WorldWideScience

Sample records for bayesian model averaging

  1. Bayesian Model Averaging for Propensity Score Analysis

    Science.gov (United States)

    Kaplan, David; Chen, Jianshen

    2013-01-01

    The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…

  2. A new approach for Bayesian model averaging

    Institute of Scientific and Technical Information of China (English)

    TIAN XiangJun; XIE ZhengHui; WANG AiHui; YANG XiaoChun

    2012-01-01

    Bayesian model averaging (BMA) is a recently proposed statistical method for calibrating forecast ensembles from numerical weather models.However,successful implementation of BMA requires accurate estimates of the weights and variances of the individual competing models in the ensemble.Two methods,namely the Expectation-Maximization (EM) and the Markov Chain Monte Carlo (MCMC) algorithms,are widely used for BMA model training.Both methods have their own respective strengths and weaknesses.In this paper,we first modify the BMA log-likelihood function with the aim of removing the additional limitation that requires that the BMA weights add to one,and then use a limited memory quasi-Newtonian algorithm for solving the nonlinear optimization problem,thereby formulating a new approach for BMA (referred to as BMA-BFGS).Several groups of multi-model soil moisture simulation experiments from three land surface models show that the performance of BMA-BFGS is similar to the MCMC method in terms of simulation accuracy,and that both are superior to the EM algorithm.On the other hand,the computational cost of the BMA-BFGS algorithm is substantially less than for MCMC and is almost equivalent to that for EM.

  3. Bayesian Model Averaging in the Instrumental Variable Regression Model

    OpenAIRE

    Gary Koop; Robert Leon Gonzalez; Rodney Strachan

    2011-01-01

    This paper considers the instrumental variable regression model when there is uncertainly about the set of instruments, exogeneity restrictions, the validity of identifying restrictions and the set of exogenous regressors. This uncertainly can result in a huge number of models. To avoid statistical problems associated with standard model selection procedures, we develop a reversible jump Markov chain Monte Carlo algorithm that allows us to do Bayesian model averaging. The algorithm is very fl...

  4. Two-Stage Bayesian Model Averaging in Endogenous Variable Models.

    Science.gov (United States)

    Lenkoski, Alex; Eicher, Theo S; Raftery, Adrian E

    2014-01-01

    Economic modeling in the presence of endogeneity is subject to model uncertainty at both the instrument and covariate level. We propose a Two-Stage Bayesian Model Averaging (2SBMA) methodology that extends the Two-Stage Least Squares (2SLS) estimator. By constructing a Two-Stage Unit Information Prior in the endogenous variable model, we are able to efficiently combine established methods for addressing model uncertainty in regression models with the classic technique of 2SLS. To assess the validity of instruments in the 2SBMA context, we develop Bayesian tests of the identification restriction that are based on model averaged posterior predictive p-values. A simulation study showed that 2SBMA has the ability to recover structure in both the instrument and covariate set, and substantially improves the sharpness of resulting coefficient estimates in comparison to 2SLS using the full specification in an automatic fashion. Due to the increased parsimony of the 2SBMA estimate, the Bayesian Sargan test had a power of 50 percent in detecting a violation of the exogeneity assumption, while the method based on 2SLS using the full specification had negligible power. We apply our approach to the problem of development accounting, and find support not only for institutions, but also for geography and integration as development determinants, once both model uncertainty and endogeneity have been jointly addressed. PMID:24223471

  5. Bayesian Model Averaging and Weighted Average Least Squares : Equivariance, Stability, and Numerical Issues

    NARCIS (Netherlands)

    De Luca, G.; Magnus, J.R.

    2011-01-01

    This article is concerned with the estimation of linear regression models with uncertainty about the choice of the explanatory variables. We introduce the Stata commands bma and wals which implement, respectively, the exact Bayesian Model Averaging (BMA) estimator and the Weighted Average Least Squa

  6. Ensemble bayesian model averaging using markov chain Monte Carlo sampling

    Energy Technology Data Exchange (ETDEWEB)

    Vrugt, Jasper A [Los Alamos National Laboratory; Diks, Cees G H [NON LANL; Clark, Martyn P [NON LANL

    2008-01-01

    Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery etal. Mon Weather Rev 133: 1155-1174, 2(05)) has recommended the Expectation-Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed Differential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model stream-flow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances.

  7. Calibration of Uncertainty Analysis of the SWAT Model Using Genetic Algorithms and Bayesian Model Averaging

    Science.gov (United States)

    In this paper, the Genetic Algorithms (GA) and Bayesian model averaging (BMA) were combined to simultaneously conduct calibration and uncertainty analysis for the Soil and Water Assessment Tool (SWAT). In this hybrid method, several SWAT models with different structures are first selected; next GA i...

  8. Multi-objective calibration of forecast ensembles using Bayesian model averaging

    NARCIS (Netherlands)

    J.A. Vrugt; M.P. Clark; C.G.H. Diks; Q. Duan; B.A. Robinson

    2006-01-01

    Bayesian Model Averaging (BMA) has recently been proposed as a method for statistical postprocessing of forecast ensembles from numerical weather prediction models. The BMA predictive probability density function (PDF) of any weather quantity of interest is a weighted average of PDFs centered on the

  9. Bayesian Model Averaging of Artificial Intelligence Models for Hydraulic Conductivity Estimation

    Science.gov (United States)

    Nadiri, A.; Chitsazan, N.; Tsai, F. T.; Asghari Moghaddam, A.

    2012-12-01

    This research presents a Bayesian artificial intelligence model averaging (BAIMA) method that incorporates multiple artificial intelligence (AI) models to estimate hydraulic conductivity and evaluate estimation uncertainties. Uncertainty in the AI model outputs stems from error in model input as well as non-uniqueness in selecting different AI methods. Using one single AI model tends to bias the estimation and underestimate uncertainty. BAIMA employs Bayesian model averaging (BMA) technique to address the issue of using one single AI model for estimation. BAIMA estimates hydraulic conductivity by averaging the outputs of AI models according to their model weights. In this study, the model weights were determined using the Bayesian information criterion (BIC) that follows the parsimony principle. BAIMA calculates the within-model variances to account for uncertainty propagation from input data to AI model output. Between-model variances are evaluated to account for uncertainty due to model non-uniqueness. We employed Takagi-Sugeno fuzzy logic (TS-FL), artificial neural network (ANN) and neurofuzzy (NF) to estimate hydraulic conductivity for the Tasuj plain aquifer, Iran. BAIMA combined three AI models and produced better fitting than individual models. While NF was expected to be the best AI model owing to its utilization of both TS-FL and ANN models, the NF model is nearly discarded by the parsimony principle. The TS-FL model and the ANN model showed equal importance although their hydraulic conductivity estimates were quite different. This resulted in significant between-model variances that are normally ignored by using one AI model.

  10. Application of Bayesian model averaging to measurements of the primordial power spectrum

    CERN Document Server

    Parkinson, David

    2010-01-01

    Cosmological parameter uncertainties are often stated assuming a particular model, neglecting the model uncertainty, even when Bayesian model selection is unable to identify a conclusive best model. Bayesian model averaging is a method for assessing parameter uncertainties in situations where there is also uncertainty in the underlying model. We apply model averaging to the estimation of the parameters associated with the primordial power spectra of curvature and tensor perturbations. We use CosmoNest and MultiNest to compute the model Evidences and posteriors, using cosmic microwave data from WMAP, ACBAR, BOOMERanG and CBI, plus large-scale structure data from the SDSS DR7. We find that the model-averaged 95% credible interval for the spectral index using all of the data is 0.940 < n_s < 1.000, where n_s is specified at a pivot scale 0.015 Mpc^{-1}. For the tensors model averaging can tighten the credible upper limit, depending on prior assumptions.

  11. Maximum likelihood Bayesian model averaging and its predictive analysis for groundwater reactive transport models

    Science.gov (United States)

    Lu, Dan; Ye, Ming; Curtis, Gary P.

    2015-10-01

    While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the coupled hydrogeochemical processes and because of the long execution time of each model run. To resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. This study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a synthetic case in which twenty-seven reactive transport models were designed to predict the reactive transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near Naturita, CO. These reactive transport models contain three uncertain model components, i.e., parameterization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strategy to achieve more robust model predictions relative to a single model. MLBMA works best when the alternative models are structurally distinct and have diverse model predictions. When correlation in model structure exists, two strategies were used to improve predictive performance by retaining structurally distinct models or assigning smaller prior model probabilities to correlated models. Since the synthetic models were designed using data from the Naturita site, the results of this study are expected to provide guidance for real-world modeling. Limitations of applying MLBMA to the

  12. Assessing Bayesian model averaging uncertainty of groundwater modeling based on information entropy method

    Science.gov (United States)

    Zeng, Xiankui; Wu, Jichun; Wang, Dong; Zhu, Xiaobin; Long, Yuqiao

    2016-07-01

    Because of groundwater conceptualization uncertainty, multi-model methods are usually used and the corresponding uncertainties are estimated by integrating Markov Chain Monte Carlo (MCMC) and Bayesian model averaging (BMA) methods. Generally, the variance method is used to measure the uncertainties of BMA prediction. The total variance of ensemble prediction is decomposed into within-model and between-model variances, which represent the uncertainties derived from parameter and conceptual model, respectively. However, the uncertainty of a probability distribution couldn't be comprehensively quantified by variance solely. A new measuring method based on information entropy theory is proposed in this study. Due to actual BMA process hard to meet the ideal mutually exclusive collectively exhaustive condition, BMA predictive uncertainty could be decomposed into parameter, conceptual model, and overlapped uncertainties, respectively. Overlapped uncertainty is induced by the combination of predictions from correlated model structures. In this paper, five simple analytical functions are firstly used to illustrate the feasibility of the variance and information entropy methods. A discrete distribution example shows that information entropy could be more appropriate to describe between-model uncertainty than variance. Two continuous distribution examples show that the two methods are consistent in measuring normal distribution, and information entropy is more appropriate to describe bimodal distribution than variance. The two examples of BMA uncertainty decomposition demonstrate that the two methods are relatively consistent in assessing the uncertainty of unimodal BMA prediction. Information entropy is more informative in describing the uncertainty decomposition of bimodal BMA prediction. Then, based on a synthetical groundwater model, the variance and information entropy methods are used to assess the BMA uncertainty of groundwater modeling. The uncertainty assessments of

  13. Probabilistic Quantitative Precipitation Forecasting over East China using Bayesian Model Averaging

    Science.gov (United States)

    Yang, Ai; Yuan, Huiling

    2014-05-01

    The Bayesian model averaging (BMA) is a post-processing method that weights the predictive probability density functions (PDFs) of individual ensemble members. This study investigates the BMA method for calibrating quantitative precipitation forecasts (QPFs) from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) database. The QPFs over East Asia during summer (June-August) 2008-2011 are generated from six operational ensemble prediction systems (EPSs), including ECMWF, UKMO, NCEP, CMC, JMA, CMA, and multi-center ensembles of their combinations. The satellite-based precipitation estimate product TRMM 3B42 V7 is used as the verification dataset. In the BMA post-processing for precipitation forecasts, the PDF matching method is first applied to bias-correct systematic errors in each forecast member, by adjusting PDFs of forecasts to match PDFs of observations. Next, a logistic regression and two-parameter gamma distribution are used to fit the probability of rainfall occurrence and precipitation distribution. Through these two steps, the BMA post-processing bias-corrects ensemble forecasts systematically. The 60-70% cumulative density function (CDF) predictions well estimate moderate precipitation compared to raw ensemble mean, while the 90% upper boundary of BMA CDF predictions can be set as a threshold of extreme precipitation alarm. In general, the BMA method is more capable of multi-center ensemble post-processing, which improves probabilistic QPFs (PQPFs) with better ensemble spread and reliability. KEYWORDS: Bayesian model averaging (BMA); post-processing; ensemble forecast; TIGGE

  14. Reconstruction of large-scale gene regulatory networks using Bayesian model averaging.

    Science.gov (United States)

    Kim, Haseong; Gelenbe, Erol

    2012-09-01

    Gene regulatory networks provide the systematic view of molecular interactions in a complex living system. However, constructing large-scale gene regulatory networks is one of the most challenging problems in systems biology. Also large burst sets of biological data require a proper integration technique for reliable gene regulatory network construction. Here we present a new reverse engineering approach based on Bayesian model averaging which attempts to combine all the appropriate models describing interactions among genes. This Bayesian approach with a prior based on the Gibbs distribution provides an efficient means to integrate multiple sources of biological data. In a simulation study with maximum of 2000 genes, our method shows better sensitivity than previous elastic-net and Gaussian graphical models, with a fixed specificity of 0.99. The study also shows that the proposed method outperforms the other standard methods for a DREAM dataset generated by nonlinear stochastic models. In brain tumor data analysis, three large-scale networks consisting of 4422 genes were built using the gene expression of non-tumor, low and high grade tumor mRNA expression samples, along with DNA-protein binding affinity information. We found that genes having a large variation of degree distribution among the three tumor networks are the ones that see most involved in regulatory and developmental processes, which possibly gives a novel insight concerning conventional differentially expressed gene analysis. PMID:22987132

  15. Bayesian Model Averaging for Ensemble-Based Estimates of Solvation Free Energies

    CERN Document Server

    Gosink, Luke J; Reehl, Sarah M; Whitney, Paul D; Mobley, David L; Baker, Nathan A

    2016-01-01

    This paper applies the Bayesian Model Averaging (BMA) statistical ensemble technique to estimate small molecule solvation free energies. There is a wide range methods for predicting solvation free energies, ranging from empirical statistical models to ab initio quantum mechanical approaches. Each of these methods are based on a set of conceptual assumptions that can affect a method's predictive accuracy and transferability. Using an iterative statistical process, we have selected and combined solvation energy estimates using an ensemble of 17 diverse methods from the SAMPL4 blind prediction study to form a single, aggregated solvation energy estimate. The ensemble design process evaluates the statistical information in each individual method as well as the performance of the aggregate estimate obtained from the ensemble as a whole. Methods that possess minimal or redundant information are pruned from the ensemble and the evaluation process repeats until aggregate predictive performance can no longer be improv...

  16. Using Bayesian Model Averaging (BMA to calibrate probabilistic surface temperature forecasts over Iran

    Directory of Open Access Journals (Sweden)

    I. Soltanzadeh

    2011-07-01

    Full Text Available Using Bayesian Model Averaging (BMA, an attempt was made to obtain calibrated probabilistic numerical forecasts of 2-m temperature over Iran. The ensemble employs three limited area models (WRF, MM5 and HRM, with WRF used with five different configurations. Initial and boundary conditions for MM5 and WRF are obtained from the National Centers for Environmental Prediction (NCEP Global Forecast System (GFS and for HRM the initial and boundary conditions come from analysis of Global Model Europe (GME of the German Weather Service. The resulting ensemble of seven members was run for a period of 6 months (from December 2008 to May 2009 over Iran. The 48-h raw ensemble outputs were calibrated using BMA technique for 120 days using a 40 days training sample of forecasts and relative verification data.

