
Fault Diagnosis of an Intelligent Building Facility Using Bayesian Networks
Institute of Scientific and Technical Information of China (English)
ZHANG Qi-ding; XU Jin-yu; BAI Er-lei
2008-01-01
There is great significance to diagnose the fault of an intelligent building facility for fault controlling, repairing, eliminating and preventing. As an example, this paper established a Bayesian networks model for fault diagnosis of the refrigeration system of an intelligent building facility, gave the networks parameters, and analyzed the reasoning mechanism. Based on the model, some data was analyzed and diagnosed by adopting Bayesian networks reasoning platform GeNIe. The result shows that the diagnosis effect is more comprehensive and reasonable than the other method.
Control of Complex Systems Using Bayesian Networks and Genetic Algorithm
Marwala, Tshilidzi
2007-01-01
A method based on Bayesian neural networks and genetic algorithm is proposed to control the fermentation process. The relationship between input and output variables is modelled using Bayesian neural network that is trained using hybrid Monte Carlo method. A feedback loop based on genetic algorithm is used to change input variables so that the output variables are as close to the desired target as possible without the loss of confidence level on the prediction that the neural network gives. The proposed procedure is found to reduce the distance between the desired target and measured outputs significantly.
A Decomposition Algorithm for Learning Bayesian Network Structures from Data
DEFF Research Database (Denmark)
Zeng, Yifeng; Cordero Hernandez, Jorge
2008-01-01
It is a challenging task of learning a large Bayesian network from a small data set. Most conventional structural learning approaches run into the computational as well as the statistical problems. We propose a decomposition algorithm for the structure construction without having to learn...... the complete network. The new learning algorithm firstly finds local components from the data, and then recover the complete network by joining the learned components. We show the empirical performance of the decomposition algorithm in several benchmark networks....
Prediction of the insulin sensitivity index using Bayesian networks
DEFF Research Database (Denmark)
Bøttcher, Susanne Gammelgaard; Dethlefsen, Claus
. In this paper we learn the parameters and structure of several Bayesian networks relating measurements from an oral glucose tolerance test to the insulin sensitivity index determined from an intravenous study on the same individuals. The networks can then be used in prediction of from an oral glucose tolerance...
Impact assessment of extreme storm events using a Bayesian network
Den Heijer, C.; Knipping, D.T.J.A.; Plant, N.G.; Van Thiel de Vries, J.S.M.; Baart, F.; Van Gelder, P.H.A.J.M.
2012-01-01
This paper describes an investigation on the usefulness of Bayesian Networks in the safety assessment of dune coasts. A network has been created that predicts the erosion volume based on hydraulic boundary conditions and a number of cross-shore profile indicators. Field measurement data along a larg
Graphical methods for analysing feedback in biological networks - A survey
Radde, Nicole; Bar, Nadav S.; Banaji, Murad
2010-01-01
Observed phenotypes usually arise from complex networks of interacting cell components. Qualitative information about the structure of these networks is often available, while quantitative information may be partial or absent. It is natural then to ask what, if anything, we can learn about the behaviour of the system solely from its qualitative structure. In this article we review some techniques which can be applied to answer this question, focussing in particular on approaches involving graphical representations of model structure. By applying these techniques to various cellular network examples, we discuss their strengths and limitations, and point to future research directions.
Uncertainty Modeling Based on Bayesian Network in Ontology Mapping
Institute of Scientific and Technical Information of China (English)
LI Yuhua; LIU Tao; SUN Xiaolin
2006-01-01
How to deal with uncertainty is crucial in exact concept mapping between ontologies. This paper presents a new framework on modeling uncertainty in ontologies based on bayesian networks (BN). In our approach, ontology Web language (OWL) is extended to add probabilistic markups for attaching probability information, the source and target ontologies (expressed by patulous OWL) are translated into bayesian networks (BNs), the mapping between the two ontologies can be digged out by constructing the conditional probability tables (CPTs) of the BN using a improved algorithm named I-IPFP based on iterative proportional fitting procedure (IPFP). The basic idea of this framework and algorithm are validated by positive results from computer experiments.
Bayesian networks for fMRI: a primer.
Mumford, Jeanette A; Ramsey, Joseph D
2014-02-01
Bayesian network analysis is an attractive approach for studying the functional integration of brain networks, as it includes both the locations of connections between regions of the brain (functional connectivity) and more importantly the direction of the causal relationship between the regions (directed functional connectivity). Further, these approaches are more attractive than other functional connectivity analyses in that they can often operate on larger sets of nodes and run searches over a wide range of candidate networks. An important study by Smith et al. (2011) illustrated that many Bayesian network approaches did not perform well in identifying the directionality of connections in simulated single-subject data. Since then, new Bayesian network approaches have been developed that have overcome the failures in the Smith work. Additionally, an important discovery was made that shows a preprocessing step used in the Smith data puts some of the Bayesian network methods at a disadvantage. This work provides a review of Bayesian network analyses, focusing on the methods used in the Smith work as well as methods developed since 2011 that have improved estimation performance. Importantly, only approaches that have been specifically designed for fMRI data perform well, as they have been tailored to meet the challenges of fMRI data. Although this work does not suggest a single best model, it describes the class of models that perform best and highlights the features of these models that allow them to perform well on fMRI data. Specifically, methods that rely on non-Gaussianity to direct causal relationships in the network perform well.
Tensor networks and graphical calculus for open quantum systems
Wood, Christopher J; Cory, David G
2011-01-01
We develop a graphical calculus for completely positive maps and in doing so cast the theory of open quantum systems into the language of tensor networks. We tailor the theory of tensor networks to pictographically represent the Liouville-superoperator, Choi-matrix, process-matrix, Kraus, and system-environment representations for the evolution of open-system states, to expose how these representations interrelate, and to concisely transform between them. Several of these transformations have succinct depictions as wire bending dualities in our graphical calculus --- reshuffling, vectorization, and the Choi-Jamiolkowski isomorphism. The reshuffling duality between the Choi-matrix and superoperator is bi-directional, while the vectorization and Choi-Jamiolkowski dualities, from the Kraus and system-environment representations to the superoperator and Choi-matrix respectively, are single directional due to the non-uniqueness of the Kraus and system-environment representations. The remaining transformations are ...
Dynamic Resource Access Using Graphical Game in Asymmetric Wireless Networks
Directory of Open Access Journals (Sweden)
Fangwei Li
2013-08-01
Full Text Available In order to improve the resource utilization in asymmetric wireless networks, a novel dynamic resource access algorithm was presented. As the asymmetry of information and the locality of users' actions in distributed wireless networks, the resource access problem was expressed as a simple graphical game model. Let the graphic topology indicate the internal game structure of the realistic environment. Then the Nash equilibrium was got by minimizing the individual regret instead of the system regret. The proposed algorithm realized efficient resource access through exchanging the active information and regret in the competitive community. Theoretical analysis and simulation results show that the algorithm can converge to a suitable pure strategy Nash equilibrium point quickly with less amount of calculation, avoids conflict effectively, and improves the system capacity and power utilization especially in the condition of insufficient resources
Analyzing the effect of introducing a kurtosis parameter in Gaussian Bayesian networks
Energy Technology Data Exchange (ETDEWEB)
Main, P. [Dpto. Estadistica e I.O., Fac. Ciencias Matematicas, Univ. Complutense de Madrid, 28040 Madrid (Spain)], E-mail: pmain@mat.ucm.es; Navarro, H. [Dpto. de Estadistica, I.O. y Calc. Numerico, Fac. Ciencias, UNED, 28040 Madrid (Spain)
2009-05-15
Gaussian Bayesian networks are graphical models that represent the dependence structure of a multivariate normal random variable with a directed acyclic graph (DAG). In Gaussian Bayesian networks the output is usually the conditional distribution of some unknown variables of interest given a set of evidential nodes whose values are known. The problem of uncertainty about the assumption of normality is very common in applications. Thus a sensitivity analysis of the non-normality effect in our conclusions could be necessary. The aspect of non-normality to be considered is the tail behavior. In this line, the multivariate exponential power distribution is a family depending on a kurtosis parameter that goes from a leptokurtic to a platykurtic distribution with the normal as a mesokurtic distribution. Therefore a more general model can be considered using the multivariate exponential power distribution to describe the joint distribution of a Bayesian network, with a kurtosis parameter reflecting deviations from the normal distribution. The sensitivity of the conclusions to this perturbation is analyzed using the Kullback-Leibler divergence measure that provides an interesting formula to evaluate the effect.
Graphical tools for network meta-analysis in STATA.
Chaimani, Anna; Higgins, Julian P T; Mavridis, Dimitris; Spyridonos, Panagiota; Salanti, Georgia
2013-01-01
Network meta-analysis synthesizes direct and indirect evidence in a network of trials that compare multiple interventions and has the potential to rank the competing treatments according to the studied outcome. Despite its usefulness network meta-analysis is often criticized for its complexity and for being accessible only to researchers with strong statistical and computational skills. The evaluation of the underlying model assumptions, the statistical technicalities and presentation of the results in a concise and understandable way are all challenging aspects in the network meta-analysis methodology. In this paper we aim to make the methodology accessible to non-statisticians by presenting and explaining a series of graphical tools via worked examples. To this end, we provide a set of STATA routines that can be easily employed to present the evidence base, evaluate the assumptions, fit the network meta-analysis model and interpret its results.
Graphical tools for network meta-analysis in STATA.
Directory of Open Access Journals (Sweden)
Anna Chaimani
Full Text Available Network meta-analysis synthesizes direct and indirect evidence in a network of trials that compare multiple interventions and has the potential to rank the competing treatments according to the studied outcome. Despite its usefulness network meta-analysis is often criticized for its complexity and for being accessible only to researchers with strong statistical and computational skills. The evaluation of the underlying model assumptions, the statistical technicalities and presentation of the results in a concise and understandable way are all challenging aspects in the network meta-analysis methodology. In this paper we aim to make the methodology accessible to non-statisticians by presenting and explaining a series of graphical tools via worked examples. To this end, we provide a set of STATA routines that can be easily employed to present the evidence base, evaluate the assumptions, fit the network meta-analysis model and interpret its results.
Speeding up the MATLAB complex networks package using graphic processors
Institute of Scientific and Technical Information of China (English)
Zhang Bai-Da; Tang Yu-Hua; Wu Jun-Jie; Li Xin
2011-01-01
The availability of computers and communication networks allows us to gather and analyse data on a far larger scale than previously At present,it is believed that statistics is a suitable method to analyse networks with millions,or more,of vertices. The MATLAB language,with its mass of statistical functions,is a good choice to rapidly realize an algorithm prototype of complex networks. The performance of the MATLAB codes can be further improved by using graphic processor units (GPU). This paper presents the strategies and performance of the GPU implementation of a complex networks package,and the Jacket toolbox of MATLAB is used. Compared with some commercially available CPU implementations,GPU can achieve a speedup of,on average,11.3x. The experimental result proves that the GPU platform combined with the MATLAB language is a good combination for complex network research.
The application of Bayesian networks in natural hazard analyses
Directory of Open Access Journals (Sweden)
K. Vogel
2013-10-01
Full Text Available In natural hazards we face several uncertainties due to our lack of knowledge and/or the intrinsic randomness of the underlying natural processes. Nevertheless, deterministic analysis approaches are still widely used in natural hazard assessments, with the pitfall of underestimating the hazard with potentially disastrous consequences. In this paper we show that the Bayesian network approach offers a flexible framework for capturing and expressing a broad range of different uncertainties as those encountered in natural hazard assessments. Although well studied in theory, the application of Bayesian networks on real-world data is often not straightforward and requires specific tailoring and adaption of existing algorithms. We demonstrate by way of three case studies (a ground motion model for a seismic hazard analysis, a flood damage assessment, and a landslide susceptibility study the applicability of Bayesian networks across different domains showcasing various properties and benefits of the Bayesian network framework. We offer suggestions as how to tackle practical problems arising along the way, mainly concentrating on the handling of continuous variables, missing observations, and the interaction of both. We stress that our networks are completely data-driven, although prior domain knowledge can be included if desired.
Granger causality vs. dynamic Bayesian network inference: a comparative study
Directory of Open Access Journals (Sweden)
Feng Jianfeng
2009-04-01
Full Text Available Abstract Background In computational biology, one often faces the problem of deriving the causal relationship among different elements such as genes, proteins, metabolites, neurons and so on, based upon multi-dimensional temporal data. Currently, there are two common approaches used to explore the network structure among elements. One is the Granger causality approach, and the other is the dynamic Bayesian network inference approach. Both have at least a few thousand publications reported in the literature. A key issue is to choose which approach is used to tackle the data, in particular when they give rise to contradictory results. Results In this paper, we provide an answer by focusing on a systematic and computationally intensive comparison between the two approaches on both synthesized and experimental data. For synthesized data, a critical point of the data length is found: the dynamic Bayesian network outperforms the Granger causality approach when the data length is short, and vice versa. We then test our results in experimental data of short length which is a common scenario in current biological experiments: it is again confirmed that the dynamic Bayesian network works better. Conclusion When the data size is short, the dynamic Bayesian network inference performs better than the Granger causality approach; otherwise the Granger causality approach is better.
Bayesian网中的独立关系%The Independence Relations in Bayesian Networks
Institute of Scientific and Technical Information of China (English)
王飞; 刘大有; 卢奕男; 薛万欣
2001-01-01
Bayesian networks are compact representation of joint probabilistic distribution. Independence is soul of Bayesian networks because it enables to save storage space,to reduce computational complexity and to simplify knowledge acquisition and modeling. In this paper,we discuss three kinds of independences in Bayesian networks :conditional independence,context-specific independence and causal influence independence.
Learning Bayesian network classifiers for credit scoring using Markov Chain Monte Carlo search
Baesens, B.; Egmont-Petersen, M.; Castelo, R.; Vanthienen, J.
2002-01-01
In this paper, we will evaluate the power and usefulness of Bayesian network classifiers for credit scoring. Various types of Bayesian network classifiers will be evaluated and contrasted including unrestricted Bayesian network classifiers learnt using Markov Chain Monte Carlo (MCMC) search. The exp
DEFF Research Database (Denmark)
Højsgaard, Søren; Edwards, David; Lauritzen, Steffen
Graphical models in their modern form have been around since the late 1970s and appear today in many areas of the sciences. Along with the ongoing developments of graphical models, a number of different graphical modeling software programs have been written over the years. In recent years many...... of these software developments have taken place within the R community, either in the form of new packages or by providing an R ingerface to existing software. This book attempts to give the reader a gentle introduction to graphical modeling using R and the main features of some of these packages. In addition......, the book provides examples of how more advanced aspects of graphical modeling can be represented and handled within R. Topics covered in the seven chapters include graphical models for contingency tables, Gaussian and mixed graphical models, Bayesian networks and modeling high dimensional data...
A Gaussian graphical model approach to climate networks
Energy Technology Data Exchange (ETDEWEB)
Zerenner, Tanja, E-mail: tanjaz@uni-bonn.de [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Friederichs, Petra; Hense, Andreas [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany); Lehnertz, Klaus [Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany); Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany)
2014-06-15
Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately.
Using Bayesian neural networks to classify forest scenes
Vehtari, Aki; Heikkonen, Jukka; Lampinen, Jouko; Juujarvi, Jouni
1998-10-01
We present results that compare the performance of Bayesian learning methods for neural networks on the task of classifying forest scenes into trees and background. Classification task is demanding due to the texture richness of the trees, occlusions of the forest scene objects and diverse lighting conditions under operation. This makes it difficult to determine which are optimal image features for the classification. A natural way to proceed is to extract many different types of potentially suitable features, and to evaluate their usefulness in later processing stages. One approach to cope with large number of features is to use Bayesian methods to control the model complexity. Bayesian learning uses a prior on model parameters, combines this with evidence from a training data, and the integrates over the resulting posterior to make predictions. With this method, we can use large networks and many features without fear of overfitting. For this classification task we compare two Bayesian learning methods for multi-layer perceptron (MLP) neural networks: (1) The evidence framework of MacKay uses a Gaussian approximation to the posterior weight distribution and maximizes with respect to hyperparameters. (2) In a Markov Chain Monte Carlo (MCMC) method due to Neal, the posterior distribution of the network parameters is numerically integrated using the MCMC method. As baseline classifiers for comparison we use (3) MLP early stop committee, (4) K-nearest-neighbor and (5) Classification And Regression Tree.
Applying Bayesian networks in practical customer satisfaction studies
Jaronski, W.; Bloemer, J.M.M.; Vanhoof, K.; Wets, G.
2004-01-01
This chapter presents an application of Bayesian network technology in an empirical customer satisfaction study. The findings of the study should provide insight to the importance of product/service dimensions in terms of the strength of their influence on overall (dis)satisfaction. To this end we a
Dynamic Bayesian Networks as a Probabilistic Metamodel for Combat Simulations
2014-09-18
21 9 Medical Diagnostic Example P(Dyspnea— Cancer or Tuberculosis, No Bronchitis...33 15 “Ground Truth ” DBN, D0, trained on 10,000 simulation runs. The figure depicts the pdfs at each of the time steps used in the...85 32 Ground truth Dynamic Bayesian Network fit to 10,008 simulated data points
Bayesian Inference and Online Learning in Poisson Neuronal Networks.
Huang, Yanping; Rao, Rajesh P N
2016-08-01
Motivated by the growing evidence for Bayesian computation in the brain, we show how a two-layer recurrent network of Poisson neurons can perform both approximate Bayesian inference and learning for any hidden Markov model. The lower-layer sensory neurons receive noisy measurements of hidden world states. The higher-layer neurons infer a posterior distribution over world states via Bayesian inference from inputs generated by sensory neurons. We demonstrate how such a neuronal network with synaptic plasticity can implement a form of Bayesian inference similar to Monte Carlo methods such as particle filtering. Each spike in a higher-layer neuron represents a sample of a particular hidden world state. The spiking activity across the neural population approximates the posterior distribution over hidden states. In this model, variability in spiking is regarded not as a nuisance but as an integral feature that provides the variability necessary for sampling during inference. We demonstrate how the network can learn the likelihood model, as well as the transition probabilities underlying the dynamics, using a Hebbian learning rule. We present results illustrating the ability of the network to perform inference and learning for arbitrary hidden Markov models.
Reasoning under uncertainty in natural language dialogue using Bayesian networks
Keizer, Simon
2003-01-01
In which uncertainty in natural language dialogue is introduced as the central problem in the research described in this thesis. The idea of using of Bayesian networks is hypothesised as a possible solution to this problem. Dialogue acts are presented as the central notion in our approach to dialogu
Bayesian and neural networks for preliminary ship design
DEFF Research Database (Denmark)
Clausen, H. B.; Lützen, Marie; Friis-Hansen, Andreas
2001-01-01
000 ships is acquired and various methods for derivation of empirical relations are employed. A regression analysis is carried out to fit functions to the data. Further, the data are used to learn Bayesian and neural networks to encode the relations between the characteristics. On the basis...
Bayesian Network Models for Local Dependence among Observable Outcome Variables
Almond, Russell G.; Mulder, Joris; Hemat, Lisa A.; Yan, Duanli
2009-01-01
Bayesian network models offer a large degree of flexibility for modeling dependence among observables (item outcome variables) from the same task, which may be dependent. This article explores four design patterns for modeling locally dependent observations: (a) no context--ignores dependence among observables; (b) compensatory context--introduces…
The application of Bayesian network in Uncertainty management
Institute of Scientific and Technical Information of China (English)
颜诗洋
2013-01-01
Uncertainty management is playing an important role in many fields,especially in AI (artificial intelligence). This paper introduces the concept of probability and the Bayesian Network which are widely used in uncertainty management field.Additionally, two examples are completed and analyzed in the paper.
Model Criticism of Bayesian Networks with Latent Variables.
Williamson, David M.; Mislevy, Robert J.; Almond, Russell G.
This study investigated statistical methods for identifying errors in Bayesian networks (BN) with latent variables, as found in intelligent cognitive assessments. BN, commonly used in artificial intelligence systems, are promising mechanisms for scoring constructed-response examinations. The success of an intelligent assessment or tutoring system…
A Structure Learning Algorithm for Bayesian Network Using Prior Knowledge
Institute of Scientific and Technical Information of China (English)
徐俊刚; 赵越; 陈健; 韩超
2015-01-01
Learning structure from data is one of the most important fundamental tasks of Bayesian network research. Particularly, learning optional structure of Bayesian network is a non-deterministic polynomial-time (NP) hard problem. To solve this problem, many heuristic algorithms have been proposed, and some of them learn Bayesian network structure with the help of different types of prior knowledge. However, the existing algorithms have some restrictions on the prior knowledge, such as quality restriction and use restriction. This makes it diﬃcult to use the prior knowledge well in these algorithms. In this paper, we introduce the prior knowledge into the Markov chain Monte Carlo (MCMC) algorithm and propose an algorithm called Constrained MCMC (C-MCMC) algorithm to learn the structure of the Bayesian network. Three types of prior knowledge are defined: existence of parent node, absence of parent node, and distribution knowledge including the conditional probability distribution (CPD) of edges and the probability distribution (PD) of nodes. All of these types of prior knowledge are easily used in this algorithm. We conduct extensive experiments to demonstrate the feasibility and effectiveness of the proposed method C-MCMC.
Implementation of an Adaptive Learning System Using a Bayesian Network
Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki
2015-01-01
An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…
Nursing Home Care Quality: Insights from a Bayesian Network Approach
Goodson, Justin; Jang, Wooseung; Rantz, Marilyn
2008-01-01
Purpose: The purpose of this research is twofold. The first purpose is to utilize a new methodology (Bayesian networks) for aggregating various quality indicators to measure the overall quality of care in nursing homes. The second is to provide new insight into the relationships that exist among various measures of quality and how such measures…
A Bayesian network approach to coastal storm impact modeling
Jäger, W.S.; Den Heijer, C.; Bolle, A.; Hanea, A.M.
2015-01-01
In this paper we develop a Bayesian network (BN) that relates offshore storm conditions to their accompagnying flood characteristics and damages to residential buildings, following on the trend of integrated flood impact modeling. It is based on data from hydrodynamic storm simulations, information
Directory of Open Access Journals (Sweden)
A. A. Zolotin
2015-07-01
Full Text Available Posteriori inference is one of the three kinds of probabilistic-logic inferences in the probabilistic graphical models theory and the base for processing of knowledge patterns with probabilistic uncertainty using Bayesian networks. The paper deals with a task of local posteriori inference description in algebraic Bayesian networks that represent a class of probabilistic graphical models by means of matrix-vector equations. The latter are essentially based on the use of tensor product of matrices, Kronecker degree and Hadamard product. Matrix equations for calculating posteriori probabilities vectors within posteriori inference in knowledge patterns with quanta propositions are obtained. Similar equations of the same type have already been discussed within the confines of the theory of algebraic Bayesian networks, but they were built only for the case of posteriori inference in the knowledge patterns on the ideals of conjuncts. During synthesis and development of matrix-vector equations on quanta propositions probability vectors, a number of earlier results concerning normalizing factors in posteriori inference and assignment of linear projective operator with a selector vector was adapted. We consider all three types of incoming evidences - deterministic, stochastic and inaccurate - combined with scalar and interval estimation of probability truth of propositional formulas in the knowledge patterns. Linear programming problems are formed. Their solution gives the desired interval values of posterior probabilities in the case of inaccurate evidence or interval estimates in a knowledge pattern. That sort of description of a posteriori inference gives the possibility to extend the set of knowledge pattern types that we can use in the local and global posteriori inference, as well as simplify complex software implementation by use of existing third-party libraries, effectively supporting submission and processing of matrices and vectors when
Reconstruction of large-scale gene regulatory networks using Bayesian model averaging.
Kim, Haseong; Gelenbe, Erol
2012-09-01
Gene regulatory networks provide the systematic view of molecular interactions in a complex living system. However, constructing large-scale gene regulatory networks is one of the most challenging problems in systems biology. Also large burst sets of biological data require a proper integration technique for reliable gene regulatory network construction. Here we present a new reverse engineering approach based on Bayesian model averaging which attempts to combine all the appropriate models describing interactions among genes. This Bayesian approach with a prior based on the Gibbs distribution provides an efficient means to integrate multiple sources of biological data. In a simulation study with maximum of 2000 genes, our method shows better sensitivity than previous elastic-net and Gaussian graphical models, with a fixed specificity of 0.99. The study also shows that the proposed method outperforms the other standard methods for a DREAM dataset generated by nonlinear stochastic models. In brain tumor data analysis, three large-scale networks consisting of 4422 genes were built using the gene expression of non-tumor, low and high grade tumor mRNA expression samples, along with DNA-protein binding affinity information. We found that genes having a large variation of degree distribution among the three tumor networks are the ones that see most involved in regulatory and developmental processes, which possibly gives a novel insight concerning conventional differentially expressed gene analysis.
Robust Learning of Fixed-Structure Bayesian Networks
Diakonikolas, Ilias; Kane, Daniel; Stewart, Alistair
2016-01-01
We investigate the problem of learning Bayesian networks in an agnostic model where an $\\epsilon$-fraction of the samples are adversarially corrupted. Our agnostic learning model is similar to -- in fact, stronger than -- Huber's contamination model in robust statistics. In this work, we study the fully observable Bernoulli case where the structure of the network is given. Even in this basic setting, previous learning algorithms either run in exponential time or lose dimension-dependent facto...
Inference of gene pathways using mixture Bayesian networks
Directory of Open Access Journals (Sweden)
Ko Younhee
2009-05-01
Full Text Available Abstract Background Inference of gene networks typically relies on measurements across a wide range of conditions or treatments. Although one network structure is predicted, the relationship between genes could vary across conditions. A comprehensive approach to infer general and condition-dependent gene networks was evaluated. This approach integrated Bayesian network and Gaussian mixture models to describe continuous microarray gene expression measurements, and three gene networks were predicted. Results The first reconstructions of a circadian rhythm pathway in honey bees and an adherens junction pathway in mouse embryos were obtained. In addition, general and condition-specific gene relationships, some unexpected, were detected in these two pathways and in a yeast cell-cycle pathway. The mixture Bayesian network approach identified all (honey bee circadian rhythm and mouse adherens junction pathways or the vast majority (yeast cell-cycle pathway of the gene relationships reported in empirical studies. Findings across the three pathways and data sets indicate that the mixture Bayesian network approach is well-suited to infer gene pathways based on microarray data. Furthermore, the interpretation of model estimates provided a broader understanding of the relationships between genes. The mixture models offered a comprehensive description of the relationships among genes in complex biological processes or across a wide range of conditions. The mixture parameter estimates and corresponding odds that the gene network inferred for a sample pertained to each mixture component allowed the uncovering of both general and condition-dependent gene relationships and patterns of expression. Conclusion This study demonstrated the two main benefits of learning gene pathways using mixture Bayesian networks. First, the identification of the optimal number of mixture components supported by the data offered a robust approach to infer gene relationships and
Smail, Linda
2016-06-01
The basic task of any probabilistic inference system in Bayesian networks is computing the posterior probability distribution for a subset or subsets of random variables, given values or evidence for some other variables from the same Bayesian network. Many methods and algorithms have been developed to exact and approximate inference in Bayesian networks. This work compares two exact inference methods in Bayesian networks-Lauritzen-Spiegelhalter and the successive restrictions algorithm-from the perspective of computational efficiency. The two methods were applied for comparison to a Chest Clinic Bayesian Network. Results indicate that the successive restrictions algorithm shows more computational efficiency than the Lauritzen-Spiegelhalter algorithm.
Research of Gene Regulatory Network with Multi-Time Delay Based on Bayesian Network
Institute of Scientific and Technical Information of China (English)
LIU Bei; MENG Fanjiang; LI Yong; LIU Liyan
2008-01-01
The gene regulatory network was reconstructed according to time-series microarray data getting from hybridization at different time between gene chips to analyze coordination and restriction between genes. An algorithm for controlling the gene expression regulatory network of the whole cell was designed using Bayesian network which provides an effective aided analysis for gene regulatory network.
Sironi, Emanuele; Pinchi, Vilma; Taroni, Franco
2016-01-01
In the past few decades, the rise of criminal, civil and asylum cases involving young people lacking valid identification documents has generated an increase in the demand of age estimation. The chronological age or the probability that an individual is older or younger than a given age threshold are generally estimated by means of some statistical methods based on observations performed on specific physical attributes. Among these statistical methods, those developed in the Bayesian framework allow users to provide coherent and transparent assignments which fulfill forensic and medico-legal purposes. The application of the Bayesian approach is facilitated by using probabilistic graphical tools, such as Bayesian networks. The aim of this work is to test the performances of the Bayesian network for age estimation recently presented in scientific literature in classifying individuals as older or younger than 18 years of age. For these exploratory analyses, a sample related to the ossification status of the medial clavicular epiphysis available in scientific literature was used. Results obtained in the classification are promising: in the criminal context, the Bayesian network achieved, on the average, a rate of correct classifications of approximatively 97%, whilst in the civil context, the rate is, on the average, close to the 88%. These results encourage the continuation of the development and the testing of the method in order to support its practical application in casework.
Using Bayesian networks to support decision-focused information retrieval
Energy Technology Data Exchange (ETDEWEB)
Lehner, P.; Elsaesser, C.; Seligman, L. [Mitre Corp., McLean, VA (United States)
1996-12-31
This paper has described an approach to controlling the process of pulling data/information from distributed data bases in a way that is specific to a persons specific decision making context. Our prototype implementation of this approach uses a knowledge-based planner to generate a plan, an automatically constructed Bayesian network to evaluate the plan, specialized processing of the network to derive key information items that would substantially impact the evaluation of the plan (e.g., determine that replanning is needed), automated construction of Standing Requests for Information (SRIs) which are automated functions that monitor changes and trends in distributed data base that are relevant to the key information items. This emphasis of this paper is on how Bayesian networks are used.
Hip fracture in the elderly: a re-analysis of the EPIDOS study with causal Bayesian networks.
Directory of Open Access Journals (Sweden)
Pascal Caillet
Full Text Available Hip fractures commonly result in permanent disability, institutionalization or death in elderly. Existing hip-fracture predicting tools are underused in clinical practice, partly due to their lack of intuitive interpretation. By use of a graphical layer, Bayesian network models could increase the attractiveness of fracture prediction tools. Our aim was to study the potential contribution of a causal Bayesian network in this clinical setting. A logistic regression was performed as a standard control approach to check the robustness of the causal Bayesian network approach.EPIDOS is a multicenter study, conducted in an ambulatory care setting in five French cities between 1992 and 1996 and updated in 2010. The study included 7598 women aged 75 years or older, in which fractures were assessed quarterly during 4 years. A causal Bayesian network and a logistic regression were performed on EPIDOS data to describe major variables involved in hip fractures occurrences.Both models had similar association estimations and predictive performances. They detected gait speed and mineral bone density as variables the most involved in the fracture process. The causal Bayesian network showed that gait speed and bone mineral density were directly connected to fracture and seem to mediate the influence of all the other variables included in our model. The logistic regression approach detected multiple interactions involving psychotropic drug use, age and bone mineral density.Both approaches retrieved similar variables as predictors of hip fractures. However, Bayesian network highlighted the whole web of relation between the variables involved in the analysis, suggesting a possible mechanism leading to hip fracture. According to the latter results, intervention focusing concomitantly on gait speed and bone mineral density may be necessary for an optimal prevention of hip fracture occurrence in elderly people.
Graphic theory on interval stability of networked control systems
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
A new method on the interval stability of networked control systems (NCSs) with random delay and data packet dropout is studied. Combining interval systems and NCSs, a graphic condition on judging interval stability is presented in terms of the weighted diagraph theory in graph theory. Furthermore, utilizing the graph-theoretic algorithm, the delay-depended controller gains are obtained. Aiming at the same delay and data packed dropout, several controller gains are obtained, simultaneously. The example and simulation illustrate the effectiveness of the proposed method.
Bayesian estimation of the network autocorrelation model
Dittrich, D.; Leenders, R.T.A.J.; Mulder, J.
2017-01-01
The network autocorrelation model has been extensively used by researchers interested modeling social influence effects in social networks. The most common inferential method in the model is classical maximum likelihood estimation. This approach, however, has known problems such as negative bias of
Bayesian inference of structural brain networks.
Hinne, Max; Heskes, Tom; Beckmann, Christian F; van Gerven, Marcel A J
2013-02-01
Structural brain networks are used to model white-matter connectivity between spatially segregated brain regions. The presence, location and orientation of these white matter tracts can be derived using diffusion-weighted magnetic resonance imaging in combination with probabilistic tractography. Unfortunately, as of yet, none of the existing approaches provide an undisputed way of inferring brain networks from the streamline distributions which tractography produces. State-of-the-art methods rely on an arbitrary threshold or, alternatively, yield weighted results that are difficult to interpret. In this paper, we provide a generative model that explicitly describes how structural brain networks lead to observed streamline distributions. This allows us to draw principled conclusions about brain networks, which we validate using simultaneously acquired resting-state functional MRI data. Inference may be further informed by means of a prior which combines connectivity estimates from multiple subjects. Based on this prior, we obtain networks that significantly improve on the conventional approach.
Schemann, Kathrin; Lewis, Fraser I; Firestone, Simon M; Ward, Michael P; Toribio, Jenny-Ann L M L; Taylor, Melanie R; Dhand, Navneet K
2013-05-15
On-farm biosecurity practices have been promoted in many animal industries to protect animal populations from infections. Current approaches based on regression modelling techniques for assessing biosecurity perceptions and practices are limited for analysis of the interrelationships between multivariate data. A suitable approach, which does not require background knowledge of relationships, is provided by Bayesian network modelling. Here we apply such an approach to explore the complex interrelationships between the variables representing horse managers' perceptions of effectiveness of on-farm biosecurity practices. The dataset was derived from interviews conducted with 200 horse managers in Australia after the 2007 equine influenza outbreak. Using established computationally intensive techniques, an optimal graphical statistical model was identified whose structure was objectively determined, directly from the observed data. This methodology is directly analogous to multivariate regression (i.e. multiple response variables). First, an optimal model structure was identified using an exact (exhaustive) search algorithm, followed by pruning the selected model for over-fitting by the parametric bootstrapping approach. Perceptions about effectiveness of movement restrictions and access control were linked but were generally segregated from the perceptions about effectiveness of personal and equipment hygiene. Horse managers believing in the effectiveness of complying with movement restrictions in stopping equine influenza spread onto their premises were also more likely to believe in the effectiveness of reducing their own contact with other horses and curtailing professional visits. Similarly, the variables representing the effectiveness of disinfecting vehicles, using a disinfectant footbath, changing into clean clothes on arrival at the premises and washing hands before contact with managed horses were clustered together. In contrast, horse managers believing in
Looking for Sustainable Urban Mobility through Bayesian Networks
Directory of Open Access Journals (Sweden)
Giovanni Fusco
2004-11-01
Full Text Available There is no formalised theory of sustainable urban mobility systems. Observed patterns of urban mobility are often considered unsustainable. But we don’t know what a city with sustainable mobility should look like. It is nevertheless increasingly apparent that the urban mobility system plays an important role in the achievement of the city’s wider sustainability objectives.In this paper we explore the characteristics of sustainable urban mobility systems through the technique of Bayesian networks. At the frontier between multivariate statistics and artificial intelligence, Bayesian networks provide powerful models of causal knowledge in an uncertain context. Using data on urban structure, transportation offer, mobility demand, resource consumption and environmental externalities from seventy-five world cities, we developed a systemic model of the city-transportation-environment interaction in the form of a Bayesian network. The network could then be used to infer the features of the city with sustainable mobility.The Bayesian model indicates that the city with sustainable mobility is most probably a dense city with highly efficient transit and multimodal mobility. It produces high levels of accessibility without relying on a fast road network. The achievement of sustainability objectives for urban mobility is probably compatible with all socioeconomic contexts.By measuring the distance of world cities from the inferred sustainability profile, we finally derive a geography of sustainability for mobility systems. The cities closest to the sustainability profile are in Central Europe as well as in affluent countries of the Far East. Car-dependent American cities are the farthest from the desired sustainability profile.
A Full Bayesian Approach for Boolean Genetic Network Inference
Han, Shengtong; Wong, Raymond K. W.; Lee, Thomas C. M.; Shen, Linghao; Li, Shuo-Yen R.; Fan, Xiaodan
2014-01-01
Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data. PMID:25551820
A full bayesian approach for boolean genetic network inference.
Directory of Open Access Journals (Sweden)
Shengtong Han
Full Text Available Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data.
Predicting Software Suitability Using a Bayesian Belief Network
Beaver, Justin M.; Schiavone, Guy A.; Berrios, Joseph S.
2005-01-01
The ability to reliably predict the end quality of software under development presents a significant advantage for a development team. It provides an opportunity to address high risk components earlier in the development life cycle, when their impact is minimized. This research proposes a model that captures the evolution of the quality of a software product, and provides reliable forecasts of the end quality of the software being developed in terms of product suitability. Development team skill, software process maturity, and software problem complexity are hypothesized as driving factors of software product quality. The cause-effect relationships between these factors and the elements of software suitability are modeled using Bayesian Belief Networks, a machine learning method. This research presents a Bayesian Network for software quality, and the techniques used to quantify the factors that influence and represent software quality. The developed model is found to be effective in predicting the end product quality of small-scale software development efforts.
Research on Bayesian Network Based User's Interest Model
Institute of Scientific and Technical Information of China (English)
ZHANG Weifeng; XU Baowen; CUI Zifeng; XU Lei
2007-01-01
It has very realistic significance for improving the quality of users' accessing information to filter and selectively retrieve the large number of information on the Internet. On the basis of analyzing the existing users' interest models and some basic questions of users' interest (representation, derivation and identification of users' interest), a Bayesian network based users' interest model is given. In this model, the users' interest reduction algorithm based on Markov Blanket model is used to reduce the interest noise, and then users' interested and not interested documents are used to train the Bayesian network. Compared to the simple model, this model has the following advantages like small space requirements, simple reasoning method and high recognition rate. The experiment result shows this model can more appropriately reflect the user's interest, and has higher performance and good usability.
Nuclear charge radii: Density functional theory meets Bayesian neural networks
Utama, Raditya; Piekarewicz, Jorge
2016-01-01
The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. We explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonst...
Decision Support System for Maintenance Management Using Bayesian Networks
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The maintenance process has undergone several major developments that have led to proactive considerations and the transformation from the traditional "fail and fix" practice into the "predict and prevent" proactive maintenance methodology. The anticipation action, which characterizes this proactive maintenance strategy is mainly based on monitoring, diagnosis, prognosis and decision-making modules. Oil monitoring is a key component of a successful condition monitoring program. It can be used as a proactive tool to identify the wear modes of rubbing parts and diagnoses the faults in machinery. But diagnosis relying on oil analysis technology must deal with uncertain knowledge and fuzzy input data. Besides other methods, Bayesian Networks have been extensively applied to fault diagnosis with the advantages of uncertainty inference; however, in the area of oil monitoring, it is a new field. This paper presents an integrated Bayesian network based decision support for maintenance of diesel engines.
[A medical image semantic modeling based on hierarchical Bayesian networks].
