A Bayesian Networks approach to Operational Risk
Aquaro, V.; Bardoscia, M.; Bellotti, R.; Consiglio, A.; De Carlo, F.; Ferri, G.
2010-04-01
A system for Operational Risk management based on the computational paradigm of Bayesian Networks is presented. The algorithm allows the construction of a Bayesian Network targeted for each bank and takes into account in a simple and realistic way the correlations among different processes of the bank. The internal losses are averaged over a variable time horizon, so that the correlations at different times are removed, while the correlations at the same time are kept: the averaged losses are thus suitable to perform the learning of the network topology and parameters; since the main aim is to understand the role of the correlations among the losses, the assessments of domain experts are not used. The algorithm has been validated on synthetic time series. It should be stressed that the proposed algorithm has been thought for the practical implementation in a mid or small sized bank, since it has a small impact on the organizational structure of a bank and requires an investment in human resources which is limited to the computational area.
Nursing Home Care Quality: Insights from a Bayesian Network Approach
Goodson, Justin; Jang, Wooseung; Rantz, Marilyn
2008-01-01
Purpose: The purpose of this research is twofold. The first purpose is to utilize a new methodology (Bayesian networks) for aggregating various quality indicators to measure the overall quality of care in nursing homes. The second is to provide new insight into the relationships that exist among various measures of quality and how such measures…
An algeraic approach to structural learning Bayesian networks
Czech Academy of Sciences Publication Activity Database
Studený, Milan
Paris: Editions EDK, 2006 - (Bouchon-Meunier, B.; Yager, R.), s. 2284-2291 ISBN 2-84254-112-X. [IMPU 2006. Paris (FR), 02.07.2006-07.07.2006] R&D Projects: GA ČR GA201/04/0393 Institutional research plan: CEZ:AV0Z10750506 Keywords : learning Bayesian networks * standard imset * data vector Subject RIV: BA - General Mathematics
Bayesian probabilistic network approach for managing earthquake risks of cities
DEFF Research Database (Denmark)
Bayraktarli, Yahya; Faber, Michael
2011-01-01
This paper considers the application of Bayesian probabilistic networks (BPNs) to large-scale risk based decision making in regard to earthquake risks. A recently developed risk management framework is outlined which utilises Bayesian probabilistic modelling, generic indicator based risk models and...... geographical information systems. The proposed framework comprises several modules: A module on the probabilistic description of potential future earthquake shaking intensity, a module on the probabilistic assessment of spatial variability of soil liquefaction, a module on damage assessment of buildings and a...... fourth module on the consequences of an earthquake. Each of these modules is integrated into a BPN. Special attention is given to aggregated risk, i.e. the risk contribution from assets at multiple locations in a city subjected to the same earthquake. The application of the methodology is illustrated on...
Bayesian Belief Networks Approach for Modeling Irrigation Behavior
Andriyas, S.; McKee, M.
2012-12-01
Canal operators need information to manage water deliveries to irrigators. Short-term irrigation demand forecasts can potentially valuable information for a canal operator who must manage an on-demand system. Such forecasts could be generated by using information about the decision-making processes of irrigators. Bayesian models of irrigation behavior can provide insight into the likely criteria which farmers use to make irrigation decisions. This paper develops a Bayesian belief network (BBN) to learn irrigation decision-making behavior of farmers and utilizes the resulting model to make forecasts of future irrigation decisions based on factor interaction and posterior probabilities. Models for studying irrigation behavior have been rarely explored in the past. The model discussed here was built from a combination of data about biotic, climatic, and edaphic conditions under which observed irrigation decisions were made. The paper includes a case study using data collected from the Canal B region of the Sevier River, near Delta, Utah. Alfalfa, barley and corn are the main crops of the location. The model has been tested with a portion of the data to affirm the model predictive capabilities. Irrigation rules were deduced in the process of learning and verified in the testing phase. It was found that most of the farmers used consistent rules throughout all years and across different types of crops. Soil moisture stress, which indicates the level of water available to the plant in the soil profile, was found to be one of the most significant likely driving forces for irrigation. Irrigations appeared to be triggered by a farmer's perception of soil stress, or by a perception of combined factors such as information about a neighbor irrigating or an apparent preference to irrigate on a weekend. Soil stress resulted in irrigation probabilities of 94.4% for alfalfa. With additional factors like weekend and irrigating when a neighbor irrigates, alfalfa irrigation
New approach using Bayesian Network to improve content based image classification systems
jayech, Khlifia
2012-01-01
This paper proposes a new approach based on augmented naive Bayes for image classification. Initially, each image is cutting in a whole of blocks. For each block, we compute a vector of descriptors. Then, we propose to carry out a classification of the vectors of descriptors to build a vector of labels for each image. Finally, we propose three variants of Bayesian Networks such as Naive Bayesian Network (NB), Tree Augmented Naive Bayes (TAN) and Forest Augmented Naive Bayes (FAN) to classify the image using the vector of labels. The results showed a marked improvement over the FAN, NB and TAN.
Czech Academy of Sciences Publication Activity Database
Studený, Milan
Granada : DESCAI, University of Granada, 2012, s. 307-314. ISBN 978-84-15536-57-4. [6th European Workshop on Probabilistic Graphical Models (PGM). Granada (ES), 19.09.2012-21.09.2012] R&D Projects: GA ČR GA201/08/0539 Institutional support: RVO:67985556 Keywords : learning Bayesian network structure * characteristic imset * essential graph Subject RIV: BA - General Mathematics http://library.utia.cas.cz/separaty/2012/MTR/studeny-integer linear programming approach to learning Bayesian network structure towards the essential graph.pdf
A Hybrid Approach for Reliability Analysis Based on Analytic Hierarchy Process and Bayesian Network
Zubair, Muhammad
2014-01-01
By using analytic hierarchy process (AHP) and Bayesian Network (BN) the present research signifies the technical and non-technical issues of nuclear accidents. The study exposed that the technical faults was one major reason of these accidents. Keep an eye on other point of view it becomes clearer that human behavior like dishonesty, insufficient training, and selfishness are also play a key role to cause these accidents. In this study, a hybrid approach for reliability analysis based on AHP ...
Identification of information tonality based on Bayesian approach and neural networks
Lande, D. V.
2008-01-01
A model of the identification of information tonality, based on Bayesian approach and neural networks was described. In the context of this paper tonality means positive or negative tone of both the whole information and its parts which are related to particular concepts. The method, its application is presented in the paper, is based on statistic regularities connected with the presence of definite lexemes in the texts. A distinctive feature of the method is its simplicity and versatility. A...
Plug & Play object oriented Bayesian networks
DEFF Research Database (Denmark)
Bangsø, Olav; Flores, J.; Jensen, Finn Verner
2003-01-01
Object oriented Bayesian networks have proven themselves useful in recent years. The idea of applying an object oriented approach to Bayesian networks has extended their scope to larger domains that can be divided into autonomous but interrelated entities. Object oriented Bayesian networks have...... been shown to be quite suitable for dynamic domains as well. However, processing object oriented Bayesian networks in practice does not take advantage of their modular structure. Normally the object oriented Bayesian network is transformed into a Bayesian network and, inference is performed...... by constructing a junction tree from this network. In this paper we propose a method for translating directly from object oriented Bayesian networks to junction trees, avoiding the intermediate translation. We pursue two main purposes: firstly, to maintain the original structure organized in an instance tree...
Identification of information tonality based on Bayesian approach and neural networks
Lande, D V
2008-01-01
A model of the identification of information tonality, based on Bayesian approach and neural networks was described. In the context of this paper tonality means positive or negative tone of both the whole information and its parts which are related to particular concepts. The method, its application is presented in the paper, is based on statistic regularities connected with the presence of definite lexemes in the texts. A distinctive feature of the method is its simplicity and versatility. At present ideologically similar approaches are widely used to control spam.
A dynamic Bayesian network based approach to safety decision support in tunnel construction
International Nuclear Information System (INIS)
This paper presents a systemic decision approach with step-by-step procedures based on dynamic Bayesian network (DBN), aiming to provide guidelines for dynamic safety analysis of the tunnel-induced road surface damage over time. The proposed DBN-based approach can accurately illustrate the dynamic and updated feature of geological, design and mechanical variables as the construction progress evolves, in order to overcome deficiencies of traditional fault analysis methods. Adopting the predictive, sensitivity and diagnostic analysis techniques in the DBN inference, this approach is able to perform feed-forward, concurrent and back-forward control respectively on a quantitative basis, and provide real-time support before and after an accident. A case study in relating to dynamic safety analysis in the construction of Wuhan Yangtze Metro Tunnel in China is used to verify the feasibility of the proposed approach, as well as its application potential. The relationships between the DBN-based and BN-based approaches are further discussed according to analysis results. The proposed approach can be used as a decision tool to provide support for safety analysis in tunnel construction, and thus increase the likelihood of a successful project in a dynamic project environment. - Highlights: • A dynamic Bayesian network (DBN) based approach for safety decision support is developed. • This approach is able to perform feed-forward, concurrent and back-forward analysis and control. • A case concerning dynamic safety analysis in Wuhan Yangtze Metro Tunnel in China is presented. • DBN-based approach can perform a higher accuracy than traditional static BN-based approach
A new approach for supply chain risk management: Mapping SCOR into Bayesian network
Directory of Open Access Journals (Sweden)
Mahdi Abolghasemi
2015-01-01
Full Text Available Purpose: Increase of costs and complexities in organizations beside the increase of uncertainty and risks have led the managers to use the risk management in order to decrease risk taking and deviation from goals. SCRM has a close relationship with supply chain performance. During the years different methods have been used by researchers in order to manage supply chain risk but most of them are either qualitative or quantitative. Supply chain operation reference (SCOR is a standard model for SCP evaluation which have uncertainty in its metrics. In This paper by combining qualitative and quantitative metrics of SCOR, supply chain performance will be measured by Bayesian Networks. Design/methodology/approach: First qualitative assessment will be done by recognizing uncertain metrics of SCOR model and then by quantifying them, supply chain performance will be measured by Bayesian Networks (BNs and supply chain operations reference (SCOR in which making decision on uncertain variables will be done by predictive and diagnostic capabilities. Findings: After applying the proposed method in one of the biggest automotive companies in Iran, we identified key factors of supply chain performance based on SCOR model through predictive and diagnostic capability of Bayesian Networks. After sensitivity analysis, we find out that ‘Total cost’ and its criteria that include costs of labors, warranty, transportation and inventory have the widest range and most effect on supply chain performance. So, managers should take their importance into account for decision making. We can make decisions simply by running model in different situations. Research limitations/implications: A more precise model consisted of numerous factors but it is difficult and sometimes impossible to solve big models, if we insert all of them in a Bayesian model. We have adopted real world characteristics with our software and method abilities. On the other hand, fewer data exist for some
Directory of Open Access Journals (Sweden)
Cristian Rodriguez Rivero
2014-07-01
Full Text Available The annual estimate of the availability of the amount of water for the agricultural sector has become a lifetime in places where rainfall is scarce, as is the case of northwestern Argentina. This work proposes to model and simulate monthly rainfall time series from one geographical location of Catamarca, Valle El Viejo Portezuelo. In this sense, the time series prediction is mathematical and computational modelling series provided by monthly cumulative rainfall, which has stochastic output approximated by neural networks Bayesian approach. We propose to use an algorithm based on artificial neural networks (ANNs using the Bayesian inference. The result of the prediction consists of 20% of the provided data consisting of 2000 to 2010. A new analysis for modelling, simulation and computational prediction of cumulative rainfall from one geographical location is well presented. They are used as data information, only the historical time series of daily flows measured in mmH2O. Preliminary results of the annual forecast in mmH2O with a prediction horizon of one year and a half are presented, 18 months, respectively. The methodology employs artificial neural network based tools, statistical analysis and computer to complete the missing information and knowledge of the qualitative and quantitative behavior. They also show some preliminary results with different prediction horizons of the proposed filter and its comparison with the performance Gaussian process filter used in the literature.
Andrew Sanford; Imad Moosa
2015-01-01
This paper describes the development of a tool, based on a Bayesian network model, that provides posteriori predictions of operational risk events, aggregate operational loss distributions, and Operational Value-at-Risk, for a structured finance operations unit located within one of Australia's major banks. The Bayesian network, based on a previously developed causal framework, has been designed to model the smaller and more frequent, attritional operational loss events. Given the limited ava...
Yang, Xiaorong; Li, Suyun; Pan, Lulu; Wang, Qiang; Li, Huijie; Han, Mingkui; Zhang, Nan; Jiang, Fan; Jia, Chongqi
2016-07-01
The association between psychological factors and smoking cessation is complicated and inconsistent in published researches, and the joint effect of psychological factors on smoking cessation is unclear. This study explored how psychological factors jointly affect the success of smoking cessation using a Bayesian network approach. A community-based case control study was designed with 642 adult male successful smoking quitters as the cases, and 700 adult male failed smoking quitters as the controls. General self-efficacy (GSE), trait coping style (positive-trait coping style (PTCS) and negative-trait coping style (NTCS)) and self-rating anxiety (SA) were evaluated by GSE Scale, Trait Coping Style Questionnaire and SA Scale, respectively. Bayesian network was applied to evaluate the relationship between psychological factors and successful smoking cessation. The local conditional probability table of smoking cessation indicated that different joint conditions of psychological factors led to different outcomes for smoking cessation. Among smokers with high PTCS, high NTCS and low SA, only 36.40% successfully quitted smoking. However, among smokers with low pack-years of smoking, high GSE, high PTCS and high SA, 63.64% successfully quitted smoking. Our study indicates psychological factors jointly influence smoking cessation outcome. According to different joint situations, different solutions should be developed to control tobacco in practical intervention. PMID:26264661
Utama, R.; Piekarewicz, J.; Prosper, H. B.
2016-01-01
Background: Besides their intrinsic nuclear-structure value, nuclear mass models are essential for astrophysical applications, such as r -process nucleosynthesis and neutron-star structure. Purpose: To overcome the intrinsic limitations of existing "state-of-the-art" mass models through a refinement based on a Bayesian neural network (BNN) formalism. Methods: A novel BNN approach is implemented with the goal of optimizing mass residuals between theory and experiment. Results: A significant improvement (of about 40%) in the mass predictions of existing models is obtained after BNN refinement. Moreover, these improved results are now accompanied by proper statistical errors. Finally, by constructing a "world average" of these predictions, a mass model is obtained that is used to predict the composition of the outer crust of a neutron star. Conclusions: The power of the Bayesian neural network method has been successfully demonstrated by a systematic improvement in the accuracy of the predictions of nuclear masses. Extension to other nuclear observables is a natural next step that is currently under investigation.
An urban flood risk assessment method using the Bayesian Network approach
DEFF Research Database (Denmark)
Åström, Helena Lisa Alexandra
Flooding is one of the most damaging natural hazards to human societies. Recent decades have shown that flooding constitutes major threats worldwide, and due to anticipated climate change the occurrence of damaging flood events is expected to increase. Urban areas are especially vulnerable to...... flood risk scoping, flood risk assessment (FRA), and adaptation implementation and involves an ongoing process of assessment, reassessment, and response. This thesis mainly focuses on the FRA phase of FRM. FRA includes hazard analysis and impact assessment (combined called a risk analysis), adaptation...... Bayesian Network (BN) approach is developed, and the method is exemplified in an urban catchment. BNs have become an increasingly popular method for describing complex systems and aiding decision-making under uncertainty. In environmental management, BNs have mainly been utilized in ecological assessments...
Directory of Open Access Journals (Sweden)
Ramoni Marco F
2007-05-01
Full Text Available Abstract Background Reverse engineering cellular networks is currently one of the most challenging problems in systems biology. Dynamic Bayesian networks (DBNs seem to be particularly suitable for inferring relationships between cellular variables from the analysis of time series measurements of mRNA or protein concentrations. As evaluating inference results on a real dataset is controversial, the use of simulated data has been proposed. However, DBN approaches that use continuous variables, thus avoiding the information loss associated with discretization, have not yet been extensively assessed, and most of the proposed approaches have dealt with linear Gaussian models. Results We propose a generalization of dynamic Gaussian networks to accommodate nonlinear dependencies between variables. As a benchmark dataset to test the new approach, we used data from a mathematical model of cell cycle control in budding yeast that realistically reproduces the complexity of a cellular system. We evaluated the ability of the networks to describe the dynamics of cellular systems and their precision in reconstructing the true underlying causal relationships between variables. We also tested the robustness of the results by analyzing the effect of noise on the data, and the impact of a different sampling time. Conclusion The results confirmed that DBNs with Gaussian models can be effectively exploited for a first level analysis of data from complex cellular systems. The inferred models are parsimonious and have a satisfying goodness of fit. Furthermore, the networks not only offer a phenomenological description of the dynamics of cellular systems, but are also able to suggest hypotheses concerning the causal interactions between variables. The proposed nonlinear generalization of Gaussian models yielded models characterized by a slightly lower goodness of fit than the linear model, but a better ability to recover the true underlying connections between
Learning Bayesian networks for discrete data
Liang, Faming
2009-02-01
Bayesian networks have received much attention in the recent literature. In this article, we propose an approach to learn Bayesian networks using the stochastic approximation Monte Carlo (SAMC) algorithm. Our approach has two nice features. Firstly, it possesses the self-adjusting mechanism and thus avoids essentially the local-trap problem suffered by conventional MCMC simulation-based approaches in learning Bayesian networks. Secondly, it falls into the class of dynamic importance sampling algorithms; the network features can be inferred by dynamically weighted averaging the samples generated in the learning process, and the resulting estimates can have much lower variation than the single model-based estimates. The numerical results indicate that our approach can mix much faster over the space of Bayesian networks than the conventional MCMC simulation-based approaches. © 2008 Elsevier B.V. All rights reserved.
A Bayesian network approach for modeling local failure in lung cancer
Energy Technology Data Exchange (ETDEWEB)
Oh, Jung Hun; Craft, Jeffrey; Al Lozi, Rawan; Vaidya, Manushka; Meng, Yifan; Deasy, Joseph O; Bradley, Jeffrey D; El Naqa, Issam, E-mail: elnaqa@wustl.edu [Department of Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, MO 63110 (United States)
2011-03-21
Locally advanced non-small cell lung cancer (NSCLC) patients suffer from a high local failure rate following radiotherapy. Despite many efforts to develop new dose-volume models for early detection of tumor local failure, there was no reported significant improvement in their application prospectively. Based on recent studies of biomarker proteins' role in hypoxia and inflammation in predicting tumor response to radiotherapy, we hypothesize that combining physical and biological factors with a suitable framework could improve the overall prediction. To test this hypothesis, we propose a graphical Bayesian network framework for predicting local failure in lung cancer. The proposed approach was tested using two different datasets of locally advanced NSCLC patients treated with radiotherapy. The first dataset was collected retrospectively, which comprises clinical and dosimetric variables only. The second dataset was collected prospectively in which in addition to clinical and dosimetric information, blood was drawn from the patients at various time points to extract candidate biomarkers as well. Our preliminary results show that the proposed method can be used as an efficient method to develop predictive models of local failure in these patients and to interpret relationships among the different variables in the models. We also demonstrate the potential use of heterogeneous physical and biological variables to improve the model prediction. With the first dataset, we achieved better performance compared with competing Bayesian-based classifiers. With the second dataset, the combined model had a slightly higher performance compared to individual physical and biological models, with the biological variables making the largest contribution. Our preliminary results highlight the potential of the proposed integrated approach for predicting post-radiotherapy local failure in NSCLC patients.
Directory of Open Access Journals (Sweden)
Archana Venkataraman
2015-01-01
Full Text Available Resting-state functional magnetic resonance imaging (rsfMRI studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD. Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differences in connectivity to localize a subset of foci that are most affected by ASD. Our approach is entirely data-driven and does not impose spatial constraints on the region foci or dictate the trajectory of altered functional pathways. We apply our method to data from the openly shared Autism Brain Imaging Data Exchange (ABIDE and pinpoint two intrinsic functional networks that distinguish ASD patients from typically developing controls. One network involves foci in the right temporal pole, left posterior cingulate cortex, left supramarginal gyrus, and left middle temporal gyrus. Automated decoding of this network by the Neurosynth meta-analytic database suggests high-level concepts of “language” and “comprehension” as the likely functional correlates. The second network consists of the left banks of the superior temporal sulcus, right posterior superior temporal sulcus extending into temporo-parietal junction, and right middle temporal gyrus. Associated functionality of these regions includes “social” and “person”. The abnormal pathways emanating from the above foci indicate that ASD patients simultaneously exhibit reduced long-range or inter-hemispheric connectivity and increased short-range or intra-hemispheric connectivity. Our findings reveal new insights into ASD and highlight possible neural mechanisms of the disorder.
Chen, Cong; Zhang, Guohui; Tarefder, Rafiqul; Ma, Jianming; Wei, Heng; Guan, Hongzhi
2015-07-01
Rear-end crash is one of the most common types of traffic crashes in the U.S. A good understanding of its characteristics and contributing factors is of practical importance. Previously, both multinomial Logit models and Bayesian network methods have been used in crash modeling and analysis, respectively, although each of them has its own application restrictions and limitations. In this study, a hybrid approach is developed to combine multinomial logit models and Bayesian network methods for comprehensively analyzing driver injury severities in rear-end crashes based on state-wide crash data collected in New Mexico from 2010 to 2011. A multinomial logit model is developed to investigate and identify significant contributing factors for rear-end crash driver injury severities classified into three categories: no injury, injury, and fatality. Then, the identified significant factors are utilized to establish a Bayesian network to explicitly formulate statistical associations between injury severity outcomes and explanatory attributes, including driver behavior, demographic features, vehicle factors, geometric and environmental characteristics, etc. The test results demonstrate that the proposed hybrid approach performs reasonably well. The Bayesian network reference analyses indicate that the factors including truck-involvement, inferior lighting conditions, windy weather conditions, the number of vehicles involved, etc. could significantly increase driver injury severities in rear-end crashes. The developed methodology and estimation results provide insights for developing effective countermeasures to reduce rear-end crash injury severities and improve traffic system safety performance. PMID:25888994
A fuzzy Bayesian network approach to quantify the human behaviour during an evacuation
Ramli, Nurulhuda; Ghani, Noraida Abdul; Ahmad, Nazihah
2016-06-01
Bayesian Network (BN) has been regarded as a successful representation of inter-relationship of factors affecting human behavior during an emergency. This paper is an extension of earlier work of quantifying the variables involved in the BN model of human behavior during an evacuation using a well-known direct probability elicitation technique. To overcome judgment bias and reduce the expert's burden in providing precise probability values, a new approach for the elicitation technique is required. This study proposes a new fuzzy BN approach for quantifying human behavior during an evacuation. Three major phases of methodology are involved, namely 1) development of qualitative model representing human factors during an evacuation, 2) quantification of BN model using fuzzy probability and 3) inferencing and interpreting the BN result. A case study of three inter-dependencies of human evacuation factors such as danger assessment ability, information about the threat and stressful conditions are used to illustrate the application of the proposed method. This approach will serve as an alternative to the conventional probability elicitation technique in understanding the human behavior during an evacuation.
Directory of Open Access Journals (Sweden)
Nataša Papić-Blagojević
2012-04-01
Full Text Available Marketing approach is associated to market conditions and achieving long term profitability of a company by satisfying consumers’ needs. This approach in tourism does not have to be related only to promoting one touristic destination, but is associated to relation between travel agency and its clients too. It considers that travel agencies adjust their offers to their clients’ needs. In that sense, it is important to analyze the behavior of tourists in the earlier periods with consideration of their preferences. Using Bayesian network, it could be graphically displayed the connection between tourists who have similar taste and relationships between them. On the other hand, the analytic hierarchy process (AHP is used to rank tourist attractions, with also relying on past experience. In this paper we examine possible applications of these two models in tourism in Serbia. The example is hypothetical, but it will serve as a base for future research. Three types of tourism are chosen as a representative in Vojvodina: Cultural, Rural and Business tourism, because they are the bright spot of touristic development in this area. Applied on these forms, analytic hierarchy process has shown its strength in predicting tourists’ preferences.
International Nuclear Information System (INIS)
Bayesian network (BN) is a powerful tool for human reliability analysis (HRA) as it can characterize the dependency among different human performance shaping factors (PSFs) and associated actions. It can also quantify the importance of different PSFs that may cause a human error. Data required to fully quantify BN for HRA in offshore emergency situations are not readily available. For many situations, there is little or no appropriate data. This presents significant challenges to assign the prior and conditional probabilities that are required by the BN approach. To handle the data scarcity problem, this paper presents a data collection methodology using a virtual environment for a simplified BN model of offshore emergency evacuation. A two-level, three-factor experiment is used to collect human performance data under different mustering conditions. Collected data are integrated in the BN model and results are compared with a previous study. The work demonstrates that the BN model can assess the human failure likelihood effectively. Besides, the BN model provides the opportunities to incorporate new evidence and handle complex interactions among PSFs and associated actions
A Bayesian Approach to Service Selection for Secondary Users in Cognitive Radio Networks
Directory of Open Access Journals (Sweden)
Elaheh Homayounvala
2015-10-01
Full Text Available In cognitive radio networks where secondary users (SUs use the time-frequency gaps of primary users' (PUs licensed spectrum opportunistically, the experienced throughput of SUs depend not only on the traffic load of the PUs but also on the PUs' service type. Each service has its own pattern of channel usage, and if the SUs know the dominant pattern of primary channel usage, then they can make a better decision on choosing which service is better to be used at a specific time to get the best advantage of the primary channel, in terms of higher achievable throughput. However, it is difficult to inform directly SUs of PUs' dominant used services in each area, for practical reasons. This paper proposes a learning mechanism embedded in SUs to sense the primary channel for a specific length of time. This algorithm recommends the SUs upon sensing a free primary channel, to choose the best service in order to get the best performance, in terms of maximum achieved throughput and the minimum experienced delay. The proposed learning mechanism is based on a Bayesian approach that can predict the performance of a requested service for a given SU. Simulation results show that this service selection method outperforms the blind opportunistic SU service selection, significantly.
A Parallel and Incremental Approach for Data-Intensive Learning of Bayesian Networks.
Yue, Kun; Fang, Qiyu; Wang, Xiaoling; Li, Jin; Liu, Weiyi
2015-12-01
Bayesian network (BN) has been adopted as the underlying model for representing and inferring uncertain knowledge. As the basis of realistic applications centered on probabilistic inferences, learning a BN from data is a critical subject of machine learning, artificial intelligence, and big data paradigms. Currently, it is necessary to extend the classical methods for learning BNs with respect to data-intensive computing or in cloud environments. In this paper, we propose a parallel and incremental approach for data-intensive learning of BNs from massive, distributed, and dynamically changing data by extending the classical scoring and search algorithm and using MapReduce. First, we adopt the minimum description length as the scoring metric and give the two-pass MapReduce-based algorithms for computing the required marginal probabilities and scoring the candidate graphical model from sample data. Then, we give the corresponding strategy for extending the classical hill-climbing algorithm to obtain the optimal structure, as well as that for storing a BN by pairs. Further, in view of the dynamic characteristics of the changing data, we give the concept of influence degree to measure the coincidence of the current BN with new data, and then propose the corresponding two-pass MapReduce-based algorithms for BNs incremental learning. Experimental results show the efficiency, scalability, and effectiveness of our methods. PMID:25622335
Robertson, D. E.; Wang, Q. J.; Malano, H.; Etchells, T.
2009-02-01
For models to be useful, they need to adequately describe the systems they represent. The probabilistic nature of Bayesian network models has traditionally meant that model validation is difficult. In this paper we present a process to validate Inteca-Farm, a Bayesian network model of farm irrigation that we described in the first paper of this series. We assessed three aspects of the quality of model predictions, namely, bias, accuracy, and skill, for the two variables for which validation data are available directly or indirectly. We also examined model predictions for any systematic errors. The validation results show that the bias and accuracy of the two validated variables are within acceptable tolerances and that systematic errors are minimal. This suggests that Inteca-Farm is a plausible representation of farm irrigation system in the Shepparton Irrigation Region of northern Victoria, Australia.
Robertson, D. E.; Wang, Q. J.; McAllister, A. T.; Abuzar, M.; Malano, H. M.; Etchells, T.
2009-02-01
Catchment managers are interested in understanding impacts of the management options they promote at both farm and regional scales. In this third paper of this series, we use Inteca-Farm, a Bayesian network model of farm irrigation in the Shepparton Irrigation Region of northern Victoria, Australia, to assess the current condition of management outcome measures and the impact of historical and future management intervention. To help overcome difficulties in comprehending modeling results that are expressed as probability distributions, to capture uncertainties, we introduce methods to spatially display and compare the output from Bayesian network models and to use these methods to compare model predictions for three management scenarios. Model predictions suggest that management intervention has made a substantial improvement to the condition of management outcome measures and that further improvements are possible. The results highlight that the management impacts are spatially variable, which demonstrates that farm modeling can provide valuable evidence in substantiating the impact of catchment management intervention.
Muhammad eZubair
2014-01-01
The investigation of the nuclear accidents reveals that the accumulation of various technical and nontechnical lapses compounded the nuclear disaster. By using Analytic Hierarchy Process (AHP) and Bayesian Network (BN) the present research signifies the technical and nontechnical issues of nuclear accidents. The study exposed that besides technical fixes such as enhanced engineering safety features and better siting choices, the critical ingredient for safe operation of nuclear reactors lie i...
A BAYESIAN NETWORKS APPROACH TO MODELING FINANCIAL RISKS OF E-LOGISTICS INVESTMENTS
CHIEN-WEN SHEN
2009-01-01
To evaluate whether the investments of e-logistics systems may increase financial risks, models of Bayesian networks are constructed in this study with the mechanism of structural learning and parameter learning. Empirical findings from the transport and logistics sectors suggest that the e-logistics investments generally do not increase the financial risks of companies except the implementation of computer aided picking systems and radio frequency identification. Meanwhile, only the investme...
Archana Venkataraman; Duncan, James S.; Daniel Y.-J. Yang; Pelphrey, Kevin A.
2015-01-01
Resting-state functional magnetic resonance imaging (rsfMRI) studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD). Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differ...
Adaptive Dynamic Bayesian Networks
Energy Technology Data Exchange (ETDEWEB)
Ng, B M
2007-10-26
A discrete-time Markov process can be compactly modeled as a dynamic Bayesian network (DBN)--a graphical model with nodes representing random variables and directed edges indicating causality between variables. Each node has a probability distribution, conditional on the variables represented by the parent nodes. A DBN's graphical structure encodes fixed conditional dependencies between variables. But in real-world systems, conditional dependencies between variables may be unknown a priori or may vary over time. Model errors can result if the DBN fails to capture all possible interactions between variables. Thus, we explore the representational framework of adaptive DBNs, whose structure and parameters can change from one time step to the next: a distribution's parameters and its set of conditional variables are dynamic. This work builds on recent work in nonparametric Bayesian modeling, such as hierarchical Dirichlet processes, infinite-state hidden Markov networks and structured priors for Bayes net learning. In this paper, we will explain the motivation for our interest in adaptive DBNs, show how popular nonparametric methods are combined to formulate the foundations for adaptive DBNs, and present preliminary results.
Bayesian Networks and Influence Diagrams
DEFF Research Database (Denmark)
Kjærulff, Uffe Bro; Madsen, Anders Læsø
Probabilistic networks, also known as Bayesian networks and influence diagrams, have become one of the most promising technologies in the area of applied artificial intelligence, offering intuitive, efficient, and reliable methods for diagnosis, prediction, decision making, classification......, troubleshooting, and data mining under uncertainty. Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. Intended...
Thomsen, Nanna I.; Binning, Philip J.; McKnight, Ursula S.; Tuxen, Nina; Bjerg, Poul L.; Troldborg, Mads
2016-05-01
A key component in risk assessment of contaminated sites is in the formulation of a conceptual site model (CSM). A CSM is a simplified representation of reality and forms the basis for the mathematical modeling of contaminant fate and transport at the site. The CSM should therefore identify the most important site-specific features and processes that may affect the contaminant transport behavior at the site. However, the development of a CSM will always be associated with uncertainties due to limited data and lack of understanding of the site conditions. CSM uncertainty is often found to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert opinion at different knowledge levels. The developed BBNs combine data from desktop studies and initial site investigations with expert opinion to assess which of the CSMs are more likely to reflect the actual site conditions. The method is demonstrated on a Danish field site, contaminated with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information
A Bayesian network approach to linear and nonlinear acoustic echo cancellation
Huemmer, Christian; Maas, Roland; Hofmann, Christian; Kellermann, Walter
2015-12-01
This article provides a general Bayesian approach to the tasks of linear and nonlinear acoustic echo cancellation (AEC). We introduce a state-space model with latent state vector modeling all relevant information of the unknown system. Based on three cases for defining the state vector (to model a linear or nonlinear echo path) and its mathematical relation to the observation, it is shown that the normalized least mean square algorithm (with fixed and adaptive stepsize), the Hammerstein group model, and a numerical sampling scheme for nonlinear AEC can be derived by applying fundamental techniques for probabilistic graphical models. As a consequence, the major contribution of this Bayesian approach is a unifying graphical-model perspective which may serve as a powerful framework for future work in linear and nonlinear AEC.
A Bayesian Network Approach for Offshore Risk Analysis Through Linguistic Variables
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This paper presents a new approach for offshore risk analysis that is capable of dealing with linguistic probabilities in Bayesian networks (BNs). In this paper, linguistic probabilities are used to describe occurrence likelihood of hazardous events that may cause possible accidents in offshore operations. In order to use fuzzy information, an f-weighted valuation function is proposed to transform linguistic judgements into crisp probability distributions which can be easily put into a BN to model causal relationships among risk factors. The use of linguistic variables makes it easier for human experts to express their knowledge, and the transformation of linguistic judgements into crisp probabilities can significantly save the cost of computation, modifying and maintaining a BN model. The flexibility of the method allows for multiple forms of information to be used to quantify model relationships, including formally assessed expert opinion when quantitative data are lacking, or when only qualitative or vague statements can be made. The model is a modular representation of uncertain knowledge caused due to randomness, vagueness and ignorance. This makes the risk analysis of offshore engineering systems more functional and easier in many assessment contexts. Specifically, the proposed f-weighted valuation function takes into account not only the dominating values, but also the α-level values that are ignored by conventional valuation methods. A case study of the collision risk between a Floating Production, Storage and Off-loading (FPSO) unit and the authorised vessels due to human elements during operation is used to illustrate the application of the proposed model.
Wang, Q. J.; Robertson, D. E.; Haines, C. L.
2009-02-01
Irrigation is important to many agricultural businesses but also has implications for catchment health. A considerable body of knowledge exists on how irrigation management affects farm business and catchment health. However, this knowledge is fragmentary; is available in many forms such as qualitative and quantitative; is dispersed in scientific literature, technical reports, and the minds of individuals; and is of varying degrees of certainty. Bayesian networks allow the integration of dispersed knowledge into quantitative systems models. This study describes the development, validation, and application of a Bayesian network model of farm irrigation in the Shepparton Irrigation Region of northern Victoria, Australia. In this first paper we describe the process used to integrate a range of sources of knowledge to develop a model of farm irrigation. We describe the principal model components and summarize the reaction to the model and its development process by local stakeholders. Subsequent papers in this series describe model validation and the application of the model to assess the regional impact of historical and future management intervention.
Analysis and assessment of injury risk in female gymnastics:Bayesian Network approach
Directory of Open Access Journals (Sweden)
Lyudmila Dimitrova
2015-02-01
Full Text Available This paper presents a Bayesian network (BN model for estimating injury risk in female artistic gymnastics. The model illustrates the connections betweenunderlying injury risk factorsthrough a series ofcausal dependencies. The quantitativepart of the model – the conditional probability tables, are determined using ТNormal distribution with parameters, derived by experts. The injury rates calculated by the network are in an agreement with injury statistic data and correctly reports the impact of various risk factors on injury rates. The model is designed to assist coaches and supporting teams in planning the training activity so that injuries are minimized. This study provides important background for further data collection and research necessary to improve the precision of the quantitative predictions of the model.
Neuronanatomy, neurology and Bayesian networks
Bielza Lozoya, Maria Concepcion
2014-01-01
Bayesian networks are data mining models with clear semantics and a sound theoretical foundation. In this keynote talk we will pinpoint a number of neuroscience problems that can be addressed using Bayesian networks. In neuroanatomy, we will show computer simulation models of dendritic trees and classification of neuron types, both based on morphological features. In neurology, we will present the search for genetic biomarkers in Alzheimer's disease and the prediction of health-related qualit...
Assessing uncertainty in climate change impacts on water resources: Bayesian neural network approach
International Nuclear Information System (INIS)
Climate change impact studies on water resources have so far provided results difficult to use for policy decision and planning of adaptation measures because of the lack of robust uncertainty estimates. There are various sources of uncertainty due to the global circulation models (GCMs) or the regional climate models (RCMs), the emission scenarios, the downscaling techniques, and the hydrological models. The estimation of the overall impact of those uncertainties on the future streamflow or reservoir inflow simulations at the watershed scale remains a difficult and challenging task. The use of multi-model super-ensembles in order to capture the wide range of uncertainties is cumbersome and requires large computational and human resources. As an alternative, a Bayesian Neural Network (BNN) approach is proposed as an effective hydrologic modeling tool for simulating future flows with uncertainty estimates. The BNN model is used with two versions of Canadian GCMs (CGCM1 and CGCM2) with two emission scenarios (SRES B2 and IPCC IS92a), and with one well established statistical downscaling model (SDSM) to simulate daily river flow and reservoir inflow in the Serpent River and the Chute-du-Diable watersheds in northern Quebec. It is found that the 95% uncertainty bands of the BNN mean ensemble flow (i.e. flow simulated using the mean ensemble of downscaled meteorological variables) is capable of encompassing all other possible flows corresponding to various individual downscaled meteorological ensembles whatever the CGCM and the emission scenario used. Specifically, this indicates that the BNN model confidence intervals are capable of including all possible flow variations due to various ensembles of downscaled meteorological variables from two different CGCMs and emission scenarios. Furthermore, the confidence limits of the BNN model also encompasses the flows simulated using another conceptual hydrologic model (namely HBV) whatever the GCM and the emission scenario
Energy Technology Data Exchange (ETDEWEB)
Zhao, Yunfei; Tong, Jiejuan; Zhang, Liguo, E-mail: lgzhang@tsinghua.edu.cn; Zhang, Qin
2015-09-15
Highlights: • Dynamic Bayesian network is used to diagnose and predict accident progress in HTR-PM. • Dynamic Bayesian network model of HTR-PM is built based on detailed system analysis. • LOCA Simulations validate the above model even if part monitors are lost or false. - Abstract: The first high-temperature-reactor pebble-bed demonstration module (HTR-PM) is under construction currently in China. At the same time, development of a system that is used to support nuclear emergency response is in progress. The supporting system is expected to complete two tasks. The first one is diagnostics of the fault in the reactor based on abnormal sensor measurements obtained. The second one is prognostic of the accident progression based on sensor measurements obtained and operator actions. Both tasks will provide valuable guidance for emergency staff to take appropriate protective actions. Traditional method for the two tasks relies heavily on expert judgment, and has been proven to be inappropriate in some cases, such as Three Mile Island accident. To better perform the two tasks, dynamic Bayesian networks (DBN) is introduced in this paper and a pilot study based on the approach is carried out. DBN is advantageous in representing complex dynamic systems and taking full consideration of evidences obtained to perform diagnostics and prognostics. Pearl's loopy belief propagation (LBP) algorithm is recommended for diagnostics and prognostics in DBN. The DBN model of HTR-PM is created based on detailed system analysis and accident progression analysis. A small break loss of coolant accident (SBLOCA) is selected to illustrate the application of the DBN model of HTR-PM in fault diagnostics (FD) and accident progression prognostics (APP). Several advantages of DBN approach compared with other techniques are discussed. The pilot study lays the foundation for developing the nuclear emergency response supporting system (NERSS) for HTR-PM.
International Nuclear Information System (INIS)
Highlights: • Dynamic Bayesian network is used to diagnose and predict accident progress in HTR-PM. • Dynamic Bayesian network model of HTR-PM is built based on detailed system analysis. • LOCA Simulations validate the above model even if part monitors are lost or false. - Abstract: The first high-temperature-reactor pebble-bed demonstration module (HTR-PM) is under construction currently in China. At the same time, development of a system that is used to support nuclear emergency response is in progress. The supporting system is expected to complete two tasks. The first one is diagnostics of the fault in the reactor based on abnormal sensor measurements obtained. The second one is prognostic of the accident progression based on sensor measurements obtained and operator actions. Both tasks will provide valuable guidance for emergency staff to take appropriate protective actions. Traditional method for the two tasks relies heavily on expert judgment, and has been proven to be inappropriate in some cases, such as Three Mile Island accident. To better perform the two tasks, dynamic Bayesian networks (DBN) is introduced in this paper and a pilot study based on the approach is carried out. DBN is advantageous in representing complex dynamic systems and taking full consideration of evidences obtained to perform diagnostics and prognostics. Pearl's loopy belief propagation (LBP) algorithm is recommended for diagnostics and prognostics in DBN. The DBN model of HTR-PM is created based on detailed system analysis and accident progression analysis. A small break loss of coolant accident (SBLOCA) is selected to illustrate the application of the DBN model of HTR-PM in fault diagnostics (FD) and accident progression prognostics (APP). Several advantages of DBN approach compared with other techniques are discussed. The pilot study lays the foundation for developing the nuclear emergency response supporting system (NERSS) for HTR-PM
Bayesian Networks and Influence Diagrams
DEFF Research Database (Denmark)
Kjærulff, Uffe Bro; Madsen, Anders Læsø
Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new...
Bayesian networks in educational assessment
Almond, Russell G; Steinberg, Linda S; Yan, Duanli; Williamson, David M
2015-01-01
Bayesian inference networks, a synthesis of statistics and expert systems, have advanced reasoning under uncertainty in medicine, business, and social sciences. This innovative volume is the first comprehensive treatment exploring how they can be applied to design and analyze innovative educational assessments. Part I develops Bayes nets’ foundations in assessment, statistics, and graph theory, and works through the real-time updating algorithm. Part II addresses parametric forms for use with assessment, model-checking techniques, and estimation with the EM algorithm and Markov chain Monte Carlo (MCMC). A unique feature is the volume’s grounding in Evidence-Centered Design (ECD) framework for assessment design. This “design forward” approach enables designers to take full advantage of Bayes nets’ modularity and ability to model complex evidentiary relationships that arise from performance in interactive, technology-rich assessments such as simulations. Part III describes ECD, situates Bayes nets as ...
Vacik, Harald; Huber, Patrick; Hujala, Teppo; Kurtilla, Mikko; Wolfslehner, Bernhard
2015-04-01
It is an integral element of the European understanding of sustainable forest management to foster the design and marketing of forest products, non-wood forest products (NWFPs) and services that go beyond the production of timber. Despite the relevance of NWFPs in Europe, forest management and planning methods have been traditionally tailored towards wood and wood products, because most forest management models and silviculture techniques were developed to ensure a sustained production of timber. Although several approaches exist which explicitly consider NWFPs as management objectives in forest planning, specific models are needed for the assessment of their production potential in different environmental contexts and for different management regimes. Empirical data supporting a comprehensive assessment of the potential of NWFPs are rare, thus making development of statistical models particularly problematic. However, the complex causal relationships between the sustained production of NWFPs, the available ecological resources, as well as the organizational and the market potential of forest management regimes are well suited for knowledge-based expert models. Bayesian belief networks (BBNs) are a kind of probabilistic graphical model that have become very popular to practitioners and scientists mainly due to the powerful probability theory involved, which makes BBNs suitable to deal with a wide range of environmental problems. In this contribution we present the development of a Bayesian belief network to assess the potential of NWFPs for small scale forest owners. A three stage iterative process with stakeholder and expert participation was used to develop the Bayesian Network within the frame of the StarTree Project. The group of participants varied in the stages of the modelling process. A core team, consisting of one technical expert and two domain experts was responsible for the entire modelling process as well as for the first prototype of the network
A Bayesian network modeling approach to forecasting the 21st century worldwide status of polar bears
Amstrup, Steven C.; Marcot, Bruce G.; Douglas, David C.
To inform the U.S. Fish and Wildlife Service decision, whether or not to list polar bears as threatened under the Endangered Species Act (ESA), we projected the status of the world's polar bears (Ursus maritimus) for decades centered on future years 2025, 2050, 2075, and 2095. We defined four ecoregions based on current and projected sea ice conditions: seasonal ice, Canadian Archipelago, polar basin divergent, and polar basin convergent ecoregions. We incorporated general circulation model projections of future sea ice into a Bayesian network (BN) model structured around the factors considered in ESA decisions. This first-generation BN model combined empirical data, interpretations of data, and professional judgments of one polar bear expert into a probabilistic framework that identifies causal links between environmental stressors and polar bear responses. We provide guidance regarding steps necessary to refine the model, including adding inputs from other experts. The BN model projected extirpation of polar bears from the seasonal ice and polar basin divergent ecoregions, where ≈2/3 of the world's polar bears currently occur, by mid century. Projections were less dire in other ecoregions. Decline in ice habitat was the overriding factor driving the model outcomes. Although this is a first-generation model, the dependence of polar bears on sea ice is universally accepted, and the observed sea ice decline is faster than models suggest. Therefore, incorporating judgments of multiple experts in a final model is not expected to fundamentally alter the outlook for polar bears described here.
Lee, Sangkyu; Jeyaseelan, Krishinima; Faria, Sergio; Kopek, Neil; Brisebois, Pascale; Vu, Toni; Filion, Edith; Campeau, Marie-Pierre; Lambert, Louise; Del Vecchio, Pierre; Trudel, Diane; El-Sokhn, Nidale; Roach, Michael; Robinson, Clifford; Naqa, Issam El
2015-01-01
Background and Purpose: Stereotactic body radiotherapy (SBRT) for lung cancer accompanies a non-negligible risk of radiation pneumonitis (RP). This study presents a Bayesian network (BN) model that connects biological, dosimetric, and clinical RP risk factors. Material and Methods: 43 non-small-cell lung cancer patients treated with SBRT with 5 fractions or less were studied. Candidate RP risk factors included dose-volume parameters, previously reported clinical RP factors, 6 protein biomarkers at baseline and 6 weeks post-treatment. A BN ensemble model was built from a subset of the variables in a training cohort (N=32), and further tested in an independent validation cohort (N=11). Results: Key factors identified in the BN ensemble for predicting RP risk were ipsilateral V5, lung volume receiving more than 105% of prescription, and decrease in angiotensin converting enzyme (ACE) from baseline to 6 weeks. External validation of the BN ensemble model yielded an area under the curve of 0.8. Conclusions: The BN...
Bayesian networks and food security - An introduction
Stein, A.
2004-01-01
This paper gives an introduction to Bayesian networks. Networks are defined and put into a Bayesian context. Directed acyclical graphs play a crucial role here. Two simple examples from food security are addressed. Possible uses of Bayesian networks for implementation and further use in decision sup
Benchmarking dynamic Bayesian network structure learning algorithms
Trabelsi, Ghada; Leray, Philippe; Ben Ayed, Mounir; Alimi, Adel
2012-01-01
Dynamic Bayesian Networks (DBNs) are probabilistic graphical models dedicated to modeling multivariate time series. Two-time slice BNs (2-TBNs) are the most current type of these models. Static BN structure learning is a well-studied domain. Many approaches have been proposed and the quality of these algorithms has been studied over a range of di erent standard networks and methods of evaluation. To the best of our knowledge, all studies about DBN structure learning use their own benchmarks a...
Bayesian Network--Response Regression
WANG, LU; Durante, Daniele; Dunson, David B.
2016-01-01
There is an increasing interest in learning how human brain networks vary with continuous traits (e.g., personality, cognitive abilities, neurological disorders), but flexible procedures to accomplish this goal are limited. We develop a Bayesian semiparametric model, which combines low-rank factorizations and Gaussian process priors to allow flexible shifts of the conditional expectation for a network-valued random variable across the feature space, while including subject-specific random eff...
Humphrey, Greer B.; Gibbs, Matthew S.; Dandy, Graeme C.; Maier, Holger R.
2016-09-01
Monthly streamflow forecasts are needed to support water resources decision making in the South East of South Australia, where baseflow represents a significant proportion of the total streamflow and soil moisture and groundwater are important predictors of runoff. To address this requirement, the utility of a hybrid monthly streamflow forecasting approach is explored, whereby simulated soil moisture from the GR4J conceptual rainfall-runoff model is used to represent initial catchment conditions in a Bayesian artificial neural network (ANN) statistical forecasting model. To assess the performance of this hybrid forecasting method, a comparison is undertaken of the relative performances of the Bayesian ANN, the GR4J conceptual model and the hybrid streamflow forecasting approach for producing 1-month ahead streamflow forecasts at three key locations in the South East of South Australia. Particular attention is paid to the quantification of uncertainty in each of the forecast models and the potential for reducing forecast uncertainty by using the hybrid approach is considered. Case study results suggest that the hybrid models developed in this study are able to take advantage of the complementary strengths of both the ANN models and the GR4J conceptual models. This was particularly the case when forecasting high flows, where the hybrid models were shown to outperform the two individual modelling approaches in terms of the accuracy of the median forecasts, as well as reliability and resolution of the forecast distributions. In addition, the forecast distributions generated by the hybrid models were up to 8 times more precise than those based on climatology; thus, providing a significant improvement on the information currently available to decision makers.
Zhang, Limao; Wu, Xianguo; Qin, Yawei; Skibniewski, Miroslaw J; Liu, Wenli
2016-02-01
Tunneling excavation is bound to produce significant disturbances to surrounding environments, and the tunnel-induced damage to adjacent underground buried pipelines is of considerable importance for geotechnical practice. A fuzzy Bayesian networks (FBNs) based approach for safety risk analysis is developed in this article with detailed step-by-step procedures, consisting of risk mechanism analysis, the FBN model establishment, fuzzification, FBN-based inference, defuzzification, and decision making. In accordance with the failure mechanism analysis, a tunnel-induced pipeline damage model is proposed to reveal the cause-effect relationships between the pipeline damage and its influential variables. In terms of the fuzzification process, an expert confidence indicator is proposed to reveal the reliability of the data when determining the fuzzy probability of occurrence of basic events, with both the judgment ability level and the subjectivity reliability level taken into account. By means of the fuzzy Bayesian inference, the approach proposed in this article is capable of calculating the probability distribution of potential safety risks and identifying the most likely potential causes of accidents under both prior knowledge and given evidence circumstances. A case concerning the safety analysis of underground buried pipelines adjacent to the construction of the Wuhan Yangtze River Tunnel is presented. The results demonstrate the feasibility of the proposed FBN approach and its application potential. The proposed approach can be used as a decision tool to provide support for safety assurance and management in tunnel construction, and thus increase the likelihood of a successful project in a complex project environment. PMID:26224125
Inference in hybrid Bayesian networks
DEFF Research Database (Denmark)
Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael;
2009-01-01
and reliability block diagrams). However, limitations in the BNs' calculation engine have prevented BNs from becoming equally popular for domains containing mixtures of both discrete and continuous variables (so-called hybrid domains). In this paper we focus on these difficulties, and summarize some of the last...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....