    The calibrated probabilistic forecasts were assessed using rank histogram and attribute diagrams. Results showed that application of BMA improved the reliability of the raw ensemble. Using the weighted ensemble mean forecast as a deterministic forecast it was found that the deterministic-style BMA forecasts performed usually better than the best member's deterministic forecast.

  17. Robust determinants of OECD FDI in developing countries: Insights from Bayesian model averaging

    Directory of Open Access Journals (Sweden)

    Nikolaos Antonakakis

    2015-12-01

    Full Text Available In this paper, we examine the determinants of outward FDI from four major OECD investors, namely, the US, Germany, France, and the Netherlands, to 129 developing countries classified under five regions over the period 1995–2008. Our goal is to distinguish whether the motivation for FDI differs among these investors in developing countries. Rather than relying on specific theories of FDI determinants, we examine them all simultaneously by employing Bayesian model averaging (BMA. This approach permits us to select the most appropriate model (or combination of models that governs FDI allocation and to distinguish robust FDI determinants. We find that no single theory governs the decision of OECD FDI in developing countries but a combination of theories. In particular, OECD investors search for destinations with whom they have established intensive trade relations and that offer a qualified labor force. Low wages and attractive tax rates are robust investment criteria too, and a considerable share of FDI is still resource-driven. Overall, investors show fairly similar strategies in the five developing regions.

  18. Comparison of Two Gas Selection Methodologies: An Application of Bayesian Model Averaging

    Energy Technology Data Exchange (ETDEWEB)

    Renholds, Andrea S.; Thompson, Sandra E.; Anderson, Kevin K.; Chilton, Lawrence K.

    2006-03-31

    One goal of hyperspectral imagery analysis is the detection and characterization of plumes. Characterization includes identifying the gases in the plumes, which is a model selection problem. Two gas selection methods compared in this report are Bayesian model averaging (BMA) and minimum Akaike information criterion (AIC) stepwise regression (SR). Simulated spectral data from a three-layer radiance transfer model were used to compare the two methods. Test gases were chosen to span the types of spectra observed, which exhibit peaks ranging from broad to sharp. The size and complexity of the search libraries were varied. Background materials were chosen to either replicate a remote area of eastern Washington or feature many common background materials. For many cases, BMA and SR performed the detection task comparably in terms of the receiver operating characteristic curves. For some gases, BMA performed better than SR when the size and complexity of the search library increased. This is encouraging because we expect improved BMA performance upon incorporation of prior information on background materials and gases.

  19. Bayesian Averaging over Many Dynamic Model Structures with Evidence on the Great Ratios and Liquidity Trap Risk

    NARCIS (Netherlands)

    R.W. Strachan (Rodney); H.K. van Dijk (Herman)

    2008-01-01

    textabstractA Bayesian model averaging procedure is presented that makes use of a finite mixture of many model structures within the class of vector autoregressive (VAR) processes. It is applied to two empirical issues. First, stability of the Great Ratios in U.S. macro-economic time series is inves

  20. Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    Energy Technology Data Exchange (ETDEWEB)

    Vrugt, Jasper A [Los Alamos National Laboratory; Wohling, Thomas [NON LANL

    2008-01-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  1. How robust are the estimated effects of air pollution on health? Accounting for model uncertainty using Bayesian model averaging.

    Science.gov (United States)

    Pannullo, Francesca; Lee, Duncan; Waclawski, Eugene; Leyland, Alastair H

    2016-08-01

    The long-term impact of air pollution on human health can be estimated from small-area ecological studies in which the health outcome is regressed against air pollution concentrations and other covariates, such as socio-economic deprivation. Socio-economic deprivation is multi-factorial and difficult to measure, and includes aspects of income, education, and housing as well as others. However, these variables are potentially highly correlated, meaning one can either create an overall deprivation index, or use the individual characteristics, which can result in a variety of pollution-health effects. Other aspects of model choice may affect the pollution-health estimate, such as the estimation of pollution, and spatial autocorrelation model. Therefore, we propose a Bayesian model averaging approach to combine the results from multiple statistical models to produce a more robust representation of the overall pollution-health effect. We investigate the relationship between nitrogen dioxide concentrations and cardio-respiratory mortality in West Central Scotland between 2006 and 2012.

  2. Evaluating experimental design for soil-plant model selection using a Bootstrap Filter and Bayesian model averaging

    Science.gov (United States)

    Wöhling, T.; Schöniger, A.; Geiges, A.; Nowak, W.; Gayler, S.

    2013-12-01

    The objective selection of appropriate models for realistic simulations of coupled soil-plant processes is a challenging task since the processes are complex, not fully understood at larger scales, and highly non-linear. Also, comprehensive data sets are scarce, and measurements are uncertain. In the past decades, a variety of different models have been developed that exhibit a wide range of complexity regarding their approximation of processes in the coupled model compartments. We present a method for evaluating experimental design for maximum confidence in the model selection task. The method considers uncertainty in parameters, measurements and model structures. Advancing the ideas behind Bayesian Model Averaging (BMA), we analyze the changes in posterior model weights and posterior model choice uncertainty when more data are made available. This allows assessing the power of different data types, data densities and data locations in identifying the best model structure from among a suite of plausible models. The models considered in this study are the crop models CERES, SUCROS, GECROS and SPASS, which are coupled to identical routines for simulating soil processes within the modelling framework Expert-N. The four models considerably differ in the degree of detail at which crop growth and root water uptake are represented. Monte-Carlo simulations were conducted for each of these models considering their uncertainty in soil hydraulic properties and selected crop model parameters. Using a Bootstrap Filter (BF), the models were then conditioned on field measurements of soil moisture, matric potential, leaf-area index, and evapotranspiration rates (from eddy-covariance measurements) during a vegetation period of winter wheat at a field site at the Swabian Alb in Southwestern Germany. Following our new method, we derived model weights when using all data or different subsets thereof. We discuss to which degree the posterior mean outperforms the prior mean and all

  3. Bayesian model averaging method for evaluating associations between air pollution and respiratory mortality: a time-series study

    Science.gov (United States)

    Fang, Xin; Li, Runkui; Kan, Haidong; Bottai, Matteo; Fang, Fang

    2016-01-01

    Objective To demonstrate an application of Bayesian model averaging (BMA) with generalised additive mixed models (GAMM) and provide a novel modelling technique to assess the association between inhalable coarse particles (PM10) and respiratory mortality in time-series studies. Design A time-series study using regional death registry between 2009 and 2010. Setting 8 districts in a large metropolitan area in Northern China. Participants 9559 permanent residents of the 8 districts who died of respiratory diseases between 2009 and 2010. Main outcome measures Per cent increase in daily respiratory mortality rate (MR) per interquartile range (IQR) increase of PM10 concentration and corresponding 95% confidence interval (CI) in single-pollutant and multipollutant (including NOx, CO) models. Results The Bayesian model averaged GAMM (GAMM+BMA) and the optimal GAMM of PM10, multipollutants and principal components (PCs) of multipollutants showed comparable results for the effect of PM10 on daily respiratory MR, that is, one IQR increase in PM10 concentration corresponded to 1.38% vs 1.39%, 1.81% vs 1.83% and 0.87% vs 0.88% increase, respectively, in daily respiratory MR. However, GAMM+BMA gave slightly but noticeable wider CIs for the single-pollutant model (−1.09 to 4.28 vs −1.08 to 3.93) and the PCs-based model (−2.23 to 4.07 vs −2.03 vs 3.88). The CIs of the multiple-pollutant model from two methods are similar, that is, −1.12 to 4.85 versus −1.11 versus 4.83. Conclusions The BMA method may represent a useful tool for modelling uncertainty in time-series studies when evaluating the effect of air pollution on fatal health outcomes. PMID:27531727

  4. Bayesian Averaging is Well-Temperated

    DEFF Research Database (Denmark)

    Hansen, Lars Kai

    2000-01-01

    Bayesian predictions are stochastic just like predictions of any other inference scheme that generalize from a finite sample. While a simple variational argument shows that Bayes averaging is generalization optimal given that the prior matches the teacher parameter distribution the situation...

  5. Maximum likelihood Bayesian averaging of airflow models in unsaturated fractured tuff using Occam and variance windows

    NARCIS (Netherlands)

    Morales-Casique, E.; Neuman, S.P.; Vesselinov, V.V.

    2010-01-01

    We use log permeability and porosity data obtained from single-hole pneumatic packer tests in six boreholes drilled into unsaturated fractured tuff near Superior, Arizona, to postulate, calibrate and compare five alternative variogram models (exponential, exponential with linear drift, power, trunca

  6. Quantifying and Reducing Model-Form Uncertainties in Reynolds-Averaged Navier-Stokes Equations: An Open-Box, Physics-Based, Bayesian Approach

    CERN Document Server

    Xiao, H; Wang, J -X; Sun, R; Roy, C J

    2015-01-01

    Despite their well-known limitations, Reynolds-Averaged Navier-Stokes (RANS) models are still the workhorse tools for turbulent flow simulations in today's engineering applications. For many practical flows, the turbulence models are by far the most important source of uncertainty. In this work we develop an open-box, physics-informed Bayesian framework for quantifying model-form uncertainties in RANS simulations. Uncertainties are introduced directly to the Reynolds stresses and are represented with compact parameterization accounting for empirical prior knowledge and physical constraints (e.g., realizability, smoothness, and symmetry). An iterative ensemble Kalman method is used to assimilate the prior knowledge and observation data in a Bayesian framework, and to propagate them to posterior distributions of velocities and other Quantities of Interest (QoIs). We use two representative cases, the flow over periodic hills and the flow in a square duct, to evaluate the performance of the proposed framework. Si...

  7. Bayesian Graphical Models

    DEFF Research Database (Denmark)

    Jensen, Finn Verner; Nielsen, Thomas Dyhre

    2016-01-01

    Mathematically, a Bayesian graphical model is a compact representation of the joint probability distribution for a set of variables. The most frequently used type of Bayesian graphical models are Bayesian networks. The structural part of a Bayesian graphical model is a graph consisting of nodes...... and edges. The nodes represent variables, which may be either discrete or continuous. An edge between two nodes A and B indicates a direct influence between the state of A and the state of B, which in some domains can also be interpreted as a causal relation. The wide-spread use of Bayesian networks...... is largely due to the availability of efficient inference algorithms for answering probabilistic queries about the states of the variables in the network. Furthermore, to support the construction of Bayesian network models, learning algorithms are also available. We give an overview of the Bayesian network...

  8. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier-Stokes simulations: A data-driven, physics-informed Bayesian approach

    Science.gov (United States)

    Xiao, H.; Wu, J.-L.; Wang, J.-X.; Sun, R.; Roy, C. J.

    2016-11-01

    Despite their well-known limitations, Reynolds-Averaged Navier-Stokes (RANS) models are still the workhorse tools for turbulent flow simulations in today's engineering analysis, design and optimization. While the predictive capability of RANS models depends on many factors, for many practical flows the turbulence models are by far the largest source of uncertainty. As RANS models are used in the design and safety evaluation of many mission-critical systems such as airplanes and nuclear power plants, quantifying their model-form uncertainties has significant implications in enabling risk-informed decision-making. In this work we develop a data-driven, physics-informed Bayesian framework for quantifying model-form uncertainties in RANS simulations. Uncertainties are introduced directly to the Reynolds stresses and are represented with compact parameterization accounting for empirical prior knowledge and physical constraints (e.g., realizability, smoothness, and symmetry). An iterative ensemble Kalman method is used to assimilate the prior knowledge and observation data in a Bayesian framework, and to propagate them to posterior distributions of velocities and other Quantities of Interest (QoIs). We use two representative cases, the flow over periodic hills and the flow in a square duct, to evaluate the performance of the proposed framework. Both cases are challenging for standard RANS turbulence models. Simulation results suggest that, even with very sparse observations, the obtained posterior mean velocities and other QoIs have significantly better agreement with the benchmark data compared to the baseline results. At most locations the posterior distribution adequately captures the true model error within the developed model form uncertainty bounds. The framework is a major improvement over existing black-box, physics-neutral methods for model-form uncertainty quantification, where prior knowledge and details of the models are not exploited. This approach has

  9. The Stream algorithm: computationally efficient ridge-regression via Bayesian model averaging, and applications to pharmacogenomic prediction of cancer cell line sensitivity.

    Science.gov (United States)

    Neto, Elias Chaibub; Jang, In Sock; Friend, Stephen H; Margolin, Adam A

    2014-01-01

    Computational efficiency is important for learning algorithms operating in the "large p, small n" setting. In computational biology, the analysis of data sets containing tens of thousands of features ("large p"), but only a few hundred samples ("small n"), is nowadays routine, and regularized regression approaches such as ridge-regression, lasso, and elastic-net are popular choices. In this paper we propose a novel and highly efficient Bayesian inference method for fitting ridge-regression. Our method is fully analytical, and bypasses the need for expensive tuning parameter optimization, via cross-validation, by employing Bayesian model averaging over the grid of tuning parameters. Additional computational efficiency is achieved by adopting the singular value decomposition reparametrization of the ridge-regression model, replacing computationally expensive inversions of large p × p matrices by efficient inversions of small and diagonal n × n matrices. We show in simulation studies and in the analysis of two large cancer cell line data panels that our algorithm achieves slightly better predictive performance than cross-validated ridge-regression while requiring only a fraction of the computation time. Furthermore, in comparisons based on the cell line data sets, our algorithm systematically out-performs the lasso in both predictive performance and computation time, and shows equivalent predictive performance, but considerably smaller computation time, than the elastic-net. PMID:24297531

  10. Prospects of using Bayesian model averaging for the calibration of one-month forecasts of surface air temperature over South Korea

    Science.gov (United States)

    Kim, Chansoo; Suh, Myoung-Seok

    2013-05-01

    In this study, we investigated the prospect of calibrating probabilistic forecasts of surface air temperature (SAT) over South Korea by using Bayesian model averaging (BMA). We used 63 months of simulation results from four regional climate models (RCMs) with two boundary conditions (NCEP-DOE and ERA-interim) over the CORDEX East Asia. Rank histograms and residual quantile-quantile (R-Q-Q) plots showed that the simulation skills of the RCMs differ according to season and geographic location, but the RCMs show a systematic cold bias irrespective of season and geographic location. As a result, the BMA weights are clearly dependent on geographic location, season, and correlations among the models. The one-month equal weighted ensemble (EWE) outputs for the 59 stations over South Korea were calibrated using the BMA method for 48 monthly time periods based on BMA weights obtained from the previous 15 months of training data. The predictive density function was calibrated using BMA and the individual forecasts were weighted according to their performance. The raw ensemble forecasts were assessed using the flatness of the rank histogram and the R-Q-Q plot. The results showed that BMA improves the calibration of the EWE and the other weighted ensemble forecasts irrespective of season, simulation skill of the RCM, and geographic location. In addition, deterministic-style BMA forecasts usually perform better than the deterministic forecast of the single best member.

