WorldWideScience

Sample records for bayesian network approach

  1. A full bayesian approach for boolean genetic network inference.

    Directory of Open Access Journals (Sweden)

    Shengtong Han

    Full Text Available Boolean networks are a simple but efficient model for describing gene regulatory systems. A number of algorithms have been proposed to infer Boolean networks. However, these methods do not take full consideration of the effects of noise and model uncertainty. In this paper, we propose a full Bayesian approach to infer Boolean genetic networks. Markov chain Monte Carlo algorithms are used to obtain the posterior samples of both the network structure and the related parameters. In addition to regular link addition and removal moves, which can guarantee the irreducibility of the Markov chain for traversing the whole network space, carefully constructed mixture proposals are used to improve the Markov chain Monte Carlo convergence. Both simulations and a real application on cell-cycle data show that our method is more powerful than existing methods for the inference of both the topology and logic relations of the Boolean network from observed data.

  2. Parameter estimation of general regression neural network using Bayesian approach

    Science.gov (United States)

    Choir, Achmad Syahrul; Prasetyo, Rindang Bangun; Ulama, Brodjol Sutijo Suprih; Iriawan, Nur; Fitriasari, Kartika; Dokhi, Mohammad

    2016-02-01

    General Regression Neural Network (GRNN) has been applied in a large number of forecasting/prediction problem. Generally, there are two types of GRNN: GRNN which is based on kernel density; and Mixture Based GRNN (MBGRNN) which is based on adaptive mixture model. The main problem on GRNN modeling lays on how its parameters were estimated. In this paper, we propose Bayesian approach and its computation using Markov Chain Monte Carlo (MCMC) algorithms for estimating the MBGRNN parameters. This method is applied in simulation study. In this study, its performances are measured by using MAPE, MAE and RMSE. The application of Bayesian method to estimate MBGRNN parameters using MCMC is straightforward but it needs much iteration to achieve convergence.

  3. Nursing Home Care Quality: Insights from a Bayesian Network Approach

    Science.gov (United States)

    Goodson, Justin; Jang, Wooseung; Rantz, Marilyn

    2008-01-01

    Purpose: The purpose of this research is twofold. The first purpose is to utilize a new methodology (Bayesian networks) for aggregating various quality indicators to measure the overall quality of care in nursing homes. The second is to provide new insight into the relationships that exist among various measures of quality and how such measures…

  4. A Bayesian network approach to coastal storm impact modeling

    NARCIS (Netherlands)

    Jäger, W.S.; Den Heijer, C.; Bolle, A.; Hanea, A.M.

    2015-01-01

    In this paper we develop a Bayesian network (BN) that relates offshore storm conditions to their accompagnying flood characteristics and damages to residential buildings, following on the trend of integrated flood impact modeling. It is based on data from hydrodynamic storm simulations, information

  5. Bayesian probabilistic network approach for managing earthquake risks of cities

    DEFF Research Database (Denmark)

    Bayraktarli, Yahya; Faber, Michael

    2011-01-01

    This paper considers the application of Bayesian probabilistic networks (BPNs) to large-scale risk based decision making in regard to earthquake risks. A recently developed risk management framework is outlined which utilises Bayesian probabilistic modelling, generic indicator based risk models...... and geographical information systems. The proposed framework comprises several modules: A module on the probabilistic description of potential future earthquake shaking intensity, a module on the probabilistic assessment of spatial variability of soil liquefaction, a module on damage assessment of buildings...... and a fourth module on the consequences of an earthquake. Each of these modules is integrated into a BPN. Special attention is given to aggregated risk, i.e. the risk contribution from assets at multiple locations in a city subjected to the same earthquake. The application of the methodology is illustrated...

  6. A Dynamic Bayesian Network Approach to Location Prediction in Ubiquitous Computing Environments

    Science.gov (United States)

    Lee, Sunyoung; Lee, Kun Chang; Cho, Heeryon

    The ability to predict the future contexts of users significantly improves service quality and user satisfaction in ubiquitous computing environments. Location prediction is particularly useful because ubiquitous computing environments can dynamically adapt their behaviors according to a user's future location. In this paper, we present an inductive approach to recognizing a user's location by establishing a dynamic Bayesian network model. The dynamic Bayesian network model has been evaluated with a set of contextual data collected from undergraduate students. The evaluation result suggests that a dynamic Bayesian network model offers significant predictive power.

  7. Bayesian Belief Networks Approach for Modeling Irrigation Behavior

    Science.gov (United States)

    Andriyas, S.; McKee, M.

    2012-12-01

    Canal operators need information to manage water deliveries to irrigators. Short-term irrigation demand forecasts can potentially valuable information for a canal operator who must manage an on-demand system. Such forecasts could be generated by using information about the decision-making processes of irrigators. Bayesian models of irrigation behavior can provide insight into the likely criteria which farmers use to make irrigation decisions. This paper develops a Bayesian belief network (BBN) to learn irrigation decision-making behavior of farmers and utilizes the resulting model to make forecasts of future irrigation decisions based on factor interaction and posterior probabilities. Models for studying irrigation behavior have been rarely explored in the past. The model discussed here was built from a combination of data about biotic, climatic, and edaphic conditions under which observed irrigation decisions were made. The paper includes a case study using data collected from the Canal B region of the Sevier River, near Delta, Utah. Alfalfa, barley and corn are the main crops of the location. The model has been tested with a portion of the data to affirm the model predictive capabilities. Irrigation rules were deduced in the process of learning and verified in the testing phase. It was found that most of the farmers used consistent rules throughout all years and across different types of crops. Soil moisture stress, which indicates the level of water available to the plant in the soil profile, was found to be one of the most significant likely driving forces for irrigation. Irrigations appeared to be triggered by a farmer's perception of soil stress, or by a perception of combined factors such as information about a neighbor irrigating or an apparent preference to irrigate on a weekend. Soil stress resulted in irrigation probabilities of 94.4% for alfalfa. With additional factors like weekend and irrigating when a neighbor irrigates, alfalfa irrigation

  8. Constraint-based approach to discovery of inter module dependencies in modular Bayesian networks

    NARCIS (Netherlands)

    P. de Oude; G. Pavlin

    2009-01-01

    This paper introduces an information theoretic approach to verification of modular causal probabilistic models. We assume systems which are gradually extended by adding new functional modules, each having a limited domain knowledge captured by a local Bayesian network. Different modules originate fr

  9. A Hybrid Approach for Reliability Analysis Based on Analytic Hierarchy Process and Bayesian Network

    OpenAIRE

    Zubair, Muhammad

    2014-01-01

    By using analytic hierarchy process (AHP) and Bayesian Network (BN) the present research signifies the technical and non-technical issues of nuclear accidents. The study exposed that the technical faults was one major reason of these accidents. Keep an eye on other point of view it becomes clearer that human behavior like dishonesty, insufficient training, and selfishness are also play a key role to cause these accidents. In this study, a hybrid approach for reliability analysis based on AHP ...

  10. Identification of information tonality based on Bayesian approach and neural networks

    OpenAIRE

    Lande, D. V.

    2008-01-01

    A model of the identification of information tonality, based on Bayesian approach and neural networks was described. In the context of this paper tonality means positive or negative tone of both the whole information and its parts which are related to particular concepts. The method, its application is presented in the paper, is based on statistic regularities connected with the presence of definite lexemes in the texts. A distinctive feature of the method is its simplicity and versatility. A...

  11. A Bayesian Network Approach to Modeling Learning Progressions and Task Performance. CRESST Report 776

    Science.gov (United States)

    West, Patti; Rutstein, Daisy Wise; Mislevy, Robert J.; Liu, Junhui; Choi, Younyoung; Levy, Roy; Crawford, Aaron; DiCerbo, Kristen E.; Chappel, Kristina; Behrens, John T.

    2010-01-01

    A major issue in the study of learning progressions (LPs) is linking student performance on assessment tasks to the progressions. This report describes the challenges faced in making this linkage using Bayesian networks to model LPs in the field of computer networking. The ideas are illustrated with exemplar Bayesian networks built on Cisco…

  12. An empirical Bayesian approach for model-based inference of cellular signaling networks

    Directory of Open Access Journals (Sweden)

    Klinke David J

    2009-11-01

    Full Text Available Abstract Background A common challenge in systems biology is to infer mechanistic descriptions of biological process given limited observations of a biological system. Mathematical models are frequently used to represent a belief about the causal relationships among proteins within a signaling network. Bayesian methods provide an attractive framework for inferring the validity of those beliefs in the context of the available data. However, efficient sampling of high-dimensional parameter space and appropriate convergence criteria provide barriers for implementing an empirical Bayesian approach. The objective of this study was to apply an Adaptive Markov chain Monte Carlo technique to a typical study of cellular signaling pathways. Results As an illustrative example, a kinetic model for the early signaling events associated with the epidermal growth factor (EGF signaling network was calibrated against dynamic measurements observed in primary rat hepatocytes. A convergence criterion, based upon the Gelman-Rubin potential scale reduction factor, was applied to the model predictions. The posterior distributions of the parameters exhibited complicated structure, including significant covariance between specific parameters and a broad range of variance among the parameters. The model predictions, in contrast, were narrowly distributed and were used to identify areas of agreement among a collection of experimental studies. Conclusion In summary, an empirical Bayesian approach was developed for inferring the confidence that one can place in a particular model that describes signal transduction mechanisms and for inferring inconsistencies in experimental measurements.

  13. Plug & Play object oriented Bayesian networks

    DEFF Research Database (Denmark)

    Bangsø, Olav; Flores, J.; Jensen, Finn Verner

    2003-01-01

    Object oriented Bayesian networks have proven themselves useful in recent years. The idea of applying an object oriented approach to Bayesian networks has extended their scope to larger domains that can be divided into autonomous but interrelated entities. Object oriented Bayesian networks have...... been shown to be quite suitable for dynamic domains as well. However, processing object oriented Bayesian networks in practice does not take advantage of their modular structure. Normally the object oriented Bayesian network is transformed into a Bayesian network and, inference is performed...... by constructing a junction tree from this network. In this paper we propose a method for translating directly from object oriented Bayesian networks to junction trees, avoiding the intermediate translation. We pursue two main purposes: firstly, to maintain the original structure organized in an instance tree...

  14. Identification of information tonality based on Bayesian approach and neural networks

    CERN Document Server

    Lande, D V

    2008-01-01

    A model of the identification of information tonality, based on Bayesian approach and neural networks was described. In the context of this paper tonality means positive or negative tone of both the whole information and its parts which are related to particular concepts. The method, its application is presented in the paper, is based on statistic regularities connected with the presence of definite lexemes in the texts. A distinctive feature of the method is its simplicity and versatility. At present ideologically similar approaches are widely used to control spam.

  15. A dynamic Bayesian network based approach to safety decision support in tunnel construction

    International Nuclear Information System (INIS)

    This paper presents a systemic decision approach with step-by-step procedures based on dynamic Bayesian network (DBN), aiming to provide guidelines for dynamic safety analysis of the tunnel-induced road surface damage over time. The proposed DBN-based approach can accurately illustrate the dynamic and updated feature of geological, design and mechanical variables as the construction progress evolves, in order to overcome deficiencies of traditional fault analysis methods. Adopting the predictive, sensitivity and diagnostic analysis techniques in the DBN inference, this approach is able to perform feed-forward, concurrent and back-forward control respectively on a quantitative basis, and provide real-time support before and after an accident. A case study in relating to dynamic safety analysis in the construction of Wuhan Yangtze Metro Tunnel in China is used to verify the feasibility of the proposed approach, as well as its application potential. The relationships between the DBN-based and BN-based approaches are further discussed according to analysis results. The proposed approach can be used as a decision tool to provide support for safety analysis in tunnel construction, and thus increase the likelihood of a successful project in a dynamic project environment. - Highlights: • A dynamic Bayesian network (DBN) based approach for safety decision support is developed. • This approach is able to perform feed-forward, concurrent and back-forward analysis and control. • A case concerning dynamic safety analysis in Wuhan Yangtze Metro Tunnel in China is presented. • DBN-based approach can perform a higher accuracy than traditional static BN-based approach

  16. A new approach for supply chain risk management: Mapping SCOR into Bayesian network

    Directory of Open Access Journals (Sweden)

    Mahdi Abolghasemi

    2015-01-01

    Full Text Available Purpose: Increase of costs and complexities in organizations beside the increase of uncertainty and risks have led the managers to use the risk management in order to decrease risk taking and deviation from goals. SCRM has a close relationship with supply chain performance. During the years different methods have been used by researchers in order to manage supply chain risk but most of them are either qualitative or quantitative. Supply chain operation reference (SCOR is a standard model for SCP evaluation which have uncertainty in its metrics. In This paper by combining qualitative and quantitative metrics of SCOR, supply chain performance will be measured by Bayesian Networks. Design/methodology/approach: First qualitative assessment will be done by recognizing uncertain metrics of SCOR model and then by quantifying them, supply chain performance will be measured by Bayesian Networks (BNs and supply chain operations reference (SCOR in which making decision on uncertain variables will be done by predictive and diagnostic capabilities. Findings: After applying the proposed method in one of the biggest automotive companies in Iran, we identified key factors of supply chain performance based on SCOR model through predictive and diagnostic capability of Bayesian Networks. After sensitivity analysis, we find out that ‘Total cost’ and its criteria that include costs of labors, warranty, transportation and inventory have the widest range and most effect on supply chain performance. So, managers should take their importance into account for decision making. We can make decisions simply by running model in different situations. Research limitations/implications: A more precise model consisted of numerous factors but it is difficult and sometimes impossible to solve big models, if we insert all of them in a Bayesian model. We have adopted real world characteristics with our software and method abilities. On the other hand, fewer data exist for some

  17. Operational risk modelling and organizational learning in structured finance operations: a Bayesian network approach

    OpenAIRE

    Andrew Sanford; Imad Moosa

    2015-01-01

    This paper describes the development of a tool, based on a Bayesian network model, that provides posteriori predictions of operational risk events, aggregate operational loss distributions, and Operational Value-at-Risk, for a structured finance operations unit located within one of Australia's major banks. The Bayesian network, based on a previously developed causal framework, has been designed to model the smaller and more frequent, attritional operational loss events. Given the limited ava...

  18. Assessment of successful smoking cessation by psychological factors using the Bayesian network approach.

    Science.gov (United States)

    Yang, Xiaorong; Li, Suyun; Pan, Lulu; Wang, Qiang; Li, Huijie; Han, Mingkui; Zhang, Nan; Jiang, Fan; Jia, Chongqi

    2016-07-01

    The association between psychological factors and smoking cessation is complicated and inconsistent in published researches, and the joint effect of psychological factors on smoking cessation is unclear. This study explored how psychological factors jointly affect the success of smoking cessation using a Bayesian network approach. A community-based case control study was designed with 642 adult male successful smoking quitters as the cases, and 700 adult male failed smoking quitters as the controls. General self-efficacy (GSE), trait coping style (positive-trait coping style (PTCS) and negative-trait coping style (NTCS)) and self-rating anxiety (SA) were evaluated by GSE Scale, Trait Coping Style Questionnaire and SA Scale, respectively. Bayesian network was applied to evaluate the relationship between psychological factors and successful smoking cessation. The local conditional probability table of smoking cessation indicated that different joint conditions of psychological factors led to different outcomes for smoking cessation. Among smokers with high PTCS, high NTCS and low SA, only 36.40% successfully quitted smoking. However, among smokers with low pack-years of smoking, high GSE, high PTCS and high SA, 63.64% successfully quitted smoking. Our study indicates psychological factors jointly influence smoking cessation outcome. According to different joint situations, different solutions should be developed to control tobacco in practical intervention.

  19. An urban flood risk assessment method using the Bayesian Network approach

    DEFF Research Database (Denmark)

    Åström, Helena Lisa Alexandra

    the Bayesian Network (BN) approach is developed, and the method is exemplified in an urban catchment. BNs have become an increasingly popular method for describing complex systems and aiding decision-making under uncertainty. In environmental management, BNs have mainly been utilized in ecological assessments...... decision and utility nodes, which are beneficial in decision-making problems. This thesis aims at addressing four specific challenges identified in FRA and showing how these challenges may be addressed using an ID. Firstly, this thesis presents how an ID can be utilized to describe the temporal dimension...... are connected with each other by connecting the adaptation nodes in the time slices. Secondly, this thesis recognizes the need for including a spatial dimension in FRA. An urban catchment is rarely homogenous, and there are areas that have a higher risk than others. From a decision-making point of view...

  20. Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks

    Directory of Open Access Journals (Sweden)

    Ramoni Marco F

    2007-05-01

    Full Text Available Abstract Background Reverse engineering cellular networks is currently one of the most challenging problems in systems biology. Dynamic Bayesian networks (DBNs seem to be particularly suitable for inferring relationships between cellular variables from the analysis of time series measurements of mRNA or protein concentrations. As evaluating inference results on a real dataset is controversial, the use of simulated data has been proposed. However, DBN approaches that use continuous variables, thus avoiding the information loss associated with discretization, have not yet been extensively assessed, and most of the proposed approaches have dealt with linear Gaussian models. Results We propose a generalization of dynamic Gaussian networks to accommodate nonlinear dependencies between variables. As a benchmark dataset to test the new approach, we used data from a mathematical model of cell cycle control in budding yeast that realistically reproduces the complexity of a cellular system. We evaluated the ability of the networks to describe the dynamics of cellular systems and their precision in reconstructing the true underlying causal relationships between variables. We also tested the robustness of the results by analyzing the effect of noise on the data, and the impact of a different sampling time. Conclusion The results confirmed that DBNs with Gaussian models can be effectively exploited for a first level analysis of data from complex cellular systems. The inferred models are parsimonious and have a satisfying goodness of fit. Furthermore, the networks not only offer a phenomenological description of the dynamics of cellular systems, but are also able to suggest hypotheses concerning the causal interactions between variables. The proposed nonlinear generalization of Gaussian models yielded models characterized by a slightly lower goodness of fit than the linear model, but a better ability to recover the true underlying connections between

  1. Learning Bayesian networks for discrete data

    KAUST Repository

    Liang, Faming

    2009-02-01

    Bayesian networks have received much attention in the recent literature. In this article, we propose an approach to learn Bayesian networks using the stochastic approximation Monte Carlo (SAMC) algorithm. Our approach has two nice features. Firstly, it possesses the self-adjusting mechanism and thus avoids essentially the local-trap problem suffered by conventional MCMC simulation-based approaches in learning Bayesian networks. Secondly, it falls into the class of dynamic importance sampling algorithms; the network features can be inferred by dynamically weighted averaging the samples generated in the learning process, and the resulting estimates can have much lower variation than the single model-based estimates. The numerical results indicate that our approach can mix much faster over the space of Bayesian networks than the conventional MCMC simulation-based approaches. © 2008 Elsevier B.V. All rights reserved.

  2. A Bayesian network approach for modeling local failure in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jung Hun; Craft, Jeffrey; Al Lozi, Rawan; Vaidya, Manushka; Meng, Yifan; Deasy, Joseph O; Bradley, Jeffrey D; El Naqa, Issam, E-mail: elnaqa@wustl.edu [Department of Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, MO 63110 (United States)

    2011-03-21

    Locally advanced non-small cell lung cancer (NSCLC) patients suffer from a high local failure rate following radiotherapy. Despite many efforts to develop new dose-volume models for early detection of tumor local failure, there was no reported significant improvement in their application prospectively. Based on recent studies of biomarker proteins' role in hypoxia and inflammation in predicting tumor response to radiotherapy, we hypothesize that combining physical and biological factors with a suitable framework could improve the overall prediction. To test this hypothesis, we propose a graphical Bayesian network framework for predicting local failure in lung cancer. The proposed approach was tested using two different datasets of locally advanced NSCLC patients treated with radiotherapy. The first dataset was collected retrospectively, which comprises clinical and dosimetric variables only. The second dataset was collected prospectively in which in addition to clinical and dosimetric information, blood was drawn from the patients at various time points to extract candidate biomarkers as well. Our preliminary results show that the proposed method can be used as an efficient method to develop predictive models of local failure in these patients and to interpret relationships among the different variables in the models. We also demonstrate the potential use of heterogeneous physical and biological variables to improve the model prediction. With the first dataset, we achieved better performance compared with competing Bayesian-based classifiers. With the second dataset, the combined model had a slightly higher performance compared to individual physical and biological models, with the biological variables making the largest contribution. Our preliminary results highlight the potential of the proposed integrated approach for predicting post-radiotherapy local failure in NSCLC patients.

  3. An unbiased Bayesian approach to functional connectomics implicates social-communication networks in autism

    Directory of Open Access Journals (Sweden)

    Archana Venkataraman

    2015-01-01

    Full Text Available Resting-state functional magnetic resonance imaging (rsfMRI studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD. Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differences in connectivity to localize a subset of foci that are most affected by ASD. Our approach is entirely data-driven and does not impose spatial constraints on the region foci or dictate the trajectory of altered functional pathways. We apply our method to data from the openly shared Autism Brain Imaging Data Exchange (ABIDE and pinpoint two intrinsic functional networks that distinguish ASD patients from typically developing controls. One network involves foci in the right temporal pole, left posterior cingulate cortex, left supramarginal gyrus, and left middle temporal gyrus. Automated decoding of this network by the Neurosynth meta-analytic database suggests high-level concepts of “language” and “comprehension” as the likely functional correlates. The second network consists of the left banks of the superior temporal sulcus, right posterior superior temporal sulcus extending into temporo-parietal junction, and right middle temporal gyrus. Associated functionality of these regions includes “social” and “person”. The abnormal pathways emanating from the above foci indicate that ASD patients simultaneously exhibit reduced long-range or inter-hemispheric connectivity and increased short-range or intra-hemispheric connectivity. Our findings reveal new insights into ASD and highlight possible neural mechanisms of the disorder.

  4. An unbiased Bayesian approach to functional connectomics implicates social-communication networks in autism.

    Science.gov (United States)

    Venkataraman, Archana; Duncan, James S; Yang, Daniel Y-J; Pelphrey, Kevin A

    2015-01-01

    Resting-state functional magnetic resonance imaging (rsfMRI) studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD). Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differences in connectivity to localize a subset of foci that are most affected by ASD. Our approach is entirely data-driven and does not impose spatial constraints on the region foci or dictate the trajectory of altered functional pathways. We apply our method to data from the openly shared Autism Brain Imaging Data Exchange (ABIDE) and pinpoint two intrinsic functional networks that distinguish ASD patients from typically developing controls. One network involves foci in the right temporal pole, left posterior cingulate cortex, left supramarginal gyrus, and left middle temporal gyrus. Automated decoding of this network by the Neurosynth meta-analytic database suggests high-level concepts of "language" and "comprehension" as the likely functional correlates. The second network consists of the left banks of the superior temporal sulcus, right posterior superior temporal sulcus extending into temporo-parietal junction, and right middle temporal gyrus. Associated functionality of these regions includes "social" and "person". The abnormal pathways emanating from the above foci indicate that ASD patients simultaneously exhibit reduced long-range or inter-hemispheric connectivity and increased short-range or intra-hemispheric connectivity. Our findings reveal new insights into ASD and highlight possible neural mechanisms of the disorder.

  5. Bayesian networks for clinical decision support : a rational approach to dynamic decision-making under uncertainty

    NARCIS (Netherlands)

    Gerven, M.A.J. van

    2007-01-01

    This dissertation deals with decision support in the context of clinical oncology. (Dynamic) Bayesian networks are used as a framework for (dynamic) decision-making under uncertainty and applied to a variety of diagnostic, prognostic, and treatment problems in medicine. It is shown that the proposed

  6. A multinomial logit model-Bayesian network hybrid approach for driver injury severity analyses in rear-end crashes.

    Science.gov (United States)

    Chen, Cong; Zhang, Guohui; Tarefder, Rafiqul; Ma, Jianming; Wei, Heng; Guan, Hongzhi

    2015-07-01

    Rear-end crash is one of the most common types of traffic crashes in the U.S. A good understanding of its characteristics and contributing factors is of practical importance. Previously, both multinomial Logit models and Bayesian network methods have been used in crash modeling and analysis, respectively, although each of them has its own application restrictions and limitations. In this study, a hybrid approach is developed to combine multinomial logit models and Bayesian network methods for comprehensively analyzing driver injury severities in rear-end crashes based on state-wide crash data collected in New Mexico from 2010 to 2011. A multinomial logit model is developed to investigate and identify significant contributing factors for rear-end crash driver injury severities classified into three categories: no injury, injury, and fatality. Then, the identified significant factors are utilized to establish a Bayesian network to explicitly formulate statistical associations between injury severity outcomes and explanatory attributes, including driver behavior, demographic features, vehicle factors, geometric and environmental characteristics, etc. The test results demonstrate that the proposed hybrid approach performs reasonably well. The Bayesian network reference analyses indicate that the factors including truck-involvement, inferior lighting conditions, windy weather conditions, the number of vehicles involved, etc. could significantly increase driver injury severities in rear-end crashes. The developed methodology and estimation results provide insights for developing effective countermeasures to reduce rear-end crash injury severities and improve traffic system safety performance. PMID:25888994

  7. A fuzzy Bayesian network approach to quantify the human behaviour during an evacuation

    Science.gov (United States)

    Ramli, Nurulhuda; Ghani, Noraida Abdul; Ahmad, Nazihah

    2016-06-01

    Bayesian Network (BN) has been regarded as a successful representation of inter-relationship of factors affecting human behavior during an emergency. This paper is an extension of earlier work of quantifying the variables involved in the BN model of human behavior during an evacuation using a well-known direct probability elicitation technique. To overcome judgment bias and reduce the expert's burden in providing precise probability values, a new approach for the elicitation technique is required. This study proposes a new fuzzy BN approach for quantifying human behavior during an evacuation. Three major phases of methodology are involved, namely 1) development of qualitative model representing human factors during an evacuation, 2) quantification of BN model using fuzzy probability and 3) inferencing and interpreting the BN result. A case study of three inter-dependencies of human evacuation factors such as danger assessment ability, information about the threat and stressful conditions are used to illustrate the application of the proposed method. This approach will serve as an alternative to the conventional probability elicitation technique in understanding the human behavior during an evacuation.

  8. Using Bayesian network and AHP method as a marketing approach tools in defining tourists’ preferences

    Directory of Open Access Journals (Sweden)

    Nataša Papić-Blagojević

    2012-04-01

    Full Text Available Marketing approach is associated to market conditions and achieving long term profitability of a company by satisfying consumers’ needs. This approach in tourism does not have to be related only to promoting one touristic destination, but is associated to relation between travel agency and its clients too. It considers that travel agencies adjust their offers to their clients’ needs. In that sense, it is important to analyze the behavior of tourists in the earlier periods with consideration of their preferences. Using Bayesian network, it could be graphically displayed the connection between tourists who have similar taste and relationships between them. On the other hand, the analytic hierarchy process (AHP is used to rank tourist attractions, with also relying on past experience. In this paper we examine possible applications of these two models in tourism in Serbia. The example is hypothetical, but it will serve as a base for future research. Three types of tourism are chosen as a representative in Vojvodina: Cultural, Rural and Business tourism, because they are the bright spot of touristic development in this area. Applied on these forms, analytic hierarchy process has shown its strength in predicting tourists’ preferences.

  9. A virtual experimental technique for data collection for a Bayesian network approach to human reliability analysis

    International Nuclear Information System (INIS)

    Bayesian network (BN) is a powerful tool for human reliability analysis (HRA) as it can characterize the dependency among different human performance shaping factors (PSFs) and associated actions. It can also quantify the importance of different PSFs that may cause a human error. Data required to fully quantify BN for HRA in offshore emergency situations are not readily available. For many situations, there is little or no appropriate data. This presents significant challenges to assign the prior and conditional probabilities that are required by the BN approach. To handle the data scarcity problem, this paper presents a data collection methodology using a virtual environment for a simplified BN model of offshore emergency evacuation. A two-level, three-factor experiment is used to collect human performance data under different mustering conditions. Collected data are integrated in the BN model and results are compared with a previous study. The work demonstrates that the BN model can assess the human failure likelihood effectively. Besides, the BN model provides the opportunities to incorporate new evidence and handle complex interactions among PSFs and associated actions

  10. A Parallel and Incremental Approach for Data-Intensive Learning of Bayesian Networks.

    Science.gov (United States)

    Yue, Kun; Fang, Qiyu; Wang, Xiaoling; Li, Jin; Liu, Weiyi

    2015-12-01

    Bayesian network (BN) has been adopted as the underlying model for representing and inferring uncertain knowledge. As the basis of realistic applications centered on probabilistic inferences, learning a BN from data is a critical subject of machine learning, artificial intelligence, and big data paradigms. Currently, it is necessary to extend the classical methods for learning BNs with respect to data-intensive computing or in cloud environments. In this paper, we propose a parallel and incremental approach for data-intensive learning of BNs from massive, distributed, and dynamically changing data by extending the classical scoring and search algorithm and using MapReduce. First, we adopt the minimum description length as the scoring metric and give the two-pass MapReduce-based algorithms for computing the required marginal probabilities and scoring the candidate graphical model from sample data. Then, we give the corresponding strategy for extending the classical hill-climbing algorithm to obtain the optimal structure, as well as that for storing a BN by pairs. Further, in view of the dynamic characteristics of the changing data, we give the concept of influence degree to measure the coincidence of the current BN with new data, and then propose the corresponding two-pass MapReduce-based algorithms for BNs incremental learning. Experimental results show the efficiency, scalability, and effectiveness of our methods.

  11. A Bayesian Approach to Service Selection for Secondary Users in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Elaheh Homayounvala

    2015-10-01

    Full Text Available In cognitive radio networks where secondary users (SUs use the time-frequency gaps of primary users' (PUs licensed spectrum opportunistically, the experienced throughput of SUs depend not only on the traffic load of the PUs but also on the PUs' service type. Each service has its own pattern of channel usage, and if the SUs know the dominant pattern of primary channel usage, then they can make a better decision on choosing which service is better to be used at a specific time to get the best advantage of the primary channel, in terms of higher achievable throughput. However, it is difficult to inform directly SUs of PUs' dominant used services in each area, for practical reasons. This paper proposes a learning mechanism embedded in SUs to sense the primary channel for a specific length of time. This algorithm recommends the SUs upon sensing a free primary channel, to choose the best service in order to get the best performance, in terms of maximum achieved throughput and the minimum experienced delay. The proposed learning mechanism is based on a Bayesian approach that can predict the performance of a requested service for a given SU. Simulation results show that this service selection method outperforms the blind opportunistic SU service selection, significantly.

  12. A Bayesian network approach to knowledge integration and representation of farm irrigation: 2. Model validation

    Science.gov (United States)

    Robertson, D. E.; Wang, Q. J.; Malano, H.; Etchells, T.

    2009-02-01

    For models to be useful, they need to adequately describe the systems they represent. The probabilistic nature of Bayesian network models has traditionally meant that model validation is difficult. In this paper we present a process to validate Inteca-Farm, a Bayesian network model of farm irrigation that we described in the first paper of this series. We assessed three aspects of the quality of model predictions, namely, bias, accuracy, and skill, for the two variables for which validation data are available directly or indirectly. We also examined model predictions for any systematic errors. The validation results show that the bias and accuracy of the two validated variables are within acceptable tolerances and that systematic errors are minimal. This suggests that Inteca-Farm is a plausible representation of farm irrigation system in the Shepparton Irrigation Region of northern Victoria, Australia.

  13. A Bayesian network approach to knowledge integration and representation of farm irrigation: 3. Spatial application

    Science.gov (United States)

    Robertson, D. E.; Wang, Q. J.; McAllister, A. T.; Abuzar, M.; Malano, H. M.; Etchells, T.

    2009-02-01

    Catchment managers are interested in understanding impacts of the management options they promote at both farm and regional scales. In this third paper of this series, we use Inteca-Farm, a Bayesian network model of farm irrigation in the Shepparton Irrigation Region of northern Victoria, Australia, to assess the current condition of management outcome measures and the impact of historical and future management intervention. To help overcome difficulties in comprehending modeling results that are expressed as probability distributions, to capture uncertainties, we introduce methods to spatially display and compare the output from Bayesian network models and to use these methods to compare model predictions for three management scenarios. Model predictions suggest that management intervention has made a substantial improvement to the condition of management outcome measures and that further improvements are possible. The results highlight that the management impacts are spatially variable, which demonstrates that farm modeling can provide valuable evidence in substantiating the impact of catchment management intervention.

  14. A HYBRID APPROACH FOR RELIABILITY ANALYSIS BASED ON ANALYTIC HIERARCHY PROCESS (AHP) AND BAYESIAN NETWORK (BN)

    OpenAIRE

    Muhammad eZubair

    2014-01-01

    The investigation of the nuclear accidents reveals that the accumulation of various technical and nontechnical lapses compounded the nuclear disaster. By using Analytic Hierarchy Process (AHP) and Bayesian Network (BN) the present research signifies the technical and nontechnical issues of nuclear accidents. The study exposed that besides technical fixes such as enhanced engineering safety features and better siting choices, the critical ingredient for safe operation of nuclear reactors lie i...

  15. An unbiased Bayesian approach to functional connectomics implicates social-communication networks in autism

    OpenAIRE

    Archana Venkataraman; Duncan, James S.; Daniel Y.-J. Yang; Pelphrey, Kevin A.

    2015-01-01

    Resting-state functional magnetic resonance imaging (rsfMRI) studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD). Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differ...

  16. Inference in hybrid Bayesian networks

    DEFF Research Database (Denmark)

    Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael;

    2009-01-01

    Since the 1980s, Bayesian Networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability-techniques (like fault trees...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....

  17. A Bayesian belief network approach for assessing uncertainty in conceptual site models at contaminated sites

    Science.gov (United States)

    Thomsen, Nanna I.; Binning, Philip J.; McKnight, Ursula S.; Tuxen, Nina; Bjerg, Poul L.; Troldborg, Mads

    2016-05-01

    A key component in risk assessment of contaminated sites is in the formulation of a conceptual site model (CSM). A CSM is a simplified representation of reality and forms the basis for the mathematical modeling of contaminant fate and transport at the site. The CSM should therefore identify the most important site-specific features and processes that may affect the contaminant transport behavior at the site. However, the development of a CSM will always be associated with uncertainties due to limited data and lack of understanding of the site conditions. CSM uncertainty is often found to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert opinion at different knowledge levels. The developed BBNs combine data from desktop studies and initial site investigations with expert opinion to assess which of the CSMs are more likely to reflect the actual site conditions. The method is demonstrated on a Danish field site, contaminated with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information

  18. A Bayesian belief network approach for assessing uncertainty in conceptual site models at contaminated sites.

    Science.gov (United States)

    Thomsen, Nanna I; Binning, Philip J; McKnight, Ursula S; Tuxen, Nina; Bjerg, Poul L; Troldborg, Mads

    2016-05-01

    A key component in risk assessment of contaminated sites is in the formulation of a conceptual site model (CSM). A CSM is a simplified representation of reality and forms the basis for the mathematical modeling of contaminant fate and transport at the site. The CSM should therefore identify the most important site-specific features and processes that may affect the contaminant transport behavior at the site. However, the development of a CSM will always be associated with uncertainties due to limited data and lack of understanding of the site conditions. CSM uncertainty is often found to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert opinion at different knowledge levels. The developed BBNs combine data from desktop studies and initial site investigations with expert opinion to assess which of the CSMs are more likely to reflect the actual site conditions. The method is demonstrated on a Danish field site, contaminated with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information

  19. A Bayesian belief network approach for assessing uncertainty in conceptual site models at contaminated sites.

    Science.gov (United States)

    Thomsen, Nanna I; Binning, Philip J; McKnight, Ursula S; Tuxen, Nina; Bjerg, Poul L; Troldborg, Mads

    2016-05-01

    A key component in risk assessment of contaminated sites is in the formulation of a conceptual site model (CSM). A CSM is a simplified representation of reality and forms the basis for the mathematical modeling of contaminant fate and transport at the site. The CSM should therefore identify the most important site-specific features and processes that may affect the contaminant transport behavior at the site. However, the development of a CSM will always be associated with uncertainties due to limited data and lack of understanding of the site conditions. CSM uncertainty is often found to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert opinion at different knowledge levels. The developed BBNs combine data from desktop studies and initial site investigations with expert opinion to assess which of the CSMs are more likely to reflect the actual site conditions. The method is demonstrated on a Danish field site, contaminated with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information

  20. A Bayesian network approach to linear and nonlinear acoustic echo cancellation

    Science.gov (United States)

    Huemmer, Christian; Maas, Roland; Hofmann, Christian; Kellermann, Walter

    2015-12-01

    This article provides a general Bayesian approach to the tasks of linear and nonlinear acoustic echo cancellation (AEC). We introduce a state-space model with latent state vector modeling all relevant information of the unknown system. Based on three cases for defining the state vector (to model a linear or nonlinear echo path) and its mathematical relation to the observation, it is shown that the normalized least mean square algorithm (with fixed and adaptive stepsize), the Hammerstein group model, and a numerical sampling scheme for nonlinear AEC can be derived by applying fundamental techniques for probabilistic graphical models. As a consequence, the major contribution of this Bayesian approach is a unifying graphical-model perspective which may serve as a powerful framework for future work in linear and nonlinear AEC.

  1. A Bayesian Network Approach for Offshore Risk Analysis Through Linguistic Variables

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper presents a new approach for offshore risk analysis that is capable of dealing with linguistic probabilities in Bayesian networks (BNs). In this paper, linguistic probabilities are used to describe occurrence likelihood of hazardous events that may cause possible accidents in offshore operations. In order to use fuzzy information, an f-weighted valuation function is proposed to transform linguistic judgements into crisp probability distributions which can be easily put into a BN to model causal relationships among risk factors. The use of linguistic variables makes it easier for human experts to express their knowledge, and the transformation of linguistic judgements into crisp probabilities can significantly save the cost of computation, modifying and maintaining a BN model. The flexibility of the method allows for multiple forms of information to be used to quantify model relationships, including formally assessed expert opinion when quantitative data are lacking, or when only qualitative or vague statements can be made. The model is a modular representation of uncertain knowledge caused due to randomness, vagueness and ignorance. This makes the risk analysis of offshore engineering systems more functional and easier in many assessment contexts. Specifically, the proposed f-weighted valuation function takes into account not only the dominating values, but also the α-level values that are ignored by conventional valuation methods. A case study of the collision risk between a Floating Production, Storage and Off-loading (FPSO) unit and the authorised vessels due to human elements during operation is used to illustrate the application of the proposed model.

  2. A Bayesian network approach to knowledge integration and representation of farm irrigation: 1. Model development

    Science.gov (United States)

    Wang, Q. J.; Robertson, D. E.; Haines, C. L.

    2009-02-01

    Irrigation is important to many agricultural businesses but also has implications for catchment health. A considerable body of knowledge exists on how irrigation management affects farm business and catchment health. However, this knowledge is fragmentary; is available in many forms such as qualitative and quantitative; is dispersed in scientific literature, technical reports, and the minds of individuals; and is of varying degrees of certainty. Bayesian networks allow the integration of dispersed knowledge into quantitative systems models. This study describes the development, validation, and application of a Bayesian network model of farm irrigation in the Shepparton Irrigation Region of northern Victoria, Australia. In this first paper we describe the process used to integrate a range of sources of knowledge to develop a model of farm irrigation. We describe the principal model components and summarize the reaction to the model and its development process by local stakeholders. Subsequent papers in this series describe model validation and the application of the model to assess the regional impact of historical and future management intervention.

  3. Analysis and assessment of injury risk in female gymnastics:Bayesian Network approach

    Directory of Open Access Journals (Sweden)

    Lyudmila Dimitrova

    2015-02-01

    Full Text Available This paper presents a Bayesian network (BN model for estimating injury risk in female artistic gymnastics. The model illustrates the connections betweenunderlying injury risk factorsthrough a series ofcausal dependencies. The quantitativepart of the model – the conditional probability tables, are determined using ТNormal distribution with parameters, derived by experts. The injury rates calculated by the network are in an agreement with injury statistic data and correctly reports the impact of various risk factors on injury rates. The model is designed to assist coaches and supporting teams in planning the training activity so that injuries are minimized. This study provides important background for further data collection and research necessary to improve the precision of the quantitative predictions of the model.

  4. Irregular-Time Bayesian Networks

    CERN Document Server

    Ramati, Michael

    2012-01-01

    In many fields observations are performed irregularly along time, due to either measurement limitations or lack of a constant immanent rate. While discrete-time Markov models (as Dynamic Bayesian Networks) introduce either inefficient computation or an information loss to reasoning about such processes, continuous-time Markov models assume either a discrete state space (as Continuous-Time Bayesian Networks), or a flat continuous state space (as stochastic dif- ferential equations). To address these problems, we present a new modeling class called Irregular-Time Bayesian Networks (ITBNs), generalizing Dynamic Bayesian Networks, allowing substantially more compact representations, and increasing the expressivity of the temporal dynamics. In addition, a globally optimal solution is guaranteed when learning temporal systems, provided that they are fully observed at the same irregularly spaced time-points, and a semiparametric subclass of ITBNs is introduced to allow further adaptation to the irregular nature of t...

  5. Neuronanatomy, neurology and Bayesian networks

    OpenAIRE

    Bielza Lozoya, Maria Concepcion

    2014-01-01

    Bayesian networks are data mining models with clear semantics and a sound theoretical foundation. In this keynote talk we will pinpoint a number of neuroscience problems that can be addressed using Bayesian networks. In neuroanatomy, we will show computer simulation models of dendritic trees and classification of neuron types, both based on morphological features. In neurology, we will present the search for genetic biomarkers in Alzheimer's disease and the prediction of health-related qualit...

  6. Pilot study of dynamic Bayesian networks approach for fault diagnostics and accident progression prediction in HTR-PM

    International Nuclear Information System (INIS)

    Highlights: • Dynamic Bayesian network is used to diagnose and predict accident progress in HTR-PM. • Dynamic Bayesian network model of HTR-PM is built based on detailed system analysis. • LOCA Simulations validate the above model even if part monitors are lost or false. - Abstract: The first high-temperature-reactor pebble-bed demonstration module (HTR-PM) is under construction currently in China. At the same time, development of a system that is used to support nuclear emergency response is in progress. The supporting system is expected to complete two tasks. The first one is diagnostics of the fault in the reactor based on abnormal sensor measurements obtained. The second one is prognostic of the accident progression based on sensor measurements obtained and operator actions. Both tasks will provide valuable guidance for emergency staff to take appropriate protective actions. Traditional method for the two tasks relies heavily on expert judgment, and has been proven to be inappropriate in some cases, such as Three Mile Island accident. To better perform the two tasks, dynamic Bayesian networks (DBN) is introduced in this paper and a pilot study based on the approach is carried out. DBN is advantageous in representing complex dynamic systems and taking full consideration of evidences obtained to perform diagnostics and prognostics. Pearl's loopy belief propagation (LBP) algorithm is recommended for diagnostics and prognostics in DBN. The DBN model of HTR-PM is created based on detailed system analysis and accident progression analysis. A small break loss of coolant accident (SBLOCA) is selected to illustrate the application of the DBN model of HTR-PM in fault diagnostics (FD) and accident progression prognostics (APP). Several advantages of DBN approach compared with other techniques are discussed. The pilot study lays the foundation for developing the nuclear emergency response supporting system (NERSS) for HTR-PM

  7. Bayesian networks in educational assessment

    CERN Document Server

    Almond, Russell G; Steinberg, Linda S; Yan, Duanli; Williamson, David M

    2015-01-01

    Bayesian inference networks, a synthesis of statistics and expert systems, have advanced reasoning under uncertainty in medicine, business, and social sciences. This innovative volume is the first comprehensive treatment exploring how they can be applied to design and analyze innovative educational assessments. Part I develops Bayes nets’ foundations in assessment, statistics, and graph theory, and works through the real-time updating algorithm. Part II addresses parametric forms for use with assessment, model-checking techniques, and estimation with the EM algorithm and Markov chain Monte Carlo (MCMC). A unique feature is the volume’s grounding in Evidence-Centered Design (ECD) framework for assessment design. This “design forward” approach enables designers to take full advantage of Bayes nets’ modularity and ability to model complex evidentiary relationships that arise from performance in interactive, technology-rich assessments such as simulations. Part III describes ECD, situates Bayes nets as ...

  8. Bayesian networks as a tool for epidemiological systems analysis

    OpenAIRE

    Lewis, F.I.

    2012-01-01

    Bayesian network analysis is a form of probabilistic modeling which derives from empirical data a directed acyclic graph (DAG) describing the dependency structure between random variables. Bayesian networks are increasingly finding application in areas such as computational and systems biology, and more recently in epidemiological analyses. The key distinction between standard empirical modeling approaches, such as generalised linear modeling, and Bayesian network analyses is that the latter ...

  9. Modeling of Radiation Pneumonitis after Lung Stereotactic Body Radiotherapy: A Bayesian Network Approach

    CERN Document Server

    Lee, Sangkyu; Jeyaseelan, Krishinima; Faria, Sergio; Kopek, Neil; Brisebois, Pascale; Vu, Toni; Filion, Edith; Campeau, Marie-Pierre; Lambert, Louise; Del Vecchio, Pierre; Trudel, Diane; El-Sokhn, Nidale; Roach, Michael; Robinson, Clifford; Naqa, Issam El

    2015-01-01

    Background and Purpose: Stereotactic body radiotherapy (SBRT) for lung cancer accompanies a non-negligible risk of radiation pneumonitis (RP). This study presents a Bayesian network (BN) model that connects biological, dosimetric, and clinical RP risk factors. Material and Methods: 43 non-small-cell lung cancer patients treated with SBRT with 5 fractions or less were studied. Candidate RP risk factors included dose-volume parameters, previously reported clinical RP factors, 6 protein biomarkers at baseline and 6 weeks post-treatment. A BN ensemble model was built from a subset of the variables in a training cohort (N=32), and further tested in an independent validation cohort (N=11). Results: Key factors identified in the BN ensemble for predicting RP risk were ipsilateral V5, lung volume receiving more than 105% of prescription, and decrease in angiotensin converting enzyme (ACE) from baseline to 6 weeks. External validation of the BN ensemble model yielded an area under the curve of 0.8. Conclusions: The BN...

  10. A Bayesian Belief Network approach to assess the potential of non wood forest products for small scale forest owners

    Science.gov (United States)

    Vacik, Harald; Huber, Patrick; Hujala, Teppo; Kurtilla, Mikko; Wolfslehner, Bernhard

    2015-04-01

    It is an integral element of the European understanding of sustainable forest management to foster the design and marketing of forest products, non-wood forest products (NWFPs) and services that go beyond the production of timber. Despite the relevance of NWFPs in Europe, forest management and planning methods have been traditionally tailored towards wood and wood products, because most forest management models and silviculture techniques were developed to ensure a sustained production of timber. Although several approaches exist which explicitly consider NWFPs as management objectives in forest planning, specific models are needed for the assessment of their production potential in different environmental contexts and for different management regimes. Empirical data supporting a comprehensive assessment of the potential of NWFPs are rare, thus making development of statistical models particularly problematic. However, the complex causal relationships between the sustained production of NWFPs, the available ecological resources, as well as the organizational and the market potential of forest management regimes are well suited for knowledge-based expert models. Bayesian belief networks (BBNs) are a kind of probabilistic graphical model that have become very popular to practitioners and scientists mainly due to the powerful probability theory involved, which makes BBNs suitable to deal with a wide range of environmental problems. In this contribution we present the development of a Bayesian belief network to assess the potential of NWFPs for small scale forest owners. A three stage iterative process with stakeholder and expert participation was used to develop the Bayesian Network within the frame of the StarTree Project. The group of participants varied in the stages of the modelling process. A core team, consisting of one technical expert and two domain experts was responsible for the entire modelling process as well as for the first prototype of the network

  11. Bayesian networks and food security - An introduction

    NARCIS (Netherlands)

    Stein, A.

    2004-01-01

    This paper gives an introduction to Bayesian networks. Networks are defined and put into a Bayesian context. Directed acyclical graphs play a crucial role here. Two simple examples from food security are addressed. Possible uses of Bayesian networks for implementation and further use in decision sup

  12. Bayesian Network--Response Regression

    OpenAIRE

    WANG, LU; Durante, Daniele; Dunson, David B.

    2016-01-01

    There is an increasing interest in learning how human brain networks vary with continuous traits (e.g., personality, cognitive abilities, neurological disorders), but flexible procedures to accomplish this goal are limited. We develop a Bayesian semiparametric model, which combines low-rank factorizations and Gaussian process priors to allow flexible shifts of the conditional expectation for a network-valued random variable across the feature space, while including subject-specific random eff...

  13. Non-homogeneous dynamic Bayesian networks for continuous data

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Husmeier, Dirk

    2011-01-01

    Classical dynamic Bayesian networks (DBNs) are based on the homogeneous Markov assumption and cannot deal with non-homogeneous temporal processes. Various approaches to relax the homogeneity assumption have recently been proposed. The present paper presents a combination of a Bayesian network with c

  14. A hybrid approach to monthly streamflow forecasting: Integrating hydrological model outputs into a Bayesian artificial neural network

    Science.gov (United States)

    Humphrey, Greer B.; Gibbs, Matthew S.; Dandy, Graeme C.; Maier, Holger R.

    2016-09-01

    Monthly streamflow forecasts are needed to support water resources decision making in the South East of South Australia, where baseflow represents a significant proportion of the total streamflow and soil moisture and groundwater are important predictors of runoff. To address this requirement, the utility of a hybrid monthly streamflow forecasting approach is explored, whereby simulated soil moisture from the GR4J conceptual rainfall-runoff model is used to represent initial catchment conditions in a Bayesian artificial neural network (ANN) statistical forecasting model. To assess the performance of this hybrid forecasting method, a comparison is undertaken of the relative performances of the Bayesian ANN, the GR4J conceptual model and the hybrid streamflow forecasting approach for producing 1-month ahead streamflow forecasts at three key locations in the South East of South Australia. Particular attention is paid to the quantification of uncertainty in each of the forecast models and the potential for reducing forecast uncertainty by using the hybrid approach is considered. Case study results suggest that the hybrid models developed in this study are able to take advantage of the complementary strengths of both the ANN models and the GR4J conceptual models. This was particularly the case when forecasting high flows, where the hybrid models were shown to outperform the two individual modelling approaches in terms of the accuracy of the median forecasts, as well as reliability and resolution of the forecast distributions. In addition, the forecast distributions generated by the hybrid models were up to 8 times more precise than those based on climatology; thus, providing a significant improvement on the information currently available to decision makers.

  15. Rainfall-Runoff Forecast and Model Parameter Estimation: a Dynamic Bayesian Networks Approach

    Science.gov (United States)

    Canon Barriga, J. E.; Morillo Leon, F. C.

    2013-12-01

    The suggested climate-driven non-stationarities and intrinsic uncertainties of hydrological processes such as precipitation (P) and runoff (R), represent a fruitful context to develop new methods that may be able to detect parametric variations in time series and incorporate them into forecasts. In this research, we developed a method to forecast runoff from precipitation time series based on Dynamic Bayesian Networks (DBN). The purpose of the research was to determine an appropriate structure of the DBN and the optimal lengths of hydrological time series required to establish statistical parameters (i.e., first two moments) of P and optimal fits of forecasted R at daily and weekly intervals. A DBN can be briefly interpreted as a set of nodes (representing conditional probabilistic variables) connected by arrows that establish a causal, time-oriented, relationship among them. A DBN is defined by two components: a static network (structure) and a transition probability matrix between consecutive stages. Similarly to neural networks, DBN must be trained in order to learn about the subjacent process and make useful predictions. To determine the ability of the DBN to forecast R from P we initially generated long synthetic P series and run a deterministic model (HEC-HMS) to generate R. The DBN were then trained with different lengths of these synthetic series to forecast R (using smoothing and filtering methods). Two structures were considered: 1) DBN with P(t), P(t-1) and R(t-1) and 2) DBN with P(t), P(t-1), R(t-1) and ΔR=[R(t-1)-R(t-2)]. Both smoothing and filtering methods were appropriate to make predictions on a daily and weekly basis (filtration performing better). Setting the complexity (number of states of the random variables) in a DBN proves to be a critical issue, since an increase in the number of states, which implies larger training sets, does not always mean an improvement in the prediction. We found that acceptable results could be obtained from DBN

  16. Bayesian Inference of Genetic Regulatory Networks from Time Series Microarray Data Using Dynamic Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Yufei Huang

    2007-06-01

    Full Text Available Reverse engineering of genetic regulatory networks from time series microarray data are investigated. We propose a dynamic Bayesian networks (DBNs modeling and a full Bayesian learning scheme. The proposed DBN directly models the continuous expression levels and also is associated with parameters that indicate the degree as well as the type of regulations. To learn the network from data, we proposed a reversible jump Markov chain Monte Carlo (RJMCMC algorithm. The RJMCMC algorithm can provide not only more accurate inference results than the deterministic alternative algorithms but also an estimate of the a posteriori probabilities (APPs of the network topology. The estimated APPs provide useful information on the confidence of the inferred results and can also be used for efficient Bayesian data integration. The proposed approach is tested on yeast cell cycle microarray data and the results are compared with the KEGG pathway map.

  17. A Gaussian Mixed Model for Learning Discrete Bayesian Networks.

    Science.gov (United States)

    Balov, Nikolay

    2011-02-01

    In this paper we address the problem of learning discrete Bayesian networks from noisy data. Considered is a graphical model based on mixture of Gaussian distributions with categorical mixing structure coming from a discrete Bayesian network. The network learning is formulated as a Maximum Likelihood estimation problem and performed by employing an EM algorithm. The proposed approach is relevant to a variety of statistical problems for which Bayesian network models are suitable - from simple regression analysis to learning gene/protein regulatory networks from microarray data.