Space Shuttle RTOS Bayesian Network
Morris, A. Terry; Beling, Peter A.
2001-01-01
With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores
Doskey, Steven Craig
2014-01-01
This research presents an innovative means of gauging Systems Engineering effectiveness through a Systems Engineering Relative Effectiveness Index (SE REI) model. The SE REI model uses a Bayesian Belief Network to map causal relationships in government acquisitions of Complex Information Systems (CIS), enabling practitioners to identify and…
Bayesian networks for enterprise risk assessment
Bonafede, C E
2006-01-01
According to different typologies of activity and priority, risks can assume diverse meanings and it can be assessed in different ways. In general risk is measured in terms of a probability combination of an event (frequency) and its consequence (impact). To estimate the frequency and the impact (severity) historical data or expert opinions (either qualitative or quantitative data) are used. Moreover qualitative data must be converted in numerical values to be used in the model. In the case of enterprise risk assessment the considered risks are, for instance, strategic, operational, legal and of image, which many times are difficult to be quantified. So in most cases only expert data, gathered by scorecard approaches, are available for risk analysis. The Bayesian Network is a useful tool to integrate different information and in particular to study the risk's joint distribution by using data collected from experts. In this paper we want to show a possible approach for building a Bayesian networks in the parti...
Software Health Management with Bayesian Networks
Mengshoel, Ole; Schumann, JOhann
2011-01-01
Most modern aircraft as well as other complex machinery is equipped with diagnostics systems for its major subsystems. During operation, sensors provide important information about the subsystem (e.g., the engine) and that information is used to detect and diagnose faults. Most of these systems focus on the monitoring of a mechanical, hydraulic, or electromechanical subsystem of the vehicle or machinery. Only recently, health management systems that monitor software have been developed. In this paper, we will discuss our approach of using Bayesian networks for Software Health Management (SWHM). We will discuss SWHM requirements, which make advanced reasoning capabilities for the detection and diagnosis important. Then we will present our approach to using Bayesian networks for the construction of health models that dynamically monitor a software system and is capable of detecting and diagnosing faults.
Application of Bayesian Network Learning Methods to Land Resource Evaluation
Institute of Scientific and Technical Information of China (English)
HUANG Jiejun; HE Xiaorong; WAN Youchuan
2006-01-01
Bayesian network has a powerful ability for reasoning and semantic representation, which combined with qualitative analysis and quantitative analysis, with prior knowledge and observed data, and provides an effective way to deal with prediction, classification and clustering. Firstly, this paper presented an overview of Bayesian network and its characteristics, and discussed how to learn a Bayesian network structure from given data, and then constructed a Bayesian network model for land resource evaluation with expert knowledge and the dataset. The experimental results based on the test dataset are that evaluation accuracy is 87.5%, and Kappa index is 0.826. All these prove the method is feasible and efficient, and indicate that Bayesian network is a promising approach for land resource evaluation.
Quantum Inference on Bayesian Networks
Yoder, Theodore; Low, Guang Hao; Chuang, Isaac
2014-03-01
Because quantum physics is naturally probabilistic, it seems reasonable to expect physical systems to describe probabilities and their evolution in a natural fashion. Here, we use quantum computation to speedup sampling from a graphical probability model, the Bayesian network. A specialization of this sampling problem is approximate Bayesian inference, where the distribution on query variables is sampled given the values e of evidence variables. Inference is a key part of modern machine learning and artificial intelligence tasks, but is known to be NP-hard. Classically, a single unbiased sample is obtained from a Bayesian network on n variables with at most m parents per node in time (nmP(e) - 1 / 2) , depending critically on P(e) , the probability the evidence might occur in the first place. However, by implementing a quantum version of rejection sampling, we obtain a square-root speedup, taking (n2m P(e) -1/2) time per sample. The speedup is the result of amplitude amplification, which is proving to be broadly applicable in sampling and machine learning tasks. In particular, we provide an explicit and efficient circuit construction that implements the algorithm without the need for oracle access.
Lee, Kun Chang; Park, Bong-Won
Many online game users purchase game items with which to play free-to-play games. Because of a lack of research into which there is no specified framework for categorizing the values of game items, this study proposes four types of online game item values based on an analysis of literature regarding online game characteristics. It then proposes to investigate how online game users perceive satisfaction and purchase intention from the proposed four types of online game item values. Though regression analysis has been used frequently to answer this kind of research question, we propose a new approach, a General Bayesian Network (GBN), which can be performed in an understandable way without sacrificing predictive accuracy. Conventional techniques, such as regression analysis, do not provide significant explanation for this kind of problem because they are fixed to a linear structure and are limited in explaining why customers are likely to purchase game items and if they are satisfied with their purchases. In contrast, the proposed GBN provides a flexible underlying structure based on questionnaire survey data and offers robust decision support on this kind of research question by identifying its causal relationships. To illustrate the validity of GBN in solving the research question in this study, 327 valid questionnaires were analyzed using GBN with what-if and goal-seeking approaches. The experimental results were promising and meaningful in comparison with regression analysis results.
Macroscopic Models of Clique Tree Growth for Bayesian Networks
National Aeronautics and Space Administration — In clique tree clustering, inference consists of propagation in a clique tree compiled from a Bayesian network. In this paper, we develop an analytical approach to...
Nonparametric Bayesian Modeling of Complex Networks
DEFF Research Database (Denmark)
Schmidt, Mikkel Nørgaard; Mørup, Morten
2013-01-01
Modeling structure in complex networks using Bayesian nonparametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This article provides a gentle introduction to nonparametric Bayesian modeling of complex networks: Using...... for complex networks can be derived and point out relevant literature....
Bayesian networks with applications in reliability analysis
Langseth, Helge
2002-01-01
A common goal of the papers in this thesis is to propose, formalize and exemplify the use of Bayesian networks as a modelling tool in reliability analysis. The papers span work in which Bayesian networks are merely used as a modelling tool (Paper I), work where models are specially designed to utilize the inference algorithms of Bayesian networks (Paper II and Paper III), and work where the focus has been on extending the applicability of Bayesian networks to very large domains (Paper IV and ...
Learning Bayesian networks using genetic algorithm
Institute of Scientific and Technical Information of China (English)
Chen Fei; Wang Xiufeng; Rao Yimei
2007-01-01
A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not.Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach.
Bayesian network learning for natural hazard assessments
Vogel, Kristin
2016-04-01
and incomplete observations. Further studies rise the challenge of relying on very small data sets. Since parameter estimates for complex models based on few observations are unreliable, it is necessary to focus on simplified, yet still meaningful models. A so called Markov Blanket approach is developed to identify the most relevant model components and to construct a simple Bayesian network based on those findings. Since the proceeding is completely data driven, it can easily be transferred to various applications in natural hazard domains. This study is funded by the Deutsche Forschungsgemeinschaft (DFG) within the research training programme GRK 2043/1 "NatRiskChange - Natural hazards and risks in a changing world" at Potsdam University.
Nasini, Stefano; Martínez-de-Albéniz, Víctor; Dehdarirad, Tahereh
2015-01-01
Demographic and behavioral characteristics of journal authors are important indicators of homophily in co-authorship networks. In the presence of correlations between adjacent nodes (assortative mixing), combining the estimation of the individual characteristics and the network structure results in a well-fitting model, which is capable to provide a deep understanding of the linkage between individual and social properties. This paper aims to propose a novel probabilistic model for the joint ...
Approximation methods for efficient learning of Bayesian networks
Riggelsen, C
2008-01-01
This publication offers and investigates efficient Monte Carlo simulation methods in order to realize a Bayesian approach to approximate learning of Bayesian networks from both complete and incomplete data. For large amounts of incomplete data when Monte Carlo methods are inefficient, approximations are implemented, such that learning remains feasible, albeit non-Bayesian. The topics discussed are: basic concepts about probabilities, graph theory and conditional independence; Bayesian network learning from data; Monte Carlo simulation techniques; and, the concept of incomplete data. In order to provide a coherent treatment of matters, thereby helping the reader to gain a thorough understanding of the whole concept of learning Bayesian networks from (in)complete data, this publication combines in a clarifying way all the issues presented in the papers with previously unpublished work.
Seeded Bayesian Networks: Constructing genetic networks from microarray data
Directory of Open Access Journals (Sweden)
Quackenbush John
2008-07-01
Full Text Available Abstract Background DNA microarrays and other genomics-inspired technologies provide large datasets that often include hidden patterns of correlation between genes reflecting the complex processes that underlie cellular metabolism and physiology. The challenge in analyzing large-scale expression data has been to extract biologically meaningful inferences regarding these processes – often represented as networks – in an environment where the datasets are often imperfect and biological noise can obscure the actual signal. Although many techniques have been developed in an attempt to address these issues, to date their ability to extract meaningful and predictive network relationships has been limited. Here we describe a method that draws on prior information about gene-gene interactions to infer biologically relevant pathways from microarray data. Our approach consists of using preliminary networks derived from the literature and/or protein-protein interaction data as seeds for a Bayesian network analysis of microarray results. Results Through a bootstrap analysis of gene expression data derived from a number of leukemia studies, we demonstrate that seeded Bayesian Networks have the ability to identify high-confidence gene-gene interactions which can then be validated by comparison to other sources of pathway data. Conclusion The use of network seeds greatly improves the ability of Bayesian Network analysis to learn gene interaction networks from gene expression data. We demonstrate that the use of seeds derived from the biomedical literature or high-throughput protein-protein interaction data, or the combination, provides improvement over a standard Bayesian Network analysis, allowing networks involving dynamic processes to be deduced from the static snapshots of biological systems that represent the most common source of microarray data. Software implementing these methods has been included in the widely used TM4 microarray analysis package.
Compiling Relational Bayesian Networks for Exact Inference
DEFF Research Database (Denmark)
Jaeger, Manfred; Chavira, Mark; Darwiche, Adnan
2004-01-01
We describe a system for exact inference with relational Bayesian networks as defined in the publicly available \\primula\\ tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by evaluating and ...
Compiling Relational Bayesian Networks for Exact Inference
DEFF Research Database (Denmark)
Jaeger, Manfred; Darwiche, Adnan; Chavira, Mark
We describe in this paper a system for exact inference with relational Bayesian networks as defined in the publicly available PRIMULA tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by eva...
Bayesian Network Structure Learning from Limited Datasets through Graph Evolution
Tonda, Alberto; Lutton, Evelyne; Reuillon, Romain; Squillero, Giovanni; Wuillemin, Pierre-Henri
2012-01-01
Bayesian networks are stochastic models, widely adopted to encode knowledge in several fields. One of the most interesting features of a Bayesian network is the possibility of learning its structure from a set of data, and subsequently use the resulting model to perform new predictions. Structure learning for such models is a NP-hard problem, for which the scientific community developed two main approaches: score-and-search metaheuristics, often evolutionary-based, and dependency-analysis det...
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
Hernández-Lobato, José Miguel; Adams, Ryan P.
2015-01-01
Large multilayer neural networks trained with backpropagation have recently achieved state-of-the-art results in a wide range of problems. However, using backprop for neural net learning still has some disadvantages, e.g., having to tune a large number of hyperparameters to the data, lack of calibrated probabilistic predictions, and a tendency to overfit the training data. In principle, the Bayesian approach to learning neural networks does not have these problems. However, existing Bayesian ...
A bayesian belief networks approach to risk control in construction projects
Chivatá Cárdenas, I.C.; Al-jibouri, S.H.S.; Halman, J.I.M.; Telichenko, V.; Volkov, A.; Bilchuk, I.
2012-01-01
Although risk control is a key step in risk management of construction projects, very often risk measures used are based merely on personal experience and engineering judgement rather than analysis of comprehensive information relating to a specific risk. This paper deals with an approach to provide better information to derive relevant and effective risk measures for specific risks. The approach relies on developing risk models to represent interactions between risk factors and carrying out ...
Nataša Papić-Blagojević; Tamara Gajić; Nenad Đokić
2012-01-01
Marketing approach is associated to market conditions and achieving long term profitability of a company by satisfying consumers’ needs. This approach in tourism does not have to be related only to promoting one touristic destination, but is associated to relation between travel agency and its clients too. It considers that travel agencies adjust their offers to their clients’ needs. In that sense, it is important to analyze the behavior of tourists in the earlier periods with consideration o...
Bayesian approach to rough set
Marwala, Tshilidzi
2007-01-01
This paper proposes an approach to training rough set models using Bayesian framework trained using Markov Chain Monte Carlo (MCMC) method. The prior probabilities are constructed from the prior knowledge that good rough set models have fewer rules. Markov Chain Monte Carlo sampling is conducted through sampling in the rough set granule space and Metropolis algorithm is used as an acceptance criteria. The proposed method is tested to estimate the risk of HIV given demographic data. The results obtained shows that the proposed approach is able to achieve an average accuracy of 58% with the accuracy varying up to 66%. In addition the Bayesian rough set give the probabilities of the estimated HIV status as well as the linguistic rules describing how the demographic parameters drive the risk of HIV.
An Intuitive Dashboard for Bayesian Network Inference
Reddy, Vikas; Charisse Farr, Anna; Wu, Paul; Mengersen, Kerrie; Yarlagadda, Prasad K. D. V.
2014-03-01
Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++.
An Intuitive Dashboard for Bayesian Network Inference
International Nuclear Information System (INIS)
Current Bayesian network software packages provide good graphical interface for users who design and develop Bayesian networks for various applications. However, the intended end-users of these networks may not necessarily find such an interface appealing and at times it could be overwhelming, particularly when the number of nodes in the network is large. To circumvent this problem, this paper presents an intuitive dashboard, which provides an additional layer of abstraction, enabling the end-users to easily perform inferences over the Bayesian networks. Unlike most software packages, which display the nodes and arcs of the network, the developed tool organises the nodes based on the cause-and-effect relationship, making the user-interaction more intuitive and friendly. In addition to performing various types of inferences, the users can conveniently use the tool to verify the behaviour of the developed Bayesian network. The tool has been developed using QT and SMILE libraries in C++
Approach to the Correlation Discovery of Chinese Linguistic Parameters Based on Bayesian Method
Institute of Scientific and Technical Information of China (English)
WANG Wei(王玮); CAI LianHong(蔡莲红)
2003-01-01
Bayesian approach is an important method in statistics. The Bayesian belief network is a powerful knowledge representation and reasoning tool under the conditions of uncertainty.It is a graphics model that encodes probabilistic relationships among variables of interest. In this paper, an approach to Bayesian network construction is given for discovering the Chinese linguistic parameter relationship in the corpus.
DEFF Research Database (Denmark)
Jensen, Kasper Lynge; Toftum, Jørn; Friis-Hansen, Peter
2009-01-01
building design. In this paper, focus will be on the effects of temperature on mental performance and not on other indoor climate factors. A total economic comparison of six different building designs, four located in northern Europe and two in Los Angeles, USA, was performed. The results indicate...... that investments in improved indoor thermal conditions can be justified economically in most cases. The Bayesian Network provides a reliable platform using probabilities for modelling the complexity while estimating the effect of indoor climate factors on human beings, due to the different ways in which humans...
Kocabas, Verda; Dragicevic, Suzana
2013-10-01
Land-use change models grounded in complexity theory such as agent-based models (ABMs) are increasingly being used to examine evolving urban systems. The objective of this study is to develop a spatial model that simulates land-use change under the influence of human land-use choice behavior. This is achieved by integrating the key physical and social drivers of land-use change using Bayesian networks (BNs) coupled with agent-based modeling. The BNAS model, integrated Bayesian network-based agent system, presented in this study uses geographic information systems, ABMs, BNs, and influence diagram principles to model population change on an irregular spatial structure. The model is parameterized with historical data and then used to simulate 20 years of future population and land-use change for the City of Surrey, British Columbia, Canada. The simulation results identify feasible new urban areas for development around the main transportation corridors. The obtained new development areas and the projected population trajectories with the“what-if” scenario capabilities can provide insights into urban planners for better and more informed land-use policy or decision-making processes.
The Diagnosis of Reciprocating Machinery by Bayesian Networks
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
A Bayesian Network is a reasoning tool based on probability theory and has many advantages that other reasoning tools do not have. This paper discusses the basic theory of Bayesian networks and studies the problems in constructing Bayesian networks. The paper also constructs a Bayesian diagnosis network of a reciprocating compressor. The example helps us to draw a conclusion that Bayesian diagnosis networks can diagnose reciprocating machinery effectively.
An introduction to Gaussian Bayesian networks.
Grzegorczyk, Marco
2010-01-01
The extraction of regulatory networks and pathways from postgenomic data is important for drug -discovery and development, as the extracted pathways reveal how genes or proteins regulate each other. Following up on the seminal paper of Friedman et al. (J Comput Biol 7:601-620, 2000), Bayesian networks have been widely applied as a popular tool to this end in systems biology research. Their popularity stems from the tractability of the marginal likelihood of the network structure, which is a consistent scoring scheme in the Bayesian context. This score is based on an integration over the entire parameter space, for which highly expensive computational procedures have to be applied when using more complex -models based on differential equations; for example, see (Bioinformatics 24:833-839, 2008). This chapter gives an introduction to reverse engineering regulatory networks and pathways with Gaussian Bayesian networks, that is Bayesian networks with the probabilistic BGe scoring metric [see (Geiger and Heckerman 235-243, 1995)]. In the BGe model, the data are assumed to stem from a Gaussian distribution and a normal-Wishart prior is assigned to the unknown parameters. Gaussian Bayesian network methodology for analysing static observational, static interventional as well as dynamic (observational) time series data will be described in detail in this chapter. Finally, we apply these Bayesian network inference methods (1) to observational and interventional flow cytometry (protein) data from the well-known RAF pathway to evaluate the global network reconstruction accuracy of Bayesian network inference and (2) to dynamic gene expression time series data of nine circadian genes in Arabidopsis thaliana to reverse engineer the unknown regulatory network topology for this domain. PMID:20824469
Fuzzy Functional Dependencies and Bayesian Networks
Institute of Scientific and Technical Information of China (English)
LIU WeiYi(刘惟一); SONG Ning(宋宁)
2003-01-01
Bayesian networks have become a popular technique for representing and reasoning with probabilistic information. The fuzzy functional dependency is an important kind of data dependencies in relational databases with fuzzy values. The purpose of this paper is to set up a connection between these data dependencies and Bayesian networks. The connection is done through a set of methods that enable people to obtain the most information of independent conditions from fuzzy functional dependencies.
A Decomposition Algorithm for Learning Bayesian Network Structures from Data
DEFF Research Database (Denmark)
Zeng, Yifeng; Cordero Hernandez, Jorge
2008-01-01
the complete network. The new learning algorithm firstly finds local components from the data, and then recover the complete network by joining the learned components. We show the empirical performance of the decomposition algorithm in several benchmark networks.......It is a challenging task of learning a large Bayesian network from a small data set. Most conventional structural learning approaches run into the computational as well as the statistical problems. We propose a decomposition algorithm for the structure construction without having to learn...
Inference of Gene Regulatory Network Based on Local Bayesian Networks
Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Chen, Luonan
2016-01-01
The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce
Inference of Gene Regulatory Network Based on Local Bayesian Networks.
Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan
2016-08-01
The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce
Bayesian Network Models for Adaptive Testing
Czech Academy of Sciences Publication Activity Database
Plajner, Martin; Vomlel, Jiří
Achen: Sun SITE Central Europe, 2016 - (Agosta, J.; Carvalho, R.), s. 24-33. (CEUR Workshop Proceedings. Vol 1565). ISSN 1613-0073. [The Twelfth UAI Bayesian Modeling Applications Workshop (BMAW 2015). Amsterdam (NL), 16.07.2015] R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : Bayesian networks * Computerized adaptive testing Subject RIV: JD - Computer Applications, Robotics http://library.utia.cas.cz/separaty/2016/MTR/plajner-0458062.pdf
Scaling Bayesian network discovery through incremental recovery
Castelo, J.R.; Siebes, A.P.J.M.
1999-01-01
Bayesian networks are a type of graphical models that, e.g., allow one to analyze the interaction among the variables in a database. A well-known problem with the discovery of such models from a database is the ``problem of high-dimensionality''. That is, the discovery of a network from a database w
Bayesian network learning with cutting planes
Cussens, James
2012-01-01
The problem of learning the structure of Bayesian networks from complete discrete data with a limit on parent set size is considered. Learning is cast explicitly as an optimisation problem where the goal is to find a BN structure which maximises log marginal likelihood (BDe score). Integer programming, specifically the SCIP framework, is used to solve this optimisation problem. Acyclicity constraints are added to the integer program (IP) during solving in the form of cutting planes. Finding good cutting planes is the key to the success of the approach -the search for such cutting planes is effected using a sub-IP. Results show that this is a particularly fast method for exact BN learning.
Survey for Wavelet Bayesian Network Image Denoising
Directory of Open Access Journals (Sweden)
Pallavi Sharma,
2014-04-01
Full Text Available In now days, wavelet-based image denoising method, which extends a recently emerged ―geometrical‖ Bayesian framework. The new scheme combines three criteria for distinctive theoretically useful coefficients from noise: coefficient magnitudes, their advancement across scales and spatial clustering of bulky coefficients close to image edges. These three criteria are united in a Bayesian construction. The spatial clustering properties are expressed in a earlier model. The statistical properties regarding coefficient magnitudes and their development crossways scales are expressed in a joint conditional model. We address the image denoising difficulty, where zero-mean white and homogeneous Gaussian additive noise is to be uninvolved from a given image. We employ the belief propagation (BP algorithm, which estimates a coefficient based on every one the coefficients of a picture, as the maximum-a-posterior (MAP estimator to derive the denoised wavelet coefficients. We illustrate that if the network is a spanning tree, the customary BP algorithm can achieve MAP estimation resourcefully. Our research consequences show that, in conditions of the peak-signal-to-noise-ratio and perceptual superiority, the planned approach outperforms state-of-the-art algorithms on a number of images, mostly in the textured regions, with a range of amounts of white Gaussian noise.
Uncertainty Modeling Based on Bayesian Network in Ontology Mapping
Institute of Scientific and Technical Information of China (English)
LI Yuhua; LIU Tao; SUN Xiaolin
2006-01-01
How to deal with uncertainty is crucial in exact concept mapping between ontologies. This paper presents a new framework on modeling uncertainty in ontologies based on bayesian networks (BN). In our approach, ontology Web language (OWL) is extended to add probabilistic markups for attaching probability information, the source and target ontologies (expressed by patulous OWL) are translated into bayesian networks (BNs), the mapping between the two ontologies can be digged out by constructing the conditional probability tables (CPTs) of the BN using a improved algorithm named I-IPFP based on iterative proportional fitting procedure (IPFP). The basic idea of this framework and algorithm are validated by positive results from computer experiments.
Learning Bayesian Networks from Correlated Data
Bae, Harold; Monti, Stefano; Montano, Monty; Steinberg, Martin H.; Perls, Thomas T.; Sebastiani, Paola
2016-05-01
Bayesian networks are probabilistic models that represent complex distributions in a modular way and have become very popular in many fields. There are many methods to build Bayesian networks from a random sample of independent and identically distributed observations. However, many observational studies are designed using some form of clustered sampling that introduces correlations between observations within the same cluster and ignoring this correlation typically inflates the rate of false positive associations. We describe a novel parameterization of Bayesian networks that uses random effects to model the correlation within sample units and can be used for structure and parameter learning from correlated data without inflating the Type I error rate. We compare different learning metrics using simulations and illustrate the method in two real examples: an analysis of genetic and non-genetic factors associated with human longevity from a family-based study, and an example of risk factors for complications of sickle cell anemia from a longitudinal study with repeated measures.
Landuyt, Dries; Lemmens, Pieter; D'hondt, Rob; Broekx, Steven; Liekens, Inge; De Bie, Tom; Declerck, Steven A J; De Meester, Luc; Goethals, Peter L M
2014-12-01
Freshwater ponds deliver a broad range of ecosystem services (ESS). Taking into account this broad range of services to attain cost-effective ESS delivery is an important challenge facing integrated pond management. To assess the strengths and weaknesses of an ESS approach to support decisions in integrated pond management, we applied it on a small case study in Flanders, Belgium. A Bayesian belief network model was developed to assess ESS delivery under three alternative pond management scenarios: intensive fish farming (IFF), extensive fish farming (EFF) and nature conservation management (NCM). A probabilistic cost-benefit analysis was performed that includes both costs associated with pond management practices and benefits associated with ESS delivery. Whether or not a particular ESS is included in the analysis affects the identification of the most preferable management scenario by the model. Assessing the delivery of a more complete set of ecosystem services tends to shift the results away from intensive management to more biodiversity-oriented management scenarios. The proposed methodology illustrates the potential of Bayesian belief networks. BBNs facilitate knowledge integration and their modular nature encourages future model expansion to more encompassing sets of services. Yet, we also illustrate the key weaknesses of such exercises, being that the choice whether or not to include a particular ecosystem service may determine the suggested optimal management practice. PMID:25005053
The application of Bayesian networks in natural hazard analyses
Directory of Open Access Journals (Sweden)
K. Vogel
2013-10-01
Full Text Available In natural hazards we face several uncertainties due to our lack of knowledge and/or the intrinsic randomness of the underlying natural processes. Nevertheless, deterministic analysis approaches are still widely used in natural hazard assessments, with the pitfall of underestimating the hazard with potentially disastrous consequences. In this paper we show that the Bayesian network approach offers a flexible framework for capturing and expressing a broad range of different uncertainties as those encountered in natural hazard assessments. Although well studied in theory, the application of Bayesian networks on real-world data is often not straightforward and requires specific tailoring and adaption of existing algorithms. We demonstrate by way of three case studies (a ground motion model for a seismic hazard analysis, a flood damage assessment, and a landslide susceptibility study the applicability of Bayesian networks across different domains showcasing various properties and benefits of the Bayesian network framework. We offer suggestions as how to tackle practical problems arising along the way, mainly concentrating on the handling of continuous variables, missing observations, and the interaction of both. We stress that our networks are completely data-driven, although prior domain knowledge can be included if desired.
Kashuba, Roxolana; McMahon, Gerard; Cuffney, Thomas F.; Qian, Song; Reckhow, Kenneth; Gerritsen, Jeroen; Davies, Susan
2012-01-01
Urban development alters important physical, chemical, and biological processes that define urban stream ecosystems. An approach was developed for quantifying the effects of these processes on aquatic biota, and then linking those effects to endpoints that can be used for environmental management. These complex, interacting systems are challenging to model from a scientific standpoint. A desirable model clearly shows the system, simulates the interactions, and ultimately predicts results of management actions. Traditional regression techniques that calculate empirical relations between pairs of environmental factors do not capture the interconnected web of multiple stressors, but urban development effects are not yet understood at the detailed scales required to make mechanistic modeling approaches feasible. Therefore, in contrast to a fully deterministic or fully statistical modeling approach, a Bayesian network model provides a hybrid approach that can be used to represent known general associations between variables while acknowledging uncertainty in predicted outcomes. It does so by quantifying an expert-elicited network of probabilistic relations between variables. Advantages of this modeling approach include (1) flexibility in accommodating many model specifications and information types; (2) efficiency in storing and manipulating complex information, and to parameterize; and (3) transparency in describing the relations using nodes and arrows and in describing uncertainties with discrete probability distributions for each variable.
A Bayesian Network Framework for Relational Shape Matching
Rangarajan, Anand; Coughlan, James; Yuille, Alan
2003-01-01
A Bayesian network formulation for relational shape matching is presented. The main advantage of the re- lational shape matching approach is the obviation of the non-rigid spatial mappings used by recent non-rigid matching approaches. The basic variables that need to be estimated in the relational shape matching objective function are the global rotation and scale and the lo- cal displacements and correspondences. The new Bethe free energy approach is used to estimate the pairwise co...
A Bayesian approach to model uncertainty
International Nuclear Information System (INIS)
A Bayesian approach to model uncertainty is taken. For the case of a finite number of alternative models, the model uncertainty is equivalent to parameter uncertainty. A derivation based on Savage's partition problem is given
Bayesian variable selection and data integration for biological regulatory networks
Jensen, Shane T; Chen, Guang; Stoeckert, Jr, Christian J.
2007-01-01
A substantial focus of research in molecular biology are gene regulatory networks: the set of transcription factors and target genes which control the involvement of different biological processes in living cells. Previous statistical approaches for identifying gene regulatory networks have used gene expression data, ChIP binding data or promoter sequence data, but each of these resources provides only partial information. We present a Bayesian hierarchical model that integrates all three dat...
A Bayesian Networks in Intrusion Detection Systems
Directory of Open Access Journals (Sweden)
M. Mehdi
2007-01-01
Full Text Available Intrusion detection systems (IDSs have been widely used to overcome security threats in computer networks. Anomaly-based approaches have the advantage of being able to detect previously unknown attacks, but they suffer from the difficulty of building robust models of acceptable behaviour which may result in a large number of false alarms caused by incorrect classification of events in current systems. We propose a new approach of an anomaly Intrusion detection system (IDS. It consists of building a reference behaviour model and the use of a Bayesian classification procedure associated to unsupervised learning algorithm to evaluate the deviation between current and reference behaviour. Continuous re-estimation of model parameters allows for real time operation. The use of recursive Log-likelihood and entropy estimation as a measure for monitoring model degradation related with behavior changes and the associated model update show that the accuracy of the event classification process is significantly improved using our proposed approach for reducing the missing-alarm.
Learning ground CP-logic theories by means of Bayesian network techniques
Meert, Wannes; Struyf, Jan; Blockeel, Hendrik
2007-01-01
Causal relationships are present in many application domains. CP-logic is a probabilistic modeling language that is especially designed to express such relationships. This paper investigates the learning of CP-theories from examples, and focusses on structure learning. The proposed approach is based on a transformation between CP-logic theories and Bayesian networks, that is, the method applies Bayesian network learning techniques to learn a CP-theory in the form of an equivalent Bayesian net...
Bayesian Approach to Handling Informative Sampling
Sikov, Anna
2015-01-01
In the case of informative sampling the sampling scheme explicitly or implicitly depends on the response variable. As a result, the sample distribution of response variable can- not be used for making inference about the population. In this research I investigate the problem of informative sampling from the Bayesian perspective. Application of the Bayesian approach permits solving the problems, which arise due to complexity of the models, being used for handling informative sampling. The main...
Bayesian Overlapping Community Detection in Dynamic Networks
Ghorbani, Mahsa; Khodadadi, Ali
2016-01-01
Detecting community structures in social networks has gained considerable attention in recent years. However, lack of prior knowledge about the number of communities, and their overlapping nature have made community detection a challenging problem. Moreover, many of the existing methods only consider static networks, while most of real world networks are dynamic and evolve over time. Hence, finding consistent overlapping communities in dynamic networks without any prior knowledge about the number of communities is still an interesting open research problem. In this paper, we present an overlapping community detection method for dynamic networks called Dynamic Bayesian Overlapping Community Detector (DBOCD). DBOCD assumes that in every snapshot of network, overlapping parts of communities are dense areas and utilizes link communities instead of common node communities. Using Recurrent Chinese Restaurant Process and community structure of the network in the last snapshot, DBOCD simultaneously extracts the numbe...
Dynamic Bayesian Network Modeling of Game Based Diagnostic Assessments. CRESST Report 837
Levy, Roy
2014-01-01
Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…
HEURISTIC DISCRETIZATION METHOD FOR BAYESIAN NETWORKS
Directory of Open Access Journals (Sweden)
Mariana D.C. Lima
2014-01-01
Full Text Available Bayesian Network (BN is a classification technique widely used in Artificial Intelligence. Its structure is a Direct Acyclic Graph (DAG used to model the association of categorical variables. However, in cases where the variables are numerical, a previous discretization is necessary. Discretization methods are usually based on a statistical approach using the data distribution, such as division by quartiles. In this article we present a discretization using a heuristic that identifies events called peak and valley. Genetic Algorithm was used to identify these events having the minimization of the error between the estimated average for BN and the actual value of the numeric variable output as the objective function. The BN has been modeled from a database of Bit’s Rate of Penetration of the Brazilian pre-salt layer with 5 numerical variables and one categorical variable, using the proposed discretization and the division of the data by the quartiles. The results show that the proposed heuristic discretization has higher accuracy than the quartiles discretization.
Distributed Bayesian Networks for User Modeling
DEFF Research Database (Denmark)
Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang;
2006-01-01
The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used by such...... adaptive applications are often partial fragments of an overall user model. The fragments have then to be collected and merged into a global user profile. In this paper we investigate and present algorithms able to cope with distributed, fragmented user models – based on Bayesian Networks – in the context...... mechanism efficiently combines distributed learner models without the need to exchange internal structure of local Bayesian networks, nor local evidence between the involved platforms....
A Bayesian belief network (BBN) was developed to characterize the effects of sediment accumulation on the water storage capacity of Lago Lucchetti (located in southwest Puerto Rico) and to forecast the life expectancy (usefulness) of the reservoir under different management scena...
Centralized Bayesian reliability modelling with sensor networks
Czech Academy of Sciences Publication Activity Database
Dedecius, Kamil; Sečkárová, Vladimíra
2013-01-01
Roč. 19, č. 5 (2013), s. 471-482. ISSN 1387-3954 R&D Projects: GA MŠk 7D12004 Grant ostatní: GA MŠk(CZ) SVV-265315 Keywords : Bayesian modelling * Sensor network * Reliability Subject RIV: BD - Theory of Information Impact factor: 0.984, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/dedecius-0392551.pdf
Characteristic imsets for learning Bayesian network structure
Czech Academy of Sciences Publication Activity Database
Hemmecke, R.; Lindner, S.; Studený, Milan
2012-01-01
Roč. 53, č. 9 (2012), s. 1336-1349. ISSN 0888-613X R&D Projects: GA MŠk(CZ) 1M0572; GA ČR GA201/08/0539 Institutional support: RVO:67985556 Keywords : learning Bayesian network structure * essential graph * standard imset * characteristic imset * LP relaxation of a polytope Subject RIV: BA - General Mathematics Impact factor: 1.729, year: 2012 http://library.utia.cas.cz/separaty/2012/MTR/studeny-0382596.pdf
Forming Object Concept Using Bayesian Network
Nakamura, Tomoaki; Nagai, Takayuki
2010-01-01
This chapter hase discussed a novel framework for object understanding. Implementation of the proposed framework using Bayesian Network has been presented. Although the result given in this paper is preliminary one, we have shown that the system can form object concept by observing the performance by human hands. The on-line learning is left for the future works. Moreover the model should be extended so that it can represent the object usage and work objects.
Improving Environmental Scanning Systems Using Bayesian Networks
Simon Welter; Jörg H. Mayer; Reiner Quick
2013-01-01
As companies’ environment is becoming increasingly volatile, scanning systems gain in importance. We propose a hybrid process model for such systems' information gathering and interpretation tasks that combines quantitative information derived from regression analyses and qualitative knowledge from expert interviews. For the latter, we apply Bayesian networks. We derive the need for such a hybrid process model from a literature review. We lay out our model to find a suitable set of business e...
Parameterized Complexity Results for Exact Bayesian Network Structure Learning
Sebastian Ordyniak; Stefan Szeider
2014-01-01
Bayesian network structure learning is the notoriously difficult problem of discovering a Bayesian network that optimally represents a given set of training data. In this paper we study the computational worst-case complexity of exact Bayesian network structure learning under graph theoretic restrictions on the (directed) super-structure. The super-structure is an undirected graph that contains as subgraphs the skeletons of solution networks. We introduce the directed super-structure as a nat...
Option Pricing Using Bayesian Neural Networks
Pires, Michael Maio
2007-01-01
Options have provided a field of much study because of the complexity involved in pricing them. The Black-Scholes equations were developed to price options but they are only valid for European styled options. There is added complexity when trying to price American styled options and this is why the use of neural networks has been proposed. Neural Networks are able to predict outcomes based on past data. The inputs to the networks here are stock volatility, strike price and time to maturity with the output of the network being the call option price. There are two techniques for Bayesian neural networks used. One is Automatic Relevance Determination (for Gaussian Approximation) and one is a Hybrid Monte Carlo method, both used with Multi-Layer Perceptrons.
Bayesian Methods for Neural Networks and Related Models
Titterington, D.M.
2004-01-01
Models such as feed-forward neural networks and certain other structures investigated in the computer science literature are not amenable to closed-form Bayesian analysis. The paper reviews the various approaches taken to overcome this difficulty, involving the use of Gaussian approximations, Markov chain Monte Carlo simulation routines and a class of non-Gaussian but “deterministic” approximations called variational approximations.
Revealing ecological networks using Bayesian network inference algorithms.
Milns, Isobel; Beale, Colin M; Smith, V Anne
2010-07-01
Understanding functional relationships within ecological networks can help reveal keys to ecosystem stability or fragility. Revealing these relationships is complicated by the difficulties of isolating variables or performing experimental manipulations within a natural ecosystem, and thus inferences are often made by matching models to observational data. Such models, however, require assumptions-or detailed measurements-of parameters such as birth and death rate, encounter frequency, territorial exclusion, and predation success. Here, we evaluate the use of a Bayesian network inference algorithm, which can reveal ecological networks based upon species and habitat abundance alone. We test the algorithm's performance and applicability on observational data of avian communities and habitat in the Peak District National Park, United Kingdom. The resulting networks correctly reveal known relationships among habitat types and known interspecific relationships. In addition, the networks produced novel insights into ecosystem structure and identified key species with high connectivity. Thus, Bayesian networks show potential for becoming a valuable tool in ecosystem analysis. PMID:20715607
Sensor Validation using Bayesian Networks
National Aeronautics and Space Administration — One of NASA’s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in...
Gieder, Katherina D.; Karpanty, Sarah M.; Frasera, James D.; Catlin, Daniel H.; Gutierrez, Benjamin T.; Plant, Nathaniel G.; Turecek, Aaron M.; Thieler, E. Robert
2014-01-01
Sea-level rise and human development pose significant threats to shorebirds, particularly for species that utilize barrier island habitat. The piping plover (Charadrius melodus) is a federally-listed shorebird that nests on barrier islands and rapidly responds to changes in its physical environment, making it an excellent species with which to model how shorebird species may respond to habitat change related to sea-level rise and human development. The uncertainty and complexity in predicting sea-level rise, the responses of barrier island habitats to sea-level rise, and the responses of species to sea-level rise and human development necessitate a modelling approach that can link species to the physical habitat features that will be altered by changes in sea level and human development. We used a Bayesian network framework to develop a model that links piping plover nest presence to the physical features of their nesting habitat on a barrier island that is impacted by sea-level rise and human development, using three years of data (1999, 2002, and 2008) from Assateague Island National Seashore in Maryland. Our model performance results showed that we were able to successfully predict nest presence given a wide range of physical conditions within the model’s dataset. We found that model predictions were more successful when the range of physical conditions included in model development was varied rather than when those physical conditions were narrow. We also found that all model predictions had fewer false negatives (nests predicted to be absent when they were actually present in the dataset) than false positives (nests predicted to be present when they were actually absent in the dataset), indicating that our model correctly predicted nest presence better than nest absence. These results indicated that our approach of using a Bayesian network to link specific physical features to nest presence will be useful for modelling impacts of sea-level rise- or human
Nuclear charge radii: Density functional theory meets Bayesian neural networks
Utama, Raditya; Piekarewicz, Jorge
2016-01-01
The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. We explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonst...
Learning Local Components to Understand Large Bayesian Networks
DEFF Research Database (Denmark)
Zeng, Yifeng; Xiang, Yanping; Cordero, Jorge;
2009-01-01
(domain experts) to extract accurate information from a large Bayesian network due to dimensional difficulty. We define a formulation of local components and propose a clustering algorithm to learn such local components given complete data. The algorithm groups together most inter-relevant attributes...... in a domain. We evaluate its performance on three benchmark Bayesian networks and provide results in support. We further show that the learned components may represent local knowledge more precisely in comparison to the full Bayesian networks when working with a small amount of data.......Bayesian networks are known for providing an intuitive and compact representation of probabilistic information and allowing the creation of models over a large and complex domain. Bayesian learning and reasoning are nontrivial for a large Bayesian network. In parallel, it is a tough job for users...
Dynamic Bayesian Networks for Cue Integration
Paul Maier; Frederike Petzschner
2012-01-01
If we want to understand how humans use contextual cues to solve tasks such as estimating distances from optic flow during path integration, our models need to represent the available information and formally describe how these representations are processed. In particular the temporal dynamics need to be incorporated, since it has been shown that humans exploit short-term experience gained in previous trials (Petzschner und Glasauer, 2011). Existing studies often use a Bayesian approach to mo...
BAYESIAN APPROACH OF DECISION PROBLEMS
Directory of Open Access Journals (Sweden)
DRAGOŞ STUPARU
2010-01-01
Full Text Available Management is nowadays a basic vector of economic development, a concept frequently used in our country as well as all over the world. Indifferently of the hierarchical level at which the managerial process is manifested, decision represents its essential moment, the supreme act of managerial activity. Its can be met in all fields of activity, practically having an unlimited degree of coverage, and in all the functions of management. It is common knowledge that the activity of any type of manger, no matter the hierarchical level he occupies, represents a chain of interdependent decisions, their aim being the elimination or limitation of the influence of disturbing factors that may endanger the achievement of predetermined objectives, and the quality of managerial decisions condition the progress and viability of any enterprise. Therefore, one of the principal characteristics of a successful manager is his ability to adopt the most optimal decisions of high quality. The quality of managerial decisions are conditioned by the manager’s general level of education and specialization, the manner in which they are preoccupied to assimilate the latest information and innovations in the domain of management’s theory and practice and the applying of modern managerial methods and techniques in the activity of management. We are presenting below the analysis of decision problems in hazardous conditions in terms of Bayesian theory – a theory that uses the probabilistic calculus.
On local optima in learning bayesian networks
DEFF Research Database (Denmark)
Dalgaard, Jens; Kocka, Tomas; Pena, Jose
2003-01-01
This paper proposes and evaluates the k-greedy equivalence search algorithm (KES) for learning Bayesian networks (BNs) from complete data. The main characteristic of KES is that it allows a trade-off between greediness and randomness, thus exploring different good local optima. When greediness is...... set at maximum, KES corresponds to the greedy equivalence search algorithm (GES). When greediness is kept at minimum, we prove that under mild assumptions KES asymptotically returns any inclusion optimal BN with nonzero probability. Experimental results for both synthetic and real data are reported...
Sensor fault diagnosis using Bayesian belief networks
International Nuclear Information System (INIS)
This paper describes a method based on Bayesian belief networks (BBNs) sensor fault detection, isolation, classification, and accommodation (SFDIA). For this purpose, a BBN uses three basic types of nodes to represent the information associated with each sensor: (1) sensor-reading nodes that represent the mechanisms by which the information is communicated to the BBN, (2) sensor-status nodes that convey the status of the corresponding sensors at any given time, and (3) process-variable nodes that are a conceptual representation of the actual values of the process variables, which are unknown
Bayesian Network Based XP Process Modelling
Directory of Open Access Journals (Sweden)
Mohamed Abouelela
2010-07-01
Full Text Available A Bayesian Network based mathematical model has been used for modelling Extreme Programmingsoftware development process. The model is capable of predicting the expected finish time and theexpected defect rate for each XP release. Therefore, it can be used to determine the success/failure of anyXP Project. The model takes into account the effect of three XP practices, namely: Pair Programming,Test Driven Development and Onsite Customer practices. The model’s predictions were validated againsttwo case studies. Results show the precision of our model especially in predicting the project finish time.
Using imsets for learning Bayesian networks
Czech Academy of Sciences Publication Activity Database
Vomlel, Jiří; Studený, Milan
Praha : UTIA AV ČR, 2007 - (Kroupa, T.; Vejnarová, J.), s. 178-189 [Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty /10./. Liblice (CZ), 15.09.2007-18.09.2007] R&D Projects: GA MŠk(CZ) 1M0572 Grant ostatní: GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian networks * artificial intelligence * probabilistic graphical models * machine learning Subject RIV: BB - Applied Statistics, Operational Research
Markov Chain Monte Carlo Bayesian Learning for Neural Networks
Goodrich, Michael S.
2011-01-01
Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.
Comparison of the Bayesian and Frequentist Approach to the Statistics
Hakala, Michal
2015-01-01
The Thesis deals with introduction to Bayesian statistics and comparing Bayesian approach with frequentist approach to statistics. Bayesian statistics is modern branch of statistics which provides an alternative comprehensive theory to the frequentist approach. Bayesian concepts provides solution for problems not being solvable by frequentist theory. In the thesis are compared definitions, concepts and quality of statistical inference. The main interest is focused on a point estimation, an in...
Directory of Open Access Journals (Sweden)
Rosalba Portuesi
Full Text Available BACKGROUND: Determining genetic risk is a fundamental prerequisite for the implementation of primary prevention trials for type 1 diabetes (T1D. The aim of this study was to assess the risk conferred by HLA-DRB1, INS-VNTR and PTPN22 single genes on the onset of T1D and the joint risk conferred by all these three susceptibility loci using the Bayesian Network (BN approach in both population-based case-control and family clustering data sets. METHODOLOGY/PRINCIPAL FINDINGS: A case-control French cohort, consisting of 868 T1D patients and 73 French control subjects, a French family data set consisting of 1694 T1D patients and 2340 controls were analysed. We studied both samples separately applying the BN probabilistic approach, that is a graphical model that encodes probabilistic relationships among variables of interest. As expected HLA-DRB1 is the most relevant susceptibility gene. We proved that INS and PTPN22 genes marginally influence T1D risk in all risk HLA-DRB1 genotype categories. The absolute risk conferred by carrying simultaneously high, moderate or low risk HLA-DRB1 genotypes together with at risk INS and PTPN22 genotypes, was 11.5%, 1.7% and 0.1% in the case-control sample and 19.8%, 6.6% and 2.2% in the family cohort, respectively. CONCLUSIONS/SIGNIFICANCE: This work represents, to the best of our knowledge, the first study based on both case-control and family data sets, showing the joint effect of HLA, INS and PTPN22 in a T1D Caucasian population with a wide range of age at T1D onset, adding new insights to previous findings regarding data sets consisting of patients and controls <15 years at onset.
Some Quantum Information Inequalities from a Quantum Bayesian Networks Perspective
Tucci, Robert R.
2012-01-01
This is primarily a pedagogical paper. The paper re-visits some well-known quantum information theory inequalities. It does this from a quantum Bayesian networks perspective. The paper illustrates some of the benefits of using quantum Bayesian networks to discuss quantum SIT (Shannon Information Theory).
Bayesian-network-based safety risk analysis in construction projects
International Nuclear Information System (INIS)
This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment. - Highlights: • A systemic Bayesian network based approach for safety risk analysis is developed. • An expert confidence indicator for probability fuzzification is proposed. • Safety risk analysis progress is extended to entire life cycle of risk-prone events. • A typical
Integer variables estimation problems: the Bayesian approach
Directory of Open Access Journals (Sweden)
G. Venuti
1997-06-01
Full Text Available In geodesy as well as in geophysics there are a number of examples where the unknown parameters are partly constrained to be integer numbers, while other parameters have a continuous range of possible values. In all such situations the ordinary least square principle, with integer variates fixed to the most probable integer value, can lead to paradoxical results, due to the strong non-linearity of the manifold of admissible values. On the contrary an overall estimation procedure assigning the posterior distribution to all variables, discrete and continuous, conditional to the observed quantities, like the so-called Bayesian approach, has the advantage of weighting correctly the possible errors in choosing different sets of integer values, thus providing a more realistic and stable estimate even of the continuous parameters. In this paper, after a short recall of the basics of Bayesian theory in section 2, we present the natural Bayesian solution to the problem of assessing the estimable signal from noisy observations in section 3 and the Bayesian solution to cycle slips detection and repair for a stream of GPS measurements in section 4. An elementary synthetic example is discussed in section 3 to illustrate the theory presented and more elaborate, though synthetic, examples are discussed in section 4 where realistic streams of GPS observations, with cycle slips, are simulated and then back processed.
Modeling operational risks of the nuclear industry with Bayesian networks
International Nuclear Information System (INIS)
Basically, planning a new industrial plant requires information on the industrial management, regulations, site selection, definition of initial and planned capacity, and on the estimation of the potential demand. However, this is far from enough to assure the success of an industrial enterprise. Unexpected and extremely damaging events may occur that deviates from the original plan. The so-called operational risks are not only in the system, equipment, process or human (technical or managerial) failures. They are also in intentional events such as frauds and sabotage, or extreme events like terrorist attacks or radiological accidents and even on public reaction to perceived environmental or future generation impacts. For the nuclear industry, it is a challenge to identify and to assess the operational risks and their various sources. Early identification of operational risks can help in preparing contingency plans, to delay the decision to invest or to approve a project that can, at an extreme, affect the public perception of the nuclear energy. A major problem in modeling operational risk losses is the lack of internal data that are essential, for example, to apply the loss distribution approach. As an alternative, methods that consider qualitative and subjective information can be applied, for example, fuzzy logic, neural networks, system dynamic or Bayesian networks. An advantage of applying Bayesian networks to model operational risk is the possibility to include expert opinions and variables of interest, to structure the model via causal dependencies among these variables, and to specify subjective prior and conditional probabilities distributions at each step or network node. This paper suggests a classification of operational risks in industry and discusses the benefits and obstacles of the Bayesian networks approach to model those risks. (author)
Fuzzy Naive Bayesian for constructing regulated network with weights.
Zhou, Xi Y; Tian, Xue W; Lim, Joon S
2015-01-01
In the data mining field, classification is a very crucial technology, and the Bayesian classifier has been one of the hotspots in classification research area. However, assumptions of Naive Bayesian and Tree Augmented Naive Bayesian (TAN) are unfair to attribute relations. Therefore, this paper proposes a new algorithm named Fuzzy Naive Bayesian (FNB) using neural network with weighted membership function (NEWFM) to extract regulated relations and weights. Then, we can use regulated relations and weights to construct a regulated network. Finally, we will classify the heart and Haberman datasets by the FNB network to compare with experiments of Naive Bayesian and TAN. The experiment results show that the FNB has a higher classification rate than Naive Bayesian and TAN. PMID:26405944
Bayesian Network Based Fault Prognosis via Bond Graph Modeling of High-Speed Railway Traction Device
Directory of Open Access Journals (Sweden)
Yunkai Wu
2015-01-01
component-level faults accurately for a high-speed railway traction system, a fault prognosis approach via Bayesian network and bond graph modeling techniques is proposed. The inherent structure of a railway traction system is represented by bond graph model, based on which a multilayer Bayesian network is developed for fault propagation analysis and fault prediction. For complete and incomplete data sets, two different parameter learning algorithms such as Bayesian estimation and expectation maximization (EM algorithm are adopted to determine the conditional probability table of the Bayesian network. The proposed prognosis approach using Pearl’s polytree propagation algorithm for joint probability reasoning can predict the failure probabilities of leaf nodes based on the current status of root nodes. Verification results in a high-speed railway traction simulation system can demonstrate the effectiveness of the proposed approach.