  11. Bayesian model averaging in vector autoregressive processes with an investigation of stability of the US great ratios and risk of a liquidity trap in the USA, UK and Japan

    NARCIS (Netherlands)

    R.W. Strachan (Rodney); H.K. van Dijk (Herman)

    2007-01-01

    textabstractA Bayesian model averaging procedure is presented within the class of vector autoregressive (VAR) processes and applied to two empirical issues. First, stability of the "Great Ratios" in U.S. macro-economic time series is investigated, together with the presence and e¤ects of permanent s

  12. Bayesian Variable Selection in Spatial Autoregressive Models

    OpenAIRE

    Jesus Crespo Cuaresma; Philipp Piribauer

    2015-01-01

    This paper compares the performance of Bayesian variable selection approaches for spatial autoregressive models. We present two alternative approaches which can be implemented using Gibbs sampling methods in a straightforward way and allow us to deal with the problem of model uncertainty in spatial autoregressive models in a flexible and computationally efficient way. In a simulation study we show that the variable selection approaches tend to outperform existing Bayesian model averaging tech...

  13. Applied Bayesian modelling

    CERN Document Server

    Congdon, Peter

    2014-01-01

    This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBU

  14. The Stream Algorithm: Computationally Efficient Ridge-Regression via Bayesian Model Averaging, and Applications to Pharmacogenomic Prediction of Cancer Cell Line Sensitivity

    OpenAIRE

    Neto, Elias Chaibub; Jang, In Sock; Friend, Stephen H.; Margolin, Adam A.

    2014-01-01

    Computational efficiency is important for learning algorithms operating in the “large p, small n” setting. In computational biology, the analysis of data sets containing tens of thousands of features (“large p”), but only a few hundred samples (“small n”), is nowadays routine, and regularized regression approaches such as ridge-regression, lasso, and elastic-net are popular choices. In this paper we propose a novel and highly efficient Bayesian inference method for fitting ridge-regression. O...

  15. Bayesian modeling using WinBUGS

    CERN Document Server

    Ntzoufras, Ioannis

    2009-01-01

    A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all ...

  16. Bayesian stable isotope mixing models

    Science.gov (United States)

    In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...

  17. Bayesian kinematic earthquake source models

    Science.gov (United States)

    Minson, S. E.; Simons, M.; Beck, J. L.; Genrich, J. F.; Galetzka, J. E.; Chowdhury, F.; Owen, S. E.; Webb, F.; Comte, D.; Glass, B.; Leiva, C.; Ortega, F. H.

    2009-12-01

    Most coseismic, postseismic, and interseismic slip models are based on highly regularized optimizations which yield one solution which satisfies the data given a particular set of regularizing constraints. This regularization hampers our ability to answer basic questions such as whether seismic and aseismic slip overlap or instead rupture separate portions of the fault zone. We present a Bayesian methodology for generating kinematic earthquake source models with a focus on large subduction zone earthquakes. Unlike classical optimization approaches, Bayesian techniques sample the ensemble of all acceptable models presented as an a posteriori probability density function (PDF), and thus we can explore the entire solution space to determine, for example, which model parameters are well determined and which are not, or what is the likelihood that two slip distributions overlap in space. Bayesian sampling also has the advantage that all a priori knowledge of the source process can be used to mold the a posteriori ensemble of models. Although very powerful, Bayesian methods have up to now been of limited use in geophysical modeling because they are only computationally feasible for problems with a small number of free parameters due to what is called the "curse of dimensionality." However, our methodology can successfully sample solution spaces of many hundreds of parameters, which is sufficient to produce finite fault kinematic earthquake models. Our algorithm is a modification of the tempered Markov chain Monte Carlo (tempered MCMC or TMCMC) method. In our algorithm, we sample a "tempered" a posteriori PDF using many MCMC simulations running in parallel and evolutionary computation in which models which fit the data poorly are preferentially eliminated in favor of models which better predict the data. We present results for both synthetic test problems as well as for the 2007 Mw 7.8 Tocopilla, Chile earthquake, the latter of which is constrained by InSAR, local high

  18. A Bayesian Nonparametric IRT Model

    OpenAIRE

    Karabatsos, George

    2015-01-01

    This paper introduces a flexible Bayesian nonparametric Item Response Theory (IRT) model, which applies to dichotomous or polytomous item responses, and which can apply to either unidimensional or multidimensional scaling. This is an infinite-mixture IRT model, with person ability and item difficulty parameters, and with a random intercept parameter that is assigned a mixing distribution, with mixing weights a probit function of other person and item parameters. As a result of its flexibility...

  19. Bayesian Stable Isotope Mixing Models

    OpenAIRE

    Parnell, Andrew C.; Phillips, Donald L.; Bearhop, Stuart; Semmens, Brice X.; Ward, Eric J.; Moore, Jonathan W.; Andrew L Jackson; Inger, Richard

    2012-01-01

    In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixture. The most widely used application is quantifying the diet of organisms based on the food sources they have been observed to consume. At the centre of the multivariate statistical model we propose is a compositional m...

  20. Bayesian variable order Markov models: Towards Bayesian predictive state representations

    NARCIS (Netherlands)

    C. Dimitrakakis

    2009-01-01

    We present a Bayesian variable order Markov model that shares many similarities with predictive state representations. The resulting models are compact and much easier to specify and learn than classical predictive state representations. Moreover, we show that they significantly outperform a more st

  1. Modeling Diagnostic Assessments with Bayesian Networks

    Science.gov (United States)

    Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego

    2007-01-01

    This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…

  2. Bayesian model discrimination for glucose-insulin homeostasis

    DEFF Research Database (Denmark)

    Andersen, Kim Emil; Brooks, Stephen P.; Højbjerre, Malene

    In this paper we analyse a set of experimental data on a number of healthy and diabetic patients and discuss a variety of models for describing the physiological processes involved in glucose absorption and insulin secretion within the human body. We adopt a Bayesian approach which facilitates...... the reformulation of existing deterministic models as stochastic state space models which properly accounts for both measurement and process variability. The analysis is further enhanced by Bayesian model discrimination techniques and model averaged parameter estimation which fully accounts for model as well...

  3. Bayesian inference for OPC modeling

    Science.gov (United States)

    Burbine, Andrew; Sturtevant, John; Fryer, David; Smith, Bruce W.

    2016-03-01

    The use of optical proximity correction (OPC) demands increasingly accurate models of the photolithographic process. Model building and inference techniques in the data science community have seen great strides in the past two decades which make better use of available information. This paper aims to demonstrate the predictive power of Bayesian inference as a method for parameter selection in lithographic models by quantifying the uncertainty associated with model inputs and wafer data. Specifically, the method combines the model builder's prior information about each modelling assumption with the maximization of each observation's likelihood as a Student's t-distributed random variable. Through the use of a Markov chain Monte Carlo (MCMC) algorithm, a model's parameter space is explored to find the most credible parameter values. During parameter exploration, the parameters' posterior distributions are generated by applying Bayes' rule, using a likelihood function and the a priori knowledge supplied. The MCMC algorithm used, an affine invariant ensemble sampler (AIES), is implemented by initializing many walkers which semiindependently explore the space. The convergence of these walkers to global maxima of the likelihood volume determine the parameter values' highest density intervals (HDI) to reveal champion models. We show that this method of parameter selection provides insights into the data that traditional methods do not and outline continued experiments to vet the method.

  4. A Bayesian approach to model uncertainty

    International Nuclear Information System (INIS)

    A Bayesian approach to model uncertainty is taken. For the case of a finite number of alternative models, the model uncertainty is equivalent to parameter uncertainty. A derivation based on Savage's partition problem is given

  5. Bayesian Models of Brain and Behaviour

    OpenAIRE

    Penny, William

    2012-01-01

    This paper presents a review of Bayesian models of brain and behaviour. We first review the basic principles of Bayesian inference. This is followed by descriptions of sampling and variational methods for approximate inference, and forward and backward recursions in time for inference in dynamical models. The review of behavioural models covers work in visual processing, sensory integration, sensorimotor integration, and collective decision making. The review of brain models covers a range of...

  6. Bayesian Uncertainty Analyses Via Deterministic Model

    Science.gov (United States)

    Krzysztofowicz, R.

    2001-05-01

    Rational decision-making requires that the total uncertainty about a variate of interest (a predictand) be quantified in terms of a probability distribution, conditional on all available information and knowledge. Suppose the state-of-knowledge is embodied in a deterministic model, which is imperfect and outputs only an estimate of the predictand. Fundamentals are presented of three Bayesian approaches to producing a probability distribution of the predictand via any deterministic model. The Bayesian Processor of Output (BPO) quantifies the total uncertainty in terms of a posterior distribution, conditional on model output. The Bayesian Processor of Ensemble (BPE) quantifies the total uncertainty in terms of a posterior distribution, conditional on an ensemble of model output. The Bayesian Forecasting System (BFS) decomposes the total uncertainty into input uncertainty and model uncertainty, which are characterized independently and then integrated into a predictive distribution.

  7. Bayesian models a statistical primer for ecologists

    CERN Document Server

    Hobbs, N Thompson

    2015-01-01

    Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods-in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probabili

  8. Bayesian Modeling of a Human MMORPG Player

    CERN Document Server

    Synnaeve, Gabriel

    2010-01-01

    This paper describes an application of Bayesian programming to the control of an autonomous avatar in a multiplayer role-playing game (the example is based on World of Warcraft). We model a particular task, which consists of choosing what to do and to select which target in a situation where allies and foes are present. We explain the model in Bayesian programming and show how we could learn the conditional probabilities from data gathered during human-played sessions.

  9. Bayesian Modeling of a Human MMORPG Player

    Science.gov (United States)

    Synnaeve, Gabriel; Bessière, Pierre

    2011-03-01

    This paper describes an application of Bayesian programming to the control of an autonomous avatar in a multiplayer role-playing game (the example is based on World of Warcraft). We model a particular task, which consists of choosing what to do and to select which target in a situation where allies and foes are present. We explain the model in Bayesian programming and show how we could learn the conditional probabilities from data gathered during human-played sessions.

  10. 基于贝叶斯模式平均的大渡河流域集合降水概率预报研究%Probabilistic Ensemble Precipitation Forecasting Based on Bayesian Model Averaging for Daduhe River Basin

    Institute of Scientific and Technical Information of China (English)

    钟逸轩; 吴裕珍; 王大刚; 孔冬冬

    2016-01-01

    Bayesian Mpdel Averaging (BMA) prpbability fprecast mpdels fpr the Daduhe River Basin was established by calibrating mpdel parameters with precipitatipn ensemble fprecasts and gauge pbservatipns. The ensemble fprecasts used in this study cpnsists pf five single-center predictipns frpm the fpllpwing five agencies:the China Meteprplpgical Administratipn (CMA), the Canadian Meteprplpgical Center (CMC), the Eurppean Centre fpr Medium-Range Weather Fprecasts (ECMWF), the United States Natipnal Center fpr Envirpnmental Predictipn (NCEP) and the United Kingdpm Meteprplpgical Office (UKMO) in the THORPEX Interactive Grand Glpbal En semble (TIGGE). Evaluatipn based pn cpntinupus ranked prpbability scpre (CRPS), mean absplute errpr (MAE) and Brier Scpre (BS) shpws that the BMA mpdels are better than the priginal prpbability fprecast mpdels. The averages pf CRPS and MAE pf the BMA mpdels decrease by 31.6% and 23.9%, respec tively. By analyzing BMA mpdel weights pf each single-center predictipn, we find that ECMWF cpntributes mpst fpr the mpdels, which means ECMWF dpes best in precipitatipn fprecasts in the Daduhe basin. The BMA mpdels fpr the Daduhe basin dpes npt perfprm well fpr the predictipn pf extreme precipitatipn and usually underestimate the precipitatipn ampunt.%基于TIGGE数据的五个单中心集合预报结果(CMA、CMC、ECMWF、NCEP、UKMO)构成的多中心超级集合预报系统的降水量预报,以及相应时段的实测降水量值,应用贝叶斯模式平均法(Bayesian Mpdel Averaging,BMA)建立大渡河流域的BMA概率预报模型。通过CRPS、MAE、BS三种评价指标,对大渡河流域的BMA降水概率预报模型进行评价与检验,三种指标均显示BMA降水概率预报比原始集合预报具有更高的准确性,其中BMA模型的CRPS和MAE指标均值分别相比原始集合预报减少了31.6%和23.9%;分析模型权重参数,得出ECMWF对大渡河流域BMA降水预报贡献最大,即ECMWF对研究区域

  11. Bayesian Analysis of Multivariate Probit Models

    OpenAIRE

    Siddhartha Chib; Edward Greenberg

    1996-01-01

    This paper provides a unified simulation-based Bayesian and non-Bayesian analysis of correlated binary data using the multivariate probit model. The posterior distribution is simulated by Markov chain Monte Carlo methods, and maximum likelihood estimates are obtained by a Markov chain Monte Carlo version of the E-M algorithm. Computation of Bayes factors from the simulation output is also considered. The methods are applied to a bivariate data set, to a 534-subject, four-year longitudinal dat...

  12. Adaptive approximate Bayesian computation for complex models

    CERN Document Server

    Lenormand, Maxime; Deffuant, Guillaume

    2011-01-01

    Approximate Bayesian computation (ABC) is a family of computational techniques in Bayesian statistics. These techniques allow to fit a model to data without relying on the computation of the model likelihood. They instead require to simulate a large number of times the model to be fitted. A number of refinements to the original rejection-based ABC scheme have been proposed, including the sequential improvement of posterior distributions. This technique allows to decrease the number of model simulations required, but it still presents several shortcomings which are particularly problematic for costly to simulate complex models. We here provide a new algorithm to perform adaptive approximate Bayesian computation, which is shown to perform better on both a toy example and a complex social model.

  13. Bayesian Data-Model Fit Assessment for Structural Equation Modeling

    Science.gov (United States)

    Levy, Roy

    2011-01-01

    Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…

  14. A Bayesian Analysis of Spectral ARMA Model

    Directory of Open Access Journals (Sweden)

    Manoel I. Silvestre Bezerra

    2012-01-01

    Full Text Available Bezerra et al. (2008 proposed a new method, based on Yule-Walker equations, to estimate the ARMA spectral model. In this paper, a Bayesian approach is developed for this model by using the noninformative prior proposed by Jeffreys (1967. The Bayesian computations, simulation via Markov Monte Carlo (MCMC is carried out and characteristics of marginal posterior distributions such as Bayes estimator and confidence interval for the parameters of the ARMA model are derived. Both methods are also compared with the traditional least squares and maximum likelihood approaches and a numerical illustration with two examples of the ARMA model is presented to evaluate the performance of the procedures.

  15. Bayesian semiparametric dynamic Nelson-Siegel model

    NARCIS (Netherlands)

    C. Cakmakli

    2011-01-01

    This paper proposes the Bayesian semiparametric dynamic Nelson-Siegel model where the density of the yield curve factors and thereby the density of the yields are estimated along with other model parameters. This is accomplished by modeling the error distributions of the factors according to a Diric

  16. Bayesian calibration of car-following models

    NARCIS (Netherlands)

    Van Hinsbergen, C.P.IJ.; Van Lint, H.W.C.; Hoogendoorn, S.P.; Van Zuylen, H.J.