  18. Space Shuttle RTOS Bayesian Network

    Science.gov (United States)

    Morris, A. Terry; Beling, Peter A.

    2001-01-01

    With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores

  19. A Measure of Systems Engineering Effectiveness in Government Acquisition of Complex Information Systems: A Bayesian Belief Network-Based Approach

    Science.gov (United States)

    Doskey, Steven Craig

    2014-01-01

    This research presents an innovative means of gauging Systems Engineering effectiveness through a Systems Engineering Relative Effectiveness Index (SE REI) model. The SE REI model uses a Bayesian Belief Network to map causal relationships in government acquisitions of Complex Information Systems (CIS), enabling practitioners to identify and…

  20. Bayesian networks for enterprise risk assessment

    CERN Document Server

    Bonafede, C E

    2006-01-01

    According to different typologies of activity and priority, risks can assume diverse meanings and it can be assessed in different ways. In general risk is measured in terms of a probability combination of an event (frequency) and its consequence (impact). To estimate the frequency and the impact (severity) historical data or expert opinions (either qualitative or quantitative data) are used. Moreover qualitative data must be converted in numerical values to be used in the model. In the case of enterprise risk assessment the considered risks are, for instance, strategic, operational, legal and of image, which many times are difficult to be quantified. So in most cases only expert data, gathered by scorecard approaches, are available for risk analysis. The Bayesian Network is a useful tool to integrate different information and in particular to study the risk's joint distribution by using data collected from experts. In this paper we want to show a possible approach for building a Bayesian networks in the parti...

  1. Software Health Management with Bayesian Networks

    Science.gov (United States)

    Mengshoel, Ole; Schumann, JOhann

    2011-01-01

    Most modern aircraft as well as other complex machinery is equipped with diagnostics systems for its major subsystems. During operation, sensors provide important information about the subsystem (e.g., the engine) and that information is used to detect and diagnose faults. Most of these systems focus on the monitoring of a mechanical, hydraulic, or electromechanical subsystem of the vehicle or machinery. Only recently, health management systems that monitor software have been developed. In this paper, we will discuss our approach of using Bayesian networks for Software Health Management (SWHM). We will discuss SWHM requirements, which make advanced reasoning capabilities for the detection and diagnosis important. Then we will present our approach to using Bayesian networks for the construction of health models that dynamically monitor a software system and is capable of detecting and diagnosing faults.

  2. Bayesian belief networks in business continuity.

    Science.gov (United States)

    Phillipson, Frank; Matthijssen, Edwin; Attema, Thomas

    2014-01-01

    Business continuity professionals aim to mitigate the various challenges to the continuity of their company. The goal is a coherent system of measures that encompass detection, prevention and recovery. Choices made in one part of the system affect other parts as well as the continuity risks of the company. In complex organisations, however, these relations are far from obvious. This paper proposes the use of Bayesian belief networks to expose these relations, and presents a modelling framework for this approach. PMID:25193453

  3. Application of Bayesian Network Learning Methods to Land Resource Evaluation

    Institute of Scientific and Technical Information of China (English)

    HUANG Jiejun; HE Xiaorong; WAN Youchuan

    2006-01-01

    Bayesian network has a powerful ability for reasoning and semantic representation, which combined with qualitative analysis and quantitative analysis, with prior knowledge and observed data, and provides an effective way to deal with prediction, classification and clustering. Firstly, this paper presented an overview of Bayesian network and its characteristics, and discussed how to learn a Bayesian network structure from given data, and then constructed a Bayesian network model for land resource evaluation with expert knowledge and the dataset. The experimental results based on the test dataset are that evaluation accuracy is 87.5%, and Kappa index is 0.826. All these prove the method is feasible and efficient, and indicate that Bayesian network is a promising approach for land resource evaluation.

  4. Dynamic traffic splitting to parallel wireless networks with partial information: a Bayesian approach.

    NARCIS (Netherlands)

    Bhulai, S.; Hoekstra, G.J.; Bosman, J.W.; Mei, R.D. van der

    2012-01-01

    Contemporary wireless networks are based on a wide range of different technologies providing overlapping coverage. This offers users a seamless integration of connectivity by allowing to switch between networks, and opens up a promising area for boosting the performance of wireless networks. Motivat

  5. A General Bayesian Network Approach to Analyzing Online Game Item Values and Its Influence on Consumer Satisfaction and Purchase Intention

    Science.gov (United States)

    Lee, Kun Chang; Park, Bong-Won

    Many online game users purchase game items with which to play free-to-play games. Because of a lack of research into which there is no specified framework for categorizing the values of game items, this study proposes four types of online game item values based on an analysis of literature regarding online game characteristics. It then proposes to investigate how online game users perceive satisfaction and purchase intention from the proposed four types of online game item values. Though regression analysis has been used frequently to answer this kind of research question, we propose a new approach, a General Bayesian Network (GBN), which can be performed in an understandable way without sacrificing predictive accuracy. Conventional techniques, such as regression analysis, do not provide significant explanation for this kind of problem because they are fixed to a linear structure and are limited in explaining why customers are likely to purchase game items and if they are satisfied with their purchases. In contrast, the proposed GBN provides a flexible underlying structure based on questionnaire survey data and offers robust decision support on this kind of research question by identifying its causal relationships. To illustrate the validity of GBN in solving the research question in this study, 327 valid questionnaires were analyzed using GBN with what-if and goal-seeking approaches. The experimental results were promising and meaningful in comparison with regression analysis results.

  6. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Chavira, Mark; Darwiche, Adnan

    2004-01-01

    We describe a system for exact inference with relational Bayesian networks as defined in the publicly available \\primula\\ tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by evaluating...... and differentiating these circuits in time linear in their size. We report on experimental results showing the successful compilation, and efficient inference, on relational Bayesian networks whose {\\primula}--generated propositional instances have thousands of variables, and whose jointrees have clusters...

  7. Macroscopic Models of Clique Tree Growth for Bayesian Networks

    Data.gov (United States)

    National Aeronautics and Space Administration — In clique tree clustering, inference consists of propagation in a clique tree compiled from a Bayesian network. In this paper, we develop an analytical approach to...

  8. Learning Bayesian networks using genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Chen Fei; Wang Xiufeng; Rao Yimei

    2007-01-01

    A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not.Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach.

  9. Bayesian network learning for natural hazard assessments

    Science.gov (United States)

    Vogel, Kristin

    2016-04-01

    and incomplete observations. Further studies rise the challenge of relying on very small data sets. Since parameter estimates for complex models based on few observations are unreliable, it is necessary to focus on simplified, yet still meaningful models. A so called Markov Blanket approach is developed to identify the most relevant model components and to construct a simple Bayesian network based on those findings. Since the proceeding is completely data driven, it can easily be transferred to various applications in natural hazard domains. This study is funded by the Deutsche Forschungsgemeinschaft (DFG) within the research training programme GRK 2043/1 "NatRiskChange - Natural hazards and risks in a changing world" at Potsdam University.

  10. Lower Bound Bayesian Networks - An Efficient Inference of Lower Bounds on Probability Distributions in Bayesian Networks

    CERN Document Server

    Andrade, Daniel

    2012-01-01

    We present a new method to propagate lower bounds on conditional probability distributions in conventional Bayesian networks. Our method guarantees to provide outer approximations of the exact lower bounds. A key advantage is that we can use any available algorithms and tools for Bayesian networks in order to represent and infer lower bounds. This new method yields results that are provable exact for trees with binary variables, and results which are competitive to existing approximations in credal networks for all other network structures. Our method is not limited to a specific kind of network structure. Basically, it is also not restricted to a specific kind of inference, but we restrict our analysis to prognostic inference in this article. The computational complexity is superior to that of other existing approaches.

  11. Bayesian Networks and Influence Diagrams

    DEFF Research Database (Denmark)

    Kjærulff, Uffe Bro; Madsen, Anders Læsø

    , and exercises are included for the reader to check his/her level of understanding. The techniques and methods presented for knowledge elicitation, model construction and verification, modeling techniques and tricks, learning models from data, and analyses of models have all been developed and refined......, troubleshooting, and data mining under uncertainty. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended...... primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples...

  12. Bayesian Networks and Influence Diagrams

    DEFF Research Database (Denmark)

    Kjærulff, Uffe Bro; Madsen, Anders Læsø

    under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his or her level of understanding. The techniques and methods presented on model construction and verification, modeling techniques and tricks, learning......Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new...... sections, in addition to fully-updated examples, tables, figures, and a revised appendix. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning...

  13. Approximation methods for efficient learning of Bayesian networks

    CERN Document Server

    Riggelsen, C

    2008-01-01

    This publication offers and investigates efficient Monte Carlo simulation methods in order to realize a Bayesian approach to approximate learning of Bayesian networks from both complete and incomplete data. For large amounts of incomplete data when Monte Carlo methods are inefficient, approximations are implemented, such that learning remains feasible, albeit non-Bayesian. The topics discussed are: basic concepts about probabilities, graph theory and conditional independence; Bayesian network learning from data; Monte Carlo simulation techniques; and, the concept of incomplete data. In order to provide a coherent treatment of matters, thereby helping the reader to gain a thorough understanding of the whole concept of learning Bayesian networks from (in)complete data, this publication combines in a clarifying way all the issues presented in the papers with previously unpublished work.

  14. Modeling Diagnostic Assessments with Bayesian Networks

    Science.gov (United States)

    Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego

    2007-01-01

    This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…

  15. Learning dynamic Bayesian networks with mixed variables

    DEFF Research Database (Denmark)

    Bøttcher, Susanne Gammelgaard

    This paper considers dynamic Bayesian networks for discrete and continuous variables. We only treat the case, where the distribution of the variables is conditional Gaussian. We show how to learn the parameters and structure of a dynamic Bayesian network and also how the Markov order can be learned...

  16. Bayesian Network for multiple hypthesis tracking

    NARCIS (Netherlands)

    W.P. Zajdel; B.J.A. Kröse

    2002-01-01

    For a flexible camera-to-camera tracking of multiple objects we model the objects behavior with a Bayesian network and combine it with the multiple hypohesis framework that associates observations with objects. Bayesian networks offer a possibility to factor complex, joint distributions into a produ

  17. Seeded Bayesian Networks: Constructing genetic networks from microarray data

    Directory of Open Access Journals (Sweden)

    Quackenbush John

    2008-07-01

    Full Text Available Abstract Background DNA microarrays and other genomics-inspired technologies provide large datasets that often include hidden patterns of correlation between genes reflecting the complex processes that underlie cellular metabolism and physiology. The challenge in analyzing large-scale expression data has been to extract biologically meaningful inferences regarding these processes – often represented as networks – in an environment where the datasets are often imperfect and biological noise can obscure the actual signal. Although many techniques have been developed in an attempt to address these issues, to date their ability to extract meaningful and predictive network relationships has been limited. Here we describe a method that draws on prior information about gene-gene interactions to infer biologically relevant pathways from microarray data. Our approach consists of using preliminary networks derived from the literature and/or protein-protein interaction data as seeds for a Bayesian network analysis of microarray results. Results Through a bootstrap analysis of gene expression data derived from a number of leukemia studies, we demonstrate that seeded Bayesian Networks have the ability to identify high-confidence gene-gene interactions which can then be validated by comparison to other sources of pathway data. Conclusion The use of network seeds greatly improves the ability of Bayesian Network analysis to learn gene interaction networks from gene expression data. We demonstrate that the use of seeds derived from the biomedical literature or high-throughput protein-protein interaction data, or the combination, provides improvement over a standard Bayesian Network analysis, allowing networks involving dynamic processes to be deduced from the static snapshots of biological systems that represent the most common source of microarray data. Software implementing these methods has been included in the widely used TM4 microarray analysis package.

  18. Bayesian approach to rough set

    CERN Document Server

    Marwala, Tshilidzi

    2007-01-01

    This paper proposes an approach to training rough set models using Bayesian framework trained using Markov Chain Monte Carlo (MCMC) method. The prior probabilities are constructed from the prior knowledge that good rough set models have fewer rules. Markov Chain Monte Carlo sampling is conducted through sampling in the rough set granule space and Metropolis algorithm is used as an acceptance criteria. The proposed method is tested to estimate the risk of HIV given demographic data. The results obtained shows that the proposed approach is able to achieve an average accuracy of 58% with the accuracy varying up to 66%. In addition the Bayesian rough set give the probabilities of the estimated HIV status as well as the linguistic rules describing how the demographic parameters drive the risk of HIV.

  19. A bayesian belief networks approach to risk control in construction projects

    OpenAIRE

    Chivatá Cárdenas, I.C.; Al-jibouri, S.H.S.; Halman, J.I.M.; Telichenko, V.; Volkov, A.; Bilchuk, I.

    2012-01-01

    Although risk control is a key step in risk management of construction projects, very often risk measures used are based merely on personal experience and engineering judgement rather than analysis of comprehensive information relating to a specific risk. This paper deals with an approach to provide better information to derive relevant and effective risk measures for specific risks. The approach relies on developing risk models to represent interactions between risk factors and carrying out ...

  20. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    Science.gov (United States)

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan

    2016-08-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  1. Bayesian Recurrent Neural Network for Language Modeling.

    Science.gov (United States)

    Chien, Jen-Tzung; Ku, Yuan-Chu

    2016-02-01

    A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.

  2. An Intuitive Dashboard for Bayesian Network Inference

    International Nuclear Information System (INIS)

    Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++

  3. An Intuitive Dashboard for Bayesian Network Inference

    Science.gov (United States)

    Reddy, Vikas; Charisse Farr, Anna; Wu, Paul; Mengersen, Kerrie; Yarlagadda, Prasad K. D. V.

    2014-03-01

    Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++.

  4. Approach to the Correlation Discovery of Chinese Linguistic Parameters Based on Bayesian Method

    Institute of Scientific and Technical Information of China (English)

    WANG Wei(王玮); CAI LianHong(蔡莲红)

    2003-01-01

    Bayesian approach is an important method in statistics. The Bayesian belief network is a powerful knowledge representation and reasoning tool under the conditions of uncertainty.It is a graphics model that encodes probabilistic relationships among variables of interest. In this paper, an approach to Bayesian network construction is given for discovering the Chinese linguistic parameter relationship in the corpus.

  5. The influence of interference networks in QoS parameters in a WLAN 802.11g: a Bayesian approach

    Science.gov (United States)

    Araújo, Jasmine P. L.; Rodrigues, Josiane C.; Fraiha, Simone G. C.; Gomes, Hermínio S.; Reis, Jacklyn; Vijaykumar, Nandamudi L.; Cavalcante, Gervásio P. S.; Francês, Carlos R. L.

    2007-09-01

    In spite of the significant increase of the use of Wireless Local Area Network (WLAN) experienced in the last years, design aspects and capacity planning of the network are still systematically neglected during the network implementation. For instance, to determine the location of the access point (AP), important factors of the environment are not considered in the project. These factors become more important when several APs are installed, sometimes without a frequency planning, to cover a unique building. Faults such as these can cause interference among the cells generated by each AP. Therefore, the network will not obtain the QoS patterns required for each service. This paper proposes a strategy to determine how much a given network can affect the QoS parameters of another network, by interference. In order to achieve this, a measurement campaign was carried out in two stages: firstly with a single AP and later with two APs using the same channel. A VoIP application was used in the experiment and a protocol analyzer collected the QoS metrics. In each stage 46 points were measured , that are insufficient for statistically characterize the environment. For expanding this data, an Artificial Neural Network (ANN) was used. After the measurement, an analysis of the results and a set of inferences were made by using Bayesian Networks, whose inputs were the experimental data, i.e., QoS metrics like throughput, delay, jitter, packet loss, PMOS and physical metrics like power and distance.

  6. A Bayesian Network approach to the evaluation of building design and its consequences for employee performance and operational costs

    DEFF Research Database (Denmark)

    Jensen, Kasper Lynge; Toftum, Jørn; Friis-Hansen, Peter

    2009-01-01

    building design. In this paper, focus will be on the effects of temperature on mental performance and not on other indoor climate factors. A total economic comparison of six different building designs, four located in northern Europe and two in Los Angeles, USA, was performed. The results indicate...... that investments in improved indoor thermal conditions can be justified economically in most cases. The Bayesian Network provides a reliable platform using probabilities for modelling the complexity while estimating the effect of indoor climate factors on human beings, due to the different ways in which humans...

  7. A genetic algorithm-Bayesian network approach for the analysis of metabolomics and spectroscopic data: application to the rapid identification of Bacillus spores and classification of Bacillus species

    Directory of Open Access Journals (Sweden)

    Goodacre Royston

    2011-01-01

    Full Text Available Abstract Background The rapid identification of Bacillus spores and bacterial identification are paramount because of their implications in food poisoning, pathogenesis and their use as potential biowarfare agents. Many automated analytical techniques such as Curie-point pyrolysis mass spectrometry (Py-MS have been used to identify bacterial spores giving use to large amounts of analytical data. This high number of features makes interpretation of the data extremely difficult We analysed Py-MS data from 36 different strains of aerobic endospore-forming bacteria encompassing seven different species. These bacteria were grown axenically on nutrient agar and vegetative biomass and spores were analyzed by Curie-point Py-MS. Results We develop a novel genetic algorithm-Bayesian network algorithm that accurately identifies sand selects a small subset of key relevant mass spectra (biomarkers to be further analysed. Once identified, this subset of relevant biomarkers was then used to identify Bacillus spores successfully and to identify Bacillus species via a Bayesian network model specifically built for this reduced set of features. Conclusions This final compact Bayesian network classification model is parsimonious, computationally fast to run and its graphical visualization allows easy interpretation of the probabilistic relationships among selected biomarkers. In addition, we compare the features selected by the genetic algorithm-Bayesian network approach with the features selected by partial least squares-discriminant analysis (PLS-DA. The classification accuracy results show that the set of features selected by the GA-BN is far superior to PLS-DA.

  8. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Darwiche, Adnan; Chavira, Mark

    2006-01-01

    We describe in this paper a system for exact inference with relational Bayesian networks as defined in the publicly available PRIMULA tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference...... by evaluating and differentiating these circuits in time linear in their size. We report on experimental results showing successful compilation and efficient inference on relational Bayesian networks, whose PRIMULA--generated propositional instances have thousands of variables, and whose jointrees have clusters...

  9. Bayesian networks and agent-based modeling approach for urban land-use and population density change: a BNAS model

    Science.gov (United States)

    Kocabas, Verda; Dragicevic, Suzana

    2013-10-01

    Land-use change models grounded in complexity theory such as agent-based models (ABMs) are increasingly being used to examine evolving urban systems. The objective of this study is to develop a spatial model that simulates land-use change under the influence of human land-use choice behavior. This is achieved by integrating the key physical and social drivers of land-use change using Bayesian networks (BNs) coupled with agent-based modeling. The BNAS model, integrated Bayesian network-based agent system, presented in this study uses geographic information systems, ABMs, BNs, and influence diagram principles to model population change on an irregular spatial structure. The model is parameterized with historical data and then used to simulate 20 years of future population and land-use change for the City of Surrey, British Columbia, Canada. The simulation results identify feasible new urban areas for development around the main transportation corridors. The obtained new development areas and the projected population trajectories with the“what-if” scenario capabilities can provide insights into urban planners for better and more informed land-use policy or decision-making processes.

  10. An introduction to Gaussian Bayesian networks.

    Science.gov (United States)

    Grzegorczyk, Marco

    2010-01-01

    The extraction of regulatory networks and pathways from postgenomic data is important for drug -discovery and development, as the extracted pathways reveal how genes or proteins regulate each other. Following up on the seminal paper of Friedman et al. (J Comput Biol 7:601-620, 2000), Bayesian networks have been widely applied as a popular tool to this end in systems biology research. Their popularity stems from the tractability of the marginal likelihood of the network structure, which is a consistent scoring scheme in the Bayesian context. This score is based on an integration over the entire parameter space, for which highly expensive computational procedures have to be applied when using more complex -models based on differential equations; for example, see (Bioinformatics 24:833-839, 2008). This chapter gives an introduction to reverse engineering regulatory networks and pathways with Gaussian Bayesian networks, that is Bayesian networks with the probabilistic BGe scoring metric [see (Geiger and Heckerman 235-243, 1995)]. In the BGe model, the data are assumed to stem from a Gaussian distribution and a normal-Wishart prior is assigned to the unknown parameters. Gaussian Bayesian network methodology for analysing static observational, static interventional as well as dynamic (observational) time series data will be described in detail in this chapter. Finally, we apply these Bayesian network inference methods (1) to observational and interventional flow cytometry (protein) data from the well-known RAF pathway to evaluate the global network reconstruction accuracy of Bayesian network inference and (2) to dynamic gene expression time series data of nine circadian genes in Arabidopsis thaliana to reverse engineer the unknown regulatory network topology for this domain. PMID:20824469

  11. The Diagnosis of Reciprocating Machinery by Bayesian Networks

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A Bayesian Network is a reasoning tool based on probability theory and has many advantages that other reasoning tools do not have. This paper discusses the basic theory of Bayesian networks and studies the problems in constructing Bayesian networks. The paper also constructs a Bayesian diagnosis network of a reciprocating compressor. The example helps us to draw a conclusion that Bayesian diagnosis networks can diagnose reciprocating machinery effectively.

  12. Fuzzy Functional Dependencies and Bayesian Networks

    Institute of Scientific and Technical Information of China (English)

    LIU WeiYi(刘惟一); SONG Ning(宋宁)

    2003-01-01

    Bayesian networks have become a popular technique for representing and reasoning with probabilistic information. The fuzzy functional dependency is an important kind of data dependencies in relational databases with fuzzy values. The purpose of this paper is to set up a connection between these data dependencies and Bayesian networks. The connection is done through a set of methods that enable people to obtain the most information of independent conditions from fuzzy functional dependencies.

  13. A Decomposition Algorithm for Learning Bayesian Network Structures from Data

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Cordero Hernandez, Jorge

    2008-01-01

    the complete network. The new learning algorithm firstly finds local components from the data, and then recover the complete network by joining the learned components. We show the empirical performance of the decomposition algorithm in several benchmark networks.......It is a challenging task of learning a large Bayesian network from a small data set. Most conventional structural learning approaches run into the computational as well as the statistical problems. We propose a decomposition algorithm for the structure construction without having to learn...

  14. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    Science.gov (United States)

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan

    2016-08-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  15. Inference of Gene Regulatory Network Based on Local Bayesian Networks

    Science.gov (United States)

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Chen, Luonan

    2016-01-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  16. Scaling Bayesian network discovery through incremental recovery

    NARCIS (Netherlands)

    Castelo, J.R.; Siebes, A.P.J.M.

    1999-01-01

    Bayesian networks are a type of graphical models that, e.g., allow one to analyze the interaction among the variables in a database. A well-known problem with the discovery of such models from a database is the ``problem of high-dimensionality''. That is, the discovery of a network from a database w

  17. Bayesian network learning with cutting planes

    CERN Document Server

    Cussens, James

    2012-01-01

    The problem of learning the structure of Bayesian networks from complete discrete data with a limit on parent set size is considered. Learning is cast explicitly as an optimisation problem where the goal is to find a BN structure which maximises log marginal likelihood (BDe score). Integer programming, specifically the SCIP framework, is used to solve this optimisation problem. Acyclicity constraints are added to the integer program (IP) during solving in the form of cutting planes. Finding good cutting planes is the key to the success of the approach -the search for such cutting planes is effected using a sub-IP. Results show that this is a particularly fast method for exact BN learning.

  18. Bayesian networks as a tool for epidemiological systems analysis

    Science.gov (United States)

    Lewis, F. I.

    2012-11-01

    Bayesian network analysis is a form of probabilistic modeling which derives from empirical data a directed acyclic graph (DAG) describing the dependency structure between random variables. Bayesian networks are increasingly finding application in areas such as computational and systems biology, and more recently in epidemiological analyses. The key distinction between standard empirical modeling approaches, such as generalised linear modeling, and Bayesian network analyses is that the latter attempts not only to identify statistically associated variables, but to additionally, and empirically, separate these into those directly and indirectly dependent with one or more outcome variables. Such discrimination is vastly more ambitious but has the potential to reveal far more about key features of complex disease systems. Applying Bayesian network modeling to biological and medical data has considerable computational demands, combined with the need to ensure robust model selection given the vast model space of possible DAGs. These challenges require the use of approximation techniques, such as the Laplace approximation, Markov chain Monte Carlo simulation and parametric bootstrapping, along with computational parallelization. A case study in structure discovery - identification of an optimal DAG for given data - is presented which uses additive Bayesian networks to explore veterinary disease data of industrial and medical relevance.

  19. An ecosystem service approach to support integrated pond management: a case study using Bayesian belief networks--highlighting opportunities and risks.

    Science.gov (United States)

    Landuyt, Dries; Lemmens, Pieter; D'hondt, Rob; Broekx, Steven; Liekens, Inge; De Bie, Tom; Declerck, Steven A J; De Meester, Luc; Goethals, Peter L M

    2014-12-01

    Freshwater ponds deliver a broad range of ecosystem services (ESS). Taking into account this broad range of services to attain cost-effective ESS delivery is an important challenge facing integrated pond management. To assess the strengths and weaknesses of an ESS approach to support decisions in integrated pond management, we applied it on a small case study in Flanders, Belgium. A Bayesian belief network model was developed to assess ESS delivery under three alternative pond management scenarios: intensive fish farming (IFF), extensive fish farming (EFF) and nature conservation management (NCM). A probabilistic cost-benefit analysis was performed that includes both costs associated with pond management practices and benefits associated with ESS delivery. Whether or not a particular ESS is included in the analysis affects the identification of the most preferable management scenario by the model. Assessing the delivery of a more complete set of ecosystem services tends to shift the results away from intensive management to more biodiversity-oriented management scenarios. The proposed methodology illustrates the potential of Bayesian belief networks. BBNs facilitate knowledge integration and their modular nature encourages future model expansion to more encompassing sets of services. Yet, we also illustrate the key weaknesses of such exercises, being that the choice whether or not to include a particular ecosystem service may determine the suggested optimal management practice. PMID:25005053

  20. Learning Bayesian Networks from Correlated Data

    Science.gov (United States)

    Bae, Harold; Monti, Stefano; Montano, Monty; Steinberg, Martin H.; Perls, Thomas T.; Sebastiani, Paola

    2016-05-01

    Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between observations within the same cluster and ignoring this correlation typically inflates the rate of false positive associations. We describe a novel parameterization of Bayesian networks that uses random effects to model the correlation within sample units and can be used for structure and parameter learning from correlated data without inflating the Type I error rate. We compare different learning metrics using simulations and illustrate the method in two real examples: an analysis of genetic and non-genetic factors associated with human longevity from a family-based study, and an example of risk factors for complications of sickle cell anemia from a longitudinal study with repeated measures.

  1. Conditions for the adoption of conservation agriculture in Central Morocco: an approach based on Bayesian network modelling

    Directory of Open Access Journals (Sweden)

    Laura Bonzanigo

    2016-03-01

    Full Text Available Research in Central Morocco, proves that conservation agriculture increases yields, reduces labour requirements, and erosion, and improves soil fertility. However, after nearly two decades of demonstration and advocacy, adoption is still limited. This paper investigates the critical constraints and potential opportunities for the adoption of conservation agriculture for different typologies of farms. We measured the possible pathways of adoption via a Bayesian decision network (BDN. BDNs allow the inclusion of stakeholders’ knowledge where data is scant, whilst at the same time they are supported by a robust mathematical background. We first developed a conceptual map of the elements affecting the decision about tillage, which we refined in a workshop with farmers and researchers from the Settat area. We then involved experts in the elicitation of conditional probabilities tables, to quantify the cascade of causal links that determine (or not the adoption. Via BDNs, we could categorise under which specific technical and socio-economic conditions no tillage agriculture is best suited to which farmers. We, by identifying the main constraints and running sensitivity analyses, were able to convey clear messages on how policy- makers may facilitate the conversion. As new evidence is collected, the BDN can be updated to obtain evidence more targeted and fine tuned to the adoption contexts.

  2. Uncertainty Modeling Based on Bayesian Network in Ontology Mapping

    Institute of Scientific and Technical Information of China (English)

    LI Yuhua; LIU Tao; SUN Xiaolin

    2006-01-01

    How to deal with uncertainty is crucial in exact concept mapping between ontologies. This paper presents a new framework on modeling uncertainty in ontologies based on bayesian networks (BN). In our approach, ontology Web language (OWL) is extended to add probabilistic markups for attaching probability information, the source and target ontologies (expressed by patulous OWL) are translated into bayesian networks (BNs), the mapping between the two ontologies can be digged out by constructing the conditional probability tables (CPTs) of the BN using a improved algorithm named I-IPFP based on iterative proportional fitting procedure (IPFP). The basic idea of this framework and algorithm are validated by positive results from computer experiments.

  3. Reasoning under uncertainty in natural language dialogue using Bayesian networks

    NARCIS (Netherlands)

    Keizer, Simon

    2003-01-01

    In which uncertainty in natural language dialogue is introduced as the central problem in the research described in this thesis. The idea of using of Bayesian networks is hypothesised as a possible solution to this problem. Dialogue acts are presented as the central notion in our approach to dialogu

  4. A Bayesian approach to model uncertainty

    International Nuclear Information System (INIS)

    A Bayesian approach to model uncertainty is taken. For the case of a finite number of alternative models, the model uncertainty is equivalent to parameter uncertainty. A derivation based on Savage's partition problem is given

  5. The application of Bayesian networks in natural hazard analyses

    Directory of Open Access Journals (Sweden)

    K. Vogel

    2013-10-01

    Full Text Available In natural hazards we face several uncertainties due to our lack of knowledge and/or the intrinsic randomness of the underlying natural processes. Nevertheless, deterministic analysis approaches are still widely used in natural hazard assessments, with the pitfall of underestimating the hazard with potentially disastrous consequences. In this paper we show that the Bayesian network approach offers a flexible framework for capturing and expressing a broad range of different uncertainties as those encountered in natural hazard assessments. Although well studied in theory, the application of Bayesian networks on real-world data is often not straightforward and requires specific tailoring and adaption of existing algorithms. We demonstrate by way of three case studies (a ground motion model for a seismic hazard analysis, a flood damage assessment, and a landslide susceptibility study the applicability of Bayesian networks across different domains showcasing various properties and benefits of the Bayesian network framework. We offer suggestions as how to tackle practical problems arising along the way, mainly concentrating on the handling of continuous variables, missing observations, and the interaction of both. We stress that our networks are completely data-driven, although prior domain knowledge can be included if desired.

  6. Most frugal explanations in Bayesian networks

    NARCIS (Netherlands)

    Kwisthout, J.H.P.

    2015-01-01

    Inferring the most probable explanation to a set of variables, given a partial observation of the remaining variables, is one of the canonical computational problems in Bayesian networks, with widespread applications in AI and beyond. This problem, known as MAP, is computationally intractable (NP-ha

  7. On local optima in learning bayesian networks

    DEFF Research Database (Denmark)

    Dalgaard, Jens; Kocka, Tomas; Pena, Jose

    2003-01-01

    This paper proposes and evaluates the k-greedy equivalence search algorithm (KES) for learning Bayesian networks (BNs) from complete data. The main characteristic of KES is that it allows a trade-off between greediness and randomness, thus exploring different good local optima. When greediness...

  8. Modelling crime linkage with Bayesian networks

    NARCIS (Netherlands)

    J. de Zoete; M. Sjerps; D. Lagnado; N. Fenton

    2015-01-01

    When two or more crimes show specific similarities, such as a very distinct modus operandi, the probability that they were committed by the same offender becomes of interest. This probability depends on the degree of similarity and distinctiveness. We show how Bayesian networks can be used to model

  9. Bayesian variable selection and data integration for biological regulatory networks

    OpenAIRE

    Jensen, Shane T; Chen, Guang; Stoeckert, Jr, Christian J.

    2007-01-01

    A substantial focus of research in molecular biology are gene regulatory networks: the set of transcription factors and target genes which control the involvement of different biological processes in living cells. Previous statistical approaches for identifying gene regulatory networks have used gene expression data, ChIP binding data or promoter sequence data, but each of these resources provides only partial information. We present a Bayesian hierarchical model that integrates all three dat...

  10. A Bayesian Networks in Intrusion Detection Systems

    Directory of Open Access Journals (Sweden)

    M. Mehdi

    2007-01-01

    Full Text Available Intrusion detection systems (IDSs have been widely used to overcome security threats in computer networks. Anomaly-based approaches have the advantage of being able to detect previously unknown attacks, but they suffer from the difficulty of building robust models of acceptable behaviour which may result in a large number of false alarms caused by incorrect classification of events in current systems. We propose a new approach of an anomaly Intrusion detection system (IDS. It consists of building a reference behaviour model and the use of a Bayesian classification procedure associated to unsupervised learning algorithm to evaluate the deviation between current and reference behaviour. Continuous re-estimation of model parameters allows for real time operation. The use of recursive Log-likelihood and entropy estimation as a measure for monitoring model degradation related with behavior changes and the associated model update show that the accuracy of the event classification process is significantly improved using our proposed approach for reducing the missing-alarm.

  11. Using Bayesian networks to support decision-focused information retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, P.; Elsaesser, C.; Seligman, L. [Mitre Corp., McLean, VA (United States)

    1996-12-31

    This paper has described an approach to controlling the process of pulling data/information from distributed data bases in a way that is specific to a persons specific decision making context. Our prototype implementation of this approach uses a knowledge-based planner to generate a plan, an automatically constructed Bayesian network to evaluate the plan, specialized processing of the network to derive key information items that would substantially impact the evaluation of the plan (e.g., determine that replanning is needed), automated construction of Standing Requests for Information (SRIs) which are automated functions that monitor changes and trends in distributed data base that are relevant to the key information items. This emphasis of this paper is on how Bayesian networks are used.

  12. Bayesian Overlapping Community Detection in Dynamic Networks

    CERN Document Server

    Ghorbani, Mahsa; Khodadadi, Ali

    2016-01-01

    Detecting community structures in social networks has gained considerable attention in recent years. However, lack of prior knowledge about the number of communities, and their overlapping nature have made community detection a challenging problem. Moreover, many of the existing methods only consider static networks, while most of real world networks are dynamic and evolve over time. Hence, finding consistent overlapping communities in dynamic networks without any prior knowledge about the number of communities is still an interesting open research problem. In this paper, we present an overlapping community detection method for dynamic networks called Dynamic Bayesian Overlapping Community Detector (DBOCD). DBOCD assumes that in every snapshot of network, overlapping parts of communities are dense areas and utilizes link communities instead of common node communities. Using Recurrent Chinese Restaurant Process and community structure of the network in the last snapshot, DBOCD simultaneously extracts the numbe...

  13. Dynamic Bayesian Network Modeling of Game Based Diagnostic Assessments. CRESST Report 837

    Science.gov (United States)

    Levy, Roy

    2014-01-01

    Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…

  14. HEURISTIC DISCRETIZATION METHOD FOR BAYESIAN NETWORKS

    Directory of Open Access Journals (Sweden)

    Mariana D.C. Lima

    2014-01-01

    Full Text Available Bayesian Network (BN is a classification technique widely used in Artificial Intelligence. Its structure is a Direct Acyclic Graph (DAG used to model the association of categorical variables. However, in cases where the variables are numerical, a previous discretization is necessary. Discretization methods are usually based on a statistical approach using the data distribution, such as division by quartiles. In this article we present a discretization using a heuristic that identifies events called peak and valley. Genetic Algorithm was used to identify these events having the minimization of the error between the estimated average for BN and the actual value of the numeric variable output as the objective function. The BN has been modeled from a database of Bit’s Rate of Penetration of the Brazilian pre-salt layer with 5 numerical variables and one categorical variable, using the proposed discretization and the division of the data by the quartiles. The results show that the proposed heuristic discretization has higher accuracy than the quartiles discretization.

  15. Distributed Bayesian Networks for User Modeling

    DEFF Research Database (Denmark)

    Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang;

    2006-01-01

    The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used...... by such adaptive applications are often partial fragments of an overall user model. The fragments have then to be collected and merged into a global user profile. In this paper we investigate and present algorithms able to cope with distributed, fragmented user models – based on Bayesian Networks – in the context...... of Web-based eLearning platforms. The scenario we are tackling assumes learners who use several systems over time, which are able to create partial Bayesian Networks for user models based on the local system context. In particular, we focus on how to merge these partial user models. Our merge mechanism...

  16. Improving Environmental Scanning Systems Using Bayesian Networks

    OpenAIRE

    Simon Welter; Jörg H. Mayer; Reiner Quick

    2013-01-01

    As companies’ environment is becoming increasingly volatile, scanning systems gain in importance. We propose a hybrid process model for such systems' information gathering and interpretation tasks that combines quantitative information derived from regression analyses and qualitative knowledge from expert interviews. For the latter, we apply Bayesian networks. We derive the need for such a hybrid process model from a literature review. We lay out our model to find a suitable set of business e...

  17. Forming Object Concept Using Bayesian Network

    OpenAIRE

    Nakamura, Tomoaki; Nagai, Takayuki

    2010-01-01

    This chapter hase discussed a novel framework for object understanding. Implementation of the proposed framework using Bayesian Network has been presented. Although the result given in this paper is preliminary one, we have shown that the system can form object concept by observing the performance by human hands. The on-line learning is left for the future works. Moreover the model should be extended so that it can represent the object usage and work objects.

  18. [A medical image semantic modeling based on hierarchical Bayesian networks].

    Science.gov (United States)

    Lin, Chunyi; Ma, Lihong; Yin, Junxun; Chen, Jianyu

    2009-04-01

    A semantic modeling approach for medical image semantic retrieval based on hierarchical Bayesian networks was proposed, in allusion to characters of medical images. It used GMM (Gaussian mixture models) to map low-level image features into object semantics with probabilities, then it captured high-level semantics through fusing these object semantics using a Bayesian network, so that it built a multi-layer medical image semantic model, aiming to enable automatic image annotation and semantic retrieval by using various keywords at different semantic levels. As for the validity of this method, we have built a multi-level semantic model from a small set of astrocytoma MRI (magnetic resonance imaging) samples, in order to extract semantics of astrocytoma in malignant degree. Experiment results show that this is a superior approach.

  19. Option Pricing Using Bayesian Neural Networks

    CERN Document Server

    Pires, Michael Maio

    2007-01-01

    Options have provided a field of much study because of the complexity involved in pricing them. The Black-Scholes equations were developed to price options but they are only valid for European styled options. There is added complexity when trying to price American styled options and this is why the use of neural networks has been proposed. Neural Networks are able to predict outcomes based on past data. The inputs to the networks here are stock volatility, strike price and time to maturity with the output of the network being the call option price. There are two techniques for Bayesian neural networks used. One is Automatic Relevance Determination (for Gaussian Approximation) and one is a Hybrid Monte Carlo method, both used with Multi-Layer Perceptrons.

  20. Sensor Validation using Bayesian Networks

    Data.gov (United States)

    National Aeronautics and Space Administration — One of NASA’s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in...

  1. Revealing ecological networks using Bayesian network inference algorithms.

    Science.gov (United States)

    Milns, Isobel; Beale, Colin M; Smith, V Anne

    2010-07-01

    Understanding functional relationships within ecological networks can help reveal keys to ecosystem stability or fragility. Revealing these relationships is complicated by the difficulties of isolating variables or performing experimental manipulations within a natural ecosystem, and thus inferences are often made by matching models to observational data. Such models, however, require assumptions-or detailed measurements-of parameters such as birth and death rate, encounter frequency, territorial exclusion, and predation success. Here, we evaluate the use of a Bayesian network inference algorithm, which can reveal ecological networks based upon species and habitat abundance alone. We test the algorithm's performance and applicability on observational data of avian communities and habitat in the Peak District National Park, United Kingdom. The resulting networks correctly reveal known relationships among habitat types and known interspecific relationships. In addition, the networks produced novel insights into ecosystem structure and identified key species with high connectivity. Thus, Bayesian networks show potential for becoming a valuable tool in ecosystem analysis. PMID:20715607

  2. A Bayesian network approach to predicting nest presence of thefederally-threatened piping plover (Charadrius melodus)using barrier island features

    Science.gov (United States)

    Gieder, Katherina D.; Karpanty, Sarah M.; Frasera, James D.; Catlin, Daniel H.; Gutierrez, Benjamin T.; Plant, Nathaniel G.; Turecek, Aaron M.; Thieler, E. Robert

    2014-01-01

    Sea-level rise and human development pose significant threats to shorebirds, particularly for species that utilize barrier island habitat. The piping plover (Charadrius melodus) is a federally-listed shorebird that nests on barrier islands and rapidly responds to changes in its physical environment, making it an excellent species with which to model how shorebird species may respond to habitat change related to sea-level rise and human development. The uncertainty and complexity in predicting sea-level rise, the responses of barrier island habitats to sea-level rise, and the responses of species to sea-level rise and human development necessitate a modelling approach that can link species to the physical habitat features that will be altered by changes in sea level and human development. We used a Bayesian network framework to develop a model that links piping plover nest presence to the physical features of their nesting habitat on a barrier island that is impacted by sea-level rise and human development, using three years of data (1999, 2002, and 2008) from Assateague Island National Seashore in Maryland. Our model performance results showed that we were able to successfully predict nest presence given a wide range of physical conditions within the model’s dataset. We found that model predictions were more successful when the range of physical conditions included in model development was varied rather than when those physical conditions were narrow. We also found that all model predictions had fewer false negatives (nests predicted to be absent when they were actually present in the dataset) than false positives (nests predicted to be present when they were actually absent in the dataset), indicating that our model correctly predicted nest presence better than nest absence. These results indicated that our approach of using a Bayesian network to link specific physical features to nest presence will be useful for modelling impacts of sea-level rise- or human

  3. Bayesian information fusion networks for biosurveillance applications.

    Science.gov (United States)

    Mnatsakanyan, Zaruhi R; Burkom, Howard S; Coberly, Jacqueline S; Lombardo, Joseph S

    2009-01-01

    This study introduces new information fusion algorithms to enhance disease surveillance systems with Bayesian decision support capabilities. A detection system was built and tested using chief complaints from emergency department visits, International Classification of Diseases Revision 9 (ICD-9) codes from records of outpatient visits to civilian and military facilities, and influenza surveillance data from health departments in the National Capital Region (NCR). Data anomalies were identified and distribution of time offsets between events in the multiple data streams were established. The Bayesian Network was built to fuse data from multiple sources and identify influenza-like epidemiologically relevant events. Results showed increased specificity compared with the alerts generated by temporal anomaly detection algorithms currently deployed by NCR health departments. Further research should be done to investigate correlations between data sources for efficient fusion of the collected data.

  4. A Bayesian Concept Learning Approach to Crowdsourcing

    DEFF Research Database (Denmark)

    Viappiani, Paolo Renato; Zilles, Sandra; Hamilton, Howard J.;

    2011-01-01

    We develop a Bayesian approach to concept learning for crowdsourcing applications. A probabilistic belief over possible concept definitions is maintained and updated according to (noisy) observations from experts, whose behaviors are modeled using discrete types. We propose recommendation...... techniques, inference methods, and query selection strategies to assist a user charged with choosing a configuration that satisfies some (partially known) concept. Our model is able to simultaneously learn the concept definition and the types of the experts. We evaluate our model with simulations, showing...... that our Bayesian strategies are effective even in large concept spaces with many uninformative experts....

  5. BAYESIAN APPROACH OF DECISION PROBLEMS

    Directory of Open Access Journals (Sweden)

    DRAGOŞ STUPARU

    2010-01-01

    Full Text Available Management is nowadays a basic vector of economic development, a concept frequently used in our country as well as all over the world. Indifferently of the hierarchical level at which the managerial process is manifested, decision represents its essential moment, the supreme act of managerial activity. Its can be met in all fields of activity, practically having an unlimited degree of coverage, and in all the functions of management. It is common knowledge that the activity of any type of manger, no matter the hierarchical level he occupies, represents a chain of interdependent decisions, their aim being the elimination or limitation of the influence of disturbing factors that may endanger the achievement of predetermined objectives, and the quality of managerial decisions condition the progress and viability of any enterprise. Therefore, one of the principal characteristics of a successful manager is his ability to adopt the most optimal decisions of high quality. The quality of managerial decisions are conditioned by the manager’s general level of education and specialization, the manner in which they are preoccupied to assimilate the latest information and innovations in the domain of management’s theory and practice and the applying of modern managerial methods and techniques in the activity of management. We are presenting below the analysis of decision problems in hazardous conditions in terms of Bayesian theory – a theory that uses the probabilistic calculus.

  6. Nuclear charge radii: Density functional theory meets Bayesian neural networks

    CERN Document Server

    Utama, Raditya; Piekarewicz, Jorge

    2016-01-01

    The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. We explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonst...

  7. Learning Local Components to Understand Large Bayesian Networks

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Xiang, Yanping; Cordero, Jorge;

    2009-01-01

    Bayesian networks are known for providing an intuitive and compact representation of probabilistic information and allowing the creation of models over a large and complex domain. Bayesian learning and reasoning are nontrivial for a large Bayesian network. In parallel, it is a tough job for users...... (domain experts) to extract accurate information from a large Bayesian network due to dimensional difficulty. We define a formulation of local components and propose a clustering algorithm to learn such local components given complete data. The algorithm groups together most inter-relevant attributes...... in a domain. We evaluate its performance on three benchmark Bayesian networks and provide results in support. We further show that the learned components may represent local knowledge more precisely in comparison to the full Bayesian networks when working with a small amount of data....

  8. Email Spam Filter using Bayesian Neural Networks

    Directory of Open Access Journals (Sweden)

    Nibedita Chakraborty

    2012-03-01

    Full Text Available Nowadays, e-mail is widely becoming one of the fastest and most economical forms of communication but they are prone to be misused. One such misuse is the posting of unsolicited, unwanted e-mails known as spam or junk e-mails. This paper presents and discusses an implementation of a spam filtering system. The idea is to use a neural network which will be trained to recognize different forms of often used words in spam mails. The Bayesian ANN is trained with finite sample sizes to approximate the ideal observer. This strategy can provide improved filtering of Spam than existing Static Spam filters.

  9. Bayesian Network Based XP Process Modelling

    Directory of Open Access Journals (Sweden)

    Mohamed Abouelela

    2010-07-01

    Full Text Available A Bayesian Network based mathematical model has been used for modelling Extreme Programmingsoftware development process. The model is capable of predicting the expected finish time and theexpected defect rate for each XP release. Therefore, it can be used to determine the success/failure of anyXP Project. The model takes into account the effect of three XP practices, namely: Pair Programming,Test Driven Development and Onsite Customer practices. The model’s predictions were validated againsttwo case studies. Results show the precision of our model especially in predicting the project finish time.

  10. Comparison of the Bayesian and Frequentist Approach to the Statistics

    OpenAIRE

    Hakala, Michal

    2015-01-01

    The Thesis deals with introduction to Bayesian statistics and comparing Bayesian approach with frequentist approach to statistics. Bayesian statistics is modern branch of statistics which provides an alternative comprehensive theory to the frequentist approach. Bayesian concepts provides solution for problems not being solvable by frequentist theory. In the thesis are compared definitions, concepts and quality of statistical inference. The main interest is focused on a point estimation, an in...

  11. Markov Chain Monte Carlo Bayesian Learning for Neural Networks

    Science.gov (United States)

    Goodrich, Michael S.

    2011-01-01

    Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.

  12. Assessment of type 1 diabetes risk conferred by HLA-DRB1, INS-VNTR and PTPN22 genes using the Bayesian network approach.

    Directory of Open Access Journals (Sweden)

    Rosalba Portuesi

    Full Text Available BACKGROUND: Determining genetic risk is a fundamental prerequisite for the implementation of primary prevention trials for type 1 diabetes (T1D. The aim of this study was to assess the risk conferred by HLA-DRB1, INS-VNTR and PTPN22 single genes on the onset of T1D and the joint risk conferred by all these three susceptibility loci using the Bayesian Network (BN approach in both population-based case-control and family clustering data sets. METHODOLOGY/PRINCIPAL FINDINGS: A case-control French cohort, consisting of 868 T1D patients and 73 French control subjects, a French family data set consisting of 1694 T1D patients and 2340 controls were analysed. We studied both samples separately applying the BN probabilistic approach, that is a graphical model that encodes probabilistic relationships among variables of interest. As expected HLA-DRB1 is the most relevant susceptibility gene. We proved that INS and PTPN22 genes marginally influence T1D risk in all risk HLA-DRB1 genotype categories. The absolute risk conferred by carrying simultaneously high, moderate or low risk HLA-DRB1 genotypes together with at risk INS and PTPN22 genotypes, was 11.5%, 1.7% and 0.1% in the case-control sample and 19.8%, 6.6% and 2.2% in the family cohort, respectively. CONCLUSIONS/SIGNIFICANCE: This work represents, to the best of our knowledge, the first study based on both case-control and family data sets, showing the joint effect of HLA, INS and PTPN22 in a T1D Caucasian population with a wide range of age at T1D onset, adding new insights to previous findings regarding data sets consisting of patients and controls <15 years at onset.

  13. A Bayesian approach to person perception.

    Science.gov (United States)

    Clifford, C W G; Mareschal, I; Otsuka, Y; Watson, T L

    2015-11-01

    Here we propose a Bayesian approach to person perception, outlining the theoretical position and a methodological framework for testing the predictions experimentally. We use the term person perception to refer not only to the perception of others' personal attributes such as age and sex but also to the perception of social signals such as direction of gaze and emotional expression. The Bayesian approach provides a formal description of the way in which our perception combines current sensory evidence with prior expectations about the structure of the environment. Such expectations can lead to unconscious biases in our perception that are particularly evident when sensory evidence is uncertain. We illustrate the ideas with reference to our recent studies on gaze perception which show that people have a bias to perceive the gaze of others as directed towards themselves. We also describe a potential application to the study of the perception of a person's sex, in which a bias towards perceiving males is typically observed.

  14. Some Quantum Information Inequalities from a Quantum Bayesian Networks Perspective

    OpenAIRE

    Tucci, Robert R.

    2012-01-01

    This is primarily a pedagogical paper. The paper re-visits some well-known quantum information theory inequalities. It does this from a quantum Bayesian networks perspective. The paper illustrates some of the benefits of using quantum Bayesian networks to discuss quantum SIT (Shannon Information Theory).

  15. Bayesian-network-based safety risk analysis in construction projects

    International Nuclear Information System (INIS)

    This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment. - Highlights: • A systemic Bayesian network based approach for safety risk analysis is developed. • An expert confidence indicator for probability fuzzification is proposed. • Safety risk analysis progress is extended to entire life cycle of risk-prone events. • A typical

  16. Modeling operational risks of the nuclear industry with Bayesian networks

    International Nuclear Information System (INIS)

    Basically, planning a new industrial plant requires information on the industrial management, regulations, site selection, definition of initial and planned capacity, and on the estimation of the potential demand. However, this is far from enough to assure the success of an industrial enterprise. Unexpected and extremely damaging events may occur that deviates from the original plan. The so-called operational risks are not only in the system, equipment, process or human (technical or managerial) failures. They are also in intentional events such as frauds and sabotage, or extreme events like terrorist attacks or radiological accidents and even on public reaction to perceived environmental or future generation impacts. For the nuclear industry, it is a challenge to identify and to assess the operational risks and their various sources. Early identification of operational risks can help in preparing contingency plans, to delay the decision to invest or to approve a project that can, at an extreme, affect the public perception of the nuclear energy. A major problem in modeling operational risk losses is the lack of internal data that are essential, for example, to apply the loss distribution approach. As an alternative, methods that consider qualitative and subjective information can be applied, for example, fuzzy logic, neural networks, system dynamic or Bayesian networks. An advantage of applying Bayesian networks to model operational risk is the possibility to include expert opinions and variables of interest, to structure the model via causal dependencies among these variables, and to specify subjective prior and conditional probabilities distributions at each step or network node. This paper suggests a classification of operational risks in industry and discusses the benefits and obstacles of the Bayesian networks approach to model those risks. (author)

  17. Particle identification in ALICE: a Bayesian approach

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Benacek, Pavel; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Incani, Elisa; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kostarakis, Panagiotis; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Davide; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shahzad, Muhammed Ikram; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Derradi De Souza, Rafael; Sozzi, Federica; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thakur, Dhananjaya; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasin, Zafar; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-01-01

    We present a Bayesian approach to particle identification (PID) within the ALICE experiment. The aim is to more effectively combine the particle identification capabilities of its various detectors. After a brief explanation of the adopted methodology and formalism, the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE is studied. PID is performed via measurements of specific energy loss (dE/dx) and time-of-flight. PID efficiencies and misidentification probabilities are extracted and compared with Monte Carlo simulations using high purity samples of identified particles in the decay channels ${\\rm K}_{\\rm S}^{\\rm 0}\\rightarrow \\pi^+\\pi^-$, $\\phi\\rightarrow {\\rm K}^-{\\rm K}^+$ and $\\Lambda\\rightarrow{\\rm p}\\pi^-$ in p–Pb collisions at $\\sqrt{s_{\\rm NN}}= 5.02$TeV. In order to thoroughly assess the validity of the Bayesian approach, this methodology was used to obtain corrected $p_{\\rm T}$ spectra of pions, kaons, protons, and D$^0$ mesons in pp coll...