Lin, Chunyi; Ma, Lihong; Yin, Junxun; Chen, Jianyu
2009-04-01
A semantic modeling approach for medical image semantic retrieval based on hierarchical Bayesian networks was proposed, in allusion to characters of medical images. It used GMM (Gaussian mixture models) to map low-level image features into object semantics with probabilities, then it captured high-level semantics through fusing these object semantics using a Bayesian network, so that it built a multi-layer medical image semantic model, aiming to enable automatic image annotation and semantic retrieval by using various keywords at different semantic levels. As for the validity of this method, we have built a multi-level semantic model from a small set of astrocytoma MRI (magnetic resonance imaging) samples, in order to extract semantics of astrocytoma in malignant degree. Experiment results show that this is a superior approach.
Partial Order MCMC for Structure Discovery in Bayesian Networks
Niinimaki, Teppo; Koivisto, Mikko
2012-01-01
We present a new Markov chain Monte Carlo method for estimating posterior probabilities of structural features in Bayesian networks. The method draws samples from the posterior distribution of partial orders on the nodes; for each sampled partial order, the conditional probabilities of interest are computed exactly. We give both analytical and empirical results that suggest the superiority of the new method compared to previous methods, which sample either directed acyclic graphs or linear orders on the nodes.
BAYESIAN NETWORKS FOR SUB-GROUPS OF MULTIPLE SCLEROSIS
Directory of Open Access Journals (Sweden)
Yeliz KARACA
2013-01-01
Full Text Available In this study, patients with multiple sclerosis "sub-groups" characteristics in relation to detection of a statistically (SPSS and are provided in the Bayesian network. The main objective of this study, regarding the appearance of MRI lesions in patients with Multiple Sclerosis information and / or EDSS scores to investigate the possible attack of multiple sclerosis subgroups. Bayesian networks, reflects the level of sub-groups in multiple sclerosis patients. Analyzes were conducted to determine the change of these properties. MR images of the input data is discussed for the MS patients, the sub-groups of MS, "Remitting Relapsing Multiple Sclerosis", "Secondary Progressive Multiple Sclerosis" with their patients' clinical brain MR images, brain stem, and the Upper Cervical Regions of the corpus callosum-periventricular lesions created in the information. Multiple Sclerosis is owned by the input data is created correctly identify disease subgroups of MS patients for the number of lesions in MR images and MR image of the three regions for the year for which the information used in the EDSS score. Of MS is RRMS, SPMS correctly identify sub-groups of the brain with Brain Stem, and upper cervical regions of the corpus callosum-periventricular lesions in these three points for the region and / or EDSS score information can be emphasized by using the Bayesian networks play an important role in the analysis.
Understanding disease processes by partitioned dynamic Bayesian networks.
Bueno, Marcos L P; Hommersom, Arjen; Lucas, Peter J F; Lappenschaar, Martijn; Janzing, Joost G E
2016-06-01
For many clinical problems in patients the underlying pathophysiological process changes in the course of time as a result of medical interventions. In model building for such problems, the typical scarcity of data in a clinical setting has been often compensated by utilizing time homogeneous models, such as dynamic Bayesian networks. As a consequence, the specificities of the underlying process are lost in the obtained models. In the current work, we propose the new concept of partitioned dynamic Bayesian networks to capture distribution regime changes, i.e. time non-homogeneity, benefiting from an intuitive and compact representation with the solid theoretical foundation of Bayesian network models. In order to balance specificity and simplicity in real-world scenarios, we propose a heuristic algorithm to search and learn these non-homogeneous models taking into account a preference for less complex models. An extensive set of experiments were ran, in which simulating experiments show that the heuristic algorithm was capable of constructing well-suited solutions, in terms of goodness of fit and statistical distance to the original distributions, in consonance with the underlying processes that generated data, whether it was homogeneous or non-homogeneous. Finally, a study case on psychotic depression was conducted using non-homogeneous models learned by the heuristic, leading to insightful answers for clinically relevant questions concerning the dynamics of this mental disorder.
Bayesian network models for error detection in radiotherapy plans.
Kalet, Alan M; Gennari, John H; Ford, Eric C; Phillips, Mark H
2015-04-07
The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network's conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.
A Bayesian regularized artificial neural network for adaptive optics forecasting
Sun, Zhi; Chen, Ying; Li, Xinyang; Qin, Xiaolin; Wang, Huiyong
2017-01-01
Real-time adaptive optics is a technology for enhancing the resolution of ground-based optical telescopes and overcoming the disturbance of atmospheric turbulence. The performance of the system is limited by delay errors induced by the servo system and photoelectrons noise of wavefront sensor. In order to cut these delay errors, this paper proposes a novel model to forecast the future control voltages of the deformable mirror. The predictive model is constructed by a multi-layered back propagation network with Bayesian regularization (BRBP). For the purpose of parallel computation and less disturbance, we adopt a number of sub-BP neural networks to substitute the whole network. The Bayesian regularized network assigns a probability to the network weights, allowing the network to automatically and optimally penalize excessively complex models. The simulation results show that the BRBP introduces smaller mean absolute percentage error (MAPE) and mean square errors (MSE) than other typical algorithms. Meanwhile, real data analysis results show that the BRBP model has strong generalization capability and parallelism.
Bayesian inference of structural brain networks
Hinne, M.; Heskes, T.; Beckmann, C.F.; Gerven, van M.A.J.
2013-01-01
Structural brain networks are used to model white-matter connectivity between spatially segregated brain regions. The presence, location and orientation of these white matter tracts can be derived using diffusion-weighted magnetic resonance imaging in combination with probabilistic tractography. Unf
Structural prediction of dynamic Bayesian network with partial prior information.
Maiti, Aniruddha; Reddy, Ramakanth; Mukherjee, Anirban
2015-01-01
The prediction of the structure of a hidden dynamic Bayesian network (DBN) from a noisy dataset is an important and challenging task. This work presents a generalized framework to infer the DBN network structure with partial prior information. In the proposed framework, the partial information about the network structure is provided in the form of prior. The proposed method makes use of the prior information regarding the presence and as well as absence of some of the edges. Using the noisy dataset and partial prior information, this method is able to infer nearly accurate structure of the network. The proposed method is validated using simulated datasets. In addition, two real biological datasets are used to infer hidden biological interaction networks.
Markov Chain Monte Carlo Bayesian Learning for Neural Networks
Goodrich, Michael S.
2011-01-01
Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.
A Review of Predictive Analytic Applications of Bayesian Network
Directory of Open Access Journals (Sweden)
Mohammad Hafiz Mohd Yusof
2016-12-01
Full Text Available Malware can be defined as malicious software that infiltrates a network and computer host in a variety of ways, from software flaws to social engineering. Due to the polymorphic and stealth nature of malware attacks, a signature-based analysis that is done statically is no longer sufficient to solve such a problem. Therefore, a behavioral or anomalous analysis will provide a more dynamic approach for the solution. However recent studies have shown that current behavioral methods at the network-level have several issues such as the inability to predict zero-day attacks, high-level assumptions, non-inferential analysis and performance issues. Other than performance issues, this study has identified common scientific characteristics which are reduced parameter, θ and lack of priori information p(θ that causes the problems. Previous methods were proposed to address the problem however were still unable to resolve the stated scientific hitches. Due to the shortcomings, the Bayesian Network in terms of its probabilistic modelling would be the best method to deal with the stated scientific glitches which also have been proven in the area of Clinical Expert Systems, Artificial Intelligence and Pattern Recognition. This study will critically review the predictive analytic applications of Bayesian Network model in different research domain such as Clinical Expert Systems, Artificial Intelligence and Pattern Recognition and discover any potential approach available in the domain of Computer Networks. Based on the review, this paper has identified several Bayesian Network properties which have been used to overcome the abovementioned problems. Those properties will be applied in future studies to model the Behavioral Malware Predictive Analytics.
Adabor, Emmanuel S; Acquaah-Mensah, George K; Oduro, Francis T
2015-02-01
Bayesian Networks have been used for the inference of transcriptional regulatory relationships among genes, and are valuable for obtaining biological insights. However, finding optimal Bayesian Network (BN) is NP-hard. Thus, heuristic approaches have sought to effectively solve this problem. In this work, we develop a hybrid search method combining Simulated Annealing with a Greedy Algorithm (SAGA). SAGA explores most of the search space by undergoing a two-phase search: first with a Simulated Annealing search and then with a Greedy search. Three sets of background-corrected and normalized microarray datasets were used to test the algorithm. BN structure learning was also conducted using the datasets, and other established search methods as implemented in BANJO (Bayesian Network Inference with Java Objects). The Bayesian Dirichlet Equivalence (BDe) metric was used to score the networks produced with SAGA. SAGA predicted transcriptional regulatory relationships among genes in networks that evaluated to higher BDe scores with high sensitivities and specificities. Thus, the proposed method competes well with existing search algorithms for Bayesian Network structure learning of transcriptional regulatory networks.
Information flow among neural networks with Bayesian estimation
Institute of Scientific and Technical Information of China (English)
LI Yan; LI XiaoLi; OUYANG GaoXiang; GUAN XinPing
2007-01-01
Estimating the interaction among neural networks is an interesting issue in neuroscience. Some methods have been proposed to estimate the coupling strength among neural networks; however, few estimations of the coupling direction (information flow) among neural networks have been attempted. It is known that Bayesian estimator is based on a priori knowledge and a probability of event occurrence. In this paper, a new method is proposed to estimate coupling directions among neural networks with conditional mutual information that is estimated by Bayesian estimation. First, this method is applied to analyze the simulated EEG series generated by a nonlinear lumped-parameter model. In comparison with the conditional mutual information with Shannon entropy, it is found that this method is more successful in estimating the coupling direction, and is insensitive to the length of EEG series. Therefore, this method is suitable to analyze a short time series in practice. Second, we demonstrate how this method can be applied to the analysis of human intracranial epileptic electroencephalogram (EEG) recordings, and to indicate the coupling directions among neural networks. Therefore, this method helps to elucidate the epileptic focus localization.
Mobile sensor network noise reduction and recalibration using a Bayesian network
Xiang, Y.; Tang, Y.; Zhu, W.
2016-02-01
People are becoming increasingly interested in mobile air quality sensor network applications. By eliminating the inaccuracies caused by spatial and temporal heterogeneity of pollutant distributions, this method shows great potential for atmospheric research. However, systems based on low-cost air quality sensors often suffer from sensor noise and drift. For the sensing systems to operate stably and reliably in real-world applications, those problems must be addressed. In this work, we exploit the correlation of different types of sensors caused by cross sensitivity to help identify and correct the outlier readings. By employing a Bayesian network based system, we are able to recover the erroneous readings and recalibrate the drifted sensors simultaneously. Our method improves upon the state-of-art Bayesian belief network techniques by incorporating the virtual evidence and adjusting the sensor calibration functions recursively.Specifically, we have (1) designed a system based on the Bayesian belief network to detect and recover the abnormal readings, (2) developed methods to update the sensor calibration functions infield without requirement of ground truth, and (3) extended the Bayesian network with virtual evidence for infield sensor recalibration. To validate our technique, we have tested our technique with metal oxide sensors measuring NO2, CO, and O3 in a real-world deployment. Compared with the existing Bayesian belief network techniques, results based on our experiment setup demonstrate that our system can reduce error by 34.1 % and recover 4 times more data on average.
Bayesian networks: a powerful tool for systems biology study
Institute of Scientific and Technical Information of China (English)
Xiu-Jie WANG
2010-01-01
@@ Higher Education Press and Springer-Verlag Berlin Heidelberg 2010The wide application of omics research approaches caused a burst of biological data in the past decade, and also promoted the growth of systems biology, a research field that studies biological questions from a genome-wide point of view. One feature of systems biology study is to integrate and identify. Not only experiments are carried out at whole-genome scales, but also data from various resources, such as genomics, transcriptomics, proteomics,and metabolics data, need to be integrated to identify correlations among targeted entities. Therefore, plenty amounts of experimental data, robust statistical methods, and reliable network construction models are indispensable for systems biology study. Among the available network construction models, Bayesian network is considered as one of the most effective methods available so far for biological network predictions (Pe'er, 2005).
A Software Risk Analysis Model Using Bayesian Belief Network
Institute of Scientific and Technical Information of China (English)
Yong Hu; Juhua Chen; Mei Liu; Yang Yun; Junbiao Tang
2006-01-01
The uncertainty during the period of software project development often brings huge risks to contractors and clients. Ifwe can find an effective method to predict the cost and quality of software projects based on facts like the project character and two-side cooperating capability at the beginning of the project, we can reduce the risk.Bayesian Belief Network(BBN) is a good tool for analyzing uncertain consequences, but it is difficult to produce precise network structure and conditional probability table. In this paper, we built up network structure by Delphi method for conditional probability table learning, and learn update probability table and nodes' confidence levels continuously according to the application cases, which made the evaluation network have learning abilities, and evaluate the software development risk of organization more accurately. This paper also introduces EM algorithm, which will enhance the ability to produce hidden nodes caused by variant software projects.
Community Detection for Multiplex Social Networks Based on Relational Bayesian Networks
DEFF Research Database (Denmark)
Jiang, Jiuchuan; Jaeger, Manfred
2014-01-01
Many techniques have been proposed for community detection in social networks. Most of these techniques are only designed for networks defined by a single relation. However, many real networks are multiplex networks that contain multiple types of relations and different attributes on the nodes....... In this paper we propose to use relational Bayesian networks for the specification of probabilistic network models, and develop inference techniques that solve the community detection problem based on these models. The use of relational Bayesian networks as a flexible high-level modeling framework enables us...... to express different models capturing different aspects of community detection in multiplex networks in a coherent manner, and to use a single inference mechanism for all models....
Strategic Economic Decision-Making: Using Bayesian Belief Networks to Make Complex Decisions
2014-10-14
Strategic Economic Decision-Making: Using Bayesian Belief Networks to Make Complex Decisions A Presentation Highlighting the Capabilities of the...REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Strategic Economic Decision-Making: Using Bayesian Belief Networks to...Language (SQL) server-based approach. • The concept of a server-based algorithm follows empirical research on Bayesian belief networks (BBN) and
West, Patti; Rutstein, Daisy Wise; Mislevy, Robert J.; Liu, Junhui; Choi, Younyoung; Levy, Roy; Crawford, Aaron; DiCerbo, Kristen E.; Chappel, Kristina; Behrens, John T.
2010-01-01
A major issue in the study of learning progressions (LPs) is linking student performance on assessment tasks to the progressions. This report describes the challenges faced in making this linkage using Bayesian networks to model LPs in the field of computer networking. The ideas are illustrated with exemplar Bayesian networks built on Cisco…
Bayesian Network Structure Learning Based On Rough Set and Mutual Information
Directory of Open Access Journals (Sweden)
Zuhong Feng
2013-09-01
Full Text Available Abstract In Bayesian network structure learning for incomplete data set, a common problem is too many attributes causing low efficiency and high computation complexity. In this paper, an algorithm of attribute reduction based on rough set is introduced. The algorithm can effectively reduce the dimension of attributes and quickly determine the network structure using mutual information for Bayesian network structure learning.
Bayesian blind source separation for data with network structure.
Illner, Katrin; Fuchs, Christiane; Theis, Fabian J
2014-11-01
In biology, more and more information about the interactions in regulatory systems becomes accessible, and this often leads to prior knowledge for recent data interpretations. In this work we focus on multivariate signaling data, where the structure of the data is induced by a known regulatory network. To extract signals of interest we assume a blind source separation (BSS) model, and we capture the structure of the source signals in terms of a Bayesian network. To keep the parameter space small, we consider stationary signals, and we introduce the new algorithm emGrade, where model parameters and source signals are estimated using expectation maximization. For network data, we find an improved estimation performance compared to other BSS algorithms, and the flexible Bayesian modeling enables us to deal with repeated and missing observation values. The main advantage of our method is the statistically interpretable likelihood, and we can use model selection criteria to determine the (in general unknown) number of source signals or decide between different given networks. In simulations we demonstrate the recovery of the source signals dependent on the graph structure and the dimensionality of the data.
A Mobile Picture Tagging System Using Tree-Structured Layered Bayesian Networks
Directory of Open Access Journals (Sweden)
Young-Seol Lee
2013-01-01
Full Text Available Advances in digital media technology have increased in multimedia content. Tagging is one of the most effective methods to manage a great volume of multimedia content. However, manual tagging has limitations such as human fatigue and subjective and ambiguous keywords. In this paper, we present an automatic tagging method to generate semantic annotation on a mobile phone. In order to overcome the constraints of the mobile environment, the method uses two layered Bayesian networks. In contrast to existing techniques, this approach attempts to design probabilistic models with fixed tree structures and intermediate nodes. To evaluate the performance of this method, an experiment is conducted with data collected over a month. The result shows the efficiency and effectiveness of our proposed method. Furthermore, a simple graphic user interface is developed to visualize and evaluate recognized activities and probabilities.
DEFF Research Database (Denmark)
Thomsen, Nanna Isbak; Binning, Philip John; McKnight, Ursula S.;
2016-01-01
to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models...... that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert...... with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based...
Road network safety evaluation using Bayesian hierarchical joint model.
Wang, Jie; Huang, Helai
2016-05-01
Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well.
Discriminating complex networks through supervised NDR and Bayesian classifier
Yan, Ke-Sheng; Rong, Li-Li; Yu, Kai
2016-12-01
Discriminating complex networks is a particularly important task for the purpose of the systematic study of networks. In order to discriminate unknown networks exactly, a large set of network measurements are needed to be taken into account for comprehensively considering network properties. However, as we demonstrate in this paper, these measurements are nonlinear correlated with each other in general, resulting in a wide variety of redundant measurements which unintentionally explain the same aspects of network properties. To solve this problem, we adopt supervised nonlinear dimensionality reduction (NDR) to eliminate the nonlinear redundancy and visualize networks in a low-dimensional projection space. Though unsupervised NDR can achieve the same aim, we illustrate that supervised NDR is more appropriate than unsupervised NDR for discrimination task. After that, we perform Bayesian classifier (BC) in the projection space to discriminate the unknown network by considering the projection score vectors as the input of the classifier. We also demonstrate the feasibility and effectivity of this proposed method in six extensive research real networks, ranging from technological to social or biological. Moreover, the effectiveness and advantage of the proposed method is proved by the contrast experiments with the existing method.
Bayesian network as a modelling tool for risk management in agriculture
DEFF Research Database (Denmark)
Rasmussen, Svend; Madsen, Anders Læsø; Lund, Mogens
. In this paper we use Bayesian networks as an integrated modelling approach for representing uncertainty and analysing risk management in agriculture. It is shown how historical farm account data may be efficiently used to estimate conditional probabilities, which are the core elements in Bayesian network models....... We further show how the Bayesian network model RiBay is used for stochastic simulation of farm income, and we demonstrate how RiBay can be used to simulate risk management at the farm level. It is concluded that the key strength of a Bayesian network is the transparency of assumptions...
Approach to the Correlation Discovery of Chinese Linguistic Parameters Based on Bayesian Method
Institute of Scientific and Technical Information of China (English)
WANG Wei(王玮); CAI LianHong(蔡莲红)
2003-01-01
Bayesian approach is an important method in statistics. The Bayesian belief network is a powerful knowledge representation and reasoning tool under the conditions of uncertainty.It is a graphics model that encodes probabilistic relationships among variables of interest. In this paper, an approach to Bayesian network construction is given for discovering the Chinese linguistic parameter relationship in the corpus.
Onisko, Agnieszka; Druzdzel, Marek J.; Austin, R. Marshall
2016-01-01
Background: Classical statistics is a well-established approach in the analysis of medical data. While the medical community seems to be familiar with the concept of a statistical analysis and its interpretation, the Bayesian approach, argued by many of its proponents to be superior to the classical frequentist approach, is still not well-recognized in the analysis of medical data. Aim: The goal of this study is to encourage data analysts to use the Bayesian approach, such as modeling with graphical probabilistic networks, as an insightful alternative to classical statistical analysis of medical data. Materials and Methods: This paper offers a comparison of two approaches to analysis of medical time series data: (1) classical statistical approach, such as the Kaplan–Meier estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian network modeling. Our comparison is based on time series cervical cancer screening data collected at Magee-Womens Hospital, University of Pittsburgh Medical Center over 10 years. Results: The main outcomes of our comparison are cervical cancer risk assessments produced by the three approaches. However, our analysis discusses also several aspects of the comparison, such as modeling assumptions, model building, dealing with incomplete data, individualized risk assessment, results interpretation, and model validation. Conclusion: Our study shows that the Bayesian approach is (1) much more flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, which is more cumbersome for classical statistical approaches. PMID:28163973
Quantum-Like Bayesian Networks for Modeling Decision Making.
Moreira, Catarina; Wichert, Andreas
2016-01-01
In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios.
Quantum-Like Bayesian Networks for Modeling Decision Making
Directory of Open Access Journals (Sweden)
Catarina eMoreira
2016-01-01
Full Text Available In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios.
Risk Analysis of New Product Development Using Bayesian Networks
Directory of Open Access Journals (Sweden)
MohammadRahim Ramezanian
2012-06-01
Full Text Available The process of presenting new product development (NPD to market is of great importance due to variability of competitive rules in the business world. The product development teams face a lot of pressures due to rapid growth of technology, increased risk-taking of world markets and increasing variations in the customers` needs. However, the process of NPD is always associated with high uncertainties and complexities. To be successful in completing NPD project, existing risks should be identified and assessed. On the other hand, the Bayesian networks as a strong approach of decision making modeling of uncertain situations has attracted many researchers in various areas. These networks provide a decision supporting system for problems with uncertainties or probable reasoning. In this paper, the available risk factors in product development have been first identified in an electric company and then, the Bayesian network has been utilized and their interrelationships have been modeled to evaluate the available risk in the process. To determine the primary and conditional probabilities of the nodes, the viewpoints of experts in this area have been applied. The available risks in this process have been divided to High (H, Medium (M and Low (L groups and analyzed by the Agena Risk software. The findings derived from software output indicate that the production of the desired product has relatively high risk. In addition, Predictive support and Diagnostic support have been performed on the model with two different scenarios..
Risk Analysis of New Product Development Using Bayesian Networks
Directory of Open Access Journals (Sweden)
Mohammad Rahim Ramezanian
2012-01-01
Full Text Available The process of presenting new product development (NPD to market is of great importance due to variability of competitive rules in the business world. The product development teams face a lot of pressures due to rapid growth of technology, increased risk-taking of world markets and increasing variations in the customers` needs. However, the process of NPD is always associated with high uncertainties and complexities. To be successful in completing NPD project, existing risks should be identified and assessed. On the other hand, the Bayesian networks as a strong approach of decision making modeling of uncertain situations has attracted many researchers in various areas. These networks provide a decision supporting system for problems with uncertainties or probable reasoning. In this paper, the available risk factors in product development have been first identified in an electric company and then, the Bayesian network has been utilized and their interrelationships have been modeled to evaluate the available risk in the process. To determine the primary and conditional probabilities of the nodes, the viewpoints of experts in this area have been applied. The available risks in this process have been divided to High (H, Medium (M and Low (L groups and analyzed by the Agena Risk software. The findings derived from software output indicate that the production of the desired product has relatively high risk. In addition, Predictive support and Diagnostic support have been performed on the model with two different scenarios.
Probe Error Modeling Research Based on Bayesian Network
Institute of Scientific and Technical Information of China (English)
Wu Huaiqiang; Xing Zilong; Zhang Jian; Yan Yan
2015-01-01
Probe calibration is carried out under specific conditions; most of the error caused by the change of speed parameter has not been corrected. In order to reduce the measuring error influence on measurement accuracy, this article analyzes the relationship between speed parameter and probe error, and use Bayesian network to establish the model of probe error. Model takes account of prior knowledge and sample data, with the updating of data, which can reflect the change of the errors of the probe and constantly revised modeling results.
Diagnosing Intermittent and Persistent Faults using Static Bayesian Networks
Megshoel, Ole Jakob
2010-01-01
Both intermittent and persistent faults may occur in a wide range of systems. We present in this paper the introduction of intermittent fault handling techniques into ProDiagnose, an algorithm that previously only handled persistent faults. We discuss novel algorithmic techniques as well as how our static Bayesian networks help diagnose, in an integrated manner, a range of intermittent and persistent faults. Through experiments with data from the ADAPT electrical power system test bed, generated as part of the Second International Diagnostic Competition (DXC-10), we show that this novel variant of ProDiagnose diagnoses intermittent faults accurately and quickly, while maintaining strong performance on persistent faults.
Risk-Based Operation and Maintenance Using Bayesian Networks
DEFF Research Database (Denmark)
Nielsen, Jannie Jessen; Sørensen, John Dalsgaard
2011-01-01
This paper describes how risk-based decision making can be used for maintenance planning of components exposed to degradation such as fatigue in offshore wind turbines. In fatigue models, large epistemic uncertainties are usually present. These can be reduced if monitoring results are used to upd...... to update the models, and hereby a better basis for decision making is obtained. An application example shows how a Bayesian network model can be used as a tool for updating the model and assist in risk-based decision making....
Dynamic Bayesian Network Based Prognosis in Machining Processes
Institute of Scientific and Technical Information of China (English)
DONG Ming; YANG Zhi-bo
2008-01-01
Condition based maintenance (CBM) is becoming more and more popular in equipment main-tenance. A prerequisite to widespread deployment of CBM technology and practice in industry is effectivediagnostics and prognostics. A dynamic Bayesian network (DBN) based prognosis method was investigated topredict the remaining useful life (RUL) for an equipment. First, a DBN based prognosis framework and specificsteps for building a DBN based prognosis model were presented. Then, the corresponding inference algorithmsfor DBN based prognosis were provided. Finally, a prognosis procedure based on particle filtering algorithmswas used to predict the RUL of drill-bits of a vertical drilling machine, which is commonly used in industrialprocess. Preliminary experimental results are promising.
A Bayesian Network View on Nested Effects Models
Directory of Open Access Journals (Sweden)
Fröhlich Holger
2009-01-01
Full Text Available Nested effects models (NEMs are a class of probabilistic models that were designed to reconstruct a hidden signalling structure from a large set of observable effects caused by active interventions into the signalling pathway. We give a more flexible formulation of NEMs in the language of Bayesian networks. Our framework constitutes a natural generalization of the original NEM model, since it explicitly states the assumptions that are tacitly underlying the original version. Our approach gives rise to new learning methods for NEMs, which have been implemented in the /Bioconductor package nem. We validate these methods in a simulation study and apply them to a synthetic lethality dataset in yeast.
Learning Continuous Time Bayesian Network Classifiers Using MapReduce
Directory of Open Access Journals (Sweden)
Simone Villa
2014-12-01
Full Text Available Parameter and structural learning on continuous time Bayesian network classifiers are challenging tasks when you are dealing with big data. This paper describes an efficient scalable parallel algorithm for parameter and structural learning in the case of complete data using the MapReduce framework. Two popular instances of classifiers are analyzed, namely the continuous time naive Bayes and the continuous time tree augmented naive Bayes. Details of the proposed algorithm are presented using Hadoop, an open-source implementation of a distributed file system and the MapReduce framework for distributed data processing. Performance evaluation of the designed algorithm shows a robust parallel scaling.
Refinement of Bayesian Network Structures upon New Data
DEFF Research Database (Denmark)
Zeng, Yifeng; Xiang, Yanping; Pacekajus, Saulius
2010-01-01
Refinement of Bayesian network (BN) structures using new data becomes more and more relevant. Some work has been done there; however, one problem has not been considered yet – what to do when new data have fewer or more attributes than the existing model. In both cases, data contain important...... knowledge and every effort must be made in order to extract it. In this paper, we propose a general merging algorithm to deal with situations when new data have different set of attributes. The merging algorithm updates sufficient statistics when new data are received. It expands the flexibility of BN...
Cai, Baoping; Liu, Yonghong; Liu, Zengkai; Tian, Xiaojie; Zhang, Yanzhen; Ji, Renjie
2013-07-01
This article proposes a methodology for the application of Bayesian networks in conducting quantitative risk assessment of operations in offshore oil and gas industry. The method involves translating a flow chart of operations into the Bayesian network directly. The proposed methodology consists of five steps. First, the flow chart is translated into a Bayesian network. Second, the influencing factors of the network nodes are classified. Third, the Bayesian network for each factor is established. Fourth, the entire Bayesian network model is established. Lastly, the Bayesian network model is analyzed. Subsequently, five categories of influencing factors, namely, human, hardware, software, mechanical, and hydraulic, are modeled and then added to the main Bayesian network. The methodology is demonstrated through the evaluation of a case study that shows the probability of failure on demand in closing subsea ram blowout preventer operations. The results show that mechanical and hydraulic factors have the most important effects on operation safety. Software and hardware factors have almost no influence, whereas human factors are in between. The results of the sensitivity analysis agree with the findings of the quantitative analysis. The three-axiom-based analysis partially validates the correctness and rationality of the proposed Bayesian network model.
Precise Network Modeling of Systems Genetics Data Using the Bayesian Network Webserver.
Ziebarth, Jesse D; Cui, Yan
2017-01-01
The Bayesian Network Webserver (BNW, http://compbio.uthsc.edu/BNW ) is an integrated platform for Bayesian network modeling of biological datasets. It provides a web-based network modeling environment that seamlessly integrates advanced algorithms for probabilistic causal modeling and reasoning with Bayesian networks. BNW is designed for precise modeling of relatively small networks that contain less than 20 nodes. The structure learning algorithms used by BNW guarantee the discovery of the best (most probable) network structure given the data. To facilitate network modeling across multiple biological levels, BNW provides a very flexible interface that allows users to assign network nodes into different tiers and define the relationships between and within the tiers. This function is particularly useful for modeling systems genetics datasets that often consist of multiscalar heterogeneous genotype-to-phenotype data. BNW enables users to, within seconds or minutes, go from having a simply formatted input file containing a dataset to using a network model to make predictions about the interactions between variables and the potential effects of experimental interventions. In this chapter, we will introduce the functions of BNW and show how to model systems genetics datasets with BNW.
Efficient Bayesian Learning in Social Networks with Gaussian Estimators
Mossel, Elchanan
2010-01-01
We propose a simple and efficient Bayesian model of iterative learning on social networks. This model is efficient in two senses: the process both results in an optimal belief, and can be carried out with modest computational resources for large networks. This result extends Condorcet's Jury Theorem to general social networks, while preserving rationality and computational feasibility. The model consists of a group of agents who belong to a social network, so that a pair of agents can observe each other's actions only if they are neighbors. We assume that the network is connected and that the agents have full knowledge of the structure of the network. The agents try to estimate some state of the world S (say, the price of oil a year from today). Each agent has a private measurement of S. This is modeled, for agent v, by a number S_v picked from a Gaussian distribution with mean S and standard deviation one. Accordingly, agent v's prior belief regarding S is a normal distribution with mean S_v and standard dev...
Application of Bayesian Networks to hindcast barrier island morphodynamics
Wilson, Kathleen E.; Adams, Peter N.; Hapke, Cheryl J.; Lentz, Erika E.; Brenner, Owen T.
2015-01-01
Prediction of coastal vulnerability is of increasing concern to policy makers, coastal managers and other stakeholders. Coastal regions and barrier islands along the Atlantic and Gulf coasts are subject to frequent, large storms, whose waves and storm surge can dramatically alter beach morphology, threaten infrastructure, and impact local economies. Given that precise forecasts of regional hazards are challenging, because of the complex interactions between processes on many scales, a range of probable geomorphic change in response to storm conditions is often more helpful than deterministic predictions. Site-specific probabilistic models of coastal change are reliable because they are formulated with observations so that local factors, of potentially high influence, are inherent in the model. The development and use of predictive tools such as Bayesian Networks in response to future storms has the potential to better inform management decisions and hazard preparation in coastal communities. We present several Bayesian Networks designed to hindcast distinct morphologic changes attributable to the Nor'Ida storm of 2009, at Fire Island, New York. Model predictions are informed with historical system behavior, initial morphologic conditions, and a parameterized treatment of wave climate.
Nuclear charge radii: density functional theory meets Bayesian neural networks
Utama, R.; Chen, Wei-Chia; Piekarewicz, J.
2016-11-01
The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. The aim of this study is to explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain.
Chung, Gregory K. W. K.; Dionne, Gary B.; Kaiser, William J.
2006-01-01
Our research question was whether we could develop a feasible technique, using Bayesian networks, to diagnose gaps in student knowledge. Thirty-four college-age participants completed tasks designed to measure conceptual knowledge, procedural knowledge, and problem-solving skills related to circuit analysis. A Bayesian network was used to model…
Wu, Haiyan
2013-01-01
General diagnostic models (GDMs) and Bayesian networks are mathematical frameworks that cover a wide variety of psychometric models. Both extend latent class models, and while GDMs also extend item response theory (IRT) models, Bayesian networks can be parameterized using discretized IRT. The purpose of this study is to examine similarities and…
Recursive Bayesian recurrent neural networks for time-series modeling.
Mirikitani, Derrick T; Nikolaev, Nikolay
2010-02-01
This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.
Institute of Scientific and Technical Information of China (English)
Gui-xia Liu; Wei Feng; Han Wang; Lei Liu; Chun-guang Zhou
2009-01-01
In the post-genomic biology era, the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system, and it has been a challenging task in bioinformatics. The Bayesian network model has been used in reconstructing the gene regulatory network for its advantages, but how to determine the network structure and parameters is still important to be explored. This paper proposes a two-stage structure learning algorithm which integrates immune evolution algorithm to build a Bayesian network .The new algorithm is evaluated with the use of both simulated and yeast cell cycle data. The experimental results indicate that the proposed algorithm can find many of the known real regulatory relationships from literature and predict the others unknown with high validity and accuracy.
Institute of Scientific and Technical Information of China (English)
HU Zhao-yong
2005-01-01
Engineering diagnosis is essential to the operation of industrial equipment. The key to successful diagnosis is correct knowledge representation and reasoning. The Bayesian network is a powerful tool for it. This paper utilizes the Bayesian network to represent and reason diagnostic knowledge, named Bayesian diagnostic network. It provides a three-layer topologic structure based on operating conditions, possible faults and corresponding symptoms. The paper also discusses an approximate stochastic sampling algorithm. Then a practical Bayesian network for gas turbine diagnosis is constructed on a platform developed under a Visual C++ environment. It shows that the Bayesian network is a powerful model for representation and reasoning of diagnostic knowledge. The three-layer structure and the approximate algorithm are effective also.
Anacleto, Osvaldo; Queen, Catriona; Albers, Casper J.
2013-01-01
Traffic flow data are routinely collected for many networks worldwide. These invariably large data sets can be used as part of a traffic management system, for which good traffic flow forecasting models are crucial. The linear multiregression dynamic model (LMDM) has been shown to be promising for f
Quantifying Uncertainty in Brain Network Measures using Bayesian Connectomics
Directory of Open Access Journals (Sweden)
Ronald Johannes Janssen
2014-10-01
Full Text Available The wiring diagram of the human brain can be described in terms of graph measures that characterize structural regularities. These measures require an estimate of whole-brain structural connectivity for which one may resort to deterministic or thresholded probabilistic streamlining procedures. While these procedures have provided important insights about the characteristics of human brain networks, they ultimately rely on unwarranted assumptions such as those of noise-free data or the use of an arbitrary threshold. Therefore, resulting structural connectivity estimates as well as derived graph measures fail to fully take into account the inherent uncertainty in the structural estimate.In this paper, we illustrate an easy way of obtaining posterior distributions over graph metrics using Bayesian inference. It is shown that this posterior distribution can be used to quantify uncertainty about graph-theoretical measures at the single subject level, thereby providing a more nuanced view of the graph-theoretical properties of human brain connectivity. We refer to this model-based approach to connectivity analysis as Bayesian connectomics.
MODELING INFORMATION SYSTEM AVAILABILITY BY USING BAYESIAN BELIEF NETWORK APPROACH
Directory of Open Access Journals (Sweden)
Semir Ibrahimović
2016-03-01
Full Text Available Modern information systems are expected to be always-on by providing services to end-users, regardless of time and location. This is particularly important for organizations and industries where information systems support real-time operations and mission-critical applications that need to be available on 24 7 365 basis. Examples of such entities include process industries, telecommunications, healthcare, energy, banking, electronic commerce and a variety of cloud services. This article presents a modified Bayesian Belief Network model for predicting information system availability, introduced initially by Franke, U. and Johnson, P. (in article “Availability of enterprise IT systems – an expert based Bayesian model”. Software Quality Journal 20(2, 369-394, 2012 based on a thorough review of several dimensions of the information system availability, we proposed a modified set of determinants. The model is parameterized by using probability elicitation process with the participation of experts from the financial sector of Bosnia and Herzegovina. The model validation was performed using Monte Carlo simulation.
Grzegorczyk, Marco; Husmeier, Dirk
2013-01-01
To relax the homogeneity assumption of classical dynamic Bayesian networks (DBNs), various recent studies have combined DBNs with multiple changepoint processes. The underlying assumption is that the parameters associated with time series segments delimited by multiple changepoints are a priori inde
Japanese Dairy Cattle Productivity Analysis using Bayesian Network Model (BNM
Directory of Open Access Journals (Sweden)
Iqbal Ahmed
2016-11-01
Full Text Available Japanese Dairy Cattle Productivity Analysis is carried out based on Bayesian Network Model (BNM. Through the experiment with 280 Japanese anestrus Holstein dairy cow, it is found that the estimation for finding out the presence of estrous cycle using BNM represents almost 55% accuracy while considering all samples. On the contrary, almost 73% accurate estimation could be achieved while using suspended likelihood in sample datasets. Moreover, while the proposed BNM model have more confidence then the estimation accuracy is lies in between 93 to 100%. In addition, this research also reveals the optimum factors to find out the presence of estrous cycle among the 270 individual dairy cows. The objective estimation methods using BNM definitely lead a unique idea to overcome the error of subjective estimation of having estrous cycle among these Japanese dairy cattle.
Designing and testing inflationary models with Bayesian networks
Energy Technology Data Exchange (ETDEWEB)
Price, Layne C. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Physics; Auckland Univ. (New Zealand). Dept. of Physics; Peiris, Hiranya V. [Univ. College London (United Kingdom). Dept. of Physics and Astronomy; Frazer, Jonathan [DESY Hamburg (Germany). Theory Group; Univ. of the Basque Country, Bilbao (Spain). Dept. of Theoretical Physics; Basque Foundation for Science, Bilbao (Spain). IKERBASQUE; Easther, Richard [Auckland Univ. (New Zealand). Dept. of Physics
2015-11-15
Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use N{sub f}-quadratic inflation as an illustrative example, finding that the number of e-folds N{sub *} between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.
Aggregated Residential Load Modeling Using Dynamic Bayesian Networks
Energy Technology Data Exchange (ETDEWEB)
Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai
2014-09-28
Abstract—It is already obvious that the future power grid will have to address higher demand for power and energy, and to incorporate renewable resources of different energy generation patterns. Demand response (DR) schemes could successfully be used to manage and balance power supply and demand under operating conditions of the future power grid. To achieve that, more advanced tools for DR management of operations and planning are necessary that can estimate the available capacity from DR resources. In this research, a Dynamic Bayesian Network (DBN) is derived, trained, and tested that can model aggregated load of Heating, Ventilation, and Air Conditioning (HVAC) systems. DBNs can provide flexible and powerful tools for both operations and planing, due to their unique analytical capabilities. The DBN model accuracy and flexibility of use is demonstrated by testing the model under different operational scenarios.
Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model
Directory of Open Access Journals (Sweden)
Qi Yuan(Alan
2010-01-01
Full Text Available Abstract The problem of uncovering transcriptional regulation by transcription factors (TFs based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ( status and Estrogen Receptor negative ( status, respectively.
The neighborhood MCMC sampler for learning Bayesian networks
Alyami, Salem A.; Azad, A. K. M.; Keith, Jonathan M.
2016-07-01
Getting stuck in local maxima is a problem that arises while learning Bayesian networks (BNs) structures. In this paper, we studied a recently proposed Markov chain Monte Carlo (MCMC) sampler, called the Neighbourhood sampler (NS), and examined how efficiently it can sample BNs when local maxima are present. We assume that a posterior distribution f(N,E|D) has been defined, where D represents data relevant to the inference, N and E are the sets of nodes and directed edges, respectively. We illustrate the new approach by sampling from such a distribution, and inferring BNs. The simulations conducted in this paper show that the new learning approach substantially avoids getting stuck in local modes of the distribution, and achieves a more rapid rate of convergence, compared to other common algorithms e.g. the MCMC Metropolis-Hastings sampler.
Development of a Bayesian Belief Network Runway Incursion Model
Green, Lawrence L.
2014-01-01
In a previous paper, a statistical analysis of runway incursion (RI) events was conducted to ascertain their relevance to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to perhaps several of the AvSP top ten TC. That data also identified several primary causes and contributing factors for RI events that served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events. The system-level BBN model will allow NASA to generically model the causes of RI events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of RI events in particular, and to improve runway safety in general. The development, structure and assessment of that BBN for RI events by a Subject Matter Expert panel are documented in this paper.
Assessing Requirements Volatility and Risk Using Bayesian Networks
Russell, Michael S.
2010-01-01
There are many factors that affect the level of requirements volatility a system experiences over its lifecycle and the risk that volatility imparts. Improper requirements generation, undocumented user expectations, conflicting design decisions, and anticipated / unanticipated world states are representative of these volatility factors. Combined, these volatility factors can increase programmatic risk and adversely affect successful system development. This paper proposes that a Bayesian Network can be used to support reasonable judgments concerning the most likely sources and types of requirements volatility a developing system will experience prior to starting development and by doing so it is possible to predict the level of requirements volatility the system will experience over its lifecycle. This assessment offers valuable insight to the system's developers, particularly by providing a starting point for risk mitigation planning and execution.
Dynamic Bayesian Networks for Context-Aware Fall Risk Assessment
Directory of Open Access Journals (Sweden)
Gregory Koshmak
2014-05-01
Full Text Available Fall incidents among the elderly often occur in the home and can cause serious injuries affecting their independent living. This paper presents an approach where data from wearable sensors integrated in a smart home environment is combined using a dynamic Bayesian network. The smart home environment provides contextual data, obtained from environmental sensors, and contributes to assessing a fall risk probability. The evaluation of the developed system is performed through simulation. Each time step is represented by a single user activity and interacts with a fall sensors located on a mobile device. A posterior probability is calculated for each recognized activity or contextual information. The output of the system provides a total risk assessment of falling given a response from the fall sensor.
Designing and testing inflationary models with Bayesian networks
Price, Layne C; Frazer, Jonathan; Easther, Richard
2015-01-01
Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use $N_f$--quadratic inflation as an illustrative example, finding that the number of $e$-folds $N_*$ between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.
Safety Analysis of Liquid Rocket Engine Using Bayesian Networks
Institute of Scientific and Technical Information of China (English)
WANG Hua-wei; YAN Zhi-qiang
2007-01-01
Safety analysis for liquid rocket engine has a great meaning for shortening development cycle, saving development expenditure and reducing development risk. The relationship between the structure and component of liquid rocket engine is much more complex, furthermore test data are absent in development phase. Thereby, the uncertainties exist in safety analysis for liquid rocket engine. A safety analysis model integrated with FMEA(failure mode and effect analysis)based on Bayesian networks (BN) is brought forward for liquid rocket engine, which can combine qualitative analysis with quantitative decision. The method has the advantages of fusing multi-information, saving sample amount and having high veracity. An example shows that the method is efficient.
Bayesian Model Selection with Network Based Diffusion Analysis.
Whalen, Andrew; Hoppitt, William J E
2016-01-01
A number of recent studies have used Network Based Diffusion Analysis (NBDA) to detect the role of social transmission in the spread of a novel behavior through a population. In this paper we present a unified framework for performing NBDA in a Bayesian setting, and demonstrate how the Watanabe Akaike Information Criteria (WAIC) can be used for model selection. We present a specific example of applying this method to Time to Acquisition Diffusion Analysis (TADA). To examine the robustness of this technique, we performed a large scale simulation study and found that NBDA using WAIC could recover the correct model of social transmission under a wide range of cases, including under the presence of random effects, individual level variables, and alternative models of social transmission. This work suggests that NBDA is an effective and widely applicable tool for uncovering whether social transmission underpins the spread of a novel behavior, and may still provide accurate results even when key model assumptions are relaxed.
Reduced complexity turbo equalization using a dynamic Bayesian network
Myburgh, Hermanus C.; Olivier, Jan C.; van Zyl, Augustinus J.
2012-12-01
It is proposed that a dynamic Bayesian network (DBN) is used to perform turbo equalization in a system transmitting information over a Rayleigh fading multipath channel. The DBN turbo equalizer (DBN-TE) is modeled on a single directed acyclic graph by relaxing the Markov assumption and allowing weak connections to past and future states. Its complexity is exponential in encoder constraint length and approximately linear in the channel memory length. Results show that the performance of the DBN-TE closely matches that of a traditional turbo equalizer that uses a maximum a posteriori equalizer and decoder pair. The DBN-TE achieves full convergence and near-optimal performance after small number of iterations.
Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model
Meng, Jia; Zhang, Jianqiu(Michelle); Qi, Yuan(Alan); Chen, Yidong; Huang, Yufei
2010-12-01
The problem of uncovering transcriptional regulation by transcription factors (TFs) based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM) is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ([InlineEquation not available: see fulltext.]) status and Estrogen Receptor negative ([InlineEquation not available: see fulltext.]) status, respectively.
Exact Structure Discovery in Bayesian Networks with Less Space
Parviainen, Pekka
2012-01-01
The fastest known exact algorithms for scorebased structure discovery in Bayesian networks on n nodes run in time and space 2nnO(1). The usage of these algorithms is limited to networks on at most around 25 nodes mainly due to the space requirement. Here, we study space-time tradeoffs for finding an optimal network structure. When little space is available, we apply the Gurevich-Shelah recurrence-originally proposed for the Hamiltonian path problem-and obtain time 22n-snO(1) in space 2snO(1) for any s = n/2, n/4, n/8, . . .; we assume the indegree of each node is bounded by a constant. For the more practical setting with moderate amounts of space, we present a novel scheme. It yields running time 2n(3/2)pnO(1) in space 2n(3/4)pnO(1) for any p = 0, 1, . . ., n/2; these bounds hold as long as the indegrees are at most 0.238n. Furthermore, the latter scheme allows easy and efficient parallelization beyond previous algorithms. We also explore empirically the potential of the presented techniques.
Prediction of vehicle traffic accidents using Bayesian networks
Directory of Open Access Journals (Sweden)
Seyed Shamseddin Alizadeh
2014-06-01
Full Text Available Every year, thousands of vehicle accidents occur in Iran and result thousands of deaths, injuries and material damage in country. Various factors such as driver characteristics, road characteristics, vehicle characteristics and atmospheric conditions affect the injuries severity of these accidents. In order to reduce the number and severity of these accidents, their analysis and prediction is essential. Currently, the accidents related data are collected which can be used to predict and prevent them. New technologies have enabled humans to collect the large volume of data in continuous and regular ways. One of these methods is to use Bayesian networks. Using the literature review, in this study a new method for analysis and prediction of vehicle traffic accidents is presented. These networks can be used for classification of traffic accidents, hazardous locations of roads and factors affecting accidents severity. Using of the results of the analysis of these networks will help to reduce the number of accidents and their severity. In addition, we can use the results of this analysis for developing of safety regulations.
Dynamic Bayesian Network Modeling of Game Based Diagnostic Assessments. CRESST Report 837
Levy, Roy
2014-01-01
Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…
PedExpert: a computer program for the application of Bayesian networks to human paternity testing.
Gomes, R R; Campos, S V A; Pena, S D J
2009-01-01
PedExpert is a Windows-based Bayesian network software, especially constructed to solve problems in parentage testing that are complex because of missing genetic information on the alleged father and/or because they involve genetic mutations. PedExpert automates the creation and manipulation of Bayesian networks, implementing algorithms that convert pedigrees and sets of indispensable information (genotypes, allele frequencies, mutation rates) into Bayesian networks. This program has a novel feature that can incorporate information about gene mutations into tables of conditional probabilities of transmission of alleles from the alleged father to the child, without adding new nodes to the network. This permits using the same Bayesian network in different modes, for analysis of cases that include mutations or not. PedExpert is user-friendly and greatly reduces the time of analysis for complex cases of paternity testing, eliminating most sources of logical and operational error.
Enhancing debris flow modeling parameters integrating Bayesian networks
Graf, C.; Stoffel, M.; Grêt-Regamey, A.
2009-04-01
Applied debris-flow modeling requires suitably constraint input parameter sets. Depending on the used model, there is a series of parameters to define before running the model. Normally, the data base describing the event, the initiation conditions, the flow behavior, the deposition process and mainly the potential range of possible debris flow events in a certain torrent is limited. There are only some scarce places in the world, where we fortunately can find valuable data sets describing event history of debris flow channels delivering information on spatial and temporal distribution of former flow paths and deposition zones. Tree-ring records in combination with detailed geomorphic mapping for instance provide such data sets over a long time span. Considering the significant loss potential associated with debris-flow disasters, it is crucial that decisions made in regard to hazard mitigation are based on a consistent assessment of the risks. This in turn necessitates a proper assessment of the uncertainties involved in the modeling of the debris-flow frequencies and intensities, the possible run out extent, as well as the estimations of the damage potential. In this study, we link a Bayesian network to a Geographic Information System in order to assess debris-flow risk. We identify the major sources of uncertainty and show the potential of Bayesian inference techniques to improve the debris-flow model. We model the flow paths and deposition zones of a highly active debris-flow channel in the Swiss Alps using the numerical 2-D model RAMMS. Because uncertainties in run-out areas cause large changes in risk estimations, we use the data of flow path and deposition zone information of reconstructed debris-flow events derived from dendrogeomorphological analysis covering more than 400 years to update the input parameters of the RAMMS model. The probabilistic model, which consistently incorporates this available information, can serve as a basis for spatial risk
Making Supply Chains Resilient to Floods Using a Bayesian Network
Haraguchi, M.
2015-12-01
Natural hazards distress the global economy by disrupting the interconnected supply chain networks. Manufacturing companies have created cost-efficient supply chains by reducing inventories, streamlining logistics and limiting the number of suppliers. As a result, today's supply chains are profoundly susceptible to systemic risks. In Thailand, for example, the GDP growth rate declined by 76 % in 2011 due to prolonged flooding. Thailand incurred economic damage including the loss of USD 46.5 billion, approximately 70% of which was caused by major supply chain disruptions in the manufacturing sector. Similar problems occurred after the Great East Japan Earthquake and Tsunami in 2011, the Mississippi River floods and droughts during 2011 - 2013, and Hurricane Sandy in 2012. This study proposes a methodology for modeling supply chain disruptions using a Bayesian network analysis (BNA) to estimate expected values of countermeasures of floods, such as inventory management, supplier management and hard infrastructure management. We first performed a spatio-temporal correlation analysis between floods and extreme precipitation data for the last 100 years at a global scale. Then we used a BNA to create synthetic networks that include variables associated with the magnitude and duration of floods, major components of supply chains and market demands. We also included decision variables of countermeasures that would mitigate potential losses caused by supply chain disruptions. Finally, we conducted a cost-benefit analysis by estimating the expected values of these potential countermeasures while conducting a sensitivity analysis. The methodology was applied to supply chain disruptions caused by the 2011 Thailand floods. Our study demonstrates desirable typical data requirements for the analysis, such as anonymized supplier network data (i.e. critical dependencies, vulnerability information of suppliers) and sourcing data(i.e. locations of suppliers, and production rates and
A Bayesian belief network of threat anticipation and terrorist motivations
Olama, Mohammed M.; Allgood, Glenn O.; Davenport, Kristen M.; Schryver, Jack C.
2010-04-01
Recent events highlight the need for efficient tools for anticipating the threat posed by terrorists, whether individual or groups. Antiterrorism includes fostering awareness of potential threats, deterring aggressors, developing security measures, planning for future events, halting an event in process, and ultimately mitigating and managing the consequences of an event. To analyze such components, one must understand various aspects of threat elements like physical assets and their economic and social impacts. To this aim, we developed a three-layer Bayesian belief network (BBN) model that takes into consideration the relative threat of an attack against a particular asset (physical layer) as well as the individual psychology and motivations that would induce a person to either act alone or join a terrorist group and commit terrorist acts (social and economic layers). After researching the many possible motivations to become a terrorist, the main factors are compiled and sorted into categories such as initial and personal indicators, exclusion factors, and predictive behaviors. Assessing such threats requires combining information from disparate data sources most of which involve uncertainties. BBN combines these data in a coherent, analytically defensible, and understandable manner. The developed BBN model takes into consideration the likelihood and consequence of a threat in order to draw inferences about the risk of a terrorist attack so that mitigation efforts can be optimally deployed. The model is constructed using a network engineering process that treats the probability distributions of all the BBN nodes within the broader context of the system development process.
A Bayesian Belief Network of Threat Anticipation and Terrorist Motivations
Energy Technology Data Exchange (ETDEWEB)
Olama, Mohammed M [ORNL; Allgood, Glenn O [ORNL; Davenport, Kristen M [ORNL; Schryver, Jack C [ORNL
2010-01-01
Recent events highlight the need for efficient tools for anticipating the threat posed by terrorists, whether individual or groups. Antiterrorism includes fostering awareness of potential threats, deterring aggressors, developing security measures, planning for future events, halting an event in process, and ultimately mitigating and managing the consequences of an event. To analyze such components, one must understand various aspects of threat elements like physical assets and their economic and social impacts. To this aim, we developed a three-layer Bayesian belief network (BBN) model that takes into consideration the relative threat of an attack against a particular asset (physical layer) as well as the individual psychology and motivations that would induce a person to either act alone or join a terrorist group and commit terrorist acts (social and economic layers). After researching the many possible motivations to become a terrorist, the main factors are compiled and sorted into categories such as initial and personal indicators, exclusion factors, and predictive behaviors. Assessing such threats requires combining information from disparate data sources most of which involve uncertainties. BBN combines these data in a coherent, analytically defensible, and understandable manner. The developed BBN model takes into consideration the likelihood and consequence of a threat in order to draw inferences about the risk of a terrorist attack so that mitigation efforts can be optimally deployed. The model is constructed using a network engineering process that treats the probability distributions of all the BBN nodes within the broader context of the system development process.
Mocapy++ - a toolkit for inference and learning in dynamic Bayesian networks
DEFF Research Database (Denmark)
Paluszewski, Martin; Hamelryck, Thomas Wim
2010-01-01
Background Mocapy++ is a toolkit for parameter learning and inference in dynamic Bayesian networks (DBNs). It supports a wide range of DBN architectures and probability distributions, including distributions from directional statistics (the statistics of angles, directions and orientations...
A Probability-based Evolutionary Algorithm with Mutations to Learn Bayesian Networks
Directory of Open Access Journals (Sweden)
Sho Fukuda
2014-12-01
Full Text Available Bayesian networks are regarded as one of the essential tools to analyze causal relationship between events from data. To learn the structure of highly-reliable Bayesian networks from data as quickly as possible is one of the important problems that several studies have been tried to achieve. In recent years, probability-based evolutionary algorithms have been proposed as a new efficient approach to learn Bayesian networks. In this paper, we target on one of the probability-based evolutionary algorithms called PBIL (Probability-Based Incremental Learning, and propose a new mutation operator. Through performance evaluation, we found that the proposed mutation operator has a good performance in learning Bayesian networks
Bayesian network as a modelling tool for risk management in agriculture
DEFF Research Database (Denmark)
Rasmussen, Svend; Madsen, Anders L.; Lund, Mogens
. In this paper we use Bayesian networks as an integrated modelling approach for representing uncertainty and analysing risk management in agriculture. It is shown how historical farm account data may be efficiently used to estimate conditional probabilities, which are the core elements in Bayesian network models....... We further show how the Bayesian network model RiBay is used for stochastic simulation of farm income, and we demonstrate how RiBay can be used to simulate risk management at the farm level. It is concluded that the key strength of a Bayesian network is the transparency of assumptions......The importance of risk management increases as farmers become more exposed to risk. But risk management is a difficult topic because income risk is the result of the complex interaction of multiple risk factors combined with the effect of an increasing array of possible risk management tools...
A Bayesian network approach for modeling local failure in lung cancer
Energy Technology Data Exchange (ETDEWEB)
Oh, Jung Hun; Craft, Jeffrey; Al Lozi, Rawan; Vaidya, Manushka; Meng, Yifan; Deasy, Joseph O; Bradley, Jeffrey D; El Naqa, Issam, E-mail: elnaqa@wustl.edu [Department of Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, MO 63110 (United States)
2011-03-21
Locally advanced non-small cell lung cancer (NSCLC) patients suffer from a high local failure rate following radiotherapy. Despite many efforts to develop new dose-volume models for early detection of tumor local failure, there was no reported significant improvement in their application prospectively. Based on recent studies of biomarker proteins' role in hypoxia and inflammation in predicting tumor response to radiotherapy, we hypothesize that combining physical and biological factors with a suitable framework could improve the overall prediction. To test this hypothesis, we propose a graphical Bayesian network framework for predicting local failure in lung cancer. The proposed approach was tested using two different datasets of locally advanced NSCLC patients treated with radiotherapy. The first dataset was collected retrospectively, which comprises clinical and dosimetric variables only. The second dataset was collected prospectively in which in addition to clinical and dosimetric information, blood was drawn from the patients at various time points to extract candidate biomarkers as well. Our preliminary results show that the proposed method can be used as an efficient method to develop predictive models of local failure in these patients and to interpret relationships among the different variables in the models. We also demonstrate the potential use of heterogeneous physical and biological variables to improve the model prediction. With the first dataset, we achieved better performance compared with competing Bayesian-based classifiers. With the second dataset, the combined model had a slightly higher performance compared to individual physical and biological models, with the biological variables making the largest contribution. Our preliminary results highlight the potential of the proposed integrated approach for predicting post-radiotherapy local failure in NSCLC patients.
Scalable Bayesian modeling, monitoring and analysis of dynamic network flow data
2016-01-01
Traffic flow count data in networks arise in many applications, such as automobile or aviation transportation, certain directed social network contexts, and Internet studies. Using an example of Internet browser traffic flow through site-segments of an international news website, we present Bayesian analyses of two linked classes of models which, in tandem, allow fast, scalable and interpretable Bayesian inference. We first develop flexible state-space models for streaming count data, able to...
Directory of Open Access Journals (Sweden)
Frolova A. O.
2012-06-01
Full Text Available Reverse engineering of gene regulatory networks is an intensively studied topic in Systems Biology as it reconstructs regulatory interactions between all genes in the genome in the most complete form. The extreme computational complexity of this problem and lack of thorough reviews on reconstruction methods of gene regulatory network is a significant obstacle to further development of this area. In this article the two most common methods for modeling gene regulatory networks are surveyed: Boolean and Bayesian networks. The mathematical description of each method is given, as well as several algorithmic approaches to modeling gene networks using these methods; the complexity of algorithms and the problems that arise during its implementation are also noted.
A novel Bayesian learning method for information aggregation in modular neural networks
DEFF Research Database (Denmark)
Wang, Pan; Xu, Lida; Zhou, Shang-Ming;
2010-01-01
Modular neural network is a popular neural network model which has many successful applications. In this paper, a sequential Bayesian learning (SBL) is proposed for modular neural networks aiming at efficiently aggregating the outputs of members of the ensemble. The experimental results on eight ...
Larjo, Antti; Lähdesmäki, Harri
2015-12-01
Bayesian networks have become popular for modeling probabilistic relationships between entities. As their structure can also be given a causal interpretation about the studied system, they can be used to learn, for example, regulatory relationships of genes or proteins in biological networks and pathways. Inference of the Bayesian network structure is complicated by the size of the model structure space, necessitating the use of optimization methods or sampling techniques, such Markov Chain Monte Carlo (MCMC) methods. However, convergence of MCMC chains is in many cases slow and can become even a harder issue as the dataset size grows. We show here how to improve convergence in the Bayesian network structure space by using an adjustable proposal distribution with the possibility to propose a wide range of steps in the structure space, and demonstrate improved network structure inference by analyzing phosphoprotein data from the human primary T cell signaling network.
Modeling Land-Use Decision Behavior with Bayesian Belief Networks
Directory of Open Access Journals (Sweden)
Inge Aalders
2008-06-01
Full Text Available The ability to incorporate and manage the different drivers of land-use change in a modeling process is one of the key challenges because they are complex and are both quantitative and qualitative in nature. This paper uses Bayesian belief networks (BBN to incorporate characteristics of land managers in the modeling process and to enhance our understanding of land-use change based on the limited and disparate sources of information. One of the two models based on spatial data represented land managers in the form of a quantitative variable, the area of individual holdings, whereas the other model included qualitative data from a survey of land managers. Random samples from the spatial data provided evidence of the relationship between the different variables, which I used to develop the BBN structure. The model was tested for four different posterior probability distributions, and results showed that the trained and learned models are better at predicting land use than the uniform and random models. The inference from the model demonstrated the constraints that biophysical characteristics impose on land managers; for older land managers without heirs, there is a higher probability of the land use being arable agriculture. The results show the benefits of incorporating a more complex notion of land managers in land-use models, and of using different empirical data sources in the modeling process. Future research should focus on incorporating more complex social processes into the modeling structure, as well as incorporating spatio-temporal dynamics in a BBN.
Evidence for single top quark production using Bayesian neural networks
Energy Technology Data Exchange (ETDEWEB)
Kau, Daekwang [Florida State Univ., Tallahassee, FL (United States)
2007-01-01
We present results of a search for single top quark production in p$\\bar{p}$ collisions using a dataset of approximately 1 fb^{-1} collected with the D0 detector. This analysis considers the muon+jets and electron+jets final states and makes use of Bayesian neural networks to separate the expected signals from backgrounds. The observed excess is associated with a p-value of 0.081%, assuming the background-only hypothesis, which corresponds to an excess over background of 3.2 standard deviations for a Gaussian density. The p-value computed using the SM signal cross section of 2.9 pb is 1.6%, corresponding to an expected significance of 2.2 standard deviations. Assuming the observed excess is due to single top production, we measure a single top quark production cross section of σ(p$\\bar{p}$ → tb + X, tqb + X) = 4.4 ± 1.5 pb.
Dynamic safety assessment of natural gas stations using Bayesian network.
Zarei, Esmaeil; Azadeh, Ali; Khakzad, Nima; Aliabadi, Mostafa Mirzaei; Mohammadfam, Iraj
2017-01-05
Pipelines are one of the most popular and effective ways of transporting hazardous materials, especially natural gas. However, the rapid development of gas pipelines and stations in urban areas has introduced a serious threat to public safety and assets. Although different methods have been developed for risk analysis of gas transportation systems, a comprehensive methodology for risk analysis is still lacking, especially in natural gas stations. The present work is aimed at developing a dynamic and comprehensive quantitative risk analysis (DCQRA) approach for accident scenario and risk modeling of natural gas stations. In this approach, a FMEA is used for hazard analysis while a Bow-tie diagram and Bayesian network are employed to model the worst-case accident scenario and to assess the risks. The results have indicated that the failure of the regulator system was the worst-case accident scenario with the human error as the most contributing factor. Thus, in risk management plan of natural gas stations, priority should be given to the most probable root events and main contribution factors, which have identified in the present study, in order to reduce the occurrence probability of the accident scenarios and thus alleviate the risks.
Heterogeneous multimodal biomarkers analysis for Alzheimer's disease via Bayesian network.
Jin, Yan; Su, Yi; Zhou, Xiao-Hua; Huang, Shuai
2016-12-01
By 2050, it is estimated that the number of worldwide Alzheimer's disease (AD) patients will quadruple from the current number of 36 million, while no proven disease-modifying treatments are available. At present, the underlying disease mechanisms remain under investigation, and recent studies suggest that the disease involves multiple etiological pathways. To better understand the disease and develop treatment strategies, a number of ongoing studies including the Alzheimer's Disease Neuroimaging Initiative (ADNI) enroll many study participants and acquire a large number of biomarkers from various modalities including demographic, genotyping, fluid biomarkers, neuroimaging, neuropsychometric test, and clinical assessments. However, a systematic approach that can integrate all the collected data is lacking. The overarching goal of our study is to use machine learning techniques to understand the relationships among different biomarkers and to establish a system-level model that can better describe the interactions among biomarkers and provide superior diagnostic and prognostic information. In this pilot study, we use Bayesian network (BN) to analyze multimodal data from ADNI, including demographics, volumetric MRI, PET, genotypes, and neuropsychometric measurements and demonstrate our approach to have superior prediction accuracy.
Bridging groundwater models and decision support with a Bayesian network
Fienen, Michael N.; Masterson, John P.; Plant, Nathaniel G.; Gutierrez, Benjamin T.; Thieler, E. Robert
2013-01-01
Resource managers need to make decisions to plan for future environmental conditions, particularly sea level rise, in the face of substantial uncertainty. Many interacting processes factor in to the decisions they face. Advances in process models and the quantification of uncertainty have made models a valuable tool for this purpose. Long-simulation runtimes and, often, numerical instability make linking process models impractical in many cases. A method for emulating the important connections between model input and forecasts, while propagating uncertainty, has the potential to provide a bridge between complicated numerical process models and the efficiency and stability needed for decision making. We explore this using a Bayesian network (BN) to emulate a groundwater flow model. We expand on previous approaches to validating a BN by calculating forecasting skill using cross validation of a groundwater model of Assateague Island in Virginia and Maryland, USA. This BN emulation was shown to capture the important groundwater-flow characteristics and uncertainty of the groundwater system because of its connection to island morphology and sea level. Forecast power metrics associated with the validation of multiple alternative BN designs guided the selection of an optimal level of BN complexity. Assateague island is an ideal test case for exploring a forecasting tool based on current conditions because the unique hydrogeomorphological variability of the island includes a range of settings indicative of past, current, and future conditions. The resulting BN is a valuable tool for exploring the response of groundwater conditions to sea level rise in decision support.
Using a Bayesian network to predict barrier island geomorphologic characteristics
Gutierrez, Ben; Plant, Nathaniel G.; Thieler, E. Robert; Turecek, Aaron
2015-01-01
Quantifying geomorphic variability of coastal environments is important for understanding and describing the vulnerability of coastal topography, infrastructure, and ecosystems to future storms and sea level rise. Here we use a Bayesian network (BN) to test the importance of multiple interactions between barrier island geomorphic variables. This approach models complex interactions and handles uncertainty, which is intrinsic to future sea level rise, storminess, or anthropogenic processes (e.g., beach nourishment and other forms of coastal management). The BN was developed and tested at Assateague Island, Maryland/Virginia, USA, a barrier island with sufficient geomorphic and temporal variability to evaluate our approach. We tested the ability to predict dune height, beach width, and beach height variables using inputs that included longer-term, larger-scale, or external variables (historical shoreline change rates, distances to inlets, barrier width, mean barrier elevation, and anthropogenic modification). Data sets from three different years spanning nearly a decade sampled substantial temporal variability and serve as a proxy for analysis of future conditions. We show that distinct geomorphic conditions are associated with different long-term shoreline change rates and that the most skillful predictions of dune height, beach width, and beach height depend on including multiple input variables simultaneously. The predictive relationships are robust to variations in the amount of input data and to variations in model complexity. The resulting model can be used to evaluate scenarios related to coastal management plans and/or future scenarios where shoreline change rates may differ from those observed historically.
A Tractable Method for Measuring Nanomaterial Risk Using Bayesian Networks
Murphy, Finbarr; Sheehan, Barry; Mullins, Martin; Bouwmeester, Hans; Marvin, Hans J. P.; Bouzembrak, Yamine; Costa, Anna L.; Das, Rasel; Stone, Vicki; Tofail, Syed A. M.
2016-11-01
While control banding has been identified as a suitable framework for the evaluation and the determination of potential human health risks associated with exposure to nanomaterials (NMs), the approach currently lacks any implementation that enjoys widespread support. Large inconsistencies in characterisation data, toxicological measurements and exposure scenarios make it difficult to map and compare the risk associated with NMs based on physicochemical data, concentration and exposure route. Here we demonstrate the use of Bayesian networks as a reliable tool for NM risk estimation. This tool is tractable, accessible and scalable. Most importantly, it captures a broad span of data types, from complete, high quality data sets through to data sets with missing data and/or values with a relatively high spread of probability distribution. The tool is able to learn iteratively in order to further refine forecasts as the quality of data available improves. We demonstrate how this risk measurement approach works on NMs with varying degrees of risk potential, namely, carbon nanotubes, silver and titanium dioxide. The results afford even non-experts an accurate picture of the occupational risk probabilities associated with these NMs and, in doing so, demonstrated how NM risk can be evaluated into a tractable, quantitative risk comparator.
CEO emotional bias and investment decision, Bayesian network method
Directory of Open Access Journals (Sweden)
Jarboui Anis
2012-08-01
Full Text Available This research examines the determinants of firms’ investment introducing a behavioral perspective that has received little attention in corporate finance literature. The following central hypothesis emerges from a set of recently developed theories: Investment decisions are influenced not only by their fundamentals but also depend on some other factors. One factor is the biasness of any CEO to their investment, biasness depends on the cognition and emotions, because some leaders use them as heuristic for the investment decision instead of fundamentals. This paper shows how CEO emotional bias (optimism, loss aversion and overconfidence affects the investment decisions. The proposed model of this paper uses Bayesian Network Method to examine this relationship. Emotional bias has been measured by means of a questionnaire comprising several items. As for the selected sample, it has been composed of some 100 Tunisian executives. Our results have revealed that the behavioral analysis of investment decision implies leader affected by behavioral biases (optimism, loss aversion, and overconfidence adjusts its investment choices based on their ability to assess alternatives (optimism and overconfidence and risk perception (loss aversion to create of shareholder value and ensure its place at the head of the management team.
CEO emotional bias and dividend policy: Bayesian network method
Directory of Open Access Journals (Sweden)
Azouzi Mohamed Ali
2012-10-01
Full Text Available This paper assumes that managers, investors, or both behave irrationally. In addition, even though scholars have investigated behavioral irrationality from three angles, investor sentiment, investor biases and managerial biases, we focus on the relationship between one of the managerial biases, overconfidence and dividend policy. Previous research investigating the relationship between overconfidence and financial decisions has studied investment, financing decisions and firm values. However, there are only a few exceptions to examine how a managerial emotional bias (optimism, loss aversion and overconfidence affects dividend policies. This stream of research contends whether to distribute dividends or not depends on how managers perceive of the company’s future. I will use Bayesian network method to examine this relation. Emotional bias has been measured by means of a questionnaire comprising several items. As for the selected sample, it has been composed of some100 Tunisian executives. Our results have revealed that leader affected by behavioral biases (optimism, loss aversion, and overconfidence adjusts its dividend policy choices based on their ability to assess alternatives (optimism and overconfidence and risk perception (loss aversion to create of shareholder value and ensure its place at the head of the management team.
Computing Posterior Probabilities of Structural Features in Bayesian Networks
Tian, Jin
2012-01-01
We study the problem of learning Bayesian network structures from data. Koivisto and Sood (2004) and Koivisto (2006) presented algorithms that can compute the exact marginal posterior probability of a subnetwork, e.g., a single edge, in O(n2n) time and the posterior probabilities for all n(n-1) potential edges in O(n2n) total time, assuming that the number of parents per node or the indegree is bounded by a constant. One main drawback of their algorithms is the requirement of a special structure prior that is non uniform and does not respect Markov equivalence. In this paper, we develop an algorithm that can compute the exact posterior probability of a subnetwork in O(3n) time and the posterior probabilities for all n(n-1) potential edges in O(n3n) total time. Our algorithm also assumes a bounded indegree but allows general structure priors. We demonstrate the applicability of the algorithm on several data sets with up to 20 variables.
Bayesian network model of crowd emotion and negative behavior
Ramli, Nurulhuda; Ghani, Noraida Abdul; Hatta, Zulkarnain Ahmad; Hashim, Intan Hashimah Mohd; Sulong, Jasni; Mahudin, Nor Diana Mohd; Rahman, Shukran Abd; Saad, Zarina Mat
2014-12-01
The effects of overcrowding have become a major concern for event organizers. One aspect of this concern has been the idea that overcrowding can enhance the occurrence of serious incidents during events. As one of the largest Muslim religious gathering attended by pilgrims from all over the world, Hajj has become extremely overcrowded with many incidents being reported. The purpose of this study is to analyze the nature of human emotion and negative behavior resulting from overcrowding during Hajj events from data gathered in Malaysian Hajj Experience Survey in 2013. The sample comprised of 147 Malaysian pilgrims (70 males and 77 females). Utilizing a probabilistic model called Bayesian network, this paper models the dependence structure between different emotions and negative behaviors of pilgrims in the crowd. The model included the following variables of emotion: negative, negative comfortable, positive, positive comfortable and positive spiritual and variables of negative behaviors; aggressive and hazardous acts. The study demonstrated that emotions of negative, negative comfortable, positive spiritual and positive emotion have a direct influence on aggressive behavior whereas emotion of negative comfortable, positive spiritual and positive have a direct influence on hazardous acts behavior. The sensitivity analysis showed that a low level of negative and negative comfortable emotions leads to a lower level of aggressive and hazardous behavior. Findings of the study can be further improved to identify the exact cause and risk factors of crowd-related incidents in preventing crowd disasters during the mass gathering events.
A Parallel and Incremental Approach for Data-Intensive Learning of Bayesian Networks.
Yue, Kun; Fang, Qiyu; Wang, Xiaoling; Li, Jin; Liu, Weiyi
2015-12-01
Bayesian network (BN) has been adopted as the underlying model for representing and inferring uncertain knowledge. As the basis of realistic applications centered on probabilistic inferences, learning a BN from data is a critical subject of machine learning, artificial intelligence, and big data paradigms. Currently, it is necessary to extend the classical methods for learning BNs with respect to data-intensive computing or in cloud environments. In this paper, we propose a parallel and incremental approach for data-intensive learning of BNs from massive, distributed, and dynamically changing data by extending the classical scoring and search algorithm and using MapReduce. First, we adopt the minimum description length as the scoring metric and give the two-pass MapReduce-based algorithms for computing the required marginal probabilities and scoring the candidate graphical model from sample data. Then, we give the corresponding strategy for extending the classical hill-climbing algorithm to obtain the optimal structure, as well as that for storing a BN by pairs. Further, in view of the dynamic characteristics of the changing data, we give the concept of influence degree to measure the coincidence of the current BN with new data, and then propose the corresponding two-pass MapReduce-based algorithms for BNs incremental learning. Experimental results show the efficiency, scalability, and effectiveness of our methods.
Combining Bayesian Networks and Agent Based Modeling to develop a decision-support model in Vietnam
Nong, Bao Anh; Ertsen, Maurits; Schoups, Gerrit
2016-04-01
Complexity and uncertainty in natural resources management have been focus themes in recent years. Within these debates, with the aim to define an approach feasible for water management practice, we are developing an integrated conceptual modeling framework for simulating decision-making processes of citizens, in our case in the Day river area, Vietnam. The model combines Bayesian Networks (BNs) and Agent-Based Modeling (ABM). BNs are able to combine both qualitative data from consultants / experts / stakeholders, and quantitative data from observations on different phenomena or outcomes from other models. Further strengths of BNs are that the relationship between variables in the system is presented in a graphical interface, and that components of uncertainty are explicitly related to their probabilistic dependencies. A disadvantage is that BNs cannot easily identify the feedback of agents in the system once changes appear. Hence, ABM was adopted to represent the reaction among stakeholders under changes. The modeling framework is developed as an attempt to gain better understanding about citizen's behavior and factors influencing their decisions in order to reduce uncertainty in the implementation of water management policy.
Directory of Open Access Journals (Sweden)
Nataša Papić-Blagojević
2012-04-01
Full Text Available Marketing approach is associated to market conditions and achieving long term profitability of a company by satisfying consumers’ needs. This approach in tourism does not have to be related only to promoting one touristic destination, but is associated to relation between travel agency and its clients too. It considers that travel agencies adjust their offers to their clients’ needs. In that sense, it is important to analyze the behavior of tourists in the earlier periods with consideration of their preferences. Using Bayesian network, it could be graphically displayed the connection between tourists who have similar taste and relationships between them. On the other hand, the analytic hierarchy process (AHP is used to rank tourist attractions, with also relying on past experience. In this paper we examine possible applications of these two models in tourism in Serbia. The example is hypothetical, but it will serve as a base for future research. Three types of tourism are chosen as a representative in Vojvodina: Cultural, Rural and Business tourism, because they are the bright spot of touristic development in this area. Applied on these forms, analytic hierarchy process has shown its strength in predicting tourists’ preferences.
Bayesian Network Based Fault Prognosis via Bond Graph Modeling of High-Speed Railway Traction Device
Directory of Open Access Journals (Sweden)
Yunkai Wu
2015-01-01
component-level faults accurately for a high-speed railway traction system, a fault prognosis approach via Bayesian network and bond graph modeling techniques is proposed. The inherent structure of a railway traction system is represented by bond graph model, based on which a multilayer Bayesian network is developed for fault propagation analysis and fault prediction. For complete and incomplete data sets, two different parameter learning algorithms such as Bayesian estimation and expectation maximization (EM algorithm are adopted to determine the conditional probability table of the Bayesian network. The proposed prognosis approach using Pearl’s polytree propagation algorithm for joint probability reasoning can predict the failure probabilities of leaf nodes based on the current status of root nodes. Verification results in a high-speed railway traction simulation system can demonstrate the effectiveness of the proposed approach.
Using literature and data to learn Bayesian networks as clinical models of ovarian tumors
DEFF Research Database (Denmark)
Antal, P.; Fannes, G.; Timmerman, D.