    2010-01-01

    Recent research has revealed that there exist large inter-driver differences in car-following behavior such that different car-following models may apply to different drivers. This study applies Bayesian techniques to the calibration of car-following models, where prior distributions on each model p

  17. Bayesian Approach to Neuro-Rough Models for Modelling HIV

    CERN Document Server

    Marwala, Tshilidzi

    2007-01-01

    This paper proposes a new neuro-rough model for modelling the risk of HIV from demographic data. The model is formulated using Bayesian framework and trained using Markov Chain Monte Carlo method and Metropolis criterion. When the model was tested to estimate the risk of HIV infection given the demographic data it was found to give the accuracy of 62% as opposed to 58% obtained from a Bayesian formulated rough set model trained using Markov chain Monte Carlo method and 62% obtained from a Bayesian formulated multi-layered perceptron (MLP) model trained using hybrid Monte. The proposed model is able to combine the accuracy of the Bayesian MLP model and the transparency of Bayesian rough set model.

  18. Survey of Bayesian Models for Modelling of Stochastic Temporal Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ng, B

    2006-10-12

    This survey gives an overview of popular generative models used in the modeling of stochastic temporal systems. In particular, this survey is organized into two parts. The first part discusses the discrete-time representations of dynamic Bayesian networks and dynamic relational probabilistic models, while the second part discusses the continuous-time representation of continuous-time Bayesian networks.

  19. Bayesian Spatial Modelling with R-INLA

    OpenAIRE

    Finn Lindgren; Håvard Rue

    2015-01-01

    The principles behind the interface to continuous domain spatial models in the R- INLA software package for R are described. The integrated nested Laplace approximation (INLA) approach proposed by Rue, Martino, and Chopin (2009) is a computationally effective alternative to MCMC for Bayesian inference. INLA is designed for latent Gaussian models, a very wide and flexible class of models ranging from (generalized) linear mixed to spatial and spatio-temporal models. Combined with the stochastic...

  20. Modelling crime linkage with Bayesian networks

    NARCIS (Netherlands)

    J. de Zoete; M. Sjerps; D. Lagnado; N. Fenton

    2015-01-01

    When two or more crimes show specific similarities, such as a very distinct modus operandi, the probability that they were committed by the same offender becomes of interest. This probability depends on the degree of similarity and distinctiveness. We show how Bayesian networks can be used to model

  1. A Bayesian nonparametric meta-analysis model.

    Science.gov (United States)

    Karabatsos, George; Talbott, Elizabeth; Walker, Stephen G

    2015-03-01

    In a meta-analysis, it is important to specify a model that adequately describes the effect-size distribution of the underlying population of studies. The conventional normal fixed-effect and normal random-effects models assume a normal effect-size population distribution, conditionally on parameters and covariates. For estimating the mean overall effect size, such models may be adequate, but for prediction, they surely are not if the effect-size distribution exhibits non-normal behavior. To address this issue, we propose a Bayesian nonparametric meta-analysis model, which can describe a wider range of effect-size distributions, including unimodal symmetric distributions, as well as skewed and more multimodal distributions. We demonstrate our model through the analysis of real meta-analytic data arising from behavioral-genetic research. We compare the predictive performance of the Bayesian nonparametric model against various conventional and more modern normal fixed-effects and random-effects models.

  2. Bayesian modeling and classification of neural signals

    OpenAIRE

    Lewicki, Michael S.

    1994-01-01

    Signal processing and classification algorithms often have limited applicability resulting from an inaccurate model of the signal's underlying structure. We present here an efficient, Bayesian algorithm for modeling a signal composed of the superposition of brief, Poisson-distributed functions. This methodology is applied to the specific problem of modeling and classifying extracellular neural waveforms which are composed of a superposition of an unknown number of action potentials CAPs). ...

  3. Distributed Bayesian Networks for User Modeling

    DEFF Research Database (Denmark)

    Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang;

    2006-01-01

    The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used...... by such adaptive applications are often partial fragments of an overall user model. The fragments have then to be collected and merged into a global user profile. In this paper we investigate and present algorithms able to cope with distributed, fragmented user models – based on Bayesian Networks – in the context...... of Web-based eLearning platforms. The scenario we are tackling assumes learners who use several systems over time, which are able to create partial Bayesian Networks for user models based on the local system context. In particular, we focus on how to merge these partial user models. Our merge mechanism...

  4. Constrained bayesian inference of project performance models

    OpenAIRE

    Sunmola, Funlade

    2013-01-01

    Project performance models play an important role in the management of project success. When used for monitoring projects, they can offer predictive ability such as indications of possible delivery problems. Approaches for monitoring project performance relies on available project information including restrictions imposed on the project, particularly the constraints of cost, quality, scope and time. We study in this paper a Bayesian inference methodology for project performance modelling in ...

  5. Bayesian Recurrent Neural Network for Language Modeling.

    Science.gov (United States)

    Chien, Jen-Tzung; Ku, Yuan-Chu

    2016-02-01

    A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.

  6. Bayesian Network Based XP Process Modelling

    Directory of Open Access Journals (Sweden)

    Mohamed Abouelela

    2010-07-01

    Full Text Available A Bayesian Network based mathematical model has been used for modelling Extreme Programmingsoftware development process. The model is capable of predicting the expected finish time and theexpected defect rate for each XP release. Therefore, it can be used to determine the success/failure of anyXP Project. The model takes into account the effect of three XP practices, namely: Pair Programming,Test Driven Development and Onsite Customer practices. The model’s predictions were validated againsttwo case studies. Results show the precision of our model especially in predicting the project finish time.

  7. Market Segmentation Using Bayesian Model Based Clustering

    OpenAIRE

    Van Hattum, P.

    2009-01-01

    This dissertation deals with two basic problems in marketing, that are market segmentation, which is the grouping of persons who share common aspects, and market targeting, which is focusing your marketing efforts on one or more attractive market segments. For the grouping of persons who share common aspects a Bayesian model based clustering approach is proposed such that it can be applied to data sets that are specifically used for market segmentation. The cluster algorithm can handle very l...

  8. Bayesian nonparametric duration model with censorship

    Directory of Open Access Journals (Sweden)

    Joseph Hakizamungu

    2007-10-01

    Full Text Available This paper is concerned with nonparametric i.i.d. durations models censored observations and we establish by a simple and unified approach the general structure of a bayesian nonparametric estimator for a survival function S. For Dirichlet prior distributions, we describe completely the structure of the posterior distribution of the survival function. These results are essentially supported by prior and posterior independence properties.

  9. Bayesian mixture models for Poisson astronomical images

    OpenAIRE

    Guglielmetti, Fabrizia; Fischer, Rainer; Dose, Volker

    2012-01-01

    Astronomical images in the Poisson regime are typically characterized by a spatially varying cosmic background, large variety of source morphologies and intensities, data incompleteness, steep gradients in the data, and few photon counts per pixel. The Background-Source separation technique is developed with the aim to detect faint and extended sources in astronomical images characterized by Poisson statistics. The technique employs Bayesian mixture models to reliably detect the background as...

  10. Bayesian Inference of a Multivariate Regression Model

    Directory of Open Access Journals (Sweden)

    Marick S. Sinay

    2014-01-01

    Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.

  11. Modeling and Instability of Average Current Control

    OpenAIRE

    Fang, Chung-Chieh

    2012-01-01

    Dynamics and stability of average current control of DC-DC converters are analyzed by sampled-data modeling. Orbital stability is studied and it is found unrelated to the ripple size of the orbit. Compared with the averaged modeling, the sampled-data modeling is more accurate and systematic. An unstable range of compensator pole is found by simulations, and is predicted by sampled-data modeling and harmonic balance modeling.

  12. Bayesian Kinematic Finite Fault Source Models (Invited)

    Science.gov (United States)

    Minson, S. E.; Simons, M.; Beck, J. L.

    2010-12-01

    Finite fault earthquake source models are inherently under-determined: there is no unique solution to the inverse problem of determining the rupture history at depth as a function of time and space when our data are only limited observations at the Earth's surface. Traditional inverse techniques rely on model constraints and regularization to generate one model from the possibly broad space of all possible solutions. However, Bayesian methods allow us to determine the ensemble of all possible source models which are consistent with the data and our a priori assumptions about the physics of the earthquake source. Until now, Bayesian techniques have been of limited utility because they are computationally intractable for problems with as many free parameters as kinematic finite fault models. We have developed a methodology called Cascading Adaptive Tempered Metropolis In Parallel (CATMIP) which allows us to sample very high-dimensional problems in a parallel computing framework. The CATMIP algorithm combines elements of simulated annealing and genetic algorithms with the Metropolis algorithm to dynamically optimize the algorithm's efficiency as it runs. We will present synthetic performance tests of finite fault models made with this methodology as well as a kinematic source model for the 2007 Mw 7.7 Tocopilla, Chile earthquake. This earthquake was well recorded by multiple ascending and descending interferograms and a network of high-rate GPS stations whose records can be used as near-field seismograms.

  13. Bayesian model selection in Gaussian regression

    CERN Document Server

    Abramovich, Felix

    2009-01-01

    We consider a Bayesian approach to model selection in Gaussian linear regression, where the number of predictors might be much larger than the number of observations. From a frequentist view, the proposed procedure results in the penalized least squares estimation with a complexity penalty associated with a prior on the model size. We investigate the optimality properties of the resulting estimator. We establish the oracle inequality and specify conditions on the prior that imply its asymptotic minimaxity within a wide range of sparse and dense settings for "nearly-orthogonal" and "multicollinear" designs.

  14. Bayesian Estimation of a Mixture Model

    OpenAIRE

    Ilhem Merah; Assia Chadli

    2015-01-01

    We present the properties of a bathtub curve reliability model having both a sufficient adaptability and a minimal number of parameters introduced by Idée and Pierrat (2010). This one is a mixture of a Gamma distribution G(2, (1/θ)) and a new distribution L(θ). We are interesting by Bayesian estimation of the parameters and survival function of this model with a squared-error loss function and non-informative prior using the approximations of Lindley (1980) and Tierney and Kadane (1986). Usin...

  15. Average-passage flow model development

    Science.gov (United States)

    Adamczyk, John J.; Celestina, Mark L.; Beach, Tim A.; Kirtley, Kevin; Barnett, Mark

    1989-01-01

    A 3-D model was developed for simulating multistage turbomachinery flows using supercomputers. This average passage flow model described the time averaged flow field within a typical passage of a bladed wheel within a multistage configuration. To date, a number of inviscid simulations were executed to assess the resolution capabilities of the model. Recently, the viscous terms associated with the average passage model were incorporated into the inviscid computer code along with an algebraic turbulence model. A simulation of a stage-and-one-half, low speed turbine was executed. The results of this simulation, including a comparison with experimental data, is discussed.

  16. A Bayesian Shrinkage Approach for AMMI Models.

    Science.gov (United States)

    da Silva, Carlos Pereira; de Oliveira, Luciano Antonio; Nuvunga, Joel Jorge; Pamplona, Andrezza Kéllen Alves; Balestre, Marcio

    2015-01-01

    Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior

  17. A Bayesian Shrinkage Approach for AMMI Models.

    Directory of Open Access Journals (Sweden)

    Carlos Pereira da Silva

    Full Text Available Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI model, are widely applicable to genotype-by-environment interaction (GEI studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05 in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct

  18. Bayesian modeling of ChIP-chip data using latent variables.

    KAUST Repository

    Wu, Mingqi

    2009-10-26

    BACKGROUND: The ChIP-chip technology has been used in a wide range of biomedical studies, such as identification of human transcription factor binding sites, investigation of DNA methylation, and investigation of histone modifications in animals and plants. Various methods have been proposed in the literature for analyzing the ChIP-chip data, such as the sliding window methods, the hidden Markov model-based methods, and Bayesian methods. Although, due to the integrated consideration of uncertainty of the models and model parameters, Bayesian methods can potentially work better than the other two classes of methods, the existing Bayesian methods do not perform satisfactorily. They usually require multiple replicates or some extra experimental information to parametrize the model, and long CPU time due to involving of MCMC simulations. RESULTS: In this paper, we propose a Bayesian latent model for the ChIP-chip data. The new model mainly differs from the existing Bayesian models, such as the joint deconvolution model, the hierarchical gamma mixture model, and the Bayesian hierarchical model, in two respects. Firstly, it works on the difference between the averaged treatment and control samples. This enables the use of a simple model for the data, which avoids the probe-specific effect and the sample (control/treatment) effect. As a consequence, this enables an efficient MCMC simulation of the posterior distribution of the model, and also makes the model more robust to the outliers. Secondly, it models the neighboring dependence of probes by introducing a latent indicator vector. A truncated Poisson prior distribution is assumed for the latent indicator variable, with the rationale being justified at length. CONCLUSION: The Bayesian latent method is successfully applied to real and ten simulated datasets, with comparisons with some of the existing Bayesian methods, hidden Markov model methods, and sliding window methods. The numerical results indicate that the

  19. Bayesian modeling of ChIP-chip data using latent variables

    Directory of Open Access Journals (Sweden)

    Tian Yanan

    2009-10-01

    Full Text Available Abstract Background The ChIP-chip technology has been used in a wide range of biomedical studies, such as identification of human transcription factor binding sites, investigation of DNA methylation, and investigation of histone modifications in animals and plants. Various methods have been proposed in the literature for analyzing the ChIP-chip data, such as the sliding window methods, the hidden Markov model-based methods, and Bayesian methods. Although, due to the integrated consideration of uncertainty of the models and model parameters, Bayesian methods can potentially work better than the other two classes of methods, the existing Bayesian methods do not perform satisfactorily. They usually require multiple replicates or some extra experimental information to parametrize the model, and long CPU time due to involving of MCMC simulations. Results In this paper, we propose a Bayesian latent model for the ChIP-chip data. The new model mainly differs from the existing Bayesian models, such as the joint deconvolution model, the hierarchical gamma mixture model, and the Bayesian hierarchical model, in two respects. Firstly, it works on the difference between the averaged treatment and control samples. This enables the use of a simple model for the data, which avoids the probe-specific effect and the sample (control/treatment effect. As a consequence, this enables an efficient MCMC simulation of the posterior distribution of the model, and also makes the model more robust to the outliers. Secondly, it models the neighboring dependence of probes by introducing a latent indicator vector. A truncated Poisson prior distribution is assumed for the latent indicator variable, with the rationale being justified at length. Conclusion The Bayesian latent method is successfully applied to real and ten simulated datasets, with comparisons with some of the existing Bayesian methods, hidden Markov model methods, and sliding window methods. The numerical results

  20. Bayesian Spatial Modelling with R-INLA

    Directory of Open Access Journals (Sweden)

    Finn Lindgren

    2015-02-01

    Full Text Available The principles behind the interface to continuous domain spatial models in the R- INLA software package for R are described. The integrated nested Laplace approximation (INLA approach proposed by Rue, Martino, and Chopin (2009 is a computationally effective alternative to MCMC for Bayesian inference. INLA is designed for latent Gaussian models, a very wide and flexible class of models ranging from (generalized linear mixed to spatial and spatio-temporal models. Combined with the stochastic partial differential equation approach (SPDE, Lindgren, Rue, and Lindstrm 2011, one can accommodate all kinds of geographically referenced data, including areal and geostatistical ones, as well as spatial point process data. The implementation interface covers stationary spatial mod- els, non-stationary spatial models, and also spatio-temporal models, and is applicable in epidemiology, ecology, environmental risk assessment, as well as general geostatistics.