  18. Bayesian Network Based Fault Prognosis via Bond Graph Modeling of High-Speed Railway Traction Device

    Directory of Open Access Journals (Sweden)

    Yunkai Wu

    2015-01-01

    component-level faults accurately for a high-speed railway traction system, a fault prognosis approach via Bayesian network and bond graph modeling techniques is proposed. The inherent structure of a railway traction system is represented by bond graph model, based on which a multilayer Bayesian network is developed for fault propagation analysis and fault prediction. For complete and incomplete data sets, two different parameter learning algorithms such as Bayesian estimation and expectation maximization (EM algorithm are adopted to determine the conditional probability table of the Bayesian network. The proposed prognosis approach using Pearl’s polytree propagation algorithm for joint probability reasoning can predict the failure probabilities of leaf nodes based on the current status of root nodes. Verification results in a high-speed railway traction simulation system can demonstrate the effectiveness of the proposed approach.

  19. A Dynamic Bayesian Approach to Computational Laban Shape Quality Analysis

    Directory of Open Access Journals (Sweden)

    Dilip Swaminathan

    2009-01-01

    kinesiology. LMA (especially Effort/Shape emphasizes how internal feelings and intentions govern the patterning of movement throughout the whole body. As we argue, a complex understanding of intention via LMA is necessary for human-computer interaction to become embodied in ways that resemble interaction in the physical world. We thus introduce a novel, flexible Bayesian fusion approach for identifying LMA Shape qualities from raw motion capture data in real time. The method uses a dynamic Bayesian network (DBN to fuse movement features across the body and across time and as we discuss can be readily adapted for low-cost video. It has delivered excellent performance in preliminary studies comprising improvisatory movements. Our approach has been incorporated in Response, a mixed-reality environment where users interact via natural, full-body human movement and enhance their bodily-kinesthetic awareness through immersive sound and light feedback, with applications to kinesiology training, Parkinson's patient rehabilitation, interactive dance, and many other areas.

  20. Bayesian network models for error detection in radiotherapy plans

    Science.gov (United States)

    Kalet, Alan M.; Gennari, John H.; Ford, Eric C.; Phillips, Mark H.

    2015-04-01

    The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.

  1. Bayesian Network Structure Learning with Integer Programming: Polytopes, Facets, and Complexity

    OpenAIRE

    Cussens, James; Järvisalo, Matti; Korhonen, Janne H.; Bartlett, Mark

    2016-01-01

    The challenging task of learning structures of probabilistic graphical models is an important problem within modern AI research. Recent years have witnessed several major algorithmic advances in structure learning for Bayesian networks---arguably the most central class of graphical models---especially in what is known as the score-based setting. A successful generic approach to optimal Bayesian network structure learning (BNSL), based on integer programming (IP), is implemented in the GOBNILP...

  2. Radioactive Contraband Detection: A Bayesian Approach

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J; Breitfeller, E; Guidry, B; Manatt, D; Sale, K; Chambers, D; Axelrod, M; Meyer, A

    2009-03-16

    Radionuclide emissions from nuclear contraband challenge both detection and measurement technologies to capture and record each event. The development of a sequential Bayesian processor incorporating both the physics of gamma-ray emissions and the measurement of photon energies offers a physics-based approach to attack this challenging problem. It is shown that a 'physics-based' structure can be used to develop an effective detection technique, but also motivates the implementation of this approach using or particle filters to enhance and extract the required information.

  3. Bayesian approach to avoiding track seduction

    Science.gov (United States)

    Salmond, David J.; Everett, Nicholas O.

    2002-08-01

    The problem of maintaining track on a primary target in the presence spurious objects is addressed. Recursive and batch filtering approaches are developed. For the recursive approach, a Bayesian track splitting filter is derived which spawns candidate tracks if there is a possibility of measurement misassociation. The filter evaluates the probability of each candidate track being associated with the primary target. The batch filter is a Markov-chain Monte Carlo (MCMC) algorithm which fits the observed data sequence to models of target dynamics and measurement-track association. Simulation results are presented.

  4. Learning Bayesian Networks from Data by Particle Swarm Optimization

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Learning Bayesian network is an NP-hard problem. When the number of variables is large, the process of searching optimal network structure could be very time consuming and tends to return a structure which is local optimal. The particle swarm optimization (PSO) was introduced to the problem of learning Bayesian networks and a novel structure learning algorithm using PSO was proposed. To search in directed acyclic graphs spaces efficiently, a discrete PSO algorithm especially for structure learning was proposed based on the characteristics of Bayesian networks. The results of experiments show that our PSO based algorithm is fast for convergence and can obtain better structures compared with genetic algorithm based algorithms.

  5. Using consensus bayesian network to model the reactive oxygen species regulatory pathway.

    Directory of Open Access Journals (Sweden)

    Liangdong Hu

    Full Text Available Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.

  6. Learning Bayesian network structure with immune algorithm

    Institute of Scientific and Technical Information of China (English)

    Zhiqiang Cai; Shubin Si; Shudong Sun; Hongyan Dui

    2015-01-01

    Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa-per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further-more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Final y, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.

  7. Logistic regression against a divergent Bayesian network

    Directory of Open Access Journals (Sweden)

    Noel Antonio Sánchez Trujillo

    2015-01-01

    Full Text Available This article is a discussion about two statistical tools used for prediction and causality assessment: logistic regression and Bayesian networks. Using data of a simulated example from a study assessing factors that might predict pulmonary emphysema (where fingertip pigmentation and smoking are considered; we posed the following questions. Is pigmentation a confounding, causal or predictive factor? Is there perhaps another factor, like smoking, that confounds? Is there a synergy between pigmentation and smoking? The results, in terms of prediction, are similar with the two techniques; regarding causation, differences arise. We conclude that, in decision-making, the sum of both: a statistical tool, used with common sense, and previous evidence, taking years or even centuries to develop; is better than the automatic and exclusive use of statistical resources.

  8. A Bayesian Network View on Nested Effects Models

    Directory of Open Access Journals (Sweden)

    Fröhlich Holger

    2009-01-01

    Full Text Available Nested effects models (NEMs are a class of probabilistic models that were designed to reconstruct a hidden signalling structure from a large set of observable effects caused by active interventions into the signalling pathway. We give a more flexible formulation of NEMs in the language of Bayesian networks. Our framework constitutes a natural generalization of the original NEM model, since it explicitly states the assumptions that are tacitly underlying the original version. Our approach gives rise to new learning methods for NEMs, which have been implemented in the /Bioconductor package nem. We validate these methods in a simulation study and apply them to a synthetic lethality dataset in yeast.

  9. A Probability-based Evolutionary Algorithm with Mutations to Learn Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Sho Fukuda

    2014-12-01

    Full Text Available Bayesian networks are regarded as one of the essential tools to analyze causal relationship between events from data. To learn the structure of highly-reliable Bayesian networks from data as quickly as possible is one of the important problems that several studies have been tried to achieve. In recent years, probability-based evolutionary algorithms have been proposed as a new efficient approach to learn Bayesian networks. In this paper, we target on one of the probability-based evolutionary algorithms called PBIL (Probability-Based Incremental Learning, and propose a new mutation operator. Through performance evaluation, we found that the proposed mutation operator has a good performance in learning Bayesian networks

  10. Bayesian network as a modelling tool for risk management in agriculture

    DEFF Research Database (Denmark)

    Rasmussen, Svend; Madsen, Anders L.; Lund, Mogens

    The importance of risk management increases as farmers become more exposed to risk. But risk management is a difficult topic because income risk is the result of the complex interaction of multiple risk factors combined with the effect of an increasing array of possible risk management tools....... In this paper we use Bayesian networks as an integrated modelling approach for representing uncertainty and analysing risk management in agriculture. It is shown how historical farm account data may be efficiently used to estimate conditional probabilities, which are the core elements in Bayesian network models....... We further show how the Bayesian network model RiBay is used for stochastic simulation of farm income, and we demonstrate how RiBay can be used to simulate risk management at the farm level. It is concluded that the key strength of a Bayesian network is the transparency of assumptions...

  11. Refining gene signatures: a Bayesian approach

    Directory of Open Access Journals (Sweden)

    Labbe Aurélie

    2009-12-01

    Full Text Available Abstract Background In high density arrays, the identification of relevant genes for disease classification is complicated by not only the curse of dimensionality but also the highly correlated nature of the array data. In this paper, we are interested in the question of how many and which genes should be selected for a disease class prediction. Our work consists of a Bayesian supervised statistical learning approach to refine gene signatures with a regularization which penalizes for the correlation between the variables selected. Results Our simulation results show that we can most often recover the correct subset of genes that predict the class as compared to other methods, even when accuracy and subset size remain the same. On real microarray datasets, we show that our approach can refine gene signatures to obtain either the same or better predictive performance than other existing methods with a smaller number of genes. Conclusions Our novel Bayesian approach includes a prior which penalizes highly correlated features in model selection and is able to extract key genes in the highly correlated context of microarray data. The methodology in the paper is described in the context of microarray data, but can be applied to any array data (such as micro RNA, for example as a first step towards predictive modeling of cancer pathways. A user-friendly software implementation of the method is available.

  12. ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Chaudhari

    2011-06-01

    Full Text Available A Network Management System (NMS plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to NMS services, namely, making an NMS energy aware. We propose a Decision Management System (DMS framework which uses a machine learning technique called Bayesian Belief Networks (BBN, to make the NMS energy aware. The DMS is capable of analysing and making control decisions based on network traffic. We factor in the cost of rerouting and power saving per port. Simulations are performed on standard network topologies, namely, ARPANet and IndiaNet. It is found that ~2.5-6.5% power can be saved.

  13. Risk Analysis of New Product Development Using Bayesian Networks

    Directory of Open Access Journals (Sweden)

    MohammadRahim Ramezanian

    2012-06-01

    Full Text Available The process of presenting new product development (NPD to market is of great importance due to variability of competitive rules in the business world. The product development teams face a lot of pressures due to rapid growth of technology, increased risk-taking of world markets and increasing variations in the customers` needs. However, the process of NPD is always associated with high uncertainties and complexities. To be successful in completing NPD project, existing risks should be identified and assessed. On the other hand, the Bayesian networks as a strong approach of decision making modeling of uncertain situations has attracted many researchers in various areas. These networks provide a decision supporting system for problems with uncertainties or probable reasoning. In this paper, the available risk factors in product development have been first identified in an electric company and then, the Bayesian network has been utilized and their interrelationships have been modeled to evaluate the available risk in the process. To determine the primary and conditional probabilities of the nodes, the viewpoints of experts in this area have been applied. The available risks in this process have been divided to High (H, Medium (M and Low (L groups and analyzed by the Agena Risk software. The findings derived from software output indicate that the production of the desired product has relatively high risk. In addition, Predictive support and Diagnostic support have been performed on the model with two different scenarios..

  14. Risk Analysis of New Product Development Using Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Rahim Ramezanian

    2012-01-01

    Full Text Available The process of presenting new product development (NPD to market is of great importance due to variability of competitive rules in the business world. The product development teams face a lot of pressures due to rapid growth of technology, increased risk-taking of world markets and increasing variations in the customers` needs. However, the process of NPD is always associated with high uncertainties and complexities. To be successful in completing NPD project, existing risks should be identified and assessed. On the other hand, the Bayesian networks as a strong approach of decision making modeling of uncertain situations has attracted many researchers in various areas. These networks provide a decision supporting system for problems with uncertainties or probable reasoning. In this paper, the available risk factors in product development have been first identified in an electric company and then, the Bayesian network has been utilized and their interrelationships have been modeled to evaluate the available risk in the process. To determine the primary and conditional probabilities of the nodes, the viewpoints of experts in this area have been applied. The available risks in this process have been divided to High (H, Medium (M and Low (L groups and analyzed by the Agena Risk software. The findings derived from software output indicate that the production of the desired product has relatively high risk. In addition, Predictive support and Diagnostic support have been performed on the model with two different scenarios.

  15. Developing Large-Scale Bayesian Networks by Composition

    Data.gov (United States)

    National Aeronautics and Space Administration — In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale...

  16. Designing Resource-Bounded Reasoners using Bayesian Networks

    Data.gov (United States)

    National Aeronautics and Space Administration — In this work we are concerned with the conceptual design of large-scale diagnostic and health management systems that use Bayesian networks. While they are...

  17. A Bayesian Nonparametric Approach to Test Equating

    Science.gov (United States)

    Karabatsos, George; Walker, Stephen G.

    2009-01-01

    A Bayesian nonparametric model is introduced for score equating. It is applicable to all major equating designs, and has advantages over previous equating models. Unlike the previous models, the Bayesian model accounts for positive dependence between distributions of scores from two tests. The Bayesian model and the previous equating models are…

  18. A Bayesian approach to earthquake source studies

    Science.gov (United States)

    Minson, Sarah

    Bayesian sampling has several advantages over conventional optimization approaches to solving inverse problems. It produces the distribution of all possible models sampled proportionally to how much each model is consistent with the data and the specified prior information, and thus images the entire solution space, revealing the uncertainties and trade-offs in the model. Bayesian sampling is applicable to both linear and non-linear modeling, and the values of the model parameters being sampled can be constrained based on the physics of the process being studied and do not have to be regularized. However, these methods are computationally challenging for high-dimensional problems. Until now the computational expense of Bayesian sampling has been too great for it to be practicable for most geophysical problems. I present a new parallel sampling algorithm called CATMIP for Cascading Adaptive Tempered Metropolis In Parallel. This technique, based on Transitional Markov chain Monte Carlo, makes it possible to sample distributions in many hundreds of dimensions, if the forward model is fast, or to sample computationally expensive forward models in smaller numbers of dimensions. The design of the algorithm is independent of the model being sampled, so CATMIP can be applied to many areas of research. I use CATMIP to produce a finite fault source model for the 2007 Mw 7.7 Tocopilla, Chile earthquake. Surface displacements from the earthquake were recorded by six interferograms and twelve local high-rate GPS stations. Because of the wealth of near-fault data, the source process is well-constrained. I find that the near-field high-rate GPS data have significant resolving power above and beyond the slip distribution determined from static displacements. The location and magnitude of the maximum displacement are resolved. The rupture almost certainly propagated at sub-shear velocities. The full posterior distribution can be used not only to calculate source parameters but also

  19. Using Bayesian Networks to Improve Knowledge Assessment

    Science.gov (United States)

    Millan, Eva; Descalco, Luis; Castillo, Gladys; Oliveira, Paula; Diogo, Sandra

    2013-01-01

    In this paper, we describe the integration and evaluation of an existing generic Bayesian student model (GBSM) into an existing computerized testing system within the Mathematics Education Project (PmatE--Projecto Matematica Ensino) of the University of Aveiro. This generic Bayesian student model had been previously evaluated with simulated…

  20. A Bayesian Approach to Multifractal Extremes

    Science.gov (United States)

    Tchiguirinskaia, Ioulia; Schertzer, Daniel; Lovejoy, Shaun

    2013-04-01

    Drivers such as climate change and rapid urbanisation will result in increasing flood problems in urban environments through this century. Problems encountered in existing flood defence strategies are often related to the data non-stationary, long range dependencies and the clustering of extremes often resulting in fat tailed (i.e., a power-law tail) probability distributions. We discuss how to better predict the floods by using a physically based approach established on systems that respect a scale symmetry over a wide range of space-time scales to determine the relationship between flood magnitude and return period for a wide range of aggregation periods. The classical quantile distributions unfortunately rely on two hypotheses that are questionable: stationarity and independency of the components of the time series. We pointed out that beyond the classical sampling of the extremes and its limitations, there is the possibility to eliminate long-range dependency by uncovering a white-noise process whose fractional integration generates the observed long-range dependent process. The results were obtained during the CEATI Project "Multifractals and physically based estimates of extreme floods". The ambition of this project was to investigate very large data sets of reasonable quality (e.g., daily stream flow data recorded for at least 20 years for several thousands of gages distributed all over Canada and the USA). The multifractal parameters such as the mean intermittency parameter and the multifractality index were estimated on 8332 time series. The results confirm the dependence of multifractal parameter estimates on the length of available data. Then developing a metric for parameter estimation error became a principal step in uncertainty evaluation with respect to the multifractal estimates. A technique for estimating confidence intervals with the help of a Bayesian approach was developed. A detailed comparison of multifractal quantile plots and paleoflood data

  1. Study of Online Bayesian Networks Learning in a Multi-Agent System

    Directory of Open Access Journals (Sweden)

    Yonghui Cao

    2013-01-01

    Full Text Available This paper introduces online Bayesian network learning in detail. The structural and parametric learning abilities of the online Bayesian network learning are explored. The paper starts with revisiting the multi-agent self-organization problem and the proposed solution. Then, we explain the proposed Bayesian network learning, three scoring functions, namely Log-Likelihood, Minimum description length, and Bayesian scores.

  2. Applying Hierarchical Bayesian Neural Network in Failure Time Prediction

    Directory of Open Access Journals (Sweden)

    Ling-Jing Kao

    2012-01-01

    Full Text Available With the rapid technology development and improvement, the product failure time prediction becomes an even harder task because only few failures in the product life tests are recorded. The classical statistical model relies on the asymptotic theory and cannot guarantee that the estimator has the finite sample property. To solve this problem, we apply the hierarchical Bayesian neural network (HBNN approach to predict the failure time and utilize the Gibbs sampler of Markov chain Monte Carlo (MCMC to estimate model parameters. In this proposed method, the hierarchical structure is specified to study the heterogeneity among products. Engineers can use the heterogeneity estimates to identify the causes of the quality differences and further enhance the product quality. In order to demonstrate the effectiveness of the proposed hierarchical Bayesian neural network model, the prediction performance of the proposed model is evaluated using multiple performance measurement criteria. Sensitivity analysis of the proposed model is also conducted using different number of hidden nodes and training sample sizes. The result shows that HBNN can provide not only the predictive distribution but also the heterogeneous parameter estimates for each path.

  3. Clustering and Bayesian network for image of faces classification

    CERN Document Server

    Jayech, Khlifia

    2012-01-01

    In a content based image classification system, target images are sorted by feature similarities with respect to the query (CBIR). In this paper, we propose to use new approach combining distance tangent, k-means algorithm and Bayesian network for image classification. First, we use the technique of tangent distance to calculate several tangent spaces representing the same image. The objective is to reduce the error in the classification phase. Second, we cut the image in a whole of blocks. For each block, we compute a vector of descriptors. Then, we use K-means to cluster the low-level features including color and texture information to build a vector of labels for each image. Finally, we apply five variants of Bayesian networks classifiers (Na\\"ive Bayes, Global Tree Augmented Na\\"ive Bayes (GTAN), Global Forest Augmented Na\\"ive Bayes (GFAN), Tree Augmented Na\\"ive Bayes for each class (TAN), and Forest Augmented Na\\"ive Bayes for each class (FAN) to classify the image of faces using the vector of labels. ...

  4. Modeling Social Annotation: a Bayesian Approach

    CERN Document Server

    Plangprasopchok, Anon

    2008-01-01

    Collaborative tagging systems, such as del.icio.us, CiteULike, and others, allow users to annotate objects, e.g., Web pages or scientific papers, with descriptive labels called tags. The social annotations, contributed by thousands of users, can potentially be used to infer categorical knowledge, classify documents or recommend new relevant information. Traditional text inference methods do not make best use of socially-generated data, since they do not take into account variations in individual users' perspectives and vocabulary. In a previous work, we introduced a simple probabilistic model that takes interests of individual annotators into account in order to find hidden topics of annotated objects. Unfortunately, our proposed approach had a number of shortcomings, including overfitting, local maxima and the requirement to specify values for some parameters. In this paper we address these shortcomings in two ways. First, we extend the model to a fully Bayesian framework. Second, we describe an infinite ver...

  5. A Bayesian Shrinkage Approach for AMMI Models.

    Science.gov (United States)

    da Silva, Carlos Pereira; de Oliveira, Luciano Antonio; Nuvunga, Joel Jorge; Pamplona, Andrezza Kéllen Alves; Balestre, Marcio

    2015-01-01

    Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior

  6. A Bayesian Shrinkage Approach for AMMI Models.

    Directory of Open Access Journals (Sweden)

    Carlos Pereira da Silva

    Full Text Available Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI model, are widely applicable to genotype-by-environment interaction (GEI studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05 in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct

  7. MERGING DIGITAL SURFACE MODELS IMPLEMENTING BAYESIAN APPROACHES

    Directory of Open Access Journals (Sweden)

    H. Sadeq

    2016-06-01

    Full Text Available In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades. It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.

  8. Merging Digital Surface Models Implementing Bayesian Approaches

    Science.gov (United States)

    Sadeq, H.; Drummond, J.; Li, Z.

    2016-06-01

    In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades). It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.

  9. Knowledge Discovery Using Bayesian Network Framework for Intelligent Telecommunication Network Management

    Science.gov (United States)

    Bashar, Abul; Parr, Gerard; McClean, Sally; Scotney, Bryan; Nauck, Detlef

    The ever-evolving nature of telecommunication networks has put enormous pressure on contemporary Network Management Systems (NMSs) to come up with improved functionalities for efficient monitoring, control and management. In such a context, the rapid deployments of Next Generation Networks (NGN) and their management requires intelligent, autonomic and resilient mechanisms to guarantee Quality of Service (QoS) to the end users and at the same time to maximize revenue for the service/network providers. We present a framework for evaluating a Bayesian Networks (BN) based Decision Support System (DSS) for assisting and improving the performance of a Simple Network Management Protocol (SNMP) based NMS. More specifically, we describe our methodology through a case study which implements the function of Call Admission Control (CAC) in a multi-class video conferencing service scenario. Simulation results are presented for a proof of concept, followed by a critical analysis of our proposed approach and its application.

  10. The Bayesian Revolution Approaches Psychological Development

    Science.gov (United States)

    Shultz, Thomas R.

    2007-01-01

    This commentary reviews five articles that apply Bayesian ideas to psychological development, some with psychology experiments, some with computational modeling, and some with both experiments and modeling. The reviewed work extends the current Bayesian revolution into tasks often studied in children, such as causal learning and word learning, and…

  11. Fault Diagnosis of an Intelligent Building Facility Using Bayesian Networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi-ding; XU Jin-yu; BAI Er-lei

    2008-01-01

    There is great significance to diagnose the fault of an intelligent building facility for fault controlling, repairing, eliminating and preventing. As an example, this paper established a Bayesian networks model for fault diagnosis of the refrigeration system of an intelligent building facility, gave the networks parameters, and analyzed the reasoning mechanism. Based on the model, some data was analyzed and diagnosed by adopting Bayesian networks reasoning platform GeNIe. The result shows that the diagnosis effect is more comprehensive and reasonable than the other method.

  12. Detecting Threat E-mails using Bayesian Approach

    CERN Document Server

    Banday, M Tariq; Jan, Tariq R; Shah, Nisar A

    2011-01-01

    Fraud and terrorism have a close connect in terms of the processes that enables and promote them. In the era of Internet, its various services that include Web, e-mail, social networks, blogs, instant messaging, chats, etc. are used in terrorism not only for communication but also for i) creation of ideology, ii) resource gathering, iii) recruitment, indoctrination and training, iv) creation of terror network, and v) information gathering. A major challenge for law enforcement and intelligence agencies is efficient and accurate gathering of relevant and growing volume of crime data. This paper reports on use of established Na\\"ive Bayesian filter for classification of threat e-mails. Efficiency in filtering threat e-mail by use of three different Na\\"ive Bayesian filter approaches i.e. single keywords, weighted multiple keywords and weighted multiple keywords with keyword context matching are evaluated on a threat e-mail corpus created by extracting data from sources that are very close to terrorism.

  13. A Bayesian Approach to Real-Time Earthquake Phase Association

    Science.gov (United States)

    Benz, H.; Johnson, C. E.; Earle, P. S.; Patton, J. M.

    2014-12-01

    Real-time location of seismic events requires a robust and extremely efficient means of associating and identifying seismic phases with hypothetical sources. An association algorithm converts a series of phase arrival times into a catalog of earthquake hypocenters. The classical approach based on time-space stacking of the locus of possible hypocenters for each phase arrival using the principal of acoustic reciprocity has been in use now for many years. One of the most significant problems that has emerged over time with this approach is related to the extreme variations in seismic station density throughout the global seismic network. To address this problem we have developed a novel, Bayesian association algorithm, which looks at the association problem as a dynamically evolving complex system of "many to many relationships". While the end result must be an array of one to many relations (one earthquake, many phases), during the association process the situation is quite different. Both the evolving possible hypocenters and the relationships between phases and all nascent hypocenters is many to many (many earthquakes, many phases). The computational framework we are using to address this is a responsive, NoSQL graph database where the earthquake-phase associations are represented as intersecting Bayesian Learning Networks. The approach directly addresses the network inhomogeneity issue while at the same time allowing the inclusion of other kinds of data (e.g., seismic beams, station noise characteristics, priors on estimated location of the seismic source) by representing the locus of intersecting hypothetical loci for a given datum as joint probability density functions.

  14. Bayesian networks for mastitis management on dairy farms

    NARCIS (Netherlands)

    Steeneveld, Wilma; van der Gaag, Linda; Barkema, H.W.; Hogeveen, H.

    2009-01-01

    This manuscript presents the idea of providing dairy farmers with probability distributions to support decisions on mastitis management and illustrates its feasibility by two applications. Naive Bayesian networks were developed for both applications. The networks in the first application were used t

  15. Dynamic Bayesian Networks for Context-Aware Fall Risk Assessment

    Directory of Open Access Journals (Sweden)

    Gregory Koshmak

    2014-05-01

    Full Text Available Fall incidents among the elderly often occur in the home and can cause serious injuries affecting their independent living. This paper presents an approach where data from wearable sensors integrated in a smart home environment is combined using a dynamic Bayesian network. The smart home environment provides contextual data, obtained from environmental sensors, and contributes to assessing a fall risk probability. The evaluation of the developed system is performed through simulation. Each time step is represented by a single user activity and interacts with a fall sensors located on a mobile device. A posterior probability is calculated for each recognized activity or contextual information. The output of the system provides a total risk assessment of falling given a response from the fall sensor.

  16. Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model

    Science.gov (United States)

    Meng, Jia; Zhang, Jianqiu(Michelle); Qi, Yuan(Alan); Chen, Yidong; Huang, Yufei

    2010-12-01

    The problem of uncovering transcriptional regulation by transcription factors (TFs) based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM) is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ([InlineEquation not available: see fulltext.]) status and Estrogen Receptor negative ([InlineEquation not available: see fulltext.]) status, respectively.

  17. Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model

    Directory of Open Access Journals (Sweden)

    Qi Yuan(Alan

    2010-01-01

    Full Text Available Abstract The problem of uncovering transcriptional regulation by transcription factors (TFs based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ( status and Estrogen Receptor negative ( status, respectively.

  18. Overview of methods of reverse engineering of gene regulatory networks: Boolean and Bayesian networks

    Directory of Open Access Journals (Sweden)

    Frolova A. O.

    2012-06-01

    Full Text Available Reverse engineering of gene regulatory networks is an intensively studied topic in Systems Biology as it reconstructs regulatory interactions between all genes in the genome in the most complete form. The extreme computational complexity of this problem and lack of thorough reviews on reconstruction methods of gene regulatory network is a significant obstacle to further development of this area. In this article the two most common methods for modeling gene regulatory networks are surveyed: Boolean and Bayesian networks. The mathematical description of each method is given, as well as several algorithmic approaches to modeling gene networks using these methods; the complexity of algorithms and the problems that arise during its implementation are also noted.

  19. Bayesian networks for evaluating forensic DNA profiling evidence: a review and guide to literature.

    Science.gov (United States)

    Biedermann, A; Taroni, F

    2012-03-01

    Almost 30 years ago, Bayesian networks (BNs) were developed in the field of artificial intelligence as a framework that should assist researchers and practitioners in applying the theory of probability to inference problems of more substantive size and, thus, to more realistic and practical problems. Since the late 1980s, Bayesian networks have also attracted researchers in forensic science and this tendency has considerably intensified throughout the last decade. This review article provides an overview of the scientific literature that describes research on Bayesian networks as a tool that can be used to study, develop and implement probabilistic procedures for evaluating the probative value of particular items of scientific evidence in forensic science. Primary attention is drawn here to evaluative issues that pertain to forensic DNA profiling evidence because this is one of the main categories of evidence whose assessment has been studied through Bayesian networks. The scope of topics is large and includes almost any aspect that relates to forensic DNA profiling. Typical examples are inference of source (or, 'criminal identification'), relatedness testing, database searching and special trace evidence evaluation (such as mixed DNA stains or stains with low quantities of DNA). The perspective of the review presented here is not exclusively restricted to DNA evidence, but also includes relevant references and discussion on both, the concept of Bayesian networks as well as its general usage in legal sciences as one among several different graphical approaches to evidence evaluation.

  20. Bayesian networks for evaluating forensic DNA profiling evidence: a review and guide to literature.

    Science.gov (United States)

    Biedermann, A; Taroni, F

    2012-03-01

    Almost 30 years ago, Bayesian networks (BNs) were developed in the field of artificial intelligence as a framework that should assist researchers and practitioners in applying the theory of probability to inference problems of more substantive size and, thus, to more realistic and practical problems. Since the late 1980s, Bayesian networks have also attracted researchers in forensic science and this tendency has considerably intensified throughout the last decade. This review article provides an overview of the scientific literature that describes research on Bayesian networks as a tool that can be used to study, develop and implement probabilistic procedures for evaluating the probative value of particular items of scientific evidence in forensic science. Primary attention is drawn here to evaluative issues that pertain to forensic DNA profiling evidence because this is one of the main categories of evidence whose assessment has been studied through Bayesian networks. The scope of topics is large and includes almost any aspect that relates to forensic DNA profiling. Typical examples are inference of source (or, 'criminal identification'), relatedness testing, database searching and special trace evidence evaluation (such as mixed DNA stains or stains with low quantities of DNA). The perspective of the review presented here is not exclusively restricted to DNA evidence, but also includes relevant references and discussion on both, the concept of Bayesian networks as well as its general usage in legal sciences as one among several different graphical approaches to evidence evaluation. PMID:21775236

  1. Python Environment for Bayesian Learning: Inferring the Structure of Bayesian Networks from Knowledge and Data.

    Science.gov (United States)

    Shah, Abhik; Woolf, Peter

    2009-06-01

    In this paper, we introduce pebl, a Python library and application for learning Bayesian network structure from data and prior knowledge that provides features unmatched by alternative software packages: the ability to use interventional data, flexible specification of structural priors, modeling with hidden variables and exploitation of parallel processing. PMID:20161541

  2. Fast MCMC sampling for Markov jump processes and continuous time Bayesian networks

    CERN Document Server

    Rao, Vinayak

    2012-01-01

    Markov jump processes and continuous time Bayesian networks are important classes of continuous time dynamical systems. In this paper, we tackle the problem of inferring unobserved paths in these models by introducing a fast auxiliary variable Gibbs sampler. Our approach is based on the idea of uniformization, and sets up a Markov chain over paths by sampling a finite set of virtual jump times and then running a standard hidden Markov model forward filtering-backward sampling algorithm over states at the set of extant and virtual jump times. We demonstrate significant computational benefits over a state-of-the-art Gibbs sampler on a number of continuous time Bayesian networks.

  3. Parameterizing Bayesian network Representations of Social-Behavioral Models by Expert Elicitation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Stephen J.; Dalton, Angela C.; Whitney, Paul D.; White, Amanda M.

    2010-05-23

    Bayesian networks provide a general framework with which to model many natural phenomena. The mathematical nature of Bayesian networks enables a plethora of model validation and calibration techniques: e.g parameter estimation, goodness of fit tests, and diagnostic checking of the model assumptions. However, they are not free of shortcomings. Parameter estimation from relevant extant data is a common approach to calibrating the model parameters. In practice it is not uncommon to find oneself lacking adequate data to reliably estimate all model parameters. In this paper we present the early development of a novel application of conjoint analysis as a method for eliciting and modeling expert opinions and using the results in a methodology for calibrating the parameters of a Bayesian network.

  4. A new approach for Bayesian model averaging

    Institute of Scientific and Technical Information of China (English)

    TIAN XiangJun; XIE ZhengHui; WANG AiHui; YANG XiaoChun

    2012-01-01

    Bayesian model averaging (BMA) is a recently proposed statistical method for calibrating forecast ensembles from numerical weather models.However,successful implementation of BMA requires accurate estimates of the weights and variances of the individual competing models in the ensemble.Two methods,namely the Expectation-Maximization (EM) and the Markov Chain Monte Carlo (MCMC) algorithms,are widely used for BMA model training.Both methods have their own respective strengths and weaknesses.In this paper,we first modify the BMA log-likelihood function with the aim of removing the additional limitation that requires that the BMA weights add to one,and then use a limited memory quasi-Newtonian algorithm for solving the nonlinear optimization problem,thereby formulating a new approach for BMA (referred to as BMA-BFGS).Several groups of multi-model soil moisture simulation experiments from three land surface models show that the performance of BMA-BFGS is similar to the MCMC method in terms of simulation accuracy,and that both are superior to the EM algorithm.On the other hand,the computational cost of the BMA-BFGS algorithm is substantially less than for MCMC and is almost equivalent to that for EM.

  5. On an Approach to Bayesian Sample Sizing in Clinical Trials

    CERN Document Server

    Muirhead, Robb J

    2012-01-01

    This paper explores an approach to Bayesian sample size determination in clinical trials. The approach falls into the category of what is often called "proper Bayesian", in that it does not mix frequentist concepts with Bayesian ones. A criterion for a "successful trial" is defined in terms of a posterior probability, its probability is assessed using the marginal distribution of the data, and this probability forms the basis for choosing sample sizes. We illustrate with a standard problem in clinical trials, that of establishing superiority of a new drug over a control.

  6. Bayesian网中的独立关系%The Independence Relations in Bayesian Networks

    Institute of Scientific and Technical Information of China (English)

    王飞; 刘大有; 卢奕男; 薛万欣

    2001-01-01

    Bayesian networks are compact representation of joint probabilistic distribution. Independence is soul of Bayesian networks because it enables to save storage space,to reduce computational complexity and to simplify knowledge acquisition and modeling. In this paper,we discuss three kinds of independences in Bayesian networks :conditional independence,context-specific independence and causal influence independence.

  7. A Bayesian approach to particle identification in ALICE

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Among the LHC experiments, ALICE has unique particle identification (PID) capabilities exploiting different types of detectors. During Run 1, a Bayesian approach to PID was developed and intensively tested. It facilitates the combination of information from different sub-systems. The adopted methodology and formalism as well as the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE will be reviewed. Results are presented with PID performed via measurements of specific energy loss (dE/dx) and time-of-flight using information from the TPC and TOF detectors, respectively. Methods to extract priors from data and to compare PID efficiencies and misidentification probabilities in data and Monte Carlo using high-purity samples of identified particles will be presented. Bayesian PID results were found consistent with previous measurements published by ALICE. The Bayesian PID approach gives a higher signal-to-background ratio and a similar or larger statist...

  8. Group sequential control of overall toxicity incidents in clinical trials - non-Bayesian and Bayesian approaches.

    Science.gov (United States)

    Yu, Jihnhee; Hutson, Alan D; Siddiqui, Adnan H; Kedron, Mary A

    2016-02-01

    In some small clinical trials, toxicity is not a primary endpoint; however, it often has dire effects on patients' quality of life and is even life-threatening. For such clinical trials, rigorous control of the overall incidence of adverse events is desirable, while simultaneously collecting safety information. In this article, we propose group sequential toxicity monitoring strategies to control overall toxicity incidents below a certain level as opposed to performing hypothesis testing, which can be incorporated into an existing study design based on the primary endpoint. We consider two sequential methods: a non-Bayesian approach in which stopping rules are obtained based on the 'future' probability of an excessive toxicity rate; and a Bayesian adaptation modifying the proposed non-Bayesian approach, which can use the information obtained at interim analyses. Through an extensive Monte Carlo study, we show that the Bayesian approach often provides better control of the overall toxicity rate than the non-Bayesian approach. We also investigate adequate toxicity estimation after the studies. We demonstrate the applicability of our proposed methods in controlling the symptomatic intracranial hemorrhage rate for treating acute ischemic stroke patients.

  9. Applying Bayesian networks in practical customer satisfaction studies

    NARCIS (Netherlands)

    Jaronski, W.; Bloemer, J.M.M.; Vanhoof, K.; Wets, G.

    2004-01-01

    This chapter presents an application of Bayesian network technology in an empirical customer satisfaction study. The findings of the study should provide insight to the importance of product/service dimensions in terms of the strength of their influence on overall (dis)satisfaction. To this end we a

  10. Exploiting sensitivity analysis in Bayesian networks for consumer satisfaction study

    NARCIS (Netherlands)

    Jaronski, W.; Bloemer, J.M.M.; Vanhoof, K.; Wets, G.

    2004-01-01

    The paper presents an application of Bayesian network technology in a empirical customer satisfaction study. The findings of the study should provide insight as to the importance of product/service dimensions in terms of the strength of their influence on overall satisfaction. To this end we apply a

  11. Implementation of an Adaptive Learning System Using a Bayesian Network

    Science.gov (United States)

    Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki

    2015-01-01

    An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…

  12. A Structure Learning Algorithm for Bayesian Network Using Prior Knowledge

    Institute of Scientific and Technical Information of China (English)

    徐俊刚; 赵越; 陈健; 韩超

    2015-01-01

    Learning structure from data is one of the most important fundamental tasks of Bayesian network research. Particularly, learning optional structure of Bayesian network is a non-deterministic polynomial-time (NP) hard problem. To solve this problem, many heuristic algorithms have been proposed, and some of them learn Bayesian network structure with the help of different types of prior knowledge. However, the existing algorithms have some restrictions on the prior knowledge, such as quality restriction and use restriction. This makes it difficult to use the prior knowledge well in these algorithms. In this paper, we introduce the prior knowledge into the Markov chain Monte Carlo (MCMC) algorithm and propose an algorithm called Constrained MCMC (C-MCMC) algorithm to learn the structure of the Bayesian network. Three types of prior knowledge are defined: existence of parent node, absence of parent node, and distribution knowledge including the conditional probability distribution (CPD) of edges and the probability distribution (PD) of nodes. All of these types of prior knowledge are easily used in this algorithm. We conduct extensive experiments to demonstrate the feasibility and effectiveness of the proposed method C-MCMC.

  13. Bayesian Inference and Online Learning in Poisson Neuronal Networks.

    Science.gov (United States)

    Huang, Yanping; Rao, Rajesh P N

    2016-08-01

    Motivated by the growing evidence for Bayesian computation in the brain, we show how a two-layer recurrent network of Poisson neurons can perform both approximate Bayesian inference and learning for any hidden Markov model. The lower-layer sensory neurons receive noisy measurements of hidden world states. The higher-layer neurons infer a posterior distribution over world states via Bayesian inference from inputs generated by sensory neurons. We demonstrate how such a neuronal network with synaptic plasticity can implement a form of Bayesian inference similar to Monte Carlo methods such as particle filtering. Each spike in a higher-layer neuron represents a sample of a particular hidden world state. The spiking activity across the neural population approximates the posterior distribution over hidden states. In this model, variability in spiking is regarded not as a nuisance but as an integral feature that provides the variability necessary for sampling during inference. We demonstrate how the network can learn the likelihood model, as well as the transition probabilities underlying the dynamics, using a Hebbian learning rule. We present results illustrating the ability of the network to perform inference and learning for arbitrary hidden Markov models.

  14. A Bayesian Approach to Interactive Retrieval

    Science.gov (United States)

    Tague, Jean M.

    1973-01-01

    A probabilistic model for interactive retrieval is presented. Bayesian statistical decision theory principles are applied: use of prior and sample information about the relationship of document descriptions to query relevance; maximization of expected value of a utility function, to the problem of optimally restructuring search strategies in an…

  15. Differential gene co-expression networks via Bayesian biclustering models

    OpenAIRE

    Gao, Chuan; Zhao, Shiwen; McDowell, Ian C.; Brown, Christopher D.; Barbara E Engelhardt

    2014-01-01

    Identifying latent structure in large data matrices is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are locally co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes whose covariation may be observed in only a subset of the samples. Our biclustering me...

  16. Prediction of road accidents: A Bayesian hierarchical approach

    DEFF Research Database (Denmark)

    Deublein, Markus; Schubert, Matthias; Adey, Bryan T.;

    2013-01-01

    -lognormal regression analysis taking into account correlations amongst multiple dependent model response variables and effects of discrete accident count data e.g. over-dispersion, and (3) Bayesian inference algorithms, which are applied by means of data mining techniques supported by Bayesian Probabilistic Networks...... in order to represent non-linearity between risk indicating and model response variables, as well as different types of uncertainties which might be present in the development of the specific models.Prior Bayesian Probabilistic Networks are first established by means of multivariate regression analysis...... of the observed frequencies of the model response variables, e.g. the occurrence of an accident, and observed values of the risk indicating variables, e.g. degree of road curvature. Subsequently, parameter learning is done using updating algorithms, to determine the posterior predictive probability distributions...

  17. Research of Gene Regulatory Network with Multi-Time Delay Based on Bayesian Network

    Institute of Scientific and Technical Information of China (English)

    LIU Bei; MENG Fanjiang; LI Yong; LIU Liyan

    2008-01-01

    The gene regulatory network was reconstructed according to time-series microarray data getting from hybridization at different time between gene chips to analyze coordination and restriction between genes. An algorithm for controlling the gene expression regulatory network of the whole cell was designed using Bayesian network which provides an effective aided analysis for gene regulatory network.

  18. Bayesian approach to magnetotelluric tensor decomposition

    Directory of Open Access Journals (Sweden)

    Michel Menvielle

    2010-05-01

    ;} -->

    Magnetotelluric directional analysis and impedance tensor decomposition are basic tools to validate a local/regional composite electrical model of the underlying structure. Bayesian stochastic methods approach the problem of the parameter estimation and their uncertainty characterization in a fully probabilistic fashion, through the use of posterior model probabilities.We use the standard Groom­Bailey 3­D local/2­D regional composite model in our bayesian approach. We assume that the experimental impedance estimates are contamined with the Gaussian noise and define the likelihood of a particular composite model with respect to the observed data. We use non­informative, flat priors over physically reasonable intervals for the standard Groom­Bailey decomposition parameters. We apply two numerical methods, the Markov chain Monte Carlo procedure based on the Gibbs sampler and a single­component adaptive Metropolis algorithm. From the posterior samples, we characterize the estimates and uncertainties of the individual decomposition parameters by using the respective marginal posterior probabilities. We conclude that the stochastic scheme performs reliably for a variety of models, including the multisite and multifrequency case with up to

  19. Spatiotemporal Bayesian Networks for Malaria Prediction: Case Study of Northern Thailand.

    Science.gov (United States)

    Haddawy, Peter; Kasantikul, Rangwan; Hasan, A H M Imrul; Rattanabumrung, Chunyanuch; Rungrun, Pichamon; Suksopee, Natwipa; Tantiwaranpant, Saran; Niruntasuk, Natcha

    2016-01-01

    While a diversity of modeling technique have been used to create predictive models of malaria, no work has made use of Bayesian networks. Bayes nets are attractive due to their ability to represent uncertainty, model time lagged and nonlinear relations, and provide explanations of inferences. This paper explores the use of Bayesian networks to model malaria, demonstrating the approach by creating a village level model with weekly temporal resolution for Tha Song Yang district in northern Thailand. The network is learned using data on cases and environmental covariates. The network models incidence over time as well as evolution of the environmental variables, and captures time lagged and nonlinear effects. Out of sample evaluation shows the model to have high accuracy for one and two week predictions. PMID:27577491

  20. Clinical Outcome Prediction in Aneurysmal Subarachnoid Hemorrhage Using Bayesian Neural Networks with Fuzzy Logic Inferences

    Directory of Open Access Journals (Sweden)

    Benjamin W. Y. Lo

    2013-01-01

    Full Text Available Objective. The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH. Methods. The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients. Results. Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs. Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique denoted cut-off points for poor prognosis at greater than 2.5 clusters. Discussion. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication.

  1. Looking for Sustainable Urban Mobility through Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Giovanni Fusco

    2004-11-01

    Full Text Available There is no formalised theory of sustainable urban mobility systems. Observed patterns of urban mobility are often considered unsustainable. But we don’t know what a city with sustainable mobility should look like. It is nevertheless increasingly apparent that the urban mobility system plays an important role in the achievement of the city’s wider sustainability objectives.In this paper we explore the characteristics of sustainable urban mobility systems through the technique of Bayesian networks. At the frontier between multivariate statistics and artificial intelligence, Bayesian networks provide powerful models of causal knowledge in an uncertain context. Using data on urban structure, transportation offer, mobility demand, resource consumption and environmental externalities from seventy-five world cities, we developed a systemic model of the city-transportation-environment interaction in the form of a Bayesian network. The network could then be used to infer the features of the city with sustainable mobility.The Bayesian model indicates that the city with sustainable mobility is most probably a dense city with highly efficient transit and multimodal mobility. It produces high levels of accessibility without relying on a fast road network. The achievement of sustainability objectives for urban mobility is probably compatible with all socioeconomic contexts.By measuring the distance of world cities from the inferred sustainability profile, we finally derive a geography of sustainability for mobility systems. The cities closest to the sustainability profile are in Central Europe as well as in affluent countries of the Far East. Car-dependent American cities are the farthest from the desired sustainability profile.

  2. Personalized Audio Systems - a Bayesian Approach

    DEFF Research Database (Denmark)

    Nielsen, Jens Brehm; Jensen, Bjørn Sand; Hansen, Toke Jansen;

    2013-01-01

    Modern audio systems are typically equipped with several user-adjustable parameters unfamiliar to most users listening to the system. To obtain the best possible setting, the user is forced into multi-parameter optimization with respect to the users's own objective and preference. To address this......, the present paper presents a general inter-active framework for personalization of such audio systems. The framework builds on Bayesian Gaussian process regression in which a model of the users's objective function is updated sequentially. The parameter setting to be evaluated in a given trial is...

  3. Criminal and Civil Identification with DNA Databases Using Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Marina Andrade

    2009-10-01

    Full Text Available Forensic identification problems are examples in which the study of DNA profilesis a common approach. Here we present some problems and develop theirtreatment putting the focus in the use of Object-Oriented Bayesian Networks -OOBN. The use of DNA databases, which began in 1995 in England, hascreated new challenges about its use. In Portugal the legislation for theconstruction of a genetic database was defined in 2008. With this it is importantto determine how to use it in an appropriate way.For a crime that has been committed, forensic laboratories identify geneticcharacteristics in order to connect one or more individuals to it. Apart thelaboratories results it is a matter of great importance to quantify the informationobtained, i.e., to know how to evaluate and interpret the results obtainedproviding support to the judicial system. Other forensic identification problemsare body identification; whether the identification of a body (or more than onefound, together with the information of missing persons belonging to one or moreknown families, for which there may be information of family members whoclaimed the disappearance. In this work we intend to discuss how to use thedatabase; the hypotheses of interest and the database use to determine thelikelihood ratios, i.e., how to evaluate the evidence for different situations.

  4. Predicting Software Suitability Using a Bayesian Belief Network

    Science.gov (United States)

    Beaver, Justin M.; Schiavone, Guy A.; Berrios, Joseph S.

    2005-01-01

    The ability to reliably predict the end quality of software under development presents a significant advantage for a development team. It provides an opportunity to address high risk components earlier in the development life cycle, when their impact is minimized. This research proposes a model that captures the evolution of the quality of a software product, and provides reliable forecasts of the end quality of the software being developed in terms of product suitability. Development team skill, software process maturity, and software problem complexity are hypothesized as driving factors of software product quality. The cause-effect relationships between these factors and the elements of software suitability are modeled using Bayesian Belief Networks, a machine learning method. This research presents a Bayesian Network for software quality, and the techniques used to quantify the factors that influence and represent software quality. The developed model is found to be effective in predicting the end product quality of small-scale software development efforts.

  5. Research on Bayesian Network Based User's Interest Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Weifeng; XU Baowen; CUI Zifeng; XU Lei

    2007-01-01

    It has very realistic significance for improving the quality of users' accessing information to filter and selectively retrieve the large number of information on the Internet. On the basis of analyzing the existing users' interest models and some basic questions of users' interest (representation, derivation and identification of users' interest), a Bayesian network based users' interest model is given. In this model, the users' interest reduction algorithm based on Markov Blanket model is used to reduce the interest noise, and then users' interested and not interested documents are used to train the Bayesian network. Compared to the simple model, this model has the following advantages like small space requirements, simple reasoning method and high recognition rate. The experiment result shows this model can more appropriately reflect the user's interest, and has higher performance and good usability.

  6. Decision Support System for Maintenance Management Using Bayesian Networks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The maintenance process has undergone several major developments that have led to proactive considerations and the transformation from the traditional "fail and fix" practice into the "predict and prevent" proactive maintenance methodology. The anticipation action, which characterizes this proactive maintenance strategy is mainly based on monitoring, diagnosis, prognosis and decision-making modules. Oil monitoring is a key component of a successful condition monitoring program. It can be used as a proactive tool to identify the wear modes of rubbing parts and diagnoses the faults in machinery. But diagnosis relying on oil analysis technology must deal with uncertain knowledge and fuzzy input data. Besides other methods, Bayesian Networks have been extensively applied to fault diagnosis with the advantages of uncertainty inference; however, in the area of oil monitoring, it is a new field. This paper presents an integrated Bayesian network based decision support for maintenance of diesel engines.

  7. A Non-Homogeneous Dynamic Bayesian Network with Sequentially Coupled Interaction Parameters for Applications in Systems and Synthetic Biology

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Husmeier, Dirk

    2012-01-01

    An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homog

  8. Bayesian network models in brain functional connectivity analysis

    OpenAIRE

    Ide, Jaime S.; Zhang, Sheng; Chiang-shan R. Li

    2013-01-01

    Much effort has been made to better understand the complex integration of distinct parts of the human brain using functional magnetic resonance imaging (fMRI). Altered functional connectivity between brain regions is associated with many neurological and mental illnesses, such as Alzheimer and Parkinson diseases, addiction, and depression. In computational science, Bayesian networks (BN) have been used in a broad range of studies to model complex data set in the presence of uncertainty and wh...

  9. Partial Order MCMC for Structure Discovery in Bayesian Networks

    CERN Document Server

    Niinimaki, Teppo; Koivisto, Mikko

    2012-01-01

    We present a new Markov chain Monte Carlo method for estimating posterior probabilities of structural features in Bayesian networks. The method draws samples from the posterior distribution of partial orders on the nodes; for each sampled partial order, the conditional probabilities of interest are computed exactly. We give both analytical and empirical results that suggest the superiority of the new method compared to previous methods, which sample either directed acyclic graphs or linear orders on the nodes.

  10. Risks Analysis of Logistics Financial Business Based on Evidential Bayesian Network

    Directory of Open Access Journals (Sweden)

    Ying Yan

    2013-01-01

    Full Text Available Risks in logistics financial business are identified and classified. Making the failure of the business as the root node, a Bayesian network is constructed to measure the risk levels in the business. Three importance indexes are calculated to find the most important risks in the business. And more, considering the epistemic uncertainties in the risks, evidence theory associate with Bayesian network is used as an evidential network in the risk analysis of logistics finance. To find how much uncertainty in root node is produced by each risk, a new index, epistemic importance, is defined. Numerical examples show that the proposed methods could provide a lot of useful information. With the information, effective approaches could be found to control and avoid these sensitive risks, thus keep logistics financial business working more reliable. The proposed method also gives a quantitative measure of risk levels in logistics financial business, which provides guidance for the selection of financing solutions.

  11. Filtering in hybrid dynamic Bayesian networks (left)

    DEFF Research Database (Denmark)

    Andersen, Morten Nonboe; Andersen, Rasmus Ørum; Wheeler, Kevin

    that the choice of network structure is very important for the performance of the generic PF and the EKF algorithms, but not for the UKF algorithms. Furthermore, we investigate the influence of data noise in the watertank simulation. Theory and implementation is based on the theory presented in (v.d. Merwe et al...

  12. Filtering in hybrid dynamic Bayesian networks

    DEFF Research Database (Denmark)

    Andersen, Morten Nonboe; Andersen, Rasmus Ørum; Wheeler, Kevin

    2004-01-01

    that the choice of network structure is very important for the performance of the generic PF and the EKF algorithms, but not for the UKF algorithms. Furthermore, we investigate the influence of data noise in the watertank simulation. Theory and implementation is based on the theory presented in (v.d. Merwe et al...

  13. Filtering in hybrid dynamic Bayesian networks (center)

    DEFF Research Database (Denmark)

    Andersen, Morten Nonboe; Andersen, Rasmus Ørum; Wheeler, Kevin

    that the choice of network structure is very important for the performance of the generic PF and the EKF algorithms, but not for the UKF algorithms. Furthermore, we investigate the influence of data noise in the watertank simulation. Theory and implementation is based on the theory presented in (v.d. Merwe et al...

  14. A Bayesian Approach for Image Segmentation with Shape Priors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hang; Yang, Qing; Parvin, Bahram

    2008-06-20

    Color and texture have been widely used in image segmentation; however, their performance is often hindered by scene ambiguities, overlapping objects, or missingparts. In this paper, we propose an interactive image segmentation approach with shape prior models within a Bayesian framework. Interactive features, through mouse strokes, reduce ambiguities, and the incorporation of shape priors enhances quality of the segmentation where color and/or texture are not solely adequate. The novelties of our approach are in (i) formulating the segmentation problem in a well-de?ned Bayesian framework with multiple shape priors, (ii) ef?ciently estimating parameters of the Bayesian model, and (iii) multi-object segmentation through user-speci?ed priors. We demonstrate the effectiveness of our method on a set of natural and synthetic images.