2004-01-01
Thanks to its increasing availability, electronic literature has become a potential source of information for the development of complex Bayesian networks (BN), when human expertise is missing or data is scarce or contains much noise. This opportunity raises the question of how to integrate...... information from free-text resources with statistical data in learning Bayesian networks. Firstly, we report on the collection of prior information resources in the ovarian cancer domain, which includes "kernel" annotations of the domain variables. We introduce methods based on the annotations and literature...... an expert reference and against data scores (the mutual information (MI) and a Bayesian score). Next, we transform the text-based dependency measures into informative text-based priors for Bayesian network structures. Finally, we report the benefit of such informative text-based priors on the performance...
A Bayesian Network to Predict Barrier Island Geomorphologic Characteristics
Gutierrez, B.; Plant, N. G.; Thieler, E. R.; Turecek, A.; Stippa, S.
2014-12-01
Understanding how barrier islands along the Atlantic and Gulf coasts of the United States respond to storms and sea-level rise is an important management concern. Although these threats are well recognized, quantifying the integrated vulnerability is challenging due to the range of time and space scalesover which these processes act. Developing datasets and methods to identify the physical vulnerabilities of coastal environments due to storms and sea-level rise thus is an important scientific focus that supports land management decision making. Here we employ a Bayesian Network (BN) to model the interactions between geomorphic variables sampled from existing datasets that capture both storm-and sea-level rise related coastal evolution. The BN provides a means of estimating probabilities of changes in specific geomorphic characteristics such as foredune crest height, beach width, beach height, given knowledge of barrier island width, maximum barrier island elevation, distance from an inlet, the presence of anthropogenic modifications, and long-term shoreline change rates, which we assume to be directly related to sea-level rise. We evaluate BN skill and explore how different constraints, such as shoreline change characteristics (eroding, stable, accreting), distance to nearby inlets and island width, affect the probability distributions of future morphological characteristics. Our work demonstrates that a skillful BN can be constructed and that factors such as distance to inlet, shoreline change rate, and the presence of human alterations have the strongest influences on network performance. For Assateague Island, Maryland/Virginia, USA, we find that different shoreline change behaviors affect the probabilities of specific geomorphic characteristics, such as dune height, which allows us to identify vulnerable locations on the barrier island where habitat or infrastructure may be vulnerable to storms and sea-level rise.
Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks.
Bitzer, Sebastian; Kiebel, Stefan J
2012-07-01
Recurrent neural networks (RNNs) are widely used in computational neuroscience and machine learning applications. In an RNN, each neuron computes its output as a nonlinear function of its integrated input. While the importance of RNNs, especially as models of brain processing, is undisputed, it is also widely acknowledged that the computations in standard RNN models may be an over-simplification of what real neuronal networks compute. Here, we suggest that the RNN approach may be made computationally more powerful by its fusion with Bayesian inference techniques for nonlinear dynamical systems. In this scheme, we use an RNN as a generative model of dynamic input caused by the environment, e.g. of speech or kinematics. Given this generative RNN model, we derive Bayesian update equations that can decode its output. Critically, these updates define a 'recognizing RNN' (rRNN), in which neurons compute and exchange prediction and prediction error messages. The rRNN has several desirable features that a conventional RNN does not have, e.g. fast decoding of dynamic stimuli and robustness to initial conditions and noise. Furthermore, it implements a predictive coding scheme for dynamic inputs. We suggest that the Bayesian inversion of RNNs may be useful both as a model of brain function and as a machine learning tool. We illustrate the use of the rRNN by an application to the online decoding (i.e. recognition) of human kinematics.
Graphical model construction based on evolutionary algorithms
Institute of Scientific and Technical Information of China (English)
Youlong YANG; Yan WU; Sanyang LIU
2006-01-01
Using Bayesian networks to model promising solutions from the current population of the evolutionary algorithms can ensure efficiency and intelligence search for the optimum. However, to construct a Bayesian network that fits a given dataset is a NP-hard problem, and it also needs consuming mass computational resources. This paper develops a methodology for constructing a graphical model based on Bayesian Dirichlet metric. Our approach is derived from a set of propositions and theorems by researching the local metric relationship of networks matching dataset. This paper presents the algorithm to construct a tree model from a set of potential solutions using above approach. This method is important not only for evolutionary algorithms based on graphical models, but also for machine learning and data mining.The experimental results show that the exact theoretical results and the approximations match very well.
Graphical reduction of reaction networks by linear elimination of species
DEFF Research Database (Denmark)
Saez Cornellana, Meritxell; Wiuf, Carsten Henrik; Feliu, Elisenda
2016-01-01
of the network and its kinetics. We conclude by comparing our approach to an older similar approach by Temkin and co-workers. Finally, we apply the procedure to biological examples such as substrate mechanisms, post-translational modification systems and networks with intermediates (transient) steps....
Guo, Xiaojuan; Wang, Yan; Chen, Kewei; Wu, Xia; Zhang, Jiacai; Li, Ke; Jin, Zhen; Yao, Li
2014-01-01
Recent multivariate neuroimaging studies have revealed aging-related alterations in brain structural networks. However, the sensory/motor networks such as the auditory, visual and motor networks, have obtained much less attention in normal aging research. In this study, we used Gaussian Bayesian networks (BN), an approach investigating possible inter-regional directed relationship, to characterize aging effects on structural associations between core brain regions within each of these structural sensory/motor networks using volumetric MRI data. We then further examined the discriminability of BN models for the young (N = 109; mean age =22.73 years, range 20-28) and old (N = 82; mean age =74.37 years, range 60-90) groups. The results of the BN modeling demonstrated that structural associations exist between two homotopic brain regions from the left and right hemispheres in each of the three networks. In particular, compared with the young group, the old group had significant connection reductions in each of the three networks and lesser connection numbers in the visual network. Moreover, it was found that the aging-related BN models could distinguish the young and old individuals with 90.05, 73.82, and 88.48% accuracy for the auditory, visual, and motor networks, respectively. Our findings suggest that BN models can be used to investigate the normal aging process with reliable statistical power. Moreover, these differences in structural inter-regional interactions may help elucidate the neuronal mechanism of anatomical changes in normal aging.
Gonzalez-Redin, Julen; Luque, Sandra; Poggio, Laura; Smith, Ron; Gimona, Alessandro
2016-01-01
An integrated methodology, based on linking Bayesian belief networks (BBN) with GIS, is proposed for combining available evidence to help forest managers evaluate implications and trade-offs between forest production and conservation measures to preserve biodiversity in forested habitats. A Bayesian belief network is a probabilistic graphical model that represents variables and their dependencies through specifying probabilistic relationships. In spatially explicit decision problems where it is difficult to choose appropriate combinations of interventions, the proposed integration of a BBN with GIS helped to facilitate shared understanding of the human-landscape relationships, while fostering collective management that can be incorporated into landscape planning processes. Trades-offs become more and more relevant in these landscape contexts where the participation of many and varied stakeholder groups is indispensable. With these challenges in mind, our integrated approach incorporates GIS-based data with expert knowledge to consider two different land use interests - biodiversity value for conservation and timber production potential - with the focus on a complex mountain landscape in the French Alps. The spatial models produced provided different alternatives of suitable sites that can be used by policy makers in order to support conservation priorities while addressing management options. The approach provided provide a common reasoning language among different experts from different backgrounds while helped to identify spatially explicit conflictive areas.
Distributed Diagnosis in Uncertain Environments Using Dynamic Bayesian Networks
National Aeronautics and Space Administration — This paper presents a distributed Bayesian fault diagnosis scheme for physical systems. Our diagnoser design is based on a procedure for factoring the global system...
A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network.
Liu, Zengkai; Liu, Yonghong; Shan, Hongkai; Cai, Baoping; Huang, Qing
2015-01-01
This paper proposes a fault diagnosis methodology for a gear pump based on the ensemble empirical mode decomposition (EEMD) method and the Bayesian network. Essentially, the presented scheme is a multi-source information fusion based methodology. Compared with the conventional fault diagnosis with only EEMD, the proposed method is able to take advantage of all useful information besides sensor signals. The presented diagnostic Bayesian network consists of a fault layer, a fault feature layer and a multi-source information layer. Vibration signals from sensor measurement are decomposed by the EEMD method and the energy of intrinsic mode functions (IMFs) are calculated as fault features. These features are added into the fault feature layer in the Bayesian network. The other sources of useful information are added to the information layer. The generalized three-layer Bayesian network can be developed by fully incorporating faults and fault symptoms as well as other useful information such as naked eye inspection and maintenance records. Therefore, diagnostic accuracy and capacity can be improved. The proposed methodology is applied to the fault diagnosis of a gear pump and the structure and parameters of the Bayesian network is established. Compared with artificial neural network and support vector machine classification algorithms, the proposed model has the best diagnostic performance when sensor data is used only. A case study has demonstrated that some information from human observation or system repair records is very helpful to the fault diagnosis. It is effective and efficient in diagnosing faults based on uncertain, incomplete information.
A Bayesian network model for predicting aquatic toxicity mode ...
The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity but MoA classification in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity mode of action using a recently published dataset containing over one thousand chemicals with MoA assignments for aquatic animal toxicity. Two dimensional theoretical chemical descriptors were generated for each chemical using the Toxicity Estimation Software Tool. The model was developed through augmented Markov blanket discovery from the data set with the MoA broad classifications as a target node. From cross validation, the overall precision for the model was 80.2% with a R2 of 0.959. The best precision was for the AChEI MoA (93.5%) where 257 chemicals out of 275 were correctly classified. Model precision was poorest for the reactivity MoA (48.5%) where 48 out of 99 reactive chemicals were correctly classified. Narcosis represented the largest class within the MoA dataset and had a precision and reliability of 80.0%, reflecting the global precision across all of the MoAs. False negatives for narcosis most often fell into electron transport inhibition, neurotoxicity or reactivity MoAs. False negatives for all other MoAs were most often narcosis. A probabilistic sensitivity analysis was undertaken for each MoA to examine the sensitivity to individual and multiple descriptor findings. The results show that the Markov blanket of a structurally
Utilization of extended bayesian networks in decision making under uncertainty
Energy Technology Data Exchange (ETDEWEB)
Van Eeckhout, Edward M [Los Alamos National Laboratory; Leishman, Deborah A [Los Alamos National Laboratory; Gibson, William L [Los Alamos National Laboratory
2009-01-01
Bayesian network tool (called IKE for Integrated Knowledge Engine) has been developed to assess the probability of undesirable events. The tool allows indications and observables from sensors and/or intelligence to feed directly into hypotheses of interest, thus allowing one to quantify the probability and uncertainty of these events resulting from very disparate evidence. For example, the probability that a facility is processing nuclear fuel or assembling a weapon can be assessed by examining the processes required, establishing the observables that should be present, then assembling information from intelligence, sensors and other information sources related to the observables. IKE also has the capability to determine tasking plans, that is, prioritize which observable should be collected next to most quickly ascertain the 'true' state and drive the probability toward 'zero' or 'one.' This optimization capability is called 'evidence marshaling.' One example to be discussed is a denied facility monitoring situation; there is concern that certain process(es) are being executed at the site (due to some intelligence or other data). We will show how additional pieces of evidence will then ascertain with some degree of certainty the likelihood of this process(es) as each piece of evidence is obtained. This example shows how both intelligence and sensor data can be incorporated into the analysis. A second example involves real-time perimeter security. For this demonstration we used seismic, acoustic, and optical sensors linked back to IKE. We show how these sensors identified and assessed the likelihood of 'intruder' versus friendly vehicles.
Emulation Modeling with Bayesian Networks for Efficient Decision Support
Fienen, M. N.; Masterson, J.; Plant, N. G.; Gutierrez, B. T.; Thieler, E. R.
2012-12-01
Bayesian decision networks (BDN) have long been used to provide decision support in systems that require explicit consideration of uncertainty; applications range from ecology to medical diagnostics and terrorism threat assessments. Until recently, however, few studies have applied BDNs to the study of groundwater systems. BDNs are particularly useful for representing real-world system variability by synthesizing a range of hydrogeologic situations within a single simulation. Because BDN output is cast in terms of probability—an output desired by decision makers—they explicitly incorporate the uncertainty of a system. BDNs can thus serve as a more efficient alternative to other uncertainty characterization methods such as computationally demanding Monte Carlo analyses and others methods restricted to linear model analyses. We present a unique application of a BDN to a groundwater modeling analysis of the hydrologic response of Assateague Island, Maryland to sea-level rise. Using both input and output variables of the modeled groundwater response to different sea-level (SLR) rise scenarios, the BDN predicts the probability of changes in the depth to fresh water, which exerts an important influence on physical and biological island evolution. Input variables included barrier-island width, maximum island elevation, and aquifer recharge. The variability of these inputs and their corresponding outputs are sampled along cross sections in a single model run to form an ensemble of input/output pairs. The BDN outputs, which are the posterior distributions of water table conditions for the sea-level rise scenarios, are evaluated through error analysis and cross-validation to assess both fit to training data and predictive power. The key benefit for using BDNs in groundwater modeling analyses is that they provide a method for distilling complex model results into predictions with associated uncertainty, which is useful to decision makers. Future efforts incorporate
Bayesian network classifiers for categorizing cortical GABAergic interneurons.
Mihaljević, Bojan; Benavides-Piccione, Ruth; Bielza, Concha; DeFelipe, Javier; Larrañaga, Pedro
2015-04-01
An accepted classification of GABAergic interneurons of the cerebral cortex is a major goal in neuroscience. A recently proposed taxonomy based on patterns of axonal arborization promises to be a pragmatic method for achieving this goal. It involves characterizing interneurons according to five axonal arborization features, called F1-F5, and classifying them into a set of predefined types, most of which are established in the literature. Unfortunately, there is little consensus among expert neuroscientists regarding the morphological definitions of some of the proposed types. While supervised classifiers were able to categorize the interneurons in accordance with experts' assignments, their accuracy was limited because they were trained with disputed labels. Thus, here we automatically classify interneuron subsets with different label reliability thresholds (i.e., such that every cell's label is backed by at least a certain (threshold) number of experts). We quantify the cells with parameters of axonal and dendritic morphologies and, in order to predict the type, also with axonal features F1-F4 provided by the experts. Using Bayesian network classifiers, we accurately characterize and classify the interneurons and identify useful predictor variables. In particular, we discriminate among reliable examples of common basket, horse-tail, large basket, and Martinotti cells with up to 89.52% accuracy, and single out the number of branches at 180 μm from the soma, the convex hull 2D area, and the axonal features F1-F4 as especially useful predictors for distinguishing among these types. These results open up new possibilities for an objective and pragmatic classification of interneurons.
Directory of Open Access Journals (Sweden)
Ildikó Ungvári
Full Text Available Genetic studies indicate high number of potential factors related to asthma. Based on earlier linkage analyses we selected the 11q13 and 14q22 asthma susceptibility regions, for which we designed a partial genome screening study using 145 SNPs in 1201 individuals (436 asthmatic children and 765 controls. The results were evaluated with traditional frequentist methods and we applied a new statistical method, called bayesian network based bayesian multilevel analysis of relevance (BN-BMLA. This method uses bayesian network representation to provide detailed characterization of the relevance of factors, such as joint significance, the type of dependency, and multi-target aspects. We estimated posteriors for these relations within the bayesian statistical framework, in order to estimate the posteriors whether a variable is directly relevant or its association is only mediated.With frequentist methods one SNP (rs3751464 in the FRMD6 gene provided evidence for an association with asthma (OR = 1.43(1.2-1.8; p = 3×10(-4. The possible role of the FRMD6 gene in asthma was also confirmed in an animal model and human asthmatics.In the BN-BMLA analysis altogether 5 SNPs in 4 genes were found relevant in connection with asthma phenotype: PRPF19 on chromosome 11, and FRMD6, PTGER2 and PTGDR on chromosome 14. In a subsequent step a partial dataset containing rhinitis and further clinical parameters was used, which allowed the analysis of relevance of SNPs for asthma and multiple targets. These analyses suggested that SNPs in the AHNAK and MS4A2 genes were indirectly associated with asthma. This paper indicates that BN-BMLA explores the relevant factors more comprehensively than traditional statistical methods and extends the scope of strong relevance based methods to include partial relevance, global characterization of relevance and multi-target relevance.
Guidance on the implementation and reporting of a drug safety Bayesian network meta-analysis.
Ohlssen, David; Price, Karen L; Xia, H Amy; Hong, Hwanhee; Kerman, Jouni; Fu, Haoda; Quartey, George; Heilmann, Cory R; Ma, Haijun; Carlin, Bradley P
2014-01-01
The Drug Information Association Bayesian Scientific Working Group (BSWG) was formed in 2011 with a vision to ensure that Bayesian methods are well understood and broadly utilized for design and analysis and throughout the medical product development process, and to improve industrial, regulatory, and economic decision making. The group, composed of individuals from academia, industry, and regulatory, has as its mission to facilitate the appropriate use and contribute to the progress of Bayesian methodology. In this paper, the safety sub-team of the BSWG explores the use of Bayesian methods when applied to drug safety meta-analysis and network meta-analysis. Guidance is presented on the conduct and reporting of such analyses. We also discuss different structural model assumptions and provide discussion on prior specification. The work is illustrated through a case study involving a network meta-analysis related to the cardiovascular safety of non-steroidal anti-inflammatory drugs.
Abdelkrim Moussaoui; Yacine Selaimia; Hadj A. Abbassi
2006-01-01
The authors discuss the combination of an Artificial Neural Network (ANN) with analytical models to improve the performance of the prediction model of finishing rolling force in hot strip rolling mill process. The suggested model was implemented using Bayesian Evidence based training algorithm. It was found that the Bayesian Evidence based approach provided a superior and smoother fit to the real rolling mill data. Completely independent set of real rolling data were used to evaluate the capa...
Ranking Features on Psychological Dynamics of Cooperative Team Work through Bayesian Networks
Pilar Fuster-Parra; Alex García-Mas; Jaume Cantallops; F. Javier Ponseti; Yuhua Luo
2016-01-01
The aim of this study is to rank some features that characterize the psychological dynamics of cooperative team work in order to determine priorities for interventions and formation: leading positive feedback, cooperative manager and collaborative manager features. From a dataset of 20 cooperative sport teams (403 soccer players), the characteristics of the prototypical sports teams are studied using an average Bayesian network (BN) and two special types of BNs, the Bayesian classifiers: naiv...
The use of Bayesian Networks in Detecting the States of Ventilation Mills in Power Plants
Directory of Open Access Journals (Sweden)
Sanja Vujnović
2014-06-01
Full Text Available The main objective of this paper is to present a new method of predictive maintenance which can detect the states of coal grinding mills in thermal power plants using Bayesian networks. Several possible structures of Bayesian networks are proposed for solving this problem and one of them is implemented and tested on an actual system. This method uses acoustic signals and statistical signal pre-processing tools to compute the inputs of the Bayesian network. After that the network is trained and tested using signals measured in the vicinity of the mill in the period of 2 months. The goal of this algorithm is to increase the efficiency of the coal grinding process and reduce the maintenance cost by eliminating the unnecessary maintenance checks of the system.
Method for Building a Medical Training Simulator with Bayesian Networks: SimDeCS.
Flores, Cecilia Dias; Fonseca, João Marcelo; Bez, Marta Rosecler; Respício, Ana; Coelho, Helder
2014-01-01
Distance education has grown in importance with the advent of the internet. An adequate evaluation of students in this mode is still difficult. Distance tests or occasional on-site exams do not meet the needs of evaluation of the learning process for distance education. Bayesian networks are adequate for simulating several aspects of clinical reasoning. The possibility of integrating them in distance education student evaluation has not yet been explored much. The present work describes a Simulator based on probabilistic networks built to represent knowledge of clinical practice guidelines in Family and Community Medicine. The Bayesian Network, the basis of the simulator, was modeled to playable by the student, to give immediate feedback according to pedagogical strategies adapted to the student according to past performance, and to give a broad evaluation of performance at the end of the game. Simulators structured by Bayesian Networks may become alternatives in the evaluation of students of Medical Distance Education.
Mani-Varnosfaderani, Ahmad; Kanginejad, Atefeh; Gilany, Kambiz; Valadkhani, Abolfazl
2016-10-12
The present work deals with the development of a new baseline correction method based on the comparative learning capabilities of artificial neural networks. The developed method uses the Bayes probability theorem for prevention of the occurrence of the over-fitting and finding a generalized baseline. The developed method has been applied on simulated and real metabolomic gas-chromatography (GC) and Raman data sets. The results revealed that the proposed method can be used to handle different types of baselines with cave, convex, curvelinear, triangular and sinusoidal patterns. For further evaluation of the performances of this method, it has been compared with benchmarking baseline correction methods such as corner-cutting (CC), morphological weighted penalized least squares (MPLS), adaptive iteratively-reweighted penalized least squares (airPLS) and iterative polynomial fitting (iPF). In order to compare the methods, the projected difference resolution (PDR) criterion has been calculated for the data before and after the baseline correction procedure. The calculated values of PDR after the baseline correction using iBRANN, airPLS, MPLS, iPF and CC algorithms for the GC metabolomic data were 4.18, 3.64, 3.88, 1.88 and 3.08, respectively. The obtained results in this work demonstrated that the developed iterative Bayesian regularized neural network (iBRANN) method in this work thoroughly detects the baselines and is superior over the CC, MPLS, airPLS and iPF techniques. A graphical user interface has been developed for the suggested algorithm and can be used for easy implementation of the iBRANN algorithm for the correction of different chromatography, NMR and Raman data sets.
Learning Bayesian Network Structure%贝叶斯网络结构学习分析
Institute of Scientific and Technical Information of China (English)
王双成; 林士敏; 陆玉昌
2000-01-01
In this paper the analysis of principle and process of Bayesian network structure learning is given. Bayesian network structure learning is a process that seeks the best network structure fitting the prior knowledge and data. The computing of posterior can be closed when data are completed and some other conditions are satisfied ,while the computing is not closed when some data are missing. One solution for missing data is fill-in methods,another is to approximate the likelihood of structure,then to compute the probabilities of structure.
Explaining Inference on a Population of Independent Agents Using Bayesian Networks
Sutovsky, Peter
2013-01-01
The main goal of this research is to design, implement, and evaluate a novel explanation method, the hierarchical explanation method (HEM), for explaining Bayesian network (BN) inference when the network is modeling a population of conditionally independent agents, each of which is modeled as a subnetwork. For example, consider disease-outbreak…
Beigy, Hamid; Ahmad, Ashar; Masoudi-Nejad, Ali; Fröhlich, Holger
2017-01-01
Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference techniques, such as Dynamic Bayesian Networks and ordinary differential equations, are limited by their computational complexity and thus make large scale inference infeasible. This is specifically true if a Bayesian framework is applied in order to deal with the unavoidable uncertainty about the correct model. We devise a novel Bayesian network reverse engineering approach using ordinary differential equations with the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and time dependent perturbations with unknown targets, one of our main contributions is the use of Expectation Propagation, an algorithm for approximate Bayesian inference over large scale network structures in short computation time. We further explore the possibility of integrating prior knowledge into network inference. We evaluate the proposed model on DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing network inference methods. PMID:28166542
[Meta analysis of the use of Bayesian networks in breast cancer diagnosis].
Simões, Priscyla Waleska; Silva, Geraldo Doneda da; Moretti, Gustavo Pasquali; Simon, Carla Sasso; Winnikow, Erik Paul; Nassar, Silvia Modesto; Medeiros, Lidia Rosi; Rosa, Maria Inês
2015-01-01
The aim of this study was to determine the accuracy of Bayesian networks in supporting breast cancer diagnoses. Systematic review and meta-analysis were carried out, including articles and papers published between January 1990 and March 2013. We included prospective and retrospective cross-sectional studies of the accuracy of diagnoses of breast lesions (target conditions) made using Bayesian networks (index test). Four primary studies that included 1,223 breast lesions were analyzed, 89.52% (444/496) of the breast cancer cases and 6.33% (46/727) of the benign lesions were positive based on the Bayesian network analysis. The area under the curve (AUC) for the summary receiver operating characteristic curve (SROC) was 0.97, with a Q* value of 0.92. Using Bayesian networks to diagnose malignant lesions increased the pretest probability of a true positive from 40.03% to 90.05% and decreased the probability of a false negative to 6.44%. Therefore, our results demonstrated that Bayesian networks provide an accurate and non-invasive method to support breast cancer diagnosis.
Implementing relevance feedback in ligand-based virtual screening using Bayesian inference network.
Abdo, Ammar; Salim, Naomie; Ahmed, Ali
2011-10-01
Recently, the use of the Bayesian network as an alternative to existing tools for similarity-based virtual screening has received noticeable attention from researchers in the chemoinformatics field. The main aim of the Bayesian network model is to improve the retrieval effectiveness of similarity-based virtual screening. To this end, different models of the Bayesian network have been developed. In our previous works, the retrieval performance of the Bayesian network was observed to improve significantly when multiple reference structures or fragment weightings were used. In this article, the authors enhance the Bayesian inference network (BIN) using the relevance feedback information. In this approach, a few high-ranking structures of unknown activity were filtered from the outputs of BIN, based on a single active reference structure, to form a set of active reference structures. This set of active reference structures was used in two distinct techniques for carrying out such BIN searching: reweighting the fragments in the reference structures and group fusion techniques. Simulated virtual screening experiments with three MDL Drug Data Report data sets showed that the proposed techniques provide simple ways of enhancing the cost-effectiveness of ligand-based virtual screening searches, especially for higher diversity data sets.
Diagnosis and Reconfiguration using Bayesian Networks: An Electrical Power System Case Study
Knox, W. Bradley; Mengshoel, Ole
2009-01-01
Automated diagnosis and reconfiguration are important computational techniques that aim to minimize human intervention in autonomous systems. In this paper, we develop novel techniques and models in the context of diagnosis and reconfiguration reasoning using causal Bayesian networks (BNs). We take as starting point a successful diagnostic approach, using a static BN developed for a real-world electrical power system. We discuss in this paper the extension of this diagnostic approach along two dimensions, namely: (i) from a static BN to a dynamic BN; and (ii) from a diagnostic task to a reconfiguration task. More specifically, we discuss the auto-generation of a dynamic Bayesian network from a static Bayesian network. In addition, we discuss subtle, but important, differences between Bayesian networks when used for diagnosis versus reconfiguration. We discuss a novel reconfiguration agent, which models a system causally, including effects of actions through time, using a dynamic Bayesian network. Though the techniques we discuss are general, we demonstrate them in the context of electrical power systems (EPSs) for aircraft and spacecraft. EPSs are vital subsystems on-board aircraft and spacecraft, and many incidents and accidents of these vehicles have been attributed to EPS failures. We discuss a case study that provides initial but promising results for our approach in the setting of electrical power systems.
Bayesian network modeling method based on case reasoning for emergency decision-making
Directory of Open Access Journals (Sweden)
XU Lei
2013-06-01
Full Text Available Bayesian network has the abilities of probability expression, uncertainty management and multi-information fusion.It can support emergency decision-making, which can improve the efficiency of decision-making.Emergency decision-making is highly time sensitive, which requires shortening the Bayesian Network modeling time as far as possible.Traditional Bayesian network modeling methods are clearly unable to meet that requirement.Thus, a Bayesian network modeling method based on case reasoning for emergency decision-making is proposed.The method can obtain optional cases through case matching by the functions of similarity degree and deviation degree.Then,new Bayesian network can be built through case adjustment by case merging and pruning.An example is presented to illustrate and test the proposed method.The result shows that the method does not have a huge search space or need sample data.The only requirement is the collection of expert knowledge and historical case models.Compared with traditional methods, the proposed method can reuse historical case models, which can reduce the modeling time and improve the efficiency.
Zhu, Shijia; Wang, Yadong
2015-12-18
Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is 'stationarity', and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings.
Felgaer, Pablo; Britos, Paola; García-Martínez, Ramón
A Bayesian network is a directed acyclic graph in which each node represents a variable and each arc a probabilistic dependency; they are used to provide: a compact form to represent the knowledge and flexible methods of reasoning. Obtaining it from data is a learning process that is divided in two steps: structural learning and parametric learning. In this paper we define an automatic learning method that optimizes the Bayesian networks applied to classification, using a hybrid method of learning that combines the advantages of the induction techniques of the decision trees (TDIDT-C4.5) with those of the Bayesian networks. The resulting method is applied to prediction in health domain.
Energy Technology Data Exchange (ETDEWEB)
Gomes, Many R.S.; Melo, Paulo F.F.F. e, E-mail: mgomes@con.ufrj.br, E-mail: frutuoso@nuclear.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Pos-Graduacao em Engenharia Nuclear
2015-07-01
This work models by Bayesian networks the residual heat removal system (SRCR) of Angra I nuclear power plant, using fault tree mapping for systematically identifying all possible modes of occurrence caused by a large loss of coolant accident (large LOCA). The focus is on dependent events, such as the bridge system structure of the residual heat removal system and the occurrence of common-cause failures. We used the Netica™ tool kit, Norsys Software Corporation and Python 2.7.5 for modeling Bayesian networks and Microsoft Excel for modeling fault trees. Working with dependent events using Bayesian networks is similar to the solutions proposed by other models, beyond simple understanding and ease of application and modification throughout the analysis. The results obtained for the unavailability of the system were satisfactory, showing that in most cases the system will be available to mitigate the effects of an accident as described above. (author)
Using Bayesian Networks for Candidate Generation in Consistency-based Diagnosis
Narasimhan, Sriram; Mengshoel, Ole
2008-01-01
Consistency-based diagnosis relies heavily on the assumption that discrepancies between model predictions and sensor observations can be detected accurately. When sources of uncertainty like sensor noise and model abstraction exist robust schemes have to be designed to make a binary decision on whether predictions are consistent with observations. This risks the occurrence of false alarms and missed alarms when an erroneous decision is made. Moreover when multiple sensors (with differing sensing properties) are available the degree of match between predictions and observations can be used to guide the search for fault candidates. In this paper we propose a novel approach to handle this problem using Bayesian networks. In the consistency- based diagnosis formulation, automatically generated Bayesian networks are used to encode a probabilistic measure of fit between predictions and observations. A Bayesian network inference algorithm is used to compute most probable fault candidates.
Directory of Open Access Journals (Sweden)
Ali Ahmed
2011-01-01
Full Text Available Problem statement: Similarity based Virtual Screening (VS deals with a large amount of data containing irrelevant and/or redundant fragments or features. Recent use of Bayesian network as an alternative for existing tools for similarity based VS has received noticeable attention of the researchers in the field of chemoinformatics. Approach: To this end, different models of Bayesian network have been developed. In this study, we enhance the Bayesian Inference Network (BIN using a subset of selected molecules features. Results: In this approach, a few features were filtered from the molecular fingerprint features based on a features selection approach. Conclusion: Simulated virtual screening experiments with MDL Drug Data Report (MDDR data sets showed that the proposed method provides simple ways of enhancing the cost effectiveness of ligand-based virtual screening searches, especially for higher diversity data set.
Vacik, Harald; Huber, Patrick; Hujala, Teppo; Kurtilla, Mikko; Wolfslehner, Bernhard
2015-04-01
It is an integral element of the European understanding of sustainable forest management to foster the design and marketing of forest products, non-wood forest products (NWFPs) and services that go beyond the production of timber. Despite the relevance of NWFPs in Europe, forest management and planning methods have been traditionally tailored towards wood and wood products, because most forest management models and silviculture techniques were developed to ensure a sustained production of timber. Although several approaches exist which explicitly consider NWFPs as management objectives in forest planning, specific models are needed for the assessment of their production potential in different environmental contexts and for different management regimes. Empirical data supporting a comprehensive assessment of the potential of NWFPs are rare, thus making development of statistical models particularly problematic. However, the complex causal relationships between the sustained production of NWFPs, the available ecological resources, as well as the organizational and the market potential of forest management regimes are well suited for knowledge-based expert models. Bayesian belief networks (BBNs) are a kind of probabilistic graphical model that have become very popular to practitioners and scientists mainly due to the powerful probability theory involved, which makes BBNs suitable to deal with a wide range of environmental problems. In this contribution we present the development of a Bayesian belief network to assess the potential of NWFPs for small scale forest owners. A three stage iterative process with stakeholder and expert participation was used to develop the Bayesian Network within the frame of the StarTree Project. The group of participants varied in the stages of the modelling process. A core team, consisting of one technical expert and two domain experts was responsible for the entire modelling process as well as for the first prototype of the network
Estimating uncertainty and reliability of social network data using Bayesian inference.
Farine, Damien R; Strandburg-Peshkin, Ariana
2015-09-01
Social network analysis provides a useful lens through which to view the structure of animal societies, and as a result its use is increasingly widespread. One challenge that many studies of animal social networks face is dealing with limited sample sizes, which introduces the potential for a high level of uncertainty in estimating the rates of association or interaction between individuals. We present a method based on Bayesian inference to incorporate uncertainty into network analyses. We test the reliability of this method at capturing both local and global properties of simulated networks, and compare it to a recently suggested method based on bootstrapping. Our results suggest that Bayesian inference can provide useful information about the underlying certainty in an observed network. When networks are well sampled, observed networks approach the real underlying social structure. However, when sampling is sparse, Bayesian inferred networks can provide realistic uncertainty estimates around edge weights. We also suggest a potential method for estimating the reliability of an observed network given the amount of sampling performed. This paper highlights how relatively simple procedures can be used to estimate uncertainty and reliability in studies using animal social network analysis.
Odbert, Henry; Hincks, Thea; Aspinall, Willy
2015-04-01
Volcanic hazard assessments must combine information about the physical processes of hazardous phenomena with observations that indicate the current state of a volcano. Incorporating both these lines of evidence can inform our belief about the likelihood (probability) and consequences (impact) of possible hazardous scenarios, forming a basis for formal quantitative hazard assessment. However, such evidence is often uncertain, indirect or incomplete. Approaches to volcano monitoring have advanced substantially in recent decades, increasing the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Interpreting these multiple strands of parallel, partial evidence thus becomes increasingly complex. In practice, interpreting many timeseries requires an individual to be familiar with the idiosyncrasies of the volcano, monitoring techniques, configuration of recording instruments, observations from other datasets, and so on. In making such interpretations, an individual must consider how different volcanic processes may manifest as measureable observations, and then infer from the available data what can or cannot be deduced about those processes. We examine how parts of this process may be synthesised algorithmically using Bayesian inference. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple strands of evidence (e.g. observations, model results and interpretations) and their associated uncertainties in a methodical manner. BBNs are usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic data from the long-lived eruption at Soufriere Hills Volcano, Montserrat. We show how our method
An object-oriented Bayesian network modeling the causes of leg disorders in finisher herds
DEFF Research Database (Denmark)
Jensen, Tina Birk; Kristensen, Anders Ringgaard; Toft, Nils
2009-01-01
The implementation of an effective control strategy against disease in a finisher herd requires knowledge regarding the disease level in the herd. A Bayesian network was constructed that can estimate risk indexes for three cause-categories of leg disorders in a finisher herd. The cause...... pigs (e.g. results from diagnostic tests) were used to estimate the most likely cause of leg disorders at herd level. As information to the model originated from two different levels, we used an object-oriented structure in order to ease the specification of the Bayesian network. Hence, a Herd class...
Thomsen, Nanna I; Binning, Philip J; McKnight, Ursula S; Tuxen, Nina; Bjerg, Poul L; Troldborg, Mads
2016-05-01
A key component in risk assessment of contaminated sites is in the formulation of a conceptual site model (CSM). A CSM is a simplified representation of reality and forms the basis for the mathematical modeling of contaminant fate and transport at the site. The CSM should therefore identify the most important site-specific features and processes that may affect the contaminant transport behavior at the site. However, the development of a CSM will always be associated with uncertainties due to limited data and lack of understanding of the site conditions. CSM uncertainty is often found to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert opinion at different knowledge levels. The developed BBNs combine data from desktop studies and initial site investigations with expert opinion to assess which of the CSMs are more likely to reflect the actual site conditions. The method is demonstrated on a Danish field site, contaminated with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information
Thomsen, Nanna I.; Binning, Philip J.; McKnight, Ursula S.; Tuxen, Nina; Bjerg, Poul L.; Troldborg, Mads
2016-05-01
A key component in risk assessment of contaminated sites is in the formulation of a conceptual site model (CSM). A CSM is a simplified representation of reality and forms the basis for the mathematical modeling of contaminant fate and transport at the site. The CSM should therefore identify the most important site-specific features and processes that may affect the contaminant transport behavior at the site. However, the development of a CSM will always be associated with uncertainties due to limited data and lack of understanding of the site conditions. CSM uncertainty is often found to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert opinion at different knowledge levels. The developed BBNs combine data from desktop studies and initial site investigations with expert opinion to assess which of the CSMs are more likely to reflect the actual site conditions. The method is demonstrated on a Danish field site, contaminated with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information
Odbert, Henry; Aspinall, Willy
2013-04-01
When volcanoes exhibit unrest or become eruptively active, science-based decision support invariably is sought by civil authorities. Evidence available to scientists about a volcano's internal state is usually indirect, secondary or very nebulous.Advancement of volcano monitoring technology in recent decades has increased the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Monitoring timeseries may be interpreted in real time by observatory staff and are often later subjected to further analytic scrutiny by the research community at large. With increasing variety and resolution of data, interpreting these multiple strands of parallel, partial evidence has become increasingly complex. In practice, interpretation of many timeseries involves familiarity with the idiosyncracies of the volcano, the monitoring techniques, the configuration of the recording instrumentation, observations from other datasets, and so on. Assimilation of this knowledge is necessary in order to select and apply the appropriate statistical techniques required to extract the required information. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple observations, model results and interpretations - and associated uncertainties - in a methodical manner. The formulation is usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic timeseries, the certainty with which inferences may be drawn, and how they can be updated dynamically. Such approaches provide a route to developing analytical interface(s) between volcano monitoring analyses and probabilistic hazard analysis. We discuss the use of BBNs in hazard
Directory of Open Access Journals (Sweden)
Hao Zhang
2016-01-01
Full Text Available Under the increasingly uncertain economic environment, the research on the reliability of urban distribution system has great practical significance for the integration of logistics and supply chain resources. This paper summarizes the factors that affect the city logistics distribution system. Starting from the research of factors that influence the reliability of city distribution system, further construction of city distribution system reliability influence model is built based on Bayesian networks. The complex problem is simplified by using the sub-Bayesian network, and an example is analyzed. In the calculation process, we combined the traditional Bayesian algorithm and the Expectation Maximization (EM algorithm, which made the Bayesian model able to lay a more accurate foundation. The results show that the Bayesian network can accurately reflect the dynamic relationship among the factors affecting the reliability of urban distribution system. Moreover, by changing the prior probability of the node of the cause, the correlation degree between the variables that affect the successful distribution can be calculated. The results have significant practical significance on improving the quality of distribution, the level of distribution, and the efficiency of enterprises.