Bayesian Network Structure Learning with Integer Programming: Polytopes, Facets, and Complexity
Cussens, James; Järvisalo, Matti; Korhonen, Janne H.; Bartlett, Mark
2016-01-01
The challenging task of learning structures of probabilistic graphical models is an important problem within modern AI research. Recent years have witnessed several major algorithmic advances in structure learning for Bayesian networks---arguably the most central class of graphical models---especially in what is known as the score-based setting. A successful generic approach to optimal Bayesian network structure learning (BNSL), based on integer programming (IP), is implemented in the GOBNILP...
A Bayesian Concept Learning Approach to Crowdsourcing
DEFF Research Database (Denmark)
Viappiani, Paolo Renato; Zilles, Sandra; Hamilton, Howard J.;
2011-01-01
We develop a Bayesian approach to concept learning for crowdsourcing applications. A probabilistic belief over possible concept definitions is maintained and updated according to (noisy) observations from experts, whose behaviors are modeled using discrete types. We propose recommendation...... techniques, inference methods, and query selection strategies to assist a user charged with choosing a configuration that satisfies some (partially known) concept. Our model is able to simultaneously learn the concept definition and the types of the experts. We evaluate our model with simulations, showing...
Bayesian network models for error detection in radiotherapy plans
Kalet, Alan M.; Gennari, John H.; Ford, Eric C.; Phillips, Mark H.
2015-04-01
The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.
Particle identification in ALICE: a Bayesian approach
Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Benacek, Pavel; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Incani, Elisa; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kostarakis, Panagiotis; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Davide; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shahzad, Muhammed Ikram; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Derradi De Souza, Rafael; Sozzi, Federica; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thakur, Dhananjaya; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasin, Zafar; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym
2016-01-01
We present a Bayesian approach to particle identification (PID) within the ALICE experiment. The aim is to more effectively combine the particle identification capabilities of its various detectors. After a brief explanation of the adopted methodology and formalism, the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE is studied. PID is performed via measurements of specific energy loss (dE/dx) and time-of-flight. PID efficiencies and misidentification probabilities are extracted and compared with Monte Carlo simulations using high purity samples of identified particles in the decay channels ${\\rm K}_{\\rm S}^{\\rm 0}\\rightarrow \\pi^+\\pi^-$, $\\phi\\rightarrow {\\rm K}^-{\\rm K}^+$ and $\\Lambda\\rightarrow{\\rm p}\\pi^-$ in p–Pb collisions at $\\sqrt{s_{\\rm NN}}= 5.02$TeV. In order to thoroughly assess the validity of the Bayesian approach, this methodology was used to obtain corrected $p_{\\rm T}$ spectra of pions, kaons, protons, and D$^0$ mesons in pp coll...
A Dynamic Bayesian Approach to Computational Laban Shape Quality Analysis
Directory of Open Access Journals (Sweden)
Dilip Swaminathan
2009-01-01
kinesiology. LMA (especially Effort/Shape emphasizes how internal feelings and intentions govern the patterning of movement throughout the whole body. As we argue, a complex understanding of intention via LMA is necessary for human-computer interaction to become embodied in ways that resemble interaction in the physical world. We thus introduce a novel, flexible Bayesian fusion approach for identifying LMA Shape qualities from raw motion capture data in real time. The method uses a dynamic Bayesian network (DBN to fuse movement features across the body and across time and as we discuss can be readily adapted for low-cost video. It has delivered excellent performance in preliminary studies comprising improvisatory movements. Our approach has been incorporated in Response, a mixed-reality environment where users interact via natural, full-body human movement and enhance their bodily-kinesthetic awareness through immersive sound and light feedback, with applications to kinesiology training, Parkinson's patient rehabilitation, interactive dance, and many other areas.
Using consensus bayesian network to model the reactive oxygen species regulatory pathway.
Directory of Open Access Journals (Sweden)
Liangdong Hu
Full Text Available Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.
Learning Bayesian Networks from Data by Particle Swarm Optimization
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Learning Bayesian network is an NP-hard problem. When the number of variables is large, the process of searching optimal network structure could be very time consuming and tends to return a structure which is local optimal. The particle swarm optimization (PSO) was introduced to the problem of learning Bayesian networks and a novel structure learning algorithm using PSO was proposed. To search in directed acyclic graphs spaces efficiently, a discrete PSO algorithm especially for structure learning was proposed based on the characteristics of Bayesian networks. The results of experiments show that our PSO based algorithm is fast for convergence and can obtain better structures compared with genetic algorithm based algorithms.
Bayesian network as a modelling tool for risk management in agriculture
DEFF Research Database (Denmark)
Rasmussen, Svend; Madsen, Anders L.; Lund, Mogens
this paper we use Bayesian networks as an integrated modelling approach for representing uncertainty and analysing risk management in agriculture. It is shown how historical farm account data may be efficiently used to estimate conditional probabilities, which are the core elements in Bayesian network...... models. We further show how the Bayesian network model RiBay is used for stochastic simulation of farm income, and we demonstrate how RiBay can be used to simulate risk management at the farm level. It is concluded that the key strength of a Bayesian network is the transparency of assumptions, and that......The importance of risk management increases as farmers become more exposed to risk. But risk management is a difficult topic because income risk is the result of the complex interaction of multiple risk factors combined with the effect of an increasing array of possible risk management tools. In...
A Probability-based Evolutionary Algorithm with Mutations to Learn Bayesian Networks
Directory of Open Access Journals (Sweden)
Sho Fukuda
2014-12-01
Full Text Available Bayesian networks are regarded as one of the essential tools to analyze causal relationship between events from data. To learn the structure of highly-reliable Bayesian networks from data as quickly as possible is one of the important problems that several studies have been tried to achieve. In recent years, probability-based evolutionary algorithms have been proposed as a new efficient approach to learn Bayesian networks. In this paper, we target on one of the probability-based evolutionary algorithms called PBIL (Probability-Based Incremental Learning, and propose a new mutation operator. Through performance evaluation, we found that the proposed mutation operator has a good performance in learning Bayesian networks
Logistic regression against a divergent Bayesian network
Directory of Open Access Journals (Sweden)
Noel Antonio Sánchez Trujillo
2015-01-01
Full Text Available This article is a discussion about two statistical tools used for prediction and causality assessment: logistic regression and Bayesian networks. Using data of a simulated example from a study assessing factors that might predict pulmonary emphysema (where fingertip pigmentation and smoking are considered; we posed the following questions. Is pigmentation a confounding, causal or predictive factor? Is there perhaps another factor, like smoking, that confounds? Is there a synergy between pigmentation and smoking? The results, in terms of prediction, are similar with the two techniques; regarding causation, differences arise. We conclude that, in decision-making, the sum of both: a statistical tool, used with common sense, and previous evidence, taking years or even centuries to develop; is better than the automatic and exclusive use of statistical resources.
Learning Bayesian network structure with immune algorithm
Institute of Scientific and Technical Information of China (English)
Zhiqiang Cai; Shubin Si; Shudong Sun; Hongyan Dui
2015-01-01
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa-per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further-more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Final y, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.
A Bayesian Network View on Nested Effects Models
Directory of Open Access Journals (Sweden)
Fröhlich Holger
2009-01-01
Full Text Available Nested effects models (NEMs are a class of probabilistic models that were designed to reconstruct a hidden signalling structure from a large set of observable effects caused by active interventions into the signalling pathway. We give a more flexible formulation of NEMs in the language of Bayesian networks. Our framework constitutes a natural generalization of the original NEM model, since it explicitly states the assumptions that are tacitly underlying the original version. Our approach gives rise to new learning methods for NEMs, which have been implemented in the /Bioconductor package nem. We validate these methods in a simulation study and apply them to a synthetic lethality dataset in yeast.
A Flexible Software System for Learning Bayesian Networks from data
Aabakken, Trond
2007-01-01
Bayesian networks, also referred to as belief networks, originates from the artificial intelligence field where they were used to reason about uncertain knowledge. They differ from other knowledge representation schemes as they constitute a model of the environment rather than a model of the reasoning process. Among the Bayesian networks' main assets is that they offer a sound methodology for combining (a priori) information a domain expert may have with information available in databases. I...
ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM
Directory of Open Access Journals (Sweden)
Santosh Kumar Chaudhari
2011-06-01
Full Text Available A Network Management System (NMS plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to NMS services, namely, making an NMS energy aware. We propose a Decision Management System (DMS framework which uses a machine learning technique called Bayesian Belief Networks (BBN, to make the NMS energy aware. The DMS is capable of analysing and making control decisions based on network traffic. We factor in the cost of rerouting and power saving per port. Simulations are performed on standard network topologies, namely, ARPANet and IndiaNet. It is found that ~2.5-6.5% power can be saved.
Risk Analysis of New Product Development Using Bayesian Networks
Directory of Open Access Journals (Sweden)
MohammadRahim Ramezanian
2012-06-01
Full Text Available The process of presenting new product development (NPD to market is of great importance due to variability of competitive rules in the business world. The product development teams face a lot of pressures due to rapid growth of technology, increased risk-taking of world markets and increasing variations in the customers` needs. However, the process of NPD is always associated with high uncertainties and complexities. To be successful in completing NPD project, existing risks should be identified and assessed. On the other hand, the Bayesian networks as a strong approach of decision making modeling of uncertain situations has attracted many researchers in various areas. These networks provide a decision supporting system for problems with uncertainties or probable reasoning. In this paper, the available risk factors in product development have been first identified in an electric company and then, the Bayesian network has been utilized and their interrelationships have been modeled to evaluate the available risk in the process. To determine the primary and conditional probabilities of the nodes, the viewpoints of experts in this area have been applied. The available risks in this process have been divided to High (H, Medium (M and Low (L groups and analyzed by the Agena Risk software. The findings derived from software output indicate that the production of the desired product has relatively high risk. In addition, Predictive support and Diagnostic support have been performed on the model with two different scenarios..
Quantum-Like Bayesian Networks for Modeling Decision Making.
Moreira, Catarina; Wichert, Andreas
2016-01-01
In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios. PMID:26858669
Risk Analysis of New Product Development Using Bayesian Networks
Directory of Open Access Journals (Sweden)
Mohammad Rahim Ramezanian
2012-01-01
Full Text Available The process of presenting new product development (NPD to market is of great importance due to variability of competitive rules in the business world. The product development teams face a lot of pressures due to rapid growth of technology, increased risk-taking of world markets and increasing variations in the customers` needs. However, the process of NPD is always associated with high uncertainties and complexities. To be successful in completing NPD project, existing risks should be identified and assessed. On the other hand, the Bayesian networks as a strong approach of decision making modeling of uncertain situations has attracted many researchers in various areas. These networks provide a decision supporting system for problems with uncertainties or probable reasoning. In this paper, the available risk factors in product development have been first identified in an electric company and then, the Bayesian network has been utilized and their interrelationships have been modeled to evaluate the available risk in the process. To determine the primary and conditional probabilities of the nodes, the viewpoints of experts in this area have been applied. The available risks in this process have been divided to High (H, Medium (M and Low (L groups and analyzed by the Agena Risk software. The findings derived from software output indicate that the production of the desired product has relatively high risk. In addition, Predictive support and Diagnostic support have been performed on the model with two different scenarios.
Refining gene signatures: a Bayesian approach
Directory of Open Access Journals (Sweden)
Labbe Aurélie
2009-12-01
Full Text Available Abstract Background In high density arrays, the identification of relevant genes for disease classification is complicated by not only the curse of dimensionality but also the highly correlated nature of the array data. In this paper, we are interested in the question of how many and which genes should be selected for a disease class prediction. Our work consists of a Bayesian supervised statistical learning approach to refine gene signatures with a regularization which penalizes for the correlation between the variables selected. Results Our simulation results show that we can most often recover the correct subset of genes that predict the class as compared to other methods, even when accuracy and subset size remain the same. On real microarray datasets, we show that our approach can refine gene signatures to obtain either the same or better predictive performance than other existing methods with a smaller number of genes. Conclusions Our novel Bayesian approach includes a prior which penalizes highly correlated features in model selection and is able to extract key genes in the highly correlated context of microarray data. The methodology in the paper is described in the context of microarray data, but can be applied to any array data (such as micro RNA, for example as a first step towards predictive modeling of cancer pathways. A user-friendly software implementation of the method is available.
Developing Large-Scale Bayesian Networks by Composition
National Aeronautics and Space Administration — In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale...
Designing Resource-Bounded Reasoners using Bayesian Networks
National Aeronautics and Space Administration — In this work we are concerned with the conceptual design of large-scale diagnostic and health management systems that use Bayesian networks. While they are...
On polyhedral approximations of polytopes for learning Bayesian networks
Czech Academy of Sciences Publication Activity Database
Studený, Milan; Haws, D.C.
2013-01-01
Roč. 4, č. 1 (2013), s. 59-92. ISSN 1309-3452 R&D Projects: GA ČR GA201/08/0539 Institutional support: RVO:67985556 Keywords : Bayesian network structure * integer programming * standard imset * characteristic imset * LP relaxation Subject RIV: BA - General Mathematics http://library.utia.cas.cz/separaty/2013/MTR/studeny-on polyhedral approximations of polytopes for learning bayesian networks.pdf
Uncertainty management using bayesian networks in student knowledge diagnosis
Adina COCU; Diana STEFANESCU
2005-01-01
In intelligent tutoring systems, student or user modeling implies dealing with imperfect and uncertain knowledge. One of the artificial intelligence techniques used for uncertainty management is that of Bayesian networks. This paradigm is recommended in the situation when exist dependencies between data and qualitative information about these data. In this work we present a student knowledge diagnosis model based on representation with Bayesian networks. The educational system incorporate a m...
Strategies for Generating Micro Explanations for Bayesian Belief Networks
Sember, Peter; Zukerman, Ingrid
2013-01-01
Bayesian Belief Networks have been largely overlooked by Expert Systems practitioners on the grounds that they do not correspond to the human inference mechanism. In this paper, we introduce an explanation mechanism designed to generate intuitive yet probabilistically sound explanations of inferences drawn by a Bayesian Belief Network. In particular, our mechanism accounts for the results obtained due to changes in the causal and the evidential support of a node.
Risk Based Maintenance of Offshore Wind Turbines Using Bayesian Networks
Nielsen, Jannie Jessen; Sørensen, John Dalsgaard
2010-01-01
This paper presents how Bayesian networks can be used to make optimal decisions for repairs of offshore wind turbines. The Bayesian network is an efficient tool for updating a deterioration model whenever new information becomes available from inspections/monitoring. The optimal decision is found such that the preventive maintenance effort is balanced against the costs to corrective maintenance including indirect costs to reduced production. The basis for the optimization is the risk based Ba...
Mean Field Variational Approximation for Continuous-Time Bayesian Networks
Cohn, Ido; Friedman, Nir; Kupferman, Raz
2012-01-01
Continuous-time Bayesian networks is a natural structured representation language for multicomponent stochastic processes that evolve continuously over time. Despite the compact representation, inference in such models is intractable even in relatively simple structured networks. Here we introduce a mean field variational approximation in which we use a product of inhomogeneous Markov processes to approximate a distribution over trajectories. This variational approach leads to a globally consistent distribution, which can be efficiently queried. Additionally, it provides a lower bound on the probability of observations, thus making it attractive for learning tasks. We provide the theoretical foundations for the approximation, an efficient implementation that exploits the wide range of highly optimized ordinary differential equations (ODE) solvers, experimentally explore characterizations of processes for which this approximation is suitable, and show applications to a large-scale realworld inference problem.
Using Bayesian Networks to Improve Knowledge Assessment
Millan, Eva; Descalco, Luis; Castillo, Gladys; Oliveira, Paula; Diogo, Sandra
2013-01-01
In this paper, we describe the integration and evaluation of an existing generic Bayesian student model (GBSM) into an existing computerized testing system within the Mathematics Education Project (PmatE--Projecto Matematica Ensino) of the University of Aveiro. This generic Bayesian student model had been previously evaluated with simulated…
Study of Online Bayesian Networks Learning in a Multi-Agent System
Directory of Open Access Journals (Sweden)
Yonghui Cao
2013-01-01
Full Text Available This paper introduces online Bayesian network learning in detail. The structural and parametric learning abilities of the online Bayesian network learning are explored. The paper starts with revisiting the multi-agent self-organization problem and the proposed solution. Then, we explain the proposed Bayesian network learning, three scoring functions, namely Log-Likelihood, Minimum description length, and Bayesian scores.
Study of Online Bayesian Networks Learning in a Multi-Agent System
Yonghui Cao
2013-01-01
This paper introduces online Bayesian network learning in detail. The structural and parametric learning abilities of the online Bayesian network learning are explored. The paper starts with revisiting the multi-agent self-organization problem and the proposed solution. Then, we explain the proposed Bayesian network learning, three scoring functions, namely Log-Likelihood, Minimum description length, and Bayesian scores.
A Bayesian approach to earthquake source studies
Minson, Sarah
Bayesian sampling has several advantages over conventional optimization approaches to solving inverse problems. It produces the distribution of all possible models sampled proportionally to how much each model is consistent with the data and the specified prior information, and thus images the entire solution space, revealing the uncertainties and trade-offs in the model. Bayesian sampling is applicable to both linear and non-linear modeling, and the values of the model parameters being sampled can be constrained based on the physics of the process being studied and do not have to be regularized. However, these methods are computationally challenging for high-dimensional problems. Until now the computational expense of Bayesian sampling has been too great for it to be practicable for most geophysical problems. I present a new parallel sampling algorithm called CATMIP for Cascading Adaptive Tempered Metropolis In Parallel. This technique, based on Transitional Markov chain Monte Carlo, makes it possible to sample distributions in many hundreds of dimensions, if the forward model is fast, or to sample computationally expensive forward models in smaller numbers of dimensions. The design of the algorithm is independent of the model being sampled, so CATMIP can be applied to many areas of research. I use CATMIP to produce a finite fault source model for the 2007 Mw 7.7 Tocopilla, Chile earthquake. Surface displacements from the earthquake were recorded by six interferograms and twelve local high-rate GPS stations. Because of the wealth of near-fault data, the source process is well-constrained. I find that the near-field high-rate GPS data have significant resolving power above and beyond the slip distribution determined from static displacements. The location and magnitude of the maximum displacement are resolved. The rupture almost certainly propagated at sub-shear velocities. The full posterior distribution can be used not only to calculate source parameters but also
Applying Hierarchical Bayesian Neural Network in Failure Time Prediction
Directory of Open Access Journals (Sweden)
Ling-Jing Kao
2012-01-01
Full Text Available With the rapid technology development and improvement, the product failure time prediction becomes an even harder task because only few failures in the product life tests are recorded. The classical statistical model relies on the asymptotic theory and cannot guarantee that the estimator has the finite sample property. To solve this problem, we apply the hierarchical Bayesian neural network (HBNN approach to predict the failure time and utilize the Gibbs sampler of Markov chain Monte Carlo (MCMC to estimate model parameters. In this proposed method, the hierarchical structure is specified to study the heterogeneity among products. Engineers can use the heterogeneity estimates to identify the causes of the quality differences and further enhance the product quality. In order to demonstrate the effectiveness of the proposed hierarchical Bayesian neural network model, the prediction performance of the proposed model is evaluated using multiple performance measurement criteria. Sensitivity analysis of the proposed model is also conducted using different number of hidden nodes and training sample sizes. The result shows that HBNN can provide not only the predictive distribution but also the heterogeneous parameter estimates for each path.
Clustering and Bayesian network for image of faces classification
Jayech, Khlifia
2012-01-01
In a content based image classification system, target images are sorted by feature similarities with respect to the query (CBIR). In this paper, we propose to use new approach combining distance tangent, k-means algorithm and Bayesian network for image classification. First, we use the technique of tangent distance to calculate several tangent spaces representing the same image. The objective is to reduce the error in the classification phase. Second, we cut the image in a whole of blocks. For each block, we compute a vector of descriptors. Then, we use K-means to cluster the low-level features including color and texture information to build a vector of labels for each image. Finally, we apply five variants of Bayesian networks classifiers (Na\\"ive Bayes, Global Tree Augmented Na\\"ive Bayes (GTAN), Global Forest Augmented Na\\"ive Bayes (GFAN), Tree Augmented Na\\"ive Bayes for each class (TAN), and Forest Augmented Na\\"ive Bayes for each class (FAN) to classify the image of faces using the vector of labels. ...
CEO Emotional Intelligence and Firms’ Financial Policies. Bayesian Network Method
Directory of Open Access Journals (Sweden)
Mohamed Ali Azouzi
2014-03-01
Full Text Available The aim of this paper is to explore the determinants of firms’ financial policies according to the manager’s psychological characteristics. More specifically, it examines the links between emotional intelligence, decision biases and the effectiveness of firms’ financial policies. The article finds that the main cause of an organization’s problems is the CEO’s emotional intelligence level. We introduce an approach based on Bayesian network techniques with a series of semi-directive interviews. The research paper represents an original approach because it characterizes behavioral corporate policy choices in emerging markets. To the best of our knowledge, this is the first study in the Tunisian context to explore this area of research. Our results show that Tunisian leaders adjust their decisions (on investments and distributions to minimize the risk of loss of compensation or reputation. They opt for decisions that minimize agency costs, transaction costs, and cognitive costs.
A Bayesian Approach to Multifractal Extremes
Tchiguirinskaia, Ioulia; Schertzer, Daniel; Lovejoy, Shaun
2013-04-01
Drivers such as climate change and rapid urbanisation will result in increasing flood problems in urban environments through this century. Problems encountered in existing flood defence strategies are often related to the data non-stationary, long range dependencies and the clustering of extremes often resulting in fat tailed (i.e., a power-law tail) probability distributions. We discuss how to better predict the floods by using a physically based approach established on systems that respect a scale symmetry over a wide range of space-time scales to determine the relationship between flood magnitude and return period for a wide range of aggregation periods. The classical quantile distributions unfortunately rely on two hypotheses that are questionable: stationarity and independency of the components of the time series. We pointed out that beyond the classical sampling of the extremes and its limitations, there is the possibility to eliminate long-range dependency by uncovering a white-noise process whose fractional integration generates the observed long-range dependent process. The results were obtained during the CEATI Project "Multifractals and physically based estimates of extreme floods". The ambition of this project was to investigate very large data sets of reasonable quality (e.g., daily stream flow data recorded for at least 20 years for several thousands of gages distributed all over Canada and the USA). The multifractal parameters such as the mean intermittency parameter and the multifractality index were estimated on 8332 time series. The results confirm the dependence of multifractal parameter estimates on the length of available data. Then developing a metric for parameter estimation error became a principal step in uncertainty evaluation with respect to the multifractal estimates. A technique for estimating confidence intervals with the help of a Bayesian approach was developed. A detailed comparison of multifractal quantile plots and paleoflood data
Bashar, Abul; Parr, Gerard; McClean, Sally; Scotney, Bryan; Nauck, Detlef
The ever-evolving nature of telecommunication networks has put enormous pressure on contemporary Network Management Systems (NMSs) to come up with improved functionalities for efficient monitoring, control and management. In such a context, the rapid deployments of Next Generation Networks (NGN) and their management requires intelligent, autonomic and resilient mechanisms to guarantee Quality of Service (QoS) to the end users and at the same time to maximize revenue for the service/network providers. We present a framework for evaluating a Bayesian Networks (BN) based Decision Support System (DSS) for assisting and improving the performance of a Simple Network Management Protocol (SNMP) based NMS. More specifically, we describe our methodology through a case study which implements the function of Call Admission Control (CAC) in a multi-class video conferencing service scenario. Simulation results are presented for a proof of concept, followed by a critical analysis of our proposed approach and its application.
Modeling Social Annotation: a Bayesian Approach
Plangprasopchok, Anon
2008-01-01
Collaborative tagging systems, such as del.icio.us, CiteULike, and others, allow users to annotate objects, e.g., Web pages or scientific papers, with descriptive labels called tags. The social annotations, contributed by thousands of users, can potentially be used to infer categorical knowledge, classify documents or recommend new relevant information. Traditional text inference methods do not make best use of socially-generated data, since they do not take into account variations in individual users' perspectives and vocabulary. In a previous work, we introduced a simple probabilistic model that takes interests of individual annotators into account in order to find hidden topics of annotated objects. Unfortunately, our proposed approach had a number of shortcomings, including overfitting, local maxima and the requirement to specify values for some parameters. In this paper we address these shortcomings in two ways. First, we extend the model to a fully Bayesian framework. Second, we describe an infinite ver...
Merging Digital Surface Models Implementing Bayesian Approaches
Sadeq, H.; Drummond, J.; Li, Z.
2016-06-01
In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades). It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.
Control of Complex Systems Using Bayesian Networks and Genetic Algorithm
Marwala, Tshilidzi
2007-01-01
A method based on Bayesian neural networks and genetic algorithm is proposed to control the fermentation process. The relationship between input and output variables is modelled using Bayesian neural network that is trained using hybrid Monte Carlo method. A feedback loop based on genetic algorithm is used to change input variables so that the output variables are as close to the desired target as possible without the loss of confidence level on the prediction that the neural network gives. The proposed procedure is found to reduce the distance between the desired target and measured outputs significantly.
Flood quantile estimation at ungauged sites by Bayesian networks
Mediero, L.; Santillán, D.; Garrote, L.
2012-04-01
Estimating flood quantiles at a site for which no observed measurements are available is essential for water resources planning and management. Ungauged sites have no observations about the magnitude of floods, but some site and basin characteristics are known. The most common technique used is the multiple regression analysis, which relates physical and climatic basin characteristic to flood quantiles. Regression equations are fitted from flood frequency data and basin characteristics at gauged sites. Regression equations are a rigid technique that assumes linear relationships between variables and cannot take the measurement errors into account. In addition, the prediction intervals are estimated in a very simplistic way from the variance of the residuals in the estimated model. Bayesian networks are a probabilistic computational structure taken from the field of Artificial Intelligence, which have been widely and successfully applied to many scientific fields like medicine and informatics, but application to the field of hydrology is recent. Bayesian networks infer the joint probability distribution of several related variables from observations through nodes, which represent random variables, and links, which represent causal dependencies between them. A Bayesian network is more flexible than regression equations, as they capture non-linear relationships between variables. In addition, the probabilistic nature of Bayesian networks allows taking the different sources of estimation uncertainty into account, as they give a probability distribution as result. A homogeneous region in the Tagus Basin was selected as case study. A regression equation was fitted taking the basin area, the annual maximum 24-hour rainfall for a given recurrence interval and the mean height as explanatory variables. Flood quantiles at ungauged sites were estimated by Bayesian networks. Bayesian networks need to be learnt from a huge enough data set. As observational data are reduced, a
Bayesian networks for mastitis management on dairy farms
Steeneveld, Wilma; van der Gaag, Linda; Barkema, H.W.; Hogeveen, H.
2009-01-01
This manuscript presents the idea of providing dairy farmers with probability distributions to support decisions on mastitis management and illustrates its feasibility by two applications. Naive Bayesian networks were developed for both applications. The networks in the first application were used t
Dynamic Bayesian Networks for Context-Aware Fall Risk Assessment
Directory of Open Access Journals (Sweden)
Gregory Koshmak
2014-05-01
Full Text Available Fall incidents among the elderly often occur in the home and can cause serious injuries affecting their independent living. This paper presents an approach where data from wearable sensors integrated in a smart home environment is combined using a dynamic Bayesian network. The smart home environment provides contextual data, obtained from environmental sensors, and contributes to assessing a fall risk probability. The evaluation of the developed system is performed through simulation. Each time step is represented by a single user activity and interacts with a fall sensors located on a mobile device. A posterior probability is calculated for each recognized activity or contextual information. The output of the system provides a total risk assessment of falling given a response from the fall sensor.
Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model
Directory of Open Access Journals (Sweden)
Qi Yuan(Alan
2010-01-01
Full Text Available Abstract The problem of uncovering transcriptional regulation by transcription factors (TFs based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ( status and Estrogen Receptor negative ( status, respectively.
Detecting Threat E-mails using Bayesian Approach
Banday, M Tariq; Jan, Tariq R; Shah, Nisar A
2011-01-01
Fraud and terrorism have a close connect in terms of the processes that enables and promote them. In the era of Internet, its various services that include Web, e-mail, social networks, blogs, instant messaging, chats, etc. are used in terrorism not only for communication but also for i) creation of ideology, ii) resource gathering, iii) recruitment, indoctrination and training, iv) creation of terror network, and v) information gathering. A major challenge for law enforcement and intelligence agencies is efficient and accurate gathering of relevant and growing volume of crime data. This paper reports on use of established Na\\"ive Bayesian filter for classification of threat e-mails. Efficiency in filtering threat e-mail by use of three different Na\\"ive Bayesian filter approaches i.e. single keywords, weighted multiple keywords and weighted multiple keywords with keyword context matching are evaluated on a threat e-mail corpus created by extracting data from sources that are very close to terrorism.
Bayesian networks for evaluating forensic DNA profiling evidence: a review and guide to literature.
Biedermann, A; Taroni, F
2012-03-01
Almost 30 years ago, Bayesian networks (BNs) were developed in the field of artificial intelligence as a framework that should assist researchers and practitioners in applying the theory of probability to inference problems of more substantive size and, thus, to more realistic and practical problems. Since the late 1980s, Bayesian networks have also attracted researchers in forensic science and this tendency has considerably intensified throughout the last decade. This review article provides an overview of the scientific literature that describes research on Bayesian networks as a tool that can be used to study, develop and implement probabilistic procedures for evaluating the probative value of particular items of scientific evidence in forensic science. Primary attention is drawn here to evaluative issues that pertain to forensic DNA profiling evidence because this is one of the main categories of evidence whose assessment has been studied through Bayesian networks. The scope of topics is large and includes almost any aspect that relates to forensic DNA profiling. Typical examples are inference of source (or, 'criminal identification'), relatedness testing, database searching and special trace evidence evaluation (such as mixed DNA stains or stains with low quantities of DNA). The perspective of the review presented here is not exclusively restricted to DNA evidence, but also includes relevant references and discussion on both, the concept of Bayesian networks as well as its general usage in legal sciences as one among several different graphical approaches to evidence evaluation. PMID:21775236
Risk-based design of process systems using discrete-time Bayesian networks
International Nuclear Information System (INIS)
Temporal Bayesian networks have gained popularity as a robust technique to model dynamic systems in which the components' sequential dependency, as well as their functional dependency, cannot be ignored. In this regard, discrete-time Bayesian networks have been proposed as a viable alternative to solve dynamic fault trees without resort to Markov chains. This approach overcomes the drawbacks of Markov chains such as the state-space explosion and the error-prone conversion procedure from dynamic fault tree. It also benefits from the inherent advantages of Bayesian networks such as probability updating. However, effective mapping of the dynamic gates of dynamic fault trees into Bayesian networks while avoiding the consequent huge multi-dimensional probability tables has always been a matter of concern. In this paper, a new general formalism has been developed to model two important elements of dynamic fault tree, i.e., cold spare gate and sequential enforcing gate, with any arbitrary probability distribution functions. Also, an innovative Neutral Dependency algorithm has been introduced to model dynamic gates such as priority-AND gate, thus reducing the dimension of conditional probability tables by an order of magnitude. The second part of the paper is devoted to the application of discrete-time Bayesian networks in the risk assessment and safety analysis of complex process systems. It has been shown how dynamic techniques can effectively be applied for optimal allocation of safety systems to obtain maximum risk reduction.
Fast MCMC sampling for Markov jump processes and continuous time Bayesian networks
Rao, Vinayak
2012-01-01
Markov jump processes and continuous time Bayesian networks are important classes of continuous time dynamical systems. In this paper, we tackle the problem of inferring unobserved paths in these models by introducing a fast auxiliary variable Gibbs sampler. Our approach is based on the idea of uniformization, and sets up a Markov chain over paths by sampling a finite set of virtual jump times and then running a standard hidden Markov model forward filtering-backward sampling algorithm over states at the set of extant and virtual jump times. We demonstrate significant computational benefits over a state-of-the-art Gibbs sampler on a number of continuous time Bayesian networks.
Application of Bayesian networks for risk analysis of MV air insulated switch operation
International Nuclear Information System (INIS)
Electricity distribution companies regard risk-based approaches as a good philosophy to address their asset management challenges, and there is an increasing trend on developing methods to support decisions where different aspects of risks are taken into consideration. This paper describes a methodology for application of Bayesian networks for risk analysis in electricity distribution system maintenance management. The methodology is used on a case analysing safety risk related to operation of MV air insulated switches. The paper summarises some challenges and benefits of using Bayesian networks as a part of distribution system maintenance management.
Tutorial on Exact Belief Propagation in Bayesian Networks: from Messages to Algorithms
Nuel, G
2012-01-01
In Bayesian networks, exact belief propagation is achieved through message passing algorithms. These algorithms (ex: inward and outward) provide only a recursive definition of the corresponding messages. In contrast, when working on hidden Markov models and variants, one classically first defines explicitly these messages (forward and backward quantities), and then derive all results and algorithms. In this paper, we generalize the hidden Markov model approach by introducing an explicit definition of the messages in Bayesian networks, from which we derive all the relevant properties and results including the recursive algorithms that allow to compute these messages. Two didactic examples (the precipitation hidden Markov model and the pedigree Bayesian network) are considered along the paper to illustrate the new formalism and standalone R source code is provided in the appendix.
Parameterizing Bayesian network Representations of Social-Behavioral Models by Expert Elicitation
Energy Technology Data Exchange (ETDEWEB)
Walsh, Stephen J.; Dalton, Angela C.; Whitney, Paul D.; White, Amanda M.
2010-05-23
Bayesian networks provide a general framework with which to model many natural phenomena. The mathematical nature of Bayesian networks enables a plethora of model validation and calibration techniques: e.g parameter estimation, goodness of fit tests, and diagnostic checking of the model assumptions. However, they are not free of shortcomings. Parameter estimation from relevant extant data is a common approach to calibrating the model parameters. In practice it is not uncommon to find oneself lacking adequate data to reliably estimate all model parameters. In this paper we present the early development of a novel application of conjoint analysis as a method for eliciting and modeling expert opinions and using the results in a methodology for calibrating the parameters of a Bayesian network.
Process adjustment by a Bayesian approach
Directory of Open Access Journals (Sweden)
Daniel Duret
2015-12-01
Full Text Available In a production or measure situation, operators are required to make corrections to a process using the measurement of a sample. In both cases, it is always difficult to suggest a correction from a deviation. The correction is the result of two different deviations: one in set-up and the second in production. The latter is considered as noise. The objective of this paper is to propose an original approach to calculate the best correction using a Bayesian approach. A correction formula is given with three assumptions as regards adjusting the distribution: uniform, triangular and normal distribution. This paper gives a graphical interpretation of these different assumptions and a discussion of the results. Based on these results, the paper proposes a practical rule for calculating the most likely maladjustment in the case of a normal distribution. This practical rule gives the best adjustment using a simple relation (Adjustment = K*sample mean where K depends on the sample size, the ratio between the maladjustment and the short-term variability and a Type I risk of large maladjustment.
Recurrent Bayesian Reasoning in Probabilistic Neural Networks
Czech Academy of Sciences Publication Activity Database
Grim, Jiří; Hora, Jan
Vol. Part I. Berlin: Springer, 2007 - (Marques de Sá, J.; Alexandre, L.; Duch, W.; Mandic, D.), s. 129-138. (Lecture Notes in Computer Scinece. SL 1 - Theoretical Computer Science and General Issues. 4669). ISBN 3-540-74693-5. [International Conference on Artificial Neural Networks /17./. Porto (PT), 09.09.2007-13.09.2007] R&D Projects: GA MŠk 1M0572; GA ČR GA102/07/1594 EU Projects: European Commission(XE) 507752 - MUSCLE Grant ostatní: GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : neural networks * probabilistic approach * distribution mixtures Subject RIV: BD - Theory of Information
A new approach for Bayesian model averaging
Institute of Scientific and Technical Information of China (English)
TIAN XiangJun; XIE ZhengHui; WANG AiHui; YANG XiaoChun
2012-01-01
Bayesian model averaging (BMA) is a recently proposed statistical method for calibrating forecast ensembles from numerical weather models.However,successful implementation of BMA requires accurate estimates of the weights and variances of the individual competing models in the ensemble.Two methods,namely the Expectation-Maximization (EM) and the Markov Chain Monte Carlo (MCMC) algorithms,are widely used for BMA model training.Both methods have their own respective strengths and weaknesses.In this paper,we first modify the BMA log-likelihood function with the aim of removing the additional limitation that requires that the BMA weights add to one,and then use a limited memory quasi-Newtonian algorithm for solving the nonlinear optimization problem,thereby formulating a new approach for BMA (referred to as BMA-BFGS).Several groups of multi-model soil moisture simulation experiments from three land surface models show that the performance of BMA-BFGS is similar to the MCMC method in terms of simulation accuracy,and that both are superior to the EM algorithm.On the other hand,the computational cost of the BMA-BFGS algorithm is substantially less than for MCMC and is almost equivalent to that for EM.
On an Approach to Bayesian Sample Sizing in Clinical Trials
Muirhead, Robb J
2012-01-01
This paper explores an approach to Bayesian sample size determination in clinical trials. The approach falls into the category of what is often called "proper Bayesian", in that it does not mix frequentist concepts with Bayesian ones. A criterion for a "successful trial" is defined in terms of a posterior probability, its probability is assessed using the marginal distribution of the data, and this probability forms the basis for choosing sample sizes. We illustrate with a standard problem in clinical trials, that of establishing superiority of a new drug over a control.
Bayesian网中的独立关系%The Independence Relations in Bayesian Networks
Institute of Scientific and Technical Information of China (English)
王飞; 刘大有; 卢奕男; 薛万欣
2001-01-01
Bayesian networks are compact representation of joint probabilistic distribution. Independence is soul of Bayesian networks because it enables to save storage space,to reduce computational complexity and to simplify knowledge acquisition and modeling. In this paper,we discuss three kinds of independences in Bayesian networks :conditional independence,context-specific independence and causal influence independence.
Implementation of an Adaptive Learning System Using a Bayesian Network
Yasuda, Keiji; Kawashima, Hiroyuki; Hata, Yoko; Kimura, Hiroaki
2015-01-01
An adaptive learning system is proposed that incorporates a Bayesian network to efficiently gauge learners' understanding at the course-unit level. Also, learners receive content that is adapted to their measured level of understanding. The system works on an iPad via the Edmodo platform. A field experiment using the system in an elementary school…
A Structure Learning Algorithm for Bayesian Network Using Prior Knowledge
Institute of Scientific and Technical Information of China (English)
徐俊刚; 赵越; 陈健; 韩超
2015-01-01
Learning structure from data is one of the most important fundamental tasks of Bayesian network research. Particularly, learning optional structure of Bayesian network is a non-deterministic polynomial-time (NP) hard problem. To solve this problem, many heuristic algorithms have been proposed, and some of them learn Bayesian network structure with the help of different types of prior knowledge. However, the existing algorithms have some restrictions on the prior knowledge, such as quality restriction and use restriction. This makes it diﬃcult to use the prior knowledge well in these algorithms. In this paper, we introduce the prior knowledge into the Markov chain Monte Carlo (MCMC) algorithm and propose an algorithm called Constrained MCMC (C-MCMC) algorithm to learn the structure of the Bayesian network. Three types of prior knowledge are defined: existence of parent node, absence of parent node, and distribution knowledge including the conditional probability distribution (CPD) of edges and the probability distribution (PD) of nodes. All of these types of prior knowledge are easily used in this algorithm. We conduct extensive experiments to demonstrate the feasibility and effectiveness of the proposed method C-MCMC.
Exploiting sensitivity analysis in Bayesian networks for consumer satisfaction study
Jaronski, W.; Bloemer, J.M.M.; Vanhoof, K.; Wets, G.
2004-01-01
The paper presents an application of Bayesian network technology in a empirical customer satisfaction study. The findings of the study should provide insight as to the importance of product/service dimensions in terms of the strength of their influence on overall satisfaction. To this end we apply a
A Bayesian approach to particle identification in ALICE
CERN. Geneva
2016-01-01
Among the LHC experiments, ALICE has unique particle identification (PID) capabilities exploiting different types of detectors. During Run 1, a Bayesian approach to PID was developed and intensively tested. It facilitates the combination of information from different sub-systems. The adopted methodology and formalism as well as the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE will be reviewed. Results are presented with PID performed via measurements of specific energy loss (dE/dx) and time-of-flight using information from the TPC and TOF detectors, respectively. Methods to extract priors from data and to compare PID efficiencies and misidentification probabilities in data and Monte Carlo using high-purity samples of identified particles will be presented. Bayesian PID results were found consistent with previous measurements published by ALICE. The Bayesian PID approach gives a higher signal-to-background ratio and a similar or larger statist...
Differential gene co-expression networks via Bayesian biclustering models
Gao, Chuan; Zhao, Shiwen; McDowell, Ian C.; Brown, Christopher D.; Barbara E Engelhardt
2014-01-01
Identifying latent structure in large data matrices is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are locally co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes whose covariation may be observed in only a subset of the samples. Our biclustering me...
Smail, Linda
2016-06-01
The basic task of any probabilistic inference system in Bayesian networks is computing the posterior probability distribution for a subset or subsets of random variables, given values or evidence for some other variables from the same Bayesian network. Many methods and algorithms have been developed to exact and approximate inference in Bayesian networks. This work compares two exact inference methods in Bayesian networks-Lauritzen-Spiegelhalter and the successive restrictions algorithm-from the perspective of computational efficiency. The two methods were applied for comparison to a Chest Clinic Bayesian Network. Results indicate that the successive restrictions algorithm shows more computational efficiency than the Lauritzen-Spiegelhalter algorithm.
Theory-independent limits on correlations from generalized Bayesian networks
International Nuclear Information System (INIS)
Bayesian networks provide a powerful tool for reasoning about probabilistic causation, used in many areas of science. They are, however, intrinsically classical. In particular, Bayesian networks naturally yield the Bell inequalities. Inspired by this connection, we generalize the formalism of classical Bayesian networks in order to investigate non-classical correlations in arbitrary causal structures. Our framework of ‘generalized Bayesian networks’ replaces latent variables with the resources of any generalized probabilistic theory, most importantly quantum theory, but also, for example, Popescu–Rohrlich boxes. We obtain three main sets of results. Firstly, we prove that all of the observable conditional independences required by the classical theory also hold in our generalization; to obtain this, we extend the classical d-separation theorem to our setting. Secondly, we find that the theory-independent constraints on probabilities can go beyond these conditional independences. For example we find that no probabilistic theory predicts perfect correlation between three parties using only bipartite common causes. Finally, we begin a classification of those causal structures, such as the Bell scenario, that may yield a separation between classical, quantum and general-probabilistic correlations. (paper)
Research of Gene Regulatory Network with Multi-Time Delay Based on Bayesian Network
Institute of Scientific and Technical Information of China (English)
LIU Bei; MENG Fanjiang; LI Yong; LIU Liyan
2008-01-01
The gene regulatory network was reconstructed according to time-series microarray data getting from hybridization at different time between gene chips to analyze coordination and restriction between genes. An algorithm for controlling the gene expression regulatory network of the whole cell was designed using Bayesian network which provides an effective aided analysis for gene regulatory network.
A Bayesian Approach to Interactive Retrieval
Tague, Jean M.
1973-01-01
A probabilistic model for interactive retrieval is presented. Bayesian statistical decision theory principles are applied: use of prior and sample information about the relationship of document descriptions to query relevance; maximization of expected value of a utility function, to the problem of optimally restructuring search strategies in an…
Spatiotemporal Bayesian Networks for Malaria Prediction: Case Study of Northern Thailand.
Haddawy, Peter; Kasantikul, Rangwan; Hasan, A H M Imrul; Rattanabumrung, Chunyanuch; Rungrun, Pichamon; Suksopee, Natwipa; Tantiwaranpant, Saran; Niruntasuk, Natcha
2016-01-01
While a diversity of modeling technique have been used to create predictive models of malaria, no work has made use of Bayesian networks. Bayes nets are attractive due to their ability to represent uncertainty, model time lagged and nonlinear relations, and provide explanations of inferences. This paper explores the use of Bayesian networks to model malaria, demonstrating the approach by creating a village level model with weekly temporal resolution for Tha Song Yang district in northern Thailand. The network is learned using data on cases and environmental covariates. The network models incidence over time as well as evolution of the environmental variables, and captures time lagged and nonlinear effects. Out of sample evaluation shows the model to have high accuracy for one and two week predictions. PMID:27577491
A Study of Scaling Issues in Bayesian Belief Networks for Ship Classification
Musman, Scott A.; Chang, L. W.
2013-01-01
The problems associated with scaling involve active and challenging research topics in the area of artificial intelligence. The purpose is to solve real world problems by means of AI technologies, in cases where the complexity of representation of the real world problem is potentially combinatorial. In this paper, we present a novel approach to cope with the scaling issues in Bayesian belief networks for ship classification. The proposed approach divides the conceptual model of a complex ship...
Prediction of road accidents: A Bayesian hierarchical approach
DEFF Research Database (Denmark)
Deublein, Markus; Schubert, Matthias; Adey, Bryan T.;
2013-01-01
-lognormal regression analysis taking into account correlations amongst multiple dependent model response variables and effects of discrete accident count data e.g. over-dispersion, and (3) Bayesian inference algorithms, which are applied by means of data mining techniques supported by Bayesian Probabilistic Networks...... in order to represent non-linearity between risk indicating and model response variables, as well as different types of uncertainties which might be present in the development of the specific models.Prior Bayesian Probabilistic Networks are first established by means of multivariate regression analysis...... of the observed frequencies of the model response variables, e.g. the occurrence of an accident, and observed values of the risk indicating variables, e.g. degree of road curvature. Subsequently, parameter learning is done using updating algorithms, to determine the posterior predictive probability distributions...
Bayesian approach to magnetotelluric tensor decomposition
Directory of Open Access Journals (Sweden)
Michel Menvielle
2010-05-01
;} -->
Magnetotelluric directional analysis and impedance tensor decomposition are basic tools to validate a local/regional composite electrical model of the underlying structure. Bayesian stochastic methods approach the problem of the parameter estimation and their uncertainty characterization in a fully probabilistic fashion, through the use of posterior model probabilities.We use the standard GroomBailey 3D local/2D regional composite model in our bayesian approach. We assume that the experimental impedance estimates are contamined with the Gaussian noise and define the likelihood of a particular composite model with respect to the observed data. We use noninformative, flat priors over physically reasonable intervals for the standard GroomBailey decomposition parameters. We apply two numerical methods, the Markov chain Monte Carlo procedure based on the Gibbs sampler and a singlecomponent adaptive Metropolis algorithm. From the posterior samples, we characterize the estimates and uncertainties of the individual decomposition parameters by using the respective marginal posterior probabilities. We conclude that the stochastic scheme performs reliably for a variety of models, including the multisite and multifrequency case with up to
Looking for Sustainable Urban Mobility through Bayesian Networks
Directory of Open Access Journals (Sweden)
Giovanni Fusco
2004-11-01
Full Text Available There is no formalised theory of sustainable urban mobility systems. Observed patterns of urban mobility are often considered unsustainable. But we don’t know what a city with sustainable mobility should look like. It is nevertheless increasingly apparent that the urban mobility system plays an important role in the achievement of the city’s wider sustainability objectives.In this paper we explore the characteristics of sustainable urban mobility systems through the technique of Bayesian networks. At the frontier between multivariate statistics and artificial intelligence, Bayesian networks provide powerful models of causal knowledge in an uncertain context. Using data on urban structure, transportation offer, mobility demand, resource consumption and environmental externalities from seventy-five world cities, we developed a systemic model of the city-transportation-environment interaction in the form of a Bayesian network. The network could then be used to infer the features of the city with sustainable mobility.The Bayesian model indicates that the city with sustainable mobility is most probably a dense city with highly efficient transit and multimodal mobility. It produces high levels of accessibility without relying on a fast road network. The achievement of sustainability objectives for urban mobility is probably compatible with all socioeconomic contexts.By measuring the distance of world cities from the inferred sustainability profile, we finally derive a geography of sustainability for mobility systems. The cities closest to the sustainability profile are in Central Europe as well as in affluent countries of the Far East. Car-dependent American cities are the farthest from the desired sustainability profile.
Criminal and Civil Identification with DNA Databases Using Bayesian Networks
Directory of Open Access Journals (Sweden)
Marina Andrade
2009-10-01
Full Text Available Forensic identification problems are examples in which the study of DNA profilesis a common approach. Here we present some problems and develop theirtreatment putting the focus in the use of Object-Oriented Bayesian Networks -OOBN. The use of DNA databases, which began in 1995 in England, hascreated new challenges about its use. In Portugal the legislation for theconstruction of a genetic database was defined in 2008. With this it is importantto determine how to use it in an appropriate way.For a crime that has been committed, forensic laboratories identify geneticcharacteristics in order to connect one or more individuals to it. Apart thelaboratories results it is a matter of great importance to quantify the informationobtained, i.e., to know how to evaluate and interpret the results obtainedproviding support to the judicial system. Other forensic identification problemsare body identification; whether the identification of a body (or more than onefound, together with the information of missing persons belonging to one or moreknown families, for which there may be information of family members whoclaimed the disappearance. In this work we intend to discuss how to use thedatabase; the hypotheses of interest and the database use to determine thelikelihood ratios, i.e., how to evaluate the evidence for different situations.
Predicting Software Suitability Using a Bayesian Belief Network
Beaver, Justin M.; Schiavone, Guy A.; Berrios, Joseph S.
2005-01-01
The ability to reliably predict the end quality of software under development presents a significant advantage for a development team. It provides an opportunity to address high risk components earlier in the development life cycle, when their impact is minimized. This research proposes a model that captures the evolution of the quality of a software product, and provides reliable forecasts of the end quality of the software being developed in terms of product suitability. Development team skill, software process maturity, and software problem complexity are hypothesized as driving factors of software product quality. The cause-effect relationships between these factors and the elements of software suitability are modeled using Bayesian Belief Networks, a machine learning method. This research presents a Bayesian Network for software quality, and the techniques used to quantify the factors that influence and represent software quality. The developed model is found to be effective in predicting the end product quality of small-scale software development efforts.
Research on Bayesian Network Based User's Interest Model
Institute of Scientific and Technical Information of China (English)
ZHANG Weifeng; XU Baowen; CUI Zifeng; XU Lei
2007-01-01
It has very realistic significance for improving the quality of users' accessing information to filter and selectively retrieve the large number of information on the Internet. On the basis of analyzing the existing users' interest models and some basic questions of users' interest (representation, derivation and identification of users' interest), a Bayesian network based users' interest model is given. In this model, the users' interest reduction algorithm based on Markov Blanket model is used to reduce the interest noise, and then users' interested and not interested documents are used to train the Bayesian network. Compared to the simple model, this model has the following advantages like small space requirements, simple reasoning method and high recognition rate. The experiment result shows this model can more appropriately reflect the user's interest, and has higher performance and good usability.
Uncertainty management using bayesian networks in student knowledge diagnosis
Directory of Open Access Journals (Sweden)
Adina COCU
2005-12-01
Full Text Available In intelligent tutoring systems, student or user modeling implies dealing with imperfect and uncertain knowledge. One of the artificial intelligence techniques used for uncertainty management is that of Bayesian networks. This paradigm is recommended in the situation when exist dependencies between data and qualitative information about these data. In this work we present a student knowledge diagnosis model based on representation with Bayesian networks. The educational system incorporate a multimedia interface for accomplishes the testing tools. The results of testing sessions are represented and interpreted with probability theory in order to ensure an adapted support for the student. The aims of the computer assisted application that contains this diagnose module are to support the student in personalized learning process and errors explanation.