  1. A Nonparametric Bayesian Model for Nested Clustering.

    Science.gov (United States)

    Lee, Juhee; Müller, Peter; Zhu, Yitan; Ji, Yuan

    2016-01-01

    We propose a nonparametric Bayesian model for clustering where clusters of experimental units are determined by a shared pattern of clustering another set of experimental units. The proposed model is motivated by the analysis of protein activation data, where we cluster proteins such that all proteins in one cluster give rise to the same clustering of patients. That is, we define clusters of proteins by the way that patients group with respect to the corresponding protein activations. This is in contrast to (almost) all currently available models that use shared parameters in the sampling model to define clusters. This includes in particular model based clustering, Dirichlet process mixtures, product partition models, and more. We show results for two typical biostatistical inference problems that give rise to clustering. PMID:26519174

  2. Bayesian Discovery of Linear Acyclic Causal Models

    CERN Document Server

    Hoyer, Patrik O

    2012-01-01

    Methods for automated discovery of causal relationships from non-interventional data have received much attention recently. A widely used and well understood model family is given by linear acyclic causal models (recursive structural equation models). For Gaussian data both constraint-based methods (Spirtes et al., 1993; Pearl, 2000) (which output a single equivalence class) and Bayesian score-based methods (Geiger and Heckerman, 1994) (which assign relative scores to the equivalence classes) are available. On the contrary, all current methods able to utilize non-Gaussianity in the data (Shimizu et al., 2006; Hoyer et al., 2008) always return only a single graph or a single equivalence class, and so are fundamentally unable to express the degree of certainty attached to that output. In this paper we develop a Bayesian score-based approach able to take advantage of non-Gaussianity when estimating linear acyclic causal models, and we empirically demonstrate that, at least on very modest size networks, its accur...

  3. MEASUREMENT AND MODELLING AVERAGE PHOTOSYNTHESIS OF MAIZE

    OpenAIRE

    ZS LÕKE

    2005-01-01

    The photosynthesis of fully developed maize was investigated in the Agrometeorological Research Station Keszthely, in 2000. We used LI-6400 type measurement equipment to locate measurement points where the intensity of photosynthesis mostly nears the average. So later we could obtain average photosynthetic activities featuring the crop, with only one measurement. To check average photosynthesis of maize we used Goudriaan’s simulation model (CMSM) as well to calculate values on cloudless sampl...

  4. A Hierarchical Bayesian Model for Crowd Emotions

    Science.gov (United States)

    Urizar, Oscar J.; Baig, Mirza S.; Barakova, Emilia I.; Regazzoni, Carlo S.; Marcenaro, Lucio; Rauterberg, Matthias

    2016-01-01

    Estimation of emotions is an essential aspect in developing intelligent systems intended for crowded environments. However, emotion estimation in crowds remains a challenging problem due to the complexity in which human emotions are manifested and the capability of a system to perceive them in such conditions. This paper proposes a hierarchical Bayesian model to learn in unsupervised manner the behavior of individuals and of the crowd as a single entity, and explore the relation between behavior and emotions to infer emotional states. Information about the motion patterns of individuals are described using a self-organizing map, and a hierarchical Bayesian network builds probabilistic models to identify behaviors and infer the emotional state of individuals and the crowd. This model is trained and tested using data produced from simulated scenarios that resemble real-life environments. The conducted experiments tested the efficiency of our method to learn, detect and associate behaviors with emotional states yielding accuracy levels of 74% for individuals and 81% for the crowd, similar in performance with existing methods for pedestrian behavior detection but with novel concepts regarding the analysis of crowds. PMID:27458366

  5. Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition.

    Science.gov (United States)

    Jones, Matt; Love, Bradley C

    2011-08-01

    The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls

  6. Bayesian model comparison with intractable likelihoods

    CERN Document Server

    Everitt, Richard G; Rowing, Ellen; Evdemon-Hogan, Melina

    2015-01-01

    Markov random field models are used widely in computer science, statistical physics and spatial statistics and network analysis. However, Bayesian analysis of these models using standard Monte Carlo methods is not possible due to their intractable likelihood functions. Several methods have been developed that permit exact, or close to exact, simulation from the posterior distribution. However, estimating the evidence and Bayes' factors (BFs) for these models remains challenging in general. This paper describes new random weight importance sampling and sequential Monte Carlo methods for estimating BFs that use simulation to circumvent the evaluation of the intractable likelihood, and compares them to existing methods. In some cases we observe an advantage in the use of biased weight estimates; an initial investigation into the theoretical and empirical properties of this class of methods is presented.

  7. Bayesian Estimation of a Mixture Model

    Directory of Open Access Journals (Sweden)

    Ilhem Merah

    2015-05-01

    Full Text Available We present the properties of a bathtub curve reliability model having both a sufficient adaptability and a minimal number of parameters introduced by Idée and Pierrat (2010. This one is a mixture of a Gamma distribution G(2, (1/θ and a new distribution L(θ. We are interesting by Bayesian estimation of the parameters and survival function of this model with a squared-error loss function and non-informative prior using the approximations of Lindley (1980 and Tierney and Kadane (1986. Using a statistical sample of 60 failure data relative to a technical device, we illustrate the results derived. Based on a simulation study, comparisons are made between these two methods and the maximum likelihood method of this two parameters model.

  8. Entropic Priors and Bayesian Model Selection

    CERN Document Server

    Brewer, Brendon J

    2009-01-01

    We demonstrate that the principle of maximum relative entropy (ME), used judiciously, can ease the specification of priors in model selection problems. The resulting effect is that models that make sharp predictions are disfavoured, weakening the usual Bayesian "Occam's Razor". This is illustrated with a simple example involving what Jaynes called a "sure thing" hypothesis. Jaynes' resolution of the situation involved introducing a large number of alternative "sure thing" hypotheses that were possible before we observed the data. However, in more complex situations, it may not be possible to explicitly enumerate large numbers of alternatives. The entropic priors formalism produces the desired result without modifying the hypothesis space or requiring explicit enumeration of alternatives; all that is required is a good model for the prior predictive distribution for the data. This idea is illustrated with a simple rigged-lottery example, and we outline how this idea may help to resolve a recent debate amongst ...

  9. MERGING DIGITAL SURFACE MODELS IMPLEMENTING BAYESIAN APPROACHES

    Directory of Open Access Journals (Sweden)

    H. Sadeq

    2016-06-01

    Full Text Available In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades. It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.

  10. Merging Digital Surface Models Implementing Bayesian Approaches

    Science.gov (United States)

    Sadeq, H.; Drummond, J.; Li, Z.

    2016-06-01

    In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades). It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.

  11. Model averaging and muddled multimodel inferences.

    Science.gov (United States)

    Cade, Brian S

    2015-09-01

    Three flawed practices associated with model averaging coefficients for predictor variables in regression models commonly occur when making multimodel inferences in analyses of ecological data. Model-averaged regression coefficients based on Akaike information criterion (AIC) weights have been recommended for addressing model uncertainty but they are not valid, interpretable estimates of partial effects for individual predictors when there is multicollinearity among the predictor variables. Multicollinearity implies that the scaling of units in the denominators of the regression coefficients may change across models such that neither the parameters nor their estimates have common scales, therefore averaging them makes no sense. The associated sums of AIC model weights recommended to assess relative importance of individual predictors are really a measure of relative importance of models, with little information about contributions by individual predictors compared to other measures of relative importance based on effects size or variance reduction. Sometimes the model-averaged regression coefficients for predictor variables are incorrectly used to make model-averaged predictions of the response variable when the models are not linear in the parameters. I demonstrate the issues with the first two practices using the college grade point average example extensively analyzed by Burnham and Anderson. I show how partial standard deviations of the predictor variables can be used to detect changing scales of their estimates with multicollinearity. Standardizing estimates based on partial standard deviations for their variables can be used to make the scaling of the estimates commensurate across models, a necessary but not sufficient condition for model averaging of the estimates to be sensible. A unimodal distribution of estimates and valid interpretation of individual parameters are additional requisite conditions. The standardized estimates or equivalently the t

  12. A tutorial introduction to Bayesian models of cognitive development

    OpenAIRE

    Perfors, Amy; Tenenbaum, Joshua B.; Griffiths, Thomas L.; Xu, Fei

    2010-01-01

    We present an introduction to Bayesian inference as it is used in probabilistic models of cognitive development. Our goal is to provide an intuitive and accessible guide to the what, the how, and the why of the Bayesian approach: what sorts of problems and data the framework is most relevant for, and how and why it may be useful for developmentalists. We emphasize a qualitative understanding of Bayesian inference, but also include information about additional resources for those interested in...

  13. The Bayesian Modelling Of Inflation Rate In Romania

    OpenAIRE

    Mihaela Simionescu

    2014-01-01

    Bayesian econometrics knew a considerable increase in popularity in the last years, joining the interests of various groups of researchers in economic sciences and additional ones as specialists in econometrics, commerce, industry, marketing, finance, micro-economy, macro-economy and other domains. The purpose of this research is to achieve an introduction in Bayesian approach applied in economics, starting with Bayes theorem. For the Bayesian linear regression models the methodology of estim...

  14. Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures.

    Science.gov (United States)

    Orbanz, Peter; Roy, Daniel M

    2015-02-01

    The natural habitat of most Bayesian methods is data represented by exchangeable sequences of observations, for which de Finetti's theorem provides the theoretical foundation. Dirichlet process clustering, Gaussian process regression, and many other parametric and nonparametric Bayesian models fall within the remit of this framework; many problems arising in modern data analysis do not. This article provides an introduction to Bayesian models of graphs, matrices, and other data that can be modeled by random structures. We describe results in probability theory that generalize de Finetti's theorem to such data and discuss their relevance to nonparametric Bayesian modeling. With the basic ideas in place, we survey example models available in the literature; applications of such models include collaborative filtering, link prediction, and graph and network analysis. We also highlight connections to recent developments in graph theory and probability, and sketch the more general mathematical foundation of Bayesian methods for other types of data beyond sequences and arrays. PMID:26353253

  15. Using Bayes Model Averaging for Wind Power Forecasts

    Science.gov (United States)

    Preede Revheim, Pål; Beyer, Hans Georg

    2014-05-01

    For operational purposes predictions of the forecasts of the lumped output of groups of wind farms spread over larger geographic areas will often be of interest. A naive approach is to make forecasts for each individual site and sum them up to get the group forecast. It is however well documented that a better choice is to use a model that also takes advantage of spatial smoothing effects. It might however be the case that some sites tends to more accurately reflect the total output of the region, either in general or for certain wind directions. It will then be of interest giving these a greater influence over the group forecast. Bayesian model averaging (BMA) is a statistical post-processing method for producing probabilistic forecasts from ensembles. Raftery et al. [1] show how BMA can be used for statistical post processing of forecast ensembles, producing PDFs of future weather quantities. The BMA predictive PDF of a future weather quantity is a weighted average of the ensemble members' PDFs, where the weights can be interpreted as posterior probabilities and reflect the ensemble members' contribution to overall forecasting skill over a training period. In Revheim and Beyer [2] the BMA procedure used in Sloughter, Gneiting and Raftery [3] were found to produce fairly accurate PDFs for the future mean wind speed of a group of sites from the single sites wind speeds. However, when the procedure was attempted applied to wind power it resulted in either problems with the estimation of the parameters (mainly caused by longer consecutive periods of no power production) or severe underestimation (mainly caused by problems with reflecting the power curve). In this paper the problems that arose when applying BMA to wind power forecasting is met through two strategies. First, the BMA procedure is run with a combination of single site wind speeds and single site wind power production as input. This solves the problem with longer consecutive periods where the input data

  16. Improving randomness characterization through Bayesian model selection

    CERN Document Server

    R., Rafael Díaz-H; Martínez, Alí M Angulo; U'Ren, Alfred B; Hirsch, Jorge G; Marsili, Matteo; Castillo, Isaac Pérez

    2016-01-01

    Nowadays random number generation plays an essential role in technology with important applications in areas ranging from cryptography, which lies at the core of current communication protocols, to Monte Carlo methods, and other probabilistic algorithms. In this context, a crucial scientific endeavour is to develop effective methods that allow the characterization of random number generators. However, commonly employed methods either lack formality (e.g. the NIST test suite), or are inapplicable in principle (e.g. the characterization derived from the Algorithmic Theory of Information (ATI)). In this letter we present a novel method based on Bayesian model selection, which is both rigorous and effective, for characterizing randomness in a bit sequence. We derive analytic expressions for a model's likelihood which is then used to compute its posterior probability distribution. Our method proves to be more rigorous than NIST's suite and the Borel-Normality criterion and its implementation is straightforward. We...

  17. Modeling Social Annotation: a Bayesian Approach

    CERN Document Server

    Plangprasopchok, Anon

    2008-01-01

    Collaborative tagging systems, such as del.icio.us, CiteULike, and others, allow users to annotate objects, e.g., Web pages or scientific papers, with descriptive labels called tags. The social annotations, contributed by thousands of users, can potentially be used to infer categorical knowledge, classify documents or recommend new relevant information. Traditional text inference methods do not make best use of socially-generated data, since they do not take into account variations in individual users' perspectives and vocabulary. In a previous work, we introduced a simple probabilistic model that takes interests of individual annotators into account in order to find hidden topics of annotated objects. Unfortunately, our proposed approach had a number of shortcomings, including overfitting, local maxima and the requirement to specify values for some parameters. In this paper we address these shortcomings in two ways. First, we extend the model to a fully Bayesian framework. Second, we describe an infinite ver...

  18. Average Bandwidth Allocation Model of WFQ

    Directory of Open Access Journals (Sweden)

    Tomáš Balogh

    2012-01-01

    Full Text Available We present a new iterative method for the calculation of average bandwidth assignment to traffic flows using a WFQ scheduler in IP based NGN networks. The bandwidth assignment calculation is based on the link speed, assigned weights, arrival rate, and average packet length or input rate of the traffic flows. We prove the model outcome with examples and simulation results using NS2 simulator.

  19. 3-Layered Bayesian Model Using in Text Classification

    Directory of Open Access Journals (Sweden)

    Chang Jiayu

    2013-01-01

    Full Text Available Naive Bayesian is one of quite effective classification methods in all of the text disaggregated models. Usually, the computed result will be large deviation from normal, with the reason of attribute relevance and so on. This study embarked from the degree of correlation, defined the node’s degree as well as the relations between nodes, proposed a 3-layered Bayesian Model. According to the conditional probability recurrence formula, the theory support of the 3-layered Bayesian Model is obtained. According to the theory analysis and the empirical datum contrast to the Naive Bayesian, the model has better attribute collection and classify. It can be also promoted to the Multi-layer Bayesian Model using in text classification.