  15. Prediction of the insulin sensitivity index using Bayesian networks

    DEFF Research Database (Denmark)

    Bøttcher, Susanne Gammelgaard; Dethlefsen, Claus

    The insulin sensitivity index () can be used in assessing the risk of developing type 2 diabetes. An intravenous study is used to determine using Bergmans minimal model. However, an intravenous study is time consuming and expensive and therefore not suitable for large scale epidemiological studies....... In this paper we learn the parameters and structure of several Bayesian networks relating measurements from an oral glucose tolerance test to the insulin sensitivity index determined from an intravenous study on the same individuals. The networks can then be used in prediction of from an oral glucose tolerance...

  16. Bayesian network as a modelling tool for risk management in agriculture

    OpenAIRE

    Svend Rasmussen; Madsen, Anders L.; Mogens Lund

    2013-01-01

    The importance of risk management increases as farmers become more exposed to risk. But risk management is a difficult topic because income risk is the result of the complex interaction of multiple risk factors combined with the effect of an increasing array of possible risk management tools. In this paper we use Bayesian networks as an integrated modelling approach for representing uncertainty and analysing risk management in agriculture. It is shown how historical farm account data may be e...

  17. Bayesian Inference of Reticulate Phylogenies under the Multispecies Network Coalescent.

    Science.gov (United States)

    Wen, Dingqiao; Yu, Yun; Nakhleh, Luay

    2016-05-01

    The multispecies coalescent (MSC) is a statistical framework that models how gene genealogies grow within the branches of a species tree. The field of computational phylogenetics has witnessed an explosion in the development of methods for species tree inference under MSC, owing mainly to the accumulating evidence of incomplete lineage sorting in phylogenomic analyses. However, the evolutionary history of a set of genomes, or species, could be reticulate due to the occurrence of evolutionary processes such as hybridization or horizontal gene transfer. We report on a novel method for Bayesian inference of genome and species phylogenies under the multispecies network coalescent (MSNC). This framework models gene evolution within the branches of a phylogenetic network, thus incorporating reticulate evolutionary processes, such as hybridization, in addition to incomplete lineage sorting. As phylogenetic networks with different numbers of reticulation events correspond to points of different dimensions in the space of models, we devise a reversible-jump Markov chain Monte Carlo (RJMCMC) technique for sampling the posterior distribution of phylogenetic networks under MSNC. We implemented the methods in the publicly available, open-source software package PhyloNet and studied their performance on simulated and biological data. The work extends the reach of Bayesian inference to phylogenetic networks and enables new evolutionary analyses that account for reticulation. PMID:27144273

  18. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    Science.gov (United States)

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  19. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    Science.gov (United States)

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes. PMID:27343475

  20. Sequential Bayesian technique: An alternative approach for software reliability estimation

    Indian Academy of Sciences (India)

    S Chatterjee; S S Alam; R B Misra

    2009-04-01

    This paper proposes a sequential Bayesian approach similar to Kalman filter for estimating reliability growth or decay of software. The main advantage of proposed method is that it shows the variation of the parameter over a time, as new failure data become available. The usefulness of the method is demonstrated with some real life data

  1. A Bayesian Approach for Analyzing Longitudinal Structural Equation Models

    Science.gov (United States)

    Song, Xin-Yuan; Lu, Zhao-Hua; Hser, Yih-Ing; Lee, Sik-Yum

    2011-01-01

    This article considers a Bayesian approach for analyzing a longitudinal 2-level nonlinear structural equation model with covariates, and mixed continuous and ordered categorical variables. The first-level model is formulated for measures taken at each time point nested within individuals for investigating their characteristics that are dynamically…

  2. Probabilistic Damage Characterization Using the Computationally-Efficient Bayesian Approach

    Science.gov (United States)

    Warner, James E.; Hochhalter, Jacob D.

    2016-01-01

    This work presents a computationally-ecient approach for damage determination that quanti es uncertainty in the provided diagnosis. Given strain sensor data that are polluted with measurement errors, Bayesian inference is used to estimate the location, size, and orientation of damage. This approach uses Bayes' Theorem to combine any prior knowledge an analyst may have about the nature of the damage with information provided implicitly by the strain sensor data to form a posterior probability distribution over possible damage states. The unknown damage parameters are then estimated based on samples drawn numerically from this distribution using a Markov Chain Monte Carlo (MCMC) sampling algorithm. Several modi cations are made to the traditional Bayesian inference approach to provide signi cant computational speedup. First, an ecient surrogate model is constructed using sparse grid interpolation to replace a costly nite element model that must otherwise be evaluated for each sample drawn with MCMC. Next, the standard Bayesian posterior distribution is modi ed using a weighted likelihood formulation, which is shown to improve the convergence of the sampling process. Finally, a robust MCMC algorithm, Delayed Rejection Adaptive Metropolis (DRAM), is adopted to sample the probability distribution more eciently. Numerical examples demonstrate that the proposed framework e ectively provides damage estimates with uncertainty quanti cation and can yield orders of magnitude speedup over standard Bayesian approaches.

  3. Remotely sensed monitoring of small reservoir dynamics: a Bayesian approach

    NARCIS (Netherlands)

    Eilander, D.M.; Annor, F.O.; Iannini, L.; Van de Giesen, N.C.

    2014-01-01

    Multipurpose small reservoirs are important for livelihoods in rural semi-arid regions. To manage and plan these reservoirs and to assess their hydrological impact at a river basin scale, it is important to monitor their water storage dynamics. This paper introduces a Bayesian approach for monitorin

  4. Learn the effective connectivity pattern of attention networks: a resting functional MRI and Bayesian network study

    Science.gov (United States)

    Li, Juan; Li, Rui; Yao, Li; Wu, Xia

    2011-03-01

    Task-based neuroimaging studies revealed that different attention operations were carried out by the functional interaction and cooperation between two attention systems: the dorsal attention network (DAN) and the ventral attention network (VAN), which were respectively involved in the "top-down" endogenous attention orienting and the "bottomup" exogenous attention reorienting process. Recent focused resting functional MRI (fMRI) studies found the two attention systems were inherently organized in the human brain regardless of whether or not the attention process were required, but how the two attention systems interact with each other in the absence of task is yet to be investigated. In this study, we first separated the DAN and VAN by applying the group independent component analysis (ICA) to the resting fMRI data acquired from 12 healthy young subjects, then used Gaussian Bayesian network (BN) learning approach to explore the plausible effective connectivity pattern of the two attention systems. It was found regions from the same attention network were strongly intra-dependent, and all the connections were located in the information flow from VAN to DAN, which suggested that an orderly functional interactions and information exchanges between the two attention networks existed in the intrinsic spontaneous brain activity, and the inherent connections might benefit the efficient cognitive process between DAN and VAN, such as the "top-down" and "bottom-up" reciprocal interaction when attention-related tasks were involved.

  5. A Bayesian approach to estimating the prehepatic insulin secretion rate

    DEFF Research Database (Denmark)

    Andersen, Kim Emil; Højbjerre, Malene

    the time courses of insulin and C-peptide subsequently are used as known forcing functions. In this work we adopt a Bayesian graphical model to describe the unied model simultaneously. We develop a model that also accounts for both measurement error and process variability. The parameters are estimated...... by a Bayesian approach where efficient posterior sampling is made available through the use of Markov chain Monte Carlo methods. Hereby the ill-posed estimation problem inherited in the coupled differential equation model is regularized by the use of prior knowledge. The method is demonstrated on experimental...

  6. The subjectivity of scientists and the Bayesian approach

    CERN Document Server

    Press, James S

    2016-01-01

    "Press and Tanur argue that subjectivity has not only played a significant role in the advancement of science but that science will advance more rapidly if the modern methods of Bayesian statistical analysis replace some of the more classical twentieth-century methods." — SciTech Book News. "An insightful work." ― Choice. "Compilation of interesting popular problems … this book is fascinating." — Short Book Reviews, International Statistical Institute. Subjectivity ― including intuition, hunches, and personal beliefs ― has played a key role in scientific discovery. This intriguing book illustrates subjective influences on scientific progress with historical accounts and biographical sketches of more than a dozen luminaries, including Aristotle, Galileo, Newton, Darwin, Pasteur, Freud, Einstein, Margaret Mead, and others. The treatment also offers a detailed examination of the modern Bayesian approach to data analysis, with references to the Bayesian theoretical and applied literature. Suitable for...

  7. A Bayesian approach to combining animal abundance and demographic data

    Directory of Open Access Journals (Sweden)

    Brooks, S. P.

    2004-06-01

    Full Text Available In studies of wild animals, one frequently encounters both count and mark-recapture-recovery data. Here, we consider an integrated Bayesian analysis of ring¿recovery and count data using a state-space model. We then impose a Leslie-matrix-based model on the true population counts describing the natural birth-death and age transition processes. We focus upon the analysis of both count and recovery data collected on British lapwings (Vanellus vanellus combined with records of the number of frost days each winter. We demonstrate how the combined analysis of these data provides a more robust inferential framework and discuss how the Bayesian approach using MCMC allows us to remove the potentially restrictive normality assumptions commonly assumed for analyses of this sort. It is shown how WinBUGS may be used to perform the Bayesian analysis. WinBUGS code is provided and its performance is critically discussed.

  8. Mobile sensor network noise reduction and recalibration using a Bayesian network

    Science.gov (United States)

    Xiang, Y.; Tang, Y.; Zhu, W.

    2016-02-01

    People are becoming increasingly interested in mobile air quality sensor network applications. By eliminating the inaccuracies caused by spatial and temporal heterogeneity of pollutant distributions, this method shows great potential for atmospheric research. However, systems based on low-cost air quality sensors often suffer from sensor noise and drift. For the sensing systems to operate stably and reliably in real-world applications, those problems must be addressed. In this work, we exploit the correlation of different types of sensors caused by cross sensitivity to help identify and correct the outlier readings. By employing a Bayesian network based system, we are able to recover the erroneous readings and recalibrate the drifted sensors simultaneously. Our method improves upon the state-of-art Bayesian belief network techniques by incorporating the virtual evidence and adjusting the sensor calibration functions recursively.Specifically, we have (1) designed a system based on the Bayesian belief network to detect and recover the abnormal readings, (2) developed methods to update the sensor calibration functions infield without requirement of ground truth, and (3) extended the Bayesian network with virtual evidence for infield sensor recalibration. To validate our technique, we have tested our technique with metal oxide sensors measuring NO2, CO, and O3 in a real-world deployment. Compared with the existing Bayesian belief network techniques, results based on our experiment setup demonstrate that our system can reduce error by 34.1 % and recover 4 times more data on average.

  9. ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM

    OpenAIRE

    Santosh Kumar Chaudhari; Murthy, Hema A.

    2011-01-01

    A Network Management System (NMS) plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to ...

  10. Bayesian Inference of Natural Rankings in Incomplete Competition Networks

    CERN Document Server

    Park, Juyong

    2013-01-01

    Competition between a complex system's constituents and a corresponding reward mechanism based on it have profound influence on the functioning, stability, and evolution of the system. But determining the dominance hierarchy or ranking among the constituent parts from the strongest to the weakest -- essential in determining reward or penalty -- is almost always an ambiguous task due to the incomplete nature of competition networks. Here we introduce ``Natural Ranking," a desirably unambiguous ranking method applicable to a complete (full) competition network, and formulate an analytical model based on the Bayesian formula inferring the expected mean and error of the natural ranking of nodes from an incomplete network. We investigate its potential and uses in solving issues in ranking by applying to a real-world competition network of economic and social importance.

  11. A Software Risk Analysis Model Using Bayesian Belief Network

    Institute of Scientific and Technical Information of China (English)

    Yong Hu; Juhua Chen; Mei Liu; Yang Yun; Junbiao Tang

    2006-01-01

    The uncertainty during the period of software project development often brings huge risks to contractors and clients. Ifwe can find an effective method to predict the cost and quality of software projects based on facts like the project character and two-side cooperating capability at the beginning of the project, we can reduce the risk.Bayesian Belief Network(BBN) is a good tool for analyzing uncertain consequences, but it is difficult to produce precise network structure and conditional probability table. In this paper, we built up network structure by Delphi method for conditional probability table learning, and learn update probability table and nodes' confidence levels continuously according to the application cases, which made the evaluation network have learning abilities, and evaluate the software development risk of organization more accurately. This paper also introduces EM algorithm, which will enhance the ability to produce hidden nodes caused by variant software projects.

  12. Understanding the Scalability of Bayesian Network Inference Using Clique Tree Growth Curves

    Science.gov (United States)

    Mengshoel, Ole J.

    2010-01-01

    One of the main approaches to performing computation in Bayesian networks (BNs) is clique tree clustering and propagation. The clique tree approach consists of propagation in a clique tree compiled from a Bayesian network, and while it was introduced in the 1980s, there is still a lack of understanding of how clique tree computation time depends on variations in BN size and structure. In this article, we improve this understanding by developing an approach to characterizing clique tree growth as a function of parameters that can be computed in polynomial time from BNs, specifically: (i) the ratio of the number of a BN s non-root nodes to the number of root nodes, and (ii) the expected number of moral edges in their moral graphs. Analytically, we partition the set of cliques in a clique tree into different sets, and introduce a growth curve for the total size of each set. For the special case of bipartite BNs, there are two sets and two growth curves, a mixed clique growth curve and a root clique growth curve. In experiments, where random bipartite BNs generated using the BPART algorithm are studied, we systematically increase the out-degree of the root nodes in bipartite Bayesian networks, by increasing the number of leaf nodes. Surprisingly, root clique growth is well-approximated by Gompertz growth curves, an S-shaped family of curves that has previously been used to describe growth processes in biology, medicine, and neuroscience. We believe that this research improves the understanding of the scaling behavior of clique tree clustering for a certain class of Bayesian networks; presents an aid for trade-off studies of clique tree clustering using growth curves; and ultimately provides a foundation for benchmarking and developing improved BN inference and machine learning algorithms.

  13. Community Detection for Multiplex Social Networks Based on Relational Bayesian Networks

    DEFF Research Database (Denmark)

    Jiang, Jiuchuan; Jaeger, Manfred

    2014-01-01

    Many techniques have been proposed for community detection in social networks. Most of these techniques are only designed for networks defined by a single relation. However, many real networks are multiplex networks that contain multiple types of relations and different attributes on the nodes....... In this paper we propose to use relational Bayesian networks for the specification of probabilistic network models, and develop inference techniques that solve the community detection problem based on these models. The use of relational Bayesian networks as a flexible high-level modeling framework enables us...... to express different models capturing different aspects of community detection in multiplex networks in a coherent manner, and to use a single inference mechanism for all models....

  14. Preliminary investigation of a Bayesian network for mammographic diagnosis of breast cancer.

    OpenAIRE

    Kahn, C. E.; Roberts, L. M.; K. Wang; Jenks, D.; Haddawy, P.

    1995-01-01

    Bayesian networks use the techniques of probability theory to reason under conditions of uncertainty. We investigated the use of Bayesian networks for radiological decision support. A Bayesian network for the interpretation of mammograms (MammoNet) was developed based on five patient-history features, two physical findings, and 15 mammographic features extracted by experienced radiologists. Conditional-probability data, such as sensitivity and specificity, were derived from peer-reviewed jour...

  15. Regularized variational Bayesian learning of echo state networks with delay&sum readout.

    Science.gov (United States)

    Shutin, Dmitriy; Zechner, Christoph; Kulkarni, Sanjeev R; Poor, H Vincent

    2012-04-01

    In this work, a variational Bayesian framework for efficient training of echo state networks (ESNs) with automatic regularization and delay&sum (D&S) readout adaptation is proposed. The algorithm uses a classical batch learning of ESNs. By treating the network echo states as fixed basis functions parameterized with delay parameters, we propose a variational Bayesian ESN training scheme. The variational approach allows for a seamless combination of sparse Bayesian learning ideas and a variational Bayesian space-alternating generalized expectation-maximization (VB-SAGE) algorithm for estimating parameters of superimposed signals. While the former method realizes automatic regularization of ESNs, which also determines which echo states and input signals are relevant for "explaining" the desired signal, the latter method provides a basis for joint estimation of D&S readout parameters. The proposed training algorithm can naturally be extended to ESNs with fixed filter neurons. It also generalizes the recently proposed expectation-maximization-based D&S readout adaptation method. The proposed algorithm was tested on synthetic data prediction tasks as well as on dynamic handwritten character recognition. PMID:22168555

  16. Road network safety evaluation using Bayesian hierarchical joint model.

    Science.gov (United States)

    Wang, Jie; Huang, Helai

    2016-05-01

    Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well.

  17. Bayesian Network Structure Learning Based On Rough Set and Mutual Information

    Directory of Open Access Journals (Sweden)

    Zuhong Feng

    2013-09-01

    Full Text Available Abstract In Bayesian network structure learning for incomplete data set, a common problem is too many attributes causing low efficiency and high computation complexity. In this paper, an algorithm of attribute reduction based on rough set is introduced. The algorithm can effectively reduce the dimension of attributes and quickly determine the network structure using mutual information for Bayesian network structure learning.

  18. Hip fracture in the elderly: a re-analysis of the EPIDOS study with causal Bayesian networks.

    Directory of Open Access Journals (Sweden)

    Pascal Caillet

    Full Text Available Hip fractures commonly result in permanent disability, institutionalization or death in elderly. Existing hip-fracture predicting tools are underused in clinical practice, partly due to their lack of intuitive interpretation. By use of a graphical layer, Bayesian network models could increase the attractiveness of fracture prediction tools. Our aim was to study the potential contribution of a causal Bayesian network in this clinical setting. A logistic regression was performed as a standard control approach to check the robustness of the causal Bayesian network approach.EPIDOS is a multicenter study, conducted in an ambulatory care setting in five French cities between 1992 and 1996 and updated in 2010. The study included 7598 women aged 75 years or older, in which fractures were assessed quarterly during 4 years. A causal Bayesian network and a logistic regression were performed on EPIDOS data to describe major variables involved in hip fractures occurrences.Both models had similar association estimations and predictive performances. They detected gait speed and mineral bone density as variables the most involved in the fracture process. The causal Bayesian network showed that gait speed and bone mineral density were directly connected to fracture and seem to mediate the influence of all the other variables included in our model. The logistic regression approach detected multiple interactions involving psychotropic drug use, age and bone mineral density.Both approaches retrieved similar variables as predictors of hip fractures. However, Bayesian network highlighted the whole web of relation between the variables involved in the analysis, suggesting a possible mechanism leading to hip fracture. According to the latter results, intervention focusing concomitantly on gait speed and bone mineral density may be necessary for an optimal prevention of hip fracture occurrence in elderly people.

  19. Bayesian Networks Construction and Their Applications in Data Mining%贝叶斯学习、贝叶斯网络与数据采掘

    Institute of Scientific and Technical Information of China (English)

    林士敏; 田凤占; 陆玉昌

    2000-01-01

    Recently Bayesian networks(BN)become a noticeable research direction in Data Mining,ln this paper we introduce the structure of Bayesian networks ,and the process of constructing a BN ,with the emphasis on the basic methods of learning from prior knowledge and sample data,using Bayesian learning approach,to identify the structures and probabilities of BN. The merits of Bayesian networks are that prior knowledge can be combined with observed data,which is important'especially when data is scarce or expensive ,that causal relationships among data can be learned ,and incomplete data set can be readily handled,which other models are disable to do so. It can foresee that Bayesian networks will become a powerful tools in Data Mining.

  20. An estimation method for inference of gene regulatory net-work using Bayesian network with uniting of partial problems

    Directory of Open Access Journals (Sweden)

    Watanabe Yukito

    2012-01-01

    Full Text Available Abstract Background Bayesian networks (BNs have been widely used to estimate gene regulatory networks. Many BN methods have been developed to estimate networks from microarray data. However, two serious problems reduce the effectiveness of current BN methods. The first problem is that BN-based methods require huge computational time to estimate large-scale networks. The second is that the estimated network cannot have cyclic structures, even if the actual network has such structures. Results In this paper, we present a novel BN-based deterministic method with reduced computational time that allows cyclic structures. Our approach generates all the combinational triplets of genes, estimates networks of the triplets by BN, and unites the networks into a single network containing all genes. This method decreases the search space of predicting gene regulatory networks without degrading the solution accuracy compared with the greedy hill climbing (GHC method. The order of computational time is the cube of number of genes. In addition, the network estimated by our method can include cyclic structures. Conclusions We verified the effectiveness of the proposed method for all known gene regulatory networks and their expression profiles. The results demonstrate that this approach can predict regulatory networks with reduced computational time without degrading the solution accuracy compared with the GHC method.

  1. Evaluation of a Partial Genome Screening of Two Asthma Susceptibility Regions Using Bayesian Network Based Bayesian Multilevel Analysis of Relevance

    OpenAIRE

    Ildikó Ungvári; Gábor Hullám; Péter Antal; Petra Sz Kiszel; András Gézsi; Éva Hadadi; Viktor Virág; Gergely Hajós; András Millinghoffer; Adrienne Nagy; András Kiss; Semsei, Ágnes F.; Gergely Temesi; Béla Melegh; Péter Kisfali

    2012-01-01

    Genetic studies indicate high number of potential factors related to asthma. Based on earlier linkage analyses we selected the 11q13 and 14q22 asthma susceptibility regions, for which we designed a partial genome screening study using 145 SNPs in 1201 individuals (436 asthmatic children and 765 controls). The results were evaluated with traditional frequentist methods and we applied a new statistical method, called bayesian network based bayesian multilevel analysis of relevance (BN-BMLA). Th...

  2. Airframe integrity based on Bayesian approach

    Science.gov (United States)

    Hurtado Cahuao, Jose Luis

    Aircraft aging has become an immense challenge in terms of ensuring the safety of the fleet while controlling life cycle costs. One of the major concerns in aircraft structures is the development of fatigue cracks in the fastener holes. A probabilistic-based method has been proposed to manage this problem. In this research, the Bayes' theorem is used to assess airframe integrity by updating generic data with airframe inspection data while such data are compiled. This research discusses the methodology developed for assessment of loss of airframe integrity due to fatigue cracking in the fastener holes of an aging platform. The methodology requires a probability density function (pdf) at the end of SAFE life. Subsequently, a crack growth regime begins. As the Bayesian analysis requires information of a prior initial crack size pdf, such a pdf is assumed and verified to be lognormally distributed. The prior distribution of crack size as cracks grow is modeled through a combined Inverse Power Law (IPL) model and lognormal relationships. The first set of inspections is used as the evidence for updating the crack size distribution at the various stages of aircraft life. Moreover, the materials used in the structural part of the aircrafts have variations in their properties due to their calibration errors and machine alignment. A Matlab routine (PCGROW) is developed to calculate the crack distribution growth through three different crack growth models. As the first step, the material properties and the initial crack size are sampled. A standard Monte Carlo simulation is employed for this sampling process. At the corresponding aircraft age, the crack observed during the inspections, is used to update the crack size distribution and proceed in time. After the updating, it is possible to estimate the probability of structural failure as a function of flight hours for a given aircraft in the future. The results show very accurate and useful values related to the reliability

  3. Node Augmentation Technique in Bayesian Network Evidence Analysis and Marshaling

    Energy Technology Data Exchange (ETDEWEB)

    Keselman, Dmitry [Los Alamos National Laboratory; Tompkins, George H [Los Alamos National Laboratory; Leishman, Deborah A [Los Alamos National Laboratory

    2010-01-01

    Given a Bayesian network, sensitivity analysis is an important activity. This paper begins by describing a network augmentation technique which can simplifY the analysis. Next, we present two techniques which allow the user to determination the probability distribution of a hypothesis node under conditions of uncertain evidence; i.e. the state of an evidence node or nodes is described by a user specified probability distribution. Finally, we conclude with a discussion of three criteria for ranking evidence nodes based on their influence on a hypothesis node. All of these techniques have been used in conjunction with a commercial software package. A Bayesian network based on a directed acyclic graph (DAG) G is a graphical representation of a system of random variables that satisfies the following Markov property: any node (random variable) is independent of its non-descendants given the state of all its parents (Neapolitan, 2004). For simplicities sake, we consider only discrete variables with a finite number of states, though most of the conclusions may be generalized.

  4. Learning Continuous Time Bayesian Network Classifiers Using MapReduce

    Directory of Open Access Journals (Sweden)

    Simone Villa

    2014-12-01

    Full Text Available Parameter and structural learning on continuous time Bayesian network classifiers are challenging tasks when you are dealing with big data. This paper describes an efficient scalable parallel algorithm for parameter and structural learning in the case of complete data using the MapReduce framework. Two popular instances of classifiers are analyzed, namely the continuous time naive Bayes and the continuous time tree augmented naive Bayes. Details of the proposed algorithm are presented using Hadoop, an open-source implementation of a distributed file system and the MapReduce framework for distributed data processing. Performance evaluation of the designed algorithm shows a robust parallel scaling.

  5. Dynamic Bayesian Network Based Prognosis in Machining Processes

    Institute of Scientific and Technical Information of China (English)

    DONG Ming; YANG Zhi-bo

    2008-01-01

    Condition based maintenance (CBM) is becoming more and more popular in equipment main-tenance. A prerequisite to widespread deployment of CBM technology and practice in industry is effectivediagnostics and prognostics. A dynamic Bayesian network (DBN) based prognosis method was investigated topredict the remaining useful life (RUL) for an equipment. First, a DBN based prognosis framework and specificsteps for building a DBN based prognosis model were presented. Then, the corresponding inference algorithmsfor DBN based prognosis were provided. Finally, a prognosis procedure based on particle filtering algorithmswas used to predict the RUL of drill-bits of a vertical drilling machine, which is commonly used in industrialprocess. Preliminary experimental results are promising.

  6. Probe Error Modeling Research Based on Bayesian Network

    Institute of Scientific and Technical Information of China (English)

    Wu Huaiqiang; Xing Zilong; Zhang Jian; Yan Yan

    2015-01-01

    Probe calibration is carried out under specific conditions; most of the error caused by the change of speed parameter has not been corrected. In order to reduce the measuring error influence on measurement accuracy, this article analyzes the relationship between speed parameter and probe error, and use Bayesian network to establish the model of probe error. Model takes account of prior knowledge and sample data, with the updating of data, which can reflect the change of the errors of the probe and constantly revised modeling results.

  7. Prediction of tissue-specific cis-regulatory modules using Bayesian networks and regression trees

    Directory of Open Access Journals (Sweden)

    Chen Xiaoyu

    2007-12-01

    Full Text Available Abstract Background In vertebrates, a large part of gene transcriptional regulation is operated by cis-regulatory modules. These modules are believed to be regulating much of the tissue-specificity of gene expression. Results We develop a Bayesian network approach for identifying cis-regulatory modules likely to regulate tissue-specific expression. The network integrates predicted transcription factor binding site information, transcription factor expression data, and target gene expression data. At its core is a regression tree modeling the effect of combinations of transcription factors bound to a module. A new unsupervised EM-like algorithm is developed to learn the parameters of the network, including the regression tree structure. Conclusion Our approach is shown to accurately identify known human liver and erythroid-specific modules. When applied to the prediction of tissue-specific modules in 10 different tissues, the network predicts a number of important transcription factor combinations whose concerted binding is associated to specific expression.

  8. A Bayesian approach to simultaneously quantify assignments and linguistic uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Gregory M [Los Alamos National Laboratory; Booker, Jane M [BOOKER SCIENTIFIC FREDERICKSBURG; Ross, Timothy J [UNM

    2010-10-07

    Subject matter expert assessments can include both assignment and linguistic uncertainty. This paper examines assessments containing linguistic uncertainty associated with a qualitative description of a specific state of interest and the assignment uncertainty associated with assigning a qualitative value to that state. A Bayesian approach is examined to simultaneously quantify both assignment and linguistic uncertainty in the posterior probability. The approach is applied to a simplified damage assessment model involving both assignment and linguistic uncertainty. The utility of the approach and the conditions under which the approach is feasible are examined and identified.

  9. Dichroic polarization at mid-infrared wavelengths: a Bayesian approach

    CERN Document Server

    Lopez-Rodriguez, E

    2015-01-01

    A fast and general Bayesian inference framework to infer the physical properties of dichroic polarization using mid-infrared imaging- and spectro-polarimetric observations is presented. The Bayesian approach is based on a hierarchical regression and No-U-Turn Sampler method. This approach simultaneously infers the normalized Stokes parameters to find the full family of solutions that best describe the observations. In comparison with previous methods, the developed Bayesian approach allows the user to introduce a customized absorptive polarization component based on the dust composition, and the appropriate extinction curve of the object. This approach allows the user to obtain more precise estimations of the magnetic field strength and geometry for tomographic studies, and information about the dominant polarization components of the object. Based on this model, imaging-polarimetric observations using two or three filters located in the central 9.5-10.5 $\\mu$m, and the edges 8-9 $\\mu$m and/or 11-13 $\\mu$m, o...

  10. A Bayesian approach to optimizing cryopreservation protocols

    Directory of Open Access Journals (Sweden)

    Sammy Sambu

    2015-06-01

    Full Text Available Cryopreservation is beset with the challenge of protocol alignment across a wide range of cell types and process variables. By taking a cross-sectional assessment of previously published cryopreservation data (sample means and standard errors as preliminary meta-data, a decision tree learning analysis (DTLA was performed to develop an understanding of target survival using optimized pruning methods based on different approaches. Briefly, a clear direction on the decision process for selection of methods was developed with key choices being the cooling rate, plunge temperature on the one hand and biomaterial choice, use of composites (sugars and proteins as additional constituents, loading procedure and cell location in 3D scaffolding on the other. Secondly, using machine learning and generalized approaches via the Naïve Bayes Classification (NBC method, these metadata were used to develop posterior probabilities for combinatorial approaches that were implicitly recorded in the metadata. These latter results showed that newer protocol choices developed using probability elicitation techniques can unearth improved protocols consistent with multiple unidimensionally-optimized physical protocols. In conclusion, this article proposes the use of DTLA models and subsequently NBC for the improvement of modern cryopreservation techniques through an integrative approach.

  11. A Bayesian network to predict vulnerability to sea-level rise: data report

    Science.gov (United States)

    Gutierrez, Benjamin T.; Plant, Nathaniel G.; Thieler, E. Robert

    2011-01-01

    During the 21st century, sea-level rise is projected to have a wide range of effects on coastal environments, development, and infrastructure. Consequently, there has been an increased focus on developing modeling or other analytical approaches to evaluate potential impacts to inform coastal management. This report provides the data that were used to develop and evaluate the performance of a Bayesian network designed to predict long-term shoreline change due to sea-level rise. The data include local rates of relative sea-level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline-change rate compiled as part of the U.S. Geological Survey Coastal Vulnerability Index for the U.S. Atlantic coast. In this project, the Bayesian network is used to define relationships among driving forces, geologic constraints, and coastal responses. Using this information, the Bayesian network is used to make probabilistic predictions of shoreline change in response to different future sea-level-rise scenarios.

  12. Reconstruction of large-scale gene regulatory networks using Bayesian model averaging.

    Science.gov (United States)

    Kim, Haseong; Gelenbe, Erol

    2012-09-01

    Gene regulatory networks provide the systematic view of molecular interactions in a complex living system. However, constructing large-scale gene regulatory networks is one of the most challenging problems in systems biology. Also large burst sets of biological data require a proper integration technique for reliable gene regulatory network construction. Here we present a new reverse engineering approach based on Bayesian model averaging which attempts to combine all the appropriate models describing interactions among genes. This Bayesian approach with a prior based on the Gibbs distribution provides an efficient means to integrate multiple sources of biological data. In a simulation study with maximum of 2000 genes, our method shows better sensitivity than previous elastic-net and Gaussian graphical models, with a fixed specificity of 0.99. The study also shows that the proposed method outperforms the other standard methods for a DREAM dataset generated by nonlinear stochastic models. In brain tumor data analysis, three large-scale networks consisting of 4422 genes were built using the gene expression of non-tumor, low and high grade tumor mRNA expression samples, along with DNA-protein binding affinity information. We found that genes having a large variation of degree distribution among the three tumor networks are the ones that see most involved in regulatory and developmental processes, which possibly gives a novel insight concerning conventional differentially expressed gene analysis. PMID:22987132

  13. Bayesian adaptive combination of short-term wind speed forecasts from neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gong; Shi, Jing; Zhou, Junyi [Department of Industrial and Manufacturing Engineering, North Dakota State University, Dept. 2485, PO Box 6050, Fargo, ND 58108 (United States)

    2011-01-15

    Short-term wind speed forecasting is of great importance for wind farm operations and the integration of wind energy into the power grid system. Adaptive and reliable methods and techniques of wind speed forecasts are urgently needed in view of the stochastic nature of wind resource varying from time to time and from site to site. This paper presents a robust two-step methodology for accurate wind speed forecasting based on Bayesian combination algorithm, and three neural network models, namely, adaptive linear element network (ADALINE), backpropagation (BP) network, and radial basis function (RBF) network. The hourly average wind speed data from two North Dakota sites are used to demonstrate the effectiveness of the proposed approach. The results indicate that, while the performances of the neural networks are not consistent in forecasting 1-h-ahead wind speed for the two sites or under different evaluation metrics, the Bayesian combination method can always provide adaptive, reliable and comparatively accurate forecast results. The proposed methodology provides a unified approach to tackle the challenging model selection issue in wind speed forecasting. (author)

  14. A Bayesian sequential processor approach to spectroscopic portal system decisions

    Energy Technology Data Exchange (ETDEWEB)

    Sale, K; Candy, J; Breitfeller, E; Guidry, B; Manatt, D; Gosnell, T; Chambers, D

    2007-07-31

    The development of faster more reliable techniques to detect radioactive contraband in a portal type scenario is an extremely important problem especially in this era of constant terrorist threats. Towards this goal the development of a model-based, Bayesian sequential data processor for the detection problem is discussed. In the sequential processor each datum (detector energy deposit and pulse arrival time) is used to update the posterior probability distribution over the space of model parameters. The nature of the sequential processor approach is that a detection is produced as soon as it is statistically justified by the data rather than waiting for a fixed counting interval before any analysis is performed. In this paper the Bayesian model-based approach, physics and signal processing models and decision functions are discussed along with the first results of our research.

  15. Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models

    Science.gov (United States)

    Plant, Nathaniel G.; Holland, K. Todd

    2011-01-01

    Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.

  16. Efficient Bayesian Learning in Social Networks with Gaussian Estimators

    CERN Document Server

    Mossel, Elchanan

    2010-01-01

    We propose a simple and efficient Bayesian model of iterative learning on social networks. This model is efficient in two senses: the process both results in an optimal belief, and can be carried out with modest computational resources for large networks. This result extends Condorcet's Jury Theorem to general social networks, while preserving rationality and computational feasibility. The model consists of a group of agents who belong to a social network, so that a pair of agents can observe each other's actions only if they are neighbors. We assume that the network is connected and that the agents have full knowledge of the structure of the network. The agents try to estimate some state of the world S (say, the price of oil a year from today). Each agent has a private measurement of S. This is modeled, for agent v, by a number S_v picked from a Gaussian distribution with mean S and standard deviation one. Accordingly, agent v's prior belief regarding S is a normal distribution with mean S_v and standard dev...

  17. A Bayesian Approach to Protein Inference Problem in Shotgun Proteomics

    OpenAIRE

    Li, Yong Fuga; Arnold, Randy J.; Li, Yixue; Radivojac, Predrag; Sheng, Quanhu; Tang, Haixu

    2009-01-01

    The protein inference problem represents a major challenge in shotgun proteomics. In this article, we describe a novel Bayesian approach to address this challenge by incorporating the predicted peptide detectabilities as the prior probabilities of peptide identification. We propose a rigorious probabilistic model for protein inference and provide practical algoritmic solutions to this problem. We used a complex synthetic protein mixture to test our method and obtained promising results.

  18. Bayesian Approach to the Best Estimate of the Hubble Constant

    Institute of Scientific and Technical Information of China (English)

    王晓峰; 陈黎; 李宗伟

    2001-01-01

    A Bayesian approach is used to derive the probability distribution (PD) of the Hubble constant H0 from recent measurements including supernovae Ia, the Tully-Fisher relation, population Ⅱ and physical methods. The discrepancies among these PDs are briefly discussed. The combined value of all the measurements is obtained,with a 95% confidence interval of 58.7 < Ho < 67.3 (km·s-1.Mpc-1).

  19. Using mechanistic Bayesian networks to identify downstream targets of the Sonic Hedgehog pathway

    Directory of Open Access Journals (Sweden)

    McMahon Andrew P

    2009-12-01

    Full Text Available Abstract Background The topology of a biological pathway provides clues as to how a pathway operates, but rationally using this topology information with observed gene expression data remains a challenge. Results We introduce a new general-purpose analytic method called Mechanistic Bayesian Networks (MBNs that allows for the integration of gene expression data and known constraints within a signal or regulatory pathway to predict new downstream pathway targets. The MBN framework is implemented in an open-source Bayesian network learning package, the Python Environment for Bayesian Learning (PEBL. We demonstrate how MBNs can be used by modeling the early steps of the sonic hedgehog pathway using gene expression data from different developmental stages and genetic backgrounds in mouse. Using the MBN approach we are able to automatically identify many of the known downstream targets of the hedgehog pathway such as Gas1 and Gli1, along with a short list of likely targets such as Mig12. Conclusions The MBN approach shown here can easily be extended to other pathways and data types to yield a more mechanistic framework for learning genetic regulatory models.

  20. Bayesian networks for evaluation of evidence from forensic entomology.

    Science.gov (United States)

    Andersson, M Gunnar; Sundström, Anders; Lindström, Anders

    2013-09-01

    In the aftermath of a CBRN incident, there is an urgent need to reconstruct events in order to bring the perpetrators to court and to take preventive actions for the future. The challenge is to discriminate, based on available information, between alternative scenarios. Forensic interpretation is used to evaluate to what extent results from the forensic investigation favor the prosecutors' or the defendants' arguments, using the framework of Bayesian hypothesis testing. Recently, several new scientific disciplines have been used in a forensic context. In the AniBioThreat project, the framework was applied to veterinary forensic pathology, tracing of pathogenic microorganisms, and forensic entomology. Forensic entomology is an important tool for estimating the postmortem interval in, for example, homicide investigations as a complement to more traditional methods. In this article we demonstrate the applicability of the Bayesian framework for evaluating entomological evidence in a forensic investigation through the analysis of a hypothetical scenario involving suspect movement of carcasses from a clandestine laboratory. Probabilities of different findings under the alternative hypotheses were estimated using a combination of statistical analysis of data, expert knowledge, and simulation, and entomological findings are used to update the beliefs about the prosecutors' and defendants' hypotheses and to calculate the value of evidence. The Bayesian framework proved useful for evaluating complex hypotheses using findings from several insect species, accounting for uncertainty about development rate, temperature, and precolonization. The applicability of the forensic statistic approach to evaluating forensic results from a CBRN incident is discussed.

  1. Application of Bayesian Networks to hindcast barrier island morphodynamics

    Science.gov (United States)

    Wilson, Kathleen E.; Adams, Peter N.; Hapke, Cheryl J.; Lentz, Erika E.; Brenner, Owen T.

    2015-01-01

    Prediction of coastal vulnerability is of increasing concern to policy makers, coastal managers and other stakeholders. Coastal regions and barrier islands along the Atlantic and Gulf coasts are subject to frequent, large storms, whose waves and storm surge can dramatically alter beach morphology, threaten infrastructure, and impact local economies. Given that precise forecasts of regional hazards are challenging, because of the complex interactions between processes on many scales, a range of probable geomorphic change in response to storm conditions is often more helpful than deterministic predictions. Site-specific probabilistic models of coastal change are reliable because they are formulated with observations so that local factors, of potentially high influence, are inherent in the model. The development and use of predictive tools such as Bayesian Networks in response to future storms has the potential to better inform management decisions and hazard preparation in coastal communities. We present several Bayesian Networks designed to hindcast distinct morphologic changes attributable to the Nor'Ida storm of 2009, at Fire Island, New York. Model predictions are informed with historical system behavior, initial morphologic conditions, and a parameterized treatment of wave climate.

  2. Latent features in similarity judgments: a nonparametric bayesian approach.

    Science.gov (United States)

    Navarro, Daniel J; Griffiths, Thomas L

    2008-11-01

    One of the central problems in cognitive science is determining the mental representations that underlie human inferences. Solutions to this problem often rely on the analysis of subjective similarity judgments, on the assumption that recognizing likenesses between people, objects, and events is crucial to everyday inference. One such solution is provided by the additive clustering model, which is widely used to infer the features of a set of stimuli from their similarities, on the assumption that similarity is a weighted linear function of common features. Existing approaches for implementing additive clustering often lack a complete framework for statistical inference, particularly with respect to choosing the number of features. To address these problems, this article develops a fully Bayesian formulation of the additive clustering model, using methods from nonparametric Bayesian statistics to allow the number of features to vary. We use this to explore several approaches to parameter estimation, showing that the nonparametric Bayesian approach provides a straightforward way to obtain estimates of both the number of features and their importance. PMID:18533818

  3. Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Husmeier, Dirk; Edwards, Kieron D.; Ghazal, Peter; Millar, Andrew J.

    2008-01-01

    Method: The objective of the present article is to propose and evaluate a probabilistic approach based on Bayesian networks for modelling non-homogeneous and non-linear gene regulatory processes. The method is based on a mixture model, using latent variables to assign individual measurements to diff

  4. An Exploratory Study Examining the Feasibility of Using Bayesian Networks to Predict Circuit Analysis Understanding

    Science.gov (United States)

    Chung, Gregory K. W. K.; Dionne, Gary B.; Kaiser, William J.

    2006-01-01

    Our research question was whether we could develop a feasible technique, using Bayesian networks, to diagnose gaps in student knowledge. Thirty-four college-age participants completed tasks designed to measure conceptual knowledge, procedural knowledge, and problem-solving skills related to circuit analysis. A Bayesian network was used to model…

  5. A bayesian approach to laboratory utilization management

    Directory of Open Access Journals (Sweden)

    Ronald G Hauser

    2015-01-01

    Full Text Available Background: Laboratory utilization management describes a process designed to increase healthcare value by altering requests for laboratory services. A typical approach to monitor and prioritize interventions involves audits of laboratory orders against specific criteria, defined as rule-based laboratory utilization management. This approach has inherent limitations. First, rules are inflexible. They adapt poorly to the ambiguity of medical decision-making. Second, rules judge the context of a decision instead of the patient outcome allowing an order to simultaneously save a life and break a rule. Third, rules can threaten physician autonomy when used in a performance evaluation. Methods: We developed an alternative to rule-based laboratory utilization. The core idea comes from a formula used in epidemiology to estimate disease prevalence. The equation relates four terms: the prevalence of disease, the proportion of positive tests, test sensitivity and test specificity. When applied to a laboratory utilization audit, the formula estimates the prevalence of disease (pretest probability [PTP] in the patients tested. The comparison of PTPs among different providers, provider groups, or patient cohorts produces an objective evaluation of laboratory requests. We demonstrate the model in a review of tests for enterovirus (EV meningitis. Results: The model identified subpopulations within the cohort with a low prevalence of disease. These low prevalence groups shared demographic and seasonal factors known to protect against EV meningitis. This suggests too many orders occurred from patients at low risk for EV. Conclusion: We introduce a new method for laboratory utilization management programs to audit laboratory services.

  6. Direct message passing for hybrid Bayesian networks and performance analysis

    Science.gov (United States)

    Sun, Wei; Chang, K. C.

    2010-04-01

    Probabilistic inference for hybrid Bayesian networks, which involves both discrete and continuous variables, has been an important research topic over the recent years. This is not only because a number of efficient inference algorithms have been developed and used maturely for simple types of networks such as pure discrete model, but also for the practical needs that continuous variables are inevitable in modeling complex systems. Pearl's message passing algorithm provides a simple framework to compute posterior distribution by propagating messages between nodes and can provides exact answer for polytree models with pure discrete or continuous variables. In addition, applying Pearl's message passing to network with loops usually converges and results in good approximation. However, for hybrid model, there is a need of a general message passing algorithm between different types of variables. In this paper, we develop a method called Direct Message Passing (DMP) for exchanging messages between discrete and continuous variables. Based on Pearl's algorithm, we derive formulae to compute messages for variables in various dependence relationships encoded in conditional probability distributions. Mixture of Gaussian is used to represent continuous messages, with the number of mixture components up to the size of the joint state space of all discrete parents. For polytree Conditional Linear Gaussian (CLG) Bayesian network, DMP has the same computational requirements and can provide exact solution as the one obtained by the Junction Tree (JT) algorithm. However, while JT can only work for the CLG model, DMP can be applied for general nonlinear, non-Gaussian hybrid model to produce approximate solution using unscented transformation and loopy propagation. Furthermore, we can scale the algorithm by restricting the number of mixture components in the messages. Empirically, we found that the approximation errors are relatively small especially for nodes that are far away from

  7. Learning Bayesian networks from big meteorological spatial datasets. An alternative to complex network analysis

    Science.gov (United States)

    Gutiérrez, Jose Manuel; San Martín, Daniel; Herrera, Sixto; Santiago Cofiño, Antonio

    2016-04-01

    The growing availability of spatial datasets (observations, reanalysis, and regional and global climate models) demands efficient multivariate spatial modeling techniques for many problems of interest (e.g. teleconnection analysis, multi-site downscaling, etc.). Complex networks have been recently applied in this context using graphs built from pairwise correlations between the different stations (or grid boxes) forming the dataset. However, this analysis does not take into account the full dependence structure underlying the data, gien by all possible marginal and conditional dependencies among the stations, and does not allow a probabilistic analysis of the dataset. In this talk we introduce Bayesian networks as an alternative multivariate analysis and modeling data-driven technique which allows building a joint probability distribution of the stations including all relevant dependencies in the dataset. Bayesian networks is a sound machine learning technique using a graph to 1) encode the main dependencies among the variables and 2) to obtain a factorization of the joint probability distribution of the stations given by a reduced number of parameters. For a particular problem, the resulting graph provides a qualitative analysis of the spatial relationships in the dataset (alternative to complex network analysis), and the resulting model allows for a probabilistic analysis of the dataset. Bayesian networks have been widely applied in many fields, but their use in climate problems is hampered by the large number of variables (stations) involved in this field, since the complexity of the existing algorithms to learn from data the graphical structure grows nonlinearly with the number of variables. In this contribution we present a modified local learning algorithm for Bayesian networks adapted to this problem, which allows inferring the graphical structure for thousands of stations (from observations) and/or gridboxes (from model simulations) thus providing new

  8. Bayesian Diagnostic Network: A Powerful Model for Representation and Reasoning of Engineering Diagnostic Knowledge

    Institute of Scientific and Technical Information of China (English)

    HU Zhao-yong

    2005-01-01

    Engineering diagnosis is essential to the operation of industrial equipment. The key to successful diagnosis is correct knowledge representation and reasoning. The Bayesian network is a powerful tool for it. This paper utilizes the Bayesian network to represent and reason diagnostic knowledge, named Bayesian diagnostic network. It provides a three-layer topologic structure based on operating conditions, possible faults and corresponding symptoms. The paper also discusses an approximate stochastic sampling algorithm. Then a practical Bayesian network for gas turbine diagnosis is constructed on a platform developed under a Visual C++ environment. It shows that the Bayesian network is a powerful model for representation and reasoning of diagnostic knowledge. The three-layer structure and the approximate algorithm are effective also.

  9. An evolutionary based Bayesian design optimization approach under incomplete information

    Science.gov (United States)

    Srivastava, Rupesh; Deb, Kalyanmoy

    2013-02-01

    Design optimization in the absence of complete information about uncertain quantities has been recently gaining consideration, as expensive repetitive computation tasks are becoming tractable due to the invention of faster and parallel computers. This work uses Bayesian inference to quantify design reliability when only sample measurements of the uncertain quantities are available. A generalized Bayesian reliability based design optimization algorithm has been proposed and implemented for numerical as well as engineering design problems. The approach uses an evolutionary algorithm (EA) to obtain a trade-off front between design objectives and reliability. The Bayesian approach provides a well-defined link between the amount of available information and the reliability through a confidence measure, and the EA acts as an efficient optimizer for a discrete and multi-dimensional objective space. Additionally, a GPU-based parallelization study shows computational speed-up of close to 100 times in a simulated scenario wherein the constraint qualification checks may be time consuming and could render a sequential implementation that can be impractical for large sample sets. These results show promise for the use of a parallel implementation of EAs in handling design optimization problems under uncertainties.

  10. Hybrid Hot Strip Rolling Force Prediction using a Bayesian Trained Artificial Neural Network and Analytical Models

    Directory of Open Access Journals (Sweden)

    Abdelkrim Moussaoui

    2006-01-01

    Full Text Available The authors discuss the combination of an Artificial Neural Network (ANN with analytical models to improve the performance of the prediction model of finishing rolling force in hot strip rolling mill process. The suggested model was implemented using Bayesian Evidence based training algorithm. It was found that the Bayesian Evidence based approach provided a superior and smoother fit to the real rolling mill data. Completely independent set of real rolling data were used to evaluate the capacity of the fitted ANN model to predict the unseen regions of data. As a result, test rolls obtained by the suggested hybrid model have shown high prediction quality comparatively to the usual empirical prediction models.

  11. Dynamic Bayesian Networks in Classification-and-Ranking Architecture of Response Generation

    Directory of Open Access Journals (Sweden)

    Aida Mustapha

    2011-01-01

    Full Text Available Problem statement: The first component in classification-and-ranking architecture is a Bayesian classifier that classifies user utterances into response classes based on their semantic and pragmatic interpretations. Bayesian networks are sufficient if data is limited to single user input utterance. However, if the classifier is able to collate features from a sequence of previous n-1 user utterances, the additional information may or may not improve the accuracy rate in response classification. Approach: This article investigates the use of dynamic Bayesian networks to include time-series information in the form of extended features from preceding utterances. The experiment was conducted on SCHISMA corpus, which is a mixed-initiative, transaction dialogue in theater reservation. Results: The results show that classification accuracy is improved, but rather insignificantly. The accuracy rate tends to deteriorate as time-span of dialogue is increased. Conclusion: Although every response utterance reflects form and behavior that are expected by the preceding utterance, influence of meaning and intentions diminishes throughout time as the conversation stretches to longer duration.

  12. A probabilistic approach for a cost-benefit analysis of oil spill management under uncertainty: A Bayesian network model for the Gulf of Finland.

    Science.gov (United States)

    Helle, Inari; Ahtiainen, Heini; Luoma, Emilia; Hänninen, Maria; Kuikka, Sakari

    2015-08-01

    Large-scale oil accidents can inflict substantial costs to the society, as they typically result in expensive oil combating and waste treatment operations and have negative impacts on recreational and environmental values. Cost-benefit analysis (CBA) offers a way to assess the economic efficiency of management measures capable of mitigating the adverse effects. However, the irregular occurrence of spills combined with uncertainties related to the possible effects makes the analysis a challenging task. We develop a probabilistic modeling approach for a CBA of oil spill management and apply it in the Gulf of Finland, the Baltic Sea. The model has a causal structure, and it covers a large number of factors relevant to the realistic description of oil spills, as well as the costs of oil combating operations at open sea, shoreline clean-up, and waste treatment activities. Further, to describe the effects on environmental benefits, we use data from a contingent valuation survey. The results encourage seeking for cost-effective preventive measures, and emphasize the importance of the inclusion of the costs related to waste treatment and environmental values in the analysis. Although the model is developed for a specific area, the methodology is applicable also to other areas facing the risk of oil spills as well as to other fields that need to cope with the challenging combination of low probabilities, high losses and major uncertainties. PMID:25983196

  13. Capturing changes in flood risk with Bayesian approaches for flood damage assessment

    Science.gov (United States)

    Vogel, Kristin; Schröter, Kai; Kreibich, Heidi; Thieken, Annegret; Müller, Meike; Sieg, Tobias; Laudan, Jonas; Kienzler, Sarah; Weise, Laura; Merz, Bruno; Scherbaum, Frank

    2016-04-01

    Flood risk is a function of hazard as well as of exposure and vulnerability. All three components are under change over space and time and have to be considered for reliable damage estimations and risk analyses, since this is the basis for an efficient, adaptable risk management. Hitherto, models for estimating flood damage are comparatively simple and cannot sufficiently account for changing conditions. The Bayesian network approach allows for a multivariate modeling of complex systems without relying on expert knowledge about physical constraints. In a Bayesian network each model component is considered to be a random variable. The way of interactions between those variables can be learned from observations or be defined by expert knowledge. Even a combination of both is possible. Moreover, the probabilistic framework captures uncertainties related to the prediction and provides a probability distribution for the damage instead of a point estimate. The graphical representation of Bayesian networks helps to study the change of probabilities for changing circumstances and may thus simplify the communication between scientists and public authorities. In the framework of the DFG-Research Training Group "NatRiskChange" we aim to develop Bayesian networks for flood damage and vulnerability assessments of residential buildings and companies under changing conditions. A Bayesian network learned from data, collected over the last 15 years in flooded regions in the Elbe and Danube catchments (Germany), reveals the impact of many variables like building characteristics, precaution and warning situation on flood damage to residential buildings. While the handling of incomplete and hybrid (discrete mixed with continuous) data are the most challenging issues in the study on residential buildings, a similar study, that focuses on the vulnerability of small to medium sized companies, bears new challenges. Relying on a much smaller data set for the determination of the model

  14. A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology

    OpenAIRE

    Grzegorczyk, M.; Husmeier, D.

    2012-01-01

    An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint pr...