Decision Support System for Maintenance Management Using Bayesian Networks
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The maintenance process has undergone several major developments that have led to proactive considerations and the transformation from the traditional "fail and fix" practice into the "predict and prevent" proactive maintenance methodology. The anticipation action, which characterizes this proactive maintenance strategy is mainly based on monitoring, diagnosis, prognosis and decision-making modules. Oil monitoring is a key component of a successful condition monitoring program. It can be used as a proactive tool to identify the wear modes of rubbing parts and diagnoses the faults in machinery. But diagnosis relying on oil analysis technology must deal with uncertain knowledge and fuzzy input data. Besides other methods, Bayesian Networks have been extensively applied to fault diagnosis with the advantages of uncertainty inference; however, in the area of oil monitoring, it is a new field. This paper presents an integrated Bayesian network based decision support for maintenance of diesel engines.
Which Factors Contributes to Resolving Coreference Chains with Bayesian Networks?
Weissenbacher, Davy; Sasaki, Yutaka
2013-01-01
This paper describes coreference chain resolution with Bayesian Networks. Several factors in the resolution of coreference chains may greatly affect the final performance. If the choice of machine learning algorithm and the features the learner relies on are largely addressed by the community, others factors implicated in the resolution, such as noisy features, anaphoricity resolution or the search windows, have been less studied, and their importance remains unclear. In this article, we desc...
Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks
Doucet, Arnaud; De Freitas, Nando; Murphy, Kevin; Russell, Stuart
2013-01-01
Particle filters (PFs) are powerful sampling-based inference/learning algorithms for dynamic Bayesian networks (DBNs). They allow us to treat, in a principled way, any type of probability distribution, nonlinearity and non-stationarity. They have appeared in several fields under such names as "condensation", "sequential Monte Carlo" and "survival of the fittest". In this paper, we show how we can exploit the structure of the DBN to increase the efficiency of particle filtering, using a techni...
Bayesian Belief Network untuk Menghasilkan Fuzzy Association Rules
Rolly Intan; Oviliani Yenty Yuliana; Dwi Kristanto
2010-01-01
Bayesian Belief Network (BBN), one of the data mining classification methods, is used in this research for mining and analyzing medical track record from a relational data table. In this paper, a mutual information concept is extended using fuzzy labels for determining the relation between two fuzzy nodes. The highest fuzzy information gain is used for mining fuzzy association rules in order to extend a BBN. Meaningful fuzzy labels can be defined for each domain data. For example, fuzzy label...
Bayesian network models in brain functional connectivity analysis
Ide, Jaime S.; Zhang, Sheng; Chiang-shan R. Li
2013-01-01
Much effort has been made to better understand the complex integration of distinct parts of the human brain using functional magnetic resonance imaging (fMRI). Altered functional connectivity between brain regions is associated with many neurological and mental illnesses, such as Alzheimer and Parkinson diseases, addiction, and depression. In computational science, Bayesian networks (BN) have been used in a broad range of studies to model complex data set in the presence of uncertainty and wh...
Learning genetic epistasis using Bayesian network scoring criteria
Barmada M Michael; Neapolitan Richard E; Jiang Xia; Visweswaran Shyam
2011-01-01
Abstract Background Gene-gene epistatic interactions likely play an important role in the genetic basis of many common diseases. Recently, machine-learning and data mining methods have been developed for learning epistatic relationships from data. A well-known combinatorial method that has been successfully applied for detecting epistasis is Multifactor Dimensionality Reduction (MDR). Jiang et al. created a combinatorial epistasis learning method called BNMBL to learn Bayesian network (BN) ep...
Bayesian Fusion Algorithm for Inferring Trust in Wireless Sensor Networks
Mohammad Momani; Subhash Challa; Rami Alhmouz
2010-01-01
This paper introduces a new Bayesian fusion algorithm to combine more than one trust component (data trust and communication trust) to infer the overall trust between nodes. This research work proposes that one trust component is not enough when deciding on whether or not to trust a specific node in a wireless sensor network. This paper discusses and analyses the results from the communication trust component (binary) and the data trust component (continuous) and proves that either component ...
Risks Analysis of Logistics Financial Business Based on Evidential Bayesian Network
Directory of Open Access Journals (Sweden)
Ying Yan
2013-01-01
Full Text Available Risks in logistics financial business are identified and classified. Making the failure of the business as the root node, a Bayesian network is constructed to measure the risk levels in the business. Three importance indexes are calculated to find the most important risks in the business. And more, considering the epistemic uncertainties in the risks, evidence theory associate with Bayesian network is used as an evidential network in the risk analysis of logistics finance. To find how much uncertainty in root node is produced by each risk, a new index, epistemic importance, is defined. Numerical examples show that the proposed methods could provide a lot of useful information. With the information, effective approaches could be found to control and avoid these sensitive risks, thus keep logistics financial business working more reliable. The proposed method also gives a quantitative measure of risk levels in logistics financial business, which provides guidance for the selection of financing solutions.
Personalized Audio Systems - a Bayesian Approach
DEFF Research Database (Denmark)
Nielsen, Jens Brehm; Jensen, Bjørn Sand; Hansen, Toke Jansen;
2013-01-01
Modern audio systems are typically equipped with several user-adjustable parameters unfamiliar to most users listening to the system. To obtain the best possible setting, the user is forced into multi-parameter optimization with respect to the users's own objective and preference. To address this......, the present paper presents a general inter-active framework for personalization of such audio systems. The framework builds on Bayesian Gaussian process regression in which a model of the users's objective function is updated sequentially. The parameter setting to be evaluated in a given trial is...
Macroscopic hotspots identification: A Bayesian spatio-temporal interaction approach.
Dong, Ni; Huang, Helai; Lee, Jaeyoung; Gao, Mingyun; Abdel-Aty, Mohamed
2016-07-01
This study proposes a Bayesian spatio-temporal interaction approach for hotspot identification by applying the full Bayesian (FB) technique in the context of macroscopic safety analysis. Compared with the emerging Bayesian spatial and temporal approach, the Bayesian spatio-temporal interaction model contributes to a detailed understanding of differential trends through analyzing and mapping probabilities of area-specific crash trends as differing from the mean trend and highlights specific locations where crash occurrence is deteriorating or improving over time. With traffic analysis zones (TAZs) crash data collected in Florida, an empirical analysis was conducted to evaluate the following three approaches for hotspot identification: FB ranking using a Poisson-lognormal (PLN) model, FB ranking using a Bayesian spatial and temporal (B-ST) model and FB ranking using a Bayesian spatio-temporal interaction (B-ST-I) model. The results show that (a) the models accounting for space-time effects perform better in safety ranking than does the PLN model, and (b) the FB approach using the B-ST-I model significantly outperforms the B-ST approach in correctly identifying hotspots by explicitly accounting for the space-time variation in addition to the stable spatial/temporal patterns of crash occurrence. In practice, the B-ST-I approach plays key roles in addressing two issues: (a) how the identified hotspots have evolved over time and (b) the identification of areas that, whilst not yet hotspots, show a tendency to become hotspots. Finally, it can provide guidance to policy decision makers to efficiently improve zonal-level safety. PMID:27110645
Fracture prediction of cardiac lead medical devices using Bayesian networks
International Nuclear Information System (INIS)
A novel Bayesian network methodology has been developed to enable the prediction of fatigue fracture of cardiac lead medical devices. The methodology integrates in-vivo device loading measurements, patient demographics, patient activity level, in-vitro fatigue strength measurements, and cumulative damage modeling techniques. Many plausible combinations of these variables can be simulated within a Bayesian network framework to generate a family of fatigue fracture survival curves, enabling sensitivity analyses and the construction of confidence bounds on reliability predictions. The method was applied to the prediction of conductor fatigue fracture near the shoulder for two market-released cardiac defibrillation leads which had different product performance histories. The case study used recently published data describing the in-vivo curvature conditions and the in-vitro fatigue strength. The prediction results from the methodology aligned well with the observed qualitative ranking of field performance, as well as the quantitative field survival from fracture. This initial success suggests that study of further extension of this method to other medical device applications is warranted. - Highlights: • A new method to simulate the fatigue experience of an implanted cardiac lead. • Fatigue strength and use conditions are incorporated within a Bayesian network. • Confidence bounds reflect the uncertainty in all input parameters. • A case study is presented using market released cardiac leads
Bayesian network as a modelling tool for risk management in agriculture
Svend Rasmussen; Madsen, Anders L.; Mogens Lund
2013-01-01
The importance of risk management increases as farmers become more exposed to risk. But risk management is a difficult topic because income risk is the result of the complex interaction of multiple risk factors combined with the effect of an increasing array of possible risk management tools. In this paper we use Bayesian networks as an integrated modelling approach for representing uncertainty and analysing risk management in agriculture. It is shown how historical farm account data may be e...
Bayesian state space models for dynamic genetic network construction across multiple tissues.
Liang, Yulan; Kelemen, Arpad
2016-08-01
Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes. PMID:27343475
A generic method for estimating system reliability using Bayesian networks
International Nuclear Information System (INIS)
This study presents a holistic method for constructing a Bayesian network (BN) model for estimating system reliability. BN is a probabilistic approach that is used to model and predict the behavior of a system based on observed stochastic events. The BN model is a directed acyclic graph (DAG) where the nodes represent system components and arcs represent relationships among them. Although recent studies on using BN for estimating system reliability have been proposed, they are based on the assumption that a pre-built BN has been designed to represent the system. In these studies, the task of building the BN is typically left to a group of specialists who are BN and domain experts. The BN experts should learn about the domain before building the BN, which is generally very time consuming and may lead to incorrect deductions. As there are no existing studies to eliminate the need for a human expert in the process of system reliability estimation, this paper introduces a method that uses historical data about the system to be modeled as a BN and provides efficient techniques for automated construction of the BN model, and hence estimation of the system reliability. In this respect K2, a data mining algorithm, is used for finding associations between system components, and thus building the BN model. This algorithm uses a heuristic to provide efficient and accurate results while searching for associations. Moreover, no human intervention is necessary during the process of BN construction and reliability estimation. The paper provides a step-by-step illustration of the method and evaluation of the approach with literature case examples
Bayesian Inference of Reticulate Phylogenies under the Multispecies Network Coalescent.
Wen, Dingqiao; Yu, Yun; Nakhleh, Luay
2016-05-01
The multispecies coalescent (MSC) is a statistical framework that models how gene genealogies grow within the branches of a species tree. The field of computational phylogenetics has witnessed an explosion in the development of methods for species tree inference under MSC, owing mainly to the accumulating evidence of incomplete lineage sorting in phylogenomic analyses. However, the evolutionary history of a set of genomes, or species, could be reticulate due to the occurrence of evolutionary processes such as hybridization or horizontal gene transfer. We report on a novel method for Bayesian inference of genome and species phylogenies under the multispecies network coalescent (MSNC). This framework models gene evolution within the branches of a phylogenetic network, thus incorporating reticulate evolutionary processes, such as hybridization, in addition to incomplete lineage sorting. As phylogenetic networks with different numbers of reticulation events correspond to points of different dimensions in the space of models, we devise a reversible-jump Markov chain Monte Carlo (RJMCMC) technique for sampling the posterior distribution of phylogenetic networks under MSNC. We implemented the methods in the publicly available, open-source software package PhyloNet and studied their performance on simulated and biological data. The work extends the reach of Bayesian inference to phylogenetic networks and enables new evolutionary analyses that account for reticulation. PMID:27144273
Filtering in hybrid dynamic Bayesian networks (center)
DEFF Research Database (Denmark)
Andersen, Morten Nonboe; Andersen, Rasmus Ørum; Wheeler, Kevin
framework outperform the generic PF, EKF and EKF in a PF framework with respect to accuracy and robustness in terms of estimation RMSE (root-mean-square error). Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. We also show that the...... choice of network structure is very important for the performance of the generic PF and the EKF algorithms, but not for the UKF algorithms. Furthermore, we investigate the influence of data noise in the watertank simulation. Theory and implementation is based on the theory presented in (v.d. Merwe et al...
Mobile sensor network noise reduction and recalibration using a Bayesian network
Xiang, Y.; Tang, Y.; Zhu, W.
2016-02-01
People are becoming increasingly interested in mobile air quality sensor network applications. By eliminating the inaccuracies caused by spatial and temporal heterogeneity of pollutant distributions, this method shows great potential for atmospheric research. However, systems based on low-cost air quality sensors often suffer from sensor noise and drift. For the sensing systems to operate stably and reliably in real-world applications, those problems must be addressed. In this work, we exploit the correlation of different types of sensors caused by cross sensitivity to help identify and correct the outlier readings. By employing a Bayesian network based system, we are able to recover the erroneous readings and recalibrate the drifted sensors simultaneously. Our method improves upon the state-of-art Bayesian belief network techniques by incorporating the virtual evidence and adjusting the sensor calibration functions recursively.Specifically, we have (1) designed a system based on the Bayesian belief network to detect and recover the abnormal readings, (2) developed methods to update the sensor calibration functions infield without requirement of ground truth, and (3) extended the Bayesian network with virtual evidence for infield sensor recalibration. To validate our technique, we have tested our technique with metal oxide sensors measuring NO2, CO, and O3 in a real-world deployment. Compared with the existing Bayesian belief network techniques, results based on our experiment setup demonstrate that our system can reduce error by 34.1 % and recover 4 times more data on average.
Understanding the Scalability of Bayesian Network Inference Using Clique Tree Growth Curves
Mengshoel, Ole J.
2010-01-01
One of the main approaches to performing computation in Bayesian networks (BNs) is clique tree clustering and propagation. The clique tree approach consists of propagation in a clique tree compiled from a Bayesian network, and while it was introduced in the 1980s, there is still a lack of understanding of how clique tree computation time depends on variations in BN size and structure. In this article, we improve this understanding by developing an approach to characterizing clique tree growth as a function of parameters that can be computed in polynomial time from BNs, specifically: (i) the ratio of the number of a BN s non-root nodes to the number of root nodes, and (ii) the expected number of moral edges in their moral graphs. Analytically, we partition the set of cliques in a clique tree into different sets, and introduce a growth curve for the total size of each set. For the special case of bipartite BNs, there are two sets and two growth curves, a mixed clique growth curve and a root clique growth curve. In experiments, where random bipartite BNs generated using the BPART algorithm are studied, we systematically increase the out-degree of the root nodes in bipartite Bayesian networks, by increasing the number of leaf nodes. Surprisingly, root clique growth is well-approximated by Gompertz growth curves, an S-shaped family of curves that has previously been used to describe growth processes in biology, medicine, and neuroscience. We believe that this research improves the understanding of the scaling behavior of clique tree clustering for a certain class of Bayesian networks; presents an aid for trade-off studies of clique tree clustering using growth curves; and ultimately provides a foundation for benchmarking and developing improved BN inference and machine learning algorithms.
Community Detection for Multiplex Social Networks Based on Relational Bayesian Networks
DEFF Research Database (Denmark)
Jiang, Jiuchuan; Jaeger, Manfred
2014-01-01
Many techniques have been proposed for community detection in social networks. Most of these techniques are only designed for networks defined by a single relation. However, many real networks are multiplex networks that contain multiple types of relations and different attributes on the nodes. In...... us to express different models capturing different aspects of community detection in multiplex networks in a coherent manner, and to use a single inference mechanism for all models....... this paper we propose to use relational Bayesian networks for the specification of probabilistic network models, and develop inference techniques that solve the community detection problem based on these models. The use of relational Bayesian networks as a flexible high-level modeling framework enables...
ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM
Santosh Kumar Chaudhari; Murthy, Hema A.
2011-01-01
A Network Management System (NMS) plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to ...
Bayesian Inference of Natural Rankings in Incomplete Competition Networks
Park, Juyong
2013-01-01
Competition between a complex system's constituents and a corresponding reward mechanism based on it have profound influence on the functioning, stability, and evolution of the system. But determining the dominance hierarchy or ranking among the constituent parts from the strongest to the weakest -- essential in determining reward or penalty -- is almost always an ambiguous task due to the incomplete nature of competition networks. Here we introduce ``Natural Ranking," a desirably unambiguous ranking method applicable to a complete (full) competition network, and formulate an analytical model based on the Bayesian formula inferring the expected mean and error of the natural ranking of nodes from an incomplete network. We investigate its potential and uses in solving issues in ranking by applying to a real-world competition network of economic and social importance.
A Software Risk Analysis Model Using Bayesian Belief Network
Institute of Scientific and Technical Information of China (English)
Yong Hu; Juhua Chen; Mei Liu; Yang Yun; Junbiao Tang
2006-01-01
The uncertainty during the period of software project development often brings huge risks to contractors and clients. Ifwe can find an effective method to predict the cost and quality of software projects based on facts like the project character and two-side cooperating capability at the beginning of the project, we can reduce the risk.Bayesian Belief Network(BBN) is a good tool for analyzing uncertain consequences, but it is difficult to produce precise network structure and conditional probability table. In this paper, we built up network structure by Delphi method for conditional probability table learning, and learn update probability table and nodes' confidence levels continuously according to the application cases, which made the evaluation network have learning abilities, and evaluate the software development risk of organization more accurately. This paper also introduces EM algorithm, which will enhance the ability to produce hidden nodes caused by variant software projects.
Preliminary investigation of a Bayesian network for mammographic diagnosis of breast cancer.
Kahn, C. E.; Roberts, L. M.; K. Wang; Jenks, D.; Haddawy, P.
1995-01-01
Bayesian networks use the techniques of probability theory to reason under conditions of uncertainty. We investigated the use of Bayesian networks for radiological decision support. A Bayesian network for the interpretation of mammograms (MammoNet) was developed based on five patient-history features, two physical findings, and 15 mammographic features extracted by experienced radiologists. Conditional-probability data, such as sensitivity and specificity, were derived from peer-reviewed jour...
Probabilistic Damage Characterization Using the Computationally-Efficient Bayesian Approach
Warner, James E.; Hochhalter, Jacob D.
2016-01-01
This work presents a computationally-ecient approach for damage determination that quanti es uncertainty in the provided diagnosis. Given strain sensor data that are polluted with measurement errors, Bayesian inference is used to estimate the location, size, and orientation of damage. This approach uses Bayes' Theorem to combine any prior knowledge an analyst may have about the nature of the damage with information provided implicitly by the strain sensor data to form a posterior probability distribution over possible damage states. The unknown damage parameters are then estimated based on samples drawn numerically from this distribution using a Markov Chain Monte Carlo (MCMC) sampling algorithm. Several modi cations are made to the traditional Bayesian inference approach to provide signi cant computational speedup. First, an ecient surrogate model is constructed using sparse grid interpolation to replace a costly nite element model that must otherwise be evaluated for each sample drawn with MCMC. Next, the standard Bayesian posterior distribution is modi ed using a weighted likelihood formulation, which is shown to improve the convergence of the sampling process. Finally, a robust MCMC algorithm, Delayed Rejection Adaptive Metropolis (DRAM), is adopted to sample the probability distribution more eciently. Numerical examples demonstrate that the proposed framework e ectively provides damage estimates with uncertainty quanti cation and can yield orders of magnitude speedup over standard Bayesian approaches.
Sequential Bayesian technique: An alternative approach for software reliability estimation
Indian Academy of Sciences (India)
S Chatterjee; S S Alam; R B Misra
2009-04-01
This paper proposes a sequential Bayesian approach similar to Kalman ﬁlter for estimating reliability growth or decay of software. The main advantage of proposed method is that it shows the variation of the parameter over a time, as new failure data become available. The usefulness of the method is demonstrated with some real life data
Remotely sensed monitoring of small reservoir dynamics: a Bayesian approach
Eilander, D.M.; Annor, F.O.; Iannini, L.; Van de Giesen, N.C.
2014-01-01
Multipurpose small reservoirs are important for livelihoods in rural semi-arid regions. To manage and plan these reservoirs and to assess their hydrological impact at a river basin scale, it is important to monitor their water storage dynamics. This paper introduces a Bayesian approach for monitorin
Regularized variational Bayesian learning of echo state networks with delay&sum readout.
Shutin, Dmitriy; Zechner, Christoph; Kulkarni, Sanjeev R; Poor, H Vincent
2012-04-01
In this work, a variational Bayesian framework for efficient training of echo state networks (ESNs) with automatic regularization and delay&sum (D&S) readout adaptation is proposed. The algorithm uses a classical batch learning of ESNs. By treating the network echo states as fixed basis functions parameterized with delay parameters, we propose a variational Bayesian ESN training scheme. The variational approach allows for a seamless combination of sparse Bayesian learning ideas and a variational Bayesian space-alternating generalized expectation-maximization (VB-SAGE) algorithm for estimating parameters of superimposed signals. While the former method realizes automatic regularization of ESNs, which also determines which echo states and input signals are relevant for "explaining" the desired signal, the latter method provides a basis for joint estimation of D&S readout parameters. The proposed training algorithm can naturally be extended to ESNs with fixed filter neurons. It also generalizes the recently proposed expectation-maximization-based D&S readout adaptation method. The proposed algorithm was tested on synthetic data prediction tasks as well as on dynamic handwritten character recognition. PMID:22168555
A Bayesian approach to estimating the prehepatic insulin secretion rate
DEFF Research Database (Denmark)
Andersen, Kim Emil; Højbjerre, Malene
the time courses of insulin and C-peptide subsequently are used as known forcing functions. In this work we adopt a Bayesian graphical model to describe the unied model simultaneously. We develop a model that also accounts for both measurement error and process variability. The parameters are estimated...... by a Bayesian approach where efficient posterior sampling is made available through the use of Markov chain Monte Carlo methods. Hereby the ill-posed estimation problem inherited in the coupled differential equation model is regularized by the use of prior knowledge. The method is demonstrated on experimental...
The subjectivity of scientists and the Bayesian approach
Press, James S
2016-01-01
"Press and Tanur argue that subjectivity has not only played a significant role in the advancement of science but that science will advance more rapidly if the modern methods of Bayesian statistical analysis replace some of the more classical twentieth-century methods." — SciTech Book News. "An insightful work." ― Choice. "Compilation of interesting popular problems … this book is fascinating." — Short Book Reviews, International Statistical Institute. Subjectivity ― including intuition, hunches, and personal beliefs ― has played a key role in scientific discovery. This intriguing book illustrates subjective influences on scientific progress with historical accounts and biographical sketches of more than a dozen luminaries, including Aristotle, Galileo, Newton, Darwin, Pasteur, Freud, Einstein, Margaret Mead, and others. The treatment also offers a detailed examination of the modern Bayesian approach to data analysis, with references to the Bayesian theoretical and applied literature. Suitable for...
Towards a Supra-Bayesian Approach to Merging of Information
Czech Academy of Sciences Publication Activity Database
Sečkárová, Vladimíra
Prague: Institute of Information Theory and Automation, 2011, s. 81-86. ISBN 978-80-903834-6-3. [The 2nd International Workshop od Decision Making with Multiple Imperfect Decision Makers. Held in Conjunction with the 25th Annual Conference on Neural Information Processing Systems (NIPS 2011). Sierra Nevada (ES), 16.12.2011-16.12.2011] R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/0567 Institutional research plan: CEZ:AV0Z10750506 Keywords : decision makers * Supra-Bayesian * Bayesian solution * Merging Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2011/AS/seckarova-towards a supra-bayesian approach to merging of information.pdf
Road network safety evaluation using Bayesian hierarchical joint model.
Wang, Jie; Huang, Helai
2016-05-01
Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well. PMID:26945109
Bayesian Networks Construction and Their Applications in Data Mining%贝叶斯学习、贝叶斯网络与数据采掘
Institute of Scientific and Technical Information of China (English)
林士敏; 田凤占; 陆玉昌
2000-01-01
Recently Bayesian networks(BN)become a noticeable research direction in Data Mining,ln this paper we introduce the structure of Bayesian networks ,and the process of constructing a BN ,with the emphasis on the basic methods of learning from prior knowledge and sample data,using Bayesian learning approach,to identify the structures and probabilities of BN. The merits of Bayesian networks are that prior knowledge can be combined with observed data,which is important'especially when data is scarce or expensive ,that causal relationships among data can be learned ,and incomplete data set can be readily handled,which other models are disable to do so. It can foresee that Bayesian networks will become a powerful tools in Data Mining.
Directory of Open Access Journals (Sweden)
Watanabe Yukito
2012-01-01
Full Text Available Abstract Background Bayesian networks (BNs have been widely used to estimate gene regulatory networks. Many BN methods have been developed to estimate networks from microarray data. However, two serious problems reduce the effectiveness of current BN methods. The first problem is that BN-based methods require huge computational time to estimate large-scale networks. The second is that the estimated network cannot have cyclic structures, even if the actual network has such structures. Results In this paper, we present a novel BN-based deterministic method with reduced computational time that allows cyclic structures. Our approach generates all the combinational triplets of genes, estimates networks of the triplets by BN, and unites the networks into a single network containing all genes. This method decreases the search space of predicting gene regulatory networks without degrading the solution accuracy compared with the greedy hill climbing (GHC method. The order of computational time is the cube of number of genes. In addition, the network estimated by our method can include cyclic structures. Conclusions We verified the effectiveness of the proposed method for all known gene regulatory networks and their expression profiles. The results demonstrate that this approach can predict regulatory networks with reduced computational time without degrading the solution accuracy compared with the GHC method.
Ildikó Ungvári; Gábor Hullám; Péter Antal; Petra Sz Kiszel; András Gézsi; Éva Hadadi; Viktor Virág; Gergely Hajós; András Millinghoffer; Adrienne Nagy; András Kiss; Semsei, Ágnes F.; Gergely Temesi; Béla Melegh; Péter Kisfali
2012-01-01
Genetic studies indicate high number of potential factors related to asthma. Based on earlier linkage analyses we selected the 11q13 and 14q22 asthma susceptibility regions, for which we designed a partial genome screening study using 145 SNPs in 1201 individuals (436 asthmatic children and 765 controls). The results were evaluated with traditional frequentist methods and we applied a new statistical method, called bayesian network based bayesian multilevel analysis of relevance (BN-BMLA). Th...
Node Augmentation Technique in Bayesian Network Evidence Analysis and Marshaling
Energy Technology Data Exchange (ETDEWEB)
Keselman, Dmitry [Los Alamos National Laboratory; Tompkins, George H [Los Alamos National Laboratory; Leishman, Deborah A [Los Alamos National Laboratory
2010-01-01
Given a Bayesian network, sensitivity analysis is an important activity. This paper begins by describing a network augmentation technique which can simplifY the analysis. Next, we present two techniques which allow the user to determination the probability distribution of a hypothesis node under conditions of uncertain evidence; i.e. the state of an evidence node or nodes is described by a user specified probability distribution. Finally, we conclude with a discussion of three criteria for ranking evidence nodes based on their influence on a hypothesis node. All of these techniques have been used in conjunction with a commercial software package. A Bayesian network based on a directed acyclic graph (DAG) G is a graphical representation of a system of random variables that satisfies the following Markov property: any node (random variable) is independent of its non-descendants given the state of all its parents (Neapolitan, 2004). For simplicities sake, we consider only discrete variables with a finite number of states, though most of the conclusions may be generalized.
A geometric view on learning Bayesian network structures
Czech Academy of Sciences Publication Activity Database
Studený, Milan; Vomlel, Jiří; Hemmecke, R.
2010-01-01
Roč. 51, č. 5 (2010), s. 578-586. ISSN 0888-613X. [PGM 2008] R&D Projects: GA AV ČR(CZ) IAA100750603; GA MŠk(CZ) 1M0572; GA ČR GA201/08/0539 Grant ostatní: GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : learning Bayesian networks * standard imset * inclusion neighborhood * geometric neighborhood * GES algorithm Subject RIV: BA - General Mathematics Impact factor: 1.679, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/studeny-0342804.pdf
Probe Error Modeling Research Based on Bayesian Network
Institute of Scientific and Technical Information of China (English)
Wu Huaiqiang; Xing Zilong; Zhang Jian; Yan Yan
2015-01-01
Probe calibration is carried out under specific conditions; most of the error caused by the change of speed parameter has not been corrected. In order to reduce the measuring error influence on measurement accuracy, this article analyzes the relationship between speed parameter and probe error, and use Bayesian network to establish the model of probe error. Model takes account of prior knowledge and sample data, with the updating of data, which can reflect the change of the errors of the probe and constantly revised modeling results.
Bayesian and neural networks for preliminary ship design
DEFF Research Database (Denmark)
Clausen, H. B.; Lützen, Marie; Friis-Hansen, Andreas; Bjørneboe, Nanna Katrine
2001-01-01
examples, the three methods are evaluated in terms of accuracy and limitations of use. For different types of ships, the methods provide information on the relations between length, breadth, height, draft, speed, displacement, block coefficient and loading capacity. Thus, useful tools are available to the...... 000 ships is acquired and various methods for derivation of empirical relations are employed. A regression analysis is carried out to fit functions to the data. Further, the data are used to learn Bayesian and neural networks to encode the relations between the characteristics. On the basis of...
Risk-Based Operation and Maintenance Using Bayesian Networks
DEFF Research Database (Denmark)
Nielsen, Jannie Jessen; Sørensen, John Dalsgaard
2011-01-01
This paper describes how risk-based decision making can be used for maintenance planning of components exposed to degradation such as fatigue in offshore wind turbines. In fatigue models, large epistemic uncertainties are usually present. These can be reduced if monitoring results are used to...... update the models, and hereby a better basis for decision making is obtained. An application example shows how a Bayesian network model can be used as a tool for updating the model and assist in risk-based decision making....
Stochastic model updating utilizing Bayesian approach and Gaussian process model
Wan, Hua-Ping; Ren, Wei-Xin
2016-03-01
Stochastic model updating (SMU) has been increasingly applied in quantifying structural parameter uncertainty from responses variability. SMU for parameter uncertainty quantification refers to the problem of inverse uncertainty quantification (IUQ), which is a nontrivial task. Inverse problem solved with optimization usually brings about the issues of gradient computation, ill-conditionedness, and non-uniqueness. Moreover, the uncertainty present in response makes the inverse problem more complicated. In this study, Bayesian approach is adopted in SMU for parameter uncertainty quantification. The prominent strength of Bayesian approach for IUQ problem is that it solves IUQ problem in a straightforward manner, which enables it to avoid the previous issues. However, when applied to engineering structures that are modeled with a high-resolution finite element model (FEM), Bayesian approach is still computationally expensive since the commonly used Markov chain Monte Carlo (MCMC) method for Bayesian inference requires a large number of model runs to guarantee the convergence. Herein we reduce computational cost in two aspects. On the one hand, the fast-running Gaussian process model (GPM) is utilized to approximate the time-consuming high-resolution FEM. On the other hand, the advanced MCMC method using delayed rejection adaptive Metropolis (DRAM) algorithm that incorporates local adaptive strategy with global adaptive strategy is employed for Bayesian inference. In addition, we propose the use of the powerful variance-based global sensitivity analysis (GSA) in parameter selection to exclude non-influential parameters from calibration parameters, which yields a reduced-order model and thus further alleviates the computational burden. A simulated aluminum plate and a real-world complex cable-stayed pedestrian bridge are presented to illustrate the proposed framework and verify its feasibility.
Airframe integrity based on Bayesian approach
Hurtado Cahuao, Jose Luis
Aircraft aging has become an immense challenge in terms of ensuring the safety of the fleet while controlling life cycle costs. One of the major concerns in aircraft structures is the development of fatigue cracks in the fastener holes. A probabilistic-based method has been proposed to manage this problem. In this research, the Bayes' theorem is used to assess airframe integrity by updating generic data with airframe inspection data while such data are compiled. This research discusses the methodology developed for assessment of loss of airframe integrity due to fatigue cracking in the fastener holes of an aging platform. The methodology requires a probability density function (pdf) at the end of SAFE life. Subsequently, a crack growth regime begins. As the Bayesian analysis requires information of a prior initial crack size pdf, such a pdf is assumed and verified to be lognormally distributed. The prior distribution of crack size as cracks grow is modeled through a combined Inverse Power Law (IPL) model and lognormal relationships. The first set of inspections is used as the evidence for updating the crack size distribution at the various stages of aircraft life. Moreover, the materials used in the structural part of the aircrafts have variations in their properties due to their calibration errors and machine alignment. A Matlab routine (PCGROW) is developed to calculate the crack distribution growth through three different crack growth models. As the first step, the material properties and the initial crack size are sampled. A standard Monte Carlo simulation is employed for this sampling process. At the corresponding aircraft age, the crack observed during the inspections, is used to update the crack size distribution and proceed in time. After the updating, it is possible to estimate the probability of structural failure as a function of flight hours for a given aircraft in the future. The results show very accurate and useful values related to the reliability
A Bayesian network to predict vulnerability to sea-level rise: data report
Gutierrez, Benjamin T.; Plant, Nathaniel G.; Thieler, E. Robert
2011-01-01
During the 21st century, sea-level rise is projected to have a wide range of effects on coastal environments, development, and infrastructure. Consequently, there has been an increased focus on developing modeling or other analytical approaches to evaluate potential impacts to inform coastal management. This report provides the data that were used to develop and evaluate the performance of a Bayesian network designed to predict long-term shoreline change due to sea-level rise. The data include local rates of relative sea-level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline-change rate compiled as part of the U.S. Geological Survey Coastal Vulnerability Index for the U.S. Atlantic coast. In this project, the Bayesian network is used to define relationships among driving forces, geologic constraints, and coastal responses. Using this information, the Bayesian network is used to make probabilistic predictions of shoreline change in response to different future sea-level-rise scenarios.
Reconstruction of large-scale gene regulatory networks using Bayesian model averaging.
Kim, Haseong; Gelenbe, Erol
2012-09-01
Gene regulatory networks provide the systematic view of molecular interactions in a complex living system. However, constructing large-scale gene regulatory networks is one of the most challenging problems in systems biology. Also large burst sets of biological data require a proper integration technique for reliable gene regulatory network construction. Here we present a new reverse engineering approach based on Bayesian model averaging which attempts to combine all the appropriate models describing interactions among genes. This Bayesian approach with a prior based on the Gibbs distribution provides an efficient means to integrate multiple sources of biological data. In a simulation study with maximum of 2000 genes, our method shows better sensitivity than previous elastic-net and Gaussian graphical models, with a fixed specificity of 0.99. The study also shows that the proposed method outperforms the other standard methods for a DREAM dataset generated by nonlinear stochastic models. In brain tumor data analysis, three large-scale networks consisting of 4422 genes were built using the gene expression of non-tumor, low and high grade tumor mRNA expression samples, along with DNA-protein binding affinity information. We found that genes having a large variation of degree distribution among the three tumor networks are the ones that see most involved in regulatory and developmental processes, which possibly gives a novel insight concerning conventional differentially expressed gene analysis. PMID:22987132
Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.
A Bayesian approach to simultaneously quantify assignments and linguistic uncertainty
Energy Technology Data Exchange (ETDEWEB)
Chavez, Gregory M [Los Alamos National Laboratory; Booker, Jane M [BOOKER SCIENTIFIC FREDERICKSBURG; Ross, Timothy J [UNM
2010-10-07
Subject matter expert assessments can include both assignment and linguistic uncertainty. This paper examines assessments containing linguistic uncertainty associated with a qualitative description of a specific state of interest and the assignment uncertainty associated with assigning a qualitative value to that state. A Bayesian approach is examined to simultaneously quantify both assignment and linguistic uncertainty in the posterior probability. The approach is applied to a simplified damage assessment model involving both assignment and linguistic uncertainty. The utility of the approach and the conditions under which the approach is feasible are examined and identified.
Using mechanistic Bayesian networks to identify downstream targets of the Sonic Hedgehog pathway
Directory of Open Access Journals (Sweden)
McMahon Andrew P
2009-12-01
Full Text Available Abstract Background The topology of a biological pathway provides clues as to how a pathway operates, but rationally using this topology information with observed gene expression data remains a challenge. Results We introduce a new general-purpose analytic method called Mechanistic Bayesian Networks (MBNs that allows for the integration of gene expression data and known constraints within a signal or regulatory pathway to predict new downstream pathway targets. The MBN framework is implemented in an open-source Bayesian network learning package, the Python Environment for Bayesian Learning (PEBL. We demonstrate how MBNs can be used by modeling the early steps of the sonic hedgehog pathway using gene expression data from different developmental stages and genetic backgrounds in mouse. Using the MBN approach we are able to automatically identify many of the known downstream targets of the hedgehog pathway such as Gas1 and Gli1, along with a short list of likely targets such as Mig12. Conclusions The MBN approach shown here can easily be extended to other pathways and data types to yield a more mechanistic framework for learning genetic regulatory models.
Efficient Bayesian Learning in Social Networks with Gaussian Estimators
Mossel, Elchanan
2010-01-01
We propose a simple and efficient Bayesian model of iterative learning on social networks. This model is efficient in two senses: the process both results in an optimal belief, and can be carried out with modest computational resources for large networks. This result extends Condorcet's Jury Theorem to general social networks, while preserving rationality and computational feasibility. The model consists of a group of agents who belong to a social network, so that a pair of agents can observe each other's actions only if they are neighbors. We assume that the network is connected and that the agents have full knowledge of the structure of the network. The agents try to estimate some state of the world S (say, the price of oil a year from today). Each agent has a private measurement of S. This is modeled, for agent v, by a number S_v picked from a Gaussian distribution with mean S and standard deviation one. Accordingly, agent v's prior belief regarding S is a normal distribution with mean S_v and standard dev...
Application of Bayesian Networks to hindcast barrier island morphodynamics
Wilson, Kathleen E.; Adams, Peter N.; Hapke, Cheryl J.; Lentz, Erika E.; Brenner, Owen T.
2015-01-01
Prediction of coastal vulnerability is of increasing concern to policy makers, coastal managers and other stakeholders. Coastal regions and barrier islands along the Atlantic and Gulf coasts are subject to frequent, large storms, whose waves and storm surge can dramatically alter beach morphology, threaten infrastructure, and impact local economies. Given that precise forecasts of regional hazards are challenging, because of the complex interactions between processes on many scales, a range of probable geomorphic change in response to storm conditions is often more helpful than deterministic predictions. Site-specific probabilistic models of coastal change are reliable because they are formulated with observations so that local factors, of potentially high influence, are inherent in the model. The development and use of predictive tools such as Bayesian Networks in response to future storms has the potential to better inform management decisions and hazard preparation in coastal communities. We present several Bayesian Networks designed to hindcast distinct morphologic changes attributable to the Nor'Ida storm of 2009, at Fire Island, New York. Model predictions are informed with historical system behavior, initial morphologic conditions, and a parameterized treatment of wave climate.
Using literature and data to learn Bayesian networks as clinical models of ovarian tumors
DEFF Research Database (Denmark)
Antal, P.; Fannes, G.; Timmerman, D.; Moreau, Yves; Moor, B.
2004-01-01
Thanks to its increasing availability, electronic literature has become a potential source of information for the development of complex Bayesian networks (BN), when human expertise is missing or data is scarce or contains much noise. This opportunity raises the question of how to integrate infor...... performance of a Bayesian network for the classification of ovarian tumors from clinical data....
Gutiérrez, Jose Manuel; San Martín, Daniel; Herrera, Sixto; Santiago Cofiño, Antonio
2016-04-01
The growing availability of spatial datasets (observations, reanalysis, and regional and global climate models) demands efficient multivariate spatial modeling techniques for many problems of interest (e.g. teleconnection analysis, multi-site downscaling, etc.). Complex networks have been recently applied in this context using graphs built from pairwise correlations between the different stations (or grid boxes) forming the dataset. However, this analysis does not take into account the full dependence structure underlying the data, gien by all possible marginal and conditional dependencies among the stations, and does not allow a probabilistic analysis of the dataset. In this talk we introduce Bayesian networks as an alternative multivariate analysis and modeling data-driven technique which allows building a joint probability distribution of the stations including all relevant dependencies in the dataset. Bayesian networks is a sound machine learning technique using a graph to 1) encode the main dependencies among the variables and 2) to obtain a factorization of the joint probability distribution of the stations given by a reduced number of parameters. For a particular problem, the resulting graph provides a qualitative analysis of the spatial relationships in the dataset (alternative to complex network analysis), and the resulting model allows for a probabilistic analysis of the dataset. Bayesian networks have been widely applied in many fields, but their use in climate problems is hampered by the large number of variables (stations) involved in this field, since the complexity of the existing algorithms to learn from data the graphical structure grows nonlinearly with the number of variables. In this contribution we present a modified local learning algorithm for Bayesian networks adapted to this problem, which allows inferring the graphical structure for thousands of stations (from observations) and/or gridboxes (from model simulations) thus providing new
Bayesian neural networks for bivariate binary data: an application to prostate cancer study.
Chakraborty, Sounak; Ghosh, Malay; Maiti, Tapabrata; Tewari, Ashutosh
2005-12-15
Prostate cancer is one of the most common cancers in American men. The cancer could either be locally confined, or it could spread outside the organ. When locally confined, there are several options for treating and curing this disease. Otherwise, surgery is the only option, and in extreme cases of outside spread, it could very easily recur within a short time even after surgery and subsequent radiation therapy. Hence, it is important to know, based on pre-surgery biopsy results how likely the cancer is organ-confined or not. The paper considers a hierarchical Bayesian neural network approach for posterior prediction probabilities of certain features indicative of non-organ confined prostate cancer. In particular, we find such probabilities for margin positivity (MP) and seminal vesicle (SV) positivity jointly. The available training set consists of bivariate binary outcomes indicating the presence or absence of the two. In addition, we have certain covariates such as prostate specific antigen (PSA), gleason score and the indicator for the cancer to be unilateral or bilateral (i.e. spread on one or both sides) in one data set and gene expression microarrays in another data set. We take a hierarchical Bayesian neural network approach to find the posterior prediction probabilities for a test and validation set, and compare these with the actual outcomes for the first data set. In case of the microarray data we use leave one out cross-validation to access the accuracy of our method. We also demonstrate the superiority of our method to the other competing methods through a simulation study. The Bayesian procedure is implemented by an application of the Markov chain Monte Carlo numerical integration technique. For the problem at hand, our Bayesian bivariate neural network procedure is shown to be superior to the classical neural network, Radford Neal's Bayesian neural network as well as bivariate logistic models to predict jointly the MP and SV in a patient in both the
Direct message passing for hybrid Bayesian networks and performance analysis
Sun, Wei; Chang, K. C.
2010-04-01
Probabilistic inference for hybrid Bayesian networks, which involves both discrete and continuous variables, has been an important research topic over the recent years. This is not only because a number of efficient inference algorithms have been developed and used maturely for simple types of networks such as pure discrete model, but also for the practical needs that continuous variables are inevitable in modeling complex systems. Pearl's message passing algorithm provides a simple framework to compute posterior distribution by propagating messages between nodes and can provides exact answer for polytree models with pure discrete or continuous variables. In addition, applying Pearl's message passing to network with loops usually converges and results in good approximation. However, for hybrid model, there is a need of a general message passing algorithm between different types of variables. In this paper, we develop a method called Direct Message Passing (DMP) for exchanging messages between discrete and continuous variables. Based on Pearl's algorithm, we derive formulae to compute messages for variables in various dependence relationships encoded in conditional probability distributions. Mixture of Gaussian is used to represent continuous messages, with the number of mixture components up to the size of the joint state space of all discrete parents. For polytree Conditional Linear Gaussian (CLG) Bayesian network, DMP has the same computational requirements and can provide exact solution as the one obtained by the Junction Tree (JT) algorithm. However, while JT can only work for the CLG model, DMP can be applied for general nonlinear, non-Gaussian hybrid model to produce approximate solution using unscented transformation and loopy propagation. Furthermore, we can scale the algorithm by restricting the number of mixture components in the messages. Empirically, we found that the approximation errors are relatively small especially for nodes that are far away from
A Bayesian Approach to Protein Inference Problem in Shotgun Proteomics
Li, Yong Fuga; Arnold, Randy J.; Li, Yixue; Radivojac, Predrag; Sheng, Quanhu; Tang, Haixu
2009-01-01
The protein inference problem represents a major challenge in shotgun proteomics. In this article, we describe a novel Bayesian approach to address this challenge by incorporating the predicted peptide detectabilities as the prior probabilities of peptide identification. We propose a rigorious probabilistic model for protein inference and provide practical algoritmic solutions to this problem. We used a complex synthetic protein mixture to test our method and obtained promising results.
Bayesian networks inference algorithm to implement Dempster Shafer theory in reliability analysis
International Nuclear Information System (INIS)
This paper deals with the use of Bayesian networks to compute system reliability. The reliability analysis problem is described and the usual methods for quantitative reliability analysis are presented within a case study. Some drawbacks that justify the use of Bayesian networks are identified. The basic concepts of the Bayesian networks application to reliability analysis are introduced and a model to compute the reliability for the case study is presented. Dempster Shafer theory to treat epistemic uncertainty in reliability analysis is then discussed and its basic concepts that can be applied thanks to the Bayesian network inference algorithm are introduced. Finally, it is shown, with a numerical example, how Bayesian networks' inference algorithms compute complex system reliability and what the Dempster Shafer theory can provide to reliability analysis
Institute of Scientific and Technical Information of China (English)
HU Zhao-yong
2005-01-01
Engineering diagnosis is essential to the operation of industrial equipment. The key to successful diagnosis is correct knowledge representation and reasoning. The Bayesian network is a powerful tool for it. This paper utilizes the Bayesian network to represent and reason diagnostic knowledge, named Bayesian diagnostic network. It provides a three-layer topologic structure based on operating conditions, possible faults and corresponding symptoms. The paper also discusses an approximate stochastic sampling algorithm. Then a practical Bayesian network for gas turbine diagnosis is constructed on a platform developed under a Visual C++ environment. It shows that the Bayesian network is a powerful model for representation and reasoning of diagnostic knowledge. The three-layer structure and the approximate algorithm are effective also.
a Simplified Bayesian Network Model Applied in Crop or Animal Disease Diagnosis
Yu, Helong; Chen, Guifen; Liu, Dayou
Bayesian network is a powerful tool to represent and deal with uncertain knowledge. There exists much uncertainty in crop or animal disease. The construction of Bayesian network need much data and knowledge. But when data is scarce, some methods should be adopted to construct an effective Bayesian network. This paper introduces a disease diagnosis model based on Bayesian network, which is two-layered and obeys noisy-or assumption. Based on the two-layered structure, the relationship between nodes is obtained by domain knowledge. Based on the noisy-model, the conditional probability table is elicited by three methods, which are parameter learning, domain expert and the existing certainty factor model. In order to implement this model, a Bayesian network tool is developed. Finally, an example about cow disease diagnosis was implemented, which proved that the model discussed in this paper is an effective tool for some simple disease diagnosis in crop or animal field.
Bockman, Alexander; Fackler, Cameron; Xiang, Ning
2015-04-01
Acoustic performance for an interior requires an accurate description of the boundary materials' surface acoustic impedance. Analytical methods may be applied to a small class of test geometries, but inverse numerical methods provide greater flexibility. The parameter estimation problem requires minimizing prediction vice observed acoustic field pressure. The Bayesian-network sampling approach presented here mitigates other methods' susceptibility to noise inherent to the experiment, model, and numerics. A geometry agnostic method is developed here and its parameter estimation performance is demonstrated for an air-backed micro-perforated panel in an impedance tube. Good agreement is found with predictions from the ISO standard two-microphone, impedance-tube method, and a theoretical model for the material. Data by-products exclusive to a Bayesian approach are analyzed to assess sensitivity of the method to nuisance parameters. PMID:25920818
A bayesian approach to laboratory utilization management
Directory of Open Access Journals (Sweden)
Ronald G Hauser
2015-01-01
Full Text Available Background: Laboratory utilization management describes a process designed to increase healthcare value by altering requests for laboratory services. A typical approach to monitor and prioritize interventions involves audits of laboratory orders against specific criteria, defined as rule-based laboratory utilization management. This approach has inherent limitations. First, rules are inflexible. They adapt poorly to the ambiguity of medical decision-making. Second, rules judge the context of a decision instead of the patient outcome allowing an order to simultaneously save a life and break a rule. Third, rules can threaten physician autonomy when used in a performance evaluation. Methods: We developed an alternative to rule-based laboratory utilization. The core idea comes from a formula used in epidemiology to estimate disease prevalence. The equation relates four terms: the prevalence of disease, the proportion of positive tests, test sensitivity and test specificity. When applied to a laboratory utilization audit, the formula estimates the prevalence of disease (pretest probability [PTP] in the patients tested. The comparison of PTPs among different providers, provider groups, or patient cohorts produces an objective evaluation of laboratory requests. We demonstrate the model in a review of tests for enterovirus (EV meningitis. Results: The model identified subpopulations within the cohort with a low prevalence of disease. These low prevalence groups shared demographic and seasonal factors known to protect against EV meningitis. This suggests too many orders occurred from patients at low risk for EV. Conclusion: We introduce a new method for laboratory utilization management programs to audit laboratory services.
Dynamic Bayesian Networks in Classification-and-Ranking Architecture of Response Generation
Directory of Open Access Journals (Sweden)
Aida Mustapha
2011-01-01
Full Text Available Problem statement: The first component in classification-and-ranking architecture is a Bayesian classifier that classifies user utterances into response classes based on their semantic and pragmatic interpretations. Bayesian networks are sufficient if data is limited to single user input utterance. However, if the classifier is able to collate features from a sequence of previous n-1 user utterances, the additional information may or may not improve the accuracy rate in response classification. Approach: This article investigates the use of dynamic Bayesian networks to include time-series information in the form of extended features from preceding utterances. The experiment was conducted on SCHISMA corpus, which is a mixed-initiative, transaction dialogue in theater reservation. Results: The results show that classification accuracy is improved, but rather insignificantly. The accuracy rate tends to deteriorate as time-span of dialogue is increased. Conclusion: Although every response utterance reflects form and behavior that are expected by the preceding utterance, influence of meaning and intentions diminishes throughout time as the conversation stretches to longer duration.
Grzegorczyk, M.; Husmeier, D.
2012-01-01
An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint pr...
Comparison of Bayesian-utilitarian and maximin principle approaches.