  20. Spatial averaging infiltration model for layered soil

    Institute of Scientific and Technical Information of China (English)

    HU HePing; YANG ZhiYong; TIAN FuQiang

    2009-01-01

    To quantify the influences of soil heterogeneity on infiltration, a spatial averaging infiltration model for layered soil (SAI model) is developed by coupling the spatial averaging approach proposed by Chen et al. and the Generalized Green-Ampt model proposed by Jia et al. In the SAI model, the spatial heterogeneity along the horizontal direction is described by a probability distribution function, while that along the vertical direction is represented by the layered soils. The SAI model is tested on a typical soil using Monte Carlo simulations as the base model. The results show that the SAI model can directly incorporate the influence of spatial heterogeneity on infiltration on the macro scale. It is also found that the homogeneous assumption of soil hydraulic conductivity along the horizontal direction will overestimate the infiltration rate, while that along the vertical direction will underestimate the infiltration rate significantly during rainstorm periods. The SAI model is adopted in the spatial averaging hydrological model developed by the authors, and the results prove that it can be applied in the macro-scale hydrological and land surface process modeling in a promising way.

  1. Spatial averaging infiltration model for layered soil

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    To quantify the influences of soil heterogeneity on infiltration, a spatial averaging infiltration model for layered soil (SAI model) is developed by coupling the spatial averaging approach proposed by Chen et al. and the Generalized Green-Ampt model proposed by Jia et al. In the SAI model, the spatial hetero- geneity along the horizontal direction is described by a probability distribution function, while that along the vertical direction is represented by the layered soils. The SAI model is tested on a typical soil using Monte Carlo simulations as the base model. The results show that the SAI model can directly incorporate the influence of spatial heterogeneity on infiltration on the macro scale. It is also found that the homogeneous assumption of soil hydraulic conductivity along the horizontal direction will overes- timate the infiltration rate, while that along the vertical direction will underestimate the infiltration rate significantly during rainstorm periods. The SAI model is adopted in the spatial averaging hydrological model developed by the authors, and the results prove that it can be applied in the macro-scale hy- drological and land surface process modeling in a promising way.

  2. Advances in Bayesian Modeling in Educational Research

    Science.gov (United States)

    Levy, Roy

    2016-01-01

    In this article, I provide a conceptually oriented overview of Bayesian approaches to statistical inference and contrast them with frequentist approaches that currently dominate conventional practice in educational research. The features and advantages of Bayesian approaches are illustrated with examples spanning several statistical modeling…

  3. A SEMIPARAMETRIC BAYESIAN MODEL FOR CIRCULAR-LINEAR REGRESSION

    Science.gov (United States)

    We present a Bayesian approach to regress a circular variable on a linear predictor. The regression coefficients are assumed to have a nonparametric distribution with a Dirichlet process prior. The semiparametric Bayesian approach gives added flexibility to the model and is usefu...

  4. Bayesian Model Selection for LISA Pathfinder

    CERN Document Server

    Karnesis, Nikolaos; Sopuerta, Carlos F; Gibert, Ferran; Armano, Michele; Audley, Heather; Congedo, Giuseppe; Diepholz, Ingo; Ferraioli, Luigi; Hewitson, Martin; Hueller, Mauro; Korsakova, Natalia; Plagnol, Eric; Vitale, and Stefano

    2013-01-01

    The main goal of the LISA Pathfinder (LPF) mission is to fully characterize the acceleration noise models and to test key technologies for future space-based gravitational-wave observatories similar to the LISA/eLISA concept. The Data Analysis (DA) team has developed complex three-dimensional models of the LISA Technology Package (LTP) experiment on-board LPF. These models are used for simulations, but more importantly, they will be used for parameter estimation purposes during flight operations. One of the tasks of the DA team is to identify the physical effects that contribute significantly to the properties of the instrument noise. A way of approaching to this problem is to recover the essential parameters of the LTP which describe the data. Thus, we want to define the simplest model that efficiently explains the observations. To do so, adopting a Bayesian framework, one has to estimate the so-called Bayes Factor between two competing models. In our analysis, we use three main different methods to estimate...

  5. A guide to Bayesian model selection for ecologists

    Science.gov (United States)

    Hooten, Mevin B.; Hobbs, N.T.

    2015-01-01

    The steady upward trend in the use of model selection and Bayesian methods in ecological research has made it clear that both approaches to inference are important for modern analysis of models and data. However, in teaching Bayesian methods and in working with our research colleagues, we have noticed a general dissatisfaction with the available literature on Bayesian model selection and multimodel inference. Students and researchers new to Bayesian methods quickly find that the published advice on model selection is often preferential in its treatment of options for analysis, frequently advocating one particular method above others. The recent appearance of many articles and textbooks on Bayesian modeling has provided welcome background on relevant approaches to model selection in the Bayesian framework, but most of these are either very narrowly focused in scope or inaccessible to ecologists. Moreover, the methodological details of Bayesian model selection approaches are spread thinly throughout the literature, appearing in journals from many different fields. Our aim with this guide is to condense the large body of literature on Bayesian approaches to model selection and multimodel inference and present it specifically for quantitative ecologists as neutrally as possible. We also bring to light a few important and fundamental concepts relating directly to model selection that seem to have gone unnoticed in the ecological literature. Throughout, we provide only a minimal discussion of philosophy, preferring instead to examine the breadth of approaches as well as their practical advantages and disadvantages. This guide serves as a reference for ecologists using Bayesian methods, so that they can better understand their options and can make an informed choice that is best aligned with their goals for inference.

  6. Bayesian Analysis of Dynamic Multivariate Models with Multiple Structural Breaks

    OpenAIRE

    Sugita, Katsuhiro

    2006-01-01

    This paper considers a vector autoregressive model or a vector error correction model with multiple structural breaks in any subset of parameters, using a Bayesian approach with Markov chain Monte Carlo simulation technique. The number of structural breaks is determined as a sort of model selection by the posterior odds. For a cointegrated model, cointegrating rank is also allowed to change with breaks. Bayesian approach by Strachan (Journal of Business and Economic Statistics 21 (2003) 185) ...

  7. Entropic Priors and Bayesian Model Selection

    Science.gov (United States)

    Brewer, Brendon J.; Francis, Matthew J.

    2009-12-01

    We demonstrate that the principle of maximum relative entropy (ME), used judiciously, can ease the specification of priors in model selection problems. The resulting effect is that models that make sharp predictions are disfavoured, weakening the usual Bayesian ``Occam's Razor.'' This is illustrated with a simple example involving what Jaynes called a ``sure thing'' hypothesis. Jaynes' resolution of the situation involved introducing a large number of alternative ``sure thing'' hypotheses that were possible before we observed the data. However, in more complex situations, it may not be possible to explicitly enumerate large numbers of alternatives. The entropic priors formalism produces the desired result without modifying the hypothesis space or requiring explicit enumeration of alternatives; all that is required is a good model for the prior predictive distribution for the data. This idea is illustrated with a simple rigged-lottery example, and we outline how this idea may help to resolve a recent debate amongst cosmologists: is dark energy a cosmological constant, or has it evolved with time in some way? And how shall we decide, when the data are in?

  8. Bayesian Grammar Induction for Language Modeling

    CERN Document Server

    Chen, S F

    1995-01-01

    We describe a corpus-based induction algorithm for probabilistic context-free grammars. The algorithm employs a greedy heuristic search within a Bayesian framework, and a post-pass using the Inside-Outside algorithm. We compare the performance of our algorithm to n-gram models and the Inside-Outside algorithm in three language modeling tasks. In two of the tasks, the training data is generated by a probabilistic context-free grammar and in both tasks our algorithm outperforms the other techniques. The third task involves naturally-occurring data, and in this task our algorithm does not perform as well as n-gram models but vastly outperforms the Inside-Outside algorithm. From no-reply@xxx.lanl.gov Thu Nov 11 08:58 MET 1999 Received: from newmint.cern.ch (newmint.cern.ch [137.138.26.94]) by sundh98.cern.ch (8.8.5/8.8.5) with ESMTP id IAA20556 for ; Thu, 11 Nov 1999 08:58:51 +0100 (MET) Received: from uuu.lanl.gov (uuu.lanl.gov [204.121.6.59]) by newmint.cern.ch (8.9.3/8.9.3) with ESMTP id IAA02938 for ; Thu, 11...

  9. A Bayesian nonlinear mixed-effects disease progression model

    OpenAIRE

    Kim, Seongho; Jang, Hyejeong; Wu, Dongfeng; Abrams, Judith

    2015-01-01

    A nonlinear mixed-effects approach is developed for disease progression models that incorporate variation in age in a Bayesian framework. We further generalize the probability model for sensitivity to depend on age at diagnosis, time spent in the preclinical state and sojourn time. The developed models are then applied to the Johns Hopkins Lung Project data and the Health Insurance Plan for Greater New York data using Bayesian Markov chain Monte Carlo and are compared with the estimation meth...

  10. Bayesian model reduction and empirical Bayes for group (DCM) studies.

    Science.gov (United States)

    Friston, Karl J; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E; van Wijk, Bernadette C M; Ziegler, Gabriel; Zeidman, Peter

    2016-03-01

    This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level - e.g., dynamic causal models - and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These applications of Bayesian model reduction allow one to consider parametric random effects and make inferences about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical background to these procedures and illustrate their application using a worked example. This example uses a simulated mismatch negativity study of schizophrenia. We illustrate the robustness of Bayesian model reduction to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we consider the application of these empirical Bayesian procedures to classification and prediction. PMID:26569570

  11. Bayesian model reduction and empirical Bayes for group (DCM) studies.

    Science.gov (United States)

    Friston, Karl J; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E; van Wijk, Bernadette C M; Ziegler, Gabriel; Zeidman, Peter

    2016-03-01

    This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level - e.g., dynamic causal models - and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These applications of Bayesian model reduction allow one to consider parametric random effects and make inferences about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical background to these procedures and illustrate their application using a worked example. This example uses a simulated mismatch negativity study of schizophrenia. We illustrate the robustness of Bayesian model reduction to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we consider the application of these empirical Bayesian procedures to classification and prediction.

  12. A Gaussian Mixed Model for Learning Discrete Bayesian Networks.

    Science.gov (United States)

    Balov, Nikolay

    2011-02-01

    In this paper we address the problem of learning discrete Bayesian networks from noisy data. Considered is a graphical model based on mixture of Gaussian distributions with categorical mixing structure coming from a discrete Bayesian network. The network learning is formulated as a Maximum Likelihood estimation problem and performed by employing an EM algorithm. The proposed approach is relevant to a variety of statistical problems for which Bayesian network models are suitable - from simple regression analysis to learning gene/protein regulatory networks from microarray data.

  13. Use of SAMC for Bayesian analysis of statistical models with intractable normalizing constants

    KAUST Repository

    Jin, Ick Hoon

    2014-03-01

    Statistical inference for the models with intractable normalizing constants has attracted much attention. During the past two decades, various approximation- or simulation-based methods have been proposed for the problem, such as the Monte Carlo maximum likelihood method and the auxiliary variable Markov chain Monte Carlo methods. The Bayesian stochastic approximation Monte Carlo algorithm specifically addresses this problem: It works by sampling from a sequence of approximate distributions with their average converging to the target posterior distribution, where the approximate distributions can be achieved using the stochastic approximation Monte Carlo algorithm. A strong law of large numbers is established for the Bayesian stochastic approximation Monte Carlo estimator under mild conditions. Compared to the Monte Carlo maximum likelihood method, the Bayesian stochastic approximation Monte Carlo algorithm is more robust to the initial guess of model parameters. Compared to the auxiliary variable MCMC methods, the Bayesian stochastic approximation Monte Carlo algorithm avoids the requirement for perfect samples, and thus can be applied to many models for which perfect sampling is not available or very expensive. The Bayesian stochastic approximation Monte Carlo algorithm also provides a general framework for approximate Bayesian analysis. © 2012 Elsevier B.V. All rights reserved.

  14. Sampling Techniques in Bayesian Finite Element Model Updating

    CERN Document Server

    Boulkaibet, I; Mthembu, L; Friswell, M I; Adhikari, S

    2011-01-01

    Recent papers in the field of Finite Element Model (FEM) updating have highlighted the benefits of Bayesian techniques. The Bayesian approaches are designed to deal with the uncertainties associated with complex systems, which is the main problem in the development and updating of FEMs. This paper highlights the complexities and challenges of implementing any Bayesian method when the analysis involves a complicated structural dynamic model. In such systems an analytical Bayesian formulation might not be available in an analytic form; therefore this leads to the use of numerical methods, i.e. sampling methods. The main challenge then is to determine an efficient sampling of the model parameter space. In this paper, three sampling techniques, the Metropolis-Hastings (MH) algorithm, Slice Sampling and the Hybrid Monte Carlo (HMC) technique, are tested by updating a structural beam model. The efficiency and limitations of each technique is investigated when the FEM updating problem is implemented using the Bayesi...

  15. The average free volume model for liquids

    CERN Document Server

    Yu, Yang

    2014-01-01

    In this work, the molar volume thermal expansion coefficient of 59 room temperature ionic liquids is compared with their van der Waals volume Vw. Regular correlation can be discerned between the two quantities. An average free volume model, that considers the particles as hard core with attractive force, is proposed to explain the correlation in this study. A combination between free volume and Lennard-Jones potential is applied to explain the physical phenomena of liquids. Some typical simple liquids (inorganic, organic, metallic and salt) are introduced to verify this hypothesis. Good agreement from the theory prediction and experimental data can be obtained.

  16. A Bayesian observer model constrained by efficient coding can explain 'anti-Bayesian' percepts.

    Science.gov (United States)

    Wei, Xue-Xin; Stocker, Alan A

    2015-10-01

    Bayesian observer models provide a principled account of the fact that our perception of the world rarely matches physical reality. The standard explanation is that our percepts are biased toward our prior beliefs. However, reported psychophysical data suggest that this view may be simplistic. We propose a new model formulation based on efficient coding that is fully specified for any given natural stimulus distribution. The model makes two new and seemingly anti-Bayesian predictions. First, it predicts that perception is often biased away from an observer's prior beliefs. Second, it predicts that stimulus uncertainty differentially affects perceptual bias depending on whether the uncertainty is induced by internal or external noise. We found that both model predictions match reported perceptual biases in perceived visual orientation and spatial frequency, and were able to explain data that have not been explained before. The model is general and should prove applicable to other perceptual variables and tasks. PMID:26343249

  17. Bayesian Inference and Optimal Design in the Sparse Linear Model

    OpenAIRE

    Seeger, Matthias; Steinke, Florian; Tsuda, Koji

    2007-01-01

    The sparse linear model has seen many successful applications in Statistics, Machine Learning, and Computational Biology, such as identification of gene regulatory networks from micro-array expression data. Prior work has either approximated Bayesian inference by expensive Markov chain Monte Carlo, or replaced it by point estimation. We show how to obtain a good approximation to Bayesian analysis efficiently, using the Expectation Propagation method. We also address the problems of optimal de...