Applying Bayesian belief networks in rapid response situations
Energy Technology Data Exchange (ETDEWEB)
Gibson, William L [Los Alamos National Laboratory; Deborah, Leishman, A. [Los Alamos National Laboratory; Van Eeckhout, Edward [Los Alamos National Laboratory
2008-01-01
The authors have developed an enhanced Bayesian analysis tool called the Integrated Knowledge Engine (IKE) for monitoring and surveillance. The enhancements are suited for Rapid Response Situations where decisions must be made based on uncertain and incomplete evidence from many diverse and heterogeneous sources. The enhancements extend the probabilistic results of the traditional Bayesian analysis by (1) better quantifying uncertainty arising from model parameter uncertainty and uncertain evidence, (2) optimizing the collection of evidence to reach conclusions more quickly, and (3) allowing the analyst to determine the influence of the remaining evidence that cannot be obtained in the time allowed. These extended features give the analyst and decision maker a better comprehension of the adequacy of the acquired evidence and hence the quality of the hurried decisions. They also describe two example systems where the above features are highlighted.
Directory of Open Access Journals (Sweden)
Yan eWang
2014-05-01
Full Text Available Recent neuroimaging studies have revealed normal aging-related alterations in functional and structural brain networks such as the default mode network (DMN. However, less is understood about specific brain structural dependencies or interactions between brain regions within the DMN in the normal aging process. In this study, using Bayesian network (BN modeling, we analyzed grey matter volume data from 109 young and 82 old subjects to characterize the influence of aging on associations between core brain regions within the DMN. Furthermore, we investigated the discriminability of the aging-associated BN models for the young and old groups. Compared to their young counterparts, the old subjects showed significant reductions in connections from right inferior temporal cortex (ITC to medial prefrontal cortex (mPFC, right hippocampus (HP to right ITC, and mPFC to posterior cingulate cortex (PCC and increases in connections from left HP to mPFC and right inferior parietal cortex (IPC to right ITC. Moreover, the classification results showed that the aging-related BN models could predict group membership with 88.48% accuracy, 88.07% sensitivity and 89.02% specificity. Our findings suggest that structural associations within the DMN may be affected by normal aging and provide crucial information about aging effects on brain structural networks.
Wang, Yan; Chen, Kewei; Zhang, Jiacai; Yao, Li; Li, Ke; Jin, Zhen; Ye, Qing; Guo, Xiaojuan
2014-01-01
Recent neuroimaging studies have revealed normal aging-related alterations in functional and structural brain networks such as the default mode network (DMN). However, less is understood about specific brain structural dependencies or interactions between brain regions within the DMN in the normal aging process. In this study, using Bayesian network (BN) modeling, we analyzed gray matter volume data from 109 young and 82 old subjects to characterize the influence of aging on associations between core brain regions within the DMN. Furthermore, we investigated the discriminability of the aging-associated BN models for the young and old groups. Compared to their young counterparts, the old subjects showed significant reductions in connections from right inferior temporal cortex (ITC) to medial prefrontal cortex (mPFC), right hippocampus (HP) to right ITC, and mPFC to posterior cingulate cortex and increases in connections from left HP to mPFC and right inferior parietal cortex to right ITC. Moreover, the classification results showed that the aging-related BN models could predict group membership with 88.48% accuracy, 88.07% sensitivity, and 89.02% specificity. Our findings suggest that structural associations within the DMN may be affected by normal aging and provide crucial information about aging effects on brain structural networks.
Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring
2016-02-02
emissions as well as delamination-dominated and fiber-dominated damage. The three frequency regions identified were 10 - 100 kHz, 100 - 250 kHz, and 250...the RD patterns can be used for Bayesian model accuracy assessment of the difference between a uniform grid layout of the nodes versus an irregular... grid due to error in node placement. SLAMBOT: Structural Health Monitoring Robot using Lamb Waves We developed the combination of a mobile robot and
Bayesian networks for evaluation of evidence from forensic entomology.
Andersson, M Gunnar; Sundström, Anders; Lindström, Anders
2013-09-01
In the aftermath of a CBRN incident, there is an urgent need to reconstruct events in order to bring the perpetrators to court and to take preventive actions for the future. The challenge is to discriminate, based on available information, between alternative scenarios. Forensic interpretation is used to evaluate to what extent results from the forensic investigation favor the prosecutors' or the defendants' arguments, using the framework of Bayesian hypothesis testing. Recently, several new scientific disciplines have been used in a forensic context. In the AniBioThreat project, the framework was applied to veterinary forensic pathology, tracing of pathogenic microorganisms, and forensic entomology. Forensic entomology is an important tool for estimating the postmortem interval in, for example, homicide investigations as a complement to more traditional methods. In this article we demonstrate the applicability of the Bayesian framework for evaluating entomological evidence in a forensic investigation through the analysis of a hypothetical scenario involving suspect movement of carcasses from a clandestine laboratory. Probabilities of different findings under the alternative hypotheses were estimated using a combination of statistical analysis of data, expert knowledge, and simulation, and entomological findings are used to update the beliefs about the prosecutors' and defendants' hypotheses and to calculate the value of evidence. The Bayesian framework proved useful for evaluating complex hypotheses using findings from several insect species, accounting for uncertainty about development rate, temperature, and precolonization. The applicability of the forensic statistic approach to evaluating forensic results from a CBRN incident is discussed.
A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network.
Directory of Open Access Journals (Sweden)
Zengkai Liu
Full Text Available This paper proposes a fault diagnosis methodology for a gear pump based on the ensemble empirical mode decomposition (EEMD method and the Bayesian network. Essentially, the presented scheme is a multi-source information fusion based methodology. Compared with the conventional fault diagnosis with only EEMD, the proposed method is able to take advantage of all useful information besides sensor signals. The presented diagnostic Bayesian network consists of a fault layer, a fault feature layer and a multi-source information layer. Vibration signals from sensor measurement are decomposed by the EEMD method and the energy of intrinsic mode functions (IMFs are calculated as fault features. These features are added into the fault feature layer in the Bayesian network. The other sources of useful information are added to the information layer. The generalized three-layer Bayesian network can be developed by fully incorporating faults and fault symptoms as well as other useful information such as naked eye inspection and maintenance records. Therefore, diagnostic accuracy and capacity can be improved. The proposed methodology is applied to the fault diagnosis of a gear pump and the structure and parameters of the Bayesian network is established. Compared with artificial neural network and support vector machine classification algorithms, the proposed model has the best diagnostic performance when sensor data is used only. A case study has demonstrated that some information from human observation or system repair records is very helpful to the fault diagnosis. It is effective and efficient in diagnosing faults based on uncertain, incomplete information.
A continuous-time Bayesian network reliability modeling and analysis framework
Boudali, H.; Dugan, J.B.
2006-01-01
We present a continuous-time Bayesian network (CTBN) framework for dynamic systems reliability modeling and analysis. Dynamic systems exhibit complex behaviors and interactions between their components; where not only the combination of failure events matters, but so does the sequence ordering of th
Bayat, Sahar; Cuggia, Marc; Kessler, Michel; Briançon, Serge; Le Beux, Pierre; Frimat, Luc
2008-01-01
Evaluation of adult candidates for kidney transplantation diverges from one centre to another. Our purpose was to assess the suitability of Bayesian method for describing the factors associated to registration on the waiting list in a French healthcare network. We have found no published paper using Bayesian method in this domain. Eight hundred and nine patients starting renal replacement therapy were included in the analysis. The data were extracted from the information system of the healthcare network. We performed conventional statistical analysis and data mining analysis using mainly Bayesian networks. The Bayesian model showed that the probability of registration on the waiting list is associated to age, cardiovascular disease, diabetes, serum albumin level, respiratory disease, physical impairment, follow-up in the department performing transplantation and past history of malignancy. These results are similar to conventional statistical method. The comparison between conventional analysis and data mining analysis showed us the contribution of the data mining method for sorting variables and having a global view of the variables' associations. Moreover theses approaches constitute an essential step toward a decisional information system for healthcare networks.
Use of limited data to construct Bayesian networks for probabilistic risk assessment.
Energy Technology Data Exchange (ETDEWEB)
Groth, Katrina M.; Swiler, Laura Painton
2013-03-01
Probabilistic Risk Assessment (PRA) is a fundamental part of safety/quality assurance for nuclear power and nuclear weapons. Traditional PRA very effectively models complex hardware system risks using binary probabilistic models. However, traditional PRA models are not flexible enough to accommodate non-binary soft-causal factors, such as digital instrumentation&control, passive components, aging, common cause failure, and human errors. Bayesian Networks offer the opportunity to incorporate these risks into the PRA framework. This report describes the results of an early career LDRD project titled %E2%80%9CUse of Limited Data to Construct Bayesian Networks for Probabilistic Risk Assessment%E2%80%9D. The goal of the work was to establish the capability to develop Bayesian Networks from sparse data, and to demonstrate this capability by producing a data-informed Bayesian Network for use in Human Reliability Analysis (HRA) as part of nuclear power plant Probabilistic Risk Assessment (PRA). This report summarizes the research goal and major products of the research.
Steeneveld, W.; Gaag, van der L.C.; Barkema, H.W.; Hogeveen, H.
2009-01-01
Clinical mastitis (CM) can be caused by a wide variety of pathogens and farmers must start treatment before the actual causal pathogen is known. By providing a probability distribution for the causal pathogen, naive Bayesian networks (NBN) can serve as a management tool for farmers to decide which t
A Bayesian network approach for causal inferences in pesticide risk assessment and management
Pesticide risk assessment and management must balance societal benefits and ecosystem protection, based on quantified risks and the strength of the causal linkages between uses of the pesticide and socioeconomic and ecological endpoints of concern. A Bayesian network (BN) is a gr...
Bayesian Network Model with Application to Smart Power Semiconductor Lifetime Data.
Plankensteiner, Kathrin; Bluder, Olivia; Pilz, Jürgen
2015-09-01
In this article, Bayesian networks are used to model semiconductor lifetime data obtained from a cyclic stress test system. The data of interest are a mixture of log-normal distributions, representing two dominant physical failure mechanisms. Moreover, the data can be censored due to limited test resources. For a better understanding of the complex lifetime behavior, interactions between test settings, geometric designs, material properties, and physical parameters of the semiconductor device are modeled by a Bayesian network. Statistical toolboxes in MATLAB® have been extended and applied to find the best structure of the Bayesian network and to perform parameter learning. Due to censored observations Markov chain Monte Carlo (MCMC) simulations are employed to determine the posterior distributions. For model selection the automatic relevance determination (ARD) algorithm and goodness-of-fit criteria such as marginal likelihoods, Bayes factors, posterior predictive density distributions, and sum of squared errors of prediction (SSEP) are applied and evaluated. The results indicate that the application of Bayesian networks to semiconductor reliability provides useful information about the interactions between the significant covariates and serves as a reliable alternative to currently applied methods.
Xenos, Michalis
2004-01-01
This paper presents a methodological approach based on Bayesian Networks for modelling the behaviour of the students of a bachelor course in computers in an Open University that deploys distance educational methods. It describes the structure of the model, its application for modelling the behaviour of student groups in the Informatics Course of…
Estimation of mutation rates from paternity cases using a Bayesian network
DEFF Research Database (Denmark)
Vicard, P.; Dawid, A.P.; Mortera, J.
and paternal mutation rates, while allowing a wide variety of mutation models. A Bayesian network is constructed to facilitate computation of the likelihood function for the mutation parameters. It can process both full and summary genotypic information, from both complete putative father-mother-child triplets...
Stewart, G. B.; Mengersen, K.; Meader, N.
2014-01-01
Bayesian networks (BNs) are tools for representing expert knowledge or evidence. They are especially useful for synthesising evidence or belief concerning a complex intervention, assessing the sensitivity of outcomes to different situations or contextual frameworks and framing decision problems that involve alternative types of intervention.…
Bayesian Network Meta-Analysis for Unordered Categorical Outcomes with Incomplete Data
Schmid, Christopher H.; Trikalinos, Thomas A.; Olkin, Ingram
2014-01-01
We develop a Bayesian multinomial network meta-analysis model for unordered (nominal) categorical outcomes that allows for partially observed data in which exact event counts may not be known for each category. This model properly accounts for correlations of counts in mutually exclusive categories and enables proper comparison and ranking of…
Zwick, Rebecca; Lenaburg, Lubella
2009-01-01
In certain data analyses (e.g., multiple discriminant analysis and multinomial log-linear modeling), classification decisions are made based on the estimated posterior probabilities that individuals belong to each of several distinct categories. In the Bayesian network literature, this type of classification is often accomplished by assigning…
DEFF Research Database (Denmark)
Dalgaard, Jens; Pena, Jose; Kocka, Tomas
2004-01-01
We propose a method to assist the user in the interpretation of the best Bayesian network model indu- ced from data. The method consists in extracting relevant features from the model (e.g. edges, directed paths and Markov blankets) and, then, assessing the con¯dence in them by studying multiple...
Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move
Grzegorczyk, Marco; Husmeier, Dirk
2008-01-01
Applications of Bayesian networks in systems biology are computationally demanding due to the large number of model parameters. Conventional MCMC schemes based on proposal moves in structure space tend to be too slow in mixing and convergence, and have recently been superseded by proposal moves in t
Comparison of a Bayesian Network with a Logistic Regression Model to Forecast IgA Nephropathy
Directory of Open Access Journals (Sweden)
Michel Ducher
2013-01-01
Full Text Available Models are increasingly used in clinical practice to improve the accuracy of diagnosis. The aim of our work was to compare a Bayesian network to logistic regression to forecast IgA nephropathy (IgAN from simple clinical and biological criteria. Retrospectively, we pooled the results of all biopsies (n=155 performed by nephrologists in a specialist clinical facility between 2002 and 2009. Two groups were constituted at random. The first subgroup was used to determine the parameters of the models adjusted to data by logistic regression or Bayesian network, and the second was used to compare the performances of the models using receiver operating characteristics (ROC curves. IgAN was found (on pathology in 44 patients. Areas under the ROC curves provided by both methods were highly significant but not different from each other. Based on the highest Youden indices, sensitivity reached (100% versus 67% and specificity (73% versus 95% using the Bayesian network and logistic regression, respectively. A Bayesian network is at least as efficient as logistic regression to estimate the probability of a patient suffering IgAN, using simple clinical and biological data obtained during consultation.
Comparison of a Bayesian network with a logistic regression model to forecast IgA nephropathy.
Ducher, Michel; Kalbacher, Emilie; Combarnous, François; Finaz de Vilaine, Jérome; McGregor, Brigitte; Fouque, Denis; Fauvel, Jean Pierre
2013-01-01
Models are increasingly used in clinical practice to improve the accuracy of diagnosis. The aim of our work was to compare a Bayesian network to logistic regression to forecast IgA nephropathy (IgAN) from simple clinical and biological criteria. Retrospectively, we pooled the results of all biopsies (n = 155) performed by nephrologists in a specialist clinical facility between 2002 and 2009. Two groups were constituted at random. The first subgroup was used to determine the parameters of the models adjusted to data by logistic regression or Bayesian network, and the second was used to compare the performances of the models using receiver operating characteristics (ROC) curves. IgAN was found (on pathology) in 44 patients. Areas under the ROC curves provided by both methods were highly significant but not different from each other. Based on the highest Youden indices, sensitivity reached (100% versus 67%) and specificity (73% versus 95%) using the Bayesian network and logistic regression, respectively. A Bayesian network is at least as efficient as logistic regression to estimate the probability of a patient suffering IgAN, using simple clinical and biological data obtained during consultation.
Bayesian network models for the management of ventilator-associated pneumonia
Visscher, S.
2008-01-01
The purpose of the research described in this thesis was to develop Bayesian network models for the analysis of patient data, as well as to use such a model as a clinical decision-support system for assisting clinicians in the diagnosis and treatment of ventilator-associated pneumonia (VAP) in mecha
Gerven, M.A.J. van
2007-01-01
This dissertation deals with decision support in the context of clinical oncology. (Dynamic) Bayesian networks are used as a framework for (dynamic) decision-making under uncertainty and applied to a variety of diagnostic, prognostic, and treatment problems in medicine. It is shown that the proposed
Bayesian estimation inherent in a Mexican-hat-type neural network
Takiyama, Ken
2016-05-01
Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.
Bayesian estimation inherent in a Mexican-hat-type neural network.
Takiyama, Ken
2016-05-01
Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.
Directory of Open Access Journals (Sweden)
Goodacre Royston
2011-01-01
Full Text Available Abstract Background The rapid identification of Bacillus spores and bacterial identification are paramount because of their implications in food poisoning, pathogenesis and their use as potential biowarfare agents. Many automated analytical techniques such as Curie-point pyrolysis mass spectrometry (Py-MS have been used to identify bacterial spores giving use to large amounts of analytical data. This high number of features makes interpretation of the data extremely difficult We analysed Py-MS data from 36 different strains of aerobic endospore-forming bacteria encompassing seven different species. These bacteria were grown axenically on nutrient agar and vegetative biomass and spores were analyzed by Curie-point Py-MS. Results We develop a novel genetic algorithm-Bayesian network algorithm that accurately identifies sand selects a small subset of key relevant mass spectra (biomarkers to be further analysed. Once identified, this subset of relevant biomarkers was then used to identify Bacillus spores successfully and to identify Bacillus species via a Bayesian network model specifically built for this reduced set of features. Conclusions This final compact Bayesian network classification model is parsimonious, computationally fast to run and its graphical visualization allows easy interpretation of the probabilistic relationships among selected biomarkers. In addition, we compare the features selected by the genetic algorithm-Bayesian network approach with the features selected by partial least squares-discriminant analysis (PLS-DA. The classification accuracy results show that the set of features selected by the GA-BN is far superior to PLS-DA.
Spatiotemporal Bayesian Networks for Malaria Prediction: Case Study of Northern Thailand.
Haddawy, Peter; Kasantikul, Rangwan; Hasan, A H M Imrul; Rattanabumrung, Chunyanuch; Rungrun, Pichamon; Suksopee, Natwipa; Tantiwaranpant, Saran; Niruntasuk, Natcha
2016-01-01
While a diversity of modeling technique have been used to create predictive models of malaria, no work has made use of Bayesian networks. Bayes nets are attractive due to their ability to represent uncertainty, model time lagged and nonlinear relations, and provide explanations of inferences. This paper explores the use of Bayesian networks to model malaria, demonstrating the approach by creating a village level model with weekly temporal resolution for Tha Song Yang district in northern Thailand. The network is learned using data on cases and environmental covariates. The network models incidence over time as well as evolution of the environmental variables, and captures time lagged and nonlinear effects. Out of sample evaluation shows the model to have high accuracy for one and two week predictions.
Energy Technology Data Exchange (ETDEWEB)
Oexl, W.
1985-02-18
The interactive graphical information system Gradas-EVU was developed for monitoring and readjusting complex medium voltage networks. The entire system comprises three process computer-controlled work consoles which, for synchronization of the data base, to increase power during high load periods and for breakdown safety, are linked up ringwise. All consoles are on an equal basis in terms of input capacity and in normal operation they display the identical information status. Two of the units are operated exclusively on alert for monitoring and readjusting the network. The third unit possesses additional peripherals and is used as a multi-purpose system.
Application of a data-mining method based on Bayesian networks to lesion-deficit analysis
Herskovits, Edward H.; Gerring, Joan P.
2003-01-01
Although lesion-deficit analysis (LDA) has provided extensive information about structure-function associations in the human brain, LDA has suffered from the difficulties inherent to the analysis of spatial data, i.e., there are many more variables than subjects, and data may be difficult to model using standard distributions, such as the normal distribution. We herein describe a Bayesian method for LDA; this method is based on data-mining techniques that employ Bayesian networks to represent structure-function associations. These methods are computationally tractable, and can represent complex, nonlinear structure-function associations. When applied to the evaluation of data obtained from a study of the psychiatric sequelae of traumatic brain injury in children, this method generates a Bayesian network that demonstrates complex, nonlinear associations among lesions in the left caudate, right globus pallidus, right side of the corpus callosum, right caudate, and left thalamus, and subsequent development of attention-deficit hyperactivity disorder, confirming and extending our previous statistical analysis of these data. Furthermore, analysis of simulated data indicates that methods based on Bayesian networks may be more sensitive and specific for detecting associations among categorical variables than methods based on chi-square and Fisher exact statistics.
Application of bayesian networks to real-time flood risk estimation
Garrote, L.; Molina, M.; Blasco, G.
2003-04-01
This paper presents the application of a computational paradigm taken from the field of artificial intelligence - the bayesian network - to model the behaviour of hydrologic basins during floods. The final goal of this research is to develop representation techniques for hydrologic simulation models in order to define, develop and validate a mechanism, supported by a software environment, oriented to build decision models for the prediction and management of river floods in real time. The emphasis is placed on providing decision makers with tools to incorporate their knowledge of basin behaviour, usually formulated in terms of rainfall-runoff models, in the process of real-time decision making during floods. A rainfall-runoff model is only a step in the process of decision making. If a reliable rainfall forecast is available and the rainfall-runoff model is well calibrated, decisions can be based mainly on model results. However, in most practical situations, uncertainties in rainfall forecasts or model performance have to be incorporated in the decision process. The computation paradigm adopted for the simulation of hydrologic processes is the bayesian network. A bayesian network is a directed acyclic graph that represents causal influences between linked variables. Under this representation, uncertain qualitative variables are related through causal relations quantified with conditional probabilities. The solution algorithm allows the computation of the expected probability distribution of unknown variables conditioned to the observations. An approach to represent hydrologic processes by bayesian networks with temporal and spatial extensions is presented in this paper, together with a methodology for the development of bayesian models using results produced by deterministic hydrologic simulation models
Bayesian Computation Methods for Inferring Regulatory Network Models Using Biomedical Data.
Tian, Tianhai
2016-01-01
The rapid advancement of high-throughput technologies provides huge amounts of information for gene expression and protein activity in the genome-wide scale. The availability of genomics, transcriptomics, proteomics, and metabolomics dataset gives an unprecedented opportunity to study detailed molecular regulations that is very important to precision medicine. However, it is still a significant challenge to design effective and efficient method to infer the network structure and dynamic property of regulatory networks. In recent years a number of computing methods have been designed to explore the regulatory mechanisms as well as estimate unknown model parameters. Among them, the Bayesian inference method can combine both prior knowledge and experimental data to generate updated information regarding the regulatory mechanisms. This chapter gives a brief review for Bayesian statistical methods that are used to infer the network structure and estimate model parameters based on experimental data.
Risks Analysis of Logistics Financial Business Based on Evidential Bayesian Network
Directory of Open Access Journals (Sweden)
Ying Yan
2013-01-01
Full Text Available Risks in logistics financial business are identified and classified. Making the failure of the business as the root node, a Bayesian network is constructed to measure the risk levels in the business. Three importance indexes are calculated to find the most important risks in the business. And more, considering the epistemic uncertainties in the risks, evidence theory associate with Bayesian network is used as an evidential network in the risk analysis of logistics finance. To find how much uncertainty in root node is produced by each risk, a new index, epistemic importance, is defined. Numerical examples show that the proposed methods could provide a lot of useful information. With the information, effective approaches could be found to control and avoid these sensitive risks, thus keep logistics financial business working more reliable. The proposed method also gives a quantitative measure of risk levels in logistics financial business, which provides guidance for the selection of financing solutions.
High-accuracy Decision of Call-triage by Using Bayesian Network
Yunoki, Shota; Hamagami, Tomoki; Oshige, Kenji; Kawakami, Chihiro; Suzuki, Noriyuki
A new call-triage system, a key part of emergency support system with stochastic network model is examined. The call-triage is an operation allowing the efficient decision of service grade and dispatching of suitable rescue team service from phone call information. Nowadays, the call-triage is being trialed on a few cities and is achieving an effect. However, there is the issue that if under-triage in which the condition of sick person is estimated more lightly is eliminated, the efficiency is degraded (over-triage). In this report, in order to overcome the issue, the Bayesian network scheme is examined to the call-triage system. The experiments with real call-triage data set results show the Bayesian network achieves precision enhancement.
Wei, Z; Zhang, X L; Rao, H X; Wang, H F; Wang, X; Qiu, L X
2016-06-01
Under the available data gathered from a coronary study questionnaires with 10 792 cases, this article constructs a Bayesian network model based on the tabu search algorithm and calculates the conditional probability of each node, using the Maximum-likelihood. Pros and cons of the Bayesian network model are evaluated to compare against the logistic regression model in the analysis of coronary factors. Applicability of this network model in clinical study is also investigated. Results show that Bayesian network model can reveal the complex correlations among influencing factors on the coronary and the relationship with coronary heart diseases. Bayesian network model seems promising and more practical than the logistic regression model in analyzing the influencing factors of coronary heart disease.
Tian, Xue W; Lim, Joon S
2015-01-01
Naive Bayesian (NB) network classifier is a simple and well-known type of classifier, which can be easily induced from a DNA microarray data set. However, a strong conditional independence assumption of NB network sometimes can lead to weak classification performance. In this paper, we propose a new approach of interactive naive Bayesian (INB) network to weaken the conditional independence of NB network and classify cancers using DNA microarray data set. We selected the differently expressed genes (DEGs) to reduce the dimension of the microarray data set. Then, an interactive parent which has the biggest influence among all DEGs is searched for each DEG. And then we calculate a weight to represent the interactive relationship between a DEG and its parent. Finally, the gene-gene interaction network is constructed. We experimentally test the INB network in terms of classification accuracy using leukemia and colon DNA microarray data sets, then we compare it with the NB network. The INB network can get higher classification accuracies than NB network. And INB network can show the gene-gene interactions visually.
Risk Assessment for Mobile Systems Through a Multilayered Hierarchical Bayesian Network.
Li, Shancang; Tryfonas, Theo; Russell, Gordon; Andriotis, Panagiotis
2016-08-01
Mobile systems are facing a number of application vulnerabilities that can be combined together and utilized to penetrate systems with devastating impact. When assessing the overall security of a mobile system, it is important to assess the security risks posed by each mobile applications (apps), thus gaining a stronger understanding of any vulnerabilities present. This paper aims at developing a three-layer framework that assesses the potential risks which apps introduce within the Android mobile systems. A Bayesian risk graphical model is proposed to evaluate risk propagation in a layered risk architecture. By integrating static analysis, dynamic analysis, and behavior analysis in a hierarchical framework, the risks and their propagation through each layer are well modeled by the Bayesian risk graph, which can quantitatively analyze risks faced to both apps and mobile systems. The proposed hierarchical Bayesian risk graph model offers a novel way to investigate the security risks in mobile environment and enables users and administrators to evaluate the potential risks. This strategy allows to strengthen both app security as well as the security of the entire system.
Bayesian state space models for dynamic genetic network construction across multiple tissues.
Liang, Yulan; Kelemen, Arpad
2016-08-01
Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.
Jennen, Danyel G J; van Leeuwen, Danitsja M; Hendrickx, Diana M; Gottschalk, Ralph W H; van Delft, Joost H M; Kleinjans, Jos C S
2015-10-19
Microarray-based transcriptomic analysis has been demonstrated to hold the opportunity to study the effects of human exposure to, e.g., chemical carcinogens at the whole genome level, thus yielding broad-ranging molecular information on possible carcinogenic effects. Since genes do not operate individually but rather through concerted interactions, analyzing and visualizing networks of genes should provide important mechanistic information, especially upon connecting them to functional parameters, such as those derived from measurements of biomarkers for exposure and carcinogenic risk. Conventional methods such as hierarchical clustering and correlation analyses are frequently used to address these complex interactions but are limited as they do not provide directional causal dependence relationships. Therefore, our aim was to apply Bayesian network inference with the purpose of phenotypic anchoring of modified gene expressions. We investigated a use case on transcriptomic responses to cigarette smoking in humans, in association with plasma cotinine levels as biomarkers of exposure and aromatic DNA-adducts in blood cells as biomarkers of carcinogenic risk. Many of the genes that appear in the Bayesian networks surrounding plasma cotinine, and to a lesser extent around aromatic DNA-adducts, hold biologically relevant functions in inducing severe adverse effects of smoking. In conclusion, this study shows that Bayesian network inference enables unbiased phenotypic anchoring of transcriptomics responses. Furthermore, in all inferred Bayesian networks several dependencies are found which point to known but also to new relationships between the expression of specific genes, cigarette smoke exposure, DNA damaging-effects, and smoking-related diseases, in particular associated with apoptosis, DNA repair, and tumor suppression, as well as with autoimmunity.
Directory of Open Access Journals (Sweden)
Michael J McGeachie
2014-06-01
Full Text Available Bayesian Networks (BN have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com.
Inferring cellular regulatory networks with Bayesian model averaging for linear regression (BMALR).
Huang, Xun; Zi, Zhike
2014-08-01
Bayesian network and linear regression methods have been widely applied to reconstruct cellular regulatory networks. In this work, we propose a Bayesian model averaging for linear regression (BMALR) method to infer molecular interactions in biological systems. This method uses a new closed form solution to compute the posterior probabilities of the edges from regulators to the target gene within a hybrid framework of Bayesian model averaging and linear regression methods. We have assessed the performance of BMALR by benchmarking on both in silico DREAM datasets and real experimental datasets. The results show that BMALR achieves both high prediction accuracy and high computational efficiency across different benchmarks. A pre-processing of the datasets with the log transformation can further improve the performance of BMALR, leading to a new top overall performance. In addition, BMALR can achieve robust high performance in community predictions when it is combined with other competing methods. The proposed method BMALR is competitive compared to the existing network inference methods. Therefore, BMALR will be useful to infer regulatory interactions in biological networks. A free open source software tool for the BMALR algorithm is available at https://sites.google.com/site/bmalr4netinfer/.
McGeachie, Michael J; Chang, Hsun-Hsien; Weiss, Scott T
2014-06-01
Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs) formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com.
Integration of Geophysical Data into Structural Geological Modelling through Bayesian Networks
de la Varga, Miguel; Wellmann, Florian; Murdie, Ruth
2016-04-01
Structural geological models are widely used to represent the spatial distribution of relevant geological features. Several techniques exist to construct these models on the basis of different assumptions and different types of geological observations (e.g. Jessell et al., 2014). However, two problems are prevalent when constructing models: (i) observations and assumptions, and therefore also the constructed model, are subject to uncertainties, and (ii) additional information, such as geophysical data, is often available, but cannot be considered directly in the geological modelling step. In our work, we propose the integration of all available data into a Bayesian network including the generation of the implicit geological method by means of interpolation functions (Mallet, 1992; Lajaunie et al., 1997; Mallet, 2004; Carr et al., 2001; Hillier et al., 2014). As a result, we are able to increase the certainty of the resultant models as well as potentially learn features of our regional geology through data mining and information theory techniques. MCMC methods are used in order to optimize computational time and assure the validity of the results. Here, we apply the aforementioned concepts in a 3-D model of the Sandstone Greenstone Belt in the Archean Yilgarn Craton in Western Australia. The example given, defines the uncertainty in the thickness of greenstone as limited by Bouguer anomaly and the internal structure of the greenstone as limited by the magnetic signature of a banded iron formation. The incorporation of the additional data and specially the gravity provides an important reduction of the possible outcomes and therefore the overall uncertainty. References Carr, C. J., K. R. Beatson, B. J. Cherrie, J. T. Mitchell, R. W. Fright, C. B. McCallum, and R. T. Evans, 2001, Reconstruction and representation of 3D objects with radial basis functions: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, 67-76. Jessell, M
SU-E-T-51: Bayesian Network Models for Radiotherapy Error Detection
Energy Technology Data Exchange (ETDEWEB)
Kalet, A; Phillips, M; Gennari, J [UniversityWashington, Seattle, WA (United States)
2014-06-01
Purpose: To develop a probabilistic model of radiotherapy plans using Bayesian networks that will detect potential errors in radiation delivery. Methods: Semi-structured interviews with medical physicists and other domain experts were employed to generate a set of layered nodes and arcs forming a Bayesian Network (BN) which encapsulates relevant radiotherapy concepts and their associated interdependencies. Concepts in the final network were limited to those whose parameters are represented in the institutional database at a level significant enough to develop mathematical distributions. The concept-relation knowledge base was constructed using the Web Ontology Language (OWL) and translated into Hugin Expert Bayes Network files via the the RHugin package in the R statistical programming language. A subset of de-identified data derived from a Mosaiq relational database representing 1937 unique prescription cases was processed and pre-screened for errors and then used by the Hugin implementation of the Estimation-Maximization (EM) algorithm for machine learning all parameter distributions. Individual networks were generated for each of several commonly treated anatomic regions identified by ICD-9 neoplasm categories including lung, brain, lymphoma, and female breast. Results: The resulting Bayesian networks represent a large part of the probabilistic knowledge inherent in treatment planning. By populating the networks entirely with data captured from a clinical oncology information management system over the course of several years of normal practice, we were able to create accurate probability tables with no additional time spent by experts or clinicians. These probabilistic descriptions of the treatment planning allow one to check if a treatment plan is within the normal scope of practice, given some initial set of clinical evidence and thereby detect for potential outliers to be flagged for further investigation. Conclusion: The networks developed here support the
GraphAlignment: Bayesian pairwise alignment of biological networks
Directory of Open Access Journals (Sweden)
Kolář Michal
2012-11-01
Full Text Available Abstract Background With increased experimental availability and accuracy of bio-molecular networks, tools for their comparative and evolutionary analysis are needed. A key component for such studies is the alignment of networks. Results We introduce the Bioconductor package GraphAlignment for pairwise alignment of bio-molecular networks. The alignment incorporates information both from network vertices and network edges and is based on an explicit evolutionary model, allowing inference of all scoring parameters directly from empirical data. We compare the performance of our algorithm to an alternative algorithm, Græmlin 2.0. On simulated data, GraphAlignment outperforms Græmlin 2.0 in several benchmarks except for computational complexity. When there is little or no noise in the data, GraphAlignment is slower than Græmlin 2.0. It is faster than Græmlin 2.0 when processing noisy data containing spurious vertex associations. Its typical case complexity grows approximately as O(N2.6. On empirical bacterial protein-protein interaction networks (PIN and gene co-expression networks, GraphAlignment outperforms Græmlin 2.0 with respect to coverage and specificity, albeit by a small margin. On large eukaryotic PIN, Græmlin 2.0 outperforms GraphAlignment. Conclusions The GraphAlignment algorithm is robust to spurious vertex associations, correctly resolves paralogs, and shows very good performance in identification of homologous vertices defined by high vertex and/or interaction similarity. The simplicity and generality of GraphAlignment edge scoring makes the algorithm an appropriate choice for global alignment of networks.
Cruz-Ramírez, Nicandro; Acosta-Mesa, Héctor Gabriel; Mezura-Montes, Efrén; Guerra-Hernández, Alejandro; Hoyos-Rivera, Guillermo de Jesús; Barrientos-Martínez, Rocío Erandi; Gutiérrez-Fragoso, Karina; Nava-Fernández, Luis Alonso; González-Gaspar, Patricia; Novoa-del-Toro, Elva María; Aguilera-Rueda, Vicente Josué; Ameca-Alducin, María Yaneli
2014-01-01
The bias-variance dilemma is a well-known and important problem in Machine Learning. It basically relates the generalization capability (goodness of fit) of a learning method to its corresponding complexity. When we have enough data at hand, it is possible to use these data in such a way so as to minimize overfitting (the risk of selecting a complex model that generalizes poorly). Unfortunately, there are many situations where we simply do not have this required amount of data. Thus, we need to find methods capable of efficiently exploiting the available data while avoiding overfitting. Different metrics have been proposed to achieve this goal: the Minimum Description Length principle (MDL), Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC), among others. In this paper, we focus on crude MDL and empirically evaluate its performance in selecting models with a good balance between goodness of fit and complexity: the so-called bias-variance dilemma, decomposition or tradeoff. Although the graphical interaction between these dimensions (bias and variance) is ubiquitous in the Machine Learning literature, few works present experimental evidence to recover such interaction. In our experiments, we argue that the resulting graphs allow us to gain insights that are difficult to unveil otherwise: that crude MDL naturally selects balanced models in terms of bias-variance, which not necessarily need be the gold-standard ones. We carry out these experiments using a specific model: a Bayesian network. In spite of these motivating results, we also should not overlook three other components that may significantly affect the final model selection: the search procedure, the noise rate and the sample size. PMID:24671204
D-optimal Bayesian Interrogation for Parameter and Noise Identification of Recurrent Neural Networks
Poczos, Barnabas
2008-01-01
We introduce a novel online Bayesian method for the identification of a family of noisy recurrent neural networks (RNNs). We develop Bayesian active learning technique in order to optimize the interrogating stimuli given past experiences. In particular, we consider the unknown parameters as stochastic variables and use the D-optimality principle, also known as `\\emph{infomax method}', to choose optimal stimuli. We apply a greedy technique to maximize the information gain concerning network parameters at each time step. We also derive the D-optimal estimation of the additive noise that perturbs the dynamical system of the RNN. Our analytical results are approximation-free. The analytic derivation gives rise to attractive quadratic update rules.
Real-time prediction of acute cardiovascular events using hardware-implemented Bayesian networks.
Tylman, Wojciech; Waszyrowski, Tomasz; Napieralski, Andrzej; Kamiński, Marek; Trafidło, Tamara; Kulesza, Zbigniew; Kotas, Rafał; Marciniak, Paweł; Tomala, Radosław; Wenerski, Maciej
2016-02-01
This paper presents a decision support system that aims to estimate a patient׳s general condition and detect situations which pose an immediate danger to the patient׳s health or life. The use of this system might be especially important in places such as accident and emergency departments or admission wards, where a small medical team has to take care of many patients in various general conditions. Particular stress is laid on cardiovascular and pulmonary conditions, including those leading to sudden cardiac arrest. The proposed system is a stand-alone microprocessor-based device that works in conjunction with a standard vital signs monitor, which provides input signals such as temperature, blood pressure, pulseoxymetry, ECG, and ICG. The signals are preprocessed and analysed by a set of artificial intelligence algorithms, the core of which is based on Bayesian networks. The paper focuses on the construction and evaluation of the Bayesian network, both its structure and numerical specification.
Cheng, J; 10.1613/jair.764
2011-01-01
Stochastic sampling algorithms, while an attractive alternative to exact algorithms in very large Bayesian network models, have been observed to perform poorly in evidential reasoning with extremely unlikely evidence. To address this problem, we propose an adaptive importance sampling algorithm, AIS-BN, that shows promising convergence rates even under extreme conditions and seems to outperform the existing sampling algorithms consistently. Three sources of this performance improvement are (1) two heuristics for initialization of the importance function that are based on the theoretical properties of importance sampling in finite-dimensional integrals and the structural advantages of Bayesian networks, (2) a smooth learning method for the importance function, and (3) a dynamic weighting function for combining samples from different stages of the algorithm. We tested the performance of the AIS-BN algorithm along with two state of the art general purpose sampling algorithms, likelihood weighting (Fung and Chang...
Directory of Open Access Journals (Sweden)
Paulo Mateus
2013-07-01
Full Text Available We propose a minimum variance unbiased approximation to the conditional relative entropy of the distribution induced by the observed frequency estimates, for multi-classification tasks. Such approximation is an extension of a decomposable scoring criterion, named approximate conditional log-likelihood (aCLL, primarily used for discriminative learning of augmented Bayesian network classifiers. Our contribution is twofold: (i it addresses multi-classification tasks and not only binary-classification ones; and (ii it covers broader stochastic assumptions than uniform distribution over the parameters. Specifically, we considered a Dirichlet distribution over the parameters, which was experimentally shown to be a very good approximation to CLL. In addition, for Bayesian network classifiers, a closed-form equation is found for the parameters that maximize the scoring criterion.