Comba, Pietro; Martuzzi, Marco; Botti, Caterina
2004-01-01
The Precautionary Principle implies the adoption of a set of rules aimed at avoiding possible future harm associated with suspected, but not ascertained, risk factors. Several philosophical, economical and societal questions are implied by precaution-based public health decision making. The purpose of the present paper is to specify the scope of the principle examining the notion of uncertainty involved, and the implication of different approaches to the decision-making process. The Bayesian-utilitarian approach and the approach based on the maximin principle will be considered, and the different meaning of prudence in the two settings will be discussed. In the Bayesian-utilitarian approach the small number of attributable cases will end up in a low average expected value, easily regarded as acceptable in a cost-benefit analysis. In a maximin approach, on the other hand, the issue will be to consider the high etiologic fraction of a rare disease in the highest category of exposure. In the light of the aforementioned cautions in interpretation, the core difference between the two approaches has to do with the choice between averaging knowledge or equitably distributing technological risks. PMID:15212224
Helle, Inari; Ahtiainen, Heini; Luoma, Emilia; Hänninen, Maria; Kuikka, Sakari
2015-08-01
Large-scale oil accidents can inflict substantial costs to the society, as they typically result in expensive oil combating and waste treatment operations and have negative impacts on recreational and environmental values. Cost-benefit analysis (CBA) offers a way to assess the economic efficiency of management measures capable of mitigating the adverse effects. However, the irregular occurrence of spills combined with uncertainties related to the possible effects makes the analysis a challenging task. We develop a probabilistic modeling approach for a CBA of oil spill management and apply it in the Gulf of Finland, the Baltic Sea. The model has a causal structure, and it covers a large number of factors relevant to the realistic description of oil spills, as well as the costs of oil combating operations at open sea, shoreline clean-up, and waste treatment activities. Further, to describe the effects on environmental benefits, we use data from a contingent valuation survey. The results encourage seeking for cost-effective preventive measures, and emphasize the importance of the inclusion of the costs related to waste treatment and environmental values in the analysis. Although the model is developed for a specific area, the methodology is applicable also to other areas facing the risk of oil spills as well as to other fields that need to cope with the challenging combination of low probabilities, high losses and major uncertainties. PMID:25983196
Capturing changes in flood risk with Bayesian approaches for flood damage assessment
Vogel, Kristin; Schröter, Kai; Kreibich, Heidi; Thieken, Annegret; Müller, Meike; Sieg, Tobias; Laudan, Jonas; Kienzler, Sarah; Weise, Laura; Merz, Bruno; Scherbaum, Frank
2016-04-01
Flood risk is a function of hazard as well as of exposure and vulnerability. All three components are under change over space and time and have to be considered for reliable damage estimations and risk analyses, since this is the basis for an efficient, adaptable risk management. Hitherto, models for estimating flood damage are comparatively simple and cannot sufficiently account for changing conditions. The Bayesian network approach allows for a multivariate modeling of complex systems without relying on expert knowledge about physical constraints. In a Bayesian network each model component is considered to be a random variable. The way of interactions between those variables can be learned from observations or be defined by expert knowledge. Even a combination of both is possible. Moreover, the probabilistic framework captures uncertainties related to the prediction and provides a probability distribution for the damage instead of a point estimate. The graphical representation of Bayesian networks helps to study the change of probabilities for changing circumstances and may thus simplify the communication between scientists and public authorities. In the framework of the DFG-Research Training Group "NatRiskChange" we aim to develop Bayesian networks for flood damage and vulnerability assessments of residential buildings and companies under changing conditions. A Bayesian network learned from data, collected over the last 15 years in flooded regions in the Elbe and Danube catchments (Germany), reveals the impact of many variables like building characteristics, precaution and warning situation on flood damage to residential buildings. While the handling of incomplete and hybrid (discrete mixed with continuous) data are the most challenging issues in the study on residential buildings, a similar study, that focuses on the vulnerability of small to medium sized companies, bears new challenges. Relying on a much smaller data set for the determination of the model
Development of a Bayesian Belief Network Runway Incursion Model
Green, Lawrence L.
2014-01-01
In a previous paper, a statistical analysis of runway incursion (RI) events was conducted to ascertain their relevance to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to perhaps several of the AvSP top ten TC. That data also identified several primary causes and contributing factors for RI events that served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events. The system-level BBN model will allow NASA to generically model the causes of RI events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of RI events in particular, and to improve runway safety in general. The development, structure and assessment of that BBN for RI events by a Subject Matter Expert panel are documented in this paper.
Construction and Experiment of Hierarchical Bayesian Network in Data Assimilation
International Nuclear Information System (INIS)
A Hierarchical Bayesian Network Algorithm (HBN) is developed for data assimilation and tested with an instance of soil moisture assimilation from hydrological model and ground observations. In this work, data assimilation separates into data level, process level and parameter level, and conditional probability models are defined for each level. The data model mainly deals with the scale differences between multiple data, while the process model is designed to take account of non-stationary process. Soil moisture from Soil Moisture Experiment in 2003 and Variable Infiltration Capacity Model is sequentially assimilated with HBN. The result shows that the assimilation with HBN provides spatial and temporal distribution information of soil moisture and the assimilation result agrees well with the ground observations
NML Computation Algorithms for Tree-Structured Multinomial Bayesian Networks
Directory of Open Access Journals (Sweden)
Kontkanen Petri
2007-01-01
Full Text Available Typical problems in bioinformatics involve large discrete datasets. Therefore, in order to apply statistical methods in such domains, it is important to develop efficient algorithms suitable for discrete data. The minimum description length (MDL principle is a theoretically well-founded, general framework for performing statistical inference. The mathematical formalization of MDL is based on the normalized maximum likelihood (NML distribution, which has several desirable theoretical properties. In the case of discrete data, straightforward computation of the NML distribution requires exponential time with respect to the sample size, since the definition involves a sum over all the possible data samples of a fixed size. In this paper, we first review some existing algorithms for efficient NML computation in the case of multinomial and naive Bayes model families. Then we proceed by extending these algorithms to more complex, tree-structured Bayesian networks.
Bayesian Belief Network untuk Menghasilkan Fuzzy Association Rules
Directory of Open Access Journals (Sweden)
Rolly Intan
2010-01-01
Full Text Available Bayesian Belief Network (BBN, one of the data mining classification methods, is used in this research for mining and analyzing medical track record from a relational data table. In this paper, a mutual information concept is extended using fuzzy labels for determining the relation between two fuzzy nodes. The highest fuzzy information gain is used for mining fuzzy association rules in order to extend a BBN. Meaningful fuzzy labels can be defined for each domain data. For example, fuzzy labels of secondary disease and complication disease are defined for a disease classification. The implemented of the extended BBN in a application program gives a contribution for analyzing medical track record based on BBN graph and conditional probability tables.
Safety Analysis of Liquid Rocket Engine Using Bayesian Networks
Institute of Scientific and Technical Information of China (English)
WANG Hua-wei; YAN Zhi-qiang
2007-01-01
Safety analysis for liquid rocket engine has a great meaning for shortening development cycle, saving development expenditure and reducing development risk. The relationship between the structure and component of liquid rocket engine is much more complex, furthermore test data are absent in development phase. Thereby, the uncertainties exist in safety analysis for liquid rocket engine. A safety analysis model integrated with FMEA(failure mode and effect analysis)based on Bayesian networks (BN) is brought forward for liquid rocket engine, which can combine qualitative analysis with quantitative decision. The method has the advantages of fusing multi-information, saving sample amount and having high veracity. An example shows that the method is efficient.
Risk analysis of dust explosion scenarios using Bayesian networks.
Yuan, Zhi; Khakzad, Nima; Khan, Faisal; Amyotte, Paul
2015-02-01
In this study, a methodology has been proposed for risk analysis of dust explosion scenarios based on Bayesian network. Our methodology also benefits from a bow-tie diagram to better represent the logical relationships existing among contributing factors and consequences of dust explosions. In this study, the risks of dust explosion scenarios are evaluated, taking into account common cause failures and dependencies among root events and possible consequences. Using a diagnostic analysis, dust particle properties, oxygen concentration, and safety training of staff are identified as the most critical root events leading to dust explosions. The probability adaptation concept is also used for sequential updating and thus learning from past dust explosion accidents, which is of great importance in dynamic risk assessment and management. We also apply the proposed methodology to a case study to model dust explosion scenarios, to estimate the envisaged risks, and to identify the vulnerable parts of the system that need additional safety measures. PMID:25264172
Designing and testing inflationary models with Bayesian networks
Price, Layne C; Frazer, Jonathan; Easther, Richard
2015-01-01
Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use $N_f$--quadratic inflation as an illustrative example, finding that the number of $e$-folds $N_*$ between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.
Designing and testing inflationary models with Bayesian networks
Energy Technology Data Exchange (ETDEWEB)
Price, Layne C. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Physics; Auckland Univ. (New Zealand). Dept. of Physics; Peiris, Hiranya V. [Univ. College London (United Kingdom). Dept. of Physics and Astronomy; Frazer, Jonathan [DESY Hamburg (Germany). Theory Group; Univ. of the Basque Country, Bilbao (Spain). Dept. of Theoretical Physics; Basque Foundation for Science, Bilbao (Spain). IKERBASQUE; Easther, Richard [Auckland Univ. (New Zealand). Dept. of Physics
2015-11-15
Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use N{sub f}-quadratic inflation as an illustrative example, finding that the number of e-folds N{sub *} between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.
Directory of Open Access Journals (Sweden)
LiMin Wang
2013-01-01
Full Text Available The problem of extracting knowledge from a relational database for probabilistic reasoning is still unsolved. On the basis of a three-phase learning framework, we propose the integration of a Bayesian network (BN with the functional dependency (FD discovery technique. Association rule analysis is employed to discover FDs and expert knowledge encoded within a BN; that is, key relationships between attributes are emphasized. Moreover, the BN can be updated by using an expert-driven annotation process wherein redundant nodes and edges are removed. Experimental results show the effectiveness and efficiency of the proposed approach.
Development of a cyber security risk model using Bayesian networks
International Nuclear Information System (INIS)
Cyber security is an emerging safety issue in the nuclear industry, especially in the instrumentation and control (I and C) field. To address the cyber security issue systematically, a model that can be used for cyber security evaluation is required. In this work, a cyber security risk model based on a Bayesian network is suggested for evaluating cyber security for nuclear facilities in an integrated manner. The suggested model enables the evaluation of both the procedural and technical aspects of cyber security, which are related to compliance with regulatory guides and system architectures, respectively. The activity-quality analysis model was developed to evaluate how well people and/or organizations comply with the regulatory guidance associated with cyber security. The architecture analysis model was created to evaluate vulnerabilities and mitigation measures with respect to their effect on cyber security. The two models are integrated into a single model, which is called the cyber security risk model, so that cyber security can be evaluated from procedural and technical viewpoints at the same time. The model was applied to evaluate the cyber security risk of the reactor protection system (RPS) of a research reactor and to demonstrate its usefulness and feasibility. - Highlights: • We developed the cyber security risk model can be find the weak point of cyber security integrated two cyber analysis models by using Bayesian Network. • One is the activity-quality model signifies how people and/or organization comply with the cyber security regulatory guide. • Other is the architecture model represents the probability of cyber-attack on RPS architecture. • The cyber security risk model can provide evidence that is able to determine the key element for cyber security for RPS of a research reactor
Remotely Sensed Monitoring of Small Reservoir Dynamics: A Bayesian Approach
Directory of Open Access Journals (Sweden)
Dirk Eilander
2014-01-01
Full Text Available Multipurpose small reservoirs are important for livelihoods in rural semi-arid regions. To manage and plan these reservoirs and to assess their hydrological impact at a river basin scale, it is important to monitor their water storage dynamics. This paper introduces a Bayesian approach for monitoring small reservoirs with radar satellite images. The newly developed growing Bayesian classifier has a high degree of automation, can readily be extended with auxiliary information and reduces the confusion error to the land-water boundary pixels. A case study has been performed in the Upper East Region of Ghana, based on Radarsat-2 data from November 2012 until April 2013. Results show that the growing Bayesian classifier can deal with the spatial and temporal variability in synthetic aperture radar (SAR backscatter intensities from small reservoirs. Due to its ability to incorporate auxiliary information, the algorithm is able to delineate open water from SAR imagery with a low land-water contrast in the case of wind-induced Bragg scattering or limited vegetation on the land surrounding a small reservoir.
E-commerce System Security Assessment based on Bayesian Network Algorithm Research
Ting Li; Xin Li
2013-01-01
Evaluation of e-commerce network security is based on assessment method Bayesian networks, and it first defines the vulnerability status of e-commerce system evaluation index and the vulnerability of the state model of e-commerce systems, and after the principle of the Bayesian network reliability of e-commerce system and the criticality of the vulnerabilities were analyzed, experiments show that the change method is a good evaluation of the security of e-commerce systems.
Risks Analysis of Logistics Financial Business Based on Evidential Bayesian Network
Bin Suo; Ying Yan
2013-01-01
Risks in logistics financial business are identified and classified. Making the failure of the business as the root node, a Bayesian network is constructed to measure the risk levels in the business. Three importance indexes are calculated to find the most important risks in the business. And more, considering the epistemic uncertainties in the risks, evidence theory associate with Bayesian network is used as an evidential network in the risk analysis of logistics finance. To find how much un...
Exact Structure Discovery in Bayesian Networks with Less Space
Parviainen, Pekka
2012-01-01
The fastest known exact algorithms for scorebased structure discovery in Bayesian networks on n nodes run in time and space 2nnO(1). The usage of these algorithms is limited to networks on at most around 25 nodes mainly due to the space requirement. Here, we study space-time tradeoffs for finding an optimal network structure. When little space is available, we apply the Gurevich-Shelah recurrence-originally proposed for the Hamiltonian path problem-and obtain time 22n-snO(1) in space 2snO(1) for any s = n/2, n/4, n/8, . . .; we assume the indegree of each node is bounded by a constant. For the more practical setting with moderate amounts of space, we present a novel scheme. It yields running time 2n(3/2)pnO(1) in space 2n(3/4)pnO(1) for any p = 0, 1, . . ., n/2; these bounds hold as long as the indegrees are at most 0.238n. Furthermore, the latter scheme allows easy and efficient parallelization beyond previous algorithms. We also explore empirically the potential of the presented techniques.
Bayesian Fusion Algorithm for Inferring Trust in Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Mohammad Momani
2010-07-01
Full Text Available This paper introduces a new Bayesian fusion algorithm to combine more than one trust component (data trust and communication trust to infer the overall trust between nodes. This research work proposes that one trust component is not enough when deciding on whether or not to trust a specific node in a wireless sensor network. This paper discusses and analyses the results from the communication trust component (binary and the data trust component (continuous and proves that either component by itself, can mislead the network and eventually cause a total breakdown of the network. As a result of this, new algorithms are needed to combine more than one trust component to infer the overall trust. The proposed algorithm is simple and generic as it allows trust components to be added and deleted easily. Simulation results demonstrate that a node is highly trustworthy provided that both trust components simultaneously confirm its trustworthiness and conversely, a node is highly untrustworthy if its untrustworthiness is asserted by both components.
Construction of gene regulatory networks using biclustering and bayesian networks
Alakwaa Fadhl M; Solouma Nahed H; Kadah Yasser M
2011-01-01
Abstract Background Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to elucidate disease ontology fully and to reduce the cost of drug development, gene regulatory networks (GRNs) have to be constructed. During the last decade, many GRN inference algorithms based on genome-wide data have been developed to unravel the complexity of gene regulation. Time series transcriptomic data measured by genome-wide DNA mi...
Shih, Ann T.; Ancel, Ersin; Jones, Sharon M.
2012-01-01
The concern for reducing aviation safety risk is rising as the National Airspace System in the United States transforms to the Next Generation Air Transportation System (NextGen). The NASA Aviation Safety Program is committed to developing an effective aviation safety technology portfolio to meet the challenges of this transformation and to mitigate relevant safety risks. The paper focuses on the reasoning of selecting Object-Oriented Bayesian Networks (OOBN) as the technique and commercial software for the accident modeling and portfolio assessment. To illustrate the benefits of OOBN in a large and complex aviation accident model, the in-flight Loss-of-Control Accident Framework (LOCAF) constructed as an influence diagram is presented. An OOBN approach not only simplifies construction and maintenance of complex causal networks for the modelers, but also offers a well-organized hierarchical network that is easier for decision makers to exploit the model examining the effectiveness of risk mitigation strategies through technology insertions.
SAR imaging via iterative adaptive approach and sparse Bayesian learning
Xue, Ming; Santiago, Enrique; Sedehi, Matteo; Tan, Xing; Li, Jian
2009-05-01
We consider sidelobe reduction and resolution enhancement in synthetic aperture radar (SAR) imaging via an iterative adaptive approach (IAA) and a sparse Bayesian learning (SBL) method. The nonparametric weighted least squares based IAA algorithm is a robust and user parameter-free adaptive approach originally proposed for array processing. We show that it can be used to form enhanced SAR images as well. SBL has been used as a sparse signal recovery algorithm for compressed sensing. It has been shown in the literature that SBL is easy to use and can recover sparse signals more accurately than the l 1 based optimization approaches, which require delicate choice of the user parameter. We consider using a modified expectation maximization (EM) based SBL algorithm, referred to as SBL-1, which is based on a three-stage hierarchical Bayesian model. SBL-1 is not only more accurate than benchmark SBL algorithms, but also converges faster. SBL-1 is used to further enhance the resolution of the SAR images formed by IAA. Both IAA and SBL-1 are shown to be effective, requiring only a limited number of iterations, and have no need for polar-to-Cartesian interpolation of the SAR collected data. This paper characterizes the achievable performance of these two approaches by processing the complex backscatter data from both a sparse case study and a backhoe vehicle in free space with different aperture sizes.
Werhli, Adriano V; Husmeier, Dirk
2008-06-01
There have been various attempts to improve the reconstruction of gene regulatory networks from microarray data by the systematic integration of biological prior knowledge. Our approach is based on pioneering work by Imoto et al. where the prior knowledge is expressed in terms of energy functions, from which a prior distribution over network structures is obtained in the form of a Gibbs distribution. The hyperparameters of this distribution represent the weights associated with the prior knowledge relative to the data. We have derived and tested a Markov chain Monte Carlo (MCMC) scheme for sampling networks and hyperparameters simultaneously from the posterior distribution, thereby automatically learning how to trade off information from the prior knowledge and the data. We have extended this approach to a Bayesian coupling scheme for learning gene regulatory networks from a combination of related data sets, which were obtained under different experimental conditions and are therefore potentially associated with different active subpathways. The proposed coupling scheme is a compromise between (1) learning networks from the different subsets separately, whereby no information between the different experiments is shared; and (2) learning networks from a monolithic fusion of the individual data sets, which does not provide any mechanism for uncovering differences between the network structures associated with the different experimental conditions. We have assessed the viability of all proposed methods on data related to the Raf signaling pathway, generated both synthetically and in cytometry experiments. PMID:18574862
A Bayesian experimental design approach to structural health monitoring
Energy Technology Data Exchange (ETDEWEB)
Farrar, Charles [Los Alamos National Laboratory; Flynn, Eric [UCSD; Todd, Michael [UCSD
2010-01-01
Optimal system design for SHM involves two primarily challenges. The first is the derivation of a proper performance function for a given system design. The second is the development of an efficient optimization algorithm for choosing a design that maximizes, or nearly maximizes the performance function. In this paper we will outline how an SHM practitioner can construct the proper performance function by casting the entire design problem into a framework of Bayesian experimental design. The approach demonstrates how the design problem necessarily ties together all steps of the SHM process.
The subjectivity of scientists and the Bayesian statistical approach
Press, James S
2001-01-01
Comparing and contrasting the reality of subjectivity in the work of history's great scientists and the modern Bayesian approach to statistical analysisScientists and researchers are taught to analyze their data from an objective point of view, allowing the data to speak for themselves rather than assigning them meaning based on expectations or opinions. But scientists have never behaved fully objectively. Throughout history, some of our greatest scientific minds have relied on intuition, hunches, and personal beliefs to make sense of empirical data-and these subjective influences have often a
Construction of gene regulatory networks using biclustering and bayesian networks
Directory of Open Access Journals (Sweden)
Alakwaa Fadhl M
2011-10-01
Full Text Available Abstract Background Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to elucidate disease ontology fully and to reduce the cost of drug development, gene regulatory networks (GRNs have to be constructed. During the last decade, many GRN inference algorithms based on genome-wide data have been developed to unravel the complexity of gene regulation. Time series transcriptomic data measured by genome-wide DNA microarrays are traditionally used for GRN modelling. One of the major problems with microarrays is that a dataset consists of relatively few time points with respect to the large number of genes. Dimensionality is one of the interesting problems in GRN modelling. Results In this paper, we develop a biclustering function enrichment analysis toolbox (BicAT-plus to study the effect of biclustering in reducing data dimensions. The network generated from our system was validated via available interaction databases and was compared with previous methods. The results revealed the performance of our proposed method. Conclusions Because of the sparse nature of GRNs, the results of biclustering techniques differ significantly from those of previous methods.
Directory of Open Access Journals (Sweden)
Huang Yufei
2007-01-01
Full Text Available We investigate in this paper reverse engineering of gene regulatory networks from time-series microarray data. We apply dynamic Bayesian networks (DBNs for modeling cell cycle regulations. In developing a network inference algorithm, we focus on soft solutions that can provide a posteriori probability (APP of network topology. In particular, we propose a variational Bayesian structural expectation maximization algorithm that can learn the posterior distribution of the network model parameters and topology jointly. We also show how the obtained APPs of the network topology can be used in a Bayesian data integration strategy to integrate two different microarray data sets. The proposed VBSEM algorithm has been tested on yeast cell cycle data sets. To evaluate the confidence of the inferred networks, we apply a moving block bootstrap method. The inferred network is validated by comparing it to the KEGG pathway map.
Directory of Open Access Journals (Sweden)
Isabel Tienda Luna
2007-06-01
Full Text Available We investigate in this paper reverse engineering of gene regulatory networks from time-series microarray data. We apply dynamic Bayesian networks (DBNs for modeling cell cycle regulations. In developing a network inference algorithm, we focus on soft solutions that can provide a posteriori probability (APP of network topology. In particular, we propose a variational Bayesian structural expectation maximization algorithm that can learn the posterior distribution of the network model parameters and topology jointly. We also show how the obtained APPs of the network topology can be used in a Bayesian data integration strategy to integrate two different microarray data sets. The proposed VBSEM algorithm has been tested on yeast cell cycle data sets. To evaluate the confidence of the inferred networks, we apply a moving block bootstrap method. The inferred network is validated by comparing it to the KEGG pathway map.
Bayesian model selection applied to artificial neural networks used for water resources modeling
Kingston, Greer B.; Maier, Holger R.; Lambert, Martin F.
2008-04-01
Artificial neural networks (ANNs) have proven to be extremely valuable tools in the field of water resources engineering. However, one of the most difficult tasks in developing an ANN is determining the optimum level of complexity required to model a given problem, as there is no formal systematic model selection method. This paper presents a Bayesian model selection (BMS) method for ANNs that provides an objective approach for comparing models of varying complexity in order to select the most appropriate ANN structure. The approach uses Markov Chain Monte Carlo posterior simulations to estimate the evidence in favor of competing models and, in this study, three known methods for doing this are compared in terms of their suitability for being incorporated into the proposed BMS framework for ANNs. However, it is acknowledged that it can be particularly difficult to accurately estimate the evidence of ANN models. Therefore, the proposed BMS approach for ANNs incorporates a further check of the evidence results by inspecting the marginal posterior distributions of the hidden-to-output layer weights, which unambiguously indicate any redundancies in the hidden layer nodes. The fact that this check is available is one of the greatest advantages of the proposed approach over conventional model selection methods, which do not provide such a test and instead rely on the modeler's subjective choice of selection criterion. The advantages of a total Bayesian approach to ANN development, including training and model selection, are demonstrated on two synthetic and one real world water resources case study.
Making Supply Chains Resilient to Floods Using a Bayesian Network
Haraguchi, M.
2015-12-01
Natural hazards distress the global economy by disrupting the interconnected supply chain networks. Manufacturing companies have created cost-efficient supply chains by reducing inventories, streamlining logistics and limiting the number of suppliers. As a result, today's supply chains are profoundly susceptible to systemic risks. In Thailand, for example, the GDP growth rate declined by 76 % in 2011 due to prolonged flooding. Thailand incurred economic damage including the loss of USD 46.5 billion, approximately 70% of which was caused by major supply chain disruptions in the manufacturing sector. Similar problems occurred after the Great East Japan Earthquake and Tsunami in 2011, the Mississippi River floods and droughts during 2011 - 2013, and Hurricane Sandy in 2012. This study proposes a methodology for modeling supply chain disruptions using a Bayesian network analysis (BNA) to estimate expected values of countermeasures of floods, such as inventory management, supplier management and hard infrastructure management. We first performed a spatio-temporal correlation analysis between floods and extreme precipitation data for the last 100 years at a global scale. Then we used a BNA to create synthetic networks that include variables associated with the magnitude and duration of floods, major components of supply chains and market demands. We also included decision variables of countermeasures that would mitigate potential losses caused by supply chain disruptions. Finally, we conducted a cost-benefit analysis by estimating the expected values of these potential countermeasures while conducting a sensitivity analysis. The methodology was applied to supply chain disruptions caused by the 2011 Thailand floods. Our study demonstrates desirable typical data requirements for the analysis, such as anonymized supplier network data (i.e. critical dependencies, vulnerability information of suppliers) and sourcing data(i.e. locations of suppliers, and production rates and
A Nonparametric Bayesian Approach For Emission Tomography Reconstruction
International Nuclear Information System (INIS)
We introduce a PET reconstruction algorithm following a nonparametric Bayesian (NPB) approach. In contrast with Expectation Maximization (EM), the proposed technique does not rely on any space discretization. Namely, the activity distribution--normalized emission intensity of the spatial poisson process--is considered as a spatial probability density and observations are the projections of random emissions whose distribution has to be estimated. This approach is nonparametric in the sense that the quantity of interest belongs to the set of probability measures on Rk (for reconstruction in k-dimensions) and it is Bayesian in the sense that we define a prior directly on this spatial measure. In this context, we propose to model the nonparametric probability density as an infinite mixture of multivariate normal distributions. As a prior for this mixture we consider a Dirichlet Process Mixture (DPM) with a Normal-Inverse Wishart (NIW) model as base distribution of the Dirichlet Process. As in EM-family reconstruction, we use a data augmentation scheme where the set of hidden variables are the emission locations for each observed line of response in the continuous object space. Thanks to the data augmentation, we propose a Markov Chain Monte Carlo (MCMC) algorithm (Gibbs sampler) which is able to generate draws from the posterior distribution of the spatial intensity. A difference with EM is that one step of the Gibbs sampler corresponds to the generation of emission locations while only the expected number of emissions per pixel/voxel is used in EM. Another key difference is that the estimated spatial intensity is a continuous function such that there is no need to compute a projection matrix. Finally, draws from the intensity posterior distribution allow the estimation of posterior functionnals like the variance or confidence intervals. Results are presented for simulated data based on a 2D brain phantom and compared to Bayesian MAP-EM
A Nonparametric Bayesian Approach For Emission Tomography Reconstruction
Barat, Éric; Dautremer, Thomas
2007-11-01
We introduce a PET reconstruction algorithm following a nonparametric Bayesian (NPB) approach. In contrast with Expectation Maximization (EM), the proposed technique does not rely on any space discretization. Namely, the activity distribution—normalized emission intensity of the spatial poisson process—is considered as a spatial probability density and observations are the projections of random emissions whose distribution has to be estimated. This approach is nonparametric in the sense that the quantity of interest belongs to the set of probability measures on Rk (for reconstruction in k-dimensions) and it is Bayesian in the sense that we define a prior directly on this spatial measure. In this context, we propose to model the nonparametric probability density as an infinite mixture of multivariate normal distributions. As a prior for this mixture we consider a Dirichlet Process Mixture (DPM) with a Normal-Inverse Wishart (NIW) model as base distribution of the Dirichlet Process. As in EM-family reconstruction, we use a data augmentation scheme where the set of hidden variables are the emission locations for each observed line of response in the continuous object space. Thanks to the data augmentation, we propose a Markov Chain Monte Carlo (MCMC) algorithm (Gibbs sampler) which is able to generate draws from the posterior distribution of the spatial intensity. A difference with EM is that one step of the Gibbs sampler corresponds to the generation of emission locations while only the expected number of emissions per pixel/voxel is used in EM. Another key difference is that the estimated spatial intensity is a continuous function such that there is no need to compute a projection matrix. Finally, draws from the intensity posterior distribution allow the estimation of posterior functionnals like the variance or confidence intervals. Results are presented for simulated data based on a 2D brain phantom and compared to Bayesian MAP-EM.
A Bayesian belief network of threat anticipation and terrorist motivations
Olama, Mohammed M.; Allgood, Glenn O.; Davenport, Kristen M.; Schryver, Jack C.
2010-04-01
Recent events highlight the need for efficient tools for anticipating the threat posed by terrorists, whether individual or groups. Antiterrorism includes fostering awareness of potential threats, deterring aggressors, developing security measures, planning for future events, halting an event in process, and ultimately mitigating and managing the consequences of an event. To analyze such components, one must understand various aspects of threat elements like physical assets and their economic and social impacts. To this aim, we developed a three-layer Bayesian belief network (BBN) model that takes into consideration the relative threat of an attack against a particular asset (physical layer) as well as the individual psychology and motivations that would induce a person to either act alone or join a terrorist group and commit terrorist acts (social and economic layers). After researching the many possible motivations to become a terrorist, the main factors are compiled and sorted into categories such as initial and personal indicators, exclusion factors, and predictive behaviors. Assessing such threats requires combining information from disparate data sources most of which involve uncertainties. BBN combines these data in a coherent, analytically defensible, and understandable manner. The developed BBN model takes into consideration the likelihood and consequence of a threat in order to draw inferences about the risk of a terrorist attack so that mitigation efforts can be optimally deployed. The model is constructed using a network engineering process that treats the probability distributions of all the BBN nodes within the broader context of the system development process.
Grzegorczyk, M.; Husmeier, D.
2009-01-01
Feedback loops and recurrent structures are essential to the regulation and stable control of complex biological systems. The application of dynamic as opposed to static Bayesian networks is promising in that, in principle, these feedback loops can be learned. However, we show that the widely applied BGe score is susceptible to learning spurious feedback loops, which are a consequence of non-linear regulation and autocorrelation in the data. We propose a non-linear generalisation of the BGe m...
Mocapy++ - A toolkit for inference and learning in dynamic Bayesian networks
DEFF Research Database (Denmark)
Paluszewski, Martin; Hamelryck, Thomas Wim
2010-01-01
Background Mocapy++ is a toolkit for parameter learning and inference in dynamic Bayesian networks (DBNs). It supports a wide range of DBN architectures and probability distributions, including distributions from directional statistics (the statistics of angles, directions and orientations...
International Nuclear Information System (INIS)
In this paper, we present RADYBAN (Reliability Analysis with DYnamic BAyesian Networks), a software tool which allows to analyze a dynamic fault tree relying on its conversion into a dynamic Bayesian network. The tool implements a modular algorithm for automatically translating a dynamic fault tree into the corresponding dynamic Bayesian network and exploits classical algorithms for the inference on dynamic Bayesian networks, in order to compute reliability measures. After having described the basic features of the tool, we show how it operates on a real world example and we compare the unreliability results it generates with those returned by other methodologies, in order to verify the correctness and the consistency of the results obtained
Directory of Open Access Journals (Sweden)
Gao Shouguo
2011-08-01
Full Text Available Abstract Background Bayesian Network (BN is a powerful approach to reconstructing genetic regulatory networks from gene expression data. However, expression data by itself suffers from high noise and lack of power. Incorporating prior biological knowledge can improve the performance. As each type of prior knowledge on its own may be incomplete or limited by quality issues, integrating multiple sources of prior knowledge to utilize their consensus is desirable. Results We introduce a new method to incorporate the quantitative information from multiple sources of prior knowledge. It first uses the Naïve Bayesian classifier to assess the likelihood of functional linkage between gene pairs based on prior knowledge. In this study we included cocitation in PubMed and schematic similarity in Gene Ontology annotation. A candidate network edge reservoir is then created in which the copy number of each edge is proportional to the estimated likelihood of linkage between the two corresponding genes. In network simulation the Markov Chain Monte Carlo sampling algorithm is adopted, and samples from this reservoir at each iteration to generate new candidate networks. We evaluated the new algorithm using both simulated and real gene expression data including that from a yeast cell cycle and a mouse pancreas development/growth study. Incorporating prior knowledge led to a ~2 fold increase in the number of known transcription regulations recovered, without significant change in false positive rate. In contrast, without the prior knowledge BN modeling is not always better than a random selection, demonstrating the necessity in network modeling to supplement the gene expression data with additional information. Conclusion our new development provides a statistical means to utilize the quantitative information in prior biological knowledge in the BN modeling of gene expression data, which significantly improves the performance.
A Bayesian Network-Based Probabilistic Framework for Drought Forecasting and Outlook
Ji Yae Shin; Muhammad Ajmal; Jiyoung Yoo; Tae-Woong Kim
2016-01-01
Reliable drought forecasting is necessary to develop mitigation plans to cope with severe drought. This study developed a probabilistic scheme for drought forecasting and outlook combined with quantification of the prediction uncertainties. The Bayesian network was mainly employed as a statistical scheme for probabilistic forecasting that can represent the cause-effect relationships between the variables. The structure of the Bayesian network-based drought forecasting (BNDF) model was designe...
Predicting academic major of students using bayesian networks to the case of iran
Asadianfam, Shiva; Shamsi, Mahboubeh; Asadianfam, Sima
2015-01-01
In this study, which took place current year in the city of Maragheh in IRAN. Number of high school students in the fields of study: mathematics, Experimental Sciences, humanities, vocational, business and science were studied and compared. The purpose of this research is to predict the academic major of high school students using Bayesian networks. The effective factors have been used in academic major selection for the first time as an effective indicator of Bayesian networks. Evaluation of...
Directory of Open Access Journals (Sweden)
Gaoning He
2010-01-01
Full Text Available A Bayesian game-theoretic model is developed to design and analyze the resource allocation problem in K-user fading multiple access channels (MACs, where the users are assumed to selfishly maximize their average achievable rates with incomplete information about the fading channel gains. In such a game-theoretic study, the central question is whether a Bayesian equilibrium exists, and if so, whether the network operates efficiently at the equilibrium point. We prove that there exists exactly one Bayesian equilibrium in our game. Furthermore, we study the network sum-rate maximization problem by assuming that the users coordinate according to a symmetric strategy profile. This result also serves as an upper bound for the Bayesian equilibrium. Finally, simulation results are provided to show the network efficiency at the unique Bayesian equilibrium and to compare it with other strategies.
Bayesian Networks as a Decision Tool for O&M of Offshore Wind Turbines
DEFF Research Database (Denmark)
Nielsen, Jannie Jessen; Sørensen, John Dalsgaard
2010-01-01
Costs to operation and maintenance (O&M) of offshore wind turbines are large. This paper presents how influence diagrams can be used to assist in rational decision making for O&M. An influence diagram is a graphical representation of a decision tree based on Bayesian Networks. Bayesian Networks...... offer efficient Bayesian updating of a damage model when imperfect information from inspections/monitoring is available. The extension to an influence diagram offers the calculation of expected utilities for decision alternatives, and can be used to find the optimal strategy among different alternatives...
A novel Bayesian approach to spectral function reconstruction
Burnier, Yannis
2013-01-01
We present a novel approach to the inference of spectral functions from Euclidean time correlator data that makes close contact with modern Bayesian concepts. Our method differs significantly from the maximum entropy method (MEM). A new set of axioms is postulated for the prior probability, leading to an improved expression, which is devoid of the asymptotically flat directions present in the Shanon-Jaynes entropy. Hyperparameters are integrated out explicitly, liberating us from the Gaussian approximations underlying the evidence approach of the MEM. We present a realistic test of our method in the context of the non-perturbative extraction of the heavy quark potential. Based on hard-thermal-loop correlator mock data, we establish firm requirements in the number of data points and their accuracy for a successful extraction of the potential from lattice QCD. An improved potential estimation from previously investigated quenched lattice QCD correlators is provided.
A Bayesian Approach to the Partitioning of Workflows
Chua, Freddy C
2015-01-01
When partitioning workflows in realistic scenarios, the knowledge of the processing units is often vague or unknown. A naive approach to addressing this issue is to perform many controlled experiments for different workloads, each consisting of multiple number of trials in order to estimate the mean and variance of the specific workload. Since this controlled experimental approach can be quite costly in terms of time and resources, we propose a variant of the Gibbs Sampling algorithm that uses a sequence of Bayesian inference updates to estimate the processing characteristics of the processing units. Using the inferred characteristics of the processing units, we are able to determine the best way to split a workflow for processing it in parallel with the lowest expected completion time and least variance.
Bayesian approach in MN low dose of radiation counting
International Nuclear Information System (INIS)
The Micronucleus assay in lymphocytes is a well established technique for the assessment of genetic damage induced by ionizing radiation. Due to the presence of a natural background of MN the net MN is obtained by subtracting this value to the gross value. When very low doses of radiation are given the induced MN is close even lower than the predetermined background value. Furthermore, the damage distribution induced by the radiation follows a Poisson probability distribution. These two facts pose a difficult task to obtain the net counting rate in the exposed situations. It is possible to overcome this problem using a bayesian approach, in which the selection of a priori distributions for the background and net counting rate plays an important role. In the present work we make a detailed analysed using bayesian theory to infer the net counting rate in two different situations: a) when the background is known for an individual sample, using exact value value for the background and Jeffreys prior for the net counting rate, and b) when the background is not known and we make use of a population background distribution as background prior function and constant prior for the net counting rate. (Author)
A novel Bayesian learning method for information aggregation in modular neural networks
DEFF Research Database (Denmark)
Wang, Pan; Xu, Lida; Zhou, Shang-Ming; Fan, Zhun; Li, Youfeng; Feng, Shan
2010-01-01
Modular neural network is a popular neural network model which has many successful applications. In this paper, a sequential Bayesian learning (SBL) is proposed for modular neural networks aiming at efficiently aggregating the outputs of members of the ensemble. The experimental results on eight ...... benchmark problems have demonstrated that the proposed method can perform information aggregation efficiently in data modeling....
CEO emotional bias and dividend policy: Bayesian network method
Directory of Open Access Journals (Sweden)
Azouzi Mohamed Ali
2012-10-01
Full Text Available This paper assumes that managers, investors, or both behave irrationally. In addition, even though scholars have investigated behavioral irrationality from three angles, investor sentiment, investor biases and managerial biases, we focus on the relationship between one of the managerial biases, overconfidence and dividend policy. Previous research investigating the relationship between overconfidence and financial decisions has studied investment, financing decisions and firm values. However, there are only a few exceptions to examine how a managerial emotional bias (optimism, loss aversion and overconfidence affects dividend policies. This stream of research contends whether to distribute dividends or not depends on how managers perceive of the company’s future. I will use Bayesian network method to examine this relation. Emotional bias has been measured by means of a questionnaire comprising several items. As for the selected sample, it has been composed of some100 Tunisian executives. Our results have revealed that leader affected by behavioral biases (optimism, loss aversion, and overconfidence adjusts its dividend policy choices based on their ability to assess alternatives (optimism and overconfidence and risk perception (loss aversion to create of shareholder value and ensure its place at the head of the management team.
Bayesian network model of crowd emotion and negative behavior
Ramli, Nurulhuda; Ghani, Noraida Abdul; Hatta, Zulkarnain Ahmad; Hashim, Intan Hashimah Mohd; Sulong, Jasni; Mahudin, Nor Diana Mohd; Rahman, Shukran Abd; Saad, Zarina Mat
2014-12-01
The effects of overcrowding have become a major concern for event organizers. One aspect of this concern has been the idea that overcrowding can enhance the occurrence of serious incidents during events. As one of the largest Muslim religious gathering attended by pilgrims from all over the world, Hajj has become extremely overcrowded with many incidents being reported. The purpose of this study is to analyze the nature of human emotion and negative behavior resulting from overcrowding during Hajj events from data gathered in Malaysian Hajj Experience Survey in 2013. The sample comprised of 147 Malaysian pilgrims (70 males and 77 females). Utilizing a probabilistic model called Bayesian network, this paper models the dependence structure between different emotions and negative behaviors of pilgrims in the crowd. The model included the following variables of emotion: negative, negative comfortable, positive, positive comfortable and positive spiritual and variables of negative behaviors; aggressive and hazardous acts. The study demonstrated that emotions of negative, negative comfortable, positive spiritual and positive emotion have a direct influence on aggressive behavior whereas emotion of negative comfortable, positive spiritual and positive have a direct influence on hazardous acts behavior. The sensitivity analysis showed that a low level of negative and negative comfortable emotions leads to a lower level of aggressive and hazardous behavior. Findings of the study can be further improved to identify the exact cause and risk factors of crowd-related incidents in preventing crowd disasters during the mass gathering events.
CEO emotional bias and investment decision, Bayesian network method
Directory of Open Access Journals (Sweden)
Jarboui Anis
2012-08-01
Full Text Available This research examines the determinants of firms’ investment introducing a behavioral perspective that has received little attention in corporate finance literature. The following central hypothesis emerges from a set of recently developed theories: Investment decisions are influenced not only by their fundamentals but also depend on some other factors. One factor is the biasness of any CEO to their investment, biasness depends on the cognition and emotions, because some leaders use them as heuristic for the investment decision instead of fundamentals. This paper shows how CEO emotional bias (optimism, loss aversion and overconfidence affects the investment decisions. The proposed model of this paper uses Bayesian Network Method to examine this relationship. Emotional bias has been measured by means of a questionnaire comprising several items. As for the selected sample, it has been composed of some 100 Tunisian executives. Our results have revealed that the behavioral analysis of investment decision implies leader affected by behavioral biases (optimism, loss aversion, and overconfidence adjusts its investment choices based on their ability to assess alternatives (optimism and overconfidence and risk perception (loss aversion to create of shareholder value and ensure its place at the head of the management team.
Classification of Maize and Weeds by Bayesian Networks
Chapron, Michel; Oprea, Alina; Sultana, Bogdan; Assemat, Louis
2007-11-01
Precision Agriculture is concerned with all sorts of within-field variability, spatially and temporally, that reduces the efficacy of agronomic practices applied in a uniform way all over the field. Because of these sources of heterogeneity, uniform management actions strongly reduce the efficiency of the resource input to the crop (i.e. fertilization, water) or for the agrochemicals use for pest control (i.e. herbicide). Moreover, this low efficacy means high environmental cost (pollution) and reduced economic return for the farmer. Weed plants are one of these sources of variability for the crop, as they occur in patches in the field. Detecting the location, size and internal density of these patches, along with identification of main weed species involved, open the way to a site-specific weed control strategy, where only patches of weeds would receive the appropriate herbicide (type and dose). Herein, an automatic recognition method of vegetal species is described. First, the pixels of soil and vegetation are classified in two classes, then the vegetation part of the input image is segmented from the distance image by using the watershed method and finally the leaves of the vegetation are partitioned in two parts maize and weeds thanks to the two Bayesian networks.
Evidence for single top quark production using Bayesian neural networks
Energy Technology Data Exchange (ETDEWEB)
Kau, Daekwang; /Florida State U.
2007-08-01
We present results of a search for single top quark production in p{bar p} collisions using a dataset of approximately 1 fb{sup -1} collected with the D0 detector. This analysis considers the muon+jets and electron+jets final states and makes use of Bayesian neural networks to separate the expected signals from backgrounds. The observed excess is associated with a p-value of 0.081%, assuming the background-only hypothesis, which corresponds to an excess over background of 3.2 standard deviations for a Gaussian density. The p-value computed using the SM signal cross section of 2.9 pb is 1.6%, corresponding to an expected significance of 2.2 standard deviations. Assuming the observed excess is due to single top production, we measure a single top quark production cross section of {sigma}(p{bar p} {yields} tb + X, tqb + X) = 4.4 {+-} 1.5 pb.
Modeling Land-Use Decision Behavior with Bayesian Belief Networks
Directory of Open Access Journals (Sweden)
Inge Aalders
2008-06-01
Full Text Available The ability to incorporate and manage the different drivers of land-use change in a modeling process is one of the key challenges because they are complex and are both quantitative and qualitative in nature. This paper uses Bayesian belief networks (BBN to incorporate characteristics of land managers in the modeling process and to enhance our understanding of land-use change based on the limited and disparate sources of information. One of the two models based on spatial data represented land managers in the form of a quantitative variable, the area of individual holdings, whereas the other model included qualitative data from a survey of land managers. Random samples from the spatial data provided evidence of the relationship between the different variables, which I used to develop the BBN structure. The model was tested for four different posterior probability distributions, and results showed that the trained and learned models are better at predicting land use than the uniform and random models. The inference from the model demonstrated the constraints that biophysical characteristics impose on land managers; for older land managers without heirs, there is a higher probability of the land use being arable agriculture. The results show the benefits of incorporating a more complex notion of land managers in land-use models, and of using different empirical data sources in the modeling process. Future research should focus on incorporating more complex social processes into the modeling structure, as well as incorporating spatio-temporal dynamics in a BBN.
Computing Posterior Probabilities of Structural Features in Bayesian Networks
Tian, Jin
2012-01-01
We study the problem of learning Bayesian network structures from data. Koivisto and Sood (2004) and Koivisto (2006) presented algorithms that can compute the exact marginal posterior probability of a subnetwork, e.g., a single edge, in O(n2n) time and the posterior probabilities for all n(n-1) potential edges in O(n2n) total time, assuming that the number of parents per node or the indegree is bounded by a constant. One main drawback of their algorithms is the requirement of a special structure prior that is non uniform and does not respect Markov equivalence. In this paper, we develop an algorithm that can compute the exact posterior probability of a subnetwork in O(3n) time and the posterior probabilities for all n(n-1) potential edges in O(n3n) total time. Our algorithm also assumes a bounded indegree but allows general structure priors. We demonstrate the applicability of the algorithm on several data sets with up to 20 variables.
Directory of Open Access Journals (Sweden)
Kok-Chin Khor
2009-01-01
Full Text Available Problem statement: Implementing a single or multiple classifiers that involve a Bayesian Network (BN is a rising research interest in network intrusion detection domain. Approach: However, little attention has been given to evaluate the performance of BN classifiers before they could be implemented in a real system. In this research, we proposed a novel approach to select important features by utilizing two selected feature selection algorithms utilizing filter approach. Results: The selected features were further validated by domain experts where extra features were added into the final proposed feature set. We then constructed three types of BN namely, Naive Bayes Classifiers (NBC, Learned BN and Expert-elicited BN by utilizing a standard network intrusion dataset. The performance of each classifier was recorded. We found that there was no difference in overall performance of the BNs and therefore, concluded that the BNs performed equivalently well in detecting network attacks. Conclusion/Recommendations: The results of the study indicated that the BN built using the proposed feature set has less features but the performance was comparable to BNs built using other feature sets generated by the two algorithms.
A Bayesian, exemplar-based approach to hierarchical shape matching.
Gavrila, Dariu M
2007-08-01
This paper presents a novel probabilistic approach to hierarchical, exemplar-based shape matching. No feature correspondence is needed among exemplars, just a suitable pairwise similarity measure. The approach uses a template tree to efficiently represent and match the variety of shape exemplars. The tree is generated offline by a bottom-up clustering approach using stochastic optimization. Online matching involves a simultaneous coarse-to-fine approach over the template tree and over the transformation parameters. The main contribution of this paper is a Bayesian model to estimate the a posteriori probability of the object class, after a certain match at a node of the tree. This model takes into account object scale and saliency and allows for a principled setting of the matching thresholds such that unpromising paths in the tree traversal process are eliminated early on. The proposed approach was tested in a variety of application domains. Here, results are presented on one of the more challenging domains: real-time pedestrian detection from a moving vehicle. A significant speed-up is obtained when comparing the proposed probabilistic matching approach with a manually tuned nonprobabilistic variant, both utilizing the same template tree structure. PMID:17568144
Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification
Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang
2016-01-01
Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975
Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.
Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang
2016-01-01
Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975
Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification.
Directory of Open Access Journals (Sweden)
Fang Yan
Full Text Available Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie analysis was proposed by mapping bow-tie analysis into Bayesian network (BN. Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures.
Bayesian approach to the detection problem in gravitational wave astronomy
International Nuclear Information System (INIS)
The analysis of data from gravitational wave detectors can be divided into three phases: search, characterization, and evaluation. The evaluation of the detection--determining whether a candidate event is astrophysical in origin or some artifact created by instrument noise--is a crucial step in the analysis. The ongoing analyses of data from ground-based detectors employ a frequentist approach to the detection problem. A detection statistic is chosen, for which background levels and detection efficiencies are estimated from Monte Carlo studies. This approach frames the detection problem in terms of an infinite collection of trials, with the actual measurement corresponding to some realization of this hypothetical set. Here we explore an alternative, Bayesian approach to the detection problem, that considers prior information and the actual data in hand. Our particular focus is on the computational techniques used to implement the Bayesian analysis. We find that the parallel tempered Markov chain Monte Carlo (PTMCMC) algorithm is able to address all three phases of the analysis in a coherent framework. The signals are found by locating the posterior modes, the model parameters are characterized by mapping out the joint posterior distribution, and finally, the model evidence is computed by thermodynamic integration. As a demonstration, we consider the detection problem of selecting between models describing the data as instrument noise, or instrument noise plus the signal from a single compact galactic binary. The evidence ratios, or Bayes factors, computed by the PTMCMC algorithm are found to be in close agreement with those computed using a reversible jump Markov chain Monte Carlo algorithm.
A Bayesian Approach to Risk Informed Performance Based Regulation for Digital I and C QA Programs
International Nuclear Information System (INIS)
The purpose of applying Risk Informed Performance Based Regulation (RIPBR) is to reduce unnecessary conservatism existed in current regulations. This paper proposes a systematic way to find such unnecessary conservatism based on Bayesian Belief Network (BBN) modeling technique. First, a Bayesian based QA process model is developed, and the correspondent event tree based on the BBN is then derived. Risk insight into different QA activities can thus be investigated by comparing their contribution to final quality to determine their necessity. Independent V and V, prescribed by RG 1.168, is selected as a case study to demonstrate the effectiveness of this approach. The proposed Bayesian approach appears to be very promising in supporting the RIPBR practice for digital I and C QA programs. Related issues and future work are also discussed. It is a consensus view between licensees and regulators that there may exists unnecessary conservatism in current digital I and C QA regulatory requirements. If such conservatism can be identified and reduced then the limited resources of both licensees and regulators can be utilized more effectively. The goal of RIPBR promoted by USNRC is to provide a generic regulatory framework to eliminate such conservatism in all NRC's regulatory activities (NRC, 1995). However, in order to take the advantage of RIPBR, one needs to develop techniques to identify unnecessary conservatism, and such techniques have not been fully established for digital I and C systems yet. This paper proposed a Bayesian-based approach to identifying unnecessary conservatism in current digital I and C QA program requirements. A QA program causal influence model is developed first, and then a correspondent event tree enumerating potential scenarios is derived based on this model. Thus risk insight into different QA activities can be investigated by comparing their contribution to scenario results. The QA activities that do not have significant impact on results
Graphic Symbol Recognition using Graph Based Signature and Bayesian Network Classifier
Luqman, Muhammad Muzzamil; Ramel, Jean-Yves
2010-01-01
We present a new approach for recognition of complex graphic symbols in technical documents. Graphic symbol recognition is a well known challenge in the field of document image analysis and is at heart of most graphic recognition systems. Our method uses structural approach for symbol representation and statistical classifier for symbol recognition. In our system we represent symbols by their graph based signatures: a graphic symbol is vectorized and is converted to an attributed relational graph, which is used for computing a feature vector for the symbol. This signature corresponds to geometry and topology of the symbol. We learn a Bayesian network to encode joint probability distribution of symbol signatures and use it in a supervised learning scenario for graphic symbol recognition. We have evaluated our method on synthetically deformed and degraded images of pre-segmented 2D architectural and electronic symbols from GREC databases and have obtained encouraging recognition rates.