  18. Modelling of JET diagnostics using Bayesian Graphical Models

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, J. [IPP Greifswald, Greifswald (Germany); Ford, O. [Imperial College, London (United Kingdom); McDonald, D.; Hole, M.; Nessi, G. von; Meakins, A.; Brix, M.; Thomsen, H.; Werner, A.; Sirinelli, A.

    2011-07-01

    The mapping between physics parameters (such as densities, currents, flows, temperatures etc) defining the plasma 'state' under a given model and the raw observations of each plasma diagnostic will 1) depend on the particular physics model used, 2) is inherently probabilistic, from uncertainties on both observations and instrumental aspects of the mapping, such as calibrations, instrument functions etc. A flexible and principled way of modelling such interconnected probabilistic systems is through so called Bayesian graphical models. Being an amalgam between graph theory and probability theory, Bayesian graphical models can simulate the complex interconnections between physics models and diagnostic observations from multiple heterogeneous diagnostic systems, making it relatively easy to optimally combine the observations from multiple diagnostics for joint inference on parameters of the underlying physics model, which in itself can be represented as part of the graph. At JET about 10 diagnostic systems have to date been modelled in this way, and has lead to a number of new results, including: the reconstruction of the flux surface topology and q-profiles without any specific equilibrium assumption, using information from a number of different diagnostic systems; profile inversions taking into account the uncertainties in the flux surface positions and a substantial increase in accuracy of JET electron density and temperature profiles, including improved pedestal resolution, through the joint analysis of three diagnostic systems. It is believed that the Bayesian graph approach could potentially be utilised for very large sets of diagnostics, providing a generic data analysis framework for nuclear fusion experiments, that would be able to optimally utilize the information from multiple diagnostics simultaneously, and where the explicit graph representation of the connections to underlying physics models could be used for sophisticated model testing. This

  19. Technical note: Bayesian calibration of dynamic ruminant nutrition models.

    Science.gov (United States)

    Reed, K F; Arhonditsis, G B; France, J; Kebreab, E

    2016-08-01

    Mechanistic models of ruminant digestion and metabolism have advanced our understanding of the processes underlying ruminant animal physiology. Deterministic modeling practices ignore the inherent variation within and among individual animals and thus have no way to assess how sources of error influence model outputs. We introduce Bayesian calibration of mathematical models to address the need for robust mechanistic modeling tools that can accommodate error analysis by remaining within the bounds of data-based parameter estimation. For the purpose of prediction, the Bayesian approach generates a posterior predictive distribution that represents the current estimate of the value of the response variable, taking into account both the uncertainty about the parameters and model residual variability. Predictions are expressed as probability distributions, thereby conveying significantly more information than point estimates in regard to uncertainty. Our study illustrates some of the technical advantages of Bayesian calibration and discusses the future perspectives in the context of animal nutrition modeling.

  20. Hellinger Distance and Bayesian Non-Parametrics: Hierarchical Models for Robust and Efficient Bayesian Inference

    OpenAIRE

    Wu, Yuefeng; Hooker, Giles

    2013-01-01

    This paper introduces a hierarchical framework to incorporate Hellinger distance methods into Bayesian analysis. We propose to modify a prior over non-parametric densities with the exponential of twice the Hellinger distance between a candidate and a parametric density. By incorporating a prior over the parameters of the second density, we arrive at a hierarchical model in which a non-parametric model is placed between parameters and the data. The parameters of the family can then be estimate...

  1. Using consensus bayesian network to model the reactive oxygen species regulatory pathway.

    Directory of Open Access Journals (Sweden)

    Liangdong Hu

    Full Text Available Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the bayesian network from microarray data directly. Although large numbers of bayesian network learning algorithms have been developed, when applying them to learn bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn bayesian networks contain too few microarray data. In this paper, we propose a consensus bayesian network which is constructed by combining bayesian networks from relevant literatures and bayesian networks learned from microarray data. It would have a higher accuracy than the bayesian networks learned from one database. In the experiment, we validated the bayesian network combination algorithm on several classic machine learning databases and used the consensus bayesian network to model the Escherichia coli's ROS pathway.

  2. Analysis of Gumbel Model for Software Reliability Using Bayesian Paradigm

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2012-12-01

    Full Text Available In this paper, we have illustrated the suitability of Gumbel Model for software reliability data. The model parameters are estimated using likelihood based inferential procedure: classical as well as Bayesian. The quasi Newton-Raphson algorithm is applied to obtain the maximum likelihood estimates and associated probability intervals. The Bayesian estimates of the parameters of Gumbel model are obtained using Markov Chain Monte Carlo(MCMC simulation method in OpenBUGS(established software for Bayesian analysis using Markov Chain Monte Carlo methods. The R functions are developed to study the statistical properties, model validation and comparison tools of the model and the output analysis of MCMC samples generated from OpenBUGS. Details of applying MCMC to parameter estimation for the Gumbel model are elaborated and a real software reliability data set is considered to illustrate the methods of inference discussed in this paper.

  3. Bayesian calibration of the Community Land Model using surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Swiler, Laura Painton

    2014-02-01

    We present results from the Bayesian calibration of hydrological parameters of the Community Land Model (CLM), which is often used in climate simulations and Earth system models. A statistical inverse problem is formulated for three hydrological parameters, conditional on observations of latent heat surface fluxes over 48 months. Our calibration method uses polynomial and Gaussian process surrogates of the CLM, and solves the parameter estimation problem using a Markov chain Monte Carlo sampler. Posterior probability densities for the parameters are developed for two sites with different soil and vegetation covers. Our method also allows us to examine the structural error in CLM under two error models. We find that surrogate models can be created for CLM in most cases. The posterior distributions are more predictive than the default parameter values in CLM. Climatologically averaging the observations does not modify the parameters' distributions significantly. The structural error model reveals a correlation time-scale which can be used to identify the physical process that could be contributing to it. While the calibrated CLM has a higher predictive skill, the calibration is under-dispersive.

  4. Bayesian inference of chemical kinetic models from proposed reactions

    KAUST Repository

    Galagali, Nikhil

    2015-02-01

    © 2014 Elsevier Ltd. Bayesian inference provides a natural framework for combining experimental data with prior knowledge to develop chemical kinetic models and quantify the associated uncertainties, not only in parameter values but also in model structure. Most existing applications of Bayesian model selection methods to chemical kinetics have been limited to comparisons among a small set of models, however. The significant computational cost of evaluating posterior model probabilities renders traditional Bayesian methods infeasible when the model space becomes large. We present a new framework for tractable Bayesian model inference and uncertainty quantification using a large number of systematically generated model hypotheses. The approach involves imposing point-mass mixture priors over rate constants and exploring the resulting posterior distribution using an adaptive Markov chain Monte Carlo method. The posterior samples are used to identify plausible models, to quantify rate constant uncertainties, and to extract key diagnostic information about model structure-such as the reactions and operating pathways most strongly supported by the data. We provide numerical demonstrations of the proposed framework by inferring kinetic models for catalytic steam and dry reforming of methane using available experimental data.

  5. The Bayesian Modelling Of Inflation Rate In Romania

    Directory of Open Access Journals (Sweden)

    Mihaela Simionescu (Bratu

    2014-06-01

    Full Text Available Bayesian econometrics knew a considerable increase in popularity in the last years, joining the interests of various groups of researchers in economic sciences and additional ones as specialists in econometrics, commerce, industry, marketing, finance, micro-economy, macro-economy and other domains. The purpose of this research is to achieve an introduction in Bayesian approach applied in economics, starting with Bayes theorem. For the Bayesian linear regression models the methodology of estimation was presented, realizing two empirical studies for data taken from the Romanian economy. Thus, an autoregressive model of order 2 and a multiple regression model were built for the index of consumer prices. The Gibbs sampling algorithm was used for estimation in R software, computing the posterior means and the standard deviations. The parameters’ stability proved to be greater than in the case of estimations based on the methods of classical Econometrics.

  6. Bayesian Subset Modeling for High-Dimensional Generalized Linear Models

    KAUST Repository

    Liang, Faming

    2013-06-01

    This article presents a new prior setting for high-dimensional generalized linear models, which leads to a Bayesian subset regression (BSR) with the maximum a posteriori model approximately equivalent to the minimum extended Bayesian information criterion model. The consistency of the resulting posterior is established under mild conditions. Further, a variable screening procedure is proposed based on the marginal inclusion probability, which shares the same properties of sure screening and consistency with the existing sure independence screening (SIS) and iterative sure independence screening (ISIS) procedures. However, since the proposed procedure makes use of joint information from all predictors, it generally outperforms SIS and ISIS in real applications. This article also makes extensive comparisons of BSR with the popular penalized likelihood methods, including Lasso, elastic net, SIS, and ISIS. The numerical results indicate that BSR can generally outperform the penalized likelihood methods. The models selected by BSR tend to be sparser and, more importantly, of higher prediction ability. In addition, the performance of the penalized likelihood methods tends to deteriorate as the number of predictors increases, while this is not significant for BSR. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  7. Bayesian hierarchical modelling of weak lensing - the golden goal

    OpenAIRE

    Heavens, Alan; Alsing, Justin; Jaffe, Andrew; Hoffmann, Till; Kiessling, Alina; Wandelt, Benjamin

    2016-01-01

    To accomplish correct Bayesian inference from weak lensing shear data requires a complete statistical description of the data. The natural framework to do this is a Bayesian Hierarchical Model, which divides the chain of reasoning into component steps. Starting with a catalogue of shear estimates in tomographic bins, we build a model that allows us to sample simultaneously from the the underlying tomographic shear fields and the relevant power spectra (E-mode, B-mode, and E-B, for auto- and c...

  8. Comparing Bayesian models for multisensory cue combination without mandatory integration

    OpenAIRE

    Beierholm, Ulrik R.; Shams, Ladan; Kording, Konrad P; Ma, Wei Ji

    2009-01-01

    Bayesian models of multisensory perception traditionally address the problem of estimating an underlying variable that is assumed to be the cause of the two sensory signals. The brain, however, has to solve a more general problem: it also has to establish which signals come from the same source and should be integrated, and which ones do not and should be segregated. In the last couple of years, a few models have been proposed to solve this problem in a Bayesian fashion. One of these ha...

  9. Bayesian Model Comparison With the g-Prior

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Christensen, Mads Græsbøll; Cemgil, Ali Taylan;

    2014-01-01

    Model comparison and selection is an important problem in many model-based signal processing applications. Often, very simple information criteria such as the Akaike information criterion or the Bayesian information criterion are used despite their shortcomings. Compared to these methods, Djuric’...

  10. Bayesian log-periodic model for financial crashes

    DEFF Research Database (Denmark)

    Rodríguez-Caballero, Carlos Vladimir; Knapik, Oskar

    2014-01-01

    cannot be performed analytically, we develop a Markov Chain Monte Carlo algorithm to draw from posterior distributions. We consider three Bayesian models that involve normal and Student’s t-distributions in the disturbances and an AR(1)-GARCH(1,1) structure only within the first case. In the empirical...... models provide 95% credible intervals for the estimated crash time....

  11. A Bayesian Approach for Analyzing Longitudinal Structural Equation Models

    Science.gov (United States)

    Song, Xin-Yuan; Lu, Zhao-Hua; Hser, Yih-Ing; Lee, Sik-Yum

    2011-01-01

    This article considers a Bayesian approach for analyzing a longitudinal 2-level nonlinear structural equation model with covariates, and mixed continuous and ordered categorical variables. The first-level model is formulated for measures taken at each time point nested within individuals for investigating their characteristics that are dynamically…

  12. Forecasting unconventional resource productivity - A spatial Bayesian model

    Science.gov (United States)

    Montgomery, J.; O'sullivan, F.

    2015-12-01

    Today's low prices mean that unconventional oil and gas development requires ever greater efficiency and better development decision-making. Inter and intra-field variability in well productivity, which is a major contemporary driver of uncertainty regarding resource size and its economics is driven by factors including geological conditions, well and completion design (which companies vary as they seek to optimize their performance), and uncertainty about the nature of fracture propagation. Geological conditions are often not be well understood early on in development campaigns, but nevertheless critical assessments and decisions must be made regarding the value of drilling an area and the placement of wells. In these situations, location provides a reasonable proxy for geology and the "rock quality." We propose a spatial Bayesian model for forecasting acreage quality, which improves decision-making by leveraging available production data and provides a framework for statistically studying the influence of different parameters on well productivity. Our approach consists of subdividing a field into sections and forming prior distributions for productivity in each section based on knowledge about the overall field. Production data from wells is used to update these estimates in a Bayesian fashion, improving model accuracy far more rapidly and with less sensitivity to outliers than a model that simply establishes an "average" productivity in each section. Additionally, forecasts using this model capture the importance of uncertainty—either due to a lack of information or for areas that demonstrate greater geological risk. We demonstrate the forecasting utility of this method using public data and also provide examples of how information from this model can be combined with knowledge about a field's geology or changes in technology to better quantify development risk. This approach represents an important shift in the way that production data is used to guide

  13. Bayesian Joint Modelling for Object Localisation in Weakly Labelled Images.

    Science.gov (United States)

    Shi, Zhiyuan; Hospedales, Timothy M; Xiang, Tao

    2015-10-01

    We address the problem of localisation of objects as bounding boxes in images and videos with weak labels. This weakly supervised object localisation problem has been tackled in the past using discriminative models where each object class is localised independently from other classes. In this paper, a novel framework based on Bayesian joint topic modelling is proposed, which differs significantly from the existing ones in that: (1) All foreground object classes are modelled jointly in a single generative model that encodes multiple object co-existence so that "explaining away" inference can resolve ambiguity and lead to better learning and localisation. (2) Image backgrounds are shared across classes to better learn varying surroundings and "push out" objects of interest. (3) Our model can be learned with a mixture of weakly labelled and unlabelled data, allowing the large volume of unlabelled images on the Internet to be exploited for learning. Moreover, the Bayesian formulation enables the exploitation of various types of prior knowledge to compensate for the limited supervision offered by weakly labelled data, as well as Bayesian domain adaptation for transfer learning. Extensive experiments on the PASCAL VOC, ImageNet and YouTube-Object videos datasets demonstrate the effectiveness of our Bayesian joint model for weakly supervised object localisation. PMID:26340253

  14. Modeling error distributions of growth curve models through Bayesian methods.

    Science.gov (United States)

    Zhang, Zhiyong

    2016-06-01

    Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is proposed to flexibly model normal and non-normal data through the explicit specification of the error distributions. A simulation study shows when the distribution of the error is correctly specified, one can avoid the loss in the efficiency of standard error estimates. A real example on the analysis of mathematical ability growth data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 is used to show the application of the proposed methods. Instructions and code on how to conduct growth curve analysis with both normal and non-normal error distributions using the the MCMC procedure of SAS are provided. PMID:26019004

  15. Spatial and spatio-temporal bayesian models with R - INLA

    CERN Document Server

    Blangiardo, Marta

    2015-01-01

    Dedication iiiPreface ix1 Introduction 11.1 Why spatial and spatio-temporal statistics? 11.2 Why do we use Bayesian methods for modelling spatial and spatio-temporal structures? 21.3 Why INLA? 31.4 Datasets 32 Introduction to 212.1 The language 212.2 objects 222.3 Data and session management 342.4 Packages 352.5 Programming in 362.6 Basic statistical analysis with 393 Introduction to Bayesian Methods 533.1 Bayesian Philosophy 533.2 Basic Probability Elements 573.3 Bayes Theorem 623.4 Prior and Posterior Distributions 643.5 Working with the Posterior Distribution 663.6 Choosing the Prior Distr

  16. Uncertainty Modeling Based on Bayesian Network in Ontology Mapping

    Institute of Scientific and Technical Information of China (English)

    LI Yuhua; LIU Tao; SUN Xiaolin

    2006-01-01

    How to deal with uncertainty is crucial in exact concept mapping between ontologies. This paper presents a new framework on modeling uncertainty in ontologies based on bayesian networks (BN). In our approach, ontology Web language (OWL) is extended to add probabilistic markups for attaching probability information, the source and target ontologies (expressed by patulous OWL) are translated into bayesian networks (BNs), the mapping between the two ontologies can be digged out by constructing the conditional probability tables (CPTs) of the BN using a improved algorithm named I-IPFP based on iterative proportional fitting procedure (IPFP). The basic idea of this framework and algorithm are validated by positive results from computer experiments.