A Bayesian Network-Based Probabilistic Framework for Drought Forecasting and Outlook
Directory of Open Access Journals (Sweden)
Ji Yae Shin
2016-01-01
Full Text Available Reliable drought forecasting is necessary to develop mitigation plans to cope with severe drought. This study developed a probabilistic scheme for drought forecasting and outlook combined with quantification of the prediction uncertainties. The Bayesian network was mainly employed as a statistical scheme for probabilistic forecasting that can represent the cause-effect relationships between the variables. The structure of the Bayesian network-based drought forecasting (BNDF model was designed using the past, current, and forecasted drought condition. In this study, the drought conditions were represented by the standardized precipitation index (SPI. The accuracy of forecasted SPIs was assessed by comparing the observed SPIs and confidence intervals (CIs, exhibiting the associated uncertainty. Then, this study suggested the drought outlook framework based on probabilistic drought forecasting results. The overall results provided sufficient agreement between the observed and forecasted drought conditions in the outlook framework.
Utama, R; Prosper, H B
2016-01-01
Besides their intrinsic nuclear-structure value, nuclear mass models are essential for astrophysical applications, such as r-process nucleosynthesis and neutron-star structure. To overcome the intrinsic limitations of existing "state-of-the-art" mass models, we propose a refinement based on a Bayesian Neural Network (BNN) formalism. A novel BNN approach is implemented with the goal of optimizing mass residuals between theory and experiment. A significant improvement (of about 40%) in the mass predictions of existing models is obtained after BNN refinement. Moreover, these improved results are now accompanied by proper statistical errors. Finally, by constructing a "world average" of these predictions, a mass model is obtained that is used to predict the composition of the outer crust of a neutron star. The power of the Bayesian neural network method has been successfully demonstrated by a systematic improvement in the accuracy of the predictions of nuclear masses. Extension to other nuclear observables is a n...
Bayesian artificial intelligence
Korb, Kevin B
2010-01-01
Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente
Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga
2009-01-01
This CD contains files that support the talk (see CASI ID 20100021404). There are 24 models that relate to the ADAPT system and 1 Excel worksheet. In the paper an investigation into the use of Bayesian networks to construct large-scale diagnostic systems is described. The high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems are described in the talk. The data in the CD are the models of the 24 different power systems.
Li, Yifeng; Chen, Haifen; Zheng, Jie; Ngom, Alioune
2016-01-01
Accurately reconstructing gene regulatory network (GRN) from gene expression data is a challenging task in systems biology. Although some progresses have been made, the performance of GRN reconstruction still has much room for improvement. Because many regulatory events are asynchronous, learning gene interactions with multiple time delays is an effective way to improve the accuracy of GRN reconstruction. Here, we propose a new approach, called Max-Min high-order dynamic Bayesian network (MMHO-DBN) by extending the Max-Min hill-climbing Bayesian network technique originally devised for learning a Bayesian network's structure from static data. Our MMHO-DBN can explicitly model the time lags between regulators and targets in an efficient manner. It first uses constraint-based ideas to limit the space of potential structures, and then applies search-and-score ideas to search for an optimal HO-DBN structure. The performance of MMHO-DBN to GRN reconstruction was evaluated using both synthetic and real gene expression time-series data. Results show that MMHO-DBN is more accurate than current time-delayed GRN learning methods, and has an intermediate computing performance. Furthermore, it is able to learn long time-delayed relationships between genes. We applied sensitivity analysis on our model to study the performance variation along different parameter settings. The result provides hints on the setting of parameters of MMHO-DBN.
Bayesian network as a modelling tool for risk management in agriculture
Svend Rasmussen; Madsen, Anders L.; Mogens Lund
2013-01-01
The importance of risk management increases as farmers become more exposed to risk. But risk management is a difficult topic because income risk is the result of the complex interaction of multiple risk factors combined with the effect of an increasing array of possible risk management tools. In this paper we use Bayesian networks as an integrated modelling approach for representing uncertainty and analysing risk management in agriculture. It is shown how historical farm account data may be e...
Understanding the Scalability of Bayesian Network Inference Using Clique Tree Growth Curves
Mengshoel, Ole J.
2010-01-01
One of the main approaches to performing computation in Bayesian networks (BNs) is clique tree clustering and propagation. The clique tree approach consists of propagation in a clique tree compiled from a Bayesian network, and while it was introduced in the 1980s, there is still a lack of understanding of how clique tree computation time depends on variations in BN size and structure. In this article, we improve this understanding by developing an approach to characterizing clique tree growth as a function of parameters that can be computed in polynomial time from BNs, specifically: (i) the ratio of the number of a BN s non-root nodes to the number of root nodes, and (ii) the expected number of moral edges in their moral graphs. Analytically, we partition the set of cliques in a clique tree into different sets, and introduce a growth curve for the total size of each set. For the special case of bipartite BNs, there are two sets and two growth curves, a mixed clique growth curve and a root clique growth curve. In experiments, where random bipartite BNs generated using the BPART algorithm are studied, we systematically increase the out-degree of the root nodes in bipartite Bayesian networks, by increasing the number of leaf nodes. Surprisingly, root clique growth is well-approximated by Gompertz growth curves, an S-shaped family of curves that has previously been used to describe growth processes in biology, medicine, and neuroscience. We believe that this research improves the understanding of the scaling behavior of clique tree clustering for a certain class of Bayesian networks; presents an aid for trade-off studies of clique tree clustering using growth curves; and ultimately provides a foundation for benchmarking and developing improved BN inference and machine learning algorithms.
Tran, Thanh-Binh; Bastidas-Arteaga, Emilio; Schoefs, Franck
2015-01-01
International audience; Probabilistic modelling of deterioration processes is an important task to plan and quantify maintenance operations of structures. Relevant material and environmental model parameters could be determined from inspection data; but in practice the number of measures required for uncertainty quantification is conditioned by time-consuming and expensive tests. The main objective of this paper is to propose a method based on Bayesian networks for improving the identificatio...
2012-03-01
object. The second is unsupervised classification , in which the target is assigned to an unknown class. Jain et al.[17] defined the four best 10 known...0277):413–424, 1999. [34] Yang, He, Ben Ma, Qian Du, and Liangpei Zhang. “Comparison of spectral- spatial classification for urban hyperspectral ... classification accuracy at similar or extended operating conditions. Classification accuracy improvements achieved through Bayesian Belief Networks and the direct
Kim, D; Burge, J; Lane, T; Pearlson, G D; Kiehl, K A; Calhoun, V D
2008-10-01
We utilized a discrete dynamic Bayesian network (dDBN) approach (Burge, J., Lane, T., Link, H., Qiu, S., Clark, V.P., 2007. Discrete dynamic Bayesian network analysis of fMRI data. Hum Brain Mapp.) to determine differences in brain regions between patients with schizophrenia and healthy controls on a measure of effective connectivity, termed the approximate conditional likelihood score (ACL) (Burge, J., Lane, T., 2005. Learning Class-Discriminative Dynamic Bayesian Networks. Proceedings of the International Conference on Machine Learning, Bonn, Germany, pp. 97-104.). The ACL score represents a class-discriminative measure of effective connectivity by measuring the relative likelihood of the correlation between brain regions in one group versus another. The algorithm is capable of finding non-linear relationships between brain regions because it uses discrete rather than continuous values and attempts to model temporal relationships with a first-order Markov and stationary assumption constraint (Papoulis, A., 1991. Probability, random variables, and stochastic processes. McGraw-Hill, New York.). Since Bayesian networks are overly sensitive to noisy data, we introduced an independent component analysis (ICA) filtering approach that attempted to reduce the noise found in fMRI data by unmixing the raw datasets into a set of independent spatial component maps. Components that represented noise were removed and the remaining components reconstructed into the dimensions of the original fMRI datasets. We applied the dDBN algorithm to a group of 35 patients with schizophrenia and 35 matched healthy controls using an ICA filtered and unfiltered approach. We determined that filtering the data significantly improved the magnitude of the ACL score. Patients showed the greatest ACL scores in several regions, most markedly the cerebellar vermis and hemispheres. Our findings suggest that schizophrenia patients exhibit weaker connectivity than healthy controls in multiple regions
A self-growing Bayesian network classifier for online learning of human motion patterns
Yung, NHC; Chen, Z
2010-01-01
This paper proposes a new self-growing Bayesian network classifier for online learning of human motion patterns (HMPs) in dynamically changing environments. The proposed classifier is designed to represent HMP classes based on a set of historical trajectories labeled by unsupervised clustering. It then assigns HMP class labels to current trajectories. Parameters of the proposed classifier are recalculated based on the augmented dataset of labeled trajectories and all HMP classes are according...
Bayesian Network Assessment Method for Civil Aviation Safety Based on Flight Delays
2013-01-01
Flight delays and safety are the principal contradictions in the sound development of civil aviation. Flight delays often come up and induce civil aviation safety risk simultaneously. Based on flight delays, the random characteristics of civil aviation safety risk are analyzed. Flight delays have been deemed to a potential safety hazard. The change rules and characteristics of civil aviation safety risk based on flight delays have been analyzed. Bayesian networks (BN) have been used to build ...
Online variational Bayesian filtering-based mobile target tracking in wireless sensor networks.
Zhou, Bingpeng; Chen, Qingchun; Li, Tiffany Jing; Xiao, Pei
2014-11-11
The received signal strength (RSS)-based online tracking for a mobile node in wireless sensor networks (WSNs) is investigated in this paper. Firstly, a multi-layer dynamic Bayesian network (MDBN) is introduced to characterize the target mobility with either directional or undirected movement. In particular, it is proposed to employ the Wishart distribution to approximate the time-varying RSS measurement precision's randomness due to the target movement. It is shown that the proposed MDBN offers a more general analysis model via incorporating the underlying statistical information of both the target movement and observations, which can be utilized to improve the online tracking capability by exploiting the Bayesian statistics. Secondly, based on the MDBN model, a mean-field variational Bayesian filtering (VBF) algorithm is developed to realize the online tracking of a mobile target in the presence of nonlinear observations and time-varying RSS precision, wherein the traditional Bayesian filtering scheme cannot be directly employed. Thirdly, a joint optimization between the real-time velocity and its prior expectation is proposed to enable online velocity tracking in the proposed online tacking scheme. Finally, the associated Bayesian Cramer-Rao Lower Bound (BCRLB) analysis and numerical simulations are conducted. Our analysis unveils that, by exploiting the potential state information via the general MDBN model, the proposed VBF algorithm provides a promising solution to the online tracking of a mobile node in WSNs. In addition, it is shown that the final tracking accuracy linearly scales with its expectation when the RSS measurement precision is time-varying.
Online Variational Bayesian Filtering-Based Mobile Target Tracking in Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Bingpeng Zhou
2014-11-01
Full Text Available The received signal strength (RSS-based online tracking for a mobile node in wireless sensor networks (WSNs is investigated in this paper. Firstly, a multi-layer dynamic Bayesian network (MDBN is introduced to characterize the target mobility with either directional or undirected movement. In particular, it is proposed to employ the Wishart distribution to approximate the time-varying RSS measurement precision’s randomness due to the target movement. It is shown that the proposed MDBN offers a more general analysis model via incorporating the underlying statistical information of both the target movement and observations, which can be utilized to improve the online tracking capability by exploiting the Bayesian statistics. Secondly, based on the MDBN model, a mean-field variational Bayesian filtering (VBF algorithm is developed to realize the online tracking of a mobile target in the presence of nonlinear observations and time-varying RSS precision, wherein the traditional Bayesian filtering scheme cannot be directly employed. Thirdly, a joint optimization between the real-time velocity and its prior expectation is proposed to enable online velocity tracking in the proposed online tacking scheme. Finally, the associated Bayesian Cramer–Rao Lower Bound (BCRLB analysis and numerical simulations are conducted. Our analysis unveils that, by exploiting the potential state information via the general MDBN model, the proposed VBF algorithm provides a promising solution to the online tracking of a mobile node in WSNs. In addition, it is shown that the final tracking accuracy linearly scales with its expectation when the RSS measurement precision is time-varying.
Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng
2014-01-01
A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping.
Maritime Transportation Risk Assessment of Tianjin Port with Bayesian Belief Networks.
Zhang, Jinfen; Teixeira, Ângelo P; Guedes Soares, C; Yan, Xinping; Liu, Kezhong
2016-06-01
This article develops a Bayesian belief network model for the prediction of accident consequences in the Tianjin port. The study starts with a statistical analysis of historical accident data of six years from 2008 to 2013. Then a Bayesian belief network is constructed to express the dependencies between the indicator variables and accident consequences. The statistics and expert knowledge are synthesized in the Bayesian belief network model to obtain the probability distribution of the consequences. By a sensitivity analysis, several indicator variables that have influence on the consequences are identified, including navigational area, ship type and time of the day. The results indicate that the consequences are most sensitive to the position where the accidents occurred, followed by time of day and ship length. The results also reflect that the navigational risk of the Tianjin port is at the acceptable level, despite that there is more room of improvement. These results can be used by the Maritime Safety Administration to take effective measures to enhance maritime safety in the Tianjin port.
Software Delivery Risk Management: Application of Bayesian Networks in Agile Software Development
Directory of Open Access Journals (Sweden)
Ancveire Ieva
2015-12-01
Full Text Available The information technology industry cannot be imagined without large- or small-scale projects. They are implemented to develop systems enabling key business processes and improving performance and enterprise resource management. However, projects often experience various difficulties during their execution. These problems are usually related to the three objectives of the project – costs, quality and deadline. A way these challenges can be solved is project risk management. However, not always the main problems and their influencing factors can be easily identified. Usually there is a need for a more profound analysis of the problem situation. In this paper, we propose the use of a Bayesian Network concept for quantitative risk management in agile projects. The Bayesian Network is explored using a case study focusing on a project that faces difficulties during the software delivery process. We explain why an agile risk analysis is needed and assess the potential risk factors, which may occur during the project. Thereafter, we design the Bayesian Network to capture the actual problem situation and make suggestions how to improve the delivery process based on the measures to be taken to reduce the occurrence of project risks.
A Bayesian network to predict vulnerability to sea-level rise: data report
Gutierrez, Benjamin T.; Plant, Nathaniel G.; Thieler, E. Robert
2011-01-01
During the 21st century, sea-level rise is projected to have a wide range of effects on coastal environments, development, and infrastructure. Consequently, there has been an increased focus on developing modeling or other analytical approaches to evaluate potential impacts to inform coastal management. This report provides the data that were used to develop and evaluate the performance of a Bayesian network designed to predict long-term shoreline change due to sea-level rise. The data include local rates of relative sea-level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline-change rate compiled as part of the U.S. Geological Survey Coastal Vulnerability Index for the U.S. Atlantic coast. In this project, the Bayesian network is used to define relationships among driving forces, geologic constraints, and coastal responses. Using this information, the Bayesian network is used to make probabilistic predictions of shoreline change in response to different future sea-level-rise scenarios.
Urban land use extraction from Very High Resolution remote sensing imagery using a Bayesian network
Li, Mengmeng; Stein, Alfred; Bijker, Wietske; Zhan, Qingming
2016-12-01
Urban land use extraction from Very High Resolution (VHR) remote sensing images is important in many applications. This study explores a novel way to characterize the spatial arrangement of land cover features, and to integrate it with commonly used land use indicators. Characterization is done based upon building objects, taking their functional properties into account. We categorize the objects to a set of building types according to their geometrical, morphological, and contextual attributes. The spatial arrangement is characterized by quantifying the distribution of building types within a land use unit. Moreover, a set of existing land use indicators primarily based upon the coverage ratio and density of land cover features is investigated. A Bayesian network integrates the spatial arrangement and land use indicators, by which the urban land use is inferred. We applied urban land use extraction to a Pléiades VHR image over the city of Wuhan, China. Our results showed that integrating the spatial arrangement significantly improved the accuracy of urban land use extraction as compared with using land use indicators alone. Moreover, the Bayesian network method produced results comparable to other commonly used classifiers. We concluded that the proposed characterization of spatial arrangement and Bayesian network integration was effective for urban land use extraction from VHR images.
Energy Technology Data Exchange (ETDEWEB)
Spangenberg, H. (PLE Systems, Muenchen (Germany, F.R.))
In order to operate supply networks it is essential to document the geography and technical data of the network. On account of the complex requirements imposed on such a documentation, this task can only be performed with EDP assistance. Systems used for this purpose are far superior to traditional CAD or graphic systems since they must process the graphics, manage a large number of technical data and interlink the two. The system then functions as an information system which can provide information on the acutal geometry and technical data of the network at any time. One such system is the IRIS information system which is described here. (orig.).
Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.
Nash, David; Hannah, Murray; Robertson, Fiona; Rifkin, Penny
2010-01-01
Best management practices are often used to mitigate nutrient exports from agricultural systems. The effectiveness of these measures can vary depending on the natural attributes of the land in question (e.g., soil type, slope, and drainage class). In this paper we use a Bayesian Network to combine experiential data (expert opinion) and experimental data to compare farm-scale management for different high-rainfall cropping farms in the Hamilton region of southern Australia. In the absence of appropriate data for calibration, the network was tested against various scenarios in a predictive and in a diagnostic way. In general, the network suggests that transport factors related to total surface water (i.e., surface and near surface interflow) runoff, which are largely unrelated to Site Variables, have the biggest effect on N exports. Source factors, especially those related to fertilizer applications at planting, also appear to be important. However, the effects of fertilizer depend on when runoff occurs, and, of the major factors under management control, only the Fertilizer Rate at Sowing had a notable effect. When used in a predictive capacity, the network suggests that, compared with other scenarios, high N loads are likely when fertilizer applications at sowing and runoff coincide. In this paper we have used a Bayesian Network to describe many of the dependencies between some of the major factors affecting N exports from high rainfall cropping. This relatively simple approach has been shown to be a useful tool for comparing management practices in data-poor environments.
Bayesian adaptive combination of short-term wind speed forecasts from neural network models
Energy Technology Data Exchange (ETDEWEB)
Li, Gong; Shi, Jing; Zhou, Junyi [Department of Industrial and Manufacturing Engineering, North Dakota State University, Dept. 2485, PO Box 6050, Fargo, ND 58108 (United States)
2011-01-15
Short-term wind speed forecasting is of great importance for wind farm operations and the integration of wind energy into the power grid system. Adaptive and reliable methods and techniques of wind speed forecasts are urgently needed in view of the stochastic nature of wind resource varying from time to time and from site to site. This paper presents a robust two-step methodology for accurate wind speed forecasting based on Bayesian combination algorithm, and three neural network models, namely, adaptive linear element network (ADALINE), backpropagation (BP) network, and radial basis function (RBF) network. The hourly average wind speed data from two North Dakota sites are used to demonstrate the effectiveness of the proposed approach. The results indicate that, while the performances of the neural networks are not consistent in forecasting 1-h-ahead wind speed for the two sites or under different evaluation metrics, the Bayesian combination method can always provide adaptive, reliable and comparatively accurate forecast results. The proposed methodology provides a unified approach to tackle the challenging model selection issue in wind speed forecasting. (author)
Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks
Jiang, Fei-Bo; Dai, Qian-Wei; Dong, Li
2016-06-01
Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.
Analysis of lifestyle and metabolic predictors of visceral obesity with Bayesian Networks
Directory of Open Access Journals (Sweden)
de Morais Sérgio
2010-09-01
Full Text Available Abstract Background The aim of this study was to provide a framework for the analysis of visceral obesity and its determinants in women, where complex inter-relationships are observed among lifestyle, nutritional and metabolic predictors. Thirty-four predictors related to lifestyle, adiposity, body fat distribution, blood lipids and adipocyte sizes have been considered as potential correlates of visceral obesity in women. To properly address the difficulties in managing such interactions given our limited sample of 150 women, bootstrapped Bayesian networks were constructed based on novel constraint-based learning methods that appeared recently in the statistical learning community. Statistical significance of edge strengths was evaluated and the less reliable edges were pruned to increase the network robustness. To allow accessible interpretation and integrate biological knowledge into the final network, several undirected edges were afterwards directed with physiological expertise according to relevant literature. Results Extensive experiments on synthetic data sampled from a known Bayesian network show that the algorithm, called Recursive Hybrid Parents and Children (RHPC, outperforms state-of-the-art algorithms that appeared in the recent literature. Regarding biological plausibility, we found that the inference results obtained with the proposed method were in excellent agreement with biological knowledge. For example, these analyses indicated that visceral adipose tissue accumulation is strongly related to blood lipid alterations independent of overall obesity level. Conclusions Bayesian Networks are a useful tool for investigating and summarizing evidence when complex relationships exist among predictors, in particular, as in the case of multifactorial conditions like visceral obesity, when there is a concurrent incidence for several variables, interacting in a complex manner. The source code and the data sets used for the empirical tests
Ennouri, Karim; Ayed, Rayda Ben; Hassen, Hanen Ben; Mazzarello, Maura; Ottaviani, Ennio
2015-12-01
Bacillus thuringiensis (Bt) is a Gram-positive bacterium. The entomopathogenic activity of Bt is related to the existence of the crystal consisting of protoxins, also called delta-endotoxins. In order to optimize and explain the production of delta-endotoxins of Bacillus thuringiensis kurstaki, we studied seven medium components: soybean meal, starch, KH₂PO₄, K₂HPO₄, FeSO₄, MnSO₄, and MgSO₄and their relationships with the concentration of delta-endotoxins using an experimental design (Plackett-Burman design) and Bayesian networks modelling. The effects of the ingredients of the culture medium on delta-endotoxins production were estimated. The developed model showed that different medium components are important for the Bacillus thuringiensis fermentation. The most important factors influenced the production of delta-endotoxins are FeSO₄, K2HPO₄, starch and soybean meal. Indeed, it was found that soybean meal, K₂HPO₄, KH₂PO₄and starch also showed positive effect on the delta-endotoxins production. However, FeSO4 and MnSO4 expressed opposite effect. The developed model, based on Bayesian techniques, can automatically learn emerging models in data to serve in the prediction of delta-endotoxins concentrations. The constructed model in the present study implies that experimental design (Plackett-Burman design) joined with Bayesian networks method could be used for identification of effect variables on delta-endotoxins variation.
Dynamic Bayesian Networks in Classification-and-Ranking Architecture of Response Generation
Directory of Open Access Journals (Sweden)
Aida Mustapha
2011-01-01
Full Text Available Problem statement: The first component in classification-and-ranking architecture is a Bayesian classifier that classifies user utterances into response classes based on their semantic and pragmatic interpretations. Bayesian networks are sufficient if data is limited to single user input utterance. However, if the classifier is able to collate features from a sequence of previous n-1 user utterances, the additional information may or may not improve the accuracy rate in response classification. Approach: This article investigates the use of dynamic Bayesian networks to include time-series information in the form of extended features from preceding utterances. The experiment was conducted on SCHISMA corpus, which is a mixed-initiative, transaction dialogue in theater reservation. Results: The results show that classification accuracy is improved, but rather insignificantly. The accuracy rate tends to deteriorate as time-span of dialogue is increased. Conclusion: Although every response utterance reflects form and behavior that are expected by the preceding utterance, influence of meaning and intentions diminishes throughout time as the conversation stretches to longer duration.
2017-01-01
Gene regulatory networks (GRNs) play an important role in cellular systems and are important for understanding biological processes. Many algorithms have been developed to infer the GRNs. However, most algorithms only pay attention to the gene expression data but do not consider the topology information in their inference process, while incorporating this information can partially compensate for the lack of reliable expression data. Here we develop a Bayesian group lasso with spike and slab priors to perform gene selection and estimation for nonparametric models. B-spline basis functions are used to capture the nonlinear relationships flexibly and penalties are used to avoid overfitting. Further, we incorporate the topology information into the Bayesian method as a prior. We present the application of our method on DREAM3 and DREAM4 datasets and two real biological datasets. The results show that our method performs better than existing methods and the topology information prior can improve the result. PMID:28133490
Directory of Open Access Journals (Sweden)
Yue Fan
2017-01-01
Full Text Available Gene regulatory networks (GRNs play an important role in cellular systems and are important for understanding biological processes. Many algorithms have been developed to infer the GRNs. However, most algorithms only pay attention to the gene expression data but do not consider the topology information in their inference process, while incorporating this information can partially compensate for the lack of reliable expression data. Here we develop a Bayesian group lasso with spike and slab priors to perform gene selection and estimation for nonparametric models. B-spline basis functions are used to capture the nonlinear relationships flexibly and penalties are used to avoid overfitting. Further, we incorporate the topology information into the Bayesian method as a prior. We present the application of our method on DREAM3 and DREAM4 datasets and two real biological datasets. The results show that our method performs better than existing methods and the topology information prior can improve the result.
Directory of Open Access Journals (Sweden)
Abdelkrim Moussaoui
2006-01-01
Full Text Available The authors discuss the combination of an Artificial Neural Network (ANN with analytical models to improve the performance of the prediction model of finishing rolling force in hot strip rolling mill process. The suggested model was implemented using Bayesian Evidence based training algorithm. It was found that the Bayesian Evidence based approach provided a superior and smoother fit to the real rolling mill data. Completely independent set of real rolling data were used to evaluate the capacity of the fitted ANN model to predict the unseen regions of data. As a result, test rolls obtained by the suggested hybrid model have shown high prediction quality comparatively to the usual empirical prediction models.
The Appeal to Expert Opinion: Quantitative Support for a Bayesian Network Approach.
Harris, Adam J L; Hahn, Ulrike; Madsen, Jens K; Hsu, Anne S
2016-08-01
The appeal to expert opinion is an argument form that uses the verdict of an expert to support a position or hypothesis. A previous scheme-based treatment of the argument form is formalized within a Bayesian network that is able to capture the critical aspects of the argument form, including the central considerations of the expert's expertise and trustworthiness. We propose this as an appropriate normative framework for the argument form, enabling the development and testing of quantitative predictions as to how people evaluate this argument, suggesting that such an approach might be beneficial to argumentation research generally. We subsequently present two experiments as an example of the potential for future research in this vein, demonstrating that participants' quantitative ratings of the convincingness of a proposition that has been supported with an appeal to expert opinion were broadly consistent with the predictions of the Bayesian model.
Bayesian methods for estimating the reliability in complex hierarchical networks (interim report).
Energy Technology Data Exchange (ETDEWEB)
Marzouk, Youssef M.; Zurn, Rena M.; Boggs, Paul T.; Diegert, Kathleen V. (Sandia National Laboratories, Albuquerque, NM); Red-Horse, John Robert (Sandia National Laboratories, Albuquerque, NM); Pebay, Philippe Pierre
2007-05-01
Current work on the Integrated Stockpile Evaluation (ISE) project is evidence of Sandia's commitment to maintaining the integrity of the nuclear weapons stockpile. In this report, we undertake a key element in that process: development of an analytical framework for determining the reliability of the stockpile in a realistic environment of time-variance, inherent uncertainty, and sparse available information. This framework is probabilistic in nature and is founded on a novel combination of classical and computational Bayesian analysis, Bayesian networks, and polynomial chaos expansions. We note that, while the focus of the effort is stockpile-related, it is applicable to any reasonably-structured hierarchical system, including systems with feedback.
Bayesian networks modeling for thermal error of numerical control machine tools
Institute of Scientific and Technical Information of China (English)
Xin-hua YAO; Jian-zhong FU; Zi-chen CHEN
2008-01-01
The interaction between the heat source location,its intensity,thermal expansion coefficient,the machine system configuration and the running environment creates complex thermal behavior of a machine tool,and also makes thermal error prediction difficult.To address this issue,a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented.The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques.Due to the effective combination of domain knowledge and sampled data,the BN method could adapt to the change of running state of machine,and obtain satisfactory prediction accuracy.Ex-periments on spindle thermal deformation were conducted to evaluate the modeling performance.Experimental results indicate that the BN method performs far better than the least squares(LS)analysis in terms of modeling estimation accuracy.
Prediction of tissue-specific cis-regulatory modules using Bayesian networks and regression trees
Directory of Open Access Journals (Sweden)
Chen Xiaoyu
2007-12-01
Full Text Available Abstract Background In vertebrates, a large part of gene transcriptional regulation is operated by cis-regulatory modules. These modules are believed to be regulating much of the tissue-specificity of gene expression. Results We develop a Bayesian network approach for identifying cis-regulatory modules likely to regulate tissue-specific expression. The network integrates predicted transcription factor binding site information, transcription factor expression data, and target gene expression data. At its core is a regression tree modeling the effect of combinations of transcription factors bound to a module. A new unsupervised EM-like algorithm is developed to learn the parameters of the network, including the regression tree structure. Conclusion Our approach is shown to accurately identify known human liver and erythroid-specific modules. When applied to the prediction of tissue-specific modules in 10 different tissues, the network predicts a number of important transcription factor combinations whose concerted binding is associated to specific expression.
Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.
Kaiser, Jacob L; Bland, Cassidy L; Klinke, David J
2016-03-01
Cancer arises from a deregulation of both intracellular and intercellular networks that maintain system homeostasis. Identifying the architecture of these networks and how they are changed in cancer is a pre-requisite for designing drugs to restore homeostasis. Since intercellular networks only appear in intact systems, it is difficult to identify how these networks become altered in human cancer using many of the common experimental models. To overcome this, we used the diversity in normal and malignant human tissue samples from the Cancer Genome Atlas (TCGA) database of human breast cancer to identify the topology associated with intercellular networks in vivo. To improve the underlying biological signals, we constructed Bayesian networks using metagene constructs, which represented groups of genes that are concomitantly associated with different immune and cancer states. We also used bootstrap resampling to establish the significance associated with the inferred networks. In short, we found opposing relationships between cell proliferation and epithelial-to-mesenchymal transformation (EMT) with regards to macrophage polarization. These results were consistent across multiple carcinomas in that proliferation was associated with a type 1 cell-mediated anti-tumor immune response and EMT was associated with a pro-tumor anti-inflammatory response. To address the identifiability of these networks from other datasets, we could identify the relationship between EMT and macrophage polarization with fewer samples when the Bayesian network was generated from malignant samples alone. However, the relationship between proliferation and macrophage polarization was identified with fewer samples when the samples were taken from a combination of the normal and malignant samples. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:470-479, 2016.
Schneider, Claudio Albert
This research is aimed at the solution of two common but still largely unsolved problems in the classification of remotely sensed data: (1) Classification accuracy of remotely sensed data decreases significantly in mountainous terrain, where topography strongly influences the spectral response of the features on the ground; and (2) when attempting to obtain more detailed classifications, e.g. forest cover types or species, rather than just broad categories of forest such as coniferous or deciduous, the accuracy of the classification generally decreases significantly. The main objective of the study was to develop a widely applicable and efficient classification procedure for mapping forest and other cover types in mountainous terrain, using an integrated GIS/neural network/Bayesian classification approach. The performance of this new technique was compared to a standard supervised Maximum Likelihood classification technique, a "conventional" Bayesian/Maximum Likelihood classification, and to a "conventional" neural network classifier. Results indicate a considerable improvement of the new technique over the standard Maximum Likelihood classification technique, as well as a better accuracy than the "conventional" Bayesian/Maximum Likelihood classifier (13.08 percent improvement in overall accuracy), but the "conventional" neural network classifiers outperformed all the techniques compared in this study, with an overall accuracy improvement of 15.94 percent as compared to the standard Maximum Likelihood classifier (from 46.77 percent to 62.71 percent). However, the overall accuracies of all the classification techniques compared in this study were relative low. It is believed that this was caused by problems related to the inadequacy of the reference data. On the other hand, the results also indicate the need to develop a different sampling design to more effectively cover the variability across all the parameters needed by the neural network classification technique
Bayesian network reconstruction using systems genetics data: comparison of MCMC methods.
Tasaki, Shinya; Sauerwine, Ben; Hoff, Bruce; Toyoshiba, Hiroyoshi; Gaiteri, Chris; Chaibub Neto, Elias
2015-04-01
Reconstructing biological networks using high-throughput technologies has the potential to produce condition-specific interactomes. But are these reconstructed networks a reliable source of biological interactions? Do some network inference methods offer dramatically improved performance on certain types of networks? To facilitate the use of network inference methods in systems biology, we report a large-scale simulation study comparing the ability of Markov chain Monte Carlo (MCMC) samplers to reverse engineer Bayesian networks. The MCMC samplers we investigated included foundational and state-of-the-art Metropolis-Hastings and Gibbs sampling approaches, as well as novel samplers we have designed. To enable a comprehensive comparison, we simulated gene expression and genetics data from known network structures under a range of biologically plausible scenarios. We examine the overall quality of network inference via different methods, as well as how their performance is affected by network characteristics. Our simulations reveal that network size, edge density, and strength of gene-to-gene signaling are major parameters that differentiate the performance of various samplers. Specifically, more recent samplers including our novel methods outperform traditional samplers for highly interconnected large networks with strong gene-to-gene signaling. Our newly developed samplers show comparable or superior performance to the top existing methods. Moreover, this performance gain is strongest in networks with biologically oriented topology, which indicates that our novel samplers are suitable for inferring biological networks. The performance of MCMC samplers in this simulation framework can guide the choice of methods for network reconstruction using systems genetics data.
A new approach for supply chain risk management: Mapping SCOR into Bayesian network
Directory of Open Access Journals (Sweden)
Mahdi Abolghasemi
2015-01-01
Full Text Available Purpose: Increase of costs and complexities in organizations beside the increase of uncertainty and risks have led the managers to use the risk management in order to decrease risk taking and deviation from goals. SCRM has a close relationship with supply chain performance. During the years different methods have been used by researchers in order to manage supply chain risk but most of them are either qualitative or quantitative. Supply chain operation reference (SCOR is a standard model for SCP evaluation which have uncertainty in its metrics. In This paper by combining qualitative and quantitative metrics of SCOR, supply chain performance will be measured by Bayesian Networks. Design/methodology/approach: First qualitative assessment will be done by recognizing uncertain metrics of SCOR model and then by quantifying them, supply chain performance will be measured by Bayesian Networks (BNs and supply chain operations reference (SCOR in which making decision on uncertain variables will be done by predictive and diagnostic capabilities. Findings: After applying the proposed method in one of the biggest automotive companies in Iran, we identified key factors of supply chain performance based on SCOR model through predictive and diagnostic capability of Bayesian Networks. After sensitivity analysis, we find out that ‘Total cost’ and its criteria that include costs of labors, warranty, transportation and inventory have the widest range and most effect on supply chain performance. So, managers should take their importance into account for decision making. We can make decisions simply by running model in different situations. Research limitations/implications: A more precise model consisted of numerous factors but it is difficult and sometimes impossible to solve big models, if we insert all of them in a Bayesian model. We have adopted real world characteristics with our software and method abilities. On the other hand, fewer data exist for some
DEFF Research Database (Denmark)
Jensen, Kasper Lynge; Toftum, Jørn; Friis-Hansen, Peter
2009-01-01
A Bayesian Network approach has been developed that can compare different building designs by estimating the effects of the thermal indoor environment on the mental performance of office workers. A part of this network is based on the compilation of subjective thermal sensation data...... that investments in improved indoor thermal conditions can be justified economically in most cases. The Bayesian Network provides a reliable platform using probabilities for modelling the complexity while estimating the effect of indoor climate factors on human beings, due to the different ways in which humans...
Grzegorczyk, Marco; Husmeier, Dirk
2012-01-01
An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homog
Sorias, Soli
2015-01-01
Efforts to overcome the problems of descriptive and categorical approaches have not yielded results. In the present article, psychiatric diagnosis using Bayesian networks is proposed. Instead of a yes/no decision, Bayesian networks give the probability of diagnostic category inclusion, thereby yielding both a graded, i.e., dimensional diagnosis, and a value of the certainty of the diagnosis. With the use of Bayesian networks in the diagnosis of mental disorders, information about etiology, associated features, treatment outcome, and laboratory results may be used in addition to clinical signs and symptoms, with each of these factors contributing proportionally to their own specificity and sensitivity. Furthermore, a diagnosis (albeit one with a lower probability) can be made even with incomplete, uncertain, or partially erroneous information, and patients whose symptoms are below the diagnostic threshold can be evaluated. Lastly, there is no need of NOS or "unspecified" categories, and comorbid disorders become different dimensions of the diagnostic evaluation. Bayesian diagnoses allow the preservation of current categories and assessment methods, and may be used concurrently with criteria-based diagnoses. Users need not put in extra effort except to collect more comprehensive information. Unlike the Research Domain Criteria (RDoC) project, the Bayesian approach neither increases the diagnostic validity of existing categories nor explains the pathophysiological mechanisms of mental disorders. It, however, can be readily integrated to present classification systems. Therefore, the Bayesian approach may be an intermediate phase between criteria-based diagnosis and the RDoC ideal.
Birlutiu, Adriana; d'Alché-Buc, Florence; Heskes, Tom
2015-01-01
Computational methods for predicting protein-protein interactions are important tools that can complement high-throughput technologies and guide biologists in designing new laboratory experiments. The proteins and the interactions between them can be described by a network which is characterized by several topological properties. Information about proteins and interactions between them, in combination with knowledge about topological properties of the network, can be used for developing computational methods that can accurately predict unknown protein-protein interactions. This paper presents a supervised learning framework based on Bayesian inference for combining two types of information: i) network topology information, and ii) information related to proteins and the interactions between them. The motivation of our model is that by combining these two types of information one can achieve a better accuracy in predicting protein-protein interactions, than by using models constructed from these two types of information independently.
Bayesian Regularization in a Neural Network Model to Estimate Lines of Code Using Function Points
Directory of Open Access Journals (Sweden)
K. K. Aggarwal
2005-01-01
Full Text Available It is a well known fact that at the beginning of any project, the software industry needs to know, how much will it cost to develop and what would be the time required ? . This paper examines the potential of using a neural network model for estimating the lines of code, once the functional requirements are known. Using the International Software Benchmarking Standards Group (ISBSG Repository Data (release 9 for the experiment, this paper examines the performance of back propagation feed forward neural network to estimate the Source Lines of Code. Multiple training algorithms are used in the experiments. Results demonstrate that the neural network models trained using Bayesian Regularization provide the best results and are suitable for this purpose.
Shih, Ann T.; Ancel, Ersin; Jones, Sharon M.
2012-01-01
The concern for reducing aviation safety risk is rising as the National Airspace System in the United States transforms to the Next Generation Air Transportation System (NextGen). The NASA Aviation Safety Program is committed to developing an effective aviation safety technology portfolio to meet the challenges of this transformation and to mitigate relevant safety risks. The paper focuses on the reasoning of selecting Object-Oriented Bayesian Networks (OOBN) as the technique and commercial software for the accident modeling and portfolio assessment. To illustrate the benefits of OOBN in a large and complex aviation accident model, the in-flight Loss-of-Control Accident Framework (LOCAF) constructed as an influence diagram is presented. An OOBN approach not only simplifies construction and maintenance of complex causal networks for the modelers, but also offers a well-organized hierarchical network that is easier for decision makers to exploit the model examining the effectiveness of risk mitigation strategies through technology insertions.