Toward an Adaptive Learning System Framework: Using Bayesian Network to Manage Learner Model
Directory of Open Access Journals (Sweden)
Viet Anh Nguyen
2012-12-01
Full Text Available This paper represents a new approach to manage learner modeling in an adaptive learning system framework. It considers developing the basic components of an adaptive learning system such as the learner model, the course content model and the adaptation engine. We use the overlay model and Bayesian network to evaluate learners’ knowledge. In addition, we also propose a new content modeling method as well as adaptation engine to generate adaptive course based on learner’s knowledge. Based on this approach, we developed an adaptive learning system named is ACGS-II, that teaches students how to design an Entity Relationship model in a database system course. Empirical testing results for students who used the application indicate that our proposed model is very helpful as guidelines to develop adaptive learning system to meet learners’ demands.
A Robust Obstacle Avoidance for Service Robot Using Bayesian Approach
Directory of Open Access Journals (Sweden)
Widodo Budiharto
2011-03-01
Full Text Available The objective of this paper is to propose a robust obstacle avoidance method for service robot in indoor environment. The method for obstacles avoidance uses information about static obstacles on the landmark using edge detection. Speed and direction of people that walks as moving obstacle obtained by single camera using tracking and recognition system and distance measurement using 3 ultrasonic sensors. A new geometrical model and maneuvering method for moving obstacle avoidance introduced and combined with Bayesian approach for state estimation. The obstacle avoidance problem is formulated using decision theory, prior and posterior distribution and loss function to determine an optimal response based on inaccurate sensor data. Algorithms for moving obstacles avoidance method proposed and experiment results implemented to service robot also presented. Various experiments show that our proposed method very fast, robust and successfully implemented to service robot called Srikandi II that equipped with 4 DOF arm robot developed in our laboratory.
A Bayesian Approach to Detection of Small Low Emission Sources
Xun, Xiaolei; Carroll, Raymond J; Kuchment, Peter
2011-01-01
The article addresses the problem of detecting presence and location of a small low emission source inside of an object, when the background noise dominates. This problem arises, for instance, in some homeland security applications. The goal is to reach the signal-to-noise ratio (SNR) levels on the order of $10^{-3}$. A Bayesian approach to this problem is implemented in 2D. The method allows inference not only about the existence of the source, but also about its location. We derive Bayes factors for model selection and estimation of location based on Markov Chain Monte Carlo (MCMC) simulation. A simulation study shows that with sufficiently high total emission level, our method can effectively locate the source.
A Bayesian approach to the modelling of alpha Cen A
Bazot, M; Christensen-Dalsgaard, J
2012-01-01
Determining the physical characteristics of a star is an inverse problem consisting in estimating the parameters of models for the stellar structure and evolution, knowing certain observable quantities. We use a Bayesian approach to solve this problem for alpha Cen A, which allows us to incorporate prior information on the parameters to be estimated, in order to better constrain the problem. Our strategy is based on the use of a Markov Chain Monte Carlo (MCMC) algorithm to estimate the posterior probability densities of the stellar parameters: mass, age, initial chemical composition,... We use the stellar evolutionary code ASTEC to model the star. To constrain this model both seismic and non-seismic observations were considered. Several different strategies were tested to fit these values, either using two or five free parameters in ASTEC. We are thus able to show evidence that MCMC methods become efficient with respect to more classical grid-based strategies when the number of parameters increases. The resul...
Tucci, Robert R.
2008-01-01
Importance sampling and Metropolis-Hastings sampling (of which Gibbs sampling is a special case) are two methods commonly used to sample multi-variate probability distributions (that is, Bayesian networks). Heretofore, the sampling of Bayesian networks has been done on a conventional "classical computer". In this paper, we propose methods for doing importance sampling and Metropolis-Hastings sampling of a classical Bayesian network on a quantum computer.
Risk Based Maintenance of Offshore Wind Turbines Using Bayesian Networks
DEFF Research Database (Denmark)
Nielsen, Jannie Jessen; Sørensen, John Dalsgaard
2010-01-01
such that the preventive maintenance effort is balanced against the costs to corrective maintenance including indirect costs to reduced production. The basis for the optimization is the risk based Bayesian decision theory. The method is demonstrated through an application example....
Distributed Diagnosis in Uncertain Environments Using Dynamic Bayesian Networks
National Aeronautics and Space Administration — This paper presents a distributed Bayesian fault diagnosis scheme for physical systems. Our diagnoser design is based on a procedure for factoring the global system...
Utilization of extended bayesian networks in decision making under uncertainty
Energy Technology Data Exchange (ETDEWEB)
Van Eeckhout, Edward M [Los Alamos National Laboratory; Leishman, Deborah A [Los Alamos National Laboratory; Gibson, William L [Los Alamos National Laboratory
2009-01-01
Bayesian network tool (called IKE for Integrated Knowledge Engine) has been developed to assess the probability of undesirable events. The tool allows indications and observables from sensors and/or intelligence to feed directly into hypotheses of interest, thus allowing one to quantify the probability and uncertainty of these events resulting from very disparate evidence. For example, the probability that a facility is processing nuclear fuel or assembling a weapon can be assessed by examining the processes required, establishing the observables that should be present, then assembling information from intelligence, sensors and other information sources related to the observables. IKE also has the capability to determine tasking plans, that is, prioritize which observable should be collected next to most quickly ascertain the 'true' state and drive the probability toward 'zero' or 'one.' This optimization capability is called 'evidence marshaling.' One example to be discussed is a denied facility monitoring situation; there is concern that certain process(es) are being executed at the site (due to some intelligence or other data). We will show how additional pieces of evidence will then ascertain with some degree of certainty the likelihood of this process(es) as each piece of evidence is obtained. This example shows how both intelligence and sensor data can be incorporated into the analysis. A second example involves real-time perimeter security. For this demonstration we used seismic, acoustic, and optical sensors linked back to IKE. We show how these sensors identified and assessed the likelihood of 'intruder' versus friendly vehicles.
Directory of Open Access Journals (Sweden)
Ildikó Ungvári
Full Text Available Genetic studies indicate high number of potential factors related to asthma. Based on earlier linkage analyses we selected the 11q13 and 14q22 asthma susceptibility regions, for which we designed a partial genome screening study using 145 SNPs in 1201 individuals (436 asthmatic children and 765 controls. The results were evaluated with traditional frequentist methods and we applied a new statistical method, called bayesian network based bayesian multilevel analysis of relevance (BN-BMLA. This method uses bayesian network representation to provide detailed characterization of the relevance of factors, such as joint significance, the type of dependency, and multi-target aspects. We estimated posteriors for these relations within the bayesian statistical framework, in order to estimate the posteriors whether a variable is directly relevant or its association is only mediated.With frequentist methods one SNP (rs3751464 in the FRMD6 gene provided evidence for an association with asthma (OR = 1.43(1.2-1.8; p = 3×10(-4. The possible role of the FRMD6 gene in asthma was also confirmed in an animal model and human asthmatics.In the BN-BMLA analysis altogether 5 SNPs in 4 genes were found relevant in connection with asthma phenotype: PRPF19 on chromosome 11, and FRMD6, PTGER2 and PTGDR on chromosome 14. In a subsequent step a partial dataset containing rhinitis and further clinical parameters was used, which allowed the analysis of relevance of SNPs for asthma and multiple targets. These analyses suggested that SNPs in the AHNAK and MS4A2 genes were indirectly associated with asthma. This paper indicates that BN-BMLA explores the relevant factors more comprehensively than traditional statistical methods and extends the scope of strong relevance based methods to include partial relevance, global characterization of relevance and multi-target relevance.
Directory of Open Access Journals (Sweden)
Yue Zhao
2012-12-01
Full Text Available Audio‐visual speech recognition is a natural and robust approach to improving human-robot interaction in noisy environments. Although multi‐stream Dynamic Bayesian Network and coupled HMM are widely used for audio‐visual speech recognition, they fail to learn the shared features between modalities and ignore the dependency of features among the frames within each discrete state. In this paper, we propose a Deep Dynamic Bayesian Network (DDBN to perform unsupervised extraction of spatial‐temporal multimodal features from Tibetan audio‐visual speech data and build an accurate audio‐visual speech recognition model under a no frame‐independency assumption. The experiment results on Tibetan speech data from some real‐world environments showed the proposed DDBN outperforms the state‐of‐art methods in word recognition accuracy.
Multivariate meta-analysis of mixed outcomes: a Bayesian approach.
Bujkiewicz, Sylwia; Thompson, John R; Sutton, Alex J; Cooper, Nicola J; Harrison, Mark J; Symmons, Deborah P M; Abrams, Keith R
2013-09-30
Multivariate random effects meta-analysis (MRMA) is an appropriate way for synthesizing data from studies reporting multiple correlated outcomes. In a Bayesian framework, it has great potential for integrating evidence from a variety of sources. In this paper, we propose a Bayesian model for MRMA of mixed outcomes, which extends previously developed bivariate models to the trivariate case and also allows for combination of multiple outcomes that are both continuous and binary. We have constructed informative prior distributions for the correlations by using external evidence. Prior distributions for the within-study correlations were constructed by employing external individual patent data and using a double bootstrap method to obtain the correlations between mixed outcomes. The between-study model of MRMA was parameterized in the form of a product of a series of univariate conditional normal distributions. This allowed us to place explicit prior distributions on the between-study correlations, which were constructed using external summary data. Traditionally, independent 'vague' prior distributions are placed on all parameters of the model. In contrast to this approach, we constructed prior distributions for the between-study model parameters in a way that takes into account the inter-relationship between them. This is a flexible method that can be extended to incorporate mixed outcomes other than continuous and binary and beyond the trivariate case. We have applied this model to a motivating example in rheumatoid arthritis with the aim of incorporating all available evidence in the synthesis and potentially reducing uncertainty around the estimate of interest. PMID:23630081
Grzegorczyk, Marco; Husmeier, Dirk
2012-01-01
An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint processes to obtain time varying dynamic Bayesian networks (TV-DBNs). However, TV-DBNs are not without problems. Gene expression time series are typically short, which leaves the model over-flexible, leading to over-fitting or inflated inference uncertainty. In the present paper, we introduce a Bayesian regularization scheme that addresses this difficulty. Our approach is based on the rationale that changes in gene regulatory processes appear gradually during an organism's life cycle or in response to a changing environment, and we have integrated this notion in the prior distribution of the TV-DBN parameters. We have extensively tested our regularized TV-DBN model on synthetic data, in which we have simulated short non-homogeneous time series produced from a system subject to gradual change. We have then applied our method to real-world gene expression time series, measured during the life cycle of Drosophila melanogaster, under artificially generated constant light condition in Arabidopsis thaliana, and from a synthetically designed strain of Saccharomyces cerevisiae exposed to a changing environment. PMID:22850067
A Bayesian approach to spectral quantitative photoacoustic tomography
International Nuclear Information System (INIS)
A Bayesian approach to the optical reconstruction problem associated with spectral quantitative photoacoustic tomography is presented. The approach is derived for commonly used spectral tissue models of optical absorption and scattering: the absorption is described as a weighted sum of absorption spectra of known chromophores (spatially dependent chromophore concentrations), while the scattering is described using Mie scattering theory, with the proportionality constant and spectral power law parameter both spatially-dependent. It is validated using two-dimensional test problems composed of three biologically relevant chromophores: fat, oxygenated blood and deoxygenated blood. Using this approach it is possible to estimate the Grüneisen parameter, the absolute chromophore concentrations, and the Mie scattering parameters associated with spectral photoacoustic tomography problems. In addition, the direct estimation of the spectral parameters is compared to estimates obtained by fitting the spectral parameters to estimates of absorption, scattering and Grüneisen parameter at the investigated wavelengths. It is shown with numerical examples that the direct estimation results in better accuracy of the estimated parameters. (papers)
AutoClass: A Bayesian Approach to Classification
Stutz, John; Cheeseman, Peter; Hanson, Robin; Taylor, Will; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
We describe a Bayesian approach to the untutored discovery of classes in a set of cases, sometimes called finite mixture separation or clustering. The main difference between clustering and our approach is that we search for the "best" set of class descriptions rather than grouping the cases themselves. We describe our classes in terms of a probability distribution or density function, and the locally maximal posterior probability valued function parameters. We rate our classifications with an approximate joint probability of the data and functional form, marginalizing over the parameters. Approximation is necessitated by the computational complexity of the joint probability. Thus, we marginalize w.r.t. local maxima in the parameter space. We discuss the rationale behind our approach to classification. We give the mathematical development for the basic mixture model and describe the approximations needed for computational tractability. We instantiate the basic model with the discrete Dirichlet distribution and multivariant Gaussian density likelihoods. Then we show some results for both constructed and actual data.
The use of Bayesian Networks in Detecting the States of Ventilation Mills in Power Plants
Directory of Open Access Journals (Sweden)
Sanja Vujnović
2014-06-01
Full Text Available The main objective of this paper is to present a new method of predictive maintenance which can detect the states of coal grinding mills in thermal power plants using Bayesian networks. Several possible structures of Bayesian networks are proposed for solving this problem and one of them is implemented and tested on an actual system. This method uses acoustic signals and statistical signal pre-processing tools to compute the inputs of the Bayesian network. After that the network is trained and tested using signals measured in the vicinity of the mill in the period of 2 months. The goal of this algorithm is to increase the efficiency of the coal grinding process and reduce the maintenance cost by eliminating the unnecessary maintenance checks of the system.
Finding Clocks in Genes: A Bayesian Approach to Estimate Periodicity
Directory of Open Access Journals (Sweden)
Yan Ren
2016-01-01
Full Text Available Identification of rhythmic gene expression from metabolic cycles to circadian rhythms is crucial for understanding the gene regulatory networks and functions of these biological processes. Recently, two algorithms, JTK_CYCLE and ARSER, have been developed to estimate periodicity of rhythmic gene expression. JTK_CYCLE performs well for long or less noisy time series, while ARSER performs well for detecting a single rhythmic category. However, observing gene expression at high temporal resolution is not always feasible, and many scientists are interested in exploring both ultradian and circadian rhythmic categories simultaneously. In this paper, a new algorithm, named autoregressive Bayesian spectral regression (ABSR, is proposed. It estimates the period of time-course experimental data and classifies gene expression profiles into multiple rhythmic categories simultaneously. Through the simulation studies, it is shown that ABSR substantially improves the accuracy of periodicity estimation and clustering of rhythmic categories as compared to JTK_CYCLE and ARSER for the data with low temporal resolution. Moreover, ABSR is insensitive to rhythmic patterns. This new scheme is applied to existing time-course mouse liver data to estimate period of rhythms and classify the genes into ultradian, circadian, and arrhythmic categories. It is observed that 49.2% of the circadian profiles detected by JTK_CYCLE with 1-hour resolution are also detected by ABSR with only 4-hour resolution.
Point and Interval Estimation on the Degree and the Angle of Polarization. A Bayesian approach
Maier, Daniel; Santangelo, Andrea
2014-01-01
Linear polarization measurements provide access to two quantities, the degree (DOP) and the angle of polarization (AOP). The aim of this work is to give a complete and concise overview of how to analyze polarimetric measurements. We review interval estimations for the DOP with a frequentist and a Bayesian approach. Point estimations for the DOP and interval estimations for the AOP are further investigated with a Bayesian approach to match observational needs. Point and interval estimations are calculated numerically for frequentist and Bayesian statistics. Monte Carlo simulations are performed to clarify the meaning of the calculations. Under observational conditions, the true DOP and AOP are unknown, so that classical statistical considerations - based on true values - are not directly usable. In contrast, Bayesian statistics handles unknown true values very well and produces point and interval estimations for DOP and AOP, directly. Using a Bayesian approach, we show how to choose DOP point estimations based...
Bayesian network modeling method based on case reasoning for emergency decision-making
Directory of Open Access Journals (Sweden)
XU Lei
2013-06-01
Full Text Available Bayesian network has the abilities of probability expression, uncertainty management and multi-information fusion.It can support emergency decision-making, which can improve the efficiency of decision-making.Emergency decision-making is highly time sensitive, which requires shortening the Bayesian Network modeling time as far as possible.Traditional Bayesian network modeling methods are clearly unable to meet that requirement.Thus, a Bayesian network modeling method based on case reasoning for emergency decision-making is proposed.The method can obtain optional cases through case matching by the functions of similarity degree and deviation degree.Then,new Bayesian network can be built through case adjustment by case merging and pruning.An example is presented to illustrate and test the proposed method.The result shows that the method does not have a huge search space or need sample data.The only requirement is the collection of expert knowledge and historical case models.Compared with traditional methods, the proposed method can reuse historical case models, which can reduce the modeling time and improve the efficiency.
A new research tool for hybrid Bayesian networks using script language
Sun, Wei; Park, Cheol Young; Carvalho, Rommel
2011-06-01
While continuous variables become more and more inevitable in Bayesian networks for modeling real-life applications in complex systems, there are not much software tools to support it. Popular commercial Bayesian network tools such as Hugin, and Netica etc., are either expensive or have to discretize continuous variables. In addition, some free programs existing in the literature, commonly known as BNT, GeNie/SMILE, etc, have their own advantages and disadvantages respectively. In this paper, we introduce a newly developed Java tool for model construction and inference for hybrid Bayesian networks. Via the representation power of the script language, this tool can build the hybrid model automatically based on a well defined string that follows the specific grammars. Furthermore, it implements several inference algorithms capable to accommodate hybrid Bayesian networks, including Junction Tree algorithm (JT) for conditional linear Gaussian model (CLG), and Direct Message Passing (DMP) for general hybrid Bayesian networks with CLG structure. We believe this tool will be useful for researchers in the field.
Bayesian Approach to Neuro-Rough Models for Modelling HIV
Marwala, Tshilidzi
2007-01-01
This paper proposes a new neuro-rough model for modelling the risk of HIV from demographic data. The model is formulated using Bayesian framework and trained using Markov Chain Monte Carlo method and Metropolis criterion. When the model was tested to estimate the risk of HIV infection given the demographic data it was found to give the accuracy of 62% as opposed to 58% obtained from a Bayesian formulated rough set model trained using Markov chain Monte Carlo method and 62% obtained from a Bayesian formulated multi-layered perceptron (MLP) model trained using hybrid Monte. The proposed model is able to combine the accuracy of the Bayesian MLP model and the transparency of Bayesian rough set model.
Modelling of population dynamics of red king crab using Bayesian approach
Directory of Open Access Journals (Sweden)
Bakanev Sergey ...
2012-10-01
Modeling population dynamics based on the Bayesian approach enables to successfully resolve the above issues. The integration of the data from various studies into a unified model based on Bayesian parameter estimation method provides a much more detailed description of the processes occurring in the population.
Pérez-Rodríguez, P; Gianola, D; Weigel, K A; Rosa, G J M; Crossa, J
2013-08-01
In recent years, several statistical models have been developed for predicting genetic values for complex traits using information on dense molecular markers, pedigrees, or both. These models include, among others, the Bayesian regularized neural networks (BRNN) that have been widely used in prediction problems in other fields of application and, more recently, for genome-enabled prediction. The R package described here (brnn) implements BRNN models and extends these to include both additive and dominance effects. The implementation takes advantage of multicore architectures via a parallel computing approach using openMP (Open Multiprocessing) for the computations. This note briefly describes the classes of models that can be fitted using the brnn package, and it also illustrates its use through several real examples. PMID:23658327
Influences of variables on ship collision probability in a Bayesian belief network model
International Nuclear Information System (INIS)
The influences of the variables in a Bayesian belief network model for estimating the role of human factors on ship collision probability in the Gulf of Finland are studied for discovering the variables with the largest influences and for examining the validity of the network. The change in the so-called causation probability is examined while observing each state of the network variables and by utilizing sensitivity and mutual information analyses. Changing course in an encounter situation is the most influential variable in the model, followed by variables such as the Officer of the Watch's action, situation assessment, danger detection, personal condition and incapacitation. The least influential variables are the other distractions on bridge, the bridge view, maintenance routines and the officer's fatigue. In general, the methods are found to agree on the order of the model variables although some disagreements arise due to slightly dissimilar approaches to the concept of variable influence. The relative values and the ranking of variables based on the values are discovered to be more valuable than the actual numerical values themselves. Although the most influential variables seem to be plausible, there are some discrepancies between the indicated influences in the model and literature. Thus, improvements are suggested to the network.
Super-resolution in cardiac MRI using a Bayesian approach
Velasco Toledo, Nelson; Rueda, Andrea; Santa Marta, Cristina; Romero, Eduardo
2013-03-01
Acquisition of proper cardiac MR images is highly limited by continued heart motion and apnea periods. A typical acquisition results in volumes with inter-slice separations of up to 8 mm. This paper presents a super-resolution strategy that estimates a high-resolution image from a set of low-resolution image series acquired in different non-orthogonal orientations. The proposal is based on a Bayesian approach that implements a Maximum a Posteriori (MAP) estimator combined with a Wiener filter. A pre-processing stage was also included, to correct or eliminate differences in the image intensities and to transform the low-resolution images to a common spatial reference system. The MAP estimation includes an observation image model that represents the different contributions to the voxel intensities based on a 3D Gaussian function. A quantitative and qualitative assessment was performed using synthetic and real images, showing that the proposed approach produces a high-resolution image with significant improvements (about 3dB in PSNR) with respect to a simple trilinear interpolation. The Wiener filter shows little contribution to the final result, demonstrating that the MAP uniformity prior is able to filter out a large amount of the acquisition noise.
Xu, Yunfei; Dass, Sarat; Maiti, Tapabrata
2016-01-01
This brief introduces a class of problems and models for the prediction of the scalar field of interest from noisy observations collected by mobile sensor networks. It also introduces the problem of optimal coordination of robotic sensors to maximize the prediction quality subject to communication and mobility constraints either in a centralized or distributed manner. To solve such problems, fully Bayesian approaches are adopted, allowing various sources of uncertainties to be integrated into an inferential framework effectively capturing all aspects of variability involved. The fully Bayesian approach also allows the most appropriate values for additional model parameters to be selected automatically by data, and the optimal inference and prediction for the underlying scalar field to be achieved. In particular, spatio-temporal Gaussian process regression is formulated for robotic sensors to fuse multifactorial effects of observations, measurement noise, and prior distributions for obtaining the predictive di...
BAYESIAN APPROACH TO THE PROCESS OF IDENTIFICATION OF THE DETERMINANTS OF INNOVATIVENESS
Directory of Open Access Journals (Sweden)
Marta Czyżewska
2014-08-01
Full Text Available Bayesian belief networks are applied in determining the most important factors of the innovativeness level of national economies. The paper is divided into two parts. The first presentsthe basic theory of Bayesian networks whereas in the second, the belief networks have been generated by an inhouse developed computer system called BeliefSEEKER which was implemented to generate the determinants influencing the innovativeness level of national economies.Qualitative analysis of the generated belief networks provided a way to define a set of the most important dimensions influencing the innovativeness level of economies and then the indicators that form these dimensions. It has been proven that Bayesian networks are very effective methods for multidimensional analysis and forming conclusions and recommendations regarding the strength of each innovative determinant influencing the overall performance of a country’s economy.
Dynamic Bayesian Network Modeling of the Interplay between EGFR and Hedgehog Signaling.
Fröhlich, Holger; Bahamondez, Gloria; Götschel, Frank; Korf, Ulrike
2015-01-01
Aberrant activation of sonic Hegdehog (SHH) signaling has been found to disrupt cellular differentiation in many human cancers and to increase proliferation. The SHH pathway is known to cross-talk with EGFR dependent signaling. Recent studies experimentally addressed this interplay in Daoy cells, which are presumable a model system for medulloblastoma, a highly malignant brain tumor that predominately occurs in children. Currently ongoing are several clinical trials for different solid cancers, which are designed to validate the clinical benefits of targeting the SHH in combination with other pathways. This has motivated us to investigate interactions between EGFR and SHH dependent signaling in greater depth. To our knowledge, there is no mathematical model describing the interplay between EGFR and SHH dependent signaling in medulloblastoma so far. Here we come up with a fully probabilistic approach using Dynamic Bayesian Networks (DBNs). To build our model, we made use of literature based knowledge describing SHH and EGFR signaling and integrated gene expression (Illumina) and cellular location dependent time series protein expression data (Reverse Phase Protein Arrays). We validated our model by sub-sampling training data and making Bayesian predictions on the left out test data. Our predictions focusing on key transcription factors and p70S6K, showed a high level of concordance with experimental data. Furthermore, the stability of our model was tested by a parametric bootstrap approach. Stable network features were in agreement with published data. Altogether we believe that our model improved our understanding of the interplay between two highly oncogenic signaling pathways in Daoy cells. This may open new perspectives for the future therapy of Hedghog/EGF-dependent solid tumors. PMID:26571415
Dynamic Bayesian Network Modeling of the Interplay between EGFR and Hedgehog Signaling.
Directory of Open Access Journals (Sweden)
Holger Fröhlich
Full Text Available Aberrant activation of sonic Hegdehog (SHH signaling has been found to disrupt cellular differentiation in many human cancers and to increase proliferation. The SHH pathway is known to cross-talk with EGFR dependent signaling. Recent studies experimentally addressed this interplay in Daoy cells, which are presumable a model system for medulloblastoma, a highly malignant brain tumor that predominately occurs in children. Currently ongoing are several clinical trials for different solid cancers, which are designed to validate the clinical benefits of targeting the SHH in combination with other pathways. This has motivated us to investigate interactions between EGFR and SHH dependent signaling in greater depth. To our knowledge, there is no mathematical model describing the interplay between EGFR and SHH dependent signaling in medulloblastoma so far. Here we come up with a fully probabilistic approach using Dynamic Bayesian Networks (DBNs. To build our model, we made use of literature based knowledge describing SHH and EGFR signaling and integrated gene expression (Illumina and cellular location dependent time series protein expression data (Reverse Phase Protein Arrays. We validated our model by sub-sampling training data and making Bayesian predictions on the left out test data. Our predictions focusing on key transcription factors and p70S6K, showed a high level of concordance with experimental data. Furthermore, the stability of our model was tested by a parametric bootstrap approach. Stable network features were in agreement with published data. Altogether we believe that our model improved our understanding of the interplay between two highly oncogenic signaling pathways in Daoy cells. This may open new perspectives for the future therapy of Hedghog/EGF-dependent solid tumors.
A Bayesian approach to extracting meaning from system behavior
Energy Technology Data Exchange (ETDEWEB)
Dress, W.B.
1998-08-01
The modeling relation and its reformulation to include the semiotic hierarchy is essential for the understanding, control, and successful re-creation of natural systems. This presentation will argue for a careful application of Rosen`s modeling relationship to the problems of intelligence and autonomy in natural and artificial systems. To this end, the authors discuss the essential need for a correct theory of induction, learning, and probability; and suggest that modern Bayesian probability theory, developed by Cox, Jaynes, and others, can adequately meet such demands, especially on the operational level of extracting meaning from observations. The methods of Bayesian and maximum Entropy parameter estimation have been applied to measurements of system observables to directly infer the underlying differential equations generating system behavior. This approach by-passes the usual method of parameter estimation based on assuming a functional form for the observable and then estimating the parameters that would lead to the particular observed behavior. The computational savings is great since only location parameters enter into the maximum-entropy calculations; this innovation finesses the need for nonlinear parameters altogether. Such an approach more directly extracts the semantics inherent in a given system by going to the root of system meaning as expressed by abstract form or shape, rather than in syntactic particulars, such as signal amplitude and phase. Examples will be shown how the form of a system can be followed while ignoring unnecessary details. In this sense, the authors are observing the meaning of the words rather than being concerned with their particular expression or language. For the present discussion, empirical models are embodied by the differential equations underlying, producing, or describing the behavior of a process as measured or tracked by a particular variable set--the observables. The a priori models are probability structures that
Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks
Zhu, Shijia; Wang, Yadong
2015-12-01
Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is ‘stationarity’, and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings.
International Nuclear Information System (INIS)
This work models by Bayesian networks the residual heat removal system (SRCR) of Angra I nuclear power plant, using fault tree mapping for systematically identifying all possible modes of occurrence caused by a large loss of coolant accident (large LOCA). The focus is on dependent events, such as the bridge system structure of the residual heat removal system and the occurrence of common-cause failures. We used the Netica™ tool kit, Norsys Software Corporation and Python 2.7.5 for modeling Bayesian networks and Microsoft Excel for modeling fault trees. Working with dependent events using Bayesian networks is similar to the solutions proposed by other models, beyond simple understanding and ease of application and modification throughout the analysis. The results obtained for the unavailability of the system were satisfactory, showing that in most cases the system will be available to mitigate the effects of an accident as described above. (author)
Bayesian Belief Network Method for Predicting Asphaltene Precipitation in Light Oil Reservoirs
Directory of Open Access Journals (Sweden)
Jeffrey O. Oseh (M.Sc.
2015-04-01
Full Text Available Asphaltene precipitation is caused by a number of factors including changes in pressure, temperature, and composition. The two most prevalent causes of asphaltene precipitation in light oil reservoirs are decreasing pressure and mixing oil with injected solvent in improved oil recovery processes. This study focused on predicting the amount of asphaltene precipitation with increasing Gas-Oil Ratio in a light oil reservoir using Bayesian Belief Network Method. These Artificial Intelligence-Bayesian Belief Network Method employed were validated and tested by unseen data to determine their accuracy and trend stability and were also compared with the findings obtained from Scaling equations. The obtained Bayesian Belief Network results indicated that the method showed an improved performance of predicting the amount of asphaltene precipitated in light oil reservoirs thus reducing the number of experiments required.
Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy
Directory of Open Access Journals (Sweden)
Liu Lin
2009-12-01
Full Text Available Abstract Background microRNAs (miRNAs regulate target gene expression by controlling their mRNAs post-transcriptionally. Increasing evidence demonstrates that miRNAs play important roles in various biological processes. However, the functions and precise regulatory mechanisms of most miRNAs remain elusive. Current research suggests that miRNA regulatory modules are complicated, including up-, down-, and mix-regulation for different physiological conditions. Previous computational approaches for discovering miRNA-mRNA interactions focus only on down-regulatory modules. In this work, we present a method to capture complex miRNA-mRNA interactions including all regulatory types between miRNAs and mRNAs. Results We present a method to capture complex miRNA-mRNA interactions using Bayesian network structure learning with splitting-averaging strategy. It is designed to explore all possible miRNA-mRNA interactions by integrating miRNA-targeting information, expression profiles of miRNAs and mRNAs, and sample categories. We also present an analysis of data sets for epithelial and mesenchymal transition (EMT. Our results show that the proposed method identified all possible types of miRNA-mRNA interactions from the data. Many interactions are of tremendous biological significance. Some discoveries have been validated by previous research, for example, the miR-200 family negatively regulates ZEB1 and ZEB2 for EMT. Some are consistent with the literature, such as LOX has wide interactions with the miR-200 family members for EMT. Furthermore, many novel interactions are statistically significant and worthy of validation in the near future. Conclusions This paper presents a new method to explore the complex miRNA-mRNA interactions for different physiological conditions using Bayesian network structure learning with splitting-averaging strategy. The method makes use of heterogeneous data including miRNA-targeting information, expression profiles of miRNAs and
A Bayesian decision approach to rainfall thresholds based flood warning
Directory of Open Access Journals (Sweden)
M. L. V. Martina
2006-01-01
Full Text Available Operational real time flood forecasting systems generally require a hydrological model to run in real time as well as a series of hydro-informatics tools to transform the flood forecast into relatively simple and clear messages to the decision makers involved in flood defense. The scope of this paper is to set forth the possibility of providing flood warnings at given river sections based on the direct comparison of the quantitative precipitation forecast with critical rainfall threshold values, without the need of an on-line real time forecasting system. This approach leads to an extremely simplified alert system to be used by non technical stakeholders and could also be used to supplement the traditional flood forecasting systems in case of system failures. The critical rainfall threshold values, incorporating the soil moisture initial conditions, result from statistical analyses using long hydrological time series combined with a Bayesian utility function minimization. In the paper, results of an application of the proposed methodology to the Sieve river, a tributary of the Arno river in Italy, are given to exemplify its practical applicability.
Defining statistical perceptions with an empirical Bayesian approach
Tajima, Satohiro
2013-04-01
Extracting statistical structures (including textures or contrasts) from a natural stimulus is a central challenge in both biological and engineering contexts. This study interprets the process of statistical recognition in terms of hyperparameter estimations and free-energy minimization procedures with an empirical Bayesian approach. This mathematical interpretation resulted in a framework for relating physiological insights in animal sensory systems to the functional properties of recognizing stimulus statistics. We applied the present theoretical framework to two typical models of natural images that are encoded by a population of simulated retinal neurons, and demonstrated that the resulting cognitive performances could be quantified with the Fisher information measure. The current enterprise yielded predictions about the properties of human texture perception, suggesting that the perceptual resolution of image statistics depends on visual field angles, internal noise, and neuronal information processing pathways, such as the magnocellular, parvocellular, and koniocellular systems. Furthermore, the two conceptually similar natural-image models were found to yield qualitatively different predictions, striking a note of warning against confusing the two models when describing a natural image.
A new Bayesian approach to the reconstruction of spectral functions
Burnier, Yannis
2013-01-01
We present a novel approach for the reconstruction of spectra from Euclidean correlator data that makes close contact to modern Bayesian concepts. It is based upon an axiomatically justified dimensionless prior distribution, which in the case of constant prior function $m(\\omega)$ only imprints smoothness on the reconstructed spectrum. In addition we are able to analytically integrate out the only relevant overall hyper-parameter $\\alpha$ in the prior, removing the necessity for Gaussian approximations found e.g. in the Maximum Entropy Method. Using a quasi-Newton minimizer and high-precision arithmetic, we are then able to find the unique global extremum of $P[\\rho|D]$ in the full $N_\\omega\\gg N_\\tau$ dimensional search space. The method actually yields gradually improving reconstruction results if the quality of the supplied input data increases, without introducing artificial peak structures, often encountered in the MEM. To support these statements we present mock data analyses for the case of zero width ...
An agglomerative hierarchical approach to visualization in Bayesian clustering problems.
Dawson, K J; Belkhir, K
2009-07-01
Clustering problems (including the clustering of individuals into outcrossing populations, hybrid generations, full-sib families and selfing lines) have recently received much attention in population genetics. In these clustering problems, the parameter of interest is a partition of the set of sampled individuals--the sample partition. In a fully Bayesian approach to clustering problems of this type, our knowledge about the sample partition is represented by a probability distribution on the space of possible sample partitions. As the number of possible partitions grows very rapidly with the sample size, we cannot visualize this probability distribution in its entirety, unless the sample is very small. As a solution to this visualization problem, we recommend using an agglomerative hierarchical clustering algorithm, which we call the exact linkage algorithm. This algorithm is a special case of the maximin clustering algorithm that we introduced previously. The exact linkage algorithm is now implemented in our software package PartitionView. The exact linkage algorithm takes the posterior co-assignment probabilities as input and yields as output a rooted binary tree, or more generally, a forest of such trees. Each node of this forest defines a set of individuals, and the node height is the posterior co-assignment probability of this set. This provides a useful visual representation of the uncertainty associated with the assignment of individuals to categories. It is also a useful starting point for a more detailed exploration of the posterior distribution in terms of the co-assignment probabilities. PMID:19337306
Constitution and application of reactor make-up system's fault diagnostic Bayesian networks
International Nuclear Information System (INIS)
A fault diagnostic Bayesian network of reactor make-up system was constituted. The system's structure characters, operation rules and experts' experience were combined and an initial net was built. As the fault date sets were learned with the particle swarm optimization based Bayesian network structure, the structure of diagnostic net was completed and used to inference case. The built net can analyze diagnostic probability of every node in the net and afford assistant decision to fault diagnosis. (authors)
Characteristic imset: a simple algebraic representative of a Bayesian network structure
Czech Academy of Sciences Publication Activity Database
Studený, Milan; Hemmecke, R.; Lindner, S.
Helsinki : HIIT Publications, 2010 - (Myllymaki, P.; Roos, T.; Jaakkola, T.), s. 257-264 ISBN 978-952-60-3314-3. ISSN 1458-946X. [5th European Workshop on Probabilistic Graphical Models. Helsinki (FI), 13.09.2010-15.09.2010] R&D Projects: GA MŠk(CZ) 1M0572; GA ČR GA201/08/0539 Institutional research plan: CEZ:AV0Z10750506 Keywords : characteristic imset * Bayesian network strucutre * essential graph Subject RIV: BA - General Mathematics http://library.utia.cas.cz/separaty/2010/MTR/studeny-characteristic imset a simple algebraic representative of a bayesian network structure.pdf
Multi-variable Echo State Network Optimized by Bayesian Regulation for Daily Peak Load Forecasting
Directory of Open Access Journals (Sweden)
Dongxiao Niu
2012-11-01
Full Text Available In this paper, a multi-variable echo state network trained with Bayesian regulation has been developed for the short-time load forecasting. In this study, we focus on the generalization of a new recurrent network. Therefore, Bayesian regulation and Levenberg-Marquardt algorithm is adopted to modify the output weight. The model is verified by data from a local power company in south China and its performance is rather satisfactory. Besides, traditional methods are also used for the same task as comparison. The simulation results lead to the conclusion that the proposed scheme is feasible and has great robustness and satisfactory capacity of generalization.
A Bayesian Approach to Identifying New Risk Factors for Dementia
Wen, Yen-Hsia; Wu, Shihn-Sheng; Lin, Chun-Hung Richard; Tsai, Jui-Hsiu; Yang, Pinchen; Chang, Yang-Pei; Tseng, Kuan-Hua
2016-01-01
Abstract Dementia is one of the most disabling and burdensome health conditions worldwide. In this study, we identified new potential risk factors for dementia from nationwide longitudinal population-based data by using Bayesian statistics. We first tested the consistency of the results obtained using Bayesian statistics with those obtained using classical frequentist probability for 4 recognized risk factors for dementia, namely severe head injury, depression, diabetes mellitus, and vascular...
Evolution of Subjective Hurricane Risk Perceptions: A Bayesian Approach
David Kelly; David Letson; Forest Nelson; Nolan, David S.; Daniel Solis
2009-01-01
This paper studies how individuals update subjective risk perceptions in response to hurricane track forecast information, using a unique data set from an event market, the Hurricane Futures Market (HFM). We derive a theoretical Bayesian framework which predicts how traders update their perceptions of the probability of a hurricane making landfall in a certain range of coastline. Our results suggest that traders behave in a way consistent with Bayesian updating but this behavior is based on t...
Modelling biogeochemical cycles in forest ecosystems: a Bayesian approach
Bagnara, Maurizio
2015-01-01
Forest models are tools for explaining and predicting the dynamics of forest ecosystems. They simulate forest behavior by integrating information on the underlying processes in trees, soil and atmosphere. Bayesian calibration is the application of probability theory to parameter estimation. It is a method, applicable to all models, that quantifies output uncertainty and identifies key parameters and variables. This study aims at testing the Bayesian procedure for calibration to different t...
International Nuclear Information System (INIS)
The sound development of marine resource usage relies on a strong maritime engineering industry. The perilous marine environment poses the highest risk to all maritime work. It is therefore imperative to reduce the risk associated with maritime work by using some analytical methods other than engineering techniques. This study addresses this issue by using an integrated interpretive structure modeling (ISM) and Bayesian network (BN) approach in a risk assessment context. Mitigating or managing maritime risk relies primarily on domain expert experience and knowledge. ISM can be used to incorporate expert knowledge in a systematic manner and helps to impose order and direction on complex relationships that exist among system elements. Working with experts, this research used ISM to clearly specify an engineering risk factor relationship represented by a cause–effect diagram, which forms the structure of the BN. The expert subjective judgments were further transformed into a prior and conditional probability set to be embedded in the BN. We used the BN to evaluate the risks of two offshore pipeline projects in Taiwan. The results indicated that the BN can provide explicit risk information to support better project management. - Highlights: • We adopt an integrated method for risk assessment of offshore pipeline projects. • We conduct semi-structural interview with the experts for risk factor identification. • Interpretive structural modeling helps to form the digraph of Bayesian network (BN) • We perform the risk analysis with the experts by building a BN. • Risk evaluations of two case studies using the BN show effectiveness of the methods
England Lucinda J; Moysich Kirsten B; Schisterman Enrique F; Rao Malla
2003-01-01
Abstract Background The Bayesian approach is one alternative for estimating correlation coefficients in which knowledge from previous studies is incorporated to improve estimation. The purpose of this paper is to illustrate the utility of the Bayesian approach for estimating correlations using prior knowledge. Methods The use of the hyperbolic tangent transformation (ρ = tanh ξ and r = tanh z) enables the investigator to take advantage of the conjugate properties of the normal distribution, w...
Applying Bayesian belief networks in rapid response situations
Energy Technology Data Exchange (ETDEWEB)
Gibson, William L [Los Alamos National Laboratory; Deborah, Leishman, A. [Los Alamos National Laboratory; Van Eeckhout, Edward [Los Alamos National Laboratory
2008-01-01
The authors have developed an enhanced Bayesian analysis tool called the Integrated Knowledge Engine (IKE) for monitoring and surveillance. The enhancements are suited for Rapid Response Situations where decisions must be made based on uncertain and incomplete evidence from many diverse and heterogeneous sources. The enhancements extend the probabilistic results of the traditional Bayesian analysis by (1) better quantifying uncertainty arising from model parameter uncertainty and uncertain evidence, (2) optimizing the collection of evidence to reach conclusions more quickly, and (3) allowing the analyst to determine the influence of the remaining evidence that cannot be obtained in the time allowed. These extended features give the analyst and decision maker a better comprehension of the adequacy of the acquired evidence and hence the quality of the hurried decisions. They also describe two example systems where the above features are highlighted.
Predicting the effect of missense mutations on protein function: analysis with Bayesian networks
Directory of Open Access Journals (Sweden)
Care Matthew A
2006-09-01
Full Text Available Abstract Background A number of methods that use both protein structural and evolutionary information are available to predict the functional consequences of missense mutations. However, many of these methods break down if either one of the two types of data are missing. Furthermore, there is a lack of rigorous assessment of how important the different factors are to prediction. Results Here we use Bayesian networks to predict whether or not a missense mutation will affect the function of the protein. Bayesian networks provide a concise representation for inferring models from data, and are known to generalise well to new data. More importantly, they can handle the noisy, incomplete and uncertain nature of biological data. Our Bayesian network achieved comparable performance with previous machine learning methods. The predictive performance of learned model structures was no better than a naïve Bayes classifier. However, analysis of the posterior distribution of model structures allows biologically meaningful interpretation of relationships between the input variables. Conclusion The ability of the Bayesian network to make predictions when only structural or evolutionary data was observed allowed us to conclude that structural information is a significantly better predictor of the functional consequences of a missense mutation than evolutionary information, for the dataset used. Analysis of the posterior distribution of model structures revealed that the top three strongest connections with the class node all involved structural nodes. With this in mind, we derived a simplified Bayesian network that used just these three structural descriptors, with comparable performance to that of an all node network.
DEFF Research Database (Denmark)
Dalgaard, Jens; Pena, Jose; Kocka, Tomas
2004-01-01
We propose a method to assist the user in the interpretation of the best Bayesian network model indu- ced from data. The method consists in extracting relevant features from the model (e.g. edges, directed paths and Markov blankets) and, then, assessing the con¯dence in them by studying multiple...
On the use of Bayesian networks to combine raw data from related studies on sensory satiation
Phan, V.A.; Ramaekers, M.G.; Bolhuis, D.P.; Garczarek, U.; Boekel, van M.A.J.S.; Dekker, M.
2012-01-01
Bayesian networks were used to combine raw datasets from two independently performed but related studies. Both studies investigated sensory satiation by measuring ad libitum intake of a tomato soup model. The Aroma study varied aroma concentration and aroma duration as the explanatory variables, and
Steeneveld, W.; Gaag, van der L.C.; Barkema, H.W.; Hogeveen, H.
2009-01-01
Clinical mastitis (CM) can be caused by a wide variety of pathogens and farmers must start treatment before the actual causal pathogen is known. By providing a probability distribution for the causal pathogen, naive Bayesian networks (NBN) can serve as a management tool for farmers to decide which t
A simulated annealing-based method for learning Bayesian networks from statistical data
Czech Academy of Sciences Publication Activity Database
Janžura, Martin; Nielsen, Jan
2006-01-01
Roč. 21, č. 3 (2006), s. 335-348. ISSN 0884-8173 R&D Projects: GA ČR GA201/03/0478 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian network * simulated annealing * Markov Chain Monte Carlo Subject RIV: BA - General Mathematics Impact factor: 0.429, year: 2006
Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move
Grzegorczyk, Marco; Husmeier, Dirk
2008-01-01
Applications of Bayesian networks in systems biology are computationally demanding due to the large number of model parameters. Conventional MCMC schemes based on proposal moves in structure space tend to be too slow in mixing and convergence, and have recently been superseded by proposal moves in t
Risk-Based Operation and Maintenance of Offshore Wind Turbines using Bayesian Networks
DEFF Research Database (Denmark)
Nielsen, Jannie Jessen; Sørensen, John Dalsgaard
2011-01-01
For offshore wind farms, the costs due to operation and maintenance are large, and more optimal planning has the potential of reducing these costs. This paper presents how Bayesian networks can be used for risk-based inspection planning, where the inspection plans are updated each year through the...
Use of limited data to construct Bayesian networks for probabilistic risk assessment.
Energy Technology Data Exchange (ETDEWEB)
Groth, Katrina M.; Swiler, Laura Painton
2013-03-01
Probabilistic Risk Assessment (PRA) is a fundamental part of safety/quality assurance for nuclear power and nuclear weapons. Traditional PRA very effectively models complex hardware system risks using binary probabilistic models. However, traditional PRA models are not flexible enough to accommodate non-binary soft-causal factors, such as digital instrumentation&control, passive components, aging, common cause failure, and human errors. Bayesian Networks offer the opportunity to incorporate these risks into the PRA framework. This report describes the results of an early career LDRD project titled %E2%80%9CUse of Limited Data to Construct Bayesian Networks for Probabilistic Risk Assessment%E2%80%9D. The goal of the work was to establish the capability to develop Bayesian Networks from sparse data, and to demonstrate this capability by producing a data-informed Bayesian Network for use in Human Reliability Analysis (HRA) as part of nuclear power plant Probabilistic Risk Assessment (PRA). This report summarizes the research goal and major products of the research.
Preliminary investigation to use Bayesian networks in predicting NOx, CO, CO2 and HC emissions
International Nuclear Information System (INIS)
A Bayesian network was used to characterize Lister-Petter diesel combustion engine emissions. Three sets of tests were conducted: (1) full open throttle; (2) 68 per cent closed throttle; and (3) 58 per cent closed throttle. The first test simulated normal lean burning conditions, while the last 2 tests simulated a clogged air filter. Experiments were conducted in an engine generator assembly with a fixed speed governor of 1500 rpm. Electrochemical sensors were used to detect nitrogen oxide (NOx); carbon dioxide (CO2); carbon monoxide (CO); hydrocarbons; and particulate matter. Engine oil, engine outlet, and engine inlet and exhaust temperatures were digitally measured. Data from 20 experimental sets of tests were used to train, test and project accurate emission levels. The Bayesian network model was built using input variables and measured output parameters related to the exhaust components. Human knowledge was used to build relationships between defined nodes and a path condition algorithm. An estimation-maximization algorithm was used. Results of the validation study showed that the Bayesian network accurately predicted emissions levels. It was concluded that it is possible to predict engine emission outputs with probable acceptable levels using Bayesian network modelling techniques and limited experimental data. 33 refs., 3 tabs., 8 figs
Bayesian estimation inherent in a Mexican-hat-type neural network
Takiyama, Ken
2016-05-01
Brain functions, such as perception, motor control and learning, and decision making, have been explained based on a Bayesian framework, i.e., to decrease the effects of noise inherent in the human nervous system or external environment, our brain integrates sensory and a priori information in a Bayesian optimal manner. However, it remains unclear how Bayesian computations are implemented in the brain. Herein, I address this issue by analyzing a Mexican-hat-type neural network, which was used as a model of the visual cortex, motor cortex, and prefrontal cortex. I analytically demonstrate that the dynamics of an order parameter in the model corresponds exactly to a variational inference of a linear Gaussian state-space model, a Bayesian estimation, when the strength of recurrent synaptic connectivity is appropriately stronger than that of an external stimulus, a plausible condition in the brain. This exact correspondence can reveal the relationship between the parameters in the Bayesian estimation and those in the neural network, providing insight for understanding brain functions.
Mengshoel, Ole J.; Wilkins, David C.; Roth, Dan
2010-01-01
For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.
Uncertainty analysis using Beta-Bayesian approach in nuclear safety code validation
International Nuclear Information System (INIS)
Highlights: • To meet the 95/95 criterion, the Wilks’ method is identical to the Bayesian approach. • A prior selection in Bayesian approach is of strong influenced on the code run times. • It is possible to utilize prior experience to reduce code runs to meet the 95/95 criterion. • The variation of the probability for each code runs is provided. - Abstract: Since best-estimate plus uncertainty analysis was approved by Nuclear Regulatory Commission for nuclear reactor safety evaluation, several uncertainty assessment methods have been proposed and applied in the framework of best-estimate code validation in nuclear industry. Among them, the Wilks’ method and Bayesian approach are the two most popular statistical methods for uncertainty quantification. This study explores the inherent relation between the two methods using the Beta distribution function as the prior in the Bayesian analysis. Subsequently, the Wilks’ method can be considered as a special case of Beta-Bayesian approach, equivalent to the conservative case with Wallis’ “pessimistic” prior in the Bayesian analysis. However, the results do depend on the choice of the pessimistic prior function forms. The analysis of mean and variance through Beta-Bayesian approach provides insight into the Wilks’ 95/95 results with different orders. It indicates that the 95/95 results of Wilks’ method become more accurate and more precise with the increasing of the order. Furthermore, Bayesian updating process is well demonstrated in the code validation practice. The selection of updating prior can make use of the current experience of the code failure and success statistics, so as to effectively predict further needed number of numerical simulations to reach the 95/95 criterion
Online Variational Bayesian Filtering-Based Mobile Target Tracking in Wireless Sensor Networks
Bingpeng Zhou; Qingchun Chen; Tiffany Jing Li; Pei Xiao
2014-01-01
The received signal strength (RSS)-based online tracking for a mobile node in wireless sensor networks (WSNs) is investigated in this paper. Firstly, a multi-layer dynamic Bayesian network (MDBN) is introduced to characterize the target mobility with either directional or undirected movement. In particular, it is proposed to employ the Wishart distribution to approximate the time-varying RSS measurement precision's randomness due to the target movement. It is shown that the proposed MDBN offe...
OVERALL SENSITIVITY ANALYSIS UTILIZING BAYESIAN NETWORK FOR THE QUESTIONNAIRE INVESTIGATION ON SNS
Tsuyoshi Aburai; Kazuhiro Takeyasu
2013-01-01
Social Networking Service (SNS) is prevailing rapidly in Japan in recent years. The most popular ones are Facebook, mixi, and Twitter, which are utilized in various fields of life together with the convenient tool such as smart-phone. In this work, a questionnaire investigation is carried out in order to clarify the current usage condition, issues and desired functions. More than 1,000 samples are gathered. Bayesian network is utilized for this analysis. Sensitivity analysis is carried out by...