  15. Remotely Sensed Monitoring of Small Reservoir Dynamics: A Bayesian Approach

    Directory of Open Access Journals (Sweden)

    Dirk Eilander

    2014-01-01

    Full Text Available Multipurpose small reservoirs are important for livelihoods in rural semi-arid regions. To manage and plan these reservoirs and to assess their hydrological impact at a river basin scale, it is important to monitor their water storage dynamics. This paper introduces a Bayesian approach for monitoring small reservoirs with radar satellite images. The newly developed growing Bayesian classifier has a high degree of automation, can readily be extended with auxiliary information and reduces the confusion error to the land-water boundary pixels. A case study has been performed in the Upper East Region of Ghana, based on Radarsat-2 data from November 2012 until April 2013. Results show that the growing Bayesian classifier can deal with the spatial and temporal variability in synthetic aperture radar (SAR backscatter intensities from small reservoirs. Due to its ability to incorporate auxiliary information, the algorithm is able to delineate open water from SAR imagery with a low land-water contrast in the case of wind-induced Bragg scattering or limited vegetation on the land surrounding a small reservoir.

  16. Regularization of non-homogeneous dynamic Bayesian networks with global information-coupling based on hierarchical Bayesian models

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Husmeier, Dirk

    2013-01-01

    To relax the homogeneity assumption of classical dynamic Bayesian networks (DBNs), various recent studies have combined DBNs with multiple changepoint processes. The underlying assumption is that the parameters associated with time series segments delimited by multiple changepoints are a priori inde

  17. Probabilistic age classification with Bayesian networks: A study on the ossification status of the medial clavicular epiphysis.

    Science.gov (United States)

    Sironi, Emanuele; Pinchi, Vilma; Taroni, Franco

    2016-01-01

    In the past few decades, the rise of criminal, civil and asylum cases involving young people lacking valid identification documents has generated an increase in the demand of age estimation. The chronological age or the probability that an individual is older or younger than a given age threshold are generally estimated by means of some statistical methods based on observations performed on specific physical attributes. Among these statistical methods, those developed in the Bayesian framework allow users to provide coherent and transparent assignments which fulfill forensic and medico-legal purposes. The application of the Bayesian approach is facilitated by using probabilistic graphical tools, such as Bayesian networks. The aim of this work is to test the performances of the Bayesian network for age estimation recently presented in scientific literature in classifying individuals as older or younger than 18 years of age. For these exploratory analyses, a sample related to the ossification status of the medial clavicular epiphysis available in scientific literature was used. Results obtained in the classification are promising: in the criminal context, the Bayesian network achieved, on the average, a rate of correct classifications of approximatively 97%, whilst in the civil context, the rate is, on the average, close to the 88%. These results encourage the continuation of the development and the testing of the method in order to support its practical application in casework.

  18. Construction and Experiment of Hierarchical Bayesian Network in Data Assimilation

    International Nuclear Information System (INIS)

    A Hierarchical Bayesian Network Algorithm (HBN) is developed for data assimilation and tested with an instance of soil moisture assimilation from hydrological model and ground observations. In this work, data assimilation separates into data level, process level and parameter level, and conditional probability models are defined for each level. The data model mainly deals with the scale differences between multiple data, while the process model is designed to take account of non-stationary process. Soil moisture from Soil Moisture Experiment in 2003 and Variable Infiltration Capacity Model is sequentially assimilated with HBN. The result shows that the assimilation with HBN provides spatial and temporal distribution information of soil moisture and the assimilation result agrees well with the ground observations

  19. Designing and testing inflationary models with Bayesian networks

    CERN Document Server

    Price, Layne C; Frazer, Jonathan; Easther, Richard

    2015-01-01

    Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use $N_f$--quadratic inflation as an illustrative example, finding that the number of $e$-folds $N_*$ between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.

  20. NML Computation Algorithms for Tree-Structured Multinomial Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Kontkanen Petri

    2007-01-01

    Full Text Available Typical problems in bioinformatics involve large discrete datasets. Therefore, in order to apply statistical methods in such domains, it is important to develop efficient algorithms suitable for discrete data. The minimum description length (MDL principle is a theoretically well-founded, general framework for performing statistical inference. The mathematical formalization of MDL is based on the normalized maximum likelihood (NML distribution, which has several desirable theoretical properties. In the case of discrete data, straightforward computation of the NML distribution requires exponential time with respect to the sample size, since the definition involves a sum over all the possible data samples of a fixed size. In this paper, we first review some existing algorithms for efficient NML computation in the case of multinomial and naive Bayes model families. Then we proceed by extending these algorithms to more complex, tree-structured Bayesian networks.

  1. Reduced complexity turbo equalization using a dynamic Bayesian network

    Science.gov (United States)

    Myburgh, Hermanus C.; Olivier, Jan C.; van Zyl, Augustinus J.

    2012-12-01

    It is proposed that a dynamic Bayesian network (DBN) is used to perform turbo equalization in a system transmitting information over a Rayleigh fading multipath channel. The DBN turbo equalizer (DBN-TE) is modeled on a single directed acyclic graph by relaxing the Markov assumption and allowing weak connections to past and future states. Its complexity is exponential in encoder constraint length and approximately linear in the channel memory length. Results show that the performance of the DBN-TE closely matches that of a traditional turbo equalizer that uses a maximum a posteriori equalizer and decoder pair. The DBN-TE achieves full convergence and near-optimal performance after small number of iterations.

  2. Risk analysis of dust explosion scenarios using Bayesian networks.

    Science.gov (United States)

    Yuan, Zhi; Khakzad, Nima; Khan, Faisal; Amyotte, Paul

    2015-02-01

    In this study, a methodology has been proposed for risk analysis of dust explosion scenarios based on Bayesian network. Our methodology also benefits from a bow-tie diagram to better represent the logical relationships existing among contributing factors and consequences of dust explosions. In this study, the risks of dust explosion scenarios are evaluated, taking into account common cause failures and dependencies among root events and possible consequences. Using a diagnostic analysis, dust particle properties, oxygen concentration, and safety training of staff are identified as the most critical root events leading to dust explosions. The probability adaptation concept is also used for sequential updating and thus learning from past dust explosion accidents, which is of great importance in dynamic risk assessment and management. We also apply the proposed methodology to a case study to model dust explosion scenarios, to estimate the envisaged risks, and to identify the vulnerable parts of the system that need additional safety measures. PMID:25264172

  3. Designing and testing inflationary models with Bayesian networks

    Energy Technology Data Exchange (ETDEWEB)

    Price, Layne C. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Physics; Auckland Univ. (New Zealand). Dept. of Physics; Peiris, Hiranya V. [Univ. College London (United Kingdom). Dept. of Physics and Astronomy; Frazer, Jonathan [DESY Hamburg (Germany). Theory Group; Univ. of the Basque Country, Bilbao (Spain). Dept. of Theoretical Physics; Basque Foundation for Science, Bilbao (Spain). IKERBASQUE; Easther, Richard [Auckland Univ. (New Zealand). Dept. of Physics

    2015-11-15

    Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use N{sub f}-quadratic inflation as an illustrative example, finding that the number of e-folds N{sub *} between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.

  4. Aggregated Residential Load Modeling Using Dynamic Bayesian Networks

    Energy Technology Data Exchange (ETDEWEB)

    Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai

    2014-09-28

    Abstract—It is already obvious that the future power grid will have to address higher demand for power and energy, and to incorporate renewable resources of different energy generation patterns. Demand response (DR) schemes could successfully be used to manage and balance power supply and demand under operating conditions of the future power grid. To achieve that, more advanced tools for DR management of operations and planning are necessary that can estimate the available capacity from DR resources. In this research, a Dynamic Bayesian Network (DBN) is derived, trained, and tested that can model aggregated load of Heating, Ventilation, and Air Conditioning (HVAC) systems. DBNs can provide flexible and powerful tools for both operations and planing, due to their unique analytical capabilities. The DBN model accuracy and flexibility of use is demonstrated by testing the model under different operational scenarios.

  5. Safety Analysis of Liquid Rocket Engine Using Bayesian Networks

    Institute of Scientific and Technical Information of China (English)

    WANG Hua-wei; YAN Zhi-qiang

    2007-01-01

    Safety analysis for liquid rocket engine has a great meaning for shortening development cycle, saving development expenditure and reducing development risk. The relationship between the structure and component of liquid rocket engine is much more complex, furthermore test data are absent in development phase. Thereby, the uncertainties exist in safety analysis for liquid rocket engine. A safety analysis model integrated with FMEA(failure mode and effect analysis)based on Bayesian networks (BN) is brought forward for liquid rocket engine, which can combine qualitative analysis with quantitative decision. The method has the advantages of fusing multi-information, saving sample amount and having high veracity. An example shows that the method is efficient.

  6. Learning Predictive Interactions Using Information Gain and Bayesian Network Scoring.

    Directory of Open Access Journals (Sweden)

    Xia Jiang

    Full Text Available The problems of correlation and classification are long-standing in the fields of statistics and machine learning, and techniques have been developed to address these problems. We are now in the era of high-dimensional data, which is data that can concern billions of variables. These data present new challenges. In particular, it is difficult to discover predictive variables, when each variable has little marginal effect. An example concerns Genome-wide Association Studies (GWAS datasets, which involve millions of single nucleotide polymorphism (SNPs, where some of the SNPs interact epistatically to affect disease status. Towards determining these interacting SNPs, researchers developed techniques that addressed this specific problem. However, the problem is more general, and so these techniques are applicable to other problems concerning interactions. A difficulty with many of these techniques is that they do not distinguish whether a learned interaction is actually an interaction or whether it involves several variables with strong marginal effects.We address this problem using information gain and Bayesian network scoring. First, we identify candidate interactions by determining whether together variables provide more information than they do separately. Then we use Bayesian network scoring to see if a candidate interaction really is a likely model. Our strategy is called MBS-IGain. Using 100 simulated datasets and a real GWAS Alzheimer's dataset, we investigated the performance of MBS-IGain.When analyzing the simulated datasets, MBS-IGain substantially out-performed nine previous methods at locating interacting predictors, and at identifying interactions exactly. When analyzing the real Alzheimer's dataset, we obtained new results and results that substantiated previous findings. We conclude that MBS-IGain is highly effective at finding interactions in high-dimensional datasets. This result is significant because we have increasingly

  7. Multi-Sensor Fusion Method using Dynamic Bayesian Network for Precise Vehicle Localization and Road Matching

    CERN Document Server

    Smaili, Cherif; Charpillet, François

    2007-01-01

    This paper presents a multi-sensor fusion strategy for a novel road-matching method designed to support real-time navigational features within advanced driving-assistance systems. Managing multihypotheses is a useful strategy for the road-matching problem. The multi-sensor fusion and multi-modal estimation are realized using Dynamical Bayesian Network. Experimental results, using data from Antilock Braking System (ABS) sensors, a differential Global Positioning System (GPS) receiver and an accurate digital roadmap, illustrate the performances of this approach, especially in ambiguous situations.

  8. Exact Structure Discovery in Bayesian Networks with Less Space

    CERN Document Server

    Parviainen, Pekka

    2012-01-01

    The fastest known exact algorithms for scorebased structure discovery in Bayesian networks on n nodes run in time and space 2nnO(1). The usage of these algorithms is limited to networks on at most around 25 nodes mainly due to the space requirement. Here, we study space-time tradeoffs for finding an optimal network structure. When little space is available, we apply the Gurevich-Shelah recurrence-originally proposed for the Hamiltonian path problem-and obtain time 22n-snO(1) in space 2snO(1) for any s = n/2, n/4, n/8, . . .; we assume the indegree of each node is bounded by a constant. For the more practical setting with moderate amounts of space, we present a novel scheme. It yields running time 2n(3/2)pnO(1) in space 2n(3/4)pnO(1) for any p = 0, 1, . . ., n/2; these bounds hold as long as the indegrees are at most 0.238n. Furthermore, the latter scheme allows easy and efficient parallelization beyond previous algorithms. We also explore empirically the potential of the presented techniques.

  9. E-commerce System Security Assessment based on Bayesian Network Algorithm Research

    OpenAIRE

    Ting Li; Xin Li

    2013-01-01

    Evaluation of e-commerce network security is based on assessment method Bayesian networks, and it first defines the vulnerability status of e-commerce system evaluation index and the vulnerability of the state model of e-commerce systems, and after the principle of the Bayesian network reliability of e-commerce system and the criticality of the vulnerabilities were analyzed, experiments show that the change method is a good evaluation of the security of e-commerce systems.

  10. Construction of gene regulatory networks using biclustering and bayesian networks

    OpenAIRE

    Alakwaa Fadhl M; Solouma Nahed H; Kadah Yasser M

    2011-01-01

    Abstract Background Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to elucidate disease ontology fully and to reduce the cost of drug development, gene regulatory networks (GRNs) have to be constructed. During the last decade, many GRN inference algorithms based on genome-wide data have been developed to unravel the complexity of gene regulation. Time series transcriptomic data measured by genome-wide DNA mi...

  11. The subjectivity of scientists and the Bayesian statistical approach

    CERN Document Server

    Press, James S

    2001-01-01

    Comparing and contrasting the reality of subjectivity in the work of history's great scientists and the modern Bayesian approach to statistical analysisScientists and researchers are taught to analyze their data from an objective point of view, allowing the data to speak for themselves rather than assigning them meaning based on expectations or opinions. But scientists have never behaved fully objectively. Throughout history, some of our greatest scientific minds have relied on intuition, hunches, and personal beliefs to make sense of empirical data-and these subjective influences have often a

  12. A Bayesian experimental design approach to structural health monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles [Los Alamos National Laboratory; Flynn, Eric [UCSD; Todd, Michael [UCSD

    2010-01-01

    Optimal system design for SHM involves two primarily challenges. The first is the derivation of a proper performance function for a given system design. The second is the development of an efficient optimization algorithm for choosing a design that maximizes, or nearly maximizes the performance function. In this paper we will outline how an SHM practitioner can construct the proper performance function by casting the entire design problem into a framework of Bayesian experimental design. The approach demonstrates how the design problem necessarily ties together all steps of the SHM process.

  13. Object-Oriented Bayesian Networks (OOBN) for Aviation Accident Modeling and Technology Portfolio Impact Assessment

    Science.gov (United States)

    Shih, Ann T.; Ancel, Ersin; Jones, Sharon M.

    2012-01-01

    The concern for reducing aviation safety risk is rising as the National Airspace System in the United States transforms to the Next Generation Air Transportation System (NextGen). The NASA Aviation Safety Program is committed to developing an effective aviation safety technology portfolio to meet the challenges of this transformation and to mitigate relevant safety risks. The paper focuses on the reasoning of selecting Object-Oriented Bayesian Networks (OOBN) as the technique and commercial software for the accident modeling and portfolio assessment. To illustrate the benefits of OOBN in a large and complex aviation accident model, the in-flight Loss-of-Control Accident Framework (LOCAF) constructed as an influence diagram is presented. An OOBN approach not only simplifies construction and maintenance of complex causal networks for the modelers, but also offers a well-organized hierarchical network that is easier for decision makers to exploit the model examining the effectiveness of risk mitigation strategies through technology insertions.

  14. Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions.

    Science.gov (United States)

    Werhli, Adriano V; Husmeier, Dirk

    2008-06-01

    There have been various attempts to improve the reconstruction of gene regulatory networks from microarray data by the systematic integration of biological prior knowledge. Our approach is based on pioneering work by Imoto et al. where the prior knowledge is expressed in terms of energy functions, from which a prior distribution over network structures is obtained in the form of a Gibbs distribution. The hyperparameters of this distribution represent the weights associated with the prior knowledge relative to the data. We have derived and tested a Markov chain Monte Carlo (MCMC) scheme for sampling networks and hyperparameters simultaneously from the posterior distribution, thereby automatically learning how to trade off information from the prior knowledge and the data. We have extended this approach to a Bayesian coupling scheme for learning gene regulatory networks from a combination of related data sets, which were obtained under different experimental conditions and are therefore potentially associated with different active subpathways. The proposed coupling scheme is a compromise between (1) learning networks from the different subsets separately, whereby no information between the different experiments is shared; and (2) learning networks from a monolithic fusion of the individual data sets, which does not provide any mechanism for uncovering differences between the network structures associated with the different experimental conditions. We have assessed the viability of all proposed methods on data related to the Raf signaling pathway, generated both synthetically and in cytometry experiments. PMID:18574862

  15. A Nonparametric Bayesian Approach For Emission Tomography Reconstruction

    Science.gov (United States)

    Barat, Éric; Dautremer, Thomas

    2007-11-01

    We introduce a PET reconstruction algorithm following a nonparametric Bayesian (NPB) approach. In contrast with Expectation Maximization (EM), the proposed technique does not rely on any space discretization. Namely, the activity distribution—normalized emission intensity of the spatial poisson process—is considered as a spatial probability density and observations are the projections of random emissions whose distribution has to be estimated. This approach is nonparametric in the sense that the quantity of interest belongs to the set of probability measures on Rk (for reconstruction in k-dimensions) and it is Bayesian in the sense that we define a prior directly on this spatial measure. In this context, we propose to model the nonparametric probability density as an infinite mixture of multivariate normal distributions. As a prior for this mixture we consider a Dirichlet Process Mixture (DPM) with a Normal-Inverse Wishart (NIW) model as base distribution of the Dirichlet Process. As in EM-family reconstruction, we use a data augmentation scheme where the set of hidden variables are the emission locations for each observed line of response in the continuous object space. Thanks to the data augmentation, we propose a Markov Chain Monte Carlo (MCMC) algorithm (Gibbs sampler) which is able to generate draws from the posterior distribution of the spatial intensity. A difference with EM is that one step of the Gibbs sampler corresponds to the generation of emission locations while only the expected number of emissions per pixel/voxel is used in EM. Another key difference is that the estimated spatial intensity is a continuous function such that there is no need to compute a projection matrix. Finally, draws from the intensity posterior distribution allow the estimation of posterior functionnals like the variance or confidence intervals. Results are presented for simulated data based on a 2D brain phantom and compared to Bayesian MAP-EM.

  16. Construction of gene regulatory networks using biclustering and bayesian networks

    Directory of Open Access Journals (Sweden)

    Alakwaa Fadhl M

    2011-10-01

    Full Text Available Abstract Background Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to elucidate disease ontology fully and to reduce the cost of drug development, gene regulatory networks (GRNs have to be constructed. During the last decade, many GRN inference algorithms based on genome-wide data have been developed to unravel the complexity of gene regulation. Time series transcriptomic data measured by genome-wide DNA microarrays are traditionally used for GRN modelling. One of the major problems with microarrays is that a dataset consists of relatively few time points with respect to the large number of genes. Dimensionality is one of the interesting problems in GRN modelling. Results In this paper, we develop a biclustering function enrichment analysis toolbox (BicAT-plus to study the effect of biclustering in reducing data dimensions. The network generated from our system was validated via available interaction databases and was compared with previous methods. The results revealed the performance of our proposed method. Conclusions Because of the sparse nature of GRNs, the results of biclustering techniques differ significantly from those of previous methods.

  17. A Bayesian Sampling Approach to Exploration in Reinforcement Learning

    CERN Document Server

    Asmuth, John; Littman, Michael L; Nouri, Ali; Wingate, David

    2012-01-01

    We present a modular approach to reinforcement learning that uses a Bayesian representation of the uncertainty over models. The approach, BOSS (Best of Sampled Set), drives exploration by sampling multiple models from the posterior and selecting actions optimistically. It extends previous work by providing a rule for deciding when to resample and how to combine the models. We show that our algorithm achieves nearoptimal reward with high probability with a sample complexity that is low relative to the speed at which the posterior distribution converges during learning. We demonstrate that BOSS performs quite favorably compared to state-of-the-art reinforcement-learning approaches and illustrate its flexibility by pairing it with a non-parametric model that generalizes across states.

  18. Making Supply Chains Resilient to Floods Using a Bayesian Network

    Science.gov (United States)

    Haraguchi, M.

    2015-12-01

    Natural hazards distress the global economy by disrupting the interconnected supply chain networks. Manufacturing companies have created cost-efficient supply chains by reducing inventories, streamlining logistics and limiting the number of suppliers. As a result, today's supply chains are profoundly susceptible to systemic risks. In Thailand, for example, the GDP growth rate declined by 76 % in 2011 due to prolonged flooding. Thailand incurred economic damage including the loss of USD 46.5 billion, approximately 70% of which was caused by major supply chain disruptions in the manufacturing sector. Similar problems occurred after the Great East Japan Earthquake and Tsunami in 2011, the Mississippi River floods and droughts during 2011 - 2013, and Hurricane Sandy in 2012. This study proposes a methodology for modeling supply chain disruptions using a Bayesian network analysis (BNA) to estimate expected values of countermeasures of floods, such as inventory management, supplier management and hard infrastructure management. We first performed a spatio-temporal correlation analysis between floods and extreme precipitation data for the last 100 years at a global scale. Then we used a BNA to create synthetic networks that include variables associated with the magnitude and duration of floods, major components of supply chains and market demands. We also included decision variables of countermeasures that would mitigate potential losses caused by supply chain disruptions. Finally, we conducted a cost-benefit analysis by estimating the expected values of these potential countermeasures while conducting a sensitivity analysis. The methodology was applied to supply chain disruptions caused by the 2011 Thailand floods. Our study demonstrates desirable typical data requirements for the analysis, such as anonymized supplier network data (i.e. critical dependencies, vulnerability information of suppliers) and sourcing data(i.e. locations of suppliers, and production rates and

  19. Bayesian model selection applied to artificial neural networks used for water resources modeling

    Science.gov (United States)

    Kingston, Greer B.; Maier, Holger R.; Lambert, Martin F.

    2008-04-01

    Artificial neural networks (ANNs) have proven to be extremely valuable tools in the field of water resources engineering. However, one of the most difficult tasks in developing an ANN is determining the optimum level of complexity required to model a given problem, as there is no formal systematic model selection method. This paper presents a Bayesian model selection (BMS) method for ANNs that provides an objective approach for comparing models of varying complexity in order to select the most appropriate ANN structure. The approach uses Markov Chain Monte Carlo posterior simulations to estimate the evidence in favor of competing models and, in this study, three known methods for doing this are compared in terms of their suitability for being incorporated into the proposed BMS framework for ANNs. However, it is acknowledged that it can be particularly difficult to accurately estimate the evidence of ANN models. Therefore, the proposed BMS approach for ANNs incorporates a further check of the evidence results by inspecting the marginal posterior distributions of the hidden-to-output layer weights, which unambiguously indicate any redundancies in the hidden layer nodes. The fact that this check is available is one of the greatest advantages of the proposed approach over conventional model selection methods, which do not provide such a test and instead rely on the modeler's subjective choice of selection criterion. The advantages of a total Bayesian approach to ANN development, including training and model selection, are demonstrated on two synthetic and one real world water resources case study.

  20. A Bayesian belief network of threat anticipation and terrorist motivations

    Science.gov (United States)

    Olama, Mohammed M.; Allgood, Glenn O.; Davenport, Kristen M.; Schryver, Jack C.

    2010-04-01

    Recent events highlight the need for efficient tools for anticipating the threat posed by terrorists, whether individual or groups. Antiterrorism includes fostering awareness of potential threats, deterring aggressors, developing security measures, planning for future events, halting an event in process, and ultimately mitigating and managing the consequences of an event. To analyze such components, one must understand various aspects of threat elements like physical assets and their economic and social impacts. To this aim, we developed a three-layer Bayesian belief network (BBN) model that takes into consideration the relative threat of an attack against a particular asset (physical layer) as well as the individual psychology and motivations that would induce a person to either act alone or join a terrorist group and commit terrorist acts (social and economic layers). After researching the many possible motivations to become a terrorist, the main factors are compiled and sorted into categories such as initial and personal indicators, exclusion factors, and predictive behaviors. Assessing such threats requires combining information from disparate data sources most of which involve uncertainties. BBN combines these data in a coherent, analytically defensible, and understandable manner. The developed BBN model takes into consideration the likelihood and consequence of a threat in order to draw inferences about the risk of a terrorist attack so that mitigation efforts can be optimally deployed. The model is constructed using a network engineering process that treats the probability distributions of all the BBN nodes within the broader context of the system development process.

  1. A Bayesian Approach for Localization of Acoustic Emission Source in Plate-Like Structures

    Directory of Open Access Journals (Sweden)

    Gang Yan

    2015-01-01

    Full Text Available This paper presents a Bayesian approach for localizing acoustic emission (AE source in plate-like structures with consideration of uncertainties from modeling error and measurement noise. A PZT sensor network is deployed to monitor and acquire AE wave signals released by possible damage. By using continuous wavelet transform (CWT, the time-of-flight (TOF information of the AE wave signals is extracted and measured. With a theoretical TOF model, a Bayesian parameter identification procedure is developed to obtain the AE source location and the wave velocity at a specific frequency simultaneously and meanwhile quantify their uncertainties. It is based on Bayes’ theorem that the posterior distributions of the parameters about the AE source location and the wave velocity are obtained by relating their priors and the likelihood of the measured time difference data. A Markov chain Monte Carlo (MCMC algorithm is employed to draw samples to approximate the posteriors. Also, a data fusion scheme is performed to fuse results identified at multiple frequencies to increase accuracy and reduce uncertainty of the final localization results. Experimental studies on a stiffened aluminum panel with simulated AE events by pensile lead breaks (PLBs are conducted to validate the proposed Bayesian AE source localization approach.

  2. Bayesian Approach for Reliability Assessment of Sunshield Deployment on JWST

    Science.gov (United States)

    Kaminskiy, Mark P.; Evans, John W.; Gallo, Luis D.

    2013-01-01

    Deployable subsystems are essential to mission success of most spacecraft. These subsystems enable critical functions including power, communications and thermal control. The loss of any of these functions will generally result in loss of the mission. These subsystems and their components often consist of unique designs and applications, for which various standardized data sources are not applicable for estimating reliability and for assessing risks. In this study, a Bayesian approach for reliability estimation of spacecraft deployment was developed for this purpose. This approach was then applied to the James Webb Space Telescope (JWST) Sunshield subsystem, a unique design intended for thermal control of the observatory's telescope and science instruments. In order to collect the prior information on deployable systems, detailed studies of "heritage information", were conducted extending over 45 years of spacecraft launches. The NASA Goddard Space Flight Center (GSFC) Spacecraft Operational Anomaly and Reporting System (SOARS) data were then used to estimate the parameters of the conjugative beta prior distribution for anomaly and failure occurrence, as the most consistent set of available data and that could be matched to launch histories. This allows for an emperical Bayesian prediction for the risk of an anomaly occurrence of the complex Sunshield deployment, with credibility limits, using prior deployment data and test information.

  3. A Pseudo-Bayesian Approach to Sign-Compute-Resolve Slotted ALOHA

    DEFF Research Database (Denmark)

    Goseling, Jasper; Stefanovic, Cedomir; Popovski, Petar

    2015-01-01

    Access reservation based on slotted ALOHA is commonly used in wireless cellular access. In this paper we investigate its enhancement based on the use of physical-layer network coding and signature coding, whose main feature is enabling simultaneous resolution of up to K users contending for access......, where K ≥ 1. We optimise the slot access probability such that the expected throughput is maximised. In particular, the slot access probability is chosen in line with an estimate of the number of users in the system that is obtained relying on the pseudo-Bayesian approach by Rivest, which we generalise...

  4. Quantification of biophysical adaptation benefits from Climate-Smart Agriculture using a Bayesian Belief Network

    Science.gov (United States)

    de Nijs, Patrick J.; Berry, Nicholas J.; Wells, Geoff J.; Reay, Dave S.

    2014-10-01

    The need for smallholder farmers to adapt their practices to a changing climate is well recognised, particularly in Africa. The cost of adapting to climate change in Africa is estimated to be $20 to $30 billion per year, but the total amount pledged to finance adaptation falls significantly short of this requirement. The difficulty of assessing and monitoring when adaptation is achieved is one of the key barriers to the disbursement of performance-based adaptation finance. To demonstrate the potential of Bayesian Belief Networks for describing the impacts of specific activities on climate change resilience, we developed a simple model that incorporates climate projections, local environmental data, information from peer-reviewed literature and expert opinion to account for the adaptation benefits derived from Climate-Smart Agriculture activities in Malawi. This novel approach allows assessment of vulnerability to climate change under different land use activities and can be used to identify appropriate adaptation strategies and to quantify biophysical adaptation benefits from activities that are implemented. We suggest that multiple-indicator Bayesian Belief Network approaches can provide insights into adaptation planning for a wide range of applications and, if further explored, could be part of a set of important catalysts for the expansion of adaptation finance.

  5. Avoiding spurious feedback loops in the reconstruction of gene regulatory networks with dynamic bayesian networks

    OpenAIRE

    Grzegorczyk, M.; Husmeier, D.

    2009-01-01

    Feedback loops and recurrent structures are essential to the regulation and stable control of complex biological systems. The application of dynamic as opposed to static Bayesian networks is promising in that, in principle, these feedback loops can be learned. However, we show that the widely applied BGe score is susceptible to learning spurious feedback loops, which are a consequence of non-linear regulation and autocorrelation in the data. We propose a non-linear generalisation of the BGe m...

  6. A novel Bayesian approach to spectral function reconstruction

    CERN Document Server

    Burnier, Yannis

    2013-01-01

    We present a novel approach to the inference of spectral functions from Euclidean time correlator data that makes close contact with modern Bayesian concepts. Our method differs significantly from the maximum entropy method (MEM). A new set of axioms is postulated for the prior probability, leading to an improved expression, which is devoid of the asymptotically flat directions present in the Shanon-Jaynes entropy. Hyperparameters are integrated out explicitly, liberating us from the Gaussian approximations underlying the evidence approach of the MEM. We present a realistic test of our method in the context of the non-perturbative extraction of the heavy quark potential. Based on hard-thermal-loop correlator mock data, we establish firm requirements in the number of data points and their accuracy for a successful extraction of the potential from lattice QCD. An improved potential estimation from previously investigated quenched lattice QCD correlators is provided.

  7. Mocapy++ - A toolkit for inference and learning in dynamic Bayesian networks

    DEFF Research Database (Denmark)

    Paluszewski, Martin; Hamelryck, Thomas Wim

    2010-01-01

    Background Mocapy++ is a toolkit for parameter learning and inference in dynamic Bayesian networks (DBNs). It supports a wide range of DBN architectures and probability distributions, including distributions from directional statistics (the statistics of angles, directions and orientations...

  8. A Bayesian Game-Theoretic Approach for Distributed Resource Allocation in Fading Multiple Access Channels

    Directory of Open Access Journals (Sweden)

    Gaoning He

    2010-01-01

    Full Text Available A Bayesian game-theoretic model is developed to design and analyze the resource allocation problem in K-user fading multiple access channels (MACs, where the users are assumed to selfishly maximize their average achievable rates with incomplete information about the fading channel gains. In such a game-theoretic study, the central question is whether a Bayesian equilibrium exists, and if so, whether the network operates efficiently at the equilibrium point. We prove that there exists exactly one Bayesian equilibrium in our game. Furthermore, we study the network sum-rate maximization problem by assuming that the users coordinate according to a symmetric strategy profile. This result also serves as an upper bound for the Bayesian equilibrium. Finally, simulation results are provided to show the network efficiency at the unique Bayesian equilibrium and to compare it with other strategies.

  9. Quantitative utilization of prior biological knowledge in the Bayesian network modeling of gene expression data

    Directory of Open Access Journals (Sweden)

    Gao Shouguo

    2011-08-01

    Full Text Available Abstract Background Bayesian Network (BN is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. Results We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. Conclusion our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.

  10. Bayesian approach in MN low dose of radiation counting

    International Nuclear Information System (INIS)

    The Micronucleus assay in lymphocytes is a well established technique for the assessment of genetic damage induced by ionizing radiation. Due to the presence of a natural background of MN the net MN is obtained by subtracting this value to the gross value. When very low doses of radiation are given the induced MN is close even lower than the predetermined background value. Furthermore, the damage distribution induced by the radiation follows a Poisson probability distribution. These two facts pose a difficult task to obtain the net counting rate in the exposed situations. It is possible to overcome this problem using a bayesian approach, in which the selection of a priori distributions for the background and net counting rate plays an important role. In the present work we make a detailed analysed using bayesian theory to infer the net counting rate in two different situations: a) when the background is known for an individual sample, using exact value value for the background and Jeffreys prior for the net counting rate, and b) when the background is not known and we make use of a population background distribution as background prior function and constant prior for the net counting rate. (Author)

  11. A Bayesian Network-Based Probabilistic Framework for Drought Forecasting and Outlook

    OpenAIRE

    Ji Yae Shin; Muhammad Ajmal; Jiyoung Yoo; Tae-Woong Kim

    2016-01-01

    Reliable drought forecasting is necessary to develop mitigation plans to cope with severe drought. This study developed a probabilistic scheme for drought forecasting and outlook combined with quantification of the prediction uncertainties. The Bayesian network was mainly employed as a statistical scheme for probabilistic forecasting that can represent the cause-effect relationships between the variables. The structure of the Bayesian network-based drought forecasting (BNDF) model was designe...

  12. Predicting academic major of students using bayesian networks to the case of iran

    OpenAIRE

    Asadianfam, Shiva; Shamsi, Mahboubeh; Asadianfam, Sima

    2015-01-01

    In this study, which took place current year in the city of Maragheh in IRAN. Number of high school students in the fields of study: mathematics, Experimental Sciences, humanities, vocational, business and science were studied and compared. The purpose of this research is to predict the academic major of high school students using Bayesian networks. The effective factors have been used in academic major selection for the first time as an effective indicator of Bayesian networks. Evaluation of...

  13. Bayesian Networks as a Decision Tool for O&M of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2010-01-01

    Costs to operation and maintenance (O&M) of offshore wind turbines are large. This paper presents how influence diagrams can be used to assist in rational decision making for O&M. An influence diagram is a graphical representation of a decision tree based on Bayesian Networks. Bayesian Networks...... offer efficient Bayesian updating of a damage model when imperfect information from inspections/monitoring is available. The extension to an influence diagram offers the calculation of expected utilities for decision alternatives, and can be used to find the optimal strategy among different alternatives...

  14. Evidence for single top quark production using Bayesian neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Kau, Daekwang [Florida State Univ., Tallahassee, FL (United States)

    2007-01-01

    We present results of a search for single top quark production in p$\\bar{p}$ collisions using a dataset of approximately 1 fb-1 collected with the D0 detector. This analysis considers the muon+jets and electron+jets final states and makes use of Bayesian neural networks to separate the expected signals from backgrounds. The observed excess is associated with a p-value of 0.081%, assuming the background-only hypothesis, which corresponds to an excess over background of 3.2 standard deviations for a Gaussian density. The p-value computed using the SM signal cross section of 2.9 pb is 1.6%, corresponding to an expected significance of 2.2 standard deviations. Assuming the observed excess is due to single top production, we measure a single top quark production cross section of σ(p$\\bar{p}$ → tb + X, tqb + X) = 4.4 ± 1.5 pb.

  15. Bayesian network model of crowd emotion and negative behavior

    Science.gov (United States)

    Ramli, Nurulhuda; Ghani, Noraida Abdul; Hatta, Zulkarnain Ahmad; Hashim, Intan Hashimah Mohd; Sulong, Jasni; Mahudin, Nor Diana Mohd; Rahman, Shukran Abd; Saad, Zarina Mat

    2014-12-01

    The effects of overcrowding have become a major concern for event organizers. One aspect of this concern has been the idea that overcrowding can enhance the occurrence of serious incidents during events. As one of the largest Muslim religious gathering attended by pilgrims from all over the world, Hajj has become extremely overcrowded with many incidents being reported. The purpose of this study is to analyze the nature of human emotion and negative behavior resulting from overcrowding during Hajj events from data gathered in Malaysian Hajj Experience Survey in 2013. The sample comprised of 147 Malaysian pilgrims (70 males and 77 females). Utilizing a probabilistic model called Bayesian network, this paper models the dependence structure between different emotions and negative behaviors of pilgrims in the crowd. The model included the following variables of emotion: negative, negative comfortable, positive, positive comfortable and positive spiritual and variables of negative behaviors; aggressive and hazardous acts. The study demonstrated that emotions of negative, negative comfortable, positive spiritual and positive emotion have a direct influence on aggressive behavior whereas emotion of negative comfortable, positive spiritual and positive have a direct influence on hazardous acts behavior. The sensitivity analysis showed that a low level of negative and negative comfortable emotions leads to a lower level of aggressive and hazardous behavior. Findings of the study can be further improved to identify the exact cause and risk factors of crowd-related incidents in preventing crowd disasters during the mass gathering events.

  16. CEO emotional bias and investment decision, Bayesian network method

    Directory of Open Access Journals (Sweden)

    Jarboui Anis

    2012-08-01

    Full Text Available This research examines the determinants of firms’ investment introducing a behavioral perspective that has received little attention in corporate finance literature. The following central hypothesis emerges from a set of recently developed theories: Investment decisions are influenced not only by their fundamentals but also depend on some other factors. One factor is the biasness of any CEO to their investment, biasness depends on the cognition and emotions, because some leaders use them as heuristic for the investment decision instead of fundamentals. This paper shows how CEO emotional bias (optimism, loss aversion and overconfidence affects the investment decisions. The proposed model of this paper uses Bayesian Network Method to examine this relationship. Emotional bias has been measured by means of a questionnaire comprising several items. As for the selected sample, it has been composed of some 100 Tunisian executives. Our results have revealed that the behavioral analysis of investment decision implies leader affected by behavioral biases (optimism, loss aversion, and overconfidence adjusts its investment choices based on their ability to assess alternatives (optimism and overconfidence and risk perception (loss aversion to create of shareholder value and ensure its place at the head of the management team.

  17. Classification of Maize and Weeds by Bayesian Networks

    Science.gov (United States)

    Chapron, Michel; Oprea, Alina; Sultana, Bogdan; Assemat, Louis

    2007-11-01

    Precision Agriculture is concerned with all sorts of within-field variability, spatially and temporally, that reduces the efficacy of agronomic practices applied in a uniform way all over the field. Because of these sources of heterogeneity, uniform management actions strongly reduce the efficiency of the resource input to the crop (i.e. fertilization, water) or for the agrochemicals use for pest control (i.e. herbicide). Moreover, this low efficacy means high environmental cost (pollution) and reduced economic return for the farmer. Weed plants are one of these sources of variability for the crop, as they occur in patches in the field. Detecting the location, size and internal density of these patches, along with identification of main weed species involved, open the way to a site-specific weed control strategy, where only patches of weeds would receive the appropriate herbicide (type and dose). Herein, an automatic recognition method of vegetal species is described. First, the pixels of soil and vegetation are classified in two classes, then the vegetation part of the input image is segmented from the distance image by using the watershed method and finally the leaves of the vegetation are partitioned in two parts maize and weeds thanks to the two Bayesian networks.

  18. Bayesian non-negative factor analysis for reconstructing transcription factor mediated regulatory networks

    Directory of Open Access Journals (Sweden)

    Chen Yidong

    2011-10-01

    Full Text Available Abstract Background Transcriptional regulation by transcription factor (TF controls the time and abundance of mRNA transcription. Due to the limitation of current proteomics technologies, large scale measurements of protein level activities of TFs is usually infeasible, making computational reconstruction of transcriptional regulatory network a difficult task. Results We proposed here a novel Bayesian non-negative factor model for TF mediated regulatory networks. Particularly, the non-negative TF activities and sample clustering effect are modeled as the factors from a Dirichlet process mixture of rectified Gaussian distributions, and the sparse regulatory coefficients are modeled as the loadings from a sparse distribution that constrains its sparsity using knowledge from database; meantime, a Gibbs sampling solution was developed to infer the underlying network structure and the unknown TF activities simultaneously. The developed approach has been applied to simulated system and breast cancer gene expression data. Result shows that, the proposed method was able to systematically uncover TF mediated transcriptional regulatory network structure, the regulatory coefficients, the TF protein level activities and the sample clustering effect. The regulation target prediction result is highly coordinated with the prior knowledge, and sample clustering result shows superior performance over previous molecular based clustering method. Conclusions The results demonstrated the validity and effectiveness of the proposed approach in reconstructing transcriptional networks mediated by TFs through simulated systems and real data.

  19. A novel Bayesian learning method for information aggregation in modular neural networks

    DEFF Research Database (Denmark)

    Wang, Pan; Xu, Lida; Zhou, Shang-Ming;

    2010-01-01

    Modular neural network is a popular neural network model which has many successful applications. In this paper, a sequential Bayesian learning (SBL) is proposed for modular neural networks aiming at efficiently aggregating the outputs of members of the ensemble. The experimental results on eight ...

  20. A Bayesian Approach to Risk Informed Performance Based Regulation for Digital I and C QA Programs

    International Nuclear Information System (INIS)

    The purpose of applying Risk Informed Performance Based Regulation (RIPBR) is to reduce unnecessary conservatism existed in current regulations. This paper proposes a systematic way to find such unnecessary conservatism based on Bayesian Belief Network (BBN) modeling technique. First, a Bayesian based QA process model is developed, and the correspondent event tree based on the BBN is then derived. Risk insight into different QA activities can thus be investigated by comparing their contribution to final quality to determine their necessity. Independent V and V, prescribed by RG 1.168, is selected as a case study to demonstrate the effectiveness of this approach. The proposed Bayesian approach appears to be very promising in supporting the RIPBR practice for digital I and C QA programs. Related issues and future work are also discussed. It is a consensus view between licensees and regulators that there may exists unnecessary conservatism in current digital I and C QA regulatory requirements. If such conservatism can be identified and reduced then the limited resources of both licensees and regulators can be utilized more effectively. The goal of RIPBR promoted by USNRC is to provide a generic regulatory framework to eliminate such conservatism in all NRC's regulatory activities (NRC, 1995). However, in order to take the advantage of RIPBR, one needs to develop techniques to identify unnecessary conservatism, and such techniques have not been fully established for digital I and C systems yet. This paper proposed a Bayesian-based approach to identifying unnecessary conservatism in current digital I and C QA program requirements. A QA program causal influence model is developed first, and then a correspondent event tree enumerating potential scenarios is derived based on this model. Thus risk insight into different QA activities can be investigated by comparing their contribution to scenario results. The QA activities that do not have significant impact on results

  1. A Bayesian Approach to Detection of Small Low Emission Sources

    CERN Document Server

    Xun, Xiaolei; Carroll, Raymond J; Kuchment, Peter

    2011-01-01

    The article addresses the problem of detecting presence and location of a small low emission source inside of an object, when the background noise dominates. This problem arises, for instance, in some homeland security applications. The goal is to reach the signal-to-noise ratio (SNR) levels on the order of $10^{-3}$. A Bayesian approach to this problem is implemented in 2D. The method allows inference not only about the existence of the source, but also about its location. We derive Bayes factors for model selection and estimation of location based on Markov Chain Monte Carlo (MCMC) simulation. A simulation study shows that with sufficiently high total emission level, our method can effectively locate the source.

  2. A Bayesian approach to the modelling of alpha Cen A

    CERN Document Server

    Bazot, M; Christensen-Dalsgaard, J

    2012-01-01

    Determining the physical characteristics of a star is an inverse problem consisting in estimating the parameters of models for the stellar structure and evolution, knowing certain observable quantities. We use a Bayesian approach to solve this problem for alpha Cen A, which allows us to incorporate prior information on the parameters to be estimated, in order to better constrain the problem. Our strategy is based on the use of a Markov Chain Monte Carlo (MCMC) algorithm to estimate the posterior probability densities of the stellar parameters: mass, age, initial chemical composition,... We use the stellar evolutionary code ASTEC to model the star. To constrain this model both seismic and non-seismic observations were considered. Several different strategies were tested to fit these values, either using two or five free parameters in ASTEC. We are thus able to show evidence that MCMC methods become efficient with respect to more classical grid-based strategies when the number of parameters increases. The resul...

  3. A Robust Obstacle Avoidance for Service Robot Using Bayesian Approach

    Directory of Open Access Journals (Sweden)

    Widodo Budiharto

    2011-03-01

    Full Text Available The objective of this paper is to propose a robust obstacle avoidance method for service robot in indoor environment. The method for obstacles avoidance uses information about static obstacles on the landmark using edge detection. Speed and direction of people that walks as moving obstacle obtained by single camera using tracking and recognition system and distance measurement using 3 ultrasonic sensors. A new geometrical model and maneuvering method for moving obstacle avoidance introduced and combined with Bayesian approach for state estimation. The obstacle avoidance problem is formulated using decision theory, prior and posterior distribution and loss function to determine an optimal response based on inaccurate sensor data. Algorithms for moving obstacles avoidance method proposed and experiment results implemented to service robot also presented. Various experiments show that our proposed method very fast, robust and successfully implemented to service robot called Srikandi II that equipped with 4 DOF arm robot developed in our laboratory.

  4. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification

    Science.gov (United States)

    Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang

    2016-01-01

    Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975

  5. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.

    Directory of Open Access Journals (Sweden)

    Fang Yan

    Full Text Available Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie analysis was proposed by mapping bow-tie analysis into Bayesian network (BN. Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures.

  6. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.

    Science.gov (United States)

    Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang

    2016-01-01

    Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975

  7. Interconnection between biological abnormalities in borderline personality disorder: use of the Bayesian networks model.

    Science.gov (United States)

    De la Fuente, José Manuel; Bengoetxea, Endika; Navarro, Felipe; Bobes, Julio; Alarcón, Renato Daniel

    2011-04-30

    There is agreement in that strengthening the sets of neurobiological data would reinforce the diagnostic objectivity of many psychiatric entities. This article attempts to use this approach in borderline personality disorder (BPD). Assuming that most of the biological findings in BPD reflect common underlying pathophysiological processes we hypothesized that most of the data involved in the findings would be statistically interconnected and interdependent, indicating biological consistency for this diagnosis. Prospectively obtained data on scalp and sleep electroencephalography (EEG), clinical neurologic soft signs, the dexamethasone suppression and thyrotropin-releasing hormone stimulation tests of 20 consecutive BPD patients were used to generate a Bayesian network model, an artificial intelligence paradigm that visually illustrates eventual associations (or inter-dependencies) between otherwise seemingly unrelated variables. The Bayesian network model identified relationships among most of the variables. EEG and TSH were the variables that influence most of the others, especially sleep parameters. Neurological soft signs were linked with EEG, TSH, and sleep parameters. The results suggest the possibility of using objective neurobiological variables to strengthen the validity of future diagnostic criteria and nosological characterization of BPD.

  8. Toward an Adaptive Learning System Framework: Using Bayesian Network to Manage Learner Model

    Directory of Open Access Journals (Sweden)

    Viet Anh Nguyen

    2012-12-01

    Full Text Available This paper represents a new approach to manage learner modeling in an adaptive learning system framework. It considers developing the basic components of an adaptive learning system such as the learner model, the course content model and the adaptation engine. We use the overlay model and Bayesian network to evaluate learners’ knowledge. In addition, we also propose a new content modeling method as well as adaptation engine to generate adaptive course based on learner’s knowledge. Based on this approach, we developed an adaptive learning system named is ACGS-II, that teaches students how to design an Entity Relationship model in a database system course. Empirical testing results for students who used the application indicate that our proposed model is very helpful as guidelines to develop adaptive learning system to meet learners’ demands.

  9. Graphic Symbol Recognition using Graph Based Signature and Bayesian Network Classifier

    CERN Document Server

    Luqman, Muhammad Muzzamil; Ramel, Jean-Yves

    2010-01-01

    We present a new approach for recognition of complex graphic symbols in technical documents. Graphic symbol recognition is a well known challenge in the field of document image analysis and is at heart of most graphic recognition systems. Our method uses structural approach for symbol representation and statistical classifier for symbol recognition. In our system we represent symbols by their graph based signatures: a graphic symbol is vectorized and is converted to an attributed relational graph, which is used for computing a feature vector for the symbol. This signature corresponds to geometry and topology of the symbol. We learn a Bayesian network to encode joint probability distribution of symbol signatures and use it in a supervised learning scenario for graphic symbol recognition. We have evaluated our method on synthetically deformed and degraded images of pre-segmented 2D architectural and electronic symbols from GREC databases and have obtained encouraging recognition rates.

  10. Multivariate meta-analysis of mixed outcomes: a Bayesian approach.

    Science.gov (United States)

    Bujkiewicz, Sylwia; Thompson, John R; Sutton, Alex J; Cooper, Nicola J; Harrison, Mark J; Symmons, Deborah P M; Abrams, Keith R

    2013-09-30

    Multivariate random effects meta-analysis (MRMA) is an appropriate way for synthesizing data from studies reporting multiple correlated outcomes. In a Bayesian framework, it has great potential for integrating evidence from a variety of sources. In this paper, we propose a Bayesian model for MRMA of mixed outcomes, which extends previously developed bivariate models to the trivariate case and also allows for combination of multiple outcomes that are both continuous and binary. We have constructed informative prior distributions for the correlations by using external evidence. Prior distributions for the within-study correlations were constructed by employing external individual patent data and using a double bootstrap method to obtain the correlations between mixed outcomes. The between-study model of MRMA was parameterized in the form of a product of a series of univariate conditional normal distributions. This allowed us to place explicit prior distributions on the between-study correlations, which were constructed using external summary data. Traditionally, independent 'vague' prior distributions are placed on all parameters of the model. In contrast to this approach, we constructed prior distributions for the between-study model parameters in a way that takes into account the inter-relationship between them. This is a flexible method that can be extended to incorporate mixed outcomes other than continuous and binary and beyond the trivariate case. We have applied this model to a motivating example in rheumatoid arthritis with the aim of incorporating all available evidence in the synthesis and potentially reducing uncertainty around the estimate of interest. PMID:23630081

  11. Risk Based Maintenance of Offshore Wind Turbines Using Bayesian Networks

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2010-01-01

    such that the preventive maintenance effort is balanced against the costs to corrective maintenance including indirect costs to reduced production. The basis for the optimization is the risk based Bayesian decision theory. The method is demonstrated through an application example....

  12. Distributed Diagnosis in Uncertain Environments Using Dynamic Bayesian Networks

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents a distributed Bayesian fault diagnosis scheme for physical systems. Our diagnoser design is based on a procedure for factoring the global system...

  13. AutoClass: A Bayesian Approach to Classification

    Science.gov (United States)

    Stutz, John; Cheeseman, Peter; Hanson, Robin; Taylor, Will; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    We describe a Bayesian approach to the untutored discovery of classes in a set of cases, sometimes called finite mixture separation or clustering. The main difference between clustering and our approach is that we search for the "best" set of class descriptions rather than grouping the cases themselves. We describe our classes in terms of a probability distribution or density function, and the locally maximal posterior probability valued function parameters. We rate our classifications with an approximate joint probability of the data and functional form, marginalizing over the parameters. Approximation is necessitated by the computational complexity of the joint probability. Thus, we marginalize w.r.t. local maxima in the parameter space. We discuss the rationale behind our approach to classification. We give the mathematical development for the basic mixture model and describe the approximations needed for computational tractability. We instantiate the basic model with the discrete Dirichlet distribution and multivariant Gaussian density likelihoods. Then we show some results for both constructed and actual data.

  14. A Bayesian approach to spectral quantitative photoacoustic tomography

    International Nuclear Information System (INIS)

    A Bayesian approach to the optical reconstruction problem associated with spectral quantitative photoacoustic tomography is presented. The approach is derived for commonly used spectral tissue models of optical absorption and scattering: the absorption is described as a weighted sum of absorption spectra of known chromophores (spatially dependent chromophore concentrations), while the scattering is described using Mie scattering theory, with the proportionality constant and spectral power law parameter both spatially-dependent. It is validated using two-dimensional test problems composed of three biologically relevant chromophores: fat, oxygenated blood and deoxygenated blood. Using this approach it is possible to estimate the Grüneisen parameter, the absolute chromophore concentrations, and the Mie scattering parameters associated with spectral photoacoustic tomography problems. In addition, the direct estimation of the spectral parameters is compared to estimates obtained by fitting the spectral parameters to estimates of absorption, scattering and Grüneisen parameter at the investigated wavelengths. It is shown with numerical examples that the direct estimation results in better accuracy of the estimated parameters. (papers)

  15. Utilization of extended bayesian networks in decision making under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Van Eeckhout, Edward M [Los Alamos National Laboratory; Leishman, Deborah A [Los Alamos National Laboratory; Gibson, William L [Los Alamos National Laboratory

    2009-01-01

    Bayesian network tool (called IKE for Integrated Knowledge Engine) has been developed to assess the probability of undesirable events. The tool allows indications and observables from sensors and/or intelligence to feed directly into hypotheses of interest, thus allowing one to quantify the probability and uncertainty of these events resulting from very disparate evidence. For example, the probability that a facility is processing nuclear fuel or assembling a weapon can be assessed by examining the processes required, establishing the observables that should be present, then assembling information from intelligence, sensors and other information sources related to the observables. IKE also has the capability to determine tasking plans, that is, prioritize which observable should be collected next to most quickly ascertain the 'true' state and drive the probability toward 'zero' or 'one.' This optimization capability is called 'evidence marshaling.' One example to be discussed is a denied facility monitoring situation; there is concern that certain process(es) are being executed at the site (due to some intelligence or other data). We will show how additional pieces of evidence will then ascertain with some degree of certainty the likelihood of this process(es) as each piece of evidence is obtained. This example shows how both intelligence and sensor data can be incorporated into the analysis. A second example involves real-time perimeter security. For this demonstration we used seismic, acoustic, and optical sensors linked back to IKE. We show how these sensors identified and assessed the likelihood of 'intruder' versus friendly vehicles.

  16. Evaluation of a partial genome screening of two asthma susceptibility regions using bayesian network based bayesian multilevel analysis of relevance.