Alvarez-Galvez, Javier
2016-03-01
Studies assume that socioeconomic status determines individuals' states of health, but how does health determine socioeconomic status? And how does this association vary depending on contextual differences? To answer this question, our study uses an additive Bayesian Networks model to explain the interrelationships between health and socioeconomic determinants using complex and messy data. This model has been used to find the most probable structure in a network to describe the interdependence of these factors in five European welfare state regimes. The advantage of this study is that it offers a specific picture to describe the complex interrelationship between socioeconomic determinants and health, producing a network that is controlled by socio-demographic factors such as gender and age. The present work provides a general framework to describe and understand the complex association between socioeconomic determinants and health.
Bayesian Inference for Reliability of Systems and Networks Using the Survival Signature.
Aslett, Louis J M; Coolen, Frank P A; Wilson, Simon P
2015-09-01
The concept of survival signature has recently been introduced as an alternative to the signature for reliability quantification of systems. While these two concepts are closely related for systems consisting of a single type of component, the survival signature is also suitable for systems with multiple types of component, which is not the case for the signature. This also enables the use of the survival signature for reliability of networks. In this article, we present the use of the survival signature for reliability quantification of systems and networks from a Bayesian perspective. We assume that data are available on tested components that are exchangeable with those in the actual system or network of interest. These data consist of failure times and possibly right-censoring times. We present both a nonparametric and parametric approach.
Object-oriented Bayesian networks for paternity cases with allelic dependencies
Hepler, Amanda B.; Weir, Bruce S.
2008-01-01
This study extends the current use of Bayesian networks by incorporating the effects of allelic dependencies in paternity calculations. The use of object-oriented networks greatly simplify the process of building and interpreting forensic identification models, allowing researchers to solve new, more complex problems. We explore two paternity examples: the most common scenario where DNA evidence is available from the alleged father, the mother and the child; a more complex casewhere DNA is not available from the alleged father, but is available from the alleged father’s brother. Object-oriented networks are built, using HUGIN, for each example which incorporate the effects of allelic dependence caused by evolutionary relatedness. PMID:19079769
Kirk, David Blair
This thesis develops an engineering practice and design methodology to enable us to use CMOS analog VLSI chips to perform more accurate and precise computation. These techniques form the basis of an approach that permits us to build computer graphics and neural network applications using analog VLSI. The nature of the design methodology focuses on defining goals for circuit behavior to be met as part of the design process. To increase the accuracy of analog computation, we develop techniques for creating compensated circuit building blocks, where compensation implies the cancellation of device variations, offsets, and nonlinearities. These compensated building blocks can be used as components in larger and more complex circuits, which can then also be compensated. To this end, we develop techniques for automatically determining appropriate parameters for circuits, using constrained optimization. We also fabricate circuits that implement multi-dimensional gradient estimation for a gradient descent optimization technique. The parameter-setting and optimization tools allow us to automatically choose values for compensating our circuit building blocks, based on our goals for the circuit performance. We can also use the techniques to optimize parameters for larger systems, applying the goal-based techniques hierarchically. We also describe a set of thought experiments involving circuit techniques for increasing the precision of analog computation. Our engineering design methodology is a step toward easier use of analog VLSI to solve problems in computer graphics and neural networks. We provide data measured from compensated multipliers built using these design techniques. To demonstrate the feasibility of using analog VLSI for more quantitative computation, we develop small applications using the goal-based design approach and compensated components. Finally, we conclude by discussing the expected significance of this work for the wider use of analog VLSI for
Energy Technology Data Exchange (ETDEWEB)
Webb-Robertson, Bobbie-Jo M.; Corley, Courtney D.; McCue, Lee Ann; Clowers, Brian H.; Dowling, Chase P.; Wahl, Karen L.; Wunschel, David S.; Kreuzer, Helen W.
2014-03-21
The field of bioforensics is focused on the analysis of evidence from a biocrime. Existing laboratory analyses can identify the specific strain of an organism in the evidence, as well signatures of the specific culture batch of organisms, such as low-frequency contaminants or indicators of growth and processing methods. To link these disparate types of physical data to potential suspects, investigators may need to identify institutions or individuals whose access to strains and culturing practices match those identified from the evidence. In this work we present a Bayesian statistical network to fuse different types of analytical measurements that predict the production environment of a Yersinia pestis sample under investigation with automated test processing of scientific publications to identify institutions with a history of growing Y. pestis under similar conditions. Furthermore, the textual and experimental signatures were evaluated recursively to determine the overall sensitivity of the network across all levels of false positives. We illustrate that institutions associated with several specific culturing practices can be accurately selected based on the experimental signature from only a few analytical measurements. These findings demonstrate that similar Bayesian networks can be generated generically for many organisms of interest and their deployment is not prohibitive due to either computational or experimental factors.
A novel approach for pilot error detection using Dynamic Bayesian Networks.
Saada, Mohamad; Meng, Qinggang; Huang, Tingwen
2014-06-01
In the last decade Dynamic Bayesian Networks (DBNs) have become one type of the most attractive probabilistic modelling framework extensions of Bayesian Networks (BNs) for working under uncertainties from a temporal perspective. Despite this popularity not many researchers have attempted to study the use of these networks in anomaly detection or the implications of data anomalies on the outcome of such models. An abnormal change in the modelled environment's data at a given time, will cause a trailing chain effect on data of all related environment variables in current and consecutive time slices. Albeit this effect fades with time, it still can have an ill effect on the outcome of such models. In this paper we propose an algorithm for pilot error detection, using DBNs as the modelling framework for learning and detecting anomalous data. We base our experiments on the actions of an aircraft pilot, and a flight simulator is created for running the experiments. The proposed anomaly detection algorithm has achieved good results in detecting pilot errors and effects on the whole system.
Directory of Open Access Journals (Sweden)
Cristian Rodriguez Rivero
2014-07-01
Full Text Available The annual estimate of the availability of the amount of water for the agricultural sector has become a lifetime in places where rainfall is scarce, as is the case of northwestern Argentina. This work proposes to model and simulate monthly rainfall time series from one geographical location of Catamarca, Valle El Viejo Portezuelo. In this sense, the time series prediction is mathematical and computational modelling series provided by monthly cumulative rainfall, which has stochastic output approximated by neural networks Bayesian approach. We propose to use an algorithm based on artificial neural networks (ANNs using the Bayesian inference. The result of the prediction consists of 20% of the provided data consisting of 2000 to 2010. A new analysis for modelling, simulation and computational prediction of cumulative rainfall from one geographical location is well presented. They are used as data information, only the historical time series of daily flows measured in mmH2O. Preliminary results of the annual forecast in mmH2O with a prediction horizon of one year and a half are presented, 18 months, respectively. The methodology employs artificial neural network based tools, statistical analysis and computer to complete the missing information and knowledge of the qualitative and quantitative behavior. They also show some preliminary results with different prediction horizons of the proposed filter and its comparison with the performance Gaussian process filter used in the literature.
A Study of New Method for Weapon System Effectiveness Evaluation Based on Bayesian Network
Institute of Scientific and Technical Information of China (English)
YAN Dai-wei; GU Liang-xian; PAN Lei
2008-01-01
As weapon system effectiveness is affected by many factors, its evaluation is essentially a multi-criterion decision making problem for its complexity. The evaluation model of the effectiveness is established on the basis of metrics architecture of the effectiveness. The Bayesian network, which is used to evaluate the effectiveness, is established based on the metrics architecture and the evaluation models. For getting the weights of the metrics by Bayesian network, subjective initial values of the weights are given, gradient ascent algorithm is adopted, and the reasonable values of the weights are achieved. And then the effectiveness of every weapon system project is gained. The weapon system, whose effectiveness is relative maximum, is the optimization system. The research result shows that this method can solve the problem of AHP method which evaluation results are not compatible to the practice results and overcome the shortcoming of neural network in multilayer and multi-criterion decision. The method offers a new approaeh for evaluating the effectiveness.
OVERALL SENSITIVITY ANALYSIS UTILIZING BAYESIAN NETWORK FOR THE QUESTIONNAIRE INVESTIGATION ON SNS
Directory of Open Access Journals (Sweden)
Tsuyoshi Aburai
2013-11-01
Full Text Available Social Networking Service (SNS is prevailing rapidly in Japan in recent years. The most popular ones are Facebook, mixi, and Twitter, which are utilized in various fields of life together with the convenient tool such as smart-phone. In this work, a questionnaire investigation is carried out in order to clarify the current usage condition, issues and desired functions. More than 1,000 samples are gathered. Bayesian network is utilized for this analysis. Sensitivity analysis is carried out by setting evidence to all items. This enables overall analysis for each item. We analyzed them by sensitivity analysis and some useful results were obtained. We have presented the paper concerning this. But the volume becomes too large, therefore we have split them and this paper shows the latter half of the investigation result by setting evidence to Bayesian Network parameters. Differences in usage objectives and SNS sites are made clear by the attributes and preference of SNS users. They can be utilized effectively for marketing by clarifying the target customer through the sensitivity analysis.
Directory of Open Access Journals (Sweden)
Gao Shouguo
2011-08-01
Full Text Available Abstract Background Bayesian Network (BN is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. Results We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. Conclusion our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.
Capra, B.; Le Drogo, J.; Wolff, V.
2006-11-01
Degradation modelling of concrete structures uses uncertain variables and leads, using reliability assessment, to time dependant evolution of failure probabilities. However, only few data are generally available to feed models leading to two types of uncertainties: an intrinsic one depending on the modelled phenomena and one related to the precision of the measurement. Each new data available is a piece of information which allows to update the initial prediction. In this article, an example of updating process, based on a Bayesian network, is presented and applied on the corrosion risk of a cooling tower.
Energy Technology Data Exchange (ETDEWEB)
Capra, B.; Le Drogo, J.; Wolff, V. [OXAND S.A., 36 bis avenue F. Roosevelt, 77210 Avon (France)
2006-07-01
Degradation modelling of concrete structures uses uncertain variables and leads, using reliability assessment, to time dependant evolution of failure probabilities. However, only few data are generally available to feed models leading to two types of uncertainties: an intrinsic one depending on the modelled phenomena and one related to the precision of the measurement. Each new data available is a piece of information which allows to update the initial prediction. In this article, an example of updating process, based on a Bayesian network, is presented and applied on the corrosion risk of a cooling tower. (authors)
Institute of Scientific and Technical Information of China (English)
Tang Zheng; Gao Xiaoguang
2008-01-01
The manner and conditions of running the decision-making system with self-defense electronic jamming are given.After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with self-defense electronic jamming,a decision-making model with self-defense electronic jamming based on the discrete dynamic Bayesian network is established.Then jamming decision inferences by the aid of the algorithm of discrete dynamic Bayesian network are carried on.The simulating result shows that this method is able to synthesize different targets which are not predominant.In this way,various features at the same time,as well as the same feature appearing at different time complement mutually;in addition,the accuracy and reliability of electronic jamming decision making are enhanced significantly.
Odbert, Henry; Aspinall, Willy
2014-05-01
Evidence-based hazard assessment at volcanoes assimilates knowledge about the physical processes of hazardous phenomena and observations that indicate the current state of a volcano. Incorporating both these lines of evidence can inform our belief about the likelihood (probability) and consequences (impact) of possible hazardous scenarios, forming a basis for formal quantitative hazard assessment. However, such evidence is often uncertain, indirect or incomplete. Approaches to volcano monitoring have advanced substantially in recent decades, increasing the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Interpreting these multiple strands of parallel, partial evidence thus becomes increasingly complex. In practice, interpreting many timeseries requires an individual to be familiar with the idiosyncrasies of the volcano, monitoring techniques, configuration of recording instruments, observations from other datasets, and so on. In making such interpretations, an individual must consider how different volcanic processes may manifest as measureable observations, and then infer from the available data what can or cannot be deduced about those processes. We examine how parts of this process may be synthesised algorithmically using Bayesian inference. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple strands of evidence (e.g. observations, model results and interpretations) and their associated uncertainties in a methodical manner. BBNs are usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic data from the long-lived eruption at Soufriere Hills Volcano, Montserrat. We discuss
Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering.
Gao, Chuan; McDowell, Ian C; Zhao, Shiwen; Brown, Christopher D; Engelhardt, Barbara E
2016-07-01
Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues.
Godsey, Brian
2013-01-01
Inferring gene regulatory networks from expression data is difficult, but it is common and often useful. Most network problems are under-determined--there are more parameters than data points--and therefore data or parameter set reduction is often necessary. Correlation between variables in the model also contributes to confound network coefficient inference. In this paper, we present an algorithm that uses integrated, probabilistic clustering to ease the problems of under-determination and correlated variables within a fully Bayesian framework. Specifically, ours is a dynamic Bayesian network with integrated Gaussian mixture clustering, which we fit using variational Bayesian methods. We show, using public, simulated time-course data sets from the DREAM4 Challenge, that our algorithm outperforms non-clustering methods in many cases (7 out of 25) with fewer samples, rarely underperforming (1 out of 25), and often selects a non-clustering model if it better describes the data. Source code (GNU Octave) for BAyesian Clustering Over Networks (BACON) and sample data are available at: http://code.google.com/p/bacon-for-genetic-networks.
Seixas, Flávio Luiz; Zadrozny, Bianca; Laks, Jerson; Conci, Aura; Muchaluat Saade, Débora Christina
2014-08-01
Population aging has been occurring as a global phenomenon with heterogeneous consequences in both developed and developing countries. Neurodegenerative diseases, such as Alzheimer׳s Disease (AD), have high prevalence in the elderly population. Early diagnosis of this type of disease allows early treatment and improves patient quality of life. This paper proposes a Bayesian network decision model for supporting diagnosis of dementia, AD and Mild Cognitive Impairment (MCI). Bayesian networks are well-suited for representing uncertainty and causality, which are both present in clinical domains. The proposed Bayesian network was modeled using a combination of expert knowledge and data-oriented modeling. The network structure was built based on current diagnostic criteria and input from physicians who are experts in this domain. The network parameters were estimated using a supervised learning algorithm from a dataset of real clinical cases. The dataset contains data from patients and normal controls from the Duke University Medical Center (Washington, USA) and the Center for Alzheimer׳s Disease and Related Disorders (at the Institute of Psychiatry of the Federal University of Rio de Janeiro, Brazil). The dataset attributes consist of predisposal factors, neuropsychological test results, patient demographic data, symptoms and signs. The decision model was evaluated using quantitative methods and a sensitivity analysis. In conclusion, the proposed Bayesian network showed better results for diagnosis of dementia, AD and MCI when compared to most of the other well-known classifiers. Moreover, it provides additional useful information to physicians, such as the contribution of certain factors to diagnosis.
Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.
Directory of Open Access Journals (Sweden)
Fang Yan
Full Text Available Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie analysis was proposed by mapping bow-tie analysis into Bayesian network (BN. Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures.
Directory of Open Access Journals (Sweden)
John Bromley
2010-09-01
Full Text Available Stakeholder participation is becoming increasingly important in water resources management. In participatory processes, stakeholders contribute by putting forward their own perspective, and they benefit by enhancing their understanding of the factors involved in decision making. A diversity of modeling tools can be used to facilitate participatory processes. Bayesian networks are well suited to this task for a variety of reasons, including their ability to structure discussions and visual appeal. This research focuses on developing and testing a set of evaluation criteria for public participation. The advantages and limitations of these criteria are discussed in the light of a specific participatory modeling initiative. Modeling work was conducted in the Upper Guadiana Basin in central Spain, where uncontrolled groundwater extraction is responsible for wetland degradation and conflicts between farmers, water authorities, and environmentalists. Finding adequate solutions to the problem is urgent because the implementation of the EU Water Framework Directive requires all aquatic ecosystems to be in a “good ecological state” within a relatively short time frame. Stakeholder evaluation highlights the potential of Bayesian networks to support public participation processes.
Risk analysis of emergent water pollution accidents based on a Bayesian Network.
Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie
2016-01-01
To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents.
Using robust Bayesian network to estimate the residuals of fluoroquinolone antibiotic in soil.
Li, Xuewen; Xie, Yunfeng; Li, Lianfa; Yang, Xunfeng; Wang, Ning; Wang, Jinfeng
2015-11-01
Prediction of antibiotic pollution and its consequences is difficult, due to the uncertainties and complexities associated with multiple related factors. This article employed domain knowledge and spatial data to construct a Bayesian network (BN) model to assess fluoroquinolone antibiotic (FQs) pollution in the soil of an intensive vegetable cultivation area. The results show: (1) The relationships between FQs pollution and contributory factors: Three factors (cultivation methods, crop rotations, and chicken manure types) were consistently identified as predictors in the topological structures of three FQs, indicating their importance in FQs pollution; deduced with domain knowledge, the cultivation methods are determined by the crop rotations, which require different nutrients (derived from the manure) according to different plant biomass. (2) The performance of BN model: The integrative robust Bayesian network model achieved the highest detection probability (pd) of high-risk and receiver operating characteristic (ROC) area, since it incorporates domain knowledge and model uncertainty. Our encouraging findings have implications for the use of BN as a robust approach to assessment of FQs pollution and for informing decisions on appropriate remedial measures.
Yang, Xiaorong; Li, Suyun; Pan, Lulu; Wang, Qiang; Li, Huijie; Han, Mingkui; Zhang, Nan; Jiang, Fan; Jia, Chongqi
2016-07-01
The association between psychological factors and smoking cessation is complicated and inconsistent in published researches, and the joint effect of psychological factors on smoking cessation is unclear. This study explored how psychological factors jointly affect the success of smoking cessation using a Bayesian network approach. A community-based case control study was designed with 642 adult male successful smoking quitters as the cases, and 700 adult male failed smoking quitters as the controls. General self-efficacy (GSE), trait coping style (positive-trait coping style (PTCS) and negative-trait coping style (NTCS)) and self-rating anxiety (SA) were evaluated by GSE Scale, Trait Coping Style Questionnaire and SA Scale, respectively. Bayesian network was applied to evaluate the relationship between psychological factors and successful smoking cessation. The local conditional probability table of smoking cessation indicated that different joint conditions of psychological factors led to different outcomes for smoking cessation. Among smokers with high PTCS, high NTCS and low SA, only 36.40% successfully quitted smoking. However, among smokers with low pack-years of smoking, high GSE, high PTCS and high SA, 63.64% successfully quitted smoking. Our study indicates psychological factors jointly influence smoking cessation outcome. According to different joint situations, different solutions should be developed to control tobacco in practical intervention.
Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing
2016-01-08
A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.
A real-time fault diagnosis methodology of complex systems using object-oriented Bayesian networks
Cai, Baoping; Liu, Hanlin; Xie, Min
2016-12-01
Bayesian network (BN) is a commonly used tool in probabilistic reasoning of uncertainty in industrial processes, but it requires modeling of large and complex systems, in situations such as fault diagnosis and reliability evaluation. Motivated by reduction of the overall complexities of BNs for fault diagnosis, and the reporting of faults that immediately occur, a real-time fault diagnosis methodology of complex systems with repetitive structures is proposed using object-oriented Bayesian networks (OOBNs). The modeling methodology consists of two main phases: an off-line OOBN construction phase and an on-line fault diagnosis phase. In the off-line phase, sensor historical data and expert knowledge are collected and processed to determine the faults and symptoms, and OOBN-based fault diagnosis models are developed subsequently. In the on-line phase, operator experience and sensor real-time data are placed in the OOBNs to perform the fault diagnosis. According to engineering experience, the judgment rules are defined to obtain the fault diagnosis results.
Directory of Open Access Journals (Sweden)
Ilham Ilham
2015-01-01
Full Text Available This study was conducted to see the trend of diseases caused by unhealthy lifestyles on disadvantaged communities and coastal villages around Gresik and Tuban using hybrid algorithms through the construction of the structure of Bayesian Network. The problem to be solved in this study is no system that can detect a relationship between unhealthy behavior that caused the disease. Model of this structure has never been applied directly in the field to detect a causal events for example, if a behavior is unhealthy will arise disease. Application of this model needs to be done with a field study to determine and prove the actual benefits of the concept of a hybrid construction of Bayesian network structure. The purpose of this research is to produce a software model capable of early detection of disease risk propensity underdeveloped rural and coastal communities who have unhealthy lifestyles in the form of construction of the structure and generates a probability value with a tendency disease. The comparison between the structure of the origin of the structure of the trial results indicate the level of suitability for complete test data difference of 10% to the original structure, and suitability for the test data is incomplete for more than 20% depending on the amount of his missing value. The validity of that smoke will have the tendency has tuberculosis disease, bronchitis or Lung Cancer through the test system is 80% to 90%.
Predicting Click-Through Rates of New Advertisements Based on the Bayesian Network
Directory of Open Access Journals (Sweden)
Zhipeng Fang
2014-01-01
Full Text Available Most classical search engines choose and rank advertisements (ads based on their click-through rates (CTRs. To predict an ad’s CTR, historical click information is frequently concerned. To accurately predict the CTR of the new ads is challenging and critical for real world applications, since we do not have plentiful historical data about these ads. Adopting Bayesian network (BN as the effective framework for representing and inferring dependencies and uncertainties among variables, in this paper, we establish a BN-based model to predict the CTRs of new ads. First, we built a Bayesian network of the keywords that are used to describe the ads in a certain domain, called keyword BN and abbreviated as KBN. Second, we proposed an algorithm for approximate inferences of the KBN to find similar keywords with those that describe the new ads. Finally based on the similar keywords, we obtain the similar ads and then calculate the CTR of the new ad by using the CTRs of the ads that are similar with the new ad. Experimental results show the efficiency and accuracy of our method.
De la Fuente, José Manuel; Bengoetxea, Endika; Navarro, Felipe; Bobes, Julio; Alarcón, Renato Daniel
2011-04-30
There is agreement in that strengthening the sets of neurobiological data would reinforce the diagnostic objectivity of many psychiatric entities. This article attempts to use this approach in borderline personality disorder (BPD). Assuming that most of the biological findings in BPD reflect common underlying pathophysiological processes we hypothesized that most of the data involved in the findings would be statistically interconnected and interdependent, indicating biological consistency for this diagnosis. Prospectively obtained data on scalp and sleep electroencephalography (EEG), clinical neurologic soft signs, the dexamethasone suppression and thyrotropin-releasing hormone stimulation tests of 20 consecutive BPD patients were used to generate a Bayesian network model, an artificial intelligence paradigm that visually illustrates eventual associations (or inter-dependencies) between otherwise seemingly unrelated variables. The Bayesian network model identified relationships among most of the variables. EEG and TSH were the variables that influence most of the others, especially sleep parameters. Neurological soft signs were linked with EEG, TSH, and sleep parameters. The results suggest the possibility of using objective neurobiological variables to strengthen the validity of future diagnostic criteria and nosological characterization of BPD.
Directory of Open Access Journals (Sweden)
Yan Sun
2014-01-01
Full Text Available It is crucial to ascertain the comprehensive influence factors on personality for making effective cultivating plan. However, most existing literatures focus on the effect of individual factor on the personality. In order to comprehensively investigate the causal influences of preschool children’s temperament, school factors (teacher expectation and peer acceptance, and family factors (parental coparenting style, parental education value, and parental parenting style on the personality and the probability of the dependencies among these influence factors, we constructed the influencing factor model of personality development based on the Bayesian network. The models not only reflect the influence on personality development as a whole, but also obtain the probability relationships among the factors. Compared with other influence factors including family and school factors, temperament has more effect on the personality. In addition, teacher expectation also has an important influence on the personality. The experimental results show that it is a valuable exploration to construct the Bayesian network for comprehensively investigating the causal relationships between preschool children’s personality and related influence factors. Further, these results will be helpful to the cultivation of healthy personality.
Bayesian networks precipitation model based on hidden Markov analysis and its application
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Surface precipitation estimation is very important in hydrologic forecast. To account for the influence of the neighbors on the precipitation of an arbitrary grid in the network, Bayesian networks and Markov random field were adopted to estimate surface precipitation. Spherical coordinates and the expectation-maximization (EM) algorithm were used for region interpolation, and for estimation of the precipitation of arbitrary point in the region. Surface precipitation estimation of seven precipitation stations in Qinghai Lake region was performed. By comparing with other surface precipitation methods such as Thiessen polygon method, distance weighted mean method and arithmetic mean method, it is shown that the proposed method can judge the relationship of precipitation among different points in the area under complicated circumstances and the simulation results are more accurate and rational.
Analysis and assessment of injury risk in female gymnastics:Bayesian Network approach
Directory of Open Access Journals (Sweden)
Lyudmila Dimitrova
2015-02-01
Full Text Available This paper presents a Bayesian network (BN model for estimating injury risk in female artistic gymnastics. The model illustrates the connections betweenunderlying injury risk factorsthrough a series ofcausal dependencies. The quantitativepart of the model – the conditional probability tables, are determined using ТNormal distribution with parameters, derived by experts. The injury rates calculated by the network are in an agreement with injury statistic data and correctly reports the impact of various risk factors on injury rates. The model is designed to assist coaches and supporting teams in planning the training activity so that injuries are minimized. This study provides important background for further data collection and research necessary to improve the precision of the quantitative predictions of the model.
Aerial Image Texture Classification Based on u-level Bayesian Network%多级Bayesian Network的影像纹理分类方法
Institute of Scientific and Technical Information of China (English)
虞欣; 郑肇葆; 叶志伟; 李林宜
2008-01-01
在影像分类的实际应用中,所提取的特征(或波段)间往往存在较大的相关性.为了把Naive Bayes Classifters (NBC)模型更好地应用于分类中,本文在研究NBC模型的基础上,从特征空间划分的角度,将它进一步推广为多级Bayesian Network.实验结果分析表明:由于多级Bayesian Network模型综合考虑了特征之间的条件依赖关系,它在分类精度方面一般高于原始的NBC和最大似然法.然而,对于不同的n值,其分类结果也有所不同.
Li, Peng; Gong, Ping; Li, Haoni; Perkins, Edward J; Wang, Nan; Zhang, Chaoyang
2014-12-01
The Dialogue for Reverse Engineering Assessments and Methods (DREAM) project was initiated in 2006 as a community-wide effort for the development of network inference challenges for rigorous assessment of reverse engineering methods for biological networks. We participated in the in silico network inference challenge of DREAM3 in 2008. Here we report the details of our approach and its performance on the synthetic challenge datasets. In our methodology, we first developed a model called relative change ratio (RCR), which took advantage of the heterozygous knockdown data and null-mutant knockout data provided by the challenge, in order to identify the potential regulators for the genes. With this information, a time-delayed dynamic Bayesian network (TDBN) approach was then used to infer gene regulatory networks from time series trajectory datasets. Our approach considerably reduced the searching space of TDBN; hence, it gained a much higher efficiency and accuracy. The networks predicted using our approach were evaluated comparatively along with 29 other submissions by two metrics (area under the ROC curve and area under the precision-recall curve). The overall performance of our approach ranked the second among all participating teams.
Modeling of Failure Prediction Bayesian Network with Divide-and-Conquer Principle
Directory of Open Access Journals (Sweden)
Zhiqiang Cai
2014-01-01
Full Text Available For system failure prediction, automatically modeling from historical failure dataset is one of the challenges in practical engineering fields. In this paper, an effective algorithm is proposed to build the failure prediction Bayesian network (FPBN model with data mining technology. First, the conception of FPBN is introduced to describe the state of components and system and the cause-effect relationships among them. The types of network nodes, the directions of network edges, and the conditional probability distributions (CPDs of nodes in FPBN are discussed in detail. According to the characteristics of nodes and edges in FPBN, a divide-and-conquer principle based algorithm (FPBN-DC is introduced to build the best FPBN network structures of different types of nodes separately. Then, the CPDs of nodes in FPBN are calculated by the maximum likelihood estimation method based on the built network. Finally, a simulation study of a helicopter convertor model is carried out to demonstrate the application of FPBN-DC. According to the simulations results, the FPBN-DC algorithm can get better fitness value with the lower number of iterations, which verified its effectiveness and efficiency compared with traditional algorithm.
Predicting the functions of long noncoding RNAs using RNA-seq based on Bayesian network.
Xiao, Yun; Lv, Yanling; Zhao, Hongying; Gong, Yonghui; Hu, Jing; Li, Feng; Xu, Jinyuan; Bai, Jing; Yu, Fulong; Li, Xia
2015-01-01
Long noncoding RNAs (lncRNAs) have been shown to play key roles in various biological processes. However, functions of most lncRNAs are poorly characterized. Here, we represent a framework to predict functions of lncRNAs through construction of a regulatory network between lncRNAs and protein-coding genes. Using RNA-seq data, the transcript profiles of lncRNAs and protein-coding genes are constructed. Using the Bayesian network method, a regulatory network, which implies dependency relations between lncRNAs and protein-coding genes, was built. In combining protein interaction network, highly connected coding genes linked by a given lncRNA were subsequently used to predict functions of the lncRNA through functional enrichment. Application of our method to prostate RNA-seq data showed that 762 lncRNAs in the constructed regulatory network were assigned functions. We found that lncRNAs are involved in diverse biological processes, such as tissue development or embryo development (e.g., nervous system development and mesoderm development). By comparison with functions inferred using the neighboring gene-based method and functions determined using lncRNA knockdown experiments, our method can provide comparable predicted functions of lncRNAs. Overall, our method can be applied to emerging RNA-seq data, which will help researchers identify complex relations between lncRNAs and coding genes and reveal important functions of lncRNAs.
Directory of Open Access Journals (Sweden)
Chen Yidong
2011-10-01
Full Text Available Abstract Background Transcriptional regulation by transcription factor (TF controls the time and abundance of mRNA transcription. Due to the limitation of current proteomics technologies, large scale measurements of protein level activities of TFs is usually infeasible, making computational reconstruction of transcriptional regulatory network a difficult task. Results We proposed here a novel Bayesian non-negative factor model for TF mediated regulatory networks. Particularly, the non-negative TF activities and sample clustering effect are modeled as the factors from a Dirichlet process mixture of rectified Gaussian distributions, and the sparse regulatory coefficients are modeled as the loadings from a sparse distribution that constrains its sparsity using knowledge from database; meantime, a Gibbs sampling solution was developed to infer the underlying network structure and the unknown TF activities simultaneously. The developed approach has been applied to simulated system and breast cancer gene expression data. Result shows that, the proposed method was able to systematically uncover TF mediated transcriptional regulatory network structure, the regulatory coefficients, the TF protein level activities and the sample clustering effect. The regulation target prediction result is highly coordinated with the prior knowledge, and sample clustering result shows superior performance over previous molecular based clustering method. Conclusions The results demonstrated the validity and effectiveness of the proposed approach in reconstructing transcriptional networks mediated by TFs through simulated systems and real data.
Bayesian Networks for Causal Reasoning in Situation Assessment%用于态势评估中因果推理的贝叶斯网络
Institute of Scientific and Technical Information of China (English)
李伟生; 王宝树
2002-01-01
Causal reasoning plays an important role in situation assessment (SA). Using Bayesian networks to find out the hidden patterns between situation hypothesis and events is the function needed to accomplish in situation as sessment. Based on different link relationship,a Bayesian network model for situation assessment is analyzed in this paper. To overcome the weakness of this model in application for dynamic changed scenario ,this paper presents an approach that uses a dynamic Bayesian network to represent features of the situation hypothesis and events. And the algorithms of propagation of corresponding information through the network are introduced respectively.
Software Development Effort Estimation using Fuzzy Bayesian Belief Network with COCOMO II
Directory of Open Access Journals (Sweden)
B.Chakraborty
2015-01-01
Full Text Available Software development has always been characterized by some metrics. One of the greatest challenges for software developers lies in predicting the development effort for a software system which is based on developer abilities, size, complexity and other metrics. Several algorithmic cost estimation models such as Boehm?s COCOMO, Albrecht's' Function Point Analysis, Putnam?s SLIM, ESTIMACS etc. are available but every model has its own pros and cons in estimating development cost and effort. Most common reason being project data which is available in the initial stages of project is often incomplete, inconsistent, uncertain and unclear. In this paper, Bayesian probabilistic model has been explored to overcome the problems of uncertainty and imprecision resulting in improved process of software development effort estimation. This paper considers a software estimation approach using six key cost drivers in COCOMO II model. The selected cost drivers are the inputs to systems. The concept of Fuzzy Bayesian Belief Network (FBBN has been introduced to improve the accuracy of the estimation. Results shows that the value of MMRE (Mean of Magnitude of Relative Error and PRED obtained by means of FBBN is much better as compared to the MMRE and PRED of Fuzzy COCOMO II models. The validation of results was carried out on NASA-93 dem COCOMO II dataset.
Ranking Features on Psychological Dynamics of Cooperative Team Work through Bayesian Networks
Directory of Open Access Journals (Sweden)
Pilar Fuster-Parra
2016-05-01
Full Text Available The aim of this study is to rank some features that characterize the psychological dynamics of cooperative team work in order to determine priorities for interventions and formation: leading positive feedback, cooperative manager and collaborative manager features. From a dataset of 20 cooperative sport teams (403 soccer players, the characteristics of the prototypical sports teams are studied using an average Bayesian network (BN and two special types of BNs, the Bayesian classifiers: naive Bayes (NB and tree augmented naive Bayes (TAN. BNs are selected as they are able to produce probability estimates rather than predictions. BN results show that the antecessors (the “top” features ranked are the team members’ expectations and their attraction to the social aspects of the task. The main node is formed by the cooperative behaviors, the consequences ranked at the BN bottom (ratified by the TAN trees and the instantiations made, the roles assigned to the members and their survival inside the same team. These results should help managers to determine contents and priorities when they have to face team-building actions.
Zhang, Xuesong
2011-11-01
Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow forecasting. In this study, we propose a Markov Chain Monte Carlo (MCMC) framework (BNN-PIS) to incorporate the uncertainties associated with parameters, inputs, and structures into BNNs. This framework allows the structure of the neural networks to change by removing or adding connections between neurons and enables scaling of input data by using rainfall multipliers. The results show that the new BNNs outperform BNNs that only consider uncertainties associated with parameters and model structures. Critical evaluation of posterior distribution of neural network weights, number of effective connections, rainfall multipliers, and hyper-parameters shows that the assumptions held in our BNNs are not well supported. Further understanding of characteristics of and interactions among different uncertainty sources is expected to enhance the application of neural networks for uncertainty analysis of hydrologic forecasting. © 2011 Elsevier B.V.
Doskey, Steven Craig
2014-01-01
This research presents an innovative means of gauging Systems Engineering effectiveness through a Systems Engineering Relative Effectiveness Index (SE REI) model. The SE REI model uses a Bayesian Belief Network to map causal relationships in government acquisitions of Complex Information Systems (CIS), enabling practitioners to identify and…
Grzegorczyk, Marco; Husmeier, Dirk; Edwards, Kieron D.; Ghazal, Peter; Millar, Andrew J.
2008-01-01
Method: The objective of the present article is to propose and evaluate a probabilistic approach based on Bayesian networks for modelling non-homogeneous and non-linear gene regulatory processes. The method is based on a mixture model, using latent variables to assign individual measurements to diff
The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity but MoA classification in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity mode of action using a recently published dataset contain...
Chen, Cong; Zhang, Guohui; Tarefder, Rafiqul; Ma, Jianming; Wei, Heng; Guan, Hongzhi
2015-07-01
Rear-end crash is one of the most common types of traffic crashes in the U.S. A good understanding of its characteristics and contributing factors is of practical importance. Previously, both multinomial Logit models and Bayesian network methods have been used in crash modeling and analysis, respectively, although each of them has its own application restrictions and limitations. In this study, a hybrid approach is developed to combine multinomial logit models and Bayesian network methods for comprehensively analyzing driver injury severities in rear-end crashes based on state-wide crash data collected in New Mexico from 2010 to 2011. A multinomial logit model is developed to investigate and identify significant contributing factors for rear-end crash driver injury severities classified into three categories: no injury, injury, and fatality. Then, the identified significant factors are utilized to establish a Bayesian network to explicitly formulate statistical associations between injury severity outcomes and explanatory attributes, including driver behavior, demographic features, vehicle factors, geometric and environmental characteristics, etc. The test results demonstrate that the proposed hybrid approach performs reasonably well. The Bayesian network reference analyses indicate that the factors including truck-involvement, inferior lighting conditions, windy weather conditions, the number of vehicles involved, etc. could significantly increase driver injury severities in rear-end crashes. The developed methodology and estimation results provide insights for developing effective countermeasures to reduce rear-end crash injury severities and improve traffic system safety performance.
The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity, but development of predictive MoA classification models in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity MoA using a recently pu...
Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga
2009-01-01
In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specifically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. (See CASI ID 20100021910 for supplemental data disk.)
Almond, Russell G.; Mulder, Joris; Hemat, Lisa A.; Yan, Duanli
2006-01-01
Bayesian network models offer a large degree of flexibility for modeling dependence among observables (item outcome variables) from the same task that may be dependent. This paper explores four design patterns for modeling locally dependent observations from the same task: (1) No context--Ignore dependence among observables; (2) Compensatory…
Zhang, Zhidong
2016-01-01
This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…
预案分析的贝叶斯网络方法%Contingency Plan Analysis of Bayesian Networks
Institute of Scientific and Technical Information of China (English)
徐立
2012-01-01
在对预案进行评估分析和执行过程中常会涉及不确定性问题,传统的预案编制工具关键路径法(Critical Path Method,CPM)不具备处理不确定性问题的能力.本文推荐的贝叶斯网络法(Bayesian Networks)因其处理分析不确定性问题的能力已经被广泛应用于一系列的决策支持应用,但对预案评估分析的应用是新颖的.本文介绍了用贝叶斯网络法分析传统关键路径法编制的预案.%In the process of contingency plan analysis and execution, we meet uncertainty problem frequently. The traditional critical path method (CPM) can not deal with uncertainty problem. Bayesian networks which has capability to dispose uncertainty problem is applied to support decision -making widely. It is novel to use bayesian networks in contingency plan analysis. In this paper, a contingency plan is presented, which utilizes bayesian networks in CPM.
Bayesian Networks Construction and Their Applications in Data Mining%贝叶斯学习、贝叶斯网络与数据采掘
Institute of Scientific and Technical Information of China (English)
林士敏; 田凤占; 陆玉昌
2000-01-01
Recently Bayesian networks(BN)become a noticeable research direction in Data Mining,ln this paper we introduce the structure of Bayesian networks ,and the process of constructing a BN ,with the emphasis on the basic methods of learning from prior knowledge and sample data,using Bayesian learning approach,to identify the structures and probabilities of BN. The merits of Bayesian networks are that prior knowledge can be combined with observed data,which is important'especially when data is scarce or expensive ,that causal relationships among data can be learned ,and incomplete data set can be readily handled,which other models are disable to do so. It can foresee that Bayesian networks will become a powerful tools in Data Mining.
Development of Bayesian network models for risk-based ship design
Konovessis, Dimitris; Cai, Wenkui; Vassalos, Dracos
2013-06-01
In the past fifteen years, the attention of ship safety treatment as an objective rather than a constraint has started to sweep through the whole maritime industry. The risk-based ship design (RBD) methodology, advocating systematic integration of risk assessment within the conventional design process has started to takeoff. Despite this wide recognition and increasing popularity, important factors that could potentially undermine the quality of the results come from both quantitative and qualitative aspects during the risk assessment process. This paper details a promising solution by developing a formalized methodology for risk assessment through effective storing and processing of historical data combined with data generated through first-principle approaches. This method should help to generate appropriate risk models in the selected platform (Bayesian networks) which can be employed for decision making at design stage.