Directory of Open Access Journals (Sweden)
Marcos Rodovalho
2014-11-01
Full Text Available The objective of this study was to examine genetic parameters of popping expansion and grain yield in a trial of 169 halfsib families using a Bayesian approach. The independence chain algorithm with informative priors for the components of residual and family variance (inverse-gamma prior distribution was used. Popping expansion was found to be moderately heritable, with a posterior mode of h2 of 0.34, and 90% Bayesian confidence interval of 0.22 to 0.44. The heritability of grain yield (family level was moderate (h2 = 0.4 with Bayesian confidence interval of 0.28 to 0.49. The target population contains sufficient genetic variability for subsequent breeding cycles, and the Bayesian approach is a useful alternative for scientific inference in the genetic evaluation of popcorn.
Toroody, Ahmad Bahoo; Abaiee, Mohammad Mahdi; Gholamnia, Reza; Ketabdari, Mohammad Javad
2016-07-01
Owing to the increase in unprecedented accidents with new root causes in almost all operational areas, the importance of risk management has dramatically risen. Risk assessment, one of the most significant aspects of risk management, has a substantial impact on the system-safety level of organizations, industries, and operations. If the causes of all kinds of failure and the interactions between them are considered, effective risk assessment can be highly accurate. A combination of traditional risk assessment approaches and modern scientific probability methods can help in realizing better quantitative risk assessment methods. Most researchers face the problem of minimal field data with respect to the probability and frequency of each failure. Because of this limitation in the availability of epistemic knowledge, it is important to conduct epistemic estimations by applying the Bayesian theory for identifying plausible outcomes. In this paper, we propose an algorithm and demonstrate its application in a case study for a light-weight lifting operation in the Persian Gulf of Iran. First, we identify potential accident scenarios and present them in an event tree format. Next, excluding human error, we use the event tree to roughly estimate the prior probability of other hazard-promoting factors using a minimal amount of field data. We then use the Success Likelihood Index Method (SLIM) to calculate the probability of human error. On the basis of the proposed event tree, we use the Bayesian network of the provided scenarios to compensate for the lack of data. Finally, we determine the resulting probability of each event based on its evidence in the epistemic estimation format by building on two Bayesian network types: the probability of hazard promotion factors and the Bayesian theory. The study results indicate that despite the lack of available information on the operation of floating objects, a satisfactory result can be achieved using epistemic data.
A Bayesian Approach to Identifying New Risk Factors for Dementia
Wen, Yen-Hsia; Wu, Shihn-Sheng; Lin, Chun-Hung Richard; Tsai, Jui-Hsiu; Yang, Pinchen; Chang, Yang-Pei; Tseng, Kuan-Hua
2016-01-01
Abstract Dementia is one of the most disabling and burdensome health conditions worldwide. In this study, we identified new potential risk factors for dementia from nationwide longitudinal population-based data by using Bayesian statistics. We first tested the consistency of the results obtained using Bayesian statistics with those obtained using classical frequentist probability for 4 recognized risk factors for dementia, namely severe head injury, depression, diabetes mellitus, and vascular diseases. Then, we used Bayesian statistics to verify 2 new potential risk factors for dementia, namely hearing loss and senile cataract, determined from the Taiwan's National Health Insurance Research Database. We included a total of 6546 (6.0%) patients diagnosed with dementia. We observed older age, female sex, and lower income as independent risk factors for dementia. Moreover, we verified the 4 recognized risk factors for dementia in the older Taiwanese population; their odds ratios (ORs) ranged from 3.469 to 1.207. Furthermore, we observed that hearing loss (OR = 1.577) and senile cataract (OR = 1.549) were associated with an increased risk of dementia. We found that the results obtained using Bayesian statistics for assessing risk factors for dementia, such as head injury, depression, DM, and vascular diseases, were consistent with those obtained using classical frequentist probability. Moreover, hearing loss and senile cataract were found to be potential risk factors for dementia in the older Taiwanese population. Bayesian statistics could help clinicians explore other potential risk factors for dementia and for developing appropriate treatment strategies for these patients. PMID:27227925
Directory of Open Access Journals (Sweden)
Karacaören Burak
2011-05-01
Full Text Available Abstract Background It has been shown that if genetic relationships among individuals are not taken into account for genome wide association studies, this may lead to false positives. To address this problem, we used Genome-wide Rapid Association using Mixed Model and Regression and principal component stratification analyses. To account for linkage disequilibrium among the significant markers, principal components loadings obtained from top markers can be included as covariates. Estimation of Bayesian networks may also be useful to investigate linkage disequilibrium among SNPs and their relation with environmental variables. For the quantitative trait we first estimated residuals while taking polygenic effects into account. We then used a single SNP approach to detect the most significant SNPs based on the residuals and applied principal component regression to take linkage disequilibrium among these SNPs into account. For the categorical trait we used principal component stratification methodology to account for background effects. For correction of linkage disequilibrium we used principal component logit regression. Bayesian networks were estimated to investigate relationship among SNPs. Results Using the Genome-wide Rapid Association using Mixed Model and Regression and principal component stratification approach we detected around 100 significant SNPs for the quantitative trait (p Conclusions GRAMMAR could efficiently incorporate the information regarding random genetic effects. Principal component stratification should be cautiously used with stringent multiple hypothesis testing correction to correct for ancestral stratification and association analyses for binary traits when there are systematic genetic effects such as half sib family structures. Bayesian networks are useful to investigate relationships among SNPs and environmental variables.
Bayesian-network-based safety risk assessment for steel construction projects.
Leu, Sou-Sen; Chang, Ching-Miao
2013-05-01
There are four primary accident types at steel building construction (SC) projects: falls (tumbles), object falls, object collapse, and electrocution. Several systematic safety risk assessment approaches, such as fault tree analysis (FTA) and failure mode and effect criticality analysis (FMECA), have been used to evaluate safety risks at SC projects. However, these traditional methods ineffectively address dependencies among safety factors at various levels that fail to provide early warnings to prevent occupational accidents. To overcome the limitations of traditional approaches, this study addresses the development of a safety risk-assessment model for SC projects by establishing the Bayesian networks (BN) based on fault tree (FT) transformation. The BN-based safety risk-assessment model was validated against the safety inspection records of six SC building projects and nine projects in which site accidents occurred. The ranks of posterior probabilities from the BN model were highly consistent with the accidents that occurred at each project site. The model accurately provides site safety-management abilities by calculating the probabilities of safety risks and further analyzing the causes of accidents based on their relationships in BNs. In practice, based on the analysis of accident risks and significant safety factors, proper preventive safety management strategies can be established to reduce the occurrence of accidents on SC sites. PMID:23499984
National evaluation of Chinese coastal erosion to sea level rise using a Bayesian approach
International Nuclear Information System (INIS)
In this paper a Causal Bayesian network is developed to predict decadal-scale shoreline evolution of China to sea-level rise. The Bayesian model defines relationships between 6 factors of Chinese coastal system such as coastal geomorphology, mean tide range, mean wave height, coastal slope, relative sea-level rise rate and shoreline erosion rate. Using the Bayesian probabilistic model, we make quantitative assessment of china's shoreline evolution in response to different future sea level rise rates. Results indicate that the probability of coastal erosion with high and very high rates increases from 28% to 32.3% when relative sea-level rise rates is 4∼6mm/a, and to 44.9% when relative sea-level rise rates is more than 6mm/a. A hindcast evaluation of the Bayesian model shows that the model correctly predicts 79.3% of the cases. Model test indicates that the Bayesian model shows higher predictive capabilities for stable coasts and very highly eroding coasts than moderately and highly eroding coasts. This study demonstrates that the Bayesian model is adapted to predicting decadal-scale Chinese coastal erosion associated with sea-level rise
Nojavan A, Farnaz; Qian, Song S; Paerl, Hans W; Reckhow, Kenneth H; Albright, Elizabeth A
2014-06-15
The present paper utilizes a Bayesian Belief Network (BBN) approach to intuitively present and quantify our current understanding of the complex physical, chemical, and biological processes that lead to eutrophication in an estuarine ecosystem (New River Estuary, North Carolina, USA). The model is further used to explore the effects of plausible future climatic and nutrient pollution management scenarios on water quality indicators. The BBN, through visualizing the structure of the network, facilitates knowledge communication with managers/stakeholders who might not be experts in the underlying scientific disciplines. Moreover, the developed structure of the BBN is transferable to other comparable estuaries. The BBN nodes are discretized exploring a new approach called moment matching method. The conditional probability tables of the variables are driven by a large dataset (four years). Our results show interaction among various predictors and their impact on water quality indicators. The synergistic effects caution future management actions. PMID:24814252
A Quasirandom Approach to Integration in Bayesian Statistics
Shaw, J. E. H.
1988-01-01
Practical Bayesian statistics with realistic models usually gives posterior distributions that are analytically intractable, and inferences must be made via numerical integration. In many cases, the integrands can be transformed into periodic functions on the unit $d$-dimensional cube, for which quasirandom sequences are known to give efficient numerical integration rules. This paper reviews some relevant theory, defines new criteria for identifying suitable quasirandom sequences and suggests...
Regional fertility data analysis: A small area Bayesian approach
Eduardo A. Castro; Zhen Zhang; Arnab Bhattacharjee; Martins, José M.; Taps Maiti
2013-01-01
Accurate estimation of demographic variables such as mortality, fertility and migrations, by age groups and regions, is important for analyses and policy. However, traditional estimates based on within cohort counts are often inaccurate, particularly when the sub-populations considered are small. We use small area Bayesian statistics to develop a model for age-specific fertility rates. In turn, such small area estimation requires accurate descriptions of spatial and cross-section dependence. ...
Topics in Bayesian statistics and maximum entropy
International Nuclear Information System (INIS)
Notions of Bayesian decision theory and maximum entropy methods are reviewed with particular emphasis on probabilistic inference and Bayesian modeling. The axiomatic approach is considered as the best justification of Bayesian analysis and maximum entropy principle applied in natural sciences. Particular emphasis is put on solving the inverse problem in digital image restoration and Bayesian modeling of neural networks. Further topics addressed briefly include language modeling, neutron scattering, multiuser detection and channel equalization in digital communications, genetic information, and Bayesian court decision-making. (author)
Directory of Open Access Journals (Sweden)
Cristian Rodriguez Rivero
2016-03-01
Full Text Available A new predictor algorithm based on Bayesian enhanced approach (BEA for long-term chaotic time series using artificial neural networks (ANN is presented. The technique based on stochastic models uses Bayesian inference by means of Fractional Brownian Motion as model data and Beta model as prior information. However, the need of experimental data for specifying and estimating causal models has not changed. Indeed, Bayes method provides another way to incorporate prior knowledge in forecasting models; the simplest representations of prior knowledge in forecasting models are hard to beat in many forecasting situations, either because prior knowledge is insufficient to improve on models or because prior knowledge leads to the conclusion that the situation is stable. This work contributes with long-term time series prediction, to give forecast horizons up to 18 steps ahead. Thus, the forecasted values and validation data are presented by solutions of benchmark chaotic series such as Mackey-Glass, Lorenz, Henon, Logistic, Rössler, Ikeda, Quadratic one-dimensional map series and monthly cumulative rainfall collected from Despeñaderos, Cordoba, Argentina. The computational results are evaluated against several non-linear ANN predictors proposed before on high roughness series that shows a better performance of Bayesian Enhanced approach in long-term forecasting.
Directory of Open Access Journals (Sweden)
Michael J McGeachie
2014-06-01
Full Text Available Bayesian Networks (BN have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com.
Gonzalez-Redin, Julen; Luque, Sandra; Poggio, Laura; Smith, Ron; Gimona, Alessandro
2016-01-01
An integrated methodology, based on linking Bayesian belief networks (BBN) with GIS, is proposed for combining available evidence to help forest managers evaluate implications and trade-offs between forest production and conservation measures to preserve biodiversity in forested habitats. A Bayesian belief network is a probabilistic graphical model that represents variables and their dependencies through specifying probabilistic relationships. In spatially explicit decision problems where it is difficult to choose appropriate combinations of interventions, the proposed integration of a BBN with GIS helped to facilitate shared understanding of the human-landscape relationships, while fostering collective management that can be incorporated into landscape planning processes. Trades-offs become more and more relevant in these landscape contexts where the participation of many and varied stakeholder groups is indispensable. With these challenges in mind, our integrated approach incorporates GIS-based data with expert knowledge to consider two different land use interests - biodiversity value for conservation and timber production potential - with the focus on a complex mountain landscape in the French Alps. The spatial models produced provided different alternatives of suitable sites that can be used by policy makers in order to support conservation priorities while addressing management options. The approach provided provide a common reasoning language among different experts from different backgrounds while helped to identify spatially explicit conflictive areas. PMID:26597639
A General and Flexible Approach to Estimating the Social Relations Model Using Bayesian Methods
Ludtke, Oliver; Robitzsch, Alexander; Kenny, David A.; Trautwein, Ulrich
2013-01-01
The social relations model (SRM) is a conceptual, methodological, and analytical approach that is widely used to examine dyadic behaviors and interpersonal perception within groups. This article introduces a general and flexible approach to estimating the parameters of the SRM that is based on Bayesian methods using Markov chain Monte Carlo…
SU-E-T-51: Bayesian Network Models for Radiotherapy Error Detection
Energy Technology Data Exchange (ETDEWEB)
Kalet, A; Phillips, M; Gennari, J [UniversityWashington, Seattle, WA (United States)
2014-06-01
Purpose: To develop a probabilistic model of radiotherapy plans using Bayesian networks that will detect potential errors in radiation delivery. Methods: Semi-structured interviews with medical physicists and other domain experts were employed to generate a set of layered nodes and arcs forming a Bayesian Network (BN) which encapsulates relevant radiotherapy concepts and their associated interdependencies. Concepts in the final network were limited to those whose parameters are represented in the institutional database at a level significant enough to develop mathematical distributions. The concept-relation knowledge base was constructed using the Web Ontology Language (OWL) and translated into Hugin Expert Bayes Network files via the the RHugin package in the R statistical programming language. A subset of de-identified data derived from a Mosaiq relational database representing 1937 unique prescription cases was processed and pre-screened for errors and then used by the Hugin implementation of the Estimation-Maximization (EM) algorithm for machine learning all parameter distributions. Individual networks were generated for each of several commonly treated anatomic regions identified by ICD-9 neoplasm categories including lung, brain, lymphoma, and female breast. Results: The resulting Bayesian networks represent a large part of the probabilistic knowledge inherent in treatment planning. By populating the networks entirely with data captured from a clinical oncology information management system over the course of several years of normal practice, we were able to create accurate probability tables with no additional time spent by experts or clinicians. These probabilistic descriptions of the treatment planning allow one to check if a treatment plan is within the normal scope of practice, given some initial set of clinical evidence and thereby detect for potential outliers to be flagged for further investigation. Conclusion: The networks developed here support the
SU-E-T-51: Bayesian Network Models for Radiotherapy Error Detection
International Nuclear Information System (INIS)
Purpose: To develop a probabilistic model of radiotherapy plans using Bayesian networks that will detect potential errors in radiation delivery. Methods: Semi-structured interviews with medical physicists and other domain experts were employed to generate a set of layered nodes and arcs forming a Bayesian Network (BN) which encapsulates relevant radiotherapy concepts and their associated interdependencies. Concepts in the final network were limited to those whose parameters are represented in the institutional database at a level significant enough to develop mathematical distributions. The concept-relation knowledge base was constructed using the Web Ontology Language (OWL) and translated into Hugin Expert Bayes Network files via the the RHugin package in the R statistical programming language. A subset of de-identified data derived from a Mosaiq relational database representing 1937 unique prescription cases was processed and pre-screened for errors and then used by the Hugin implementation of the Estimation-Maximization (EM) algorithm for machine learning all parameter distributions. Individual networks were generated for each of several commonly treated anatomic regions identified by ICD-9 neoplasm categories including lung, brain, lymphoma, and female breast. Results: The resulting Bayesian networks represent a large part of the probabilistic knowledge inherent in treatment planning. By populating the networks entirely with data captured from a clinical oncology information management system over the course of several years of normal practice, we were able to create accurate probability tables with no additional time spent by experts or clinicians. These probabilistic descriptions of the treatment planning allow one to check if a treatment plan is within the normal scope of practice, given some initial set of clinical evidence and thereby detect for potential outliers to be flagged for further investigation. Conclusion: The networks developed here support the
Computer Networks A Systems Approach
Peterson, Larry L
2011-01-01
This best-selling and classic book teaches you the key principles of computer networks with examples drawn from the real world of network and protocol design. Using the Internet as the primary example, the authors explain various protocols and networking technologies. Their systems-oriented approach encourages you to think about how individual network components fit into a larger, complex system of interactions. Whatever your perspective, whether it be that of an application developer, network administrator, or a designer of network equipment or protocols, you will come away with a "big pictur
Energy Technology Data Exchange (ETDEWEB)
Gogu, C; Le Riche, R; Molimard, J; Vautrin, A [Ecole des Mines de Saint Etienne, 158 cours Fauriel, 42023 Saint Etienne (France); Haftka, R; Sankar, B [University of Florida, PO Box 116250, Gainesville, FL, 32611 (United States)], E-mail: gogu@emse.fr
2008-11-01
The basic formulation of the least squares method, based on the L{sub 2} norm of the misfit, is still widely used today for identifying elastic material properties from experimental data. An alternative statistical approach is the Bayesian method. We seek here situations with significant difference between the material properties found by the two methods. For a simple three bar truss example we illustrate three such situations in which the Bayesian approach leads to more accurate results: different magnitude of the measurements, different uncertainty in the measurements and correlation among measurements. When all three effects add up, the Bayesian approach can have a large advantage. We then compared the two methods for identification of elastic constants from plate vibration natural frequencies.
GraphAlignment: Bayesian pairwise alignment of biological networks
Directory of Open Access Journals (Sweden)
Kolář Michal
2012-11-01
Full Text Available Abstract Background With increased experimental availability and accuracy of bio-molecular networks, tools for their comparative and evolutionary analysis are needed. A key component for such studies is the alignment of networks. Results We introduce the Bioconductor package GraphAlignment for pairwise alignment of bio-molecular networks. The alignment incorporates information both from network vertices and network edges and is based on an explicit evolutionary model, allowing inference of all scoring parameters directly from empirical data. We compare the performance of our algorithm to an alternative algorithm, Græmlin 2.0. On simulated data, GraphAlignment outperforms Græmlin 2.0 in several benchmarks except for computational complexity. When there is little or no noise in the data, GraphAlignment is slower than Græmlin 2.0. It is faster than Græmlin 2.0 when processing noisy data containing spurious vertex associations. Its typical case complexity grows approximately as O(N2.6. On empirical bacterial protein-protein interaction networks (PIN and gene co-expression networks, GraphAlignment outperforms Græmlin 2.0 with respect to coverage and specificity, albeit by a small margin. On large eukaryotic PIN, Græmlin 2.0 outperforms GraphAlignment. Conclusions The GraphAlignment algorithm is robust to spurious vertex associations, correctly resolves paralogs, and shows very good performance in identification of homologous vertices defined by high vertex and/or interaction similarity. The simplicity and generality of GraphAlignment edge scoring makes the algorithm an appropriate choice for global alignment of networks.
An automated method for estimating reliability of grid systems using Bayesian networks
International Nuclear Information System (INIS)
Grid computing has become relevant due to its applications to large-scale resource sharing, wide-area information transfer, and multi-institutional collaborating. In general, in grid computing a service requests the use of a set of resources, available in a grid, to complete certain tasks. Although analysis tools and techniques for these types of systems have been studied, grid reliability analysis is generally computation-intensive to obtain due to the complexity of the system. Moreover, conventional reliability models have some common assumptions that cannot be applied to the grid systems. Therefore, new analytical methods are needed for effective and accurate assessment of grid reliability. This study presents a new method for estimating grid service reliability, which does not require prior knowledge about the grid system structure unlike the previous studies. Moreover, the proposed method does not rely on any assumptions about the link and node failure rates. This approach is based on a data-mining algorithm, the K2, to discover the grid system structure from raw historical system data, that allows to find minimum resource spanning trees (MRST) within the grid then, uses Bayesian networks (BN) to model the MRST and estimate grid service reliability.
Novel dynamic Bayesian networks for facial action element recognition and understanding
Zhao, Wei; Park, Jeong-Seon; Choi, Dong-You; Lee, Sang-Woong
2011-12-01
In daily life, language is an important tool of communication between people. Besides language, facial action can also provide a great amount of information. Therefore, facial action recognition has become a popular research topic in the field of human-computer interaction (HCI). However, facial action recognition is quite a challenging task due to its complexity. In a literal sense, there are thousands of facial muscular movements, many of which have very subtle differences. Moreover, muscular movements always occur simultaneously when the pose is changed. To address this problem, we first build a fully automatic facial points detection system based on a local Gabor filter bank and principal component analysis. Then, novel dynamic Bayesian networks are proposed to perform facial action recognition using the junction tree algorithm over a limited number of feature points. In order to evaluate the proposed method, we have used the Korean face database for model training. For testing, we used the CUbiC FacePix, facial expressions and emotion database, Japanese female facial expression database, and our own database. Our experimental results clearly demonstrate the feasibility of the proposed approach.
Dynamic Bayesian Network for Accurate Detection of Peptides from Tandem Mass Spectra.
Halloran, John T; Bilmes, Jeff A; Noble, William S
2016-08-01
A central problem in mass spectrometry analysis involves identifying, for each observed tandem mass spectrum, the corresponding generating peptide. We present a dynamic Bayesian network (DBN) toolkit that addresses this problem by using a machine learning approach. At the heart of this toolkit is a DBN for Rapid Identification (DRIP), which can be trained from collections of high-confidence peptide-spectrum matches (PSMs). DRIP's score function considers fragment ion matches using Gaussians rather than fixed fragment-ion tolerances and also finds the optimal alignment between the theoretical and observed spectrum by considering all possible alignments, up to a threshold that is controlled using a beam-pruning algorithm. This function not only yields state-of-the art database search accuracy but also can be used to generate features that significantly boost the performance of the Percolator postprocessor. The DRIP software is built upon a general purpose DBN toolkit (GMTK), thereby allowing a wide variety of options for user-specific inference tasks as well as facilitating easy modifications to the DRIP model in future work. DRIP is implemented in Python and C++ and is available under Apache license at http://melodi-lab.github.io/dripToolkit . PMID:27397138
Combining Bayesian Networks and Agent Based Modeling to develop a decision-support model in Vietnam
Nong, Bao Anh; Ertsen, Maurits; Schoups, Gerrit
2016-04-01
Complexity and uncertainty in natural resources management have been focus themes in recent years. Within these debates, with the aim to define an approach feasible for water management practice, we are developing an integrated conceptual modeling framework for simulating decision-making processes of citizens, in our case in the Day river area, Vietnam. The model combines Bayesian Networks (BNs) and Agent-Based Modeling (ABM). BNs are able to combine both qualitative data from consultants / experts / stakeholders, and quantitative data from observations on different phenomena or outcomes from other models. Further strengths of BNs are that the relationship between variables in the system is presented in a graphical interface, and that components of uncertainty are explicitly related to their probabilistic dependencies. A disadvantage is that BNs cannot easily identify the feedback of agents in the system once changes appear. Hence, ABM was adopted to represent the reaction among stakeholders under changes. The modeling framework is developed as an attempt to gain better understanding about citizen's behavior and factors influencing their decisions in order to reduce uncertainty in the implementation of water management policy.
[Contribution of computers to pharmacokinetics, Bayesian approach and population pharmacokinetics].
Hecquet, B
1995-12-01
A major objective for pharmacokineticians is to help practicians to define drug administration protocols. Protocols are generally designed for all the patients but inter individual variability would need monitoring for each patient. Computers are widely used to determine pharmacokinetic parameters and to try to individualize drug administration. Severals examples are summarily described: terminal half-life determination by regression; model fitting to experimental data; Bayesian statistics for individual dose adaptation; population pharmacokinetic methods for parameter evaluation. These methods do not replace the pharmacokinetician thought but could make possible drug administration taking into account individual characteristics. PMID:8680074
Reliability assessment of a software-based motor protection relay using Bayesian networks
International Nuclear Information System (INIS)
Often to make justified reliability claim of a certain system different kinds of evidence needs to be combined. Some of the evidence supporting the claim may be of qualitative type, whereas some of the evidence may be of quantitative type. Combination of disparate evidence together is not always straightforward and the reasoning behind the conclusions obtained from the combination may be hard to explain. Bayesian networks provide a consistent and transparent method for the combination of the evidence and for the reasoning of one's beliefs on the relation of different pieces of evidence. In the special report we demonstrate the combination of disparate evidence with a case study on the reliability assessment of a software-based motor protection relay, where the combination of the reliability related evidence has been carried out using Bayesian networks. The reliability related evidence in the case study is the expert judgement on the development process and the operational experience estimated for the softwarebased motor protection relay. (orig.)
Prediction of Sybil attack on WSN using Bayesian network and swarm intelligence
Muraleedharan, Rajani; Ye, Xiang; Osadciw, Lisa Ann
2008-04-01
Security in wireless sensor networks is typically sacrificed or kept minimal due to limited resources such as memory and battery power. Hence, the sensor nodes are prone to Denial-of-service attacks and detecting the threats is crucial in any application. In this paper, the Sybil attack is analyzed and a novel prediction method, combining Bayesian algorithm and Swarm Intelligence (SI) is proposed. Bayesian Networks (BN) is used in representing and reasoning problems, by modeling the elements of uncertainty. The decision from the BN is applied to SI forming an Hybrid Intelligence Scheme (HIS) to re-route the information and disconnecting the malicious nodes in future routes. A performance comparison based on the prediction using HIS vs. Ant System (AS) helps in prioritizing applications where decisions are time-critical.
The threshold EM algorithm for parameter learning in bayesian network with incomplete data
Lamine, Fradj Ben; Mahjoub, Mohamed Ali
2012-01-01
Bayesian networks (BN) are used in a big range of applications but they have one issue concerning parameter learning. In real application, training data are always incomplete or some nodes are hidden. To deal with this problem many learning parameter algorithms are suggested foreground EM, Gibbs sampling and RBE algorithms. In order to limit the search space and escape from local maxima produced by executing EM algorithm, this paper presents a learning parameter algorithm that is a fusion of EM and RBE algorithms. This algorithm incorporates the range of a parameter into the EM algorithm. This range is calculated by the first step of RBE algorithm allowing a regularization of each parameter in bayesian network after the maximization step of the EM algorithm. The threshold EM algorithm is applied in brain tumor diagnosis and show some advantages and disadvantages over the EM algorithm.
Real-time prediction of acute cardiovascular events using hardware-implemented Bayesian networks.
Tylman, Wojciech; Waszyrowski, Tomasz; Napieralski, Andrzej; Kamiński, Marek; Trafidło, Tamara; Kulesza, Zbigniew; Kotas, Rafał; Marciniak, Paweł; Tomala, Radosław; Wenerski, Maciej
2016-02-01
This paper presents a decision support system that aims to estimate a patient׳s general condition and detect situations which pose an immediate danger to the patient׳s health or life. The use of this system might be especially important in places such as accident and emergency departments or admission wards, where a small medical team has to take care of many patients in various general conditions. Particular stress is laid on cardiovascular and pulmonary conditions, including those leading to sudden cardiac arrest. The proposed system is a stand-alone microprocessor-based device that works in conjunction with a standard vital signs monitor, which provides input signals such as temperature, blood pressure, pulseoxymetry, ECG, and ICG. The signals are preprocessed and analysed by a set of artificial intelligence algorithms, the core of which is based on Bayesian networks. The paper focuses on the construction and evaluation of the Bayesian network, both its structure and numerical specification. PMID:26456181
Cheng, J; 10.1613/jair.764
2011-01-01
Stochastic sampling algorithms, while an attractive alternative to exact algorithms in very large Bayesian network models, have been observed to perform poorly in evidential reasoning with extremely unlikely evidence. To address this problem, we propose an adaptive importance sampling algorithm, AIS-BN, that shows promising convergence rates even under extreme conditions and seems to outperform the existing sampling algorithms consistently. Three sources of this performance improvement are (1) two heuristics for initialization of the importance function that are based on the theoretical properties of importance sampling in finite-dimensional integrals and the structural advantages of Bayesian networks, (2) a smooth learning method for the importance function, and (3) a dynamic weighting function for combining samples from different stages of the algorithm. We tested the performance of the AIS-BN algorithm along with two state of the art general purpose sampling algorithms, likelihood weighting (Fung and Chang...
Phan, Kevin; Xie, Ashleigh; Kumar, Narendra; Wong, Sophia; Medi, Caroline; La Meir, Mark; Yan, Tristan D
2015-08-01
Simplified maze procedures involving radiofrequency, cryoenergy and microwave energy sources have been increasingly utilized for surgical treatment of atrial fibrillation as an alternative to the traditional cut-and-sew approach. In the absence of direct comparisons, a Bayesian network meta-analysis is another alternative to assess the relative effect of different treatments, using indirect evidence. A Bayesian meta-analysis of indirect evidence was performed using 16 published randomized trials identified from 6 databases. Rank probability analysis was used to rank each intervention in terms of their probability of having the best outcome. Sinus rhythm prevalence beyond the 12-month follow-up was similar between the cut-and-sew, microwave and radiofrequency approaches, which were all ranked better than cryoablation (respectively, 39, 36, and 25 vs 1%). The cut-and-sew maze was ranked worst in terms of mortality outcomes compared with microwave, radiofrequency and cryoenergy (2 vs 19, 34, and 24%, respectively). The cut-and-sew maze procedure was associated with significantly lower stroke rates compared with microwave ablation [odds ratio <0.01; 95% confidence interval 0.00, 0.82], and ranked the best in terms of pacemaker requirements compared with microwave, radiofrequency and cryoenergy (81 vs 14, and 1, <0.01% respectively). Bayesian rank probability analysis shows that the cut-and-sew approach is associated with the best outcomes in terms of sinus rhythm prevalence and stroke outcomes, and remains the gold standard approach for AF treatment. Given the limitations of indirect comparison analysis, these results should be viewed with caution and not over-interpreted. PMID:25391388
Bayesian artificial intelligence
Korb, Kevin B
2010-01-01
Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente
THE DEVELOPMENT OF AN EXPERT CAR FAILURE DIAGNOSIS SYSTEM WITH BAYESIAN APPROACH
Widodo Budiharto
2013-01-01
In this study we propose a model of an Expert System to diagnose a car failure and malfunction using Bayesian Approach. An expert car failure diagnosis system is a computer system that uses specific knowledge which is owned by an expert to resolve car problems. Our specific system consists of knowledge base and solution to diagnose failure of car from Toyota Avanza, one of the favorite car used in Indonesia today and applying Bayesian approach for knowing the belief of the solution. We build ...
Ge, L.; Asseldonk, van, N.; Valeeva, N.I.; Hennen, W.H.G.J.; Bergevoet, R.H.M.
2011-01-01
Efficient policy intervention to reduce antibiotic use in livestock production requires knowledge about the rationale underlying antibiotic usage. Animal health status and management quality are considered the two most important factors that influence farmersâ¿¿ decision-making concerning antibiotic use. Information on these two factors is therefore crucial in designing incentive mechanisms. In this paper, a Bayesian belief network (BBN) is built to represent the knowledge on how these factor...
Learning Bayesian network structure: towards the essential graph by integer linear programming tools
Czech Academy of Sciences Publication Activity Database
Studený, Milan; Haws, D.
2014-01-01
Roč. 55, č. 4 (2014), s. 1043-1071. ISSN 0888-613X R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : learning Bayesian network structure * integer linear programming * characteristic imset * essential graph Subject RIV: BA - General Mathematics Impact factor: 2.451, year: 2014 http://library.utia.cas.cz/separaty/2014/MTR/studeny-0427002.pdf
Hierarchical and Bayesian Scattered Data Taxonomy in Mobile Ad-hoc Network
Sunar Arif Hussain; K.E. SREENIVASA MURTHY
2011-01-01
MANETS promise an unprecedented opportunity to monitor physical environments via inexpensive wireless embedded devices. Given the sheer amount of sensed data, efficient taxonomy of them becomes a critical task in many sensor network applications. The Bayesian classifier is a fundamental taxonomy technique. We introduce two classifiers: Naive Bayes and a classifier based on class decomposition using K-means clustering. We consider two complementary tasks: model computation and scoring a data s...
Intervention and causality: forecasting traffic flows using a dynamic Bayesian network
Queen, Catriona; Albers, Casper
2009-01-01
Real-time traffic flow data across entire networks can be used in a traffic management system to monitor current traffic flows so that traffic can be directed and managed efficiently. Reliable short-term forecasting models of traffic flows are crucial for the success of any traffic management system. The model proposed in this paper for forecasting traffic flows is a multivariate Bayesian dynamic model called the multiregression dynamic model (MDM). This model is an example of a dynamic ...
Salima TAKTAK; AZOUZI Mohamed Ali; Triki, Mohamed
2013-01-01
This article discusses the effect of the entrepreneur’s profile on financing his creative project. It analyzes the impact of overconfidence on improving perceptions financing capacity of the project. To analyze this relationship we used networks as Bayesian data analysis method. Our sample is composed of 200 entrepreneurs. Our results show a high level of entrepreneur’s overconfidence positively affects the evaluation of financing capacity of the project.
A Bayesian Network Methodology for Infrastructure Seismic Risk Assessment and Decision Support
Bensi, Michelle Terese
2010-01-01
A Bayesian network methodology is developed for performing infrastructure seismic risk assessment and providing decision support with an emphasis on immediate post-earthquake applications. The methodology consists of four major components: (1) a seismic demand model of ground motion intensity as a spatially distributed Gaussian random field accounting for multiple seismic sources with uncertain characteristics and including finite fault rupture and directivity effects; (2) a model of the perf...
A Mobile Picture Tagging System Using Tree-Structured Layered Bayesian Networks
Young-Seol Lee; Sung-Bae Cho
2013-01-01
Advances in digital media technology have increased in multimedia content. Tagging is one of the most effective methods to manage a great volume of multimedia content. However, manual tagging has limitations such as human fatigue and subjective and ambiguous keywords. In this paper, we present an automatic tagging method to generate semantic annotation on a mobile phone. In order to overcome the constraints of the mobile environment, the method uses two layered Bayesian networks. In contrast ...
Optimizing the Amount of Models Taken into Consideration During Model Selection in Bayesian Networks
Castelo, J.R.; Siebes, Arno
1999-01-01
Graphical model selection from data embodies several difficulties. Among them, it is specially challenging the size of the sample space of models on which one should carry out model selection, even considering only a modest amount of variables. This becomes more severe when one works on those graphical models where some variables may be responses to other. This is the case of Bayesian Networks that are modeled by acyclic digraphs. In this paper we try to reduce the amount of models taken into...
Learning Bayesian Network to Explore Connectivity of Risk Factors in Enterprise Risk Management
Paradee Namwongse; Yachai Limpiyakorn
2012-01-01
Enterprise Risk Management provides a holistic top-down view of key risks facing an organization. Developing techniques that can exhibit the inter-connectivity of risks are required to effectively manage risks on an enterprise-wide. This research thus proposed Bayesian Network learning technique to explore the correlated risks in portfolio risk management using the Expressway Authority of Thailand for empirical study. The comparisons of three Bayes Net algorithms for building the risk map wer...
Bayesian Belief Network Method for Predicting Asphaltene Precipitation in Light Oil Reservoirs
Jeffrey O. Oseh (M.Sc.); Olugbenga A. Falode (Ph.D)
2015-01-01
Asphaltene precipitation is caused by a number of factors including changes in pressure, temperature, and composition. The two most prevalent causes of asphaltene precipitation in light oil reservoirs are decreasing pressure and mixing oil with injected solvent in improved oil recovery processes. This study focused on predicting the amount of asphaltene precipitation with increasing Gas-Oil Ratio in a light oil reservoir using Bayesian Belief Network Method. These Artificial Intelligence-Baye...
How matroids occur in the context of learning Bayesian network structure
Czech Academy of Sciences Publication Activity Database
Studený, Milan
Corvallis, Oregon: AUAI Press, 2015, s. 832-841. ISBN 978-0-9966431-0-8. [31st Conference on Uncertainty in Artificial Intelligence. Amsterdam (NL), 12.07.2015-16.07.2015] R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : learning Bayesian network structure * matroid * family-variable polytope Subject RIV: BA - General Mathematics http://library.utia.cas.cz/separaty/2015/MTR/studeny-0447685.pdf
Gevaert, Olivier; De Smet, Frank; Timmerman, Dirk; Moreau, Yves; De Moor, Bart
2006-01-01
MOTIVATION: Clinical data, such as patient history, laboratory analysis, ultrasound parameters--which are the basis of day-to-day clinical decision support--are often underused to guide the clinical management of cancer in the presence of microarray data. We propose a strategy based on Bayesian networks to treat clinical and microarray data on an equal footing. The main advantage of this probabilistic model is that it allows to integrate these data sources in several ways and that it allows t...
Bayesian Network Assessment Method for Civil Aviation Safety Based on Flight Delays
Huawei Wang; Jun Gao
2013-01-01
Flight delays and safety are the principal contradictions in the sound development of civil aviation. Flight delays often come up and induce civil aviation safety risk simultaneously. Based on flight delays, the random characteristics of civil aviation safety risk are analyzed. Flight delays have been deemed to a potential safety hazard. The change rules and characteristics of civil aviation safety risk based on flight delays have been analyzed. Bayesian networks (BN) have been used to build ...
Wireless Sensor Networks Approach
Perotti, Jose M.
2003-01-01
This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.
Analyzing the effect of introducing a kurtosis parameter in Gaussian Bayesian networks
Energy Technology Data Exchange (ETDEWEB)
Main, P. [Dpto. Estadistica e I.O., Fac. Ciencias Matematicas, Univ. Complutense de Madrid, 28040 Madrid (Spain)], E-mail: pmain@mat.ucm.es; Navarro, H. [Dpto. de Estadistica, I.O. y Calc. Numerico, Fac. Ciencias, UNED, 28040 Madrid (Spain)
2009-05-15
Gaussian Bayesian networks are graphical models that represent the dependence structure of a multivariate normal random variable with a directed acyclic graph (DAG). In Gaussian Bayesian networks the output is usually the conditional distribution of some unknown variables of interest given a set of evidential nodes whose values are known. The problem of uncertainty about the assumption of normality is very common in applications. Thus a sensitivity analysis of the non-normality effect in our conclusions could be necessary. The aspect of non-normality to be considered is the tail behavior. In this line, the multivariate exponential power distribution is a family depending on a kurtosis parameter that goes from a leptokurtic to a platykurtic distribution with the normal as a mesokurtic distribution. Therefore a more general model can be considered using the multivariate exponential power distribution to describe the joint distribution of a Bayesian network, with a kurtosis parameter reflecting deviations from the normal distribution. The sensitivity of the conclusions to this perturbation is analyzed using the Kullback-Leibler divergence measure that provides an interesting formula to evaluate the effect.
Software Delivery Risk Management: Application of Bayesian Networks in Agile Software Development
Directory of Open Access Journals (Sweden)
Ancveire Ieva
2015-12-01
Full Text Available The information technology industry cannot be imagined without large- or small-scale projects. They are implemented to develop systems enabling key business processes and improving performance and enterprise resource management. However, projects often experience various difficulties during their execution. These problems are usually related to the three objectives of the project – costs, quality and deadline. A way these challenges can be solved is project risk management. However, not always the main problems and their influencing factors can be easily identified. Usually there is a need for a more profound analysis of the problem situation. In this paper, we propose the use of a Bayesian Network concept for quantitative risk management in agile projects. The Bayesian Network is explored using a case study focusing on a project that faces difficulties during the software delivery process. We explain why an agile risk analysis is needed and assess the potential risk factors, which may occur during the project. Thereafter, we design the Bayesian Network to capture the actual problem situation and make suggestions how to improve the delivery process based on the measures to be taken to reduce the occurrence of project risks.
Reliability estimation of safety-critical software-based systems using Bayesian networks
Energy Technology Data Exchange (ETDEWEB)
Helminen, A. [VTT Automation, Espoo (Finland)
2001-06-01
Due to the nature of software faults and the way they cause system failures new methods are needed for the safety and reliability evaluation of software-based safety-critical automation systems in nuclear power plants. In the research project 'Programmable automation system safety integrity assessment (PASSI)', belonging to the Finnish Nuclear Safety Research Programme (FINNUS, 1999-2002), various safety assessment methods and tools for software based systems are developed and evaluated. The project is financed together by the Radiation and Nuclear Safety Authority (STUK), the Ministry of Trade and Industry (KTM) and the Technical Research Centre of Finland (VTT). In this report the applicability of Bayesian networks to the reliability estimation of software-based systems is studied. The applicability is evaluated by building Bayesian network models for the systems of interest and performing simulations for these models. In the simulations hypothetical evidence is used for defining the parameter relations and for determining the ability to compensate disparate evidence in the models. Based on the experiences from modelling and simulations we are able to conclude that Bayesian networks provide a good method for the reliability estimation of software-based systems. (orig.)
Unavailability analysis of a PWR safety system by a Bayesian network
International Nuclear Information System (INIS)
Bayesian networks (BN) are directed acyclic graphs that have dependencies between variables, which are represented by nodes. These dependencies are represented by lines connecting the nodes and can be directed or not. Thus, it is possible to model conditional probabilities and calculate them with the help of Bayes' Theorem. The objective of this paper is to present the modeling of the failure of a safety system of a typical second generation light water reactor plant, the Containment Heat Removal System (CHRS), whose function is to cool the water of containment reservoir being recirculated through the Containment Spray Recirculation System (CSRS). CSRS is automatically initiated after a loss of coolant accident (LOCA) and together with the CHRS cools the reservoir water. The choice of this system was due to the fact that its analysis by a fault tree is available in Appendix II of the Reactor Safety Study Report (WASH-1400), and therefore all the necessary technical information is also available, such as system diagrams, failure data input and the fault tree itself that was developed to study system failure. The reason for the use of a bayesian network in this context was to assess its ability to reproduce the results of fault tree analyses and also verify the feasibility of treating dependent events. Comparing the fault trees and bayesian networks, the results obtained for the system failure were very close. (author)
Reliability estimation of safety-critical software-based systems using Bayesian networks
International Nuclear Information System (INIS)
Due to the nature of software faults and the way they cause system failures new methods are needed for the safety and reliability evaluation of software-based safety-critical automation systems in nuclear power plants. In the research project 'Programmable automation system safety integrity assessment (PASSI)', belonging to the Finnish Nuclear Safety Research Programme (FINNUS, 1999-2002), various safety assessment methods and tools for software based systems are developed and evaluated. The project is financed together by the Radiation and Nuclear Safety Authority (STUK), the Ministry of Trade and Industry (KTM) and the Technical Research Centre of Finland (VTT). In this report the applicability of Bayesian networks to the reliability estimation of software-based systems is studied. The applicability is evaluated by building Bayesian network models for the systems of interest and performing simulations for these models. In the simulations hypothetical evidence is used for defining the parameter relations and for determining the ability to compensate disparate evidence in the models. Based on the experiences from modelling and simulations we are able to conclude that Bayesian networks provide a good method for the reliability estimation of software-based systems. (orig.)
A Bayesian approach to matched field processing in uncertain ocean environments
Institute of Scientific and Technical Information of China (English)
LI Jianlong; PAN Xiang
2008-01-01
An approach of Bayesian Matched Field Processing(MFP)was discussed in the uncertain ocean environment.In this approach,uncertainty knowledge is modeled and spatial and temporal data Received by the array are fully used.Therefore,a mechanism for MFP is found.which well combines model-based and data-driven methods of uncertain field processing.By theoretical derivation,simulation analysis and the validation of the experimental array data at sea,we find that(1)the basic components of Bayesian matched field processors are the corresponding sets of Bartlett matched field processor,MVDR(minimum variance distortionless response)matched field processor,etc.;(2)Bayesian MVDR/Bartlett MFP are the weighted sum of the MVDR/Bartlett MFP,where the weighted coefficients are the values of the a posteriori probability;(3)with the uncertain ocean environment,Bayesian MFP can more correctly locate the source than MVDR MFP or Bartlett MFP;(4)Bayesian MFP call better suppress sidelobes of the ambiguity surfaces.
Impact of environmental inputs on reverse-engineering approach to network structures
Buchanan-Wollaston Vicky; Sinfield James L; Wu Jianhua; Feng Jianfeng
2009-01-01
Abstract Background Uncovering complex network structures from a biological system is one of the main topic in system biology. The network structures can be inferred by the dynamical Bayesian network or Granger causality, but neither techniques have seriously taken into account the impact of environmental inputs. Results With considerations of natural rhythmic dynamics of biological data, we propose a system biology approach to reveal the impact of environmental inputs on network structures. ...
A Bayesian approach to linear regression in astronomy
Sereno, Mauro
2015-01-01
Linear regression is common in astronomical analyses. I discuss a Bayesian hierarchical modeling of data with heteroscedastic and possibly correlated measurement errors and intrinsic scatter. The method fully accounts for time evolution. The slope, the normalization, and the intrinsic scatter of the relation can evolve with the redshift. The intrinsic distribution of the independent variable is approximated using a mixture of Gaussian distributions whose means and standard deviations depend on time. The method can address scatter in the measured independent variable (a kind of Eddington bias), selection effects in the response variable (Malmquist bias), and departure from linearity in form of a knee. I tested the method with toy models and simulations and quantified the effect of biases and inefficient modeling. The R-package LIRA (LInear Regression in Astronomy) is made available to perform the regression.
A Bayesian Nonparametric Approach to Image Super-Resolution.
Polatkan, Gungor; Zhou, Mingyuan; Carin, Lawrence; Blei, David; Daubechies, Ingrid
2015-02-01
Super-resolution methods form high-resolution images from low-resolution images. In this paper, we develop a new Bayesian nonparametric model for super-resolution. Our method uses a beta-Bernoulli process to learn a set of recurring visual patterns, called dictionary elements, from the data. Because it is nonparametric, the number of elements found is also determined from the data. We test the results on both benchmark and natural images, comparing with several other models from the research literature. We perform large-scale human evaluation experiments to assess the visual quality of the results. In a first implementation, we use Gibbs sampling to approximate the posterior. However, this algorithm is not feasible for large-scale data. To circumvent this, we then develop an online variational Bayes (VB) algorithm. This algorithm finds high quality dictionaries in a fraction of the time needed by the Gibbs sampler. PMID:26353246
Mixed Bayesian Networks with Auxiliary Variables for Automatic Speech Recognition
Stephenson, Todd Andrew; Magimai.-Doss, Mathew; Bourlard, Hervé
2001-01-01
Standard hidden Markov models (HMMs), as used in automatic speech recognition (ASR), calculate their emission probabilities by an artificial neural network (ANN) or a Gaussian distribution conditioned on the hidden state variable, considering the emissions independent of any other variable in the model. Recent work showed the benefit of conditioning the emission distributions on a discrete auxiliary variable, which is observed in training and hidden in recognition. Related work has shown the ...
Akutekwe, Arinze; Seker, Huseyin
2015-08-01
Comprehensive understanding of gene regulatory networks (GRNs) is a major challenge in systems biology. Most methods for modeling and inferring the dynamics of GRNs, such as those based on state space models, vector autoregressive models and G1DBN algorithm, assume linear dependencies among genes. However, this strong assumption does not make for true representation of time-course relationships across the genes, which are inherently nonlinear. Nonlinear modeling methods such as the S-systems and causal structure identification (CSI) have been proposed, but are known to be statistically inefficient and analytically intractable in high dimensions. To overcome these limitations, we propose an optimized ensemble approach based on support vector regression (SVR) and dynamic Bayesian networks (DBNs). The method called SVR-DBN, uses nonlinear kernels of the SVR to infer the temporal relationships among genes within the DBN framework. The two-stage ensemble is further improved by SVR parameter optimization using Particle Swarm Optimization. Results on eight insilico-generated datasets, and two real world datasets of Drosophila Melanogaster and Escherichia Coli, show that our method outperformed the G1DBN algorithm by a total average accuracy of 12%. We further applied our method to model the time-course relationships of ovarian carcinoma. From our results, four hub genes were discovered. Stratified analysis further showed that the expression levels Prostrate differentiation factor and BTG family member 2 genes, were significantly increased by the cisplatin and oxaliplatin platinum drugs; while expression levels of Polo-like kinase and Cyclin B1 genes, were both decreased by the platinum drugs. These hub genes might be potential biomarkers for ovarian carcinoma. PMID:26738192
DEFF Research Database (Denmark)
Jensen, Finn Verner; Nielsen, Thomas Dyhre
2016-01-01
Mathematically, a Bayesian graphical model is a compact representation of the joint probability distribution for a set of variables. The most frequently used type of Bayesian graphical models are Bayesian networks. The structural part of a Bayesian graphical model is a graph consisting of nodes and...... largely due to the availability of efficient inference algorithms for answering probabilistic queries about the states of the variables in the network. Furthermore, to support the construction of Bayesian network models, learning algorithms are also available. We give an overview of the Bayesian network...
Inventory control of spare parts using a Bayesian approach: a case study
K-P. Aronis; I. Magou (Ioulia); R. Dekker (Rommert); G. Tagaras (George)
1999-01-01
textabstractThis paper presents a case study of applying a Bayesian approach to forecast demand and subsequently determine the appropriate parameter S of an (S-1,S) inventory system for controlling spare parts of electronic equipment. First, the problem and the current policy are described. Then, t
Equifinality of formal (DREAM) and informal (GLUE) bayesian approaches in hydrologic modeling?
Energy Technology Data Exchange (ETDEWEB)
Vrugt, Jasper A [Los Alamos National Laboratory; Robinson, Bruce A [Los Alamos National Laboratory; Ter Braak, Cajo J F [NON LANL; Gupta, Hoshin V [NON LANL
2008-01-01
In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented using the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.
Marcos Rodovalho; Freddy Mora; Osvin Arriagada; Carlos Maldonado; Emmanuel Arnhold; Carlos Alberto Scapim
2014-01-01
The objective of this study was to examine genetic parameters of popping expansion and grain yield in a trial of 169 halfsib families using a Bayesian approach. The independence chain algorithm with informative priors for the components of residual and family variance (inverse-gamma prior distribution) was used. Popping expansion was found to be moderately heritable, with a posterior mode of h2 of 0.34, and 90% Bayesian confidence interval of 0.22 to 0.44. The heritability of gra...
A population-based Bayesian approach to the minimal model of glucose and insulin homeostasis
DEFF Research Database (Denmark)
Andersen, Kim Emil; Højbjerre, Malene
2005-01-01
for a whole population. Traditionally it has been analysed in a deterministic set-up with only error terms on the measurements. In this work we adopt a Bayesian graphical model to describe the coupled minimal model that accounts for both measurement and process variability, and the model is extended...... to a population-based model. The estimation of the parameters are efficiently implemented in a Bayesian approach where posterior inference is made through the use of Markov chain Monte Carlo techniques. Hereby we obtain a powerful and flexible modelling framework for regularizing the ill-posed estimation problem...