    Directory of Open Access Journals (Sweden)

    Ildikó Ungvári

    Full Text Available Genetic studies indicate high number of potential factors related to asthma. Based on earlier linkage analyses we selected the 11q13 and 14q22 asthma susceptibility regions, for which we designed a partial genome screening study using 145 SNPs in 1201 individuals (436 asthmatic children and 765 controls. The results were evaluated with traditional frequentist methods and we applied a new statistical method, called bayesian network based bayesian multilevel analysis of relevance (BN-BMLA. This method uses bayesian network representation to provide detailed characterization of the relevance of factors, such as joint significance, the type of dependency, and multi-target aspects. We estimated posteriors for these relations within the bayesian statistical framework, in order to estimate the posteriors whether a variable is directly relevant or its association is only mediated.With frequentist methods one SNP (rs3751464 in the FRMD6 gene provided evidence for an association with asthma (OR = 1.43(1.2-1.8; p = 3×10(-4. The possible role of the FRMD6 gene in asthma was also confirmed in an animal model and human asthmatics.In the BN-BMLA analysis altogether 5 SNPs in 4 genes were found relevant in connection with asthma phenotype: PRPF19 on chromosome 11, and FRMD6, PTGER2 and PTGDR on chromosome 14. In a subsequent step a partial dataset containing rhinitis and further clinical parameters was used, which allowed the analysis of relevance of SNPs for asthma and multiple targets. These analyses suggested that SNPs in the AHNAK and MS4A2 genes were indirectly associated with asthma. This paper indicates that BN-BMLA explores the relevant factors more comprehensively than traditional statistical methods and extends the scope of strong relevance based methods to include partial relevance, global characterization of relevance and multi-target relevance.

  17. Finding Clocks in Genes: A Bayesian Approach to Estimate Periodicity

    Directory of Open Access Journals (Sweden)

    Yan Ren

    2016-01-01

    Full Text Available Identification of rhythmic gene expression from metabolic cycles to circadian rhythms is crucial for understanding the gene regulatory networks and functions of these biological processes. Recently, two algorithms, JTK_CYCLE and ARSER, have been developed to estimate periodicity of rhythmic gene expression. JTK_CYCLE performs well for long or less noisy time series, while ARSER performs well for detecting a single rhythmic category. However, observing gene expression at high temporal resolution is not always feasible, and many scientists are interested in exploring both ultradian and circadian rhythmic categories simultaneously. In this paper, a new algorithm, named autoregressive Bayesian spectral regression (ABSR, is proposed. It estimates the period of time-course experimental data and classifies gene expression profiles into multiple rhythmic categories simultaneously. Through the simulation studies, it is shown that ABSR substantially improves the accuracy of periodicity estimation and clustering of rhythmic categories as compared to JTK_CYCLE and ARSER for the data with low temporal resolution. Moreover, ABSR is insensitive to rhythmic patterns. This new scheme is applied to existing time-course mouse liver data to estimate period of rhythms and classify the genes into ultradian, circadian, and arrhythmic categories. It is observed that 49.2% of the circadian profiles detected by JTK_CYCLE with 1-hour resolution are also detected by ABSR with only 4-hour resolution.

  18. Reliability assessment using degradation models: bayesian and classical approaches

    Directory of Open Access Journals (Sweden)

    Marta Afonso Freitas

    2010-04-01

    Full Text Available Traditionally, reliability assessment of devices has been based on (accelerated life tests. However, for highly reliable products, little information about reliability is provided by life tests in which few or no failures are typically observed. Since most failures arise from a degradation mechanism at work for which there are characteristics that degrade over time, one alternative is monitor the device for a period of time and assess its reliability from the changes in performance (degradation observed during that period. The goal of this article is to illustrate how degradation data can be modeled and analyzed by using "classical" and Bayesian approaches. Four methods of data analysis based on classical inference are presented. Next we show how Bayesian methods can also be used to provide a natural approach to analyzing degradation data. The approaches are applied to a real data set regarding train wheels degradation.Tradicionalmente, o acesso à confiabilidade de dispositivos tem sido baseado em testes de vida (acelerados. Entretanto, para produtos altamente confiáveis, pouca informação a respeito de sua confiabilidade é fornecida por testes de vida no quais poucas ou nenhumas falhas são observadas. Uma vez que boa parte das falhas é induzida por mecanismos de degradação, uma alternativa é monitorar o dispositivo por um período de tempo e acessar sua confiabilidade através das mudanças em desempenho (degradação observadas durante aquele período. O objetivo deste artigo é ilustrar como dados de degradação podem ser modelados e analisados utilizando-se abordagens "clássicas" e Bayesiana. Quatro métodos de análise de dados baseados em inferência clássica são apresentados. A seguir, mostramos como os métodos Bayesianos podem também ser aplicados para proporcionar uma abordagem natural à análise de dados de degradação. As abordagens são aplicadas a um banco de dados real relacionado à degradação de rodas de trens.

  19. Audio-Visual Tibetan Speech Recognition Based on a Deep Dynamic Bayesian Network for Natural Human Robot Interaction

    Directory of Open Access Journals (Sweden)

    Yue Zhao

    2012-12-01

    Full Text Available Audio‐visual speech recognition is a natural and robust approach to improving human-robot interaction in noisy environments. Although multi‐stream Dynamic Bayesian Network and coupled HMM are widely used for audio‐visual speech recognition, they fail to learn the shared features between modalities and ignore the dependency of features among the frames within each discrete state. In this paper, we propose a Deep Dynamic Bayesian Network (DDBN to perform unsupervised extraction of spatial‐temporal multimodal features from Tibetan audio‐visual speech data and build an accurate audio‐visual speech recognition model under a no frame‐independency assumption. The experiment results on Tibetan speech data from some real‐world environments showed the proposed DDBN outperforms the state‐of‐art methods in word recognition accuracy.

  20. 3D mapping of buried underworld infrastructure using dynamic Bayesian network based multi-sensory image data fusion

    Science.gov (United States)

    Dutta, Ritaban; Cohn, Anthony G.; Muggleton, Jen M.

    2013-05-01

    The successful operation of buried infrastructure within urban environments is fundamental to the conservation of modern living standards. In this paper a novel multi-sensor image fusion framework has been proposed and investigated using dynamic Bayesian network for automatic detection of buried underworld infrastructure. Experimental multi-sensors images were acquired for a known buried plastic water pipe using Vibro-acoustic sensor based location methods and Ground Penetrating Radar imaging system. Computationally intelligent conventional image processing techniques were used to process three types of sensory images. Independently extracted depth and location information from different images regarding the target pipe were fused together using dynamic Bayesian network to predict the maximum probable location and depth of the pipe. The outcome from this study was very encouraging as it was able to detect the target pipe with high accuracy compared with the currently existing pipe survey map. The approach was also applied successfully to produce a best probable 3D buried asset map.

  1. Improving the Scalability of Optimal Bayesian Network Learning with External-Memory Frontier Breadth-First Branch and Bound Search

    CERN Document Server

    Malone, Brandon; Hansen, Eric A; Bridges, Susan

    2012-01-01

    Previous work has shown that the problem of learning the optimal structure of a Bayesian network can be formulated as a shortest path finding problem in a graph and solved using A* search. In this paper, we improve the scalability of this approach by developing a memory-efficient heuristic search algorithm for learning the structure of a Bayesian network. Instead of using A*, we propose a frontier breadth-first branch and bound search that leverages the layered structure of the search graph of this problem so that no more than two layers of the graph, plus solution reconstruction information, need to be stored in memory at a time. To further improve scalability, the algorithm stores most of the graph in external memory, such as hard disk, when it does not fit in RAM. Experimental results show that the resulting algorithm solves significantly larger problems than the current state of the art.

  2. Bayesian Approach to Neuro-Rough Models for Modelling HIV

    CERN Document Server

    Marwala, Tshilidzi

    2007-01-01

    This paper proposes a new neuro-rough model for modelling the risk of HIV from demographic data. The model is formulated using Bayesian framework and trained using Markov Chain Monte Carlo method and Metropolis criterion. When the model was tested to estimate the risk of HIV infection given the demographic data it was found to give the accuracy of 62% as opposed to 58% obtained from a Bayesian formulated rough set model trained using Markov chain Monte Carlo method and 62% obtained from a Bayesian formulated multi-layered perceptron (MLP) model trained using hybrid Monte. The proposed model is able to combine the accuracy of the Bayesian MLP model and the transparency of Bayesian rough set model.

  3. Bayesian networks applied to process diagnostics. Applications in energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Widarsson, Bjoern (ed.); Karlsson, Christer; Dahlquist, Erik [Maelardalen Univ., Vaesteraas (Sweden); Nielsen, Thomas D.; Jensen, Finn V. [Aalborg Univ. (Denmark)

    2004-10-01

    Uncertainty in process operation occurs frequently in heat and power industry. This makes it hard to find the occurrence of an abnormal process state from a number of process signals (measurements) or find the correct cause to an abnormality. Among several other methods, Bayesian Networks (BN) is a method to build a model which can handle uncertainty in both process signals and the process itself. The purpose of this project is to investigate the possibilities to use BN for fault detection and diagnostics in combined heat and power industries through execution of two different applications. Participants from Aalborg University represent the knowledge of BN and participants from Maelardalen University have the experience from modelling heat and power applications. The co-operation also includes two energy companies; Elsam A/S (Nordjyllandsverket) and Maelarenergi AB (Vaesteraas CHP-plant), where the two applications are made with support from the plant personnel. The project ended out in two quite different applications. At Nordjyllandsverket, an application based (due to the lack of process knowledge) on pure operation data is build with capability to detect an abnormal process state in a coal mill. Detection is made through a conflict analysis when entering process signals into a model built by analysing the operation database. The application at Maelarenergi is built with a combination of process knowledge and operation data and can detect various faults caused by the fuel. The process knowledge is used to build a causal network structure and the structure is then trained by data from the operation database. Both applications are made as off-online applications, but they are ready for being run on-line. The performance of fault detection and diagnostics are good, but a lack of abnormal process states with known cause reduces the evaluation possibilities. Advantages with combining expert knowledge of the process with operation data are the possibility to represent

  4. A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology.

    Science.gov (United States)

    Grzegorczyk, Marco; Husmeier, Dirk

    2012-01-01

    An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint processes to obtain time varying dynamic Bayesian networks (TV-DBNs). However, TV-DBNs are not without problems. Gene expression time series are typically short, which leaves the model over-flexible, leading to over-fitting or inflated inference uncertainty. In the present paper, we introduce a Bayesian regularization scheme that addresses this difficulty. Our approach is based on the rationale that changes in gene regulatory processes appear gradually during an organism's life cycle or in response to a changing environment, and we have integrated this notion in the prior distribution of the TV-DBN parameters. We have extensively tested our regularized TV-DBN model on synthetic data, in which we have simulated short non-homogeneous time series produced from a system subject to gradual change. We have then applied our method to real-world gene expression time series, measured during the life cycle of Drosophila melanogaster, under artificially generated constant light condition in Arabidopsis thaliana, and from a synthetically designed strain of Saccharomyces cerevisiae exposed to a changing environment. PMID:22850067

  5. A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology.

    Science.gov (United States)

    Grzegorczyk, Marco; Husmeier, Dirk

    2012-07-12

    An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint processes to obtain time varying dynamic Bayesian networks (TV-DBNs). However, TV-DBNs are not without problems. Gene expression time series are typically short, which leaves the model over-flexible, leading to over-fitting or inflated inference uncertainty. In the present paper, we introduce a Bayesian regularization scheme that addresses this difficulty. Our approach is based on the rationale that changes in gene regulatory processes appear gradually during an organism's life cycle or in response to a changing environment, and we have integrated this notion in the prior distribution of the TV-DBN parameters. We have extensively tested our regularized TV-DBN model on synthetic data, in which we have simulated short non-homogeneous time series produced from a system subject to gradual change. We have then applied our method to real-world gene expression time series, measured during the life cycle of Drosophila melanogaster, under artificially generated constant light condition in Arabidopsis thaliana, and from a synthetically designed strain of Saccharomyces cerevisiae exposed to a changing environment.

  6. Point and Interval Estimation on the Degree and the Angle of Polarization. A Bayesian approach

    CERN Document Server

    Maier, Daniel; Santangelo, Andrea

    2014-01-01

    Linear polarization measurements provide access to two quantities, the degree (DOP) and the angle of polarization (AOP). The aim of this work is to give a complete and concise overview of how to analyze polarimetric measurements. We review interval estimations for the DOP with a frequentist and a Bayesian approach. Point estimations for the DOP and interval estimations for the AOP are further investigated with a Bayesian approach to match observational needs. Point and interval estimations are calculated numerically for frequentist and Bayesian statistics. Monte Carlo simulations are performed to clarify the meaning of the calculations. Under observational conditions, the true DOP and AOP are unknown, so that classical statistical considerations - based on true values - are not directly usable. In contrast, Bayesian statistics handles unknown true values very well and produces point and interval estimations for DOP and AOP, directly. Using a Bayesian approach, we show how to choose DOP point estimations based...

  7. The use of Bayesian Networks in Detecting the States of Ventilation Mills in Power Plants

    Directory of Open Access Journals (Sweden)

    Sanja Vujnović

    2014-06-01

    Full Text Available The main objective of this paper is to present a new method of predictive maintenance which can detect the states of coal grinding mills in thermal power plants using Bayesian networks. Several possible structures of Bayesian networks are proposed for solving this problem and one of them is implemented and tested on an actual system. This method uses acoustic signals and statistical signal pre-processing tools to compute the inputs of the Bayesian network. After that the network is trained and tested using signals measured in the vicinity of the mill in the period of 2 months. The goal of this algorithm is to increase the efficiency of the coal grinding process and reduce the maintenance cost by eliminating the unnecessary maintenance checks of the system.

  8. Learning Bayesian Network Structure%贝叶斯网络结构学习分析

    Institute of Scientific and Technical Information of China (English)

    王双成; 林士敏; 陆玉昌

    2000-01-01

    In this paper the analysis of principle and process of Bayesian network structure learning is given. Bayesian network structure learning is a process that seeks the best network structure fitting the prior knowledge and data. The computing of posterior can be closed when data are completed and some other conditions are satisfied ,while the computing is not closed when some data are missing. One solution for missing data is fill-in methods,another is to approximate the likelihood of structure,then to compute the probabilities of structure.

  9. Modelling of population dynamics of red king crab using Bayesian approach

    Directory of Open Access Journals (Sweden)

    Bakanev Sergey ...

    2012-10-01

    Modeling population dynamics based on the Bayesian approach enables to successfully resolve the above issues. The integration of the data from various studies into a unified model based on Bayesian parameter estimation method provides a much more detailed description of the processes occurring in the population.

  10. A Bayesian approach to extracting meaning from system behavior

    Energy Technology Data Exchange (ETDEWEB)

    Dress, W.B.

    1998-08-01

    The modeling relation and its reformulation to include the semiotic hierarchy is essential for the understanding, control, and successful re-creation of natural systems. This presentation will argue for a careful application of Rosen`s modeling relationship to the problems of intelligence and autonomy in natural and artificial systems. To this end, the authors discuss the essential need for a correct theory of induction, learning, and probability; and suggest that modern Bayesian probability theory, developed by Cox, Jaynes, and others, can adequately meet such demands, especially on the operational level of extracting meaning from observations. The methods of Bayesian and maximum Entropy parameter estimation have been applied to measurements of system observables to directly infer the underlying differential equations generating system behavior. This approach by-passes the usual method of parameter estimation based on assuming a functional form for the observable and then estimating the parameters that would lead to the particular observed behavior. The computational savings is great since only location parameters enter into the maximum-entropy calculations; this innovation finesses the need for nonlinear parameters altogether. Such an approach more directly extracts the semantics inherent in a given system by going to the root of system meaning as expressed by abstract form or shape, rather than in syntactic particulars, such as signal amplitude and phase. Examples will be shown how the form of a system can be followed while ignoring unnecessary details. In this sense, the authors are observing the meaning of the words rather than being concerned with their particular expression or language. For the present discussion, empirical models are embodied by the differential equations underlying, producing, or describing the behavior of a process as measured or tracked by a particular variable set--the observables. The a priori models are probability structures that

  11. Bayesian network modeling method based on case reasoning for emergency decision-making

    Directory of Open Access Journals (Sweden)

    XU Lei

    2013-06-01

    Full Text Available Bayesian network has the abilities of probability expression, uncertainty management and multi-information fusion.It can support emergency decision-making, which can improve the efficiency of decision-making.Emergency decision-making is highly time sensitive, which requires shortening the Bayesian Network modeling time as far as possible.Traditional Bayesian network modeling methods are clearly unable to meet that requirement.Thus, a Bayesian network modeling method based on case reasoning for emergency decision-making is proposed.The method can obtain optional cases through case matching by the functions of similarity degree and deviation degree.Then,new Bayesian network can be built through case adjustment by case merging and pruning.An example is presented to illustrate and test the proposed method.The result shows that the method does not have a huge search space or need sample data.The only requirement is the collection of expert knowledge and historical case models.Compared with traditional methods, the proposed method can reuse historical case models, which can reduce the modeling time and improve the efficiency.

  12. A new research tool for hybrid Bayesian networks using script language

    Science.gov (United States)

    Sun, Wei; Park, Cheol Young; Carvalho, Rommel

    2011-06-01

    While continuous variables become more and more inevitable in Bayesian networks for modeling real-life applications in complex systems, there are not much software tools to support it. Popular commercial Bayesian network tools such as Hugin, and Netica etc., are either expensive or have to discretize continuous variables. In addition, some free programs existing in the literature, commonly known as BNT, GeNie/SMILE, etc, have their own advantages and disadvantages respectively. In this paper, we introduce a newly developed Java tool for model construction and inference for hybrid Bayesian networks. Via the representation power of the script language, this tool can build the hybrid model automatically based on a well defined string that follows the specific grammars. Furthermore, it implements several inference algorithms capable to accommodate hybrid Bayesian networks, including Junction Tree algorithm (JT) for conditional linear Gaussian model (CLG), and Direct Message Passing (DMP) for general hybrid Bayesian networks with CLG structure. We believe this tool will be useful for researchers in the field.

  13. BAYESIAN APPROACH TO THE PROCESS OF IDENTIFICATION OF THE DETERMINANTS OF INNOVATIVENESS

    Directory of Open Access Journals (Sweden)

    Marta Czyżewska

    2014-08-01

    Full Text Available Bayesian belief networks are applied in determining the most important factors of the innovativeness level of national economies. The paper is divided into two parts. The first presentsthe basic theory of Bayesian networks whereas in the second, the belief networks have been generated by an inhouse developed computer system called BeliefSEEKER which was implemented to generate the determinants influencing the innovativeness level of national economies.Qualitative analysis of the generated belief networks provided a way to define a set of the most important dimensions influencing the innovativeness level of economies and then the indicators that form these dimensions. It has been proven that Bayesian networks are very effective methods for multidimensional analysis and forming conclusions and recommendations regarding the strength of each innovative determinant influencing the overall performance of a country’s economy.

  14. Development of Bayesian Network Models for Risk-Based Ship Design

    Institute of Scientific and Technical Information of China (English)

    Dimitris Konovessis; Wenkui Cai; Dracos Vassalos

    2013-01-01

    In the past fifteen years,the attention of ship safety treatment as an objective rather than a constraint has started to sweep through the whole maritime industry.The risk-based ship design (RBD) methodology,advocating systematic integration of risk assessment within the conventional design process has started to takeoff.Despite this wide recognition and increasing popularity,important factors that could potentially undermine the quality of the results come from both quantitative and qualitative aspects during the risk assessment process.This paper details a promising solution by developing a formalized methodology for risk assessment through effective storing and processing of historical data combined with data generated through first-principle approaches.This method should help to generate appropriate risk models in the selected platform (Bayesian networks) which can be employed for decision making at design stage.

  15. Development of Bayesian network models for risk-based ship design

    Science.gov (United States)

    Konovessis, Dimitris; Cai, Wenkui; Vassalos, Dracos

    2013-06-01

    In the past fifteen years, the attention of ship safety treatment as an objective rather than a constraint has started to sweep through the whole maritime industry. The risk-based ship design (RBD) methodology, advocating systematic integration of risk assessment within the conventional design process has started to takeoff. Despite this wide recognition and increasing popularity, important factors that could potentially undermine the quality of the results come from both quantitative and qualitative aspects during the risk assessment process. This paper details a promising solution by developing a formalized methodology for risk assessment through effective storing and processing of historical data combined with data generated through first-principle approaches. This method should help to generate appropriate risk models in the selected platform (Bayesian networks) which can be employed for decision making at design stage.

  16. Software Development Effort Estimation using Fuzzy Bayesian Belief Network with COCOMO II

    Directory of Open Access Journals (Sweden)

    B.Chakraborty

    2015-01-01

    Full Text Available Software development has always been characterized by some metrics. One of the greatest challenges for software developers lies in predicting the development effort for a software system which is based on developer abilities, size, complexity and other metrics. Several algorithmic cost estimation models such as Boehm?s COCOMO, Albrecht's' Function Point Analysis, Putnam?s SLIM, ESTIMACS etc. are available but every model has its own pros and cons in estimating development cost and effort. Most common reason being project data which is available in the initial stages of project is often incomplete, inconsistent, uncertain and unclear. In this paper, Bayesian probabilistic model has been explored to overcome the problems of uncertainty and imprecision resulting in improved process of software development effort estimation. This paper considers a software estimation approach using six key cost drivers in COCOMO II model. The selected cost drivers are the inputs to systems. The concept of Fuzzy Bayesian Belief Network (FBBN has been introduced to improve the accuracy of the estimation. Results shows that the value of MMRE (Mean of Magnitude of Relative Error and PRED obtained by means of FBBN is much better as compared to the MMRE and PRED of Fuzzy COCOMO II models. The validation of results was carried out on NASA-93 dem COCOMO II dataset.

  17. Dynamic Bayesian Network Modeling of the Interplay between EGFR and Hedgehog Signaling.

    Science.gov (United States)

    Fröhlich, Holger; Bahamondez, Gloria; Götschel, Frank; Korf, Ulrike

    2015-01-01

    Aberrant activation of sonic Hegdehog (SHH) signaling has been found to disrupt cellular differentiation in many human cancers and to increase proliferation. The SHH pathway is known to cross-talk with EGFR dependent signaling. Recent studies experimentally addressed this interplay in Daoy cells, which are presumable a model system for medulloblastoma, a highly malignant brain tumor that predominately occurs in children. Currently ongoing are several clinical trials for different solid cancers, which are designed to validate the clinical benefits of targeting the SHH in combination with other pathways. This has motivated us to investigate interactions between EGFR and SHH dependent signaling in greater depth. To our knowledge, there is no mathematical model describing the interplay between EGFR and SHH dependent signaling in medulloblastoma so far. Here we come up with a fully probabilistic approach using Dynamic Bayesian Networks (DBNs). To build our model, we made use of literature based knowledge describing SHH and EGFR signaling and integrated gene expression (Illumina) and cellular location dependent time series protein expression data (Reverse Phase Protein Arrays). We validated our model by sub-sampling training data and making Bayesian predictions on the left out test data. Our predictions focusing on key transcription factors and p70S6K, showed a high level of concordance with experimental data. Furthermore, the stability of our model was tested by a parametric bootstrap approach. Stable network features were in agreement with published data. Altogether we believe that our model improved our understanding of the interplay between two highly oncogenic signaling pathways in Daoy cells. This may open new perspectives for the future therapy of Hedghog/EGF-dependent solid tumors. PMID:26571415

  18. Dynamic Bayesian Network Modeling of the Interplay between EGFR and Hedgehog Signaling.

    Directory of Open Access Journals (Sweden)

    Holger Fröhlich

    Full Text Available Aberrant activation of sonic Hegdehog (SHH signaling has been found to disrupt cellular differentiation in many human cancers and to increase proliferation. The SHH pathway is known to cross-talk with EGFR dependent signaling. Recent studies experimentally addressed this interplay in Daoy cells, which are presumable a model system for medulloblastoma, a highly malignant brain tumor that predominately occurs in children. Currently ongoing are several clinical trials for different solid cancers, which are designed to validate the clinical benefits of targeting the SHH in combination with other pathways. This has motivated us to investigate interactions between EGFR and SHH dependent signaling in greater depth. To our knowledge, there is no mathematical model describing the interplay between EGFR and SHH dependent signaling in medulloblastoma so far. Here we come up with a fully probabilistic approach using Dynamic Bayesian Networks (DBNs. To build our model, we made use of literature based knowledge describing SHH and EGFR signaling and integrated gene expression (Illumina and cellular location dependent time series protein expression data (Reverse Phase Protein Arrays. We validated our model by sub-sampling training data and making Bayesian predictions on the left out test data. Our predictions focusing on key transcription factors and p70S6K, showed a high level of concordance with experimental data. Furthermore, the stability of our model was tested by a parametric bootstrap approach. Stable network features were in agreement with published data. Altogether we believe that our model improved our understanding of the interplay between two highly oncogenic signaling pathways in Daoy cells. This may open new perspectives for the future therapy of Hedghog/EGF-dependent solid tumors.

  19. Bayesian prediction and adaptive sampling algorithms for mobile sensor networks online environmental field reconstruction in space and time

    CERN Document Server

    Xu, Yunfei; Dass, Sarat; Maiti, Tapabrata

    2016-01-01

    This brief introduces a class of problems and models for the prediction of the scalar field of interest from noisy observations collected by mobile sensor networks. It also introduces the problem of optimal coordination of robotic sensors to maximize the prediction quality subject to communication and mobility constraints either in a centralized or distributed manner. To solve such problems, fully Bayesian approaches are adopted, allowing various sources of uncertainties to be integrated into an inferential framework effectively capturing all aspects of variability involved. The fully Bayesian approach also allows the most appropriate values for additional model parameters to be selected automatically by data, and the optimal inference and prediction for the underlying scalar field to be achieved. In particular, spatio-temporal Gaussian process regression is formulated for robotic sensors to fuse multifactorial effects of observations, measurement noise, and prior distributions for obtaining the predictive di...

  20. A Bayesian decision approach to rainfall thresholds based flood warning

    Directory of Open Access Journals (Sweden)

    M. L. V. Martina

    2006-01-01

    Full Text Available Operational real time flood forecasting systems generally require a hydrological model to run in real time as well as a series of hydro-informatics tools to transform the flood forecast into relatively simple and clear messages to the decision makers involved in flood defense. The scope of this paper is to set forth the possibility of providing flood warnings at given river sections based on the direct comparison of the quantitative precipitation forecast with critical rainfall threshold values, without the need of an on-line real time forecasting system. This approach leads to an extremely simplified alert system to be used by non technical stakeholders and could also be used to supplement the traditional flood forecasting systems in case of system failures. The critical rainfall threshold values, incorporating the soil moisture initial conditions, result from statistical analyses using long hydrological time series combined with a Bayesian utility function minimization. In the paper, results of an application of the proposed methodology to the Sieve river, a tributary of the Arno river in Italy, are given to exemplify its practical applicability.

  1. Defining statistical perceptions with an empirical Bayesian approach

    Science.gov (United States)

    Tajima, Satohiro

    2013-04-01

    Extracting statistical structures (including textures or contrasts) from a natural stimulus is a central challenge in both biological and engineering contexts. This study interprets the process of statistical recognition in terms of hyperparameter estimations and free-energy minimization procedures with an empirical Bayesian approach. This mathematical interpretation resulted in a framework for relating physiological insights in animal sensory systems to the functional properties of recognizing stimulus statistics. We applied the present theoretical framework to two typical models of natural images that are encoded by a population of simulated retinal neurons, and demonstrated that the resulting cognitive performances could be quantified with the Fisher information measure. The current enterprise yielded predictions about the properties of human texture perception, suggesting that the perceptual resolution of image statistics depends on visual field angles, internal noise, and neuronal information processing pathways, such as the magnocellular, parvocellular, and koniocellular systems. Furthermore, the two conceptually similar natural-image models were found to yield qualitatively different predictions, striking a note of warning against confusing the two models when describing a natural image.

  2. A new Bayesian approach to the reconstruction of spectral functions

    CERN Document Server

    Burnier, Yannis

    2013-01-01

    We present a novel approach for the reconstruction of spectra from Euclidean correlator data that makes close contact to modern Bayesian concepts. It is based upon an axiomatically justified dimensionless prior distribution, which in the case of constant prior function $m(\\omega)$ only imprints smoothness on the reconstructed spectrum. In addition we are able to analytically integrate out the only relevant overall hyper-parameter $\\alpha$ in the prior, removing the necessity for Gaussian approximations found e.g. in the Maximum Entropy Method. Using a quasi-Newton minimizer and high-precision arithmetic, we are then able to find the unique global extremum of $P[\\rho|D]$ in the full $N_\\omega\\gg N_\\tau$ dimensional search space. The method actually yields gradually improving reconstruction results if the quality of the supplied input data increases, without introducing artificial peak structures, often encountered in the MEM. To support these statements we present mock data analyses for the case of zero width ...

  3. Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks

    Science.gov (United States)

    Zhu, Shijia; Wang, Yadong

    2015-12-01

    Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is ‘stationarity’, and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings.

  4. A Bayesian Approach to Identifying New Risk Factors for Dementia

    OpenAIRE

    Wen, Yen-Hsia; Wu, Shihn-Sheng; Lin, Chun-Hung Richard; Tsai, Jui-Hsiu; Yang, Pinchen; Chang, Yang-Pei; Tseng, Kuan-Hua

    2016-01-01

    Abstract Dementia is one of the most disabling and burdensome health conditions worldwide. In this study, we identified new potential risk factors for dementia from nationwide longitudinal population-based data by using Bayesian statistics. We first tested the consistency of the results obtained using Bayesian statistics with those obtained using classical frequentist probability for 4 recognized risk factors for dementia, namely severe head injury, depression, diabetes mellitus, and vascular...

  5. Evolution of Subjective Hurricane Risk Perceptions: A Bayesian Approach

    OpenAIRE

    David Kelly; David Letson; Forest Nelson; Nolan, David S.; Daniel Solis

    2009-01-01

    This paper studies how individuals update subjective risk perceptions in response to hurricane track forecast information, using a unique data set from an event market, the Hurricane Futures Market (HFM). We derive a theoretical Bayesian framework which predicts how traders update their perceptions of the probability of a hurricane making landfall in a certain range of coastline. Our results suggest that traders behave in a way consistent with Bayesian updating but this behavior is based on t...

  6. Unavailability of the residual system heat removal of Angra 1 by Bayesian networks considering dependent failures

    International Nuclear Information System (INIS)

    This work models by Bayesian networks the residual heat removal system (SRCR) of Angra I nuclear power plant, using fault tree mapping for systematically identifying all possible modes of occurrence caused by a large loss of coolant accident (large LOCA). The focus is on dependent events, such as the bridge system structure of the residual heat removal system and the occurrence of common-cause failures. We used the Netica™ tool kit, Norsys Software Corporation and Python 2.7.5 for modeling Bayesian networks and Microsoft Excel for modeling fault trees. Working with dependent events using Bayesian networks is similar to the solutions proposed by other models, beyond simple understanding and ease of application and modification throughout the analysis. The results obtained for the unavailability of the system were satisfactory, showing that in most cases the system will be available to mitigate the effects of an accident as described above. (author)

  7. Bayesian Belief Network Method for Predicting Asphaltene Precipitation in Light Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Jeffrey O. Oseh (M.Sc.

    2015-04-01

    Full Text Available Asphaltene precipitation is caused by a number of factors including changes in pressure, temperature, and composition. The two most prevalent causes of asphaltene precipitation in light oil reservoirs are decreasing pressure and mixing oil with injected solvent in improved oil recovery processes. This study focused on predicting the amount of asphaltene precipitation with increasing Gas-Oil Ratio in a light oil reservoir using Bayesian Belief Network Method. These Artificial Intelligence-Bayesian Belief Network Method employed were validated and tested by unseen data to determine their accuracy and trend stability and were also compared with the findings obtained from Scaling equations. The obtained Bayesian Belief Network results indicated that the method showed an improved performance of predicting the amount of asphaltene precipitated in light oil reservoirs thus reducing the number of experiments required.

  8. Constitution and application of reactor make-up system's fault diagnostic Bayesian networks

    International Nuclear Information System (INIS)

    A fault diagnostic Bayesian network of reactor make-up system was constituted. The system's structure characters, operation rules and experts' experience were combined and an initial net was built. As the fault date sets were learned with the particle swarm optimization based Bayesian network structure, the structure of diagnostic net was completed and used to inference case. The built net can analyze diagnostic probability of every node in the net and afford assistant decision to fault diagnosis. (authors)

  9. Multi-variable Echo State Network Optimized by Bayesian Regulation for Daily Peak Load Forecasting

    Directory of Open Access Journals (Sweden)

    Dongxiao Niu

    2012-11-01

    Full Text Available In this paper, a multi-variable echo state network trained with Bayesian regulation has been developed for the short-time load forecasting. In this study, we focus on the generalization of a new recurrent network. Therefore, Bayesian regulation and Levenberg-Marquardt algorithm is adopted to modify the output weight. The model is verified by data from a local power company in south China and its performance is rather satisfactory. Besides, traditional methods are also used for the same task as comparison. The simulation results lead to the conclusion that the proposed scheme is feasible and has great robustness and satisfactory capacity of generalization.

  10. Using literature and data to learn Bayesian networks as clinical models of ovarian tumors

    DEFF Research Database (Denmark)

    Antal, P.; Fannes, G.; Timmerman, D.;

    2004-01-01

    Thanks to its increasing availability, electronic literature has become a potential source of information for the development of complex Bayesian networks (BN), when human expertise is missing or data is scarce or contains much noise. This opportunity raises the question of how to integrate...... information from free-text resources with statistical data in learning Bayesian networks. Firstly, we report on the collection of prior information resources in the ovarian cancer domain, which includes "kernel" annotations of the domain variables. We introduce methods based on the annotations and literature...

  11. Risk assessment by integrating interpretive structural modeling and Bayesian network, case of offshore pipeline project

    International Nuclear Information System (INIS)

    The sound development of marine resource usage relies on a strong maritime engineering industry. The perilous marine environment poses the highest risk to all maritime work. It is therefore imperative to reduce the risk associated with maritime work by using some analytical methods other than engineering techniques. This study addresses this issue by using an integrated interpretive structure modeling (ISM) and Bayesian network (BN) approach in a risk assessment context. Mitigating or managing maritime risk relies primarily on domain expert experience and knowledge. ISM can be used to incorporate expert knowledge in a systematic manner and helps to impose order and direction on complex relationships that exist among system elements. Working with experts, this research used ISM to clearly specify an engineering risk factor relationship represented by a cause–effect diagram, which forms the structure of the BN. The expert subjective judgments were further transformed into a prior and conditional probability set to be embedded in the BN. We used the BN to evaluate the risks of two offshore pipeline projects in Taiwan. The results indicated that the BN can provide explicit risk information to support better project management. - Highlights: • We adopt an integrated method for risk assessment of offshore pipeline projects. • We conduct semi-structural interview with the experts for risk factor identification. • Interpretive structural modeling helps to form the digraph of Bayesian network (BN) • We perform the risk analysis with the experts by building a BN. • Risk evaluations of two case studies using the BN show effectiveness of the methods

  12. THE TRANSMISSION MECHANISM OF THE CROSS-BORDER HOT MONEY---An Approach of Dynamic Bayesian Network%跨境热钱的传导机制*--基于动态贝叶斯网络模型

    Institute of Scientific and Technical Information of China (English)

    史芳芳; 任小勋

    2016-01-01

    本文将动态贝叶斯网络模型引入到对我国跨境热钱问题的分析中,运用2006年10月至2016年2月的数据研究了我国跨境热钱与外汇市场、房地产市场、股票市场以及货币市场之间的网络传导关系。结果表明:一方面,我国跨境热钱流动的主要原因是受房地产市场与境内外利差的驱动;另一方面,跨境热钱对我国房地产市场的影响最为显著,其次是外汇市场,但并不会显著影响股票市场和货币市场。本文从研究问题、对象和方法等角度进一步丰富了现有相关文献,有助于更全面地认识我国跨境热钱流动的市场反应机制,对相关部门采取前瞻性的调控措施有所启示。%This paper employs the dynamic Bayesian network method to the problem of cross-border hot money. Based on the sample from October 2006 to February 2015,we analyze the network relationship among the hot money and the four finance markets of foreign exchange market,real estate market,stock market and money market. The results show that cross-border hot money is significantly attracted by the real estate market and the interest rate spread. The real estate market can be mostly affected by hot mon-ey,exchange rate can also be affected,but the hot money has no impact on the stock market and money market. The research point,method and obj ect of this paper enrich the existing literatures. The findings can help to understand the effect mechanism of cross-border hot money,and may be used for reference to policy-makers.

  13. Applying Bayesian belief networks in rapid response situations

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, William L [Los Alamos National Laboratory; Deborah, Leishman, A. [Los Alamos National Laboratory; Van Eeckhout, Edward [Los Alamos National Laboratory

    2008-01-01

    The authors have developed an enhanced Bayesian analysis tool called the Integrated Knowledge Engine (IKE) for monitoring and surveillance. The enhancements are suited for Rapid Response Situations where decisions must be made based on uncertain and incomplete evidence from many diverse and heterogeneous sources. The enhancements extend the probabilistic results of the traditional Bayesian analysis by (1) better quantifying uncertainty arising from model parameter uncertainty and uncertain evidence, (2) optimizing the collection of evidence to reach conclusions more quickly, and (3) allowing the analyst to determine the influence of the remaining evidence that cannot be obtained in the time allowed. These extended features give the analyst and decision maker a better comprehension of the adequacy of the acquired evidence and hence the quality of the hurried decisions. They also describe two example systems where the above features are highlighted.

  14. A Bayesian approach to estimating causal vaccine effects on binary post-infection outcomes.

    Science.gov (United States)

    Zhou, Jincheng; Chu, Haitao; Hudgens, Michael G; Halloran, M Elizabeth

    2016-01-15

    To estimate causal effects of vaccine on post-infection outcomes, Hudgens and Halloran (2006) defined a post-infection causal vaccine efficacy estimand VEI based on the principal stratification framework. They also derived closed forms for the maximum likelihood estimators of the causal estimand under some assumptions. Extending their research, we propose a Bayesian approach to estimating the causal vaccine effects on binary post-infection outcomes. The identifiability of the causal vaccine effect VEI is discussed under different assumptions on selection bias. The performance of the proposed Bayesian method is compared with the maximum likelihood method through simulation studies and two case studies - a clinical trial of a rotavirus vaccine candidate and a field study of pertussis vaccination. For both case studies, the Bayesian approach provided similar inference as the frequentist analysis. However, simulation studies with small sample sizes suggest that the Bayesian approach provides smaller bias and shorter confidence interval length.

  15. A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network.

    Directory of Open Access Journals (Sweden)

    Zengkai Liu

    Full Text Available This paper proposes a fault diagnosis methodology for a gear pump based on the ensemble empirical mode decomposition (EEMD method and the Bayesian network. Essentially, the presented scheme is a multi-source information fusion based methodology. Compared with the conventional fault diagnosis with only EEMD, the proposed method is able to take advantage of all useful information besides sensor signals. The presented diagnostic Bayesian network consists of a fault layer, a fault feature layer and a multi-source information layer. Vibration signals from sensor measurement are decomposed by the EEMD method and the energy of intrinsic mode functions (IMFs are calculated as fault features. These features are added into the fault feature layer in the Bayesian network. The other sources of useful information are added to the information layer. The generalized three-layer Bayesian network can be developed by fully incorporating faults and fault symptoms as well as other useful information such as naked eye inspection and maintenance records. Therefore, diagnostic accuracy and capacity can be improved. The proposed methodology is applied to the fault diagnosis of a gear pump and the structure and parameters of the Bayesian network is established. Compared with artificial neural network and support vector machine classification algorithms, the proposed model has the best diagnostic performance when sensor data is used only. A case study has demonstrated that some information from human observation or system repair records is very helpful to the fault diagnosis. It is effective and efficient in diagnosing faults based on uncertain, incomplete information.

  16. Providing probability distributions for the causal pathogen of clinical mastitis using naive Bayesian networks

    NARCIS (Netherlands)

    Steeneveld, W.; Gaag, van der L.C.; Barkema, H.W.; Hogeveen, H.

    2009-01-01

    Clinical mastitis (CM) can be caused by a wide variety of pathogens and farmers must start treatment before the actual causal pathogen is known. By providing a probability distribution for the causal pathogen, naive Bayesian networks (NBN) can serve as a management tool for farmers to decide which t

  17. Featuring Multiple Local Optima to Assist the User in the Interpretation of Induced Bayesian Network Models

    DEFF Research Database (Denmark)

    Dalgaard, Jens; Pena, Jose; Kocka, Tomas

    2004-01-01

    We propose a method to assist the user in the interpretation of the best Bayesian network model indu- ced from data. The method consists in extracting relevant features from the model (e.g. edges, directed paths and Markov blankets) and, then, assessing the con¯dence in them by studying multiple...

  18. On the use of Bayesian networks to combine raw data from related studies on sensory satiation

    NARCIS (Netherlands)

    Phan, V.A.; Ramaekers, M.G.; Bolhuis, D.P.; Garczarek, U.; Boekel, van M.A.J.S.; Dekker, M.

    2012-01-01

    Bayesian networks were used to combine raw datasets from two independently performed but related studies. Both studies investigated sensory satiation by measuring ad libitum intake of a tomato soup model. The Aroma study varied aroma concentration and aroma duration as the explanatory variables, and

  19. Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Husmeier, Dirk

    2008-01-01

    Applications of Bayesian networks in systems biology are computationally demanding due to the large number of model parameters. Conventional MCMC schemes based on proposal moves in structure space tend to be too slow in mixing and convergence, and have recently been superseded by proposal moves in t

  20. Comparison of a Bayesian Network with a Logistic Regression Model to Forecast IgA Nephropathy

    Directory of Open Access Journals (Sweden)

    Michel Ducher

    2013-01-01

    Full Text Available Models are increasingly used in clinical practice to improve the accuracy of diagnosis. The aim of our work was to compare a Bayesian network to logistic regression to forecast IgA nephropathy (IgAN from simple clinical and biological criteria. Retrospectively, we pooled the results of all biopsies (n=155 performed by nephrologists in a specialist clinical facility between 2002 and 2009. Two groups were constituted at random. The first subgroup was used to determine the parameters of the models adjusted to data by logistic regression or Bayesian network, and the second was used to compare the performances of the models using receiver operating characteristics (ROC curves. IgAN was found (on pathology in 44 patients. Areas under the ROC curves provided by both methods were highly significant but not different from each other. Based on the highest Youden indices, sensitivity reached (100% versus 67% and specificity (73% versus 95% using the Bayesian network and logistic regression, respectively. A Bayesian network is at least as efficient as logistic regression to estimate the probability of a patient suffering IgAN, using simple clinical and biological data obtained during consultation.

  1. Comparison of a Bayesian network with a logistic regression model to forecast IgA nephropathy.

    Science.gov (United States)

    Ducher, Michel; Kalbacher, Emilie; Combarnous, François; Finaz de Vilaine, Jérome; McGregor, Brigitte; Fouque, Denis; Fauvel, Jean Pierre

    2013-01-01

    Models are increasingly used in clinical practice to improve the accuracy of diagnosis. The aim of our work was to compare a Bayesian network to logistic regression to forecast IgA nephropathy (IgAN) from simple clinical and biological criteria. Retrospectively, we pooled the results of all biopsies (n = 155) performed by nephrologists in a specialist clinical facility between 2002 and 2009. Two groups were constituted at random. The first subgroup was used to determine the parameters of the models adjusted to data by logistic regression or Bayesian network, and the second was used to compare the performances of the models using receiver operating characteristics (ROC) curves. IgAN was found (on pathology) in 44 patients. Areas under the ROC curves provided by both methods were highly significant but not different from each other. Based on the highest Youden indices, sensitivity reached (100% versus 67%) and specificity (73% versus 95%) using the Bayesian network and logistic regression, respectively. A Bayesian network is at least as efficient as logistic regression to estimate the probability of a patient suffering IgAN, using simple clinical and biological data obtained during consultation.

  2. Use of limited data to construct Bayesian networks for probabilistic risk assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Groth, Katrina M.; Swiler, Laura Painton

    2013-03-01

    Probabilistic Risk Assessment (PRA) is a fundamental part of safety/quality assurance for nuclear power and nuclear weapons. Traditional PRA very effectively models complex hardware system risks using binary probabilistic models. However, traditional PRA models are not flexible enough to accommodate non-binary soft-causal factors, such as digital instrumentation&control, passive components, aging, common cause failure, and human errors. Bayesian Networks offer the opportunity to incorporate these risks into the PRA framework. This report describes the results of an early career LDRD project titled %E2%80%9CUse of Limited Data to Construct Bayesian Networks for Probabilistic Risk Assessment%E2%80%9D. The goal of the work was to establish the capability to develop Bayesian Networks from sparse data, and to demonstrate this capability by producing a data-informed Bayesian Network for use in Human Reliability Analysis (HRA) as part of nuclear power plant Probabilistic Risk Assessment (PRA). This report summarizes the research goal and major products of the research.

  3. Bayesian estimation inherent in a Mexican-hat-type neural network

    Science.gov (United States)

    Takiyama, Ken

    2016-05-01

    Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.

  4. Bayesian estimation inherent in a Mexican-hat-type neural network.

    Science.gov (United States)

    Takiyama, Ken

    2016-05-01

    Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.

  5. Genetic evaluation of popcorn families using a Bayesian approach via the independence chain algorithm

    Directory of Open Access Journals (Sweden)

    Marcos Rodovalho

    2014-11-01

    Full Text Available The objective of this study was to examine genetic parameters of popping expansion and grain yield in a trial of 169 halfsib families using a Bayesian approach. The independence chain algorithm with informative priors for the components of residual and family variance (inverse-gamma prior distribution was used. Popping expansion was found to be moderately heritable, with a posterior mode of h2 of 0.34, and 90% Bayesian confidence interval of 0.22 to 0.44. The heritability of grain yield (family level was moderate (h2 = 0.4 with Bayesian confidence interval of 0.28 to 0.49. The target population contains sufficient genetic variability for subsequent breeding cycles, and the Bayesian approach is a useful alternative for scientific inference in the genetic evaluation of popcorn.

  6. A Bayesian Approach to Identifying New Risk Factors for Dementia

    Science.gov (United States)

    Wen, Yen-Hsia; Wu, Shihn-Sheng; Lin, Chun-Hung Richard; Tsai, Jui-Hsiu; Yang, Pinchen; Chang, Yang-Pei; Tseng, Kuan-Hua

    2016-01-01

    Abstract Dementia is one of the most disabling and burdensome health conditions worldwide. In this study, we identified new potential risk factors for dementia from nationwide longitudinal population-based data by using Bayesian statistics. We first tested the consistency of the results obtained using Bayesian statistics with those obtained using classical frequentist probability for 4 recognized risk factors for dementia, namely severe head injury, depression, diabetes mellitus, and vascular diseases. Then, we used Bayesian statistics to verify 2 new potential risk factors for dementia, namely hearing loss and senile cataract, determined from the Taiwan's National Health Insurance Research Database. We included a total of 6546 (6.0%) patients diagnosed with dementia. We observed older age, female sex, and lower income as independent risk factors for dementia. Moreover, we verified the 4 recognized risk factors for dementia in the older Taiwanese population; their odds ratios (ORs) ranged from 3.469 to 1.207. Furthermore, we observed that hearing loss (OR = 1.577) and senile cataract (OR = 1.549) were associated with an increased risk of dementia. We found that the results obtained using Bayesian statistics for assessing risk factors for dementia, such as head injury, depression, DM, and vascular diseases, were consistent with those obtained using classical frequentist probability. Moreover, hearing loss and senile cataract were found to be potential risk factors for dementia in the older Taiwanese population. Bayesian statistics could help clinicians explore other potential risk factors for dementia and for developing appropriate treatment strategies for these patients. PMID:27227925

  7. Online Variational Bayesian Filtering-Based Mobile Target Tracking in Wireless Sensor Networks

    OpenAIRE

    Bingpeng Zhou; Qingchun Chen; Tiffany Jing Li; Pei Xiao

    2014-01-01

    The received signal strength (RSS)-based online tracking for a mobile node in wireless sensor networks (WSNs) is investigated in this paper. Firstly, a multi-layer dynamic Bayesian network (MDBN) is introduced to characterize the target mobility with either directional or undirected movement. In particular, it is proposed to employ the Wishart distribution to approximate the time-varying RSS measurement precision's randomness due to the target movement. It is shown that the proposed MDBN offe...

  8. OVERALL SENSITIVITY ANALYSIS UTILIZING BAYESIAN NETWORK FOR THE QUESTIONNAIRE INVESTIGATION ON SNS

    OpenAIRE

    Tsuyoshi Aburai; Kazuhiro Takeyasu

    2013-01-01

    Social Networking Service (SNS) is prevailing rapidly in Japan in recent years. The most popular ones are Facebook, mixi, and Twitter, which are utilized in various fields of life together with the convenient tool such as smart-phone. In this work, a questionnaire investigation is carried out in order to clarify the current usage condition, issues and desired functions. More than 1,000 samples are gathered. Bayesian network is utilized for this analysis. Sensitivity analysis is carried out by...

  9. A Bayesian Approach for Apparent Inter-plate Coupling in the Central Andes Subduction Zone

    Science.gov (United States)

    Ortega Culaciati, F. H.; Simons, M.; Genrich, J. F.; Galetzka, J.; Comte, D.; Glass, B.; Leiva, C.; Gonzalez, G.; Norabuena, E. O.

    2010-12-01

    We aim to characterize the extent of apparent plate coupling on the subduction zone megathrust with the eventual goal of understanding spatial variations of fault zone rheology, inferring relationships between apparent coupling and the rupture zone of big earthquakes, as well as the implications for earthquake and tsunami hazard. Unlike previous studies, we approach the problem from a Bayesian perspective, allowing us to completely characterize the model parameter space by searching a posteriori estimates of the range of allowable models instead of seeking a single optimum model. Two important features of the Bayesian approach are the possibility to easily implement any kind of physically plausible a priori information and to perform the inversion without regularization, other than that imposed by the way in which we parameterize the forward model. Adopting a simple kinematic back-slip model and a 3D geometry of the inter-plate contact zone, we can estimate the probability of apparent coupling (Pc) along the plate interface that is consistent with a priori information (e.g., approximate rake of back-slip) and available geodetic measurements. More generally, the Bayesian approach adopted here is applicable to any region and eventually would allow one to evaluate the spatial relationship between various inferred distributions of fault behavior (e.g., seismic rupture, postseismic creep, and apparent interseismic coupling) in a quantifiable manner. We apply this methodology to evaluate the state of apparent inter-seismic coupling in the Chilean-Peruvian subduction margin (12 S - 25 S). As observational constraints, we use previously published horizontal velocities from campaign GPS [Kendrick et al., 2001, 2006] as well as 3 component velocities from a recently established continuous GPS network in the region (CAnTO). We compare results from both joint and independent use of these data sets. We obtain patch like features for Pc with higher values located above 60 km

  10. Epistemic-based investigation of the probability of hazard scenarios using Bayesian network for the lifting operation of floating objects

    Science.gov (United States)

    Toroody, Ahmad Bahoo; Abaiee, Mohammad Mahdi; Gholamnia, Reza; Ketabdari, Mohammad Javad

    2016-09-01

    Owing to the increase in unprecedented accidents with new root causes in almost all operational areas, the importance of risk management has dramatically risen. Risk assessment, one of the most significant aspects of risk management, has a substantial impact on the system-safety level of organizations, industries, and operations. If the causes of all kinds of failure and the interactions between them are considered, effective risk assessment can be highly accurate. A combination of traditional risk assessment approaches and modern scientific probability methods can help in realizing better quantitative risk assessment methods. Most researchers face the problem of minimal field data with respect to the probability and frequency of each failure. Because of this limitation in the availability of epistemic knowledge, it is important to conduct epistemic estimations by applying the Bayesian theory for identifying plausible outcomes. In this paper, we propose an algorithm and demonstrate its application in a case study for a light-weight lifting operation in the Persian Gulf of Iran. First, we identify potential accident scenarios and present them in an event tree format. Next, excluding human error, we use the event tree to roughly estimate the prior probability of other hazard-promoting factors using a minimal amount of field data. We then use the Success Likelihood Index Method (SLIM) to calculate the probability of human error. On the basis of the proposed event tree, we use the Bayesian network of the provided scenarios to compensate for the lack of data. Finally, we determine the resulting probability of each event based on its evidence in the epistemic estimation format by building on two Bayesian network types: the probability of hazard promotion factors and the Bayesian theory. The study results indicate that despite the lack of available information on the operation of floating objects, a satisfactory result can be achieved using epistemic data.

  11. Epistemic-Based Investigation of the Probability of Hazard Scenarios Using Bayesian Network for the Lifting Operation of Floating Objects

    Institute of Scientific and Technical Information of China (English)

    Ahmad Bahoo Toroody; Mohammad Mahdi Abaiee; Reza Gholamnia; Mohammad Javad Ketabdari

    2016-01-01

    Owing to the increase in unprecedented accidents with new root causes in almost all operational areas, the importance of risk management has dramatically risen. Risk assessment, one of the most significant aspects of risk management, has a substantial impact on the system-safety level of organizations, industries, and operations. If the causes of all kinds of failure and the interactions between them are considered, effective risk assessment can be highly accurate. A combination of traditional risk assessment approaches and modern scientific probability methods can help in realizing better quantitative risk assessment methods. Most researchers face the problem of minimal field data with respect to the probability and frequency of each failure. Because of this limitation in the availability of epistemic knowledge, it is important to conduct epistemic estimations by applying the Bayesian theory for identifying plausible outcomes. In this paper, we propose an algorithm and demonstrate its application in a case study for a light-weight lifting operation in the Persian Gulf of Iran. First, we identify potential accident scenarios and present them in an event tree format. Next, excluding human error, we use the event tree to roughly estimate the prior probability of other hazard-promoting factors using a minimal amount of field data. We then use the Success Likelihood Index Method (SLIM) to calculate the probability of human error. On the basis of the proposed event tree, we use the Bayesian network of the provided scenarios to compensate for the lack of data. Finally, we determine the resulting probability of each event based on its evidence in the epistemic estimation format by building on two Bayesian network types:the probability of hazard promotion factors and the Bayesian theory. The study results indicate that despite the lack of available information on the operation of floating objects, a satisfactory result can be achieved using epistemic data.