Nicandro, Cruz-Ramírez; Efrén, Mezura-Montes; María Yaneli, Ameca-Alducin; Enrique, Martín-Del-Campo-Mena; Héctor Gabriel, Acosta-Mesa; Nancy, Pérez-Castro; Alejandro, Guerra-Hernández; Guillermo de Jesús, Hoyos-Rivera; Rocío Erandi, Barrientos-Martínez
2013-01-01
Breast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages. A relatively new method, based on the temperature a tumor may produce, has recently been explored: thermography. In this paper, we will evaluate the diagnostic power of thermography in breast cancer using Bayesian network classifiers. We will show how the information provided by the thermal image can be used in order to characterize patients suspected of having cancer. Our main contribution is the proposal of a score, based on the aforementioned information, that could help distinguish sick patients from healthy ones. Our main results suggest the potential of this technique in such a goal but also show its main limitations that have to be overcome to consider it as an effective diagnosis complementary tool. PMID:23762182
Conditionality and risk for the pedestrian: modelling with the Bayesian networks.
Gaymard, Sandrine; Tiplica, Teodor
2015-01-01
The conditional script questionnaire (CSQ) makes possible to study the conditions under which drivers find it legitimate to transgress the Highway Code. In this paper, we propose to analyse conditional respect towards the pedestrian with a new methodology based on Bayesian networks (BN). This methodology is designed to give a useful decision support tool for the analyst. Starting from data encoded in the CSQ, we use structure learning algorithms in order to build a BN. Then, we exploit it for two purposes: to extract new knowledge about the main topics expressed in the CSQ and to make inferences. This methodology helps to better understand the behaviour of drivers interacting with pedestrians and what might be the cause of their decisions of legitimate transgressions. The efficiency of the methodology proposed here is illustrated and a context-dependent 'mapping' of the legitimate transgressions established.
Mocapy++ - A toolkit for inference and learning in dynamic Bayesian networks
Directory of Open Access Journals (Sweden)
Hamelryck Thomas
2010-03-01
Full Text Available Abstract Background Mocapy++ is a toolkit for parameter learning and inference in dynamic Bayesian networks (DBNs. It supports a wide range of DBN architectures and probability distributions, including distributions from directional statistics (the statistics of angles, directions and orientations. Results The program package is freely available under the GNU General Public Licence (GPL from SourceForge http://sourceforge.net/projects/mocapy. The package contains the source for building the Mocapy++ library, several usage examples and the user manual. Conclusions Mocapy++ is especially suitable for constructing probabilistic models of biomolecular structure, due to its support for directional statistics. In particular, it supports the Kent distribution on the sphere and the bivariate von Mises distribution on the torus. These distributions have proven useful to formulate probabilistic models of protein and RNA structure in atomic detail.
Applying Bayesian neural networks to identify pion, kaon and proton in BES Ⅱ
Institute of Scientific and Technical Information of China (English)
XU Ye; HOU Jian; ZHU Kai-En
2008-01-01
The Monte-Carlo samples of pion, kaon and proton generated from 0.3 GeV/c to 1.2 GeV/c by the 'tester' generator from SIMBES which are used to simulate the detector of BES Ⅱ are identified with the Bayesian neural networks (BNN). The pion identification and misidentification efficiencies are obviously better at high momentum region using BNN than the methods of X2 analysis of dE/dX and TOF information.The kaon identification and misidentification efficiencies are obviously better from 0.3 GeV/c to 1.2 GeV/c using BNN than the methods of X2 analysis. The proton identification and misidentification efficiencies using BNN are basically consistent with the ones of X2 analysis. The anti-proton identification and misidentification efficiencies are better below 0.6 GeV/c using BNN than the methods of X2 analysis.
Development of Bayesian Network Models for Risk-Based Ship Design
Institute of Scientific and Technical Information of China (English)
Dimitris Konovessis; Wenkui Cai; Dracos Vassalos
2013-01-01
In the past fifteen years,the attention of ship safety treatment as an objective rather than a constraint has started to sweep through the whole maritime industry.The risk-based ship design (RBD) methodology,advocating systematic integration of risk assessment within the conventional design process has started to takeoff.Despite this wide recognition and increasing popularity,important factors that could potentially undermine the quality of the results come from both quantitative and qualitative aspects during the risk assessment process.This paper details a promising solution by developing a formalized methodology for risk assessment through effective storing and processing of historical data combined with data generated through first-principle approaches.This method should help to generate appropriate risk models in the selected platform (Bayesian networks) which can be employed for decision making at design stage.
Inferring Alcoholism SNPs and Regulatory Chemical Compounds Based on Ensemble Bayesian Network.
Chen, Huan; Sun, Jiatong; Jiang, Hong; Wang, Xianyue; Wu, Lingxiang; Wu, Wei; Wang, Qh
2016-12-20
The disturbance of consciousness is one of the most common symptoms of those have alcoholism and may cause disability and mortality. Previous studies indicated that several single nucleotide polymorphisms (SNP) increase the susceptibility of alcoholism. In this study, we utilized the Ensemble Bayesian Network (EBN) method to identify causal SNPs of alcoholism based on the verified GAW14 data. Thirteen out of eighteen SNPs directly connected with alcoholism were found concordance with potential risk regions of alcoholism in OMIM database. As a number of SNPs were found contributing to alteration on gene expression, known as expression quantitative trait loci (eQTLs), we further sought to identify chemical compounds acting as regulators of alcoholism genes captured by causal SNPs. Chloroprene and valproic acid were identified as the expression regulators for genes C11orf66 and SALL3 which were captured by alcoholism SNPs, respectively.
Comparison of dynamic Bayesian network approaches for online diagnosis of aircraft system
Institute of Scientific and Technical Information of China (English)
于劲松; 冯威; 唐荻音; 刘浩
2016-01-01
The online diagnosis for aircraft system has always been a difficult problem. This is due to time evolution of system change, uncertainty of sensor measurements, and real-time requirement of diagnostic inference. To address this problem, two dynamic Bayesian network (DBN) approaches are proposed. One approach prunes the DBN of system, and then uses particle filter (PF) for this pruned DBN (PDBN) to perform online diagnosis. The problem is that estimates from a PF tend to have high variance for small sample sets. Using large sample sets is computationally expensive. The other approach compiles the PDBN into a dynamic arithmetic circuit (DAC) using an offline procedure that is applied only once, and then uses this circuit to provide online diagnosis recursively. This approach leads to the most computational consumption in the offline procedure. The experimental results show that the DAC, compared with the PF for PDBN, not only provides more reliable online diagnosis, but also offers much faster inference.
Fuster-Parra, P; García-Mas, A; Ponseti, F J; Leo, F M
2015-04-01
The purpose of this paper was to discover the relationships among 22 relevant psychological features in semi-professional football players in order to study team's performance and collective efficacy via a Bayesian network (BN). The paper includes optimization of team's performance and collective efficacy using intercausal reasoning pattern which constitutes a very common pattern in human reasoning. The BN is used to make inferences regarding our problem, and therefore we obtain some conclusions; among them: maximizing the team's performance causes a decrease in collective efficacy and when team's performance achieves the minimum value it causes an increase in moderate/high values of collective efficacy. Similarly, we may reason optimizing team collective efficacy instead. It also allows us to determine the features that have the strongest influence on performance and which on collective efficacy. From the BN two different coaching styles were differentiated taking into account the local Markov property: training leadership and autocratic leadership.
Pérez-Rodríguez, P; Gianola, D; Weigel, K A; Rosa, G J M; Crossa, J
2013-08-01
In recent years, several statistical models have been developed for predicting genetic values for complex traits using information on dense molecular markers, pedigrees, or both. These models include, among others, the Bayesian regularized neural networks (BRNN) that have been widely used in prediction problems in other fields of application and, more recently, for genome-enabled prediction. The R package described here (brnn) implements BRNN models and extends these to include both additive and dominance effects. The implementation takes advantage of multicore architectures via a parallel computing approach using openMP (Open Multiprocessing) for the computations. This note briefly describes the classes of models that can be fitted using the brnn package, and it also illustrates its use through several real examples.
Biedermann, A; Voisard, R; Taroni, F
2012-09-01
Both, Bayesian networks and probabilistic evaluation are gaining more and more widespread use within many professional branches, including forensic science. Notwithstanding, they constitute subtle topics with definitional details that require careful study. While many sophisticated developments of probabilistic approaches to evaluation of forensic findings may readily be found in published literature, there remains a gap with respect to writings that focus on foundational aspects and on how these may be acquired by interested scientists new to these topics. This paper takes this as a starting point to report on the learning about Bayesian networks for likelihood ratio based, probabilistic inference procedures in a class of master students in forensic science. The presentation uses an example that relies on a casework scenario drawn from published literature, involving a questioned signature. A complicating aspect of that case study - proposed to students in a teaching scenario - is due to the need of considering multiple competing propositions, which is an outset that may not readily be approached within a likelihood ratio based framework without drawing attention to some additional technical details. Using generic Bayesian networks fragments from existing literature on the topic, course participants were able to track the probabilistic underpinnings of the proposed scenario correctly both in terms of likelihood ratios and of posterior probabilities. In addition, further study of the example by students allowed them to derive an alternative Bayesian network structure with a computational output that is equivalent to existing probabilistic solutions. This practical experience underlines the potential of Bayesian networks to support and clarify foundational principles of probabilistic procedures for forensic evaluation.
Mihaljević, Bojan; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro
2014-01-01
Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists' classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features
Dynamic Bayesian Network Modeling of the Interplay between EGFR and Hedgehog Signaling.
Directory of Open Access Journals (Sweden)
Holger Fröhlich
Full Text Available Aberrant activation of sonic Hegdehog (SHH signaling has been found to disrupt cellular differentiation in many human cancers and to increase proliferation. The SHH pathway is known to cross-talk with EGFR dependent signaling. Recent studies experimentally addressed this interplay in Daoy cells, which are presumable a model system for medulloblastoma, a highly malignant brain tumor that predominately occurs in children. Currently ongoing are several clinical trials for different solid cancers, which are designed to validate the clinical benefits of targeting the SHH in combination with other pathways. This has motivated us to investigate interactions between EGFR and SHH dependent signaling in greater depth. To our knowledge, there is no mathematical model describing the interplay between EGFR and SHH dependent signaling in medulloblastoma so far. Here we come up with a fully probabilistic approach using Dynamic Bayesian Networks (DBNs. To build our model, we made use of literature based knowledge describing SHH and EGFR signaling and integrated gene expression (Illumina and cellular location dependent time series protein expression data (Reverse Phase Protein Arrays. We validated our model by sub-sampling training data and making Bayesian predictions on the left out test data. Our predictions focusing on key transcription factors and p70S6K, showed a high level of concordance with experimental data. Furthermore, the stability of our model was tested by a parametric bootstrap approach. Stable network features were in agreement with published data. Altogether we believe that our model improved our understanding of the interplay between two highly oncogenic signaling pathways in Daoy cells. This may open new perspectives for the future therapy of Hedghog/EGF-dependent solid tumors.
Wind Farm Reliability Modelling Using Bayesian Networks and Semi-Markov Processes
Directory of Open Access Journals (Sweden)
Robert Adam Sobolewski
2015-09-01
Full Text Available Technical reliability plays an important role among factors affecting the power output of a wind farm. The reliability is determined by an internal collection grid topology and reliability of its electrical components, e.g. generators, transformers, cables, switch breakers, protective relays, and busbars. A wind farm reliability’s quantitative measure can be the probability distribution of combinations of operating and failed states of the farm’s wind turbines. The operating state of a wind turbine is its ability to generate power and to transfer it to an external power grid, which means the availability of the wind turbine and other equipment necessary for the power transfer to the external grid. This measure can be used for quantitative analysis of the impact of various wind farm topologies and the reliability of individual farm components on the farm reliability, and for determining the expected farm output power with consideration of the reliability. This knowledge may be useful in an analysis of power generation reliability in power systems. The paper presents probabilistic models that quantify the wind farm reliability taking into account the above-mentioned technical factors. To formulate the reliability models Bayesian networks and semi-Markov processes were used. Using Bayesian networks the wind farm structural reliability was mapped, as well as quantitative characteristics describing equipment reliability. To determine the characteristics semi-Markov processes were used. The paper presents an example calculation of: (i probability distribution of the combination of both operating and failed states of four wind turbines included in the wind farm, and (ii expected wind farm output power with consideration of its reliability.
Firestone, Simon M; Lewis, Fraser I; Schemann, Kathrin; Ward, Michael P; Toribio, Jenny-Ann L M L; Taylor, Melanie R; Dhand, Navneet K
2014-10-01
Australia experienced its first ever outbreak of equine influenza in August 2007. Horses on 9359 premises were infected over a period of 5 months before the disease was successfully eradicated through the combination of horse movement controls, on-farm biosecurity and vaccination. In a previous premises-level case-control study of the 2007 equine influenza outbreak in Australia, the protective effect of several variables representing on-farm biosecurity practices were identified. Separately, factors associated with horse managers' perceptions of the effectiveness of biosecurity measures have been identified. In this analysis we applied additive Bayesian network modelling to describe the complex web of associations linking variables representing on-farm human behaviours during the 2007 equine influenza outbreak (compliance or lack thereof with advised personal biosecurity measures) and horse managers' perceptions of the effectiveness of such measures in the event of a subsequent outbreak. Heuristic structure discovery enabled identification of a robust statistical model for 31 variables representing biosecurity practices and perceptions of the owners and managers of 148 premises. The Bayesian graphical network model we present statistically describes the associations linking horse managers' on-farm biosecurity practices during an at-risk period in the 2007 outbreak and their perceptions of whether such measures will be effective in a future outbreak. Practice of barrier infection control measures were associated with a heightened perception of preparedness, whereas horse managers that considered their on-farm biosecurity to be more stringent during the outbreak period than normal practices had a heightened perception of the effectiveness of other measures such as controlling access to the premises. Past performance in an outbreak setting may indeed be a reliable predictor of future perceptions, and should be considered when targeting infection control guidance to
A Bayesian Framework that integrates heterogeneous data for inferring gene regulatory networks
Directory of Open Access Journals (Sweden)
Tapesh eSantra
2014-05-01
Full Text Available Reconstruction of gene regulatory networks (GRNs from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein protein interactions with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS and physical protein interactions (PPI among transcription factors (TFs in a Bayesian Variable Selection (BVS algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of LASSO regression based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression based method in some circumstances.
Bayesian spatial joint modeling of traffic crashes on an urban road network.
Zeng, Qiang; Huang, Helai
2014-06-01
This study proposes a Bayesian spatial joint model of crash prediction including both road segments and intersections located in an urban road network, through which the spatial correlations between heterogeneous types of entities could be considered. A road network in Hillsborough, Florida, with crash, road, and traffic characteristics data for a three-year period was selected in order to compare the proposed joint model with three site-level crash prediction models, that is, the Poisson, negative binomial (NB), and conditional autoregressive (CAR) models. According to the results, the CAR and Joint models outperform the Poisson and NB models in terms of model fitting and predictive performance, which indicates the reasonableness of considering cross-entity spatial correlations. Although the goodness-of-fit and predictive performance of the CAR and Joint models are equivalent in this case study, spatial correlations between segments and the connected intersections are found to be more significant than those solely between segments or between intersections, which supports the employment of the Joint model as an alternative in road-network-level safety modeling.
Energy Technology Data Exchange (ETDEWEB)
Saini, Lalit Mohan [Department of Electrical Engineering, National Institute of Technology, Kurukshetra, Haryana 136119 (India)
2008-07-15
Up to 7 days ahead electrical peak load forecasting has been done using feed forward neural network based on Steepest descent, Bayesian regularization, Resilient and adaptive backpropagation learning methods, by incorporating the effect of eleven weather parameters and past peak load information. To avoid trapping of network into a state of local minima, the optimization of user-defined parameters viz., learning rate and error goal has been performed. The sliding window concept has been incorporated for selection of training data set. It was then reduced as per relevant selection according to the day type and season for which the forecast is made. To reduce the dimensionality of input matrix, the Principal Component Analysis method of factor extraction or correlation analysis technique has been used and their performance has been compared. The resultant data set was used for training of three-layered neural network. In order to increase the learning speed, the weights and biases were initialized according to Nguyen and Widrow method. To avoid over fitting, early stopping of training was done at the minimum validation error. (author)
A bayesian framework that integrates heterogeneous data for inferring gene regulatory networks.
Santra, Tapesh
2014-01-01
Reconstruction of gene regulatory networks (GRNs) from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein-protein interactions) with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS) and physical protein interactions (PPI) among transcription factors (TFs) in a Bayesian variable selection (BVS) algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of least absolute shrinkage and selection operator (LASSO) regression-based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression-based method in some circumstances.
Development of a Bayesian Belief Network Runway Incursion and Excursion Model
Green, Lawrence L.
2014-01-01
In a previous work, a statistical analysis of runway incursion (RI) event data was conducted to ascertain the relevance of this data to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to several of the AvSP top ten TC and identified numerous primary causes and contributing factors of RI events. The statistical analysis served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events, also previously reported. Through literature searches and data analysis, this RI event network has now been extended to also model runway excursion (RE) events. These RI and RE event networks have been further modified and vetted by a Subject Matter Expert (SME) panel. The combined system-level BBN model will allow NASA to generically model the causes of RI and RE events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of runway safety incidents/accidents, and to improve runway safety in general. The development and structure of the BBN for both RI and RE events are documented in this paper.
The Method of Oilfield Development Risk Forecasting and Early Warning Using Revised Bayesian Network
Directory of Open Access Journals (Sweden)
Yihua Zhong
2016-01-01
Full Text Available Oilfield development aiming at crude oil production is an extremely complex process, which involves many uncertain risk factors affecting oil output. Thus, risk prediction and early warning about oilfield development may insure operating and managing oilfields efficiently to meet the oil production plan of the country and sustainable development of oilfields. However, scholars and practitioners in the all world are seldom concerned with the risk problem of oilfield block development. The early warning index system of blocks development which includes the monitoring index and planning index was refined and formulated on the basis of researching and analyzing the theory of risk forecasting and early warning as well as the oilfield development. Based on the indexes of warning situation predicted by neural network, the method dividing the interval of warning degrees was presented by “3σ” rule; and a new method about forecasting and early warning of risk was proposed by introducing neural network to Bayesian networks. Case study shows that the results obtained in this paper are right and helpful to the management of oilfield development risk.
Reasoning with probabilistic and deterministic graphical models exact algorithms
Dechter, Rina
2013-01-01
Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics. These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well
Frolova A. O.
2012-01-01
Reverse engineering of gene regulatory networks is an intensively studied topic in Systems Biology as it reconstructs regulatory interactions between all genes in the genome in the most complete form. The extreme computational complexity of this problem and lack of thorough reviews on reconstruction methods of gene regulatory network is a significant obstacle to further development of this area. In this article the two most common methods for modeling gene regulatory networks are surveyed: Bo...
Venkataraman, Archana; Duncan, James S; Yang, Daniel Y-J; Pelphrey, Kevin A
2015-01-01
Resting-state functional magnetic resonance imaging (rsfMRI) studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD). Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differences in connectivity to localize a subset of foci that are most affected by ASD. Our approach is entirely data-driven and does not impose spatial constraints on the region foci or dictate the trajectory of altered functional pathways. We apply our method to data from the openly shared Autism Brain Imaging Data Exchange (ABIDE) and pinpoint two intrinsic functional networks that distinguish ASD patients from typically developing controls. One network involves foci in the right temporal pole, left posterior cingulate cortex, left supramarginal gyrus, and left middle temporal gyrus. Automated decoding of this network by the Neurosynth meta-analytic database suggests high-level concepts of "language" and "comprehension" as the likely functional correlates. The second network consists of the left banks of the superior temporal sulcus, right posterior superior temporal sulcus extending into temporo-parietal junction, and right middle temporal gyrus. Associated functionality of these regions includes "social" and "person". The abnormal pathways emanating from the above foci indicate that ASD patients simultaneously exhibit reduced long-range or inter-hemispheric connectivity and increased short-range or intra-hemispheric connectivity. Our findings reveal new insights into ASD and highlight possible neural mechanisms of the disorder.
Mengshoel, Ole J.; Roth, Dan; Wilkins, David C.
2001-01-01
Portfolio methods support the combination of different algorithms and heuristics, including stochastic local search (SLS) heuristics, and have been identified as a promising approach to solve computationally hard problems. While successful in experiments, theoretical foundations and analytical results for portfolio-based SLS heuristics are less developed. This article aims to improve the understanding of the role of portfolios of heuristics in SLS. We emphasize the problem of computing most probable explanations (MPEs) in Bayesian networks (BNs). Algorithmically, we discuss a portfolio-based SLS algorithm for MPE computation, Stochastic Greedy Search (SGS). SGS supports the integration of different initialization operators (or initialization heuristics) and different search operators (greedy and noisy heuristics), thereby enabling new analytical and experimental results. Analytically, we introduce a novel Markov chain model tailored to portfolio-based SLS algorithms including SGS, thereby enabling us to analytically form expected hitting time results that explain empirical run time results. For a specific BN, we show the benefit of using a homogenous initialization portfolio. To further illustrate the portfolio approach, we consider novel additive search heuristics for handling determinism in the form of zero entries in conditional probability tables in BNs. Our additive approach adds rather than multiplies probabilities when computing the utility of an explanation. We motivate the additive measure by studying the dramatic impact of zero entries in conditional probability tables on the number of zero-probability explanations, which again complicates the search process. We consider the relationship between MAXSAT and MPE, and show that additive utility (or gain) is a generalization, to the probabilistic setting, of MAXSAT utility (or gain) used in the celebrated GSAT and WalkSAT algorithms and their descendants. Utilizing our Markov chain framework, we show that
Myte, Robin; Gylling, Björn; Häggström, Jenny; Schneede, Jörn; Magne Ueland, Per; Hallmans, Göran; Johansson, Ingegerd; Palmqvist, Richard; Van Guelpen, Bethany
2017-01-01
The role of one-carbon metabolism (1CM), particularly folate, in colorectal cancer (CRC) development has been extensively studied, but with inconclusive results. Given the complexity of 1CM, the conventional approach, investigating components individually, may be insufficient. We used a machine learning-based Bayesian network approach to study, simultaneously, 14 circulating one-carbon metabolites, 17 related single nucleotide polymorphisms (SNPs), and several environmental factors in relation to CRC risk in 613 cases and 1190 controls from the prospective Northern Sweden Health and Disease Study. The estimated networks corresponded largely to known biochemical relationships. Plasma concentrations of folate (direct), vitamin B6 (pyridoxal 5-phosphate) (inverse), and vitamin B2 (riboflavin) (inverse) had the strongest independent associations with CRC risk. Our study demonstrates the importance of incorporating B-vitamins in future studies of 1CM and CRC development, and the usefulness of Bayesian network learning for investigating complex biological systems in relation to disease. PMID:28233834
Energy Technology Data Exchange (ETDEWEB)
Dana L. Kelly; Albert Malkhasyan
2010-06-01
There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performed for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “industry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an application of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates the development of a generic prior distribution, which incorporates multiple sources of generic data via weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.
Su, Naifang; Dai, Ding; Deng, Chao; Qian, Minping; Deng, Minghua
2014-06-01
Discovering the regulation of cancer-related gene is of great importance in cancer biology. Transcription factors and microRNAs are two kinds of crucial regulators in gene expression, and they compose a combinatorial regulatory network with their target genes. Revealing the structure of this network could improve the authors' understanding of gene regulation, and further explore the molecular pathway in cancer. In this article, the authors propose a novel approach graphical adaptive lasso (GALASSO) to construct the regulatory network in breast cancer. GALASSO use a Gaussian graphical model with adaptive lasso penalties to integrate the sequence information as well as gene expression profiles. The simulation study and the experimental profiles verify the accuracy of the authors' approach. The authors further reveal the structure of the regulatory network, and explore the role of feedforward loops in gene regulation. In addition, the authors discuss the combinatorial regulatory effect between transcription factors and microRNAs, and select miR-155 for detailed analysis of microRNA's role in cancer. The proposed GALASSO approach is an efficient method to construct the combinatorial regulatory network. It also provides a new way to integrate different data sources and could find more applications in meta-analysis problem.
Rizzo, D. M.; Fytilis, N.; Stevens, L.
2012-12-01
Environmental managers are increasingly required to monitor and forecast long-term effects and vulnerability of biophysical systems to human-generated stresses. Ideally, a study involving both physical and biological assessments conducted concurrently (in space and time) could provide a better understanding of the mechanisms and complex relationships. However, costs and resources associated with monitoring the complex linkages between the physical, geomorphic and habitat conditions and the biological integrity of stream reaches are prohibitive. Researchers have used classification techniques to place individual streams and rivers into a broader spatial context (hydrologic or health condition). Such efforts require environmental managers to gather multiple forms of information - quantitative, qualitative and subjective. We research and develop a novel classification tool that combines self-organizing maps with a Naïve Bayesian classifier to direct resources to stream reaches most in need. The Vermont Agency of Natural Resources has developed and adopted protocols for physical stream geomorphic and habitat assessments throughout the state of Vermont. Separate from these assessments, the Vermont Department of Environmental Conservation monitors the biological communities and the water quality in streams. Our initial hypothesis is that the geomorphic reach assessments and water quality data may be leveraged to reduce error and uncertainty associated with predictions of biological integrity and stream health. We test our hypothesis using over 2500 Vermont stream reaches (~1371 stream miles) assessed by the two agencies. In the development of this work, we combine a Naïve Bayesian classifier with a modified Kohonen Self-Organizing Map (SOM). The SOM is an unsupervised artificial neural network that autonomously analyzes inherent dataset properties using input data only. It is typically used to cluster data into similar categories when a priori classes do not exist. The
Stojadinovic, Alexander; Nissan, Aviram; Eberhardt, John; Chua, Terence C; Pelz, Joerg O W; Esquivel, Jesus
2011-02-01
Multimodality therapy in selected patients with peritoneal carcinomatosis is gaining acceptance. Treatment-directing decision support tools are needed to individualize care and select patients best suited for cytoreductive surgery +/- hyperthermic intraperitoneal chemotherapy (CRS +/- HIPEC). The purpose of this study is to develop a predictive model that could support surgical decisions in patients with colon carcinomatosis. Fifty-three patients were enrolled in a prospective study collecting 31 clinical-pathological, treatment-related, and outcome data. The population was characterized by disease presentation, performance status, extent of peritoneal cancer (Peritoneal Cancer Index, PCI), primary tumor histology, and nodal staging. These preoperative parameters were analyzed using step-wise machine-learned Bayesian Belief Networks (BBN) to develop a predictive model for overall survival (OS) in patients considered for CRS +/- HIPEC. Area-under-the-curve from receiver-operating-characteristics curves of OS predictions was calculated to determine the model's positive and negative predictive value. Model structure defined three predictors of OS: severity of symptoms (performance status), PCI, and ability to undergo CRS +/- HIPEC. Patients with PCI 20, who were not considered surgical candidates. Cross validation of the BBN model robustly classified OS (area-under-the-curve = 0.71). The model's positive predictive value and negative predictive value are 63.3 per cent and 68.3 per cent, respectively. This exploratory study supports the utility of Bayesian classification for developing decision support tools, which assess case-specific relative risk for a given patient for oncological outcomes based on clinically relevant classifiers of survival. Further prospective studies to validate the BBN model-derived prognostic assessment tool are warranted.
Exploiting missing clinical data in Bayesian network modeling for predicting medical problems.
Lin, Jau-Huei; Haug, Peter J
2008-02-01
When machine learning algorithms are applied to data collected during the course of clinical care, it is generally accepted that the data has not been consistently collected. The absence of expected data elements is common and the mechanism through which a data element is missing often involves the clinical relevance of that data element in a specific patient. Therefore, the absence of data may have information value of its own. In the process of designing an application intended to support a medical problem list, we have studied whether the "missingness" of clinical data can provide useful information in building prediction models. In this study, we experimented with four methods of treating missing values in a clinical data set-two of them explicitly model the absence or "missingness" of data. Each of these data sets were used to build four different kinds of Bayesian classifiers-a naive Bayes structure, a human-composed network structure, and two networks based on structural learning algorithms. We compared the performance between groups with and without explicit models of missingness using the area under the ROC curve. The results showed that in most cases the classifiers trained using the explicit missing value treatments performed better. The result suggests that information may exist in "missingness" itself. Thus, when designing a decision support system, we suggest one consider explicitly representing the presence/absence of data in the underlying logic.
Furfaro, R.; Linares, R.; Gaylor, D.; Jah, M.; Walls, R.
2016-09-01
In this paper, we present an end-to-end approach that employs machine learning techniques and Ontology-based Bayesian Networks (BN) to characterize the behavior of resident space objects. State-of-the-Art machine learning architectures (e.g. Extreme Learning Machines, Convolutional Deep Networks) are trained on physical models to learn the Resident Space Object (RSO) features in the vectorized energy and momentum states and parameters. The mapping from measurements to vectorized energy and momentum states and parameters enables behavior characterization via clustering in the features space and subsequent RSO classification. Additionally, Space Object Behavioral Ontologies (SOBO) are employed to define and capture the domain knowledge-base (KB) and BNs are constructed from the SOBO in a semi-automatic fashion to execute probabilistic reasoning over conclusions drawn from trained classifiers and/or directly from processed data. Such an approach enables integrating machine learning classifiers and probabilistic reasoning to support higher-level decision making for space domain awareness applications. The innovation here is to use these methods (which have enjoyed great success in other domains) in synergy so that it enables a "from data to discovery" paradigm by facilitating the linkage and fusion of large and disparate sources of information via a Big Data Science and Analytics framework.
Akutekwe, Arinze; Seker, Huseyin
2014-01-01
Computational and machine learning techniques have been applied in identifying biomarkers and constructing predictive models for diagnosis of hypertension. Strategies such as improved classification rules based on decision trees have been proposed. Other techniques such as Fuzzy Expert Systems (FES) and Neuro-Fuzzy Systems (NFS) have recently been applied. However, these methods lack the ability to detect temporal relationships among biomarker genes that will aid better understanding of the mechanism of hypertension disease. In this paper we apply a proposed two-stage bio-network construction approach that combines the power and computational efficiency of classification methods with the well-established predictive ability of Dynamic Bayesian Network. We demonstrate our method using the analysis of male young-onset hypertension microarray dataset. Four key genes were identified by the Least Angle Shrinkage and Selection Operator (LASSO) and three Support Vector Machine Recursive Feature Elimination (SVM-RFE) methods. Results show that cell regulation FOXQ1 may inhibit the expression of focusyltransferase-6 (FUT6) and that ABCG1 ATP-binding cassette sub-family G may also play inhibitory role against NR2E3 nuclear receptor sub-family 2 and CGB2 Chromatin Gonadotrophin.
Shaw, Edward; Kumar, Vikas; Lange, Eckart; Lerner, David N
2016-01-01
Modelling cultural ecosystem services is challenging as they often involve subjective and intangible concepts. As a consequence they have been neglected in ecosystem service studies, something that needs remedying if environmental decision making is to be truly holistic. We suggest Bayesian Networks (BNs) have a number of qualities that may make them well-suited for dealing with cultural services. For example, they define relationships between variables probabilistically, enabling conceptual and physical variables to be linked, and therefore the numerical representation of stakeholder opinions. We assess whether BNs are a good method for modelling cultural services by building one collaboratively with canoeists to predict how the subjective concepts of fun and danger are impacted on by weir modification. The BN successfully captured the relationships between the variables, with model output being broadly consistent with verbal descriptions by the canoeists. There were however a number of discrepancies indicating imperfect knowledge capture. This is likely due to the structure of the network and the abstract and laborious nature of the probability elicitation stage. New techniques should be developed to increase the intuitiveness and efficiency of probability elicitation. The limitations we identified with BNs are avoided if their structure can be kept simple, and it is in such circumstances that BNs can offer a good method for modelling cultural ecosystem services.
Directory of Open Access Journals (Sweden)
Zhujie Chu
2016-02-01
Full Text Available Municipal household solid waste (MHSW has become a serious problem in China over the course of the last two decades, resulting in significant side effects to the environment. Therefore, effective management of MHSW has attracted wide attention from both researchers and practitioners. Separate collection, the first and crucial step to solve the MHSW problem, however, has not been thoroughly studied to date. An empirical survey has been conducted among 387 households in Harbin, China in this study. We use Bayesian Belief Networks model to determine the influencing factors on separate collection. Four types of factors are identified, including political, economic, social cultural and technological based on the PEST (political, economic, social and technological analytical method. In addition, we further analyze the influential power of different factors, based on the network structure and probability changes obtained by Netica software. Results indicate that technological dimension has the greatest impact on MHSW separate collection, followed by the political dimension and economic dimension; social cultural dimension impacts MHSW the least.
A Bayesian network to predict coastal vulnerability to sea level rise
Gutierrez, B.T.; Plant, N.G.; Thieler, E.R.
2011-01-01
Sea level rise during the 21st century will have a wide range of effects on coastal environments, human development, and infrastructure in coastal areas. The broad range of complex factors influencing coastal systems contributes to large uncertainties in predicting long-term sea level rise impacts. Here we explore and demonstrate the capabilities of a Bayesian network (BN) to predict long-term shoreline change associated with sea level rise and make quantitative assessments of prediction uncertainty. A BN is used to define relationships between driving forces, geologic constraints, and coastal response for the U.S. Atlantic coast that include observations of local rates of relative sea level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline change rate. The BN is used to make probabilistic predictions of shoreline retreat in response to different future sea level rise rates. Results demonstrate that the probability of shoreline retreat increases with higher rates of sea level rise. Where more specific information is included, the probability of shoreline change increases in a number of cases, indicating more confident predictions. A hindcast evaluation of the BN indicates that the network correctly predicts 71% of the cases. Evaluation of the results using Brier skill and log likelihood ratio scores indicates that the network provides shoreline change predictions that are better than the prior probability. Shoreline change outcomes indicating stability (-1 1 m/yr) was not well predicted. We find that BNs can assimilate important factors contributing to coastal change in response to sea level rise and can make quantitative, probabilistic predictions that can be applied to coastal management decisions. Copyright ?? 2011 by the American Geophysical Union.
Pirone, Jason R; Smith, Marjolein; Kleinstreuer, Nicole C; Burns, Thomas A; Strickland, Judy; Dancik, Yuri; Morris, Richard; Rinckel, Lori A; Casey, Warren; Jaworska, Joanna S
2014-01-01
An open-source implementation of a previously published integrated testing strategy (ITS) for skin sensitization using a Bayesian network has been developed using R, a free and open-source statistical computing language. The ITS model provides probabilistic predictions of skin sensitization potency based on in silico and in vitro information as well as skin penetration characteristics from a published bioavailability model (Kasting et al., 2008). The structure of the Bayesian network was designed to be consistent with the adverse outcome pathway published by the OECD (Jaworska et al., 2011, 2013). In this paper, the previously published data set (Jaworska et al., 2013) is improved by two data corrections and a modified application of the Kasting model. The new data set implemented in the original commercial software package and the new R version produced consistent results. The data and a fully documented version of the code are publicly available (http://ntp.niehs.nih.gov/go/its).
Directory of Open Access Journals (Sweden)
Yue Zhao
2012-12-01
Full Text Available Audio‐visual speech recognition is a natural and robust approach to improving human-robot interaction in noisy environments. Although multi‐stream Dynamic Bayesian Network and coupled HMM are widely used for audio‐visual speech recognition, they fail to learn the shared features between modalities and ignore the dependency of features among the frames within each discrete state. In this paper, we propose a Deep Dynamic Bayesian Network (DDBN to perform unsupervised extraction of spatial‐temporal multimodal features from Tibetan audio‐visual speech data and build an accurate audio‐visual speech recognition model under a no frame‐independency assumption. The experiment results on Tibetan speech data from some real‐world environments showed the proposed DDBN outperforms the state‐of‐art methods in word recognition accuracy.
Dutta, Ritaban; Cohn, Anthony G.; Muggleton, Jen M.
2013-05-01
The successful operation of buried infrastructure within urban environments is fundamental to the conservation of modern living standards. In this paper a novel multi-sensor image fusion framework has been proposed and investigated using dynamic Bayesian network for automatic detection of buried underworld infrastructure. Experimental multi-sensors images were acquired for a known buried plastic water pipe using Vibro-acoustic sensor based location methods and Ground Penetrating Radar imaging system. Computationally intelligent conventional image processing techniques were used to process three types of sensory images. Independently extracted depth and location information from different images regarding the target pipe were fused together using dynamic Bayesian network to predict the maximum probable location and depth of the pipe. The outcome from this study was very encouraging as it was able to detect the target pipe with high accuracy compared with the currently existing pipe survey map. The approach was also applied successfully to produce a best probable 3D buried asset map.
Attallah, Omneya; Ma, Xianghong
2014-09-01
This article proposes a Bayesian neural network approach to determine the risk of re-intervention after endovascular aortic aneurysm repair surgery. The target of proposed technique is to determine which patients have high chance to re-intervention (high-risk patients) and which are not (low-risk patients) after 5 years of the surgery. Two censored datasets relating to the clinical conditions of aortic aneurysms have been collected from two different vascular centers in the United Kingdom. A Bayesian network was first employed to solve the censoring issue in the datasets. Then, a back propagation neural network model was built using the uncensored data of the first center to predict re-intervention on the second center and classify the patients into high-risk and low-risk groups. Kaplan-Meier curves were plotted for each group of patients separately to show whether there is a significant difference between the two risk groups. Finally, the logrank test was applied to determine whether the neural network model was capable of predicting and distinguishing between the two risk groups. The results show that the Bayesian network used for uncensoring the data has improved the performance of the neural networks that were built for the two centers separately. More importantly, the neural network that was trained with uncensored data of the first center was able to predict and discriminate between groups of low risk and high risk of re-intervention after 5 years of endovascular aortic aneurysm surgery at center 2 (p = 0.0037 in the logrank test).
Grzegorczyk, Marco; Husmeier, Dirk
2012-07-12
An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint processes to obtain time varying dynamic Bayesian networks (TV-DBNs). However, TV-DBNs are not without problems. Gene expression time series are typically short, which leaves the model over-flexible, leading to over-fitting or inflated inference uncertainty. In the present paper, we introduce a Bayesian regularization scheme that addresses this difficulty. Our approach is based on the rationale that changes in gene regulatory processes appear gradually during an organism's life cycle or in response to a changing environment, and we have integrated this notion in the prior distribution of the TV-DBN parameters. We have extensively tested our regularized TV-DBN model on synthetic data, in which we have simulated short non-homogeneous time series produced from a system subject to gradual change. We have then applied our method to real-world gene expression time series, measured during the life cycle of Drosophila melanogaster, under artificially generated constant light condition in Arabidopsis thaliana, and from a synthetically designed strain of Saccharomyces cerevisiae exposed to a changing environment.