  17. Application of Bayesian Hierarchical Prior Modeling to Sparse Channel Estimation

    DEFF Research Database (Denmark)

    Pedersen, Niels Lovmand; Manchón, Carles Navarro; Shutin, Dmitriy;

    2012-01-01

    Existing methods for sparse channel estimation typically provide an estimate computed as the solution maximizing an objective function defined as the sum of the log-likelihood function and a penalization term proportional to the l1-norm of the parameter of interest. However, other penalization...... terms have proven to have strong sparsity-inducing properties. In this work, we design pilot assisted channel estimators for OFDM wireless receivers within the framework of sparse Bayesian learning by defining hierarchical Bayesian prior models that lead to sparsity-inducing penalization terms...

  18. Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.

    Science.gov (United States)

    Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J

    2010-12-01

    Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies

  19. Bayesian inference model for fatigue life of laminated composites

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der; Berggreen, Christian

    2016-01-01

    A probabilistic model for estimating the fatigue life of laminated composite plates is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configurations. Model parameters are estimated by Bayesian inference....... The reference data used consists of constant-amplitude cycle test results for four laminates with different layup configurations. The paper describes the modeling techniques and the parameter estimation procedure, supported by an illustrative application....

  20. Advanced REACH tool: A Bayesian model for occupational exposure assessment

    NARCIS (Netherlands)

    McNally, K.; Warren, N.; Fransman, W.; Entink, R.K.; Schinkel, J.; Van Tongeren, M.; Cherrie, J.W.; Kromhout, H.; Schneider, T.; Tielemans, E.

    2014-01-01

    This paper describes a Bayesian model for the assessment of inhalation exposures in an occupational setting; the methodology underpins a freely available web-based application for exposure assessment, the Advanced REACH Tool (ART). The ART is a higher tier exposure tool that combines disparate sourc

  1. Efficient Bayesian Estimation and Combination of GARCH-Type Models

    NARCIS (Netherlands)

    D. David (David); L.F. Hoogerheide (Lennart)

    2010-01-01

    textabstractThis paper proposes an up-to-date review of estimation strategies available for the Bayesian inference of GARCH-type models. The emphasis is put on a novel efficient procedure named AdMitIS. The methodology automatically constructs a mixture of Student-t distributions as an approximation

  2. On Bayesian Modelling of Fat Tails and Skewness

    NARCIS (Netherlands)

    Fernández, C.; Steel, M.F.J.

    1996-01-01

    We consider a Bayesian analysis of linear regression models that can account for skewed error distributions with fat tails.The latter two features are often observed characteristics of empirical data sets, and we will formally incorporate them in the inferential process.A general procedure for intro

  3. Bayesian Modelling of fMRI Time Series

    DEFF Research Database (Denmark)

    Højen-Sørensen, Pedro; Hansen, Lars Kai; Rasmussen, Carl Edward

    2000-01-01

    We present a Hidden Markov Model (HMM) for inferring the hidden psychological state (or neural activity) during single trial fMRI activation experiments with blocked task paradigms. Inference is based on Bayesian methodology, using a combination of analytical and a variety of Markov Chain Monte...

  4. A Bayesian network approach to coastal storm impact modeling

    NARCIS (Netherlands)

    Jäger, W.S.; Den Heijer, C.; Bolle, A.; Hanea, A.M.

    2015-01-01

    In this paper we develop a Bayesian network (BN) that relates offshore storm conditions to their accompagnying flood characteristics and damages to residential buildings, following on the trend of integrated flood impact modeling. It is based on data from hydrodynamic storm simulations, information

  5. Improving quality indicator report cards through Bayesian modeling

    Directory of Open Access Journals (Sweden)

    Mahnken Jonathan D

    2008-11-01

    Full Text Available Abstract Background The National Database for Nursing Quality Indicators® (NDNQI® was established in 1998 to assist hospitals in monitoring indicators of nursing quality (eg, falls and pressure ulcers. Hospitals participating in NDNQI transmit data from nursing units to an NDNQI data repository. Data are summarized and published in reports that allow participating facilities to compare the results for their units with those from other units across the nation. A disadvantage of this reporting scheme is that the sampling variability is not explicit. For example, suppose a small nursing unit that has 2 out of 10 (rate of 20% patients with pressure ulcers. Should the nursing unit immediately undertake a quality improvement plan because of the rate difference from the national average (7%? Methods In this paper, we propose approximating 95% credible intervals (CrIs for unit-level data using statistical models that account for the variability in unit rates for report cards. Results Bayesian CrIs communicate the level of uncertainty of estimates more clearly to decision makers than other significance tests. Conclusion A benefit of this approach is that nursing units would be better able to distinguish problematic or beneficial trends from fluctuations likely due to chance.

  6. Research on Bayesian Network Based User's Interest Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Weifeng; XU Baowen; CUI Zifeng; XU Lei

    2007-01-01

    It has very realistic significance for improving the quality of users' accessing information to filter and selectively retrieve the large number of information on the Internet. On the basis of analyzing the existing users' interest models and some basic questions of users' interest (representation, derivation and identification of users' interest), a Bayesian network based users' interest model is given. In this model, the users' interest reduction algorithm based on Markov Blanket model is used to reduce the interest noise, and then users' interested and not interested documents are used to train the Bayesian network. Compared to the simple model, this model has the following advantages like small space requirements, simple reasoning method and high recognition rate. The experiment result shows this model can more appropriately reflect the user's interest, and has higher performance and good usability.

  7. FACIAL LANDMARKING LOCALIZATION FOR EMOTION RECOGNITION USING BAYESIAN SHAPE MODELS

    Directory of Open Access Journals (Sweden)

    Hernan F. Garcia

    2013-02-01

    Full Text Available This work presents a framework for emotion recognition, based in facial expression analysis using Bayesian Shape Models (BSM for facial landmarking localization. The Facial Action Coding System (FACS compliant facial feature tracking based on Bayesian Shape Model. The BSM estimate the parameters of the model with an implementation of the EM algorithm. We describe the characterization methodology from parametric model and evaluated the accuracy for feature detection and estimation of the parameters associated with facial expressions, analyzing its robustness in pose and local variations. Then, a methodology for emotion characterization is introduced to perform the recognition. The experimental results show that the proposed model can effectively detect the different facial expressions. Outperforming conventional approaches for emotion recognition obtaining high performance results in the estimation of emotion present in a determined subject. The model used and characterization methodology showed efficient to detect the emotion type in 95.6% of the cases.

  8. Online Prediction Under Model Uncertainty via Dynamic Model Averaging: Application to a Cold Rolling Mill.

    Science.gov (United States)

    Raftery, Adrian E; Kárný, Miroslav; Ettler, Pavel

    2010-02-01

    We consider the problem of online prediction when it is uncertain what the best prediction model to use is. We develop a method called Dynamic Model Averaging (DMA) in which a state space model for the parameters of each model is combined with a Markov chain model for the correct model. This allows the "correct" model to vary over time. The state space and Markov chain models are both specified in terms of forgetting, leading to a highly parsimonious representation. As a special case, when the model and parameters do not change, DMA is a recursive implementation of standard Bayesian model averaging, which we call recursive model averaging. The method is applied to the problem of predicting the output strip thickness for a cold rolling mill, where the output is measured with a time delay. We found that when only a small number of physically motivated models were considered and one was clearly best, the method quickly converged to the best model, and the cost of model uncertainty was small; indeed DMA performed slightly better than the best physical model. When model uncertainty and the number of models considered were large, our method ensured that the penalty for model uncertainty was small. At the beginning of the process, when control is most difficult, we found that DMA over a large model space led to better predictions than the single best performing physically motivated model. We also applied the method to several simulated examples, and found that it recovered both constant and time-varying regression parameters and model specifications quite well.

  9. Post-model selection inference and model averaging

    Directory of Open Access Journals (Sweden)

    Georges Nguefack-Tsague

    2011-07-01

    Full Text Available Although model selection is routinely used in practice nowadays, little is known about its precise effects on any subsequent inference that is carried out. The same goes for the effects induced by the closely related technique of model averaging. This paper is concerned with the use of the same data first to select a model and then to carry out inference, in particular point estimation and point prediction. The properties of the resulting estimator, called a post-model-selection estimator (PMSE, are hard to derive. Using selection criteria such as hypothesis testing, AIC, BIC, HQ and Cp, we illustrate that, in terms of risk function, no single PMSE dominates the others. The same conclusion holds more generally for any penalised likelihood information criterion. We also compare various model averaging schemes and show that no single one dominates the others in terms of risk function. Since PMSEs can be regarded as a special case of model averaging, with 0-1 random-weights, we propose a connection between the two theories, in the frequentist approach, by taking account of the selection procedure when performing model averaging. We illustrate the point by simulating a simple linear regression model.

  10. Quasi-Bayesian software reliability model with small samples

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin; TU Jun-xiang; CHEN Zhuo-ning; YAN Xiao-guang

    2009-01-01

    In traditional Bayesian software reliability models,it was assume that all probabilities are precise.In practical applications the parameters of the probability distributions are often under uncertainty due to strong dependence on subjective information of experts' judgments on sparse statistical data.In this paper,a quasi-Bayesian software reliability model using interval-valued probabilities to clearly quantify experts' prior beliefs on possible intervals of the parameters of the probability distributions is presented.The model integrates experts' judgments with statistical data to obtain more convincible assessments of software reliability with small samples.For some actual data sets,the presented model yields better predictions than the Jelinski-Moranda (JM) model using maximum likelihood (ML).

  11. Bayesian modeling growth curves for quail assuming skewness in errors

    Directory of Open Access Journals (Sweden)

    Robson Marcelo Rossi

    2014-06-01

    Full Text Available Bayesian modeling growth curves for quail assuming skewness in errors - To assume normal distributions in the data analysis is common in different areas of the knowledge. However we can make use of the other distributions that are capable to model the skewness parameter in the situations that is needed to model data with tails heavier than the normal. This article intend to present alternatives to the assumption of the normality in the errors, adding asymmetric distributions. A Bayesian approach is proposed to fit nonlinear models when the errors are not normal, thus, the distributions t, skew-normal and skew-t are adopted. The methodology is intended to apply to different growth curves to the quail body weights. It was found that the Gompertz model assuming skew-normal errors and skew-t errors, respectively for male and female, were the best fitted to the data.

  12. A Bayesian Alternative for Multi-objective Ecohydrological Model Specification

    Science.gov (United States)

    Tang, Y.; Marshall, L. A.; Sharma, A.; Ajami, H.

    2015-12-01

    Process-based ecohydrological models combine the study of hydrological, physical, biogeochemical and ecological processes of the catchments, which are usually more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov Chain Monte Carlo (MCMC) techniques. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological framework. In our study, a formal Bayesian approach is implemented in an ecohydrological model which combines a hydrological model (HyMOD) and a dynamic vegetation model (DVM). Simulations focused on one objective likelihood (Streamflow/LAI) and multi-objective likelihoods (Streamflow and LAI) with different weights are compared. Uniform, weakly informative and strongly informative prior distributions are used in different simulations. The Kullback-leibler divergence (KLD) is used to measure the dis(similarity) between different priors and corresponding posterior distributions to examine the parameter sensitivity. Results show that different prior distributions can strongly influence posterior distributions for parameters, especially when the available data is limited or parameters are insensitive to the available data. We demonstrate differences in optimized parameters and uncertainty limits in different cases based on multi-objective likelihoods vs. single objective likelihoods. We also demonstrate the importance of appropriately defining the weights of objectives in multi-objective calibration according to different data types.

  13. Nonparametric Bayesian Modeling of Complex Networks

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard; Mørup, Morten

    2013-01-01

    an infinite mixture model as running example, we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model?s fit and predictive performance. We explain how advanced nonparametric models...

  14. Bayesian models for comparative analysis integrating phylogenetic uncertainty

    Directory of Open Access Journals (Sweden)

    Villemereuil Pierre de

    2012-06-01

    Full Text Available Abstract Background Uncertainty in comparative analyses can come from at least two sources: a phylogenetic uncertainty in the tree topology or branch lengths, and b uncertainty due to intraspecific variation in trait values, either due to measurement error or natural individual variation. Most phylogenetic comparative methods do not account for such uncertainties. Not accounting for these sources of uncertainty leads to false perceptions of precision (confidence intervals will be too narrow and inflated significance in hypothesis testing (e.g. p-values will be too small. Although there is some application-specific software for fitting Bayesian models accounting for phylogenetic error, more general and flexible software is desirable. Methods We developed models to directly incorporate phylogenetic uncertainty into a range of analyses that biologists commonly perform, using a Bayesian framework and Markov Chain Monte Carlo analyses. Results We demonstrate applications in linear regression, quantification of phylogenetic signal, and measurement error models. Phylogenetic uncertainty was incorporated by applying a prior distribution for the phylogeny, where this distribution consisted of the posterior tree sets from Bayesian phylogenetic tree estimation programs. The models were analysed using simulated data sets, and applied to a real data set on plant traits, from rainforest plant species in Northern Australia. Analyses were performed using the free and open source software OpenBUGS and JAGS. Conclusions Incorporating phylogenetic uncertainty through an empirical prior distribution of trees leads to more precise estimation of regression model parameters than using a single consensus tree and enables a more realistic estimation of confidence intervals. In addition, models incorporating measurement errors and/or individual variation, in