  12. Epistemic-based investigation of the probability of hazard scenarios using Bayesian network for the lifting operation of floating objects

    Science.gov (United States)

    Toroody, Ahmad Bahoo; Abaiee, Mohammad Mahdi; Gholamnia, Reza; Ketabdari, Mohammad Javad

    2016-07-01

    Owing to the increase in unprecedented accidents with new root causes in almost all operational areas, the importance of risk management has dramatically risen. Risk assessment, one of the most significant aspects of risk management, has a substantial impact on the system-safety level of organizations, industries, and operations. If the causes of all kinds of failure and the interactions between them are considered, effective risk assessment can be highly accurate. A combination of traditional risk assessment approaches and modern scientific probability methods can help in realizing better quantitative risk assessment methods. Most researchers face the problem of minimal field data with respect to the probability and frequency of each failure. Because of this limitation in the availability of epistemic knowledge, it is important to conduct epistemic estimations by applying the Bayesian theory for identifying plausible outcomes. In this paper, we propose an algorithm and demonstrate its application in a case study for a light-weight lifting operation in the Persian Gulf of Iran. First, we identify potential accident scenarios and present them in an event tree format. Next, excluding human error, we use the event tree to roughly estimate the prior probability of other hazard-promoting factors using a minimal amount of field data. We then use the Success Likelihood Index Method (SLIM) to calculate the probability of human error. On the basis of the proposed event tree, we use the Bayesian network of the provided scenarios to compensate for the lack of data. Finally, we determine the resulting probability of each event based on its evidence in the epistemic estimation format by building on two Bayesian network types: the probability of hazard promotion factors and the Bayesian theory. The study results indicate that despite the lack of available information on the operation of floating objects, a satisfactory result can be achieved using epistemic data.

  13. National evaluation of Chinese coastal erosion to sea level rise using a Bayesian approach

    International Nuclear Information System (INIS)

    In this paper a Causal Bayesian network is developed to predict decadal-scale shoreline evolution of China to sea-level rise. The Bayesian model defines relationships between 6 factors of Chinese coastal system such as coastal geomorphology, mean tide range, mean wave height, coastal slope, relative sea-level rise rate and shoreline erosion rate. Using the Bayesian probabilistic model, we make quantitative assessment of china's shoreline evolution in response to different future sea level rise rates. Results indicate that the probability of coastal erosion with high and very high rates increases from 28% to 32.3% when relative sea-level rise rates is 4∼6mm/a, and to 44.9% when relative sea-level rise rates is more than 6mm/a. A hindcast evaluation of the Bayesian model shows that the model correctly predicts 79.3% of the cases. Model test indicates that the Bayesian model shows higher predictive capabilities for stable coasts and very highly eroding coasts than moderately and highly eroding coasts. This study demonstrates that the Bayesian model is adapted to predicting decadal-scale Chinese coastal erosion associated with sea-level rise

  14. Association analyses of the MAS-QTL data set using grammar, principal components and Bayesian network methodologies

    Directory of Open Access Journals (Sweden)

    Karacaören Burak

    2011-05-01

    Full Text Available Abstract Background It has been shown that if genetic relationships among individuals are not taken into account for genome wide association studies, this may lead to false positives. To address this problem, we used Genome-wide Rapid Association using Mixed Model and Regression and principal component stratification analyses. To account for linkage disequilibrium among the significant markers, principal components loadings obtained from top markers can be included as covariates. Estimation of Bayesian networks may also be useful to investigate linkage disequilibrium among SNPs and their relation with environmental variables. For the quantitative trait we first estimated residuals while taking polygenic effects into account. We then used a single SNP approach to detect the most significant SNPs based on the residuals and applied principal component regression to take linkage disequilibrium among these SNPs into account. For the categorical trait we used principal component stratification methodology to account for background effects. For correction of linkage disequilibrium we used principal component logit regression. Bayesian networks were estimated to investigate relationship among SNPs. Results Using the Genome-wide Rapid Association using Mixed Model and Regression and principal component stratification approach we detected around 100 significant SNPs for the quantitative trait (p Conclusions GRAMMAR could efficiently incorporate the information regarding random genetic effects. Principal component stratification should be cautiously used with stringent multiple hypothesis testing correction to correct for ancestral stratification and association analyses for binary traits when there are systematic genetic effects such as half sib family structures. Bayesian networks are useful to investigate relationships among SNPs and environmental variables.

  15. Bayesian-network-based safety risk assessment for steel construction projects.

    Science.gov (United States)

    Leu, Sou-Sen; Chang, Ching-Miao

    2013-05-01

    There are four primary accident types at steel building construction (SC) projects: falls (tumbles), object falls, object collapse, and electrocution. Several systematic safety risk assessment approaches, such as fault tree analysis (FTA) and failure mode and effect criticality analysis (FMECA), have been used to evaluate safety risks at SC projects. However, these traditional methods ineffectively address dependencies among safety factors at various levels that fail to provide early warnings to prevent occupational accidents. To overcome the limitations of traditional approaches, this study addresses the development of a safety risk-assessment model for SC projects by establishing the Bayesian networks (BN) based on fault tree (FT) transformation. The BN-based safety risk-assessment model was validated against the safety inspection records of six SC building projects and nine projects in which site accidents occurred. The ranks of posterior probabilities from the BN model were highly consistent with the accidents that occurred at each project site. The model accurately provides site safety-management abilities by calculating the probabilities of safety risks and further analyzing the causes of accidents based on their relationships in BNs. In practice, based on the analysis of accident risks and significant safety factors, proper preventive safety management strategies can be established to reduce the occurrence of accidents on SC sites.

  16. A study of anthropogenic and climatic disturbance of the New River Estuary using a Bayesian belief network.

    Science.gov (United States)

    Nojavan A, Farnaz; Qian, Song S; Paerl, Hans W; Reckhow, Kenneth H; Albright, Elizabeth A

    2014-06-15

    The present paper utilizes a Bayesian Belief Network (BBN) approach to intuitively present and quantify our current understanding of the complex physical, chemical, and biological processes that lead to eutrophication in an estuarine ecosystem (New River Estuary, North Carolina, USA). The model is further used to explore the effects of plausible future climatic and nutrient pollution management scenarios on water quality indicators. The BBN, through visualizing the structure of the network, facilitates knowledge communication with managers/stakeholders who might not be experts in the underlying scientific disciplines. Moreover, the developed structure of the BBN is transferable to other comparable estuaries. The BBN nodes are discretized exploring a new approach called moment matching method. The conditional probability tables of the variables are driven by a large dataset (four years). Our results show interaction among various predictors and their impact on water quality indicators. The synergistic effects caution future management actions. PMID:24814252

  17. Using Bayesian networks to assess the vulnerability of Hawaiian terrestrial biota to climate change

    Science.gov (United States)

    Fortini, L.; Jacobi, J.; Price, J.; Vorsino, A.; Paxton, E.; Amidon, F.; 'Ohukani'ohi'a Gon, S., III; Koob, G.; Brink, K.; Burgett, J.; Miller, S.

    2012-12-01

    As the effects of climate change on individual species become increasingly apparent, there is a clear need for effective adaptation planning to prevent an increase in species extinctions worldwide. Given the limited understanding of species responses to climate change, vulnerability assessments and species distribution models (SDMs) have been two common tools used to jump-start climate change adaptation efforts. However, although these two approaches generally serve the same purpose of understanding species future responses to climate change, they have rarely mixed. In collaboration with research and management partners from federal, state and non-profit organizations, we are conducting a climate change vulnerability assessment for hundreds of plant and forest bird species of the Main Hawaiian Islands. This assessment is the first to comprehensively consider the potential threats of climate change to a significant portion of Hawaii's fauna and flora (over one thousand species considered) and thus fills a critical gap defined by natural resource scientists and managers in the region. We have devised a flexible approach that effectively integrates species distribution models into a vulnerability assessment framework that can be easily updated with improved models and data. This tailors our assessment approach to the Pacific Island reality of often limited and fragmented information on species and large future climate uncertainties, This vulnerability assessment is based on a Bayesian network-based approach that integrates multiple landscape (e.g., topographic diversity, dispersal barriers), species trait (e.g., generation length, fecundity) and expert-knowledge based information (e.g., capacity to colonize restored habitat) relevant to long-term persistence of species under climate change. Our presentation will highlight some of the results from our assessment but will mainly focus on the utility of the flexible approach we have developed and its potential

  18. A New Approach for Time Series Forecasting: Bayesian Enhanced by Fractional Brownian Motion with Application to Rainfall Series

    Directory of Open Access Journals (Sweden)

    Cristian Rodriguez Rivero

    2016-03-01

    Full Text Available A new predictor algorithm based on Bayesian enhanced approach (BEA for long-term chaotic time series using artificial neural networks (ANN is presented. The technique based on stochastic models uses Bayesian inference by means of Fractional Brownian Motion as model data and Beta model as prior information. However, the need of experimental data for specifying and estimating causal models has not changed. Indeed, Bayes method provides another way to incorporate prior knowledge in forecasting models; the simplest representations of prior knowledge in forecasting models are hard to beat in many forecasting situations, either because prior knowledge is insufficient to improve on models or because prior knowledge leads to the conclusion that the situation is stable. This work contributes with long-term time series prediction, to give forecast horizons up to 18 steps ahead. Thus, the forecasted values and validation data are presented by solutions of benchmark chaotic series such as Mackey-Glass, Lorenz, Henon, Logistic, Rössler, Ikeda, Quadratic one-dimensional map series and monthly cumulative rainfall collected from Despeñaderos, Cordoba, Argentina. The computational results are evaluated against several non-linear ANN predictors proposed before on high roughness series that shows a better performance of Bayesian Enhanced approach in long-term forecasting.

  19. Topics in Bayesian statistics and maximum entropy

    International Nuclear Information System (INIS)

    Notions of Bayesian decision theory and maximum entropy methods are reviewed with particular emphasis on probabilistic inference and Bayesian modeling. The axiomatic approach is considered as the best justification of Bayesian analysis and maximum entropy principle applied in natural sciences. Particular emphasis is put on solving the inverse problem in digital image restoration and Bayesian modeling of neural networks. Further topics addressed briefly include language modeling, neutron scattering, multiuser detection and channel equalization in digital communications, genetic information, and Bayesian court decision-making. (author)

  20. Comparison between the basic least squares and the Bayesian approach for elastic constants identification

    Energy Technology Data Exchange (ETDEWEB)

    Gogu, C; Le Riche, R; Molimard, J; Vautrin, A [Ecole des Mines de Saint Etienne, 158 cours Fauriel, 42023 Saint Etienne (France); Haftka, R; Sankar, B [University of Florida, PO Box 116250, Gainesville, FL, 32611 (United States)], E-mail: gogu@emse.fr

    2008-11-01

    The basic formulation of the least squares method, based on the L{sub 2} norm of the misfit, is still widely used today for identifying elastic material properties from experimental data. An alternative statistical approach is the Bayesian method. We seek here situations with significant difference between the material properties found by the two methods. For a simple three bar truss example we illustrate three such situations in which the Bayesian approach leads to more accurate results: different magnitude of the measurements, different uncertainty in the measurements and correlation among measurements. When all three effects add up, the Bayesian approach can have a large advantage. We then compared the two methods for identification of elastic constants from plate vibration natural frequencies.

  1. CGBayesNets: conditional Gaussian Bayesian network learning and inference with mixed discrete and continuous data.

    Directory of Open Access Journals (Sweden)

    Michael J McGeachie

    2014-06-01

    Full Text Available Bayesian Networks (BN have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com.

  2. CGBayesNets: conditional Gaussian Bayesian network learning and inference with mixed discrete and continuous data.

    Science.gov (United States)

    McGeachie, Michael J; Chang, Hsun-Hsien; Weiss, Scott T

    2014-06-01

    Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs) formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com.

  3. Spatial Bayesian belief networks as a planning decision tool for mapping ecosystem services trade-offs on forested landscapes.

    Science.gov (United States)

    Gonzalez-Redin, Julen; Luque, Sandra; Poggio, Laura; Smith, Ron; Gimona, Alessandro

    2016-01-01

    An integrated methodology, based on linking Bayesian belief networks (BBN) with GIS, is proposed for combining available evidence to help forest managers evaluate implications and trade-offs between forest production and conservation measures to preserve biodiversity in forested habitats. A Bayesian belief network is a probabilistic graphical model that represents variables and their dependencies through specifying probabilistic relationships. In spatially explicit decision problems where it is difficult to choose appropriate combinations of interventions, the proposed integration of a BBN with GIS helped to facilitate shared understanding of the human-landscape relationships, while fostering collective management that can be incorporated into landscape planning processes. Trades-offs become more and more relevant in these landscape contexts where the participation of many and varied stakeholder groups is indispensable. With these challenges in mind, our integrated approach incorporates GIS-based data with expert knowledge to consider two different land use interests - biodiversity value for conservation and timber production potential - with the focus on a complex mountain landscape in the French Alps. The spatial models produced provided different alternatives of suitable sites that can be used by policy makers in order to support conservation priorities while addressing management options. The approach provided provide a common reasoning language among different experts from different backgrounds while helped to identify spatially explicit conflictive areas. PMID:26597639

  4. GraphAlignment: Bayesian pairwise alignment of biological networks

    Directory of Open Access Journals (Sweden)

    Kolář Michal

    2012-11-01

    Full Text Available Abstract Background With increased experimental availability and accuracy of bio-molecular networks, tools for their comparative and evolutionary analysis are needed. A key component for such studies is the alignment of networks. Results We introduce the Bioconductor package GraphAlignment for pairwise alignment of bio-molecular networks. The alignment incorporates information both from network vertices and network edges and is based on an explicit evolutionary model, allowing inference of all scoring parameters directly from empirical data. We compare the performance of our algorithm to an alternative algorithm, Græmlin 2.0. On simulated data, GraphAlignment outperforms Græmlin 2.0 in several benchmarks except for computational complexity. When there is little or no noise in the data, GraphAlignment is slower than Græmlin 2.0. It is faster than Græmlin 2.0 when processing noisy data containing spurious vertex associations. Its typical case complexity grows approximately as O(N2.6. On empirical bacterial protein-protein interaction networks (PIN and gene co-expression networks, GraphAlignment outperforms Græmlin 2.0 with respect to coverage and specificity, albeit by a small margin. On large eukaryotic PIN, Græmlin 2.0 outperforms GraphAlignment. Conclusions The GraphAlignment algorithm is robust to spurious vertex associations, correctly resolves paralogs, and shows very good performance in identification of homologous vertices defined by high vertex and/or interaction similarity. The simplicity and generality of GraphAlignment edge scoring makes the algorithm an appropriate choice for global alignment of networks.

  5. SU-E-T-51: Bayesian Network Models for Radiotherapy Error Detection

    Energy Technology Data Exchange (ETDEWEB)

    Kalet, A; Phillips, M; Gennari, J [UniversityWashington, Seattle, WA (United States)

    2014-06-01

    Purpose: To develop a probabilistic model of radiotherapy plans using Bayesian networks that will detect potential errors in radiation delivery. Methods: Semi-structured interviews with medical physicists and other domain experts were employed to generate a set of layered nodes and arcs forming a Bayesian Network (BN) which encapsulates relevant radiotherapy concepts and their associated interdependencies. Concepts in the final network were limited to those whose parameters are represented in the institutional database at a level significant enough to develop mathematical distributions. The concept-relation knowledge base was constructed using the Web Ontology Language (OWL) and translated into Hugin Expert Bayes Network files via the the RHugin package in the R statistical programming language. A subset of de-identified data derived from a Mosaiq relational database representing 1937 unique prescription cases was processed and pre-screened for errors and then used by the Hugin implementation of the Estimation-Maximization (EM) algorithm for machine learning all parameter distributions. Individual networks were generated for each of several commonly treated anatomic regions identified by ICD-9 neoplasm categories including lung, brain, lymphoma, and female breast. Results: The resulting Bayesian networks represent a large part of the probabilistic knowledge inherent in treatment planning. By populating the networks entirely with data captured from a clinical oncology information management system over the course of several years of normal practice, we were able to create accurate probability tables with no additional time spent by experts or clinicians. These probabilistic descriptions of the treatment planning allow one to check if a treatment plan is within the normal scope of practice, given some initial set of clinical evidence and thereby detect for potential outliers to be flagged for further investigation. Conclusion: The networks developed here support the

  6. Computer Networks A Systems Approach

    CERN Document Server

    Peterson, Larry L

    2011-01-01

    This best-selling and classic book teaches you the key principles of computer networks with examples drawn from the real world of network and protocol design. Using the Internet as the primary example, the authors explain various protocols and networking technologies. Their systems-oriented approach encourages you to think about how individual network components fit into a larger, complex system of interactions. Whatever your perspective, whether it be that of an application developer, network administrator, or a designer of network equipment or protocols, you will come away with a "big pictur

  7. THE DEVELOPMENT OF AN EXPERT CAR FAILURE DIAGNOSIS SYSTEM WITH BAYESIAN APPROACH

    OpenAIRE

    Widodo Budiharto

    2013-01-01

    In this study we propose a model of an Expert System to diagnose a car failure and malfunction using Bayesian Approach. An expert car failure diagnosis system is a computer system that uses specific knowledge which is owned by an expert to resolve car problems. Our specific system consists of knowledge base and solution to diagnose failure of car from Toyota Avanza, one of the favorite car used in Indonesia today and applying Bayesian approach for knowing the belief of the solution. We build ...

  8. Novel dynamic Bayesian networks for facial action element recognition and understanding

    Science.gov (United States)

    Zhao, Wei; Park, Jeong-Seon; Choi, Dong-You; Lee, Sang-Woong

    2011-12-01

    In daily life, language is an important tool of communication between people. Besides language, facial action can also provide a great amount of information. Therefore, facial action recognition has become a popular research topic in the field of human-computer interaction (HCI). However, facial action recognition is quite a challenging task due to its complexity. In a literal sense, there are thousands of facial muscular movements, many of which have very subtle differences. Moreover, muscular movements always occur simultaneously when the pose is changed. To address this problem, we first build a fully automatic facial points detection system based on a local Gabor filter bank and principal component analysis. Then, novel dynamic Bayesian networks are proposed to perform facial action recognition using the junction tree algorithm over a limited number of feature points. In order to evaluate the proposed method, we have used the Korean face database for model training. For testing, we used the CUbiC FacePix, facial expressions and emotion database, Japanese female facial expression database, and our own database. Our experimental results clearly demonstrate the feasibility of the proposed approach.

  9. Combining Bayesian Networks and Agent Based Modeling to develop a decision-support model in Vietnam

    Science.gov (United States)

    Nong, Bao Anh; Ertsen, Maurits; Schoups, Gerrit

    2016-04-01

    Complexity and uncertainty in natural resources management have been focus themes in recent years. Within these debates, with the aim to define an approach feasible for water management practice, we are developing an integrated conceptual modeling framework for simulating decision-making processes of citizens, in our case in the Day river area, Vietnam. The model combines Bayesian Networks (BNs) and Agent-Based Modeling (ABM). BNs are able to combine both qualitative data from consultants / experts / stakeholders, and quantitative data from observations on different phenomena or outcomes from other models. Further strengths of BNs are that the relationship between variables in the system is presented in a graphical interface, and that components of uncertainty are explicitly related to their probabilistic dependencies. A disadvantage is that BNs cannot easily identify the feedback of agents in the system once changes appear. Hence, ABM was adopted to represent the reaction among stakeholders under changes. The modeling framework is developed as an attempt to gain better understanding about citizen's behavior and factors influencing their decisions in order to reduce uncertainty in the implementation of water management policy.

  10. Dynamic Bayesian Network for Accurate Detection of Peptides from Tandem Mass Spectra.

    Science.gov (United States)

    Halloran, John T; Bilmes, Jeff A; Noble, William S

    2016-08-01

    A central problem in mass spectrometry analysis involves identifying, for each observed tandem mass spectrum, the corresponding generating peptide. We present a dynamic Bayesian network (DBN) toolkit that addresses this problem by using a machine learning approach. At the heart of this toolkit is a DBN for Rapid Identification (DRIP), which can be trained from collections of high-confidence peptide-spectrum matches (PSMs). DRIP's score function considers fragment ion matches using Gaussians rather than fixed fragment-ion tolerances and also finds the optimal alignment between the theoretical and observed spectrum by considering all possible alignments, up to a threshold that is controlled using a beam-pruning algorithm. This function not only yields state-of-the art database search accuracy but also can be used to generate features that significantly boost the performance of the Percolator postprocessor. The DRIP software is built upon a general purpose DBN toolkit (GMTK), thereby allowing a wide variety of options for user-specific inference tasks as well as facilitating easy modifications to the DRIP model in future work. DRIP is implemented in Python and C++ and is available under Apache license at http://melodi-lab.github.io/dripToolkit . PMID:27397138

  11. AIS-BN: An Adaptive Importance Sampling Algorithm for Evidential Reasoning in Large Bayesian Networks

    CERN Document Server

    Cheng, J; 10.1613/jair.764

    2011-01-01

    Stochastic sampling algorithms, while an attractive alternative to exact algorithms in very large Bayesian network models, have been observed to perform poorly in evidential reasoning with extremely unlikely evidence. To address this problem, we propose an adaptive importance sampling algorithm, AIS-BN, that shows promising convergence rates even under extreme conditions and seems to outperform the existing sampling algorithms consistently. Three sources of this performance improvement are (1) two heuristics for initialization of the importance function that are based on the theoretical properties of importance sampling in finite-dimensional integrals and the structural advantages of Bayesian networks, (2) a smooth learning method for the importance function, and (3) a dynamic weighting function for combining samples from different stages of the algorithm. We tested the performance of the AIS-BN algorithm along with two state of the art general purpose sampling algorithms, likelihood weighting (Fung and Chang...

  12. Prediction of Sybil attack on WSN using Bayesian network and swarm intelligence

    Science.gov (United States)

    Muraleedharan, Rajani; Ye, Xiang; Osadciw, Lisa Ann

    2008-04-01

    Security in wireless sensor networks is typically sacrificed or kept minimal due to limited resources such as memory and battery power. Hence, the sensor nodes are prone to Denial-of-service attacks and detecting the threats is crucial in any application. In this paper, the Sybil attack is analyzed and a novel prediction method, combining Bayesian algorithm and Swarm Intelligence (SI) is proposed. Bayesian Networks (BN) is used in representing and reasoning problems, by modeling the elements of uncertainty. The decision from the BN is applied to SI forming an Hybrid Intelligence Scheme (HIS) to re-route the information and disconnecting the malicious nodes in future routes. A performance comparison based on the prediction using HIS vs. Ant System (AS) helps in prioritizing applications where decisions are time-critical.

  13. D-optimal Bayesian Interrogation for Parameter and Noise Identification of Recurrent Neural Networks

    CERN Document Server

    Poczos, Barnabas

    2008-01-01

    We introduce a novel online Bayesian method for the identification of a family of noisy recurrent neural networks (RNNs). We develop Bayesian active learning technique in order to optimize the interrogating stimuli given past experiences. In particular, we consider the unknown parameters as stochastic variables and use the D-optimality principle, also known as `\\emph{infomax method}', to choose optimal stimuli. We apply a greedy technique to maximize the information gain concerning network parameters at each time step. We also derive the D-optimal estimation of the additive noise that perturbs the dynamical system of the RNN. Our analytical results are approximation-free. The analytic derivation gives rise to attractive quadratic update rules.

  14. A Bayesian Network-Based Probabilistic Framework for Drought Forecasting and Outlook

    Directory of Open Access Journals (Sweden)

    Ji Yae Shin

    2016-01-01

    Full Text Available Reliable drought forecasting is necessary to develop mitigation plans to cope with severe drought. This study developed a probabilistic scheme for drought forecasting and outlook combined with quantification of the prediction uncertainties. The Bayesian network was mainly employed as a statistical scheme for probabilistic forecasting that can represent the cause-effect relationships between the variables. The structure of the Bayesian network-based drought forecasting (BNDF model was designed using the past, current, and forecasted drought condition. In this study, the drought conditions were represented by the standardized precipitation index (SPI. The accuracy of forecasted SPIs was assessed by comparing the observed SPIs and confidence intervals (CIs, exhibiting the associated uncertainty. Then, this study suggested the drought outlook framework based on probabilistic drought forecasting results. The overall results provided sufficient agreement between the observed and forecasted drought conditions in the outlook framework.

  15. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2010-01-01

    Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente

  16. A Bayesian Belief Network to Infer Incentive Mechanisms to Reduce Antibiotic Use in Livestock Production

    OpenAIRE

    Ge, L.; Asseldonk, van, N.; Valeeva, N.I.; Hennen, W.H.G.J.; Bergevoet, R.H.M.

    2011-01-01

    Efficient policy intervention to reduce antibiotic use in livestock production requires knowledge about the rationale underlying antibiotic usage. Animal health status and management quality are considered the two most important factors that influence farmersâ¿¿ decision-making concerning antibiotic use. Information on these two factors is therefore crucial in designing incentive mechanisms. In this paper, a Bayesian belief network (BBN) is built to represent the knowledge on how these factor...

  17. Learning Bayesian Network to Explore Connectivity of Risk Factors in Enterprise Risk Management

    OpenAIRE

    Paradee Namwongse; Yachai Limpiyakorn

    2012-01-01

    Enterprise Risk Management provides a holistic top-down view of key risks facing an organization. Developing techniques that can exhibit the inter-connectivity of risks are required to effectively manage risks on an enterprise-wide. This research thus proposed Bayesian Network learning technique to explore the correlated risks in portfolio risk management using the Expressway Authority of Thailand for empirical study. The comparisons of three Bayes Net algorithms for building the risk map wer...

  18. Bayesian Belief Network Method for Predicting Asphaltene Precipitation in Light Oil Reservoirs

    OpenAIRE

    Jeffrey O. Oseh (M.Sc.); Olugbenga A. Falode (Ph.D)

    2015-01-01

    Asphaltene precipitation is caused by a number of factors including changes in pressure, temperature, and composition. The two most prevalent causes of asphaltene precipitation in light oil reservoirs are decreasing pressure and mixing oil with injected solvent in improved oil recovery processes. This study focused on predicting the amount of asphaltene precipitation with increasing Gas-Oil Ratio in a light oil reservoir using Bayesian Belief Network Method. These Artificial Intelligence-Baye...

  19. A Bayesian Network Methodology for Infrastructure Seismic Risk Assessment and Decision Support

    OpenAIRE

    Bensi, Michelle Terese

    2010-01-01

    A Bayesian network methodology is developed for performing infrastructure seismic risk assessment and providing decision support with an emphasis on immediate post-earthquake applications. The methodology consists of four major components: (1) a seismic demand model of ground motion intensity as a spatially distributed Gaussian random field accounting for multiple seismic sources with uncertain characteristics and including finite fault rupture and directivity effects; (2) a model of the perf...

  20. Combining Volcano Monitoring Timeseries Analyses with Bayesian Belief Networks to Update Hazard Forecast Estimates

    Science.gov (United States)

    Odbert, Henry; Hincks, Thea; Aspinall, Willy

    2015-04-01

    Volcanic hazard assessments must combine information about the physical processes of hazardous phenomena with observations that indicate the current state of a volcano. Incorporating both these lines of evidence can inform our belief about the likelihood (probability) and consequences (impact) of possible hazardous scenarios, forming a basis for formal quantitative hazard assessment. However, such evidence is often uncertain, indirect or incomplete. Approaches to volcano monitoring have advanced substantially in recent decades, increasing the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Interpreting these multiple strands of parallel, partial evidence thus becomes increasingly complex. In practice, interpreting many timeseries requires an individual to be familiar with the idiosyncrasies of the volcano, monitoring techniques, configuration of recording instruments, observations from other datasets, and so on. In making such interpretations, an individual must consider how different volcanic processes may manifest as measureable observations, and then infer from the available data what can or cannot be deduced about those processes. We examine how parts of this process may be synthesised algorithmically using Bayesian inference. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple strands of evidence (e.g. observations, model results and interpretations) and their associated uncertainties in a methodical manner. BBNs are usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic data from the long-lived eruption at Soufriere Hills Volcano, Montserrat. We show how our method

  1. Wireless Sensor Networks Approach

    Science.gov (United States)

    Perotti, Jose M.

    2003-01-01

    This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.

  2. Software Delivery Risk Management: Application of Bayesian Networks in Agile Software Development

    Directory of Open Access Journals (Sweden)

    Ancveire Ieva

    2015-12-01

    Full Text Available The information technology industry cannot be imagined without large- or small-scale projects. They are implemented to develop systems enabling key business processes and improving performance and enterprise resource management. However, projects often experience various difficulties during their execution. These problems are usually related to the three objectives of the project – costs, quality and deadline. A way these challenges can be solved is project risk management. However, not always the main problems and their influencing factors can be easily identified. Usually there is a need for a more profound analysis of the problem situation. In this paper, we propose the use of a Bayesian Network concept for quantitative risk management in agile projects. The Bayesian Network is explored using a case study focusing on a project that faces difficulties during the software delivery process. We explain why an agile risk analysis is needed and assess the potential risk factors, which may occur during the project. Thereafter, we design the Bayesian Network to capture the actual problem situation and make suggestions how to improve the delivery process based on the measures to be taken to reduce the occurrence of project risks.

  3. Reliability estimation of safety-critical software-based systems using Bayesian networks

    International Nuclear Information System (INIS)

    Due to the nature of software faults and the way they cause system failures new methods are needed for the safety and reliability evaluation of software-based safety-critical automation systems in nuclear power plants. In the research project 'Programmable automation system safety integrity assessment (PASSI)', belonging to the Finnish Nuclear Safety Research Programme (FINNUS, 1999-2002), various safety assessment methods and tools for software based systems are developed and evaluated. The project is financed together by the Radiation and Nuclear Safety Authority (STUK), the Ministry of Trade and Industry (KTM) and the Technical Research Centre of Finland (VTT). In this report the applicability of Bayesian networks to the reliability estimation of software-based systems is studied. The applicability is evaluated by building Bayesian network models for the systems of interest and performing simulations for these models. In the simulations hypothetical evidence is used for defining the parameter relations and for determining the ability to compensate disparate evidence in the models. Based on the experiences from modelling and simulations we are able to conclude that Bayesian networks provide a good method for the reliability estimation of software-based systems. (orig.)

  4. Analyzing the effect of introducing a kurtosis parameter in Gaussian Bayesian networks

    Energy Technology Data Exchange (ETDEWEB)

    Main, P. [Dpto. Estadistica e I.O., Fac. Ciencias Matematicas, Univ. Complutense de Madrid, 28040 Madrid (Spain)], E-mail: pmain@mat.ucm.es; Navarro, H. [Dpto. de Estadistica, I.O. y Calc. Numerico, Fac. Ciencias, UNED, 28040 Madrid (Spain)

    2009-05-15

    Gaussian Bayesian networks are graphical models that represent the dependence structure of a multivariate normal random variable with a directed acyclic graph (DAG). In Gaussian Bayesian networks the output is usually the conditional distribution of some unknown variables of interest given a set of evidential nodes whose values are known. The problem of uncertainty about the assumption of normality is very common in applications. Thus a sensitivity analysis of the non-normality effect in our conclusions could be necessary. The aspect of non-normality to be considered is the tail behavior. In this line, the multivariate exponential power distribution is a family depending on a kurtosis parameter that goes from a leptokurtic to a platykurtic distribution with the normal as a mesokurtic distribution. Therefore a more general model can be considered using the multivariate exponential power distribution to describe the joint distribution of a Bayesian network, with a kurtosis parameter reflecting deviations from the normal distribution. The sensitivity of the conclusions to this perturbation is analyzed using the Kullback-Leibler divergence measure that provides an interesting formula to evaluate the effect.

  5. Reliability estimation of safety-critical software-based systems using Bayesian networks

    Energy Technology Data Exchange (ETDEWEB)

    Helminen, A. [VTT Automation, Espoo (Finland)

    2001-06-01

    Due to the nature of software faults and the way they cause system failures new methods are needed for the safety and reliability evaluation of software-based safety-critical automation systems in nuclear power plants. In the research project 'Programmable automation system safety integrity assessment (PASSI)', belonging to the Finnish Nuclear Safety Research Programme (FINNUS, 1999-2002), various safety assessment methods and tools for software based systems are developed and evaluated. The project is financed together by the Radiation and Nuclear Safety Authority (STUK), the Ministry of Trade and Industry (KTM) and the Technical Research Centre of Finland (VTT). In this report the applicability of Bayesian networks to the reliability estimation of software-based systems is studied. The applicability is evaluated by building Bayesian network models for the systems of interest and performing simulations for these models. In the simulations hypothetical evidence is used for defining the parameter relations and for determining the ability to compensate disparate evidence in the models. Based on the experiences from modelling and simulations we are able to conclude that Bayesian networks provide a good method for the reliability estimation of software-based systems. (orig.)

  6. Construction of monitoring model and algorithm design on passenger security during shipping based on improved Bayesian network.

    Science.gov (United States)

    Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng

    2014-01-01

    A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping.

  7. A Bayesian approach to linear regression in astronomy

    CERN Document Server

    Sereno, Mauro

    2015-01-01

    Linear regression is common in astronomical analyses. I discuss a Bayesian hierarchical modeling of data with heteroscedastic and possibly correlated measurement errors and intrinsic scatter. The method fully accounts for time evolution. The slope, the normalization, and the intrinsic scatter of the relation can evolve with the redshift. The intrinsic distribution of the independent variable is approximated using a mixture of Gaussian distributions whose means and standard deviations depend on time. The method can address scatter in the measured independent variable (a kind of Eddington bias), selection effects in the response variable (Malmquist bias), and departure from linearity in form of a knee. I tested the method with toy models and simulations and quantified the effect of biases and inefficient modeling. The R-package LIRA (LInear Regression in Astronomy) is made available to perform the regression.

  8. A Bayesian approach to matched field processing in uncertain ocean environments

    Institute of Scientific and Technical Information of China (English)

    LI Jianlong; PAN Xiang

    2008-01-01

    An approach of Bayesian Matched Field Processing(MFP)was discussed in the uncertain ocean environment.In this approach,uncertainty knowledge is modeled and spatial and temporal data Received by the array are fully used.Therefore,a mechanism for MFP is found.which well combines model-based and data-driven methods of uncertain field processing.By theoretical derivation,simulation analysis and the validation of the experimental array data at sea,we find that(1)the basic components of Bayesian matched field processors are the corresponding sets of Bartlett matched field processor,MVDR(minimum variance distortionless response)matched field processor,etc.;(2)Bayesian MVDR/Bartlett MFP are the weighted sum of the MVDR/Bartlett MFP,where the weighted coefficients are the values of the a posteriori probability;(3)with the uncertain ocean environment,Bayesian MFP can more correctly locate the source than MVDR MFP or Bartlett MFP;(4)Bayesian MFP call better suppress sidelobes of the ambiguity surfaces.

  9. Generalized radial basis function networks for classification and novelty detection: self-organization of optimal Bayesian decision.

    Science.gov (United States)

    Albrecht, S; Busch, J; Kloppenburg, M; Metze, F; Tavan, P

    2000-12-01

    By adding reverse connections from the output layer to the central layer it is shown how a generalized radial basis functions (GRBF) network can self-organize to form a Bayesian classifier, which is also capable of novelty detection. For this purpose, three stochastic sequential learning rules are introduced from biological considerations which pertain to the centers, the shapes, and the widths of the receptive fields of the neurons and allow ajoint optimization of all network parameters. The rules are shown to generate maximum-likelihood estimates of the class-conditional probability density functions of labeled data in terms of multivariate normal mixtures. Upon combination with a hierarchy of deterministic annealing procedures, which implement a multiple-scale approach, the learning process can avoid the convergence problems hampering conventional expectation-maximization algorithms. Using an example from the field of speech recognition, the stages of the learning process and the capabilities of the self-organizing GRBF classifier are illustrated.

  10. Mixed Bayesian Networks with Auxiliary Variables for Automatic Speech Recognition

    OpenAIRE

    Stephenson, Todd Andrew; Magimai.-Doss, Mathew; Bourlard, Hervé

    2001-01-01

    Standard hidden Markov models (HMMs), as used in automatic speech recognition (ASR), calculate their emission probabilities by an artificial neural network (ANN) or a Gaussian distribution conditioned on the hidden state variable, considering the emissions independent of any other variable in the model. Recent work showed the benefit of conditioning the emission distributions on a discrete auxiliary variable, which is observed in training and hidden in recognition. Related work has shown the ...

  11. Inventory control of spare parts using a Bayesian approach: a case study

    NARCIS (Netherlands)

    K-P. Aronis; I. Magou (Ioulia); R. Dekker (Rommert); G. Tagaras (George)

    1999-01-01

    textabstractThis paper presents a case study of applying a Bayesian approach to forecast demand and subsequently determine the appropriate parameter S of an (S-1,S) inventory system for controlling spare parts of electronic equipment. First, the problem and the current policy are described. Then, t

  12. Equifinality of formal (DREAM) and informal (GLUE) bayesian approaches in hydrologic modeling?

    Energy Technology Data Exchange (ETDEWEB)

    Vrugt, Jasper A [Los Alamos National Laboratory; Robinson, Bruce A [Los Alamos National Laboratory; Ter Braak, Cajo J F [NON LANL; Gupta, Hoshin V [NON LANL

    2008-01-01

    In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented using the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.

  13. A Bayesian Approach for Nonlinear Structural Equation Models with Dichotomous Variables Using Logit and Probit Links

    Science.gov (United States)

    Lee, Sik-Yum; Song, Xin-Yuan; Cai, Jing-Heng

    2010-01-01

    Analysis of ordered binary and unordered binary data has received considerable attention in social and psychological research. This article introduces a Bayesian approach, which has several nice features in practical applications, for analyzing nonlinear structural equation models with dichotomous data. We demonstrate how to use the software…

  14. Genetic evaluation of popcorn families using a Bayesian approach via the independence chain algorithm

    OpenAIRE

    Marcos Rodovalho; Freddy Mora; Osvin Arriagada; Carlos Maldonado; Emmanuel Arnhold; Carlos Alberto Scapim

    2014-01-01

    The objective of this study was to examine genetic parameters of popping expansion and grain yield in a trial of 169 halfsib families using a Bayesian approach. The independence chain algorithm with informative priors for the components of residual and family variance (inverse-gamma prior distribution) was used. Popping expansion was found to be moderately heritable, with a posterior mode of h2 of 0.34, and 90% Bayesian confidence interval of 0.22 to 0.44. The heritability of gra...

  15. A Robust Bayesian Approach to an Optimal Replacement Policy for Gas Pipelines

    Directory of Open Access Journals (Sweden)

    José Pablo Arias-Nicolás

    2015-06-01

    Full Text Available In the paper, we address Bayesian sensitivity issues when integrating experts’ judgments with available historical data in a case study about strategies for the preventive maintenance of low-pressure cast iron pipelines in an urban gas distribution network. We are interested in replacement priorities, as determined by the failure rates of pipelines deployed under different conditions. We relax the assumptions, made in previous papers, about the prior distributions on the failure rates and study changes in replacement priorities under different choices of generalized moment-constrained classes of priors. We focus on the set of non-dominated actions, and among them, we propose the least sensitive action as the optimal choice to rank different classes of pipelines, providing a sound approach to the sensitivity problem. Moreover, we are also interested in determining which classes have a failure rate exceeding a given acceptable value, considered as the threshold determining no need for replacement. Graphical tools are introduced to help decisionmakers to determine if pipelines are to be replaced and the corresponding priorities.

  16. Improving standard practices for prediction in ungauged basins: Bayesian approach

    Science.gov (United States)

    Prieto, Cristina; Le-Vine, Nataliya; García, Eduardo; Medina, Raúl

    2015-04-01

    In hydrological modelling, the prediction of flows in ungauged basins is still a defiance. Among the different alternatives to quantify and reduce the uncertainty in the predictions, a Bayesian framework has proven to be advantageous. This framework allows flow prediction in ungauged basins based on regionalised hydrological indices. Being grounded on probability theory, the procedure requires a number of assumptions and decisions to be made. Among the most important ones are 1) selection of representative hydrological signatures, 2) selection of regionalization model functional form, and 3) a 'perfect' model/ input assumption. The contribution of this research is to address these three assumptions. First, to reduce an extensive set of available hydrological signatures we select a compact orthogonal set of information pieces using Principal Component Analysis. This advances the standard practice of semi-empirical selection of individual hydrological signatures. Second, we use functional-form-assumption-free Random Forests to regionalize the selected information. This allows the traditional assumption of linear regression between catchment properties and characteristics of hydrological response to be relaxes. And third, we propose utilizing non-traditional metrics to flag-up possible model/ input errors: Bayes' Factor and a newly-proposed 'Suitability' test. This addresses the typical non-realistic assumption that model is 'perfect' and the input is noise-free. The proposed methodological developments are illustrated for the empirical challenge of flow prediction in rivers in Northern Spain.

  17. Sparsely sampling the sky: a Bayesian experimental design approach

    Science.gov (United States)

    Paykari, P.; Jaffe, A. H.

    2013-08-01

    The next generation of galaxy surveys will observe millions of galaxies over large volumes of the Universe. These surveys are expensive both in time and cost, raising questions regarding the optimal investment of this time and money. In this work, we investigate criteria for selecting amongst observing strategies for constraining the galaxy power spectrum and a set of cosmological parameters. Depending on the parameters of interest, it may be more efficient to observe a larger, but sparsely sampled, area of sky instead of a smaller contiguous area. In this work, by making use of the principles of Bayesian experimental design, we will investigate the advantages and disadvantages of the sparse sampling of the sky and discuss the circumstances in which a sparse survey is indeed the most efficient strategy. For the Dark Energy Survey (DES), we find that by sparsely observing the same area in a smaller amount of time, we only increase the errors on the parameters by a maximum of 0.45 per cent. Conversely, investing the same amount of time as the original DES to observe a sparser but larger area of sky, we can in fact constrain the parameters with errors reduced by 28 per cent.

  18. Bayesian Statistical Approach To Binary Asteroid Orbit Determination

    Science.gov (United States)

    Dmitrievna Kovalenko, Irina; Stoica, Radu S.

    2015-08-01

    Orbit determination from observations is one of the classical problems in celestial mechanics. Deriving the trajectory of binary asteroid with high precision is much more complicate than the trajectory of simple asteroid. Here we present a method of orbit determination based on the algorithm of Monte Carlo Markov Chain (MCMC). This method can be used for the preliminary orbit determination with relatively small number of observations, or for adjustment of orbit previously determined.The problem consists on determination of a conditional a posteriori probability density with given observations. Applying the Bayesian statistics, the a posteriori probability density of the binary asteroid orbital parameters is proportional to the a priori and likelihood probability densities. The likelihood function is related to the noise probability density and can be calculated from O-C deviations (Observed minus Calculated positions). The optionally used a priori probability density takes into account information about the population of discovered asteroids. The a priori probability density is used to constrain the phase space of possible orbits.As a MCMC method the Metropolis-Hastings algorithm has been applied, adding a globally convergent coefficient. The sequence of possible orbits derives through the sampling of each orbital parameter and acceptance criteria.The method allows to determine the phase space of every possible orbit considering each parameter. It also can be used to derive one orbit with the biggest probability density of orbital elements.

  19. Estimating genealogies from linked marker data: a Bayesian approach

    Directory of Open Access Journals (Sweden)

    Sillanpää Mikko J

    2007-10-01

    Full Text Available Abstract Background Answers to several fundamental questions in statistical genetics would ideally require knowledge of the ancestral pedigree and of the gene flow therein. A few examples of such questions are haplotype estimation, relatedness and relationship estimation, gene mapping by combining pedigree and linkage disequilibrium information, and estimation of population structure. Results We present a probabilistic method for genealogy reconstruction. Starting with a group of genotyped individuals from some population isolate, we explore the state space of their possible ancestral histories under our Bayesian model by using Markov chain Monte Carlo (MCMC sampling techniques. The main contribution of our work is the development of sampling algorithms in the resulting vast state space with highly dependent variables. The main drawback is the computational complexity that limits the time horizon within which explicit reconstructions can be carried out in practice. Conclusion The estimates for IBD (identity-by-descent and haplotype distributions are tested in several settings using simulated data. The results appear to be promising for a further development of the method.

  20. A Bayesian approach for characterization of soft tissue viscoelasticity in acoustic radiation force imaging.

    Science.gov (United States)

    Zhao, Xiaodong; Pelegri, Assimina A

    2016-04-01

    Biomechanical imaging techniques based on acoustic radiation force (ARF) have been developed to characterize the viscoelasticity of soft tissue by measuring the motion excited by ARF non-invasively. The unknown stress distribution in the region of excitation limits an accurate inverse characterization of soft tissue viscoelasticity, and single degree-of-freedom simplified models have been applied to solve the inverse problem approximately. In this study, the ARF-induced creep imaging is employed to estimate the time constant of a Voigt viscoelastic tissue model, and an inverse finite element (FE) characterization procedure based on a Bayesian formulation is presented. The Bayesian approach aims to estimate a reasonable quantification of the probability distributions of soft tissue mechanical properties in the presence of measurement noise and model parameter uncertainty. Gaussian process metamodeling is applied to provide a fast statistical approximation based on a small number of computationally expensive FE model runs. Numerical simulation results demonstrate that the Bayesian approach provides an efficient and practical estimation of the probability distributions of time constant in the ARF-induced creep imaging. In a comparison study with the single degree of freedom models, the Bayesian approach with FE models improves the estimation results even in the presence of large uncertainty levels of the model parameters. PMID:26255624

  1. A Bayesian approach for characterization of soft tissue viscoelasticity in acoustic radiation force imaging.

    Science.gov (United States)

    Zhao, Xiaodong; Pelegri, Assimina A

    2016-04-01

    Biomechanical imaging techniques based on acoustic radiation force (ARF) have been developed to characterize the viscoelasticity of soft tissue by measuring the motion excited by ARF non-invasively. The unknown stress distribution in the region of excitation limits an accurate inverse characterization of soft tissue viscoelasticity, and single degree-of-freedom simplified models have been applied to solve the inverse problem approximately. In this study, the ARF-induced creep imaging is employed to estimate the time constant of a Voigt viscoelastic tissue model, and an inverse finite element (FE) characterization procedure based on a Bayesian formulation is presented. The Bayesian approach aims to estimate a reasonable quantification of the probability distributions of soft tissue mechanical properties in the presence of measurement noise and model parameter uncertainty. Gaussian process metamodeling is applied to provide a fast statistical approximation based on a small number of computationally expensive FE model runs. Numerical simulation results demonstrate that the Bayesian approach provides an efficient and practical estimation of the probability distributions of time constant in the ARF-induced creep imaging. In a comparison study with the single degree of freedom models, the Bayesian approach with FE models improves the estimation results even in the presence of large uncertainty levels of the model parameters.

  2. Bayesian community detection

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel N

    2012-01-01

    Many networks of scientific interest naturally decompose into clusters or communities with comparatively fewer external than internal links; however, current Bayesian models of network communities do not exert this intuitive notion of communities. We formulate a nonparametric Bayesian model...... for community detection consistent with an intuitive definition of communities and present a Markov chain Monte Carlo procedure for inferring the community structure. A Matlab toolbox with the proposed inference procedure is available for download. On synthetic and real networks, our model detects communities...... consistent with ground truth, and on real networks, it outperforms existing approaches in predicting missing links. This suggests that community structure is an important structural property of networks that should be explicitly modeled....

  3. Bayesian networks modeling for thermal error of numerical control machine tools

    Institute of Scientific and Technical Information of China (English)

    Xin-hua YAO; Jian-zhong FU; Zi-chen CHEN

    2008-01-01

    The interaction between the heat source location,its intensity,thermal expansion coefficient,the machine system configuration and the running environment creates complex thermal behavior of a machine tool,and also makes thermal error prediction difficult.To address this issue,a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented.The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques.Due to the effective combination of domain knowledge and sampled data,the BN method could adapt to the change of running state of machine,and obtain satisfactory prediction accuracy.Ex-periments on spindle thermal deformation were conducted to evaluate the modeling performance.Experimental results indicate that the BN method performs far better than the least squares(LS)analysis in terms of modeling estimation accuracy.

  4. Bayesian methods for estimating the reliability in complex hierarchical networks (interim report).

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, Youssef M.; Zurn, Rena M.; Boggs, Paul T.; Diegert, Kathleen V. (Sandia National Laboratories, Albuquerque, NM); Red-Horse, John Robert (Sandia National Laboratories, Albuquerque, NM); Pebay, Philippe Pierre

    2007-05-01

    Current work on the Integrated Stockpile Evaluation (ISE) project is evidence of Sandia's commitment to maintaining the integrity of the nuclear weapons stockpile. In this report, we undertake a key element in that process: development of an analytical framework for determining the reliability of the stockpile in a realistic environment of time-variance, inherent uncertainty, and sparse available information. This framework is probabilistic in nature and is founded on a novel combination of classical and computational Bayesian analysis, Bayesian networks, and polynomial chaos expansions. We note that, while the focus of the effort is stockpile-related, it is applicable to any reasonably-structured hierarchical system, including systems with feedback.

  5. Motor unit number estimation--a Bayesian approach.

    Science.gov (United States)

    Ridall, P Gareth; Pettitt, Anthony N; Henderson, Robert D; McCombe, Pamela A

    2006-12-01

    All muscle contractions are dependent on the functioning of motor units. In diseases such as amyotrophic lateral sclerosis (ALS), progressive loss of motor units leads to gradual paralysis. A major difficulty in the search for a treatment for these diseases has been the lack of a reliable measure of disease progression. One possible measure would be an estimate of the number of surviving motor units. Despite over 30 years of motor unit number estimation (MUNE), all proposed methods have been met with practical and theoretical objections. Our aim is to develop a method of MUNE that overcomes these objections. We record the compound muscle action potential (CMAP) from a selected muscle in response to a graded electrical stimulation applied to the nerve. As the stimulus increases, the threshold of each motor unit is exceeded, and the size of the CMAP increases until a maximum response is obtained. However, the threshold potential required to excite an axon is not a precise value but fluctuates over a small range leading to probabilistic activation of motor units in response to a given stimulus. When the threshold ranges of motor units overlap, there may be alternation where the number of motor units that fire in response to the stimulus is variable. This means that increments in the value of the CMAP correspond to the firing of different combinations of motor units. At a fixed stimulus, variability in the CMAP, measured as variance, can be used to conduct MUNE using the "statistical" or the "Poisson" method. However, this method relies on the assumptions that the numbers of motor units that are firing probabilistically have the Poisson distribution and that all single motor unit action potentials (MUAP) have a fixed and identical size. These assumptions are not necessarily correct. We propose to develop a Bayesian statistical methodology to analyze electrophysiological data to provide an estimate of motor unit numbers. Our method of MUNE incorporates the variability

  6. Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models

    Science.gov (United States)

    Plant, Nathaniel G.; Holland, K. Todd

    2011-01-01

    A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.

  7. Bayesian Approach in Estimation of Scale Parameter of Nakagami Distribution

    Directory of Open Access Journals (Sweden)

    Azam Zaka

    2014-08-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Nakagami distribution is a flexible life time distribution that may offer a good fit to some failure data sets. It has applications in attenuation of wireless signals traversing multiple paths, deriving unit hydrographs in hydrology, medical imaging studies etc. In this research, we obtain Bayesian estimators of the scale parameter of Nakagami distribution. For the posterior distribution of this parameter, we consider Uniform, Inverse Exponential and Levy priors. The three loss functions taken up are Squared Error Loss function, Quadratic Loss Function and Precautionary Loss function. The performance of an estimator is assessed on the basis of its relative posterior risk. Monte Carlo Simulations are used to compare the performance of the estimators. It is discovered that the PLF produces the least posterior risk when uniform priors is used. SELF is the best when inverse exponential and Levy Priors are used. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

  8. Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks

    CERN Document Server

    Everitt, Richard G

    2012-01-01

    Undirected graphical models are widely used in statistics, physics and machine vision. However Bayesian parameter estimation for undirected models is extremely challenging, since evaluation of the posterior typically involves the calculation of an intractable normalising constant. This problem has received much attention, but very little of this has focussed on the important practical case where the data consists of noisy or incomplete observations of the underlying hidden structure. This paper specifically addresses this problem, comparing two alternative methodologies. In the first of these approaches particle Markov chain Monte Carlo (Andrieu et al., 2010) is used to efficiently explore the parameter space, combined with the exchange algorithm (Murray et al., 2006) for avoiding the calculation of the intractable normalising constant (a proof showing that this combination targets the correct distribution in found in a supplementary appendix online). This approach is compared with approximate Bayesian comput...

  9. A Comparison of Hierarchical and Non-Hierarchical Bayesian Approaches for Fitting Allometric Larch (Larix.spp. Biomass Equations

    Directory of Open Access Journals (Sweden)

    Dongsheng Chen

    2016-01-01

    Full Text Available Accurate biomass estimations are important for assessing and monitoring forest carbon storage. Bayesian theory has been widely applied to tree biomass models. Recently, a hierarchical Bayesian approach has received increasing attention for improving biomass models. In this study, tree biomass data were obtained by sampling 310 trees from 209 permanent sample plots from larch plantations in six regions across China. Non-hierarchical and hierarchical Bayesian approaches were used to model allometric biomass equations. We found that the total, root, stem wood, stem bark, branch and foliage biomass model relationships were statistically significant (p-values < 0.001 for both the non-hierarchical and hierarchical Bayesian approaches, but the hierarchical Bayesian approach increased the goodness-of-fit statistics over the non-hierarchical Bayesian approach. The R2 values of the hierarchical approach were higher than those of the non-hierarchical approach by 0.008, 0.018, 0.020, 0.003, 0.088 and 0.116 for the total tree, root, stem wood, stem bark, branch and foliage models, respectively. The hierarchical Bayesian approach significantly improved the accuracy of the biomass model (except for the stem bark and can reflect regional differences by using random parameters to improve the regional scale model accuracy.

  10. Bayesian approach to inverse problems for functions with a variable-index Besov prior

    Science.gov (United States)

    Jia, Junxiong; Peng, Jigen; Gao, Jinghuai

    2016-08-01

    The Bayesian approach has been adopted to solve inverse problems that reconstruct a function from noisy observations. Prior measures play a key role in the Bayesian method. Hence, many probability measures have been proposed, among which total variation (TV) is a well-known prior measure that can preserve sharp edges. However, it has two drawbacks, the staircasing effect and a lack of the discretization-invariant property. The variable-index TV prior has been proposed and analyzed in the area of image analysis for the former, and the Besov prior has been employed recently for the latter. To overcome both issues together, in this paper, we present a variable-index Besov prior measure, which is a non-Gaussian measure. Some useful properties of this new prior measure have been proven for functions defined on a torus. We have also generalized Bayesian inverse theory in infinite dimensions for our new setting. Finally, this theory has been applied to integer- and fractional-order backward diffusion problems. To the best of our knowledge, this is the first time that the Bayesian approach has been used for the fractional-order backward diffusion problem, which provides an opportunity to quantify its uncertainties.

  11. Bayesian belief networks for human reliability analysis: A review of applications and gaps

    International Nuclear Information System (INIS)

    The use of Bayesian Belief Networks (BBNs) in risk analysis (and in particular Human Reliability Analysis, HRA) is fostered by a number of features, attractive in fields with shortage of data and consequent reliance on subjective judgments: the intuitive graphical representation, the possibility of combining diverse sources of information, the use the probabilistic framework to characterize uncertainties. In HRA, BBN applications are steadily increasing, each emphasizing a different BBN feature or a different HRA aspect to improve. This paper aims at a critical review of these features as well as at suggesting research needs. Five groups of BBN applications are analysed: modelling of organizational factors, analysis of the relationships among failure influencing factors, BBN-based extensions of existing HRA methods, dependency assessment among human failure events, assessment of situation awareness. Further, the paper analyses the process for building BBNs and in particular how expert judgment is used in the assessment of the BBN conditional probability distributions. The gaps identified in the review suggest the need for establishing more systematic frameworks to integrate the different sources of information relevant for HRA (cognitive models, empirical data, and expert judgment) and to investigate algorithms to avoid elicitation of many relationships via expert judgment. - Highlights: • We analyze BBN uses for HRA applications; but some conclusions can be generalized. • Special review focus on BBN building approaches, key for model acceptance. • Gaps relate to the transparency of the BBN building and quantification phases. • Need for more systematic framework to integrate different sources of information. • Need of ways to avoid elicitation of many relationships via expert judgment

  12. Bayesian approach to color-difference models based on threshold and constant-stimuli methods.

    Science.gov (United States)

    Brusola, Fernando; Tortajada, Ignacio; Lengua, Ismael; Jordá, Begoña; Peris, Guillermo

    2015-06-15

    An alternative approach based on statistical Bayesian inference is presented to deal with the development of color-difference models and the precision of parameter estimation. The approach was applied to simulated data and real data, the latter published by selected authors involved with the development of color-difference formulae using traditional methods. Our results show very good agreement between the Bayesian and classical approaches. Among other benefits, our proposed methodology allows one to determine the marginal posterior distribution of each random individual parameter of the color-difference model. In this manner, it is possible to analyze the effect of individual parameters on the statistical significance calculation of a color-difference equation. PMID:26193510

  13. Analyzing Rice distributed functional magnetic resonance imaging data: a Bayesian approach

    International Nuclear Information System (INIS)

    Analyzing functional MRI data is often a hard task due to the fact that these periodic signals are strongly disturbed with noise. In many cases, the signals are buried under the noise and not visible, such that detection is quite impossible. However, it is well known that the amplitude measurements of such disturbed signals follow a Rice distribution which is characterized by two parameters. In this paper, an alternative Bayesian approach is proposed to tackle this two-parameter estimation problem. By incorporating prior knowledge into a mathematical framework, the drawbacks of the existing methods (i.e. the maximum likelihood approach and the method of moments) can be overcome. The performance of the proposed Bayesian estimator is analyzed theoretically and illustrated through simulations. Finally, the developed approach is successfully applied to measurement data for the analysis of functional MRI

  14. A New Method for E-Government Procurement Using Collaborative Filtering and Bayesian Approach

    Directory of Open Access Journals (Sweden)

    Shuai Zhang

    2013-01-01

    Full Text Available Nowadays, as the Internet services increase faster than ever before, government systems are reinvented as E-government services. Therefore, government procurement sectors have to face challenges brought by the explosion of service information. This paper presents a novel method for E-government procurement (eGP to search for the optimal procurement scheme (OPS. Item-based collaborative filtering and Bayesian approach are used to evaluate and select the candidate services to get the top-M recommendations such that the involved computation load can be alleviated. A trapezoidal fuzzy number similarity algorithm is applied to support the item-based collaborative filtering and Bayesian approach, since some of the services’ attributes can be hardly expressed as certain and static values but only be easily represented as fuzzy values. A prototype system is built and validated with an illustrative example from eGP to confirm the feasibility of our approach.

  15. A new method for E-government procurement using collaborative filtering and Bayesian approach.

    Science.gov (United States)

    Zhang, Shuai; Xi, Chengyu; Wang, Yan; Zhang, Wenyu; Chen, Yanhong

    2013-01-01

    Nowadays, as the Internet services increase faster than ever before, government systems are reinvented as E-government services. Therefore, government procurement sectors have to face challenges brought by the explosion of service information. This paper presents a novel method for E-government procurement (eGP) to search for the optimal procurement scheme (OPS). Item-based collaborative filtering and Bayesian approach are used to evaluate and select the candidate services to get the top-M recommendations such that the involved computation load can be alleviated. A trapezoidal fuzzy number similarity algorithm is applied to support the item-based collaborative filtering and Bayesian approach, since some of the services' attributes can be hardly expressed as certain and static values but only be easily represented as fuzzy values. A prototype system is built and validated with an illustrative example from eGP to confirm the feasibility of our approach. PMID:24385869

  16. Bayesian approaches to spatial inference: Modelling and computational challenges and solutions

    Science.gov (United States)

    Moores, Matthew; Mengersen, Kerrie

    2014-12-01

    We discuss a range of Bayesian modelling approaches for spatial data and investigate some of the associated computational challenges. This paper commences with a brief review of Bayesian mixture models and Markov random fields, with enabling computational algorithms including Markov chain Monte Carlo (MCMC) and integrated nested Laplace approximation (INLA). Following this, we focus on the Potts model as a canonical approach, and discuss the challenge of estimating the inverse temperature parameter that controls the degree of spatial smoothing. We compare three approaches to addressing the doubly intractable nature of the likelihood, namely pseudo-likelihood, path sampling and the exchange algorithm. These techniques are applied to satellite data used to analyse water quality in the Great Barrier Reef.

  17. MATRIX-VECTOR ALGORITHMS OF LOCAL POSTERIORI INFERENCE IN ALGEBRAIC BAYESIAN NETWORKS ON QUANTA PROPOSITIONS

    Directory of Open Access Journals (Sweden)

    A. A. Zolotin

    2015-07-01

    Full Text Available Posteriori inference is one of the three kinds of probabilistic-logic inferences in the probabilistic graphical models theory and the base for processing of knowledge patterns with probabilistic uncertainty using Bayesian networks. The paper deals with a task of local posteriori inference description in algebraic Bayesian networks that represent a class of probabilistic graphical models by means of matrix-vector equations. The latter are essentially based on the use of tensor product of matrices, Kronecker degree and Hadamard product. Matrix equations for calculating posteriori probabilities vectors within posteriori inference in knowledge patterns with quanta propositions are obtained. Similar equations of the same type have already been discussed within the confines of the theory of algebraic Bayesian networks, but they were built only for the case of posteriori inference in the knowledge patterns on the ideals of conjuncts. During synthesis and development of matrix-vector equations on quanta propositions probability vectors, a number of earlier results concerning normalizing factors in posteriori inference and assignment of linear projective operator with a selector vector was adapted. We consider all three types of incoming evidences - deterministic, stochastic and inaccurate - combined with scalar and interval estimation of probability truth of propositional formulas in the knowledge patterns. Linear programming problems are formed. Their solution gives the desired interval values of posterior probabilities in the case of inaccurate evidence or interval estimates in a knowledge pattern. That sort of description of a posteriori inference gives the possibility to extend the set of knowledge pattern types that we can use in the local and global posteriori inference, as well as simplify complex software implementation by use of existing third-party libraries, effectively supporting submission and processing of matrices and vectors when

  18. Bayesian Regularization in a Neural Network Model to Estimate Lines of Code Using Function Points

    Directory of Open Access Journals (Sweden)

    K. K. Aggarwal

    2005-01-01

    Full Text Available It is a well known fact that at the beginning of any project, the software industry needs to know, how much will it cost to develop and what would be the time required ? . This paper examines the potential of using a neural network model for estimating the lines of code, once the functional requirements are known. Using the International Software Benchmarking Standards Group (ISBSG Repository Data (release 9 for the experiment, this paper examines the performance of back propagation feed forward neural network to estimate the Source Lines of Code. Multiple training algorithms are used in the experiments. Results demonstrate that the neural network models trained using Bayesian Regularization provide the best results and are suitable for this purpose.

  19. Constraining East Antarctic mass trends using a Bayesian inference approach

    Science.gov (United States)

    Martin-Español, Alba; Bamber, Jonathan L.

    2016-04-01

    East Antarctica is an order of magnitude larger than its western neighbour and the Greenland ice sheet. It has the greatest potential to contribute to sea level rise of any source, including non-glacial contributors. It is, however, the most challenging ice mass to constrain because of a range of factors including the relative paucity of in-situ observations and the poor signal to noise ratio of Earth Observation data such as satellite altimetry and gravimetry. A recent study using satellite radar and laser altimetry (Zwally et al. 2015) concluded that the East Antarctic Ice Sheet (EAIS) had been accumulating mass at a rate of 136±28 Gt/yr for the period 2003-08. Here, we use a Bayesian hierarchical model, which has been tested on, and applied to, the whole of Antarctica, to investigate the impact of different assumptions regarding the origin of elevation changes of the EAIS. We combined GRACE, satellite laser and radar altimeter data and GPS measurements to solve simultaneously for surface processes (primarily surface mass balance, SMB), ice dynamics and glacio-isostatic adjustment over the period 2003-13. The hierarchical model partitions mass trends between SMB and ice dynamics based on physical principles and measures of statistical likelihood. Without imposing the division between these processes, the model apportions about a third of the mass trend to ice dynamics, +18 Gt/yr, and two thirds, +39 Gt/yr, to SMB. The total mass trend for that period for the EAIS was 57±20 Gt/yr. Over the period 2003-08, we obtain an ice dynamic trend of 12 Gt/yr and a SMB trend of 15 Gt/yr, with a total mass trend of 27 Gt/yr. We then imposed the condition that the surface mass balance is tightly constrained by the regional climate model RACMO2.3 and allowed height changes due to ice dynamics to occur in areas of low surface velocities (<10 m/yr) , such as those in the interior of East Antarctica (a similar condition as used in Zwally 2015). The model must find a solution that

  20. Forensic Signature Detection of Yersinia Pestis Culturing Practices Across Institutions Using a Bayesian Network

    Energy Technology Data Exchange (ETDEWEB)

    Webb-Robertson, Bobbie-Jo M.; Corley, Courtney D.; McCue, Lee Ann; Clowers, Brian H.; Dowling, Chase P.; Wahl, Karen L.; Wunschel, David S.; Kreuzer, Helen W.

    2014-03-21

    The field of bioforensics is focused on the analysis of evidence from a biocrime. Existing laboratory analyses can identify the specific strain of an organism in the evidence, as well signatures of the specific culture batch of organisms, such as low-frequency contaminants or indicators of growth and processing methods. To link these disparate types of physical data to potential suspects, investigators may need to identify institutions or individuals whose access to strains and culturing practices match those identified from the evidence. In this work we present a Bayesian statistical network to fuse different types of analytical measurements that predict the production environment of a Yersinia pestis sample under investigation with automated test processing of scientific publications to identify institutions with a history of growing Y. pestis under similar conditions. Furthermore, the textual and experimental signatures were evaluated recursively to determine the overall sensitivity of the network across all levels of false positives. We illustrate that institutions associated with several specific culturing practices can be accurately selected based on the experimental signature from only a few analytical measurements. These findings demonstrate that similar Bayesian networks can be generated generically for many organisms of interest and their deployment is not prohibitive due to either computational or experimental factors.

  1. OVERALL SENSITIVITY ANALYSIS UTILIZING BAYESIAN NETWORK FOR THE QUESTIONNAIRE INVESTIGATION ON SNS

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Aburai

    2013-11-01

    Full Text Available Social Networking Service (SNS is prevailing rapidly in Japan in recent years. The most popular ones are Facebook, mixi, and Twitter, which are utilized in various fields of life together with the convenient tool such as smart-phone. In this work, a questionnaire investigation is carried out in order to clarify the current usage condition, issues and desired functions. More than 1,000 samples are gathered. Bayesian network is utilized for this analysis. Sensitivity analysis is carried out by setting evidence to all items. This enables overall analysis for each item. We analyzed them by sensitivity analysis and some useful results were obtained. We have presented the paper concerning this. But the volume becomes too large, therefore we have split them and this paper shows the latter half of the investigation result by setting evidence to Bayesian Network parameters. Differences in usage objectives and SNS sites are made clear by the attributes and preference of SNS users. They can be utilized effectively for marketing by clarifying the target customer through the sensitivity analysis.

  2. A Study of New Method for Weapon System Effectiveness Evaluation Based on Bayesian Network

    Institute of Scientific and Technical Information of China (English)

    YAN Dai-wei; GU Liang-xian; PAN Lei

    2008-01-01

    As weapon system effectiveness is affected by many factors, its evaluation is essentially a multi-criterion decision making problem for its complexity. The evaluation model of the effectiveness is established on the basis of metrics architecture of the effectiveness. The Bayesian network, which is used to evaluate the effectiveness, is established based on the metrics architecture and the evaluation models. For getting the weights of the metrics by Bayesian network, subjective initial values of the weights are given, gradient ascent algorithm is adopted, and the reasonable values of the weights are achieved. And then the effectiveness of every weapon system project is gained. The weapon system, whose effectiveness is relative maximum, is the optimization system. The research result shows that this method can solve the problem of AHP method which evaluation results are not compatible to the practice results and overcome the shortcoming of neural network in multilayer and multi-criterion decision. The method offers a new approaeh for evaluating the effectiveness.

  3. An object-oriented Bayesian network modeling the causes of leg disorders in finisher herds

    DEFF Research Database (Denmark)

    Jensen, Tina Birk; Kristensen, Anders Ringgaard; Toft, Nils;

    2009-01-01

    pigs (e.g. results from diagnostic tests) were used to estimate the most likely cause of leg disorders at herd level. As information to the model originated from two different levels, we used an object-oriented structure in order to ease the specification of the Bayesian network. Hence, a Herd class...... the behaviour of the model, we investigated the value of different levels of evidence in two fictitious herds with different herd characteristics related to the risk of leg disorders (e.g. purchase policy, production type and the stocking density in pens). The model enabled us to demonstrate the value...

  4. Bayesian approach for three-dimensional aquifer characterization at the hanford 300 area

    Directory of Open Access Journals (Sweden)

    H. Murakami

    2010-03-01

    Full Text Available This study presents a stochastic, three-dimensional characterization of a heterogeneous hydraulic conductivity field within DOE's Hanford 300 Area site, Washington, by assimilating large-scale, constant-rate injection test data with small-scale, three-dimensional electromagnetic borehole flowmeter (EBF measurement data. We first inverted the injection test data to estimate the transmissivity field, using zeroth-order temporal moments of pressure buildup curves. We applied a newly developed Bayesian geostatistical inversion framework, the method of anchored distributions (MAD, to obtain a joint posterior distribution of geostatistical parameters and local log-transmissivities at multiple locations. The unique aspects of MAD that make it suitable for this purpose are its ability to integrate multi-scale, multi-type data within a Bayesian framework and to compute a nonparametric posterior distribution. After we combined the distribution of transmissivities with depth-discrete relative-conductivity profile from the EBF data, we inferred the three-dimensional geostatistical parameters of the log-conductivity field, using the Bayesian model-based geostatistics. Such consistent use of the Bayesian approach throughout the procedure enabled us to systematically incorporate data uncertainty into the final posterior distribution. The method was tested in a synthetic study and validated using the actual data that was not part of the estimation. Results showed broader and skewed posterior distributions of geostatistical parameters except for the mean, which suggests the importance of inferring the entire distribution to quantify the parameter uncertainty.

  5. Bayesian approach for three-dimensional aquifer characterization at the Hanford 300 Area

    Directory of Open Access Journals (Sweden)

    H. Murakami

    2010-10-01

    Full Text Available This study presents a stochastic, three-dimensional characterization of a heterogeneous hydraulic conductivity field within the Hanford 300 Area, Washington, USA, by assimilating large-scale, constant-rate injection test data with small-scale, three-dimensional electromagnetic borehole flowmeter (EBF measurement data. We first inverted the injection test data to estimate the transmissivity field, using zeroth-order temporal moments of pressure buildup curves. We applied a newly developed Bayesian geostatistical inversion framework, the method of anchored distributions (MAD, to obtain a joint posterior distribution of geostatistical parameters and local log-transmissivities at multiple locations. The unique aspects of MAD that make it suitable for this purpose are its ability to integrate multi-scale, multi-type data within a Bayesian framework and to compute a nonparametric posterior distribution. After we combined the distribution of transmissivities with depth-discrete relative-conductivity profile from the EBF data, we inferred the three-dimensional geostatistical parameters of the log-conductivity field, using the Bayesian model-based geostatistics. Such consistent use of the Bayesian approach throughout the procedure enabled us to systematically incorporate data uncertainty into the final posterior distribution. The method was tested in a synthetic study and validated using the actual data that was not part of the estimation. Results showed broader and skewed posterior distributions of geostatistical parameters except for the mean, which suggests the importance of inferring the entire distribution to quantify the parameter uncertainty.

  6. A Cooperative Bayesian Nonparametric Framework for Primary User Activity Monitoring in Cognitive Radio Network

    CERN Document Server

    Saad, Walid; Poor, H Vincent; Başar, Tamer; Song, Ju Bin

    2012-01-01

    This paper introduces a novel approach that enables a number of cognitive radio devices that are observing the availability pattern of a number of primary users(PUs), to cooperate and use \\emph{Bayesian nonparametric} techniques to estimate the distributions of the PUs' activity pattern, assumed to be completely unknown. In the proposed model, each cognitive node may have its own individual view on each PU's distribution, and, hence, seeks to find partners having a correlated perception. To address this problem, a coalitional game is formulated between the cognitive devices and an algorithm for cooperative coalition formation is proposed. It is shown that the proposed coalition formation algorithm allows the cognitive nodes that are experiencing a similar behavior from some PUs to self-organize into disjoint, independent coalitions. Inside each coalition, the cooperative cognitive nodes use a combination of Bayesian nonparametric models such as the Dirichlet process and statistical goodness of fit techniques ...

  7. Bayesian network ensemble as a multivariate strategy to predict radiation pneumonitis risk

    International Nuclear Information System (INIS)

    Purpose: Prediction of radiation pneumonitis (RP) has been shown to be challenging due to the involvement of a variety of factors including dose–volume metrics and radiosensitivity biomarkers. Some of these factors are highly correlated and might affect prediction results when combined. Bayesian network (BN) provides a probabilistic framework to represent variable dependencies in a directed acyclic graph. The aim of this study is to integrate the BN framework and a systems’ biology approach to detect possible interactions among RP risk factors and exploit these relationships to enhance both the understanding and prediction of RP. Methods: The authors studied 54 nonsmall-cell lung cancer patients who received curative 3D-conformal radiotherapy. Nineteen RP events were observed (common toxicity criteria for adverse events grade 2 or higher). Serum concentration of the following four candidate biomarkers were measured at baseline and midtreatment: alpha-2-macroglobulin, angiotensin converting enzyme (ACE), transforming growth factor, interleukin-6. Dose-volumetric and clinical parameters were also included as covariates. Feature selection was performed using a Markov blanket approach based on the Koller–Sahami filter. The Markov chain Monte Carlo technique estimated the posterior distribution of BN graphs built from the observed data of the selected variables and causality constraints. RP probability was estimated using a limited number of high posterior graphs (ensemble) and was averaged for the final RP estimate using Bayes’ rule. A resampling method based on bootstrapping was applied to model training and validation in order to control under- and overfit pitfalls. Results: RP prediction power of the BN ensemble approach reached its optimum at a size of 200. The optimized performance of the BN model recorded an area under the receiver operating characteristic curve (AUC) of 0.83, which was significantly higher than multivariate logistic regression (0

  8. Bayesian network ensemble as a multivariate strategy to predict radiation pneumonitis risk

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangkyu, E-mail: sangkyu.lee@mail.mcgill.ca; Ybarra, Norma; Jeyaseelan, Krishinima; Seuntjens, Jan; El Naqa, Issam [Medical Physics Unit, McGill University, Montreal, Quebec H3G1A4 (Canada); Faria, Sergio; Kopek, Neil; Brisebois, Pascale [Department of Radiation Oncology, Montreal General Hospital, Montreal, H3G1A4 (Canada); Bradley, Jeffrey D.; Robinson, Clifford [Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110 (United States)

    2015-05-15

    Purpose: Prediction of radiation pneumonitis (RP) has been shown to be challenging due to the involvement of a variety of factors including dose–volume metrics and radiosensitivity biomarkers. Some of these factors are highly correlated and might affect prediction results when combined. Bayesian network (BN) provides a probabilistic framework to represent variable dependencies in a directed acyclic graph. The aim of this study is to integrate the BN framework and a systems’ biology approach to detect possible interactions among RP risk factors and exploit these relationships to enhance both the understanding and prediction of RP. Methods: The authors studied 54 nonsmall-cell lung cancer patients who received curative 3D-conformal radiotherapy. Nineteen RP events were observed (common toxicity criteria for adverse events grade 2 or higher). Serum concentration of the following four candidate biomarkers were measured at baseline and midtreatment: alpha-2-macroglobulin, angiotensin converting enzyme (ACE), transforming growth factor, interleukin-6. Dose-volumetric and clinical parameters were also included as covariates. Feature selection was performed using a Markov blanket approach based on the Koller–Sahami filter. The Markov chain Monte Carlo technique estimated the posterior distribution of BN graphs built from the observed data of the selected variables and causality constraints. RP probability was estimated using a limited number of high posterior graphs (ensemble) and was averaged for the final RP estimate using Bayes’ rule. A resampling method based on bootstrapping was applied to model training and validation in order to control under- and overfit pitfalls. Results: RP prediction power of the BN ensemble approach reached its optimum at a size of 200. The optimized performance of the BN model recorded an area under the receiver operating characteristic curve (AUC) of 0.83, which was significantly higher than multivariate logistic regression (0

  9. Optimal speech motor control and token-to-token variability: a Bayesian modeling approach.

    Science.gov (United States)

    Patri, Jean-François; Diard, Julien; Perrier, Pascal

    2015-12-01

    The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the central nervous system selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of this approach, one of its drawbacks is the intrinsic contradiction between the concept of optimality and the observed experimental intra-speaker token-to-token variability. The present paper proposes an alternative approach by formulating feedforward optimal control in a probabilistic Bayesian modeling framework. This is illustrated by controlling a biomechanical model of the vocal tract for speech production and by comparing it with an existing optimal control model (GEPPETO). The essential elements of this optimal control model are presented first. From them the Bayesian model is constructed in a progressive way. Performance of the Bayesian model is evaluated based on computer simulations and compared to the optimal control model. This approach is shown to be appropriate for solving the speech planning problem while accounting for variability in a principled way.

  10. Optimal speech motor control and token-to-token variability: a Bayesian modeling approach.

    Science.gov (United States)

    Patri, Jean-François; Diard, Julien; Perrier, Pascal

    2015-12-01

    The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the central nervous system selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of this approach, one of its drawbacks is the intrinsic contradiction between the concept of optimality and the observed experimental intra-speaker token-to-token variability. The present paper proposes an alternative approach by formulating feedforward optimal control in a probabilistic Bayesian modeling framework. This is illustrated by controlling a biomechanical model of the vocal tract for speech production and by comparing it with an existing optimal control model (GEPPETO). The essential elements of this optimal control model are presented first. From them the Bayesian model is constructed in a progressive way. Performance of the Bayesian model is evaluated based on computer simulations and compared to the optimal control model. This approach is shown to be appropriate for solving the speech planning problem while accounting for variability in a principled way. PMID:26497359

  11. Using of bayesian networks to estimate the probability of "NATECH" scenario occurrence

    Science.gov (United States)

    Dobes, Pavel; Dlabka, Jakub; Jelšovská, Katarína; Polorecká, Mária; Baudišová, Barbora; Danihelka, Pavel

    2015-04-01

    In the twentieth century, implementation of Bayesian statistics and probability was not much used (may be it wasn't a preferred approach) in the area of natural and industrial risk analysis and management. Neither it was used within analysis of so called NATECH accidents (chemical accidents triggered by natural events, such as e.g. earthquakes, floods, lightning etc.; ref. E. Krausmann, 2011, doi:10.5194/nhess-11-921-2011). Main role, from the beginning, played here so called "classical" frequentist probability (ref. Neyman, 1937), which rely up to now especially on the right/false results of experiments and monitoring and didn't enable to count on expert's beliefs, expectations and judgements (which is, on the other hand, one of the once again well known pillars of Bayessian approach to probability). In the last 20 or 30 years, there is possible to observe, through publications and conferences, the Renaissance of Baysssian statistics into many scientific disciplines (also into various branches of geosciences). The necessity of a certain level of trust in expert judgment within risk analysis is back? After several decades of development on this field, it could be proposed following hypothesis (to be checked): "We couldn't estimate probabilities of complex crisis situations and their TOP events (many NATECH events could be classified as crisis situations or emergencies), only by classical frequentist approach, but also by using of Bayessian approach (i.e. with help of prestaged Bayessian Network including expert belief and expectation as well as classical frequentist inputs). Because - there is not always enough quantitative information from monitoring of historical emergencies, there could be several dependant or independant variables necessary to consider and in generally - every emergency situation always have a little different run." In this topic, team of authors presents its proposal of prestaged typized Bayessian network model for specified NATECH scenario

  12. Measuring the consequences of wildfires in a Bayesian network with vulnerability and exposure indicators

    Science.gov (United States)

    Papakosta, Panagiota; Botzler, Sebastian; Krug, Kai; Straub, Daniel

    2013-04-01

    areas and rare species is also included. Presence of cultural heritage sites, power stations and power line network influence social exposure. The conceptual framework is demonstrated with a Bayesian Network (BN). The BN model incorporates empirical observation, physical models and expert knowledge; it can also explicitly account for uncertainty in the indicators. The proposed model is applied to the island of Cyprus. Maps support the demonstration of results. [1] Keeley, J.E.; Bond, W.J.; Bradstock, R.A.; Pausas, J.G.; Rundel, P.W. (2012): Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press, New York, USA. [2] UN/ISDR (International Strategy for Disaster Reduction (2004): Living with Risk: A Global Review of Disaster Reduction Initiatives, Geneva, UN Publications. [3] Birkmann, J. (2006): Measuring vulnerability to natural hazards: towards disaster resilient societies. United Nations University Press, Tokyo, Japan.

  13. THE DEVELOPMENT OF AN EXPERT CAR FAILURE DIAGNOSIS SYSTEM WITH BAYESIAN APPROACH

    Directory of Open Access Journals (Sweden)

    Widodo Budiharto

    2013-01-01

    Full Text Available In this study we propose a model of an Expert System to diagnose a car failure and malfunction using Bayesian Approach. An expert car failure diagnosis system is a computer system that uses specific knowledge which is owned by an expert to resolve car problems. Our specific system consists of knowledge base and solution to diagnose failure of car from Toyota Avanza, one of the favorite car used in Indonesia today and applying Bayesian approach for knowing the belief of the solution. We build Knowledge representation techniques of symptoms and solution froman experts using production rules. The experimental results presented and we obtained that the system has been able to perform diagnosis on car failure, giving solution and also gives the probability value of that solution.

  14. A Bayesian Approach to Multistage Fitting of the Variation of the Skeletal Age Features

    Directory of Open Access Journals (Sweden)

    Dong Hua

    2009-01-01

    Full Text Available Accurate assessment of skeletal maturity is important clinically. Skeletal age assessment is usually based on features encoded in ossification centers. Therefore, it is critical to design a mechanism to capture as much as possible characteristics of features. We have observed that given a feature, there exist stages of the skeletal age such that the variation pattern of the feature differs in these stages. Based on this observation, we propose a Bayesian cut fitting to describe features in response to the skeletal age. With our approach, appropriate positions for stage separation are determined automatically by a Bayesian approach, and a model is used to fit the variation of a feature within each stage. Our experimental results show that the proposed method surpasses the traditional fitting using only one line or one curve not only in the efficiency and accuracy of fitting but also in global and local feature characterization.

  15. Evaluating impacts using a BACI design, ratios, and a Bayesian approach with a focus on restoration.

    Science.gov (United States)

    Conner, Mary M; Saunders, W Carl; Bouwes, Nicolaas; Jordan, Chris

    2015-10-01

    Before-after-control-impact (BACI) designs are an effective method to evaluate natural and human-induced perturbations on ecological variables when treatment sites cannot be randomly chosen. While effect sizes of interest can be tested with frequentist methods, using Bayesian Markov chain Monte Carlo (MCMC) sampling methods, probabilities of effect sizes, such as a ≥20 % increase in density after restoration, can be directly estimated. Although BACI and Bayesian methods are used widely for assessing natural and human-induced impacts for field experiments, the application of hierarchal Bayesian modeling with MCMC sampling to BACI designs is less common. Here, we combine these approaches and extend the typical presentation of results with an easy to interpret ratio, which provides an answer to the main study question-"How much impact did a management action or natural perturbation have?" As an example of this approach, we evaluate the impact of a restoration project, which implemented beaver dam analogs, on survival and density of juvenile steelhead. Results indicated the probabilities of a ≥30 % increase were high for survival and density after the dams were installed, 0.88 and 0.99, respectively, while probabilities for a higher increase of ≥50 % were variable, 0.17 and 0.82, respectively. This approach demonstrates a useful extension of Bayesian methods that can easily be generalized to other study designs from simple (e.g., single factor ANOVA, paired t test) to more complicated block designs (e.g., crossover, split-plot). This approach is valuable for estimating the probabilities of restoration impacts or other management actions. PMID:27613291

  16. Data-driven and Model-based Verification:a Bayesian Identification Approach

    OpenAIRE

    Haesaert, S Sofie; Hof, van den, S.; Abate, A.

    2015-01-01

    This work develops a measurement-driven and model-based formal verification approach, applicable to systems with partly unknown dynamics. We provide a principled method, grounded on reachability analysis and on Bayesian inference, to compute the confidence that a physical system driven by external inputs and accessed under noisy measurements, verifies a temporal logic property. A case study is discussed, where we investigate the bounded- and unbounded-time safety of a partly unknown linear ti...

  17. A New Method for E-Government Procurement Using Collaborative Filtering and Bayesian Approach

    OpenAIRE

    Shuai Zhang; Chengyu Xi; Yan Wang; Wenyu Zhang; Yanhong Chen

    2013-01-01

    Nowadays, as the Internet services increase faster than ever before, government systems are reinvented as E-government services. Therefore, government procurement sectors have to face challenges brought by the explosion of service information. This paper presents a novel method for E-government procurement (eGP) to search for the optimal procurement scheme (OPS). Item-based collaborative filtering and Bayesian approach are used to evaluate and select the candidate services to get the top-M re...

  18. Integrating distributed Bayesian inference and reinforcement learning for sensor management

    NARCIS (Netherlands)

    C. Grappiolo; S. Whiteson; G. Pavlin; B. Bakker

    2009-01-01

    This paper introduces a sensor management approach that integrates distributed Bayesian inference (DBI) and reinforcement learning (RL). DBI is implemented using distributed perception networks (DPNs), a multiagent approach to performing efficient inference, while RL is used to automatically discove

  19. Peering through a dirty window: A Bayesian approach to making mine detection decisions from noisy data

    International Nuclear Information System (INIS)

    For several reasons, Bayesian parameter estimation is superior to other methods for extracting features of a weak signal from noise. Since it exploits prior knowledge, the analysis begins from a more advantageous starting point than other methods. Also, since ''nuisance parameters'' can be dropped out of the Bayesian analysis, the description of the model need not be as complete as is necessary for such methods as matched filtering. In the limit for perfectly random noise and a perfect description of the model, the signal-to-noise ratio improves as the square root of the number of samples in the data. Even with the imperfections of real-world data, Bayesian approaches this ideal limit of performance more closely than other methods. A major unsolved problem in landmine detection is the fusion of data from multiple sensor types. Bayesian data fusion is only beginning to be explored as a solution to the problem. In single sensor processes Bayesian analysis can sense multiple parameters from the data stream of the one sensor. It does so by computing a joint probability density function of a set of parameter values from the sensor output. However, there is no inherent requirement that the information must come from a single sensor. If multiple sensors are applied to a single process, where several different parameters are implicit in each sensor output data stream, the joint probability density function of all the parameters of interest can be computed in exactly the same manner as the single sensor case. Thus, it is just as practical to base decisions on multiple sensor outputs as it is for single sensors. This should provide a practical way to combine the outputs of dissimilar sensors, such as ground penetrating radar and electromagnetic induction devices, producing a better detection decision than could be provided by either sensor alone

  20. Peering through a dirty window: A Bayesian approach to making mine detection decisions from noisy data

    Energy Technology Data Exchange (ETDEWEB)

    Kercel, Stephen W.

    1998-10-11

    For several reasons, Bayesian parameter estimation is superior to other methods for extracting features of a weak signal from noise. Since it exploits prior knowledge, the analysis begins from a more advantageous starting point than other methods. Also, since ''nuisance parameters'' can be dropped out of the Bayesian analysis, the description of the model need not be as complete as is necessary for such methods as matched filtering. In the limit for perfectly random noise and a perfect description of the model, the signal-to-noise ratio improves as the square root of the number of samples in the data. Even with the imperfections of real-world data, Bayesian approaches this ideal limit of performance more closely than other methods. A major unsolved problem in landmine detection is the fusion of data from multiple sensor types. Bayesian data fusion is only beginning to be explored as a solution to the problem. In single sensor processes Bayesian analysis can sense multiple parameters from the data stream of the one sensor. It does so by computing a joint probability density function of a set of parameter values from the sensor output. However, there is no inherent requirement that the information must come from a single sensor. If multiple sensors are applied to a single process, where several different parameters are implicit in each sensor output data stream, the joint probability density function of all the parameters of interest can be computed in exactly the same manner as the single sensor case. Thus, it is just as practical to base decisions on multiple sensor outputs as it is for single sensors. This should provide a practical way to combine the outputs of dissimilar sensors, such as ground penetrating radar and electromagnetic induction devices, producing a better detection decision than could be provided by either sensor alone.

  1. 基于共轭先验分布的贝叶斯网络分类模型%Bayesian network classifier based on conjugate prior distribution

    Institute of Scientific and Technical Information of China (English)

    杨颖涛; 王跃钢; 邓卫强; 徐洪涛

    2012-01-01

    针对贝叶斯网络后验概率需计算样本边际分布,计算代价大的问题,将共轭先验分布思想引入贝叶斯分类,提出了基于共轭先验分布的贝叶斯网络分类模型.针对非区间离散样本,提出一种自适应的样本离散方法,将小波包提取模拟电路故障特征离散化作为分类模型属性.仿真验证表明,模型分类效果较好,算法运行速度得以提高,也可应用于连续样本和多分类的情况,扩展了贝叶斯网络分类的应用范围.%In order to reducing calculate costs of Bayesian network,when calculating posterior probability of samples that need the marginal distribution,an approach of Bayesian network classifier based on conjugate prior distribution is proposed. An adaptive discretization method is also proposed to discrete non-interval samples. The fault feature of analog circuit extracted by wavelet packet is taken as a discrete property of Bayesian network classification model. The simulation result shows that,this classifier has high accuracy and efficiency of analog circuit fault diagnosis,and can be applied to continuous and multi-classification case,which extends the scope of application of Bayesian network classification.

  2. Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering

    Science.gov (United States)

    McDowell, Ian C.; Zhao, Shiwen; Brown, Christopher D.; Engelhardt, Barbara E.

    2016-01-01

    Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues. PMID:27467526

  3. Process monitoring using kernel density estimation and Bayesian networking with an industrial case study.

    Science.gov (United States)

    Gonzalez, Ruben; Huang, Biao; Lau, Eric

    2015-09-01

    Principal component analysis has been widely used in the process industries for the purpose of monitoring abnormal behaviour. The process of reducing dimension is obtained through PCA, while T-tests are used to test for abnormality. Some of the main contributions to the success of PCA is its ability to not only detect problems, but to also give some indication as to where these problems are located. However, PCA and the T-test make use of Gaussian assumptions which may not be suitable in process fault detection. A previous modification of this method is the use of independent component analysis (ICA) for dimension reduction combined with kernel density estimation for detecting abnormality; like PCA, this method points out location of the problems based on linear data-driven methods, but without the Gaussian assumptions. Both ICA and PCA, however, suffer from challenges in interpreting results, which can make it difficult to quickly act once a fault has been detected online. This paper proposes the use of Bayesian networks for dimension reduction which allows the use of process knowledge enabling more intelligent dimension reduction and easier interpretation of results. The dimension reduction technique is combined with multivariate kernel density estimation, making this technique effective for non-linear relationships with non-Gaussian variables. The performance of PCA, ICA and Bayesian networks are compared on data from an industrial scale plant. PMID:25930233

  4. Risk analysis of emergent water pollution accidents based on a Bayesian Network.

    Science.gov (United States)

    Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie

    2016-01-01

    To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents.

  5. Evaluation of Bayesian Networks in Participatory Water Resources Management, Upper Guadiana Basin, Spain

    Directory of Open Access Journals (Sweden)

    John Bromley

    2010-09-01

    Full Text Available Stakeholder participation is becoming increasingly important in water resources management. In participatory processes, stakeholders contribute by putting forward their own perspective, and they benefit by enhancing their understanding of the factors involved in decision making. A diversity of modeling tools can be used to facilitate participatory processes. Bayesian networks are well suited to this task for a variety of reasons, including their ability to structure discussions and visual appeal. This research focuses on developing and testing a set of evaluation criteria for public participation. The advantages and limitations of these criteria are discussed in the light of a specific participatory modeling initiative. Modeling work was conducted in the Upper Guadiana Basin in central Spain, where uncontrolled groundwater extraction is responsible for wetland degradation and conflicts between farmers, water authorities, and environmentalists. Finding adequate solutions to the problem is urgent because the implementation of the EU Water Framework Directive requires all aquatic ecosystems to be in a “good ecological state” within a relatively short time frame. Stakeholder evaluation highlights the potential of Bayesian networks to support public participation processes.

  6. Predicting Click-Through Rates of New Advertisements Based on the Bayesian Network

    Directory of Open Access Journals (Sweden)

    Zhipeng Fang

    2014-01-01

    Full Text Available Most classical search engines choose and rank advertisements (ads based on their click-through rates (CTRs. To predict an ad’s CTR, historical click information is frequently concerned. To accurately predict the CTR of the new ads is challenging and critical for real world applications, since we do not have plentiful historical data about these ads. Adopting Bayesian network (BN as the effective framework for representing and inferring dependencies and uncertainties among variables, in this paper, we establish a BN-based model to predict the CTRs of new ads. First, we built a Bayesian network of the keywords that are used to describe the ads in a certain domain, called keyword BN and abbreviated as KBN. Second, we proposed an algorithm for approximate inferences of the KBN to find similar keywords with those that describe the new ads. Finally based on the similar keywords, we obtain the similar ads and then calculate the CTR of the new ad by using the CTRs of the ads that are similar with the new ad. Experimental results show the efficiency and accuracy of our method.

  7. Risk analysis of emergent water pollution accidents based on a Bayesian Network.

    Science.gov (United States)

    Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie

    2016-01-01

    To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents. PMID:26433361

  8. Comprehensive Influence Model of Preschool Children’s Personality Development Based on the Bayesian Network

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2014-01-01

    Full Text Available It is crucial to ascertain the comprehensive influence factors on personality for making effective cultivating plan. However, most existing literatures focus on the effect of individual factor on the personality. In order to comprehensively investigate the causal influences of preschool children’s temperament, school factors (teacher expectation and peer acceptance, and family factors (parental coparenting style, parental education value, and parental parenting style on the personality and the probability of the dependencies among these influence factors, we constructed the influencing factor model of personality development based on the Bayesian network. The models not only reflect the influence on personality development as a whole, but also obtain the probability relationships among the factors. Compared with other influence factors including family and school factors, temperament has more effect on the personality. In addition, teacher expectation also has an important influence on the personality. The experimental results show that it is a valuable exploration to construct the Bayesian network for comprehensively investigating the causal relationships between preschool children’s personality and related influence factors. Further, these results will be helpful to the cultivation of healthy personality.

  9. An Application of Bayesian Approach in Modeling Risk of Death in an Intensive Care Unit.

    Directory of Open Access Journals (Sweden)

    Rowena Syn Yin Wong

    Full Text Available There are not many studies that attempt to model intensive care unit (ICU risk of death in developing countries, especially in South East Asia. The aim of this study was to propose and describe application of a Bayesian approach in modeling in-ICU deaths in a Malaysian ICU.This was a prospective study in a mixed medical-surgery ICU in a multidisciplinary tertiary referral hospital in Malaysia. Data collection included variables that were defined in Acute Physiology and Chronic Health Evaluation IV (APACHE IV model. Bayesian Markov Chain Monte Carlo (MCMC simulation approach was applied in the development of four multivariate logistic regression predictive models for the ICU, where the main outcome measure was in-ICU mortality risk. The performance of the models were assessed through overall model fit, discrimination and calibration measures. Results from the Bayesian models were also compared against results obtained using frequentist maximum likelihood method.The study involved 1,286 consecutive ICU admissions between January 1, 2009 and June 30, 2010, of which 1,111 met the inclusion criteria. Patients who were admitted to the ICU were generally younger, predominantly male, with low co-morbidity load and mostly under mechanical ventilation. The overall in-ICU mortality rate was 18.5% and the overall mean Acute Physiology Score (APS was 68.5. All four models exhibited good discrimination, with area under receiver operating characteristic curve (AUC values approximately 0.8. Calibration was acceptable (Hosmer-Lemeshow p-values > 0.05 for all models, except for model M3. Model M1 was identified as the model with the best overall performance in this study.Four prediction models were proposed, where the best model was chosen based on its overall performance in this study. This study has also demonstrated the promising potential of the Bayesian MCMC approach as an alternative in the analysis and modeling of in-ICU mortality outcomes.

  10. IONONEST—A Bayesian approach to modeling the lower ionosphere

    Science.gov (United States)

    Martin, Poppy L.; Scaife, Anna M. M.; McKay, Derek; McCrea, Ian

    2016-08-01

    Obtaining high-resolution electron density height profiles for the D region of the ionosphere as a well-sampled function of time is difficult for most methods of ionospheric measurement. Here we present a new method of using multifrequency riometry data for producing D region height profiles via inverse methods. To obtain these profiles, we use the nested sampling technique, implemented through our code, IONONEST. We demonstrate this approach using new data from the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) instrument and consider two electron density models. We compare the recovered height profiles from the KAIRA data with those from incoherent scatter radar using data from the European Incoherent Scatter Facility (EISCAT) instrument and find that there is good agreement between the two techniques, allowing for instrumental differences.

  11. Bayesian networks precipitation model based on hidden Markov analysis and its application

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Surface precipitation estimation is very important in hydrologic forecast. To account for the influence of the neighbors on the precipitation of an arbitrary grid in the network, Bayesian networks and Markov random field were adopted to estimate surface precipitation. Spherical coordinates and the expectation-maximization (EM) algorithm were used for region interpolation, and for estimation of the precipitation of arbitrary point in the region. Surface precipitation estimation of seven precipitation stations in Qinghai Lake region was performed. By comparing with other surface precipitation methods such as Thiessen polygon method, distance weighted mean method and arithmetic mean method, it is shown that the proposed method can judge the relationship of precipitation among different points in the area under complicated circumstances and the simulation results are more accurate and rational.

  12. Longitudinal Prediction of the Infant Gut Microbiome with Dynamic Bayesian Networks.

    Science.gov (United States)

    McGeachie, Michael J; Sordillo, Joanne E; Gibson, Travis; Weinstock, George M; Liu, Yang-Yu; Gold, Diane R; Weiss, Scott T; Litonjua, Augusto

    2016-01-01

    Sequencing of the 16S rRNA gene allows comprehensive assessment of bacterial community composition from human body sites. Previously published and publicly accessible data on 58 preterm infants in the Neonatal Intensive Care Unit who underwent frequent stool collection was used. We constructed Dynamic Bayesian Networks from the data and analyzed predictive performance and network characteristics. We constructed a DBN model of the infant gut microbial ecosystem, which explicitly captured specific relationships and general trends in the data: increasing amounts of Clostridia, residual amounts of Bacilli, and increasing amounts of Gammaproteobacteria that then give way to Clostridia. Prediction performance of DBNs with fewer edges were overall more accurate, although less so on harder-to-predict subjects (p = 0.045). DBNs provided quantitative likelihood estimates for rare abruptions events. Iterative prediction was less accurate (p analysis of those samples. PMID:26853461

  13. Sequential Bayesian Detection: A Model-Based Approach

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J V

    2008-12-08

    Sequential detection theory has been known for a long time evolving in the late 1940's by Wald and followed by Middleton's classic exposition in the 1960's coupled with the concurrent enabling technology of digital computer systems and the development of sequential processors. Its development, when coupled to modern sequential model-based processors, offers a reasonable way to attack physics-based problems. In this chapter, the fundamentals of the sequential detection are reviewed from the Neyman-Pearson theoretical perspective and formulated for both linear and nonlinear (approximate) Gauss-Markov, state-space representations. We review the development of modern sequential detectors and incorporate the sequential model-based processors as an integral part of their solution. Motivated by a wealth of physics-based detection problems, we show how both linear and nonlinear processors can seamlessly be embedded into the sequential detection framework to provide a powerful approach to solving non-stationary detection problems.

  14. Textual and visual content-based anti-phishing: a Bayesian approach.

    Science.gov (United States)

    Zhang, Haijun; Liu, Gang; Chow, Tommy W S; Liu, Wenyin

    2011-10-01

    A novel framework using a Bayesian approach for content-based phishing web page detection is presented. Our model takes into account textual and visual contents to measure the similarity between the protected web page and suspicious web pages. A text classifier, an image classifier, and an algorithm fusing the results from classifiers are introduced. An outstanding feature of this paper is the exploration of a Bayesian model to estimate the matching threshold. This is required in the classifier for determining the class of the web page and identifying whether the web page is phishing or not. In the text classifier, the naive Bayes rule is used to calculate the probability that a web page is phishing. In the image classifier, the earth mover's distance is employed to measure the visual similarity, and our Bayesian model is designed to determine the threshold. In the data fusion algorithm, the Bayes theory is used to synthesize the classification results from textual and visual content. The effectiveness of our proposed approach was examined in a large-scale dataset collected from real phishing cases. Experimental results demonstrated that the text classifier and the image classifier we designed deliver promising results, the fusion algorithm outperforms either of the individual classifiers, and our model can be adapted to different phishing cases.

  15. Estimation of Housing Vacancy Distributions: Basic Bayesian Approach Using Utility Data

    Science.gov (United States)

    Kumagai, K.; Matsuda, Y.; Ono, Y.

    2016-06-01

    In this study, we analyze the quality of water hydrant data for estimating housing vacancies based on their spatial relationships with the other geographical data that we consider are correlated with such vacancies. We compare with in-situ vacant house data in several small districts, thus verifying the applicability of the water hydrant data to the detection of vacant houses. Through applying Bayesian approach, we apply the water hydrant data and other geographical data to repeatedly Bayesian updating for the classification of vacant / no vacant houses. We discuss the results of this classification using the temporal intervals associated with turning off metering, fluctuations in local population density, the densities of water hydrants as indicators of vacancies and several other geographical data. We also conduct the feasibility study on visualisation for the estimation results of housing vacancy distributions derived from the fine spatial resolution data.

  16. A Bayesian Approach for Parameter Estimation and Prediction using a Computationally Intensive Model

    CERN Document Server

    Higdon, Dave; Schunck, Nicolas; Sarich, Jason; Wild, Stefan M

    2014-01-01

    Bayesian methods have been very successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based model $\\eta(\\theta)$ where $\\theta$ denotes the uncertain, best input setting. Hence the statistical model is of the form $y = \\eta(\\theta) + \\epsilon$, where $\\epsilon$ accounts for measurement, and possibly other error sources. When non-linearity is present in $\\eta(\\cdot)$, the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and non-standard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. While quite generally applicable, MCMC requires thousands, or even millions of evaluations of the physics model $\\eta(\\cdot)$. This is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we pr...

  17. Bayesian Lorentzian profile fitting using Markov-Chain Monte Carlo: An observer's approach

    CERN Document Server

    Gruberbauer, M; Weiss, W W

    2008-01-01

    Aims. Investigating stochastically driven pulsation puts strong requirements on the quality of (observed) pulsation frequency spectra, such as the accuracy of frequencies, amplitudes, and mode life times and -- important when fitting these parameters with models -- a realistic error estimate which can be quite different to the formal error. As has been shown by other authors, the method of fitting Lorentzian profiles to the power spectrum of time-resolved photometric or spectroscopic data via the Maximum Likelihood Estimation (MLE) procedure delivers good approximations for these quantities. We, however, intend to demonstrate that a conservative Bayesian approach allows to treat this problem in a more consistent way. Methods. We derive a conservative Bayesian treatment for the probability of Lorentzian profiles being present in a power spectrum and describe its implementation via evaluating the probability density distribution of parameters by using the Markov-Chain Monte Carlo (MCMC) technique. In addition, ...

  18. Evaluating a Bayesian approach to improve accuracy of individual photographic identification methods using ecological distribution data

    Directory of Open Access Journals (Sweden)

    Richard Stafford

    2011-04-01

    Full Text Available Photographic identification of individual organisms can be possible from natural body markings. Data from photo-ID can be used to estimate important ecological and conservation metrics such as population sizes, home ranges or territories. However, poor quality photographs or less well-studied individuals can result in a non-unique ID, potentially confounding several similar looking individuals. Here we present a Bayesian approach that uses known data about previous sightings of individuals at specific sites as priors to help assess the problems of obtaining a non-unique ID. Using a simulation of individuals with different confidence of correct ID we evaluate the accuracy of Bayesian modified (posterior probabilities. However, in most cases, the accuracy of identification decreases. Although this technique is unsuccessful, it does demonstrate the importance of computer simulations in testing such hypotheses in ecology.

  19. A Bayesian geostatistical approach for evaluating the uncertainty of contaminant mass discharges from point sources

    DEFF Research Database (Denmark)

    Troldborg, Mads; Nowak, Wolfgang; Binning, Philip John;

    of both concentration and groundwater flow. For risk assessments or any other decisions that are being based on mass discharge estimates, it is essential to address these uncertainties. We present a novel Bayesian geostatistical approach for quantifying the uncertainty of the mass discharge across...... a multilevel control plane. The method decouples the flow and transport simulation and has the advantage of avoiding the heavy computational burden of three-dimensional numerical flow and transport simulation coupled with geostatistical inversion. It may therefore be of practical relevance to practitioners...... compared to existing methods that are either too simple or computationally demanding. The method is based on conditional geostatistical simulation and accounts for i) heterogeneity of both the flow field and the concentration distribution through Bayesian geostatistics, ii) measurement uncertainty, and iii...

  20. Gene regulatory network reconstruction using Bayesian networks, the Dantzig Selector, the Lasso and their meta-analysis.

    Directory of Open Access Journals (Sweden)

    Matthieu Vignes

    Full Text Available Modern technologies and especially next generation sequencing facilities are giving a cheaper access to genotype and genomic data measured on the same sample at once. This creates an ideal situation for multifactorial experiments designed to infer gene regulatory networks. The fifth "Dialogue for Reverse Engineering Assessments and Methods" (DREAM5 challenges are aimed at assessing methods and associated algorithms devoted to the inference of biological networks. Challenge 3 on "Systems Genetics" proposed to infer causal gene regulatory networks from different genetical genomics data sets. We investigated a wide panel of methods ranging from Bayesian networks to penalised linear regressions to analyse such data, and proposed a simple yet very powerful meta-analysis, which combines these inference methods. We present results of the Challenge as well as more in-depth analysis of predicted networks in terms of structure and reliability. The developed meta-analysis was ranked first among the 16 teams participating in Challenge 3A. It paves the way for future extensions of our inference method and more accurate gene network estimates in the context of genetical genomics.