A Robust Bayesian Approach to an Optimal Replacement Policy for Gas Pipelines
Directory of Open Access Journals (Sweden)
José Pablo Arias-Nicolás
2015-06-01
Full Text Available In the paper, we address Bayesian sensitivity issues when integrating experts’ judgments with available historical data in a case study about strategies for the preventive maintenance of low-pressure cast iron pipelines in an urban gas distribution network. We are interested in replacement priorities, as determined by the failure rates of pipelines deployed under different conditions. We relax the assumptions, made in previous papers, about the prior distributions on the failure rates and study changes in replacement priorities under different choices of generalized moment-constrained classes of priors. We focus on the set of non-dominated actions, and among them, we propose the least sensitive action as the optimal choice to rank different classes of pipelines, providing a sound approach to the sensitivity problem. Moreover, we are also interested in determining which classes have a failure rate exceeding a given acceptable value, considered as the threshold determining no need for replacement. Graphical tools are introduced to help decisionmakers to determine if pipelines are to be replaced and the corresponding priorities.
Bayesian methods for estimating the reliability in complex hierarchical networks (interim report).
Energy Technology Data Exchange (ETDEWEB)
Marzouk, Youssef M.; Zurn, Rena M.; Boggs, Paul T.; Diegert, Kathleen V. (Sandia National Laboratories, Albuquerque, NM); Red-Horse, John Robert (Sandia National Laboratories, Albuquerque, NM); Pebay, Philippe Pierre
2007-05-01
Current work on the Integrated Stockpile Evaluation (ISE) project is evidence of Sandia's commitment to maintaining the integrity of the nuclear weapons stockpile. In this report, we undertake a key element in that process: development of an analytical framework for determining the reliability of the stockpile in a realistic environment of time-variance, inherent uncertainty, and sparse available information. This framework is probabilistic in nature and is founded on a novel combination of classical and computational Bayesian analysis, Bayesian networks, and polynomial chaos expansions. We note that, while the focus of the effort is stockpile-related, it is applicable to any reasonably-structured hierarchical system, including systems with feedback.
Bayesian networks modeling for thermal error of numerical control machine tools
Institute of Scientific and Technical Information of China (English)
Xin-hua YAO; Jian-zhong FU; Zi-chen CHEN
2008-01-01
The interaction between the heat source location,its intensity,thermal expansion coefficient,the machine system configuration and the running environment creates complex thermal behavior of a machine tool,and also makes thermal error prediction difficult.To address this issue,a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented.The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques.Due to the effective combination of domain knowledge and sampled data,the BN method could adapt to the change of running state of machine,and obtain satisfactory prediction accuracy.Ex-periments on spindle thermal deformation were conducted to evaluate the modeling performance.Experimental results indicate that the BN method performs far better than the least squares(LS)analysis in terms of modeling estimation accuracy.
Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.
Detecting Threat E-mails using Bayesian Approach
Banday, M. Tariq; Qadri, Jameel A.; Tariq .R. Jan; Shah, Nisar A.
2011-01-01
Fraud and terrorism have a close connect in terms of the processes that enables and promote them. In the era of Internet, its various services that include Web, e-mail, social networks, blogs, instant messaging, chats, etc. are used in terrorism not only for communication but also for i) creation of ideology, ii) resource gathering, iii) recruitment, indoctrination and training, iv) creation of terror network, and v) information gathering. A major challenge for law enforcement and intelligenc...
Bayesian Statistical Approach To Binary Asteroid Orbit Determination
Dmitrievna Kovalenko, Irina; Stoica, Radu S.
2015-08-01
Orbit determination from observations is one of the classical problems in celestial mechanics. Deriving the trajectory of binary asteroid with high precision is much more complicate than the trajectory of simple asteroid. Here we present a method of orbit determination based on the algorithm of Monte Carlo Markov Chain (MCMC). This method can be used for the preliminary orbit determination with relatively small number of observations, or for adjustment of orbit previously determined.The problem consists on determination of a conditional a posteriori probability density with given observations. Applying the Bayesian statistics, the a posteriori probability density of the binary asteroid orbital parameters is proportional to the a priori and likelihood probability densities. The likelihood function is related to the noise probability density and can be calculated from O-C deviations (Observed minus Calculated positions). The optionally used a priori probability density takes into account information about the population of discovered asteroids. The a priori probability density is used to constrain the phase space of possible orbits.As a MCMC method the Metropolis-Hastings algorithm has been applied, adding a globally convergent coefficient. The sequence of possible orbits derives through the sampling of each orbital parameter and acceptance criteria.The method allows to determine the phase space of every possible orbit considering each parameter. It also can be used to derive one orbit with the biggest probability density of orbital elements.
Sparsely sampling the sky: a Bayesian experimental design approach
Paykari, P.; Jaffe, A. H.
2013-08-01
The next generation of galaxy surveys will observe millions of galaxies over large volumes of the Universe. These surveys are expensive both in time and cost, raising questions regarding the optimal investment of this time and money. In this work, we investigate criteria for selecting amongst observing strategies for constraining the galaxy power spectrum and a set of cosmological parameters. Depending on the parameters of interest, it may be more efficient to observe a larger, but sparsely sampled, area of sky instead of a smaller contiguous area. In this work, by making use of the principles of Bayesian experimental design, we will investigate the advantages and disadvantages of the sparse sampling of the sky and discuss the circumstances in which a sparse survey is indeed the most efficient strategy. For the Dark Energy Survey (DES), we find that by sparsely observing the same area in a smaller amount of time, we only increase the errors on the parameters by a maximum of 0.45 per cent. Conversely, investing the same amount of time as the original DES to observe a sparser but larger area of sky, we can in fact constrain the parameters with errors reduced by 28 per cent.
Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks
Everitt, Richard G
2012-01-01
Undirected graphical models are widely used in statistics, physics and machine vision. However Bayesian parameter estimation for undirected models is extremely challenging, since evaluation of the posterior typically involves the calculation of an intractable normalising constant. This problem has received much attention, but very little of this has focussed on the important practical case where the data consists of noisy or incomplete observations of the underlying hidden structure. This paper specifically addresses this problem, comparing two alternative methodologies. In the first of these approaches particle Markov chain Monte Carlo (Andrieu et al., 2010) is used to efficiently explore the parameter space, combined with the exchange algorithm (Murray et al., 2006) for avoiding the calculation of the intractable normalising constant (a proof showing that this combination targets the correct distribution in found in a supplementary appendix online). This approach is compared with approximate Bayesian comput...
Directory of Open Access Journals (Sweden)
Dongsheng Chen
2016-01-01
Full Text Available Accurate biomass estimations are important for assessing and monitoring forest carbon storage. Bayesian theory has been widely applied to tree biomass models. Recently, a hierarchical Bayesian approach has received increasing attention for improving biomass models. In this study, tree biomass data were obtained by sampling 310 trees from 209 permanent sample plots from larch plantations in six regions across China. Non-hierarchical and hierarchical Bayesian approaches were used to model allometric biomass equations. We found that the total, root, stem wood, stem bark, branch and foliage biomass model relationships were statistically significant (p-values < 0.001 for both the non-hierarchical and hierarchical Bayesian approaches, but the hierarchical Bayesian approach increased the goodness-of-fit statistics over the non-hierarchical Bayesian approach. The R2 values of the hierarchical approach were higher than those of the non-hierarchical approach by 0.008, 0.018, 0.020, 0.003, 0.088 and 0.116 for the total tree, root, stem wood, stem bark, branch and foliage models, respectively. The hierarchical Bayesian approach significantly improved the accuracy of the biomass model (except for the stem bark and can reflect regional differences by using random parameters to improve the regional scale model accuracy.
Bayesian belief networks for human reliability analysis: A review of applications and gaps
International Nuclear Information System (INIS)
The use of Bayesian Belief Networks (BBNs) in risk analysis (and in particular Human Reliability Analysis, HRA) is fostered by a number of features, attractive in fields with shortage of data and consequent reliance on subjective judgments: the intuitive graphical representation, the possibility of combining diverse sources of information, the use the probabilistic framework to characterize uncertainties. In HRA, BBN applications are steadily increasing, each emphasizing a different BBN feature or a different HRA aspect to improve. This paper aims at a critical review of these features as well as at suggesting research needs. Five groups of BBN applications are analysed: modelling of organizational factors, analysis of the relationships among failure influencing factors, BBN-based extensions of existing HRA methods, dependency assessment among human failure events, assessment of situation awareness. Further, the paper analyses the process for building BBNs and in particular how expert judgment is used in the assessment of the BBN conditional probability distributions. The gaps identified in the review suggest the need for establishing more systematic frameworks to integrate the different sources of information relevant for HRA (cognitive models, empirical data, and expert judgment) and to investigate algorithms to avoid elicitation of many relationships via expert judgment. - Highlights: • We analyze BBN uses for HRA applications; but some conclusions can be generalized. • Special review focus on BBN building approaches, key for model acceptance. • Gaps relate to the transparency of the BBN building and quantification phases. • Need for more systematic framework to integrate different sources of information. • Need of ways to avoid elicitation of many relationships via expert judgment
Odbert, Henry; Aspinall, Willy
2013-04-01
When volcanoes exhibit unrest or become eruptively active, science-based decision support invariably is sought by civil authorities. Evidence available to scientists about a volcano's internal state is usually indirect, secondary or very nebulous.Advancement of volcano monitoring technology in recent decades has increased the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Monitoring timeseries may be interpreted in real time by observatory staff and are often later subjected to further analytic scrutiny by the research community at large. With increasing variety and resolution of data, interpreting these multiple strands of parallel, partial evidence has become increasingly complex. In practice, interpretation of many timeseries involves familiarity with the idiosyncracies of the volcano, the monitoring techniques, the configuration of the recording instrumentation, observations from other datasets, and so on. Assimilation of this knowledge is necessary in order to select and apply the appropriate statistical techniques required to extract the required information. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple observations, model results and interpretations - and associated uncertainties - in a methodical manner. The formulation is usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic timeseries, the certainty with which inferences may be drawn, and how they can be updated dynamically. Such approaches provide a route to developing analytical interface(s) between volcano monitoring analyses and probabilistic hazard analysis. We discuss the use of BBNs in hazard
True versus Apparent Malaria Infection Prevalence: The Contribution of a Bayesian Approach
Speybroeck, Niko; Praet, Nicolas; Claes, Filip; Van Hong, Nguyen; Torres, Kathy; Mao, Sokny; Van den Eede, Peter; Ta Thi, Thinh; Gamboa, Dioni; Sochantha, Tho; Ngo Duc, Thang; Coosemans, Marc; Buescher, Philippe; D'Alessandro, Umberto; Berkvens, Dirk
2011-01-01
Aims: To present a new approach for estimating the "true prevalence'' of malaria and apply it to datasets from Peru, Vietnam, and Cambodia. Methods: Bayesian models were developed for estimating both the malaria prevalence using different diagnostic tests (microscopy, PCR & ELISA), without the need of a gold standard, and the tests' characteristics. Several sources of information, i.e. data, expert opinions and other sources of knowledge can be integrated into the model. This approach resulti...
Bayesian Approach in Estimation of Scale Parameter of Nakagami Distribution
Directory of Open Access Journals (Sweden)
Azam Zaka
2014-08-01
Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Nakagami distribution is a flexible life time distribution that may offer a good fit to some failure data sets. It has applications in attenuation of wireless signals traversing multiple paths, deriving unit hydrographs in hydrology, medical imaging studies etc. In this research, we obtain Bayesian estimators of the scale parameter of Nakagami distribution. For the posterior distribution of this parameter, we consider Uniform, Inverse Exponential and Levy priors. The three loss functions taken up are Squared Error Loss function, Quadratic Loss Function and Precautionary Loss function. The performance of an estimator is assessed on the basis of its relative posterior risk. Monte Carlo Simulations are used to compare the performance of the estimators. It is discovered that the PLF produces the least posterior risk when uniform priors is used. SELF is the best when inverse exponential and Levy Priors are used. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}
Bayesian approach to inverse problems for functions with a variable-index Besov prior
Jia, Junxiong; Peng, Jigen; Gao, Jinghuai
2016-08-01
The Bayesian approach has been adopted to solve inverse problems that reconstruct a function from noisy observations. Prior measures play a key role in the Bayesian method. Hence, many probability measures have been proposed, among which total variation (TV) is a well-known prior measure that can preserve sharp edges. However, it has two drawbacks, the staircasing effect and a lack of the discretization-invariant property. The variable-index TV prior has been proposed and analyzed in the area of image analysis for the former, and the Besov prior has been employed recently for the latter. To overcome both issues together, in this paper, we present a variable-index Besov prior measure, which is a non-Gaussian measure. Some useful properties of this new prior measure have been proven for functions defined on a torus. We have also generalized Bayesian inverse theory in infinite dimensions for our new setting. Finally, this theory has been applied to integer- and fractional-order backward diffusion problems. To the best of our knowledge, this is the first time that the Bayesian approach has been used for the fractional-order backward diffusion problem, which provides an opportunity to quantify its uncertainties.
Application of Bayesian network to the probabilistic risk assessment of nuclear waste disposal
International Nuclear Information System (INIS)
The scenario in a risk analysis can be defined as the propagating feature of specific initiating event which can go to a wide range of undesirable consequences. If we take various scenarios into consideration, the risk analysis becomes more complex than do without them. A lot of risk analyses have been performed to actually estimate a risk profile under both uncertain future states of hazard sources and undesirable scenarios. Unfortunately, in case of considering specific systems such as a radioactive waste disposal facility, since the behaviour of future scenarios is hardly predicted without special reasoning process, we cannot estimate their risk only with a traditional risk analysis methodology. Moreover, we believe that the sources of uncertainty at future states can be reduced pertinently by setting up dependency relationships interrelating geological, hydrological, and ecological aspects of the site with all the scenarios. It is then required current methodology of uncertainty analysis of the waste disposal facility be revisited under this belief. In order to consider the effects predicting from an evolution of environmental conditions of waste disposal facilities, this paper proposes a quantitative assessment framework integrating the inference process of Bayesian network to the traditional probabilistic risk analysis. We developed and verified an approximate probabilistic inference program for the specific Bayesian network using a bounded-variance likelihood weighting algorithm. Ultimately, specific models, including a model for uncertainty propagation of relevant parameters were developed with a comparison of variable-specific effects due to the occurrence of diverse altered evolution scenarios (AESs). After providing supporting information to get a variety of quantitative expectations about the dependency relationship between domain variables and AESs, we could connect the results of probabilistic inference from the Bayesian network with the consequence
Bayesian Regularization in a Neural Network Model to Estimate Lines of Code Using Function Points
Directory of Open Access Journals (Sweden)
K. K. Aggarwal
2005-01-01
Full Text Available It is a well known fact that at the beginning of any project, the software industry needs to know, how much will it cost to develop and what would be the time required ? . This paper examines the potential of using a neural network model for estimating the lines of code, once the functional requirements are known. Using the International Software Benchmarking Standards Group (ISBSG Repository Data (release 9 for the experiment, this paper examines the performance of back propagation feed forward neural network to estimate the Source Lines of Code. Multiple training algorithms are used in the experiments. Results demonstrate that the neural network models trained using Bayesian Regularization provide the best results and are suitable for this purpose.
A Bayesian approach to estimate sensible and latent heat over vegetation
Directory of Open Access Journals (Sweden)
C. van der Tol
2009-03-01
Full Text Available Sensible and latent heat fluxes are often calculated from bulk transfer equations combined with the energy balance. For spatial estimates of these fluxes, a combination of remotely sensed and standard meteorological data from weather stations on the ground is used. The success of this approach depends on the accuracy of the input data and on the accuracy of two variables in particular: aerodynamic and surface conductance. This paper presents a Bayesian approach to improve estimates of sensible and latent heat fluxes by using a priori estimates of aerodynamic and surface conductance alongside remote measurements of surface temperature. The method is validated for time series of half-hourly measurements in a fully grown maize field, a vineyard and a forest. It is shown that the Bayesian approach yields more accurate estimates of sensible and latent heat flux than traditional methods.
A Bayesian approach to estimate sensible and latent heat over vegetated land surface
Directory of Open Access Journals (Sweden)
C. van der Tol
2009-06-01
Full Text Available Sensible and latent heat fluxes are often calculated from bulk transfer equations combined with the energy balance. For spatial estimates of these fluxes, a combination of remotely sensed and standard meteorological data from weather stations is used. The success of this approach depends on the accuracy of the input data and on the accuracy of two variables in particular: aerodynamic and surface conductance. This paper presents a Bayesian approach to improve estimates of sensible and latent heat fluxes by using a priori estimates of aerodynamic and surface conductance alongside remote measurements of surface temperature. The method is validated for time series of half-hourly measurements in a fully grown maize field, a vineyard and a forest. It is shown that the Bayesian approach yields more accurate estimates of sensible and latent heat flux than traditional methods.
Bayesian approach to color-difference models based on threshold and constant-stimuli methods.
Brusola, Fernando; Tortajada, Ignacio; Lengua, Ismael; Jordá, Begoña; Peris, Guillermo
2015-06-15
An alternative approach based on statistical Bayesian inference is presented to deal with the development of color-difference models and the precision of parameter estimation. The approach was applied to simulated data and real data, the latter published by selected authors involved with the development of color-difference formulae using traditional methods. Our results show very good agreement between the Bayesian and classical approaches. Among other benefits, our proposed methodology allows one to determine the marginal posterior distribution of each random individual parameter of the color-difference model. In this manner, it is possible to analyze the effect of individual parameters on the statistical significance calculation of a color-difference equation. PMID:26193510
A New Method for E-Government Procurement Using Collaborative Filtering and Bayesian Approach
Directory of Open Access Journals (Sweden)
Shuai Zhang
2013-01-01
Full Text Available Nowadays, as the Internet services increase faster than ever before, government systems are reinvented as E-government services. Therefore, government procurement sectors have to face challenges brought by the explosion of service information. This paper presents a novel method for E-government procurement (eGP to search for the optimal procurement scheme (OPS. Item-based collaborative filtering and Bayesian approach are used to evaluate and select the candidate services to get the top-M recommendations such that the involved computation load can be alleviated. A trapezoidal fuzzy number similarity algorithm is applied to support the item-based collaborative filtering and Bayesian approach, since some of the services’ attributes can be hardly expressed as certain and static values but only be easily represented as fuzzy values. A prototype system is built and validated with an illustrative example from eGP to confirm the feasibility of our approach.
A new method for E-government procurement using collaborative filtering and Bayesian approach.
Zhang, Shuai; Xi, Chengyu; Wang, Yan; Zhang, Wenyu; Chen, Yanhong
2013-01-01
Nowadays, as the Internet services increase faster than ever before, government systems are reinvented as E-government services. Therefore, government procurement sectors have to face challenges brought by the explosion of service information. This paper presents a novel method for E-government procurement (eGP) to search for the optimal procurement scheme (OPS). Item-based collaborative filtering and Bayesian approach are used to evaluate and select the candidate services to get the top-M recommendations such that the involved computation load can be alleviated. A trapezoidal fuzzy number similarity algorithm is applied to support the item-based collaborative filtering and Bayesian approach, since some of the services' attributes can be hardly expressed as certain and static values but only be easily represented as fuzzy values. A prototype system is built and validated with an illustrative example from eGP to confirm the feasibility of our approach. PMID:24385869
Analyzing Rice distributed functional magnetic resonance imaging data: a Bayesian approach
International Nuclear Information System (INIS)
Analyzing functional MRI data is often a hard task due to the fact that these periodic signals are strongly disturbed with noise. In many cases, the signals are buried under the noise and not visible, such that detection is quite impossible. However, it is well known that the amplitude measurements of such disturbed signals follow a Rice distribution which is characterized by two parameters. In this paper, an alternative Bayesian approach is proposed to tackle this two-parameter estimation problem. By incorporating prior knowledge into a mathematical framework, the drawbacks of the existing methods (i.e. the maximum likelihood approach and the method of moments) can be overcome. The performance of the proposed Bayesian estimator is analyzed theoretically and illustrated through simulations. Finally, the developed approach is successfully applied to measurement data for the analysis of functional MRI
A Study of New Method for Weapon System Effectiveness Evaluation Based on Bayesian Network
Institute of Scientific and Technical Information of China (English)
YAN Dai-wei; GU Liang-xian; PAN Lei
2008-01-01
As weapon system effectiveness is affected by many factors, its evaluation is essentially a multi-criterion decision making problem for its complexity. The evaluation model of the effectiveness is established on the basis of metrics architecture of the effectiveness. The Bayesian network, which is used to evaluate the effectiveness, is established based on the metrics architecture and the evaluation models. For getting the weights of the metrics by Bayesian network, subjective initial values of the weights are given, gradient ascent algorithm is adopted, and the reasonable values of the weights are achieved. And then the effectiveness of every weapon system project is gained. The weapon system, whose effectiveness is relative maximum, is the optimization system. The research result shows that this method can solve the problem of AHP method which evaluation results are not compatible to the practice results and overcome the shortcoming of neural network in multilayer and multi-criterion decision. The method offers a new approaeh for evaluating the effectiveness.
Wang, Huiting; Liu, Renyuan; Zhang, Xin; Li, Ming; Yang, Yongbo; Yan, Jing; Niu, Fengnan; Tian, Chuanshuai; Wang, Kun; Yu, Haiping; Chen, Weibo; Wan, Suiren; Sun, Yu; Zhang, Bing
2016-01-01
Many modalities of magnetic resonance imaging (MRI) have been confirmed to be of great diagnostic value in glioma grading. Contrast enhanced T1-weighted imaging allows the recognition of blood-brain barrier breakdown. Perfusion weighted imaging and MR spectroscopic imaging enable the quantitative measurement of perfusion parameters and metabolic alterations respectively. These modalities can potentially improve the grading process in glioma if combined properly. In this study, Bayesian Network, which is a powerful and flexible method for probabilistic analysis under uncertainty, is used to combine features extracted from contrast enhanced T1-weighted imaging, perfusion weighted imaging and MR spectroscopic imaging. The networks were constructed using K2 algorithm along with manual determination and distribution parameters learned using maximum likelihood estimation. The grading performance was evaluated in a leave-one-out analysis, achieving an overall grading accuracy of 92.86% and an area under the curve of 0.9577 in the receiver operating characteristic analysis given all available features observed in the total 56 patients. Results and discussions show that Bayesian Network is promising in combining features from multiple modalities of MRI for improved grading performance. PMID:27077923
OVERALL SENSITIVITY ANALYSIS UTILIZING BAYESIAN NETWORK FOR THE QUESTIONNAIRE INVESTIGATION ON SNS
Directory of Open Access Journals (Sweden)
Tsuyoshi Aburai
2013-11-01
Full Text Available Social Networking Service (SNS is prevailing rapidly in Japan in recent years. The most popular ones are Facebook, mixi, and Twitter, which are utilized in various fields of life together with the convenient tool such as smart-phone. In this work, a questionnaire investigation is carried out in order to clarify the current usage condition, issues and desired functions. More than 1,000 samples are gathered. Bayesian network is utilized for this analysis. Sensitivity analysis is carried out by setting evidence to all items. This enables overall analysis for each item. We analyzed them by sensitivity analysis and some useful results were obtained. We have presented the paper concerning this. But the volume becomes too large, therefore we have split them and this paper shows the latter half of the investigation result by setting evidence to Bayesian Network parameters. Differences in usage objectives and SNS sites are made clear by the attributes and preference of SNS users. They can be utilized effectively for marketing by clarifying the target customer through the sensitivity analysis.
Energy Technology Data Exchange (ETDEWEB)
Webb-Robertson, Bobbie-Jo M.; Corley, Courtney D.; McCue, Lee Ann; Clowers, Brian H.; Dowling, Chase P.; Wahl, Karen L.; Wunschel, David S.; Kreuzer, Helen W.
2014-03-21
The field of bioforensics is focused on the analysis of evidence from a biocrime. Existing laboratory analyses can identify the specific strain of an organism in the evidence, as well signatures of the specific culture batch of organisms, such as low-frequency contaminants or indicators of growth and processing methods. To link these disparate types of physical data to potential suspects, investigators may need to identify institutions or individuals whose access to strains and culturing practices match those identified from the evidence. In this work we present a Bayesian statistical network to fuse different types of analytical measurements that predict the production environment of a Yersinia pestis sample under investigation with automated test processing of scientific publications to identify institutions with a history of growing Y. pestis under similar conditions. Furthermore, the textual and experimental signatures were evaluated recursively to determine the overall sensitivity of the network across all levels of false positives. We illustrate that institutions associated with several specific culturing practices can be accurately selected based on the experimental signature from only a few analytical measurements. These findings demonstrate that similar Bayesian networks can be generated generically for many organisms of interest and their deployment is not prohibitive due to either computational or experimental factors.
Estimation of mutation rates from paternity cases using a Bayesian network
DEFF Research Database (Denmark)
Vicard, P.; Dawid, A.P.; Mortera, J.; Lauritzen, Steffen Lilholt
We present a statistical model and methodology for making inferences about mutation rates from paternity casework. This takes proper account of a number of sources of potential bias, including hidden mutation, incomplete family triplets, uncertain paternity status and differing maternal and...... paternal mutation rates, while allowing a wide variety of mutation models. A Bayesian network is constructed to facilitate computation of the likelihood function for the mutation parameters. It can process both full and summary genotypic information, from both complete putative father-mother-child triplets...
Using literature and data to learn Bayesian networks as clinical models of ovarian tumors
DEFF Research Database (Denmark)
Antal, P.; Fannes, G.; Timmerman, D.;
2004-01-01
information from free-text resources with statistical data in learning Bayesian networks. Firstly, we report on the collection of prior information resources in the ovarian cancer domain, which includes "kernel" annotations of the domain variables. We introduce methods based on the annotations and literature...... to derive informative pairwise dependency measures, which are derived from the statistical cooccurrence of the names of the variables, from the similarity of the "kernel" descriptions of the variables and from a combined method. We perform wide-scale evaluation of these text-based dependency scores...
Learning ground CP-logic theories by leveraging Bayesian network learning techniques
Meert, Wannes; Struyf, Jan; Blockeel, Hendrik
2008-01-01
Causal relations are present in many application domains. Causal Probabilistic Logic (CP-logic) is a probabilistic modeling language that is especially designed to express such relations. This paper investigates the learning of CP-logic theories (CP-theories) from training data. Its ﬁrst contribution is SEM-CP-logic, an algorithm that learns CP-theories by leveraging Bayesian network (BN) learning techniques. SEM-CP-logic is based on a transformation between CP-theories and BNs. That is, the ...
An object-oriented Bayesian network modeling the causes of leg disorders in finisher herds
DEFF Research Database (Denmark)
Jensen, Tina Birk; Kristensen, Anders Ringgaard; Toft, Nils;
2009-01-01
-categories of leg disorders were divided into infectious causes (arthritis caused by infectious pathogens), physical causes (e.g. fracture and claw lesions), and inherited causes (osteochondrosis). Information about the herd (e.g. the herd size, floor type and number of suppliers) and information about...... individual pigs (e.g. results from diagnostic tests) were used to estimate the most likely cause of leg disorders at herd level. As information to the model originated from two different levels, we used an object-oriented structure in order to ease the specification of the Bayesian network. Hence, a Herd...
Bayesian network ensemble as a multivariate strategy to predict radiation pneumonitis risk
International Nuclear Information System (INIS)
Purpose: Prediction of radiation pneumonitis (RP) has been shown to be challenging due to the involvement of a variety of factors including dose–volume metrics and radiosensitivity biomarkers. Some of these factors are highly correlated and might affect prediction results when combined. Bayesian network (BN) provides a probabilistic framework to represent variable dependencies in a directed acyclic graph. The aim of this study is to integrate the BN framework and a systems’ biology approach to detect possible interactions among RP risk factors and exploit these relationships to enhance both the understanding and prediction of RP. Methods: The authors studied 54 nonsmall-cell lung cancer patients who received curative 3D-conformal radiotherapy. Nineteen RP events were observed (common toxicity criteria for adverse events grade 2 or higher). Serum concentration of the following four candidate biomarkers were measured at baseline and midtreatment: alpha-2-macroglobulin, angiotensin converting enzyme (ACE), transforming growth factor, interleukin-6. Dose-volumetric and clinical parameters were also included as covariates. Feature selection was performed using a Markov blanket approach based on the Koller–Sahami filter. The Markov chain Monte Carlo technique estimated the posterior distribution of BN graphs built from the observed data of the selected variables and causality constraints. RP probability was estimated using a limited number of high posterior graphs (ensemble) and was averaged for the final RP estimate using Bayes’ rule. A resampling method based on bootstrapping was applied to model training and validation in order to control under- and overfit pitfalls. Results: RP prediction power of the BN ensemble approach reached its optimum at a size of 200. The optimized performance of the BN model recorded an area under the receiver operating characteristic curve (AUC) of 0.83, which was significantly higher than multivariate logistic regression (0
Bayesian network ensemble as a multivariate strategy to predict radiation pneumonitis risk
Energy Technology Data Exchange (ETDEWEB)
Lee, Sangkyu, E-mail: sangkyu.lee@mail.mcgill.ca; Ybarra, Norma; Jeyaseelan, Krishinima; Seuntjens, Jan; El Naqa, Issam [Medical Physics Unit, McGill University, Montreal, Quebec H3G1A4 (Canada); Faria, Sergio; Kopek, Neil; Brisebois, Pascale [Department of Radiation Oncology, Montreal General Hospital, Montreal, H3G1A4 (Canada); Bradley, Jeffrey D.; Robinson, Clifford [Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110 (United States)
2015-05-15
Purpose: Prediction of radiation pneumonitis (RP) has been shown to be challenging due to the involvement of a variety of factors including dose–volume metrics and radiosensitivity biomarkers. Some of these factors are highly correlated and might affect prediction results when combined. Bayesian network (BN) provides a probabilistic framework to represent variable dependencies in a directed acyclic graph. The aim of this study is to integrate the BN framework and a systems’ biology approach to detect possible interactions among RP risk factors and exploit these relationships to enhance both the understanding and prediction of RP. Methods: The authors studied 54 nonsmall-cell lung cancer patients who received curative 3D-conformal radiotherapy. Nineteen RP events were observed (common toxicity criteria for adverse events grade 2 or higher). Serum concentration of the following four candidate biomarkers were measured at baseline and midtreatment: alpha-2-macroglobulin, angiotensin converting enzyme (ACE), transforming growth factor, interleukin-6. Dose-volumetric and clinical parameters were also included as covariates. Feature selection was performed using a Markov blanket approach based on the Koller–Sahami filter. The Markov chain Monte Carlo technique estimated the posterior distribution of BN graphs built from the observed data of the selected variables and causality constraints. RP probability was estimated using a limited number of high posterior graphs (ensemble) and was averaged for the final RP estimate using Bayes’ rule. A resampling method based on bootstrapping was applied to model training and validation in order to control under- and overfit pitfalls. Results: RP prediction power of the BN ensemble approach reached its optimum at a size of 200. The optimized performance of the BN model recorded an area under the receiver operating characteristic curve (AUC) of 0.83, which was significantly higher than multivariate logistic regression (0
Using of bayesian networks to estimate the probability of "NATECH" scenario occurrence
Dobes, Pavel; Dlabka, Jakub; Jelšovská, Katarína; Polorecká, Mária; Baudišová, Barbora; Danihelka, Pavel
2015-04-01
In the twentieth century, implementation of Bayesian statistics and probability was not much used (may be it wasn't a preferred approach) in the area of natural and industrial risk analysis and management. Neither it was used within analysis of so called NATECH accidents (chemical accidents triggered by natural events, such as e.g. earthquakes, floods, lightning etc.; ref. E. Krausmann, 2011, doi:10.5194/nhess-11-921-2011). Main role, from the beginning, played here so called "classical" frequentist probability (ref. Neyman, 1937), which rely up to now especially on the right/false results of experiments and monitoring and didn't enable to count on expert's beliefs, expectations and judgements (which is, on the other hand, one of the once again well known pillars of Bayessian approach to probability). In the last 20 or 30 years, there is possible to observe, through publications and conferences, the Renaissance of Baysssian statistics into many scientific disciplines (also into various branches of geosciences). The necessity of a certain level of trust in expert judgment within risk analysis is back? After several decades of development on this field, it could be proposed following hypothesis (to be checked): "We couldn't estimate probabilities of complex crisis situations and their TOP events (many NATECH events could be classified as crisis situations or emergencies), only by classical frequentist approach, but also by using of Bayessian approach (i.e. with help of prestaged Bayessian Network including expert belief and expectation as well as classical frequentist inputs). Because - there is not always enough quantitative information from monitoring of historical emergencies, there could be several dependant or independant variables necessary to consider and in generally - every emergency situation always have a little different run." In this topic, team of authors presents its proposal of prestaged typized Bayessian network model for specified NATECH scenario
Papakosta, Panagiota; Botzler, Sebastian; Krug, Kai; Straub, Daniel
2013-04-01
areas and rare species is also included. Presence of cultural heritage sites, power stations and power line network influence social exposure. The conceptual framework is demonstrated with a Bayesian Network (BN). The BN model incorporates empirical observation, physical models and expert knowledge; it can also explicitly account for uncertainty in the indicators. The proposed model is applied to the island of Cyprus. Maps support the demonstration of results. [1] Keeley, J.E.; Bond, W.J.; Bradstock, R.A.; Pausas, J.G.; Rundel, P.W. (2012): Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press, New York, USA. [2] UN/ISDR (International Strategy for Disaster Reduction (2004): Living with Risk: A Global Review of Disaster Reduction Initiatives, Geneva, UN Publications. [3] Birkmann, J. (2006): Measuring vulnerability to natural hazards: towards disaster resilient societies. United Nations University Press, Tokyo, Japan.
A Gene Selection Algorithm using Bayesian Classification Approach
Alok Sharma; Kuldip K. Paliwal
2012-01-01
In this study, we propose a new feature (or gene) selection algorithm using Bayes classification approach. The algorithm can find gene subset crucial for cancer classification problem. Problem statement: Gene identification plays important role in human cancer classification problem. Several feature selection algorithms have been proposed for analyzing and understanding influential genes using gene expression profiles. Approach: The feature selection algorithms aim to explore genes that are c...
Constraining East Antarctic mass trends using a Bayesian inference approach
Martin-Español, Alba; Bamber, Jonathan L.
2016-04-01
East Antarctica is an order of magnitude larger than its western neighbour and the Greenland ice sheet. It has the greatest potential to contribute to sea level rise of any source, including non-glacial contributors. It is, however, the most challenging ice mass to constrain because of a range of factors including the relative paucity of in-situ observations and the poor signal to noise ratio of Earth Observation data such as satellite altimetry and gravimetry. A recent study using satellite radar and laser altimetry (Zwally et al. 2015) concluded that the East Antarctic Ice Sheet (EAIS) had been accumulating mass at a rate of 136±28 Gt/yr for the period 2003-08. Here, we use a Bayesian hierarchical model, which has been tested on, and applied to, the whole of Antarctica, to investigate the impact of different assumptions regarding the origin of elevation changes of the EAIS. We combined GRACE, satellite laser and radar altimeter data and GPS measurements to solve simultaneously for surface processes (primarily surface mass balance, SMB), ice dynamics and glacio-isostatic adjustment over the period 2003-13. The hierarchical model partitions mass trends between SMB and ice dynamics based on physical principles and measures of statistical likelihood. Without imposing the division between these processes, the model apportions about a third of the mass trend to ice dynamics, +18 Gt/yr, and two thirds, +39 Gt/yr, to SMB. The total mass trend for that period for the EAIS was 57±20 Gt/yr. Over the period 2003-08, we obtain an ice dynamic trend of 12 Gt/yr and a SMB trend of 15 Gt/yr, with a total mass trend of 27 Gt/yr. We then imposed the condition that the surface mass balance is tightly constrained by the regional climate model RACMO2.3 and allowed height changes due to ice dynamics to occur in areas of low surface velocities (<10 m/yr) , such as those in the interior of East Antarctica (a similar condition as used in Zwally 2015). The model must find a solution that
Bayesian approach for three-dimensional aquifer characterization at the hanford 300 area
Directory of Open Access Journals (Sweden)
H. Murakami
2010-03-01
Full Text Available This study presents a stochastic, three-dimensional characterization of a heterogeneous hydraulic conductivity field within DOE's Hanford 300 Area site, Washington, by assimilating large-scale, constant-rate injection test data with small-scale, three-dimensional electromagnetic borehole flowmeter (EBF measurement data. We first inverted the injection test data to estimate the transmissivity field, using zeroth-order temporal moments of pressure buildup curves. We applied a newly developed Bayesian geostatistical inversion framework, the method of anchored distributions (MAD, to obtain a joint posterior distribution of geostatistical parameters and local log-transmissivities at multiple locations. The unique aspects of MAD that make it suitable for this purpose are its ability to integrate multi-scale, multi-type data within a Bayesian framework and to compute a nonparametric posterior distribution. After we combined the distribution of transmissivities with depth-discrete relative-conductivity profile from the EBF data, we inferred the three-dimensional geostatistical parameters of the log-conductivity field, using the Bayesian model-based geostatistics. Such consistent use of the Bayesian approach throughout the procedure enabled us to systematically incorporate data uncertainty into the final posterior distribution. The method was tested in a synthetic study and validated using the actual data that was not part of the estimation. Results showed broader and skewed posterior distributions of geostatistical parameters except for the mean, which suggests the importance of inferring the entire distribution to quantify the parameter uncertainty.
Optimal speech motor control and token-to-token variability: a Bayesian modeling approach.
Patri, Jean-François; Diard, Julien; Perrier, Pascal
2015-12-01
The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the central nervous system selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of this approach, one of its drawbacks is the intrinsic contradiction between the concept of optimality and the observed experimental intra-speaker token-to-token variability. The present paper proposes an alternative approach by formulating feedforward optimal control in a probabilistic Bayesian modeling framework. This is illustrated by controlling a biomechanical model of the vocal tract for speech production and by comparing it with an existing optimal control model (GEPPETO). The essential elements of this optimal control model are presented first. From them the Bayesian model is constructed in a progressive way. Performance of the Bayesian model is evaluated based on computer simulations and compared to the optimal control model. This approach is shown to be appropriate for solving the speech planning problem while accounting for variability in a principled way. PMID:26497359
A Bayesian approach to PID in ALICE, as studied in the channel D0 → Kπ
Energy Technology Data Exchange (ETDEWEB)
Wilkinson, Jeremy [Physikalisches Institut, University of Heidelberg, Im Neuenheimer Feld 226 (Germany)
2014-07-01
The standard particle identification (PID) method in ALICE uses a frequentist, or nσ, approach. In this method, particles are accepted via a selection on the number of standard deviations by which a signal differs from the expected detector response. This works well for most particle species, but in some cases, such as the non-resonant decay of Λ{sub c} → pKπ, the combinatorial background is too high to make a significant measurement. The usage of an alternative Bayesian approach, based on a combination of the measured dE/dx and time-of-flight of the daughter tracks, is presented here. The Bayesian method bases its response on prior probabilities of a given particle species being produced with a given momentum, allowing a calculation of the probability for a daughter particle to belong to each species (π, K, p, etc.) based on the detector response seen. In order to check the validity of this method, various decay channels were tested and compared to the nσ method. Among these was the channel D{sup 0} → Kπ, which provides a valuable cross-check of both the kaon and pion responses in this approach. In addition to considering the differences in signal-to-background ratio and significance obtained when applying the various methods, a comparison will be shown between the yield obtained without PID and those found when using Bayesian and nσ approaches after being corrected for their respective PID efficiencies.
Barroso, L M A; Teodoro, P E; Nascimento, M; Torres, F E; Dos Santos, A; Corrêa, A M; Sagrilo, E; Corrêa, C C G; Silva, F A; Ceccon, G
2016-01-01
This study aimed to verify that a Bayesian approach could be used for the selection of upright cowpea genotypes with high adaptability and phenotypic stability, and the study also evaluated the efficiency of using informative and minimally informative a priori distributions. Six trials were conducted in randomized blocks, and the grain yield of 17 upright cowpea genotypes was assessed. To represent the minimally informative a priori distributions, a probability distribution with high variance was used, and a meta-analysis concept was adopted to represent the informative a priori distributions. Bayes factors were used to conduct comparisons between the a priori distributions. The Bayesian approach was effective for selection of upright cowpea genotypes with high adaptability and phenotypic stability using the Eberhart and Russell method. Bayes factors indicated that the use of informative a priori distributions provided more accurate results than minimally informative a priori distributions. PMID:26985961
THE DEVELOPMENT OF AN EXPERT CAR FAILURE DIAGNOSIS SYSTEM WITH BAYESIAN APPROACH
Directory of Open Access Journals (Sweden)
Widodo Budiharto
2013-01-01
Full Text Available In this study we propose a model of an Expert System to diagnose a car failure and malfunction using Bayesian Approach. An expert car failure diagnosis system is a computer system that uses specific knowledge which is owned by an expert to resolve car problems. Our specific system consists of knowledge base and solution to diagnose failure of car from Toyota Avanza, one of the favorite car used in Indonesia today and applying Bayesian approach for knowing the belief of the solution. We build Knowledge representation techniques of symptoms and solution froman experts using production rules. The experimental results presented and we obtained that the system has been able to perform diagnosis on car failure, giving solution and also gives the probability value of that solution.
A Bayesian Approach to Multistage Fitting of the Variation of the Skeletal Age Features
Directory of Open Access Journals (Sweden)
Dong Hua
2009-01-01
Full Text Available Accurate assessment of skeletal maturity is important clinically. Skeletal age assessment is usually based on features encoded in ossification centers. Therefore, it is critical to design a mechanism to capture as much as possible characteristics of features. We have observed that given a feature, there exist stages of the skeletal age such that the variation pattern of the feature differs in these stages. Based on this observation, we propose a Bayesian cut fitting to describe features in response to the skeletal age. With our approach, appropriate positions for stage separation are determined automatically by a Bayesian approach, and a model is used to fit the variation of a feature within each stage. Our experimental results show that the proposed method surpasses the traditional fitting using only one line or one curve not only in the efficiency and accuracy of fitting but also in global and local feature characterization.
Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering
McDowell, Ian C.; Zhao, Shiwen; Brown, Christopher D.; Engelhardt, Barbara E.
2016-01-01
Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues. PMID:27467526
Data-driven and Model-based Verification:a Bayesian Identification Approach
Haesaert, S Sofie; Hof, van den, S.; Abate, A.
2015-01-01
This work develops a measurement-driven and model-based formal verification approach, applicable to systems with partly unknown dynamics. We provide a principled method, grounded on reachability analysis and on Bayesian inference, to compute the confidence that a physical system driven by external inputs and accessed under noisy measurements, verifies a temporal logic property. A case study is discussed, where we investigate the bounded- and unbounded-time safety of a partly unknown linear ti...
A New Method for E-Government Procurement Using Collaborative Filtering and Bayesian Approach
Shuai Zhang; Chengyu Xi; Yan Wang; Wenyu Zhang; Yanhong Chen
2013-01-01
Nowadays, as the Internet services increase faster than ever before, government systems are reinvented as E-government services. Therefore, government procurement sectors have to face challenges brought by the explosion of service information. This paper presents a novel method for E-government procurement (eGP) to search for the optimal procurement scheme (OPS). Item-based collaborative filtering and Bayesian approach are used to evaluate and select the candidate services to get the top-M re...
Evaluating impacts using a BACI design, ratios, and a Bayesian approach with a focus on restoration.
Conner, Mary M; Saunders, W Carl; Bouwes, Nicolaas; Jordan, Chris
2015-10-01
Before-after-control-impact (BACI) designs are an effective method to evaluate natural and human-induced perturbations on ecological variables when treatment sites cannot be randomly chosen. While effect sizes of interest can be tested with frequentist methods, using Bayesian Markov chain Monte Carlo (MCMC) sampling methods, probabilities of effect sizes, such as a ≥20 % increase in density after restoration, can be directly estimated. Although BACI and Bayesian methods are used widely for assessing natural and human-induced impacts for field experiments, the application of hierarchal Bayesian modeling with MCMC sampling to BACI designs is less common. Here, we combine these approaches and extend the typical presentation of results with an easy to interpret ratio, which provides an answer to the main study question-"How much impact did a management action or natural perturbation have?" As an example of this approach, we evaluate the impact of a restoration project, which implemented beaver dam analogs, on survival and density of juvenile steelhead. Results indicated the probabilities of a ≥30 % increase were high for survival and density after the dams were installed, 0.88 and 0.99, respectively, while probabilities for a higher increase of ≥50 % were variable, 0.17 and 0.82, respectively. This approach demonstrates a useful extension of Bayesian methods that can easily be generalized to other study designs from simple (e.g., single factor ANOVA, paired t test) to more complicated block designs (e.g., crossover, split-plot). This approach is valuable for estimating the probabilities of restoration impacts or other management actions. PMID:27613291
Risk analysis of emergent water pollution accidents based on a Bayesian Network.
Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie
2016-01-01
To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents. PMID:26433361
Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing
2016-01-01
A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006
A stochastic model of human visual attention with a dynamic Bayesian network
kimura, Akisato; Takeuchi, Tatsuto; Miyazato, Kouji; Yamato, Junji; Kashino, Kunio
2010-01-01
Recent studies in the field of human vision science suggest that the human responses to the stimuli on a visual display are non-deterministic. People may attend to different locations on the same visual input at the same time. Based on this knowledge, we propose a new stochastic model of visual attention by introducing a dynamic Bayesian network to predict the likelihood of where humans typically focus on a video scene. The proposed model is composed of a dynamic Bayesian network with 4 layers. Our model provides a framework that simulates and combines the visual saliency response and the cognitive state of a person to estimate the most probable attended regions. Sample-based inference with Markov chain Monte-Carlo based particle filter and stream processing with multi-core processors enable us to estimate human visual attention in near real time. Experimental results have demonstrated that our model performs significantly better in predicting human visual attention compared to the previous deterministic mode...
International Nuclear Information System (INIS)
For several reasons, Bayesian parameter estimation is superior to other methods for extracting features of a weak signal from noise. Since it exploits prior knowledge, the analysis begins from a more advantageous starting point than other methods. Also, since ''nuisance parameters'' can be dropped out of the Bayesian analysis, the description of the model need not be as complete as is necessary for such methods as matched filtering. In the limit for perfectly random noise and a perfect description of the model, the signal-to-noise ratio improves as the square root of the number of samples in the data. Even with the imperfections of real-world data, Bayesian approaches this ideal limit of performance more closely than other methods. A major unsolved problem in landmine detection is the fusion of data from multiple sensor types. Bayesian data fusion is only beginning to be explored as a solution to the problem. In single sensor processes Bayesian analysis can sense multiple parameters from the data stream of the one sensor. It does so by computing a joint probability density function of a set of parameter values from the sensor output. However, there is no inherent requirement that the information must come from a single sensor. If multiple sensors are applied to a single process, where several different parameters are implicit in each sensor output data stream, the joint probability density function of all the parameters of interest can be computed in exactly the same manner as the single sensor case. Thus, it is just as practical to base decisions on multiple sensor outputs as it is for single sensors. This should provide a practical way to combine the outputs of dissimilar sensors, such as ground penetrating radar and electromagnetic induction devices, producing a better detection decision than could be provided by either sensor alone
Energy Technology Data Exchange (ETDEWEB)
Kercel, Stephen W.
1998-10-11
For several reasons, Bayesian parameter estimation is superior to other methods for extracting features of a weak signal from noise. Since it exploits prior knowledge, the analysis begins from a more advantageous starting point than other methods. Also, since ''nuisance parameters'' can be dropped out of the Bayesian analysis, the description of the model need not be as complete as is necessary for such methods as matched filtering. In the limit for perfectly random noise and a perfect description of the model, the signal-to-noise ratio improves as the square root of the number of samples in the data. Even with the imperfections of real-world data, Bayesian approaches this ideal limit of performance more closely than other methods. A major unsolved problem in landmine detection is the fusion of data from multiple sensor types. Bayesian data fusion is only beginning to be explored as a solution to the problem. In single sensor processes Bayesian analysis can sense multiple parameters from the data stream of the one sensor. It does so by computing a joint probability density function of a set of parameter values from the sensor output. However, there is no inherent requirement that the information must come from a single sensor. If multiple sensors are applied to a single process, where several different parameters are implicit in each sensor output data stream, the joint probability density function of all the parameters of interest can be computed in exactly the same manner as the single sensor case. Thus, it is just as practical to base decisions on multiple sensor outputs as it is for single sensors. This should provide a practical way to combine the outputs of dissimilar sensors, such as ground penetrating radar and electromagnetic induction devices, producing a better detection decision than could be provided by either sensor alone.
Longitudinal Prediction of the Infant Gut Microbiome with Dynamic Bayesian Networks.
McGeachie, Michael J; Sordillo, Joanne E; Gibson, Travis; Weinstock, George M; Liu, Yang-Yu; Gold, Diane R; Weiss, Scott T; Litonjua, Augusto
2016-01-01
Sequencing of the 16S rRNA gene allows comprehensive assessment of bacterial community composition from human body sites. Previously published and publicly accessible data on 58 preterm infants in the Neonatal Intensive Care Unit who underwent frequent stool collection was used. We constructed Dynamic Bayesian Networks from the data and analyzed predictive performance and network characteristics. We constructed a DBN model of the infant gut microbial ecosystem, which explicitly captured specific relationships and general trends in the data: increasing amounts of Clostridia, residual amounts of Bacilli, and increasing amounts of Gammaproteobacteria that then give way to Clostridia. Prediction performance of DBNs with fewer edges were overall more accurate, although less so on harder-to-predict subjects (p = 0.045). DBNs provided quantitative likelihood estimates for rare abruptions events. Iterative prediction was less accurate (p analysis of those samples. PMID:26853461
International Nuclear Information System (INIS)
The use of expert systems can be helpful to improve the transparency and repeatability of assessments in areas of risk analysis with limited data available. In this field, human reliability analysis (HRA) is no exception, and, in particular, dependence analysis is an HRA task strongly based on analyst judgement. The analysis of dependence among Human Failure Events refers to the assessment of the effect of an earlier human failure on the probability of the subsequent ones. This paper analyses and compares two expert systems, based on Bayesian Belief Networks and Fuzzy Logic (a Fuzzy Expert System, FES), respectively. The comparison shows that a BBN approach should be preferred in all the cases characterized by quantifiable uncertainty in the input (i.e. when probability distributions can be assigned to describe the input parameters uncertainty), since it provides a satisfactory representation of the uncertainty and its output is directly interpretable for use within PSA. On the other hand, in cases characterized by very limited knowledge, an analyst may feel constrained by the probabilistic framework, which requires assigning probability distributions for describing uncertainty. In these cases, the FES seems to lead to a more transparent representation of the input and output uncertainty. - Highlights: • We analyse treatment of uncertainty in two expert systems. • We compare a Bayesian Belief Network (BBN) and a Fuzzy Expert System (FES). • We focus on the input assessment, inference engines and output assessment. • We focus on an application problem of interest for human reliability analysis. • We emphasize the application rather than math to reach non-BBN or FES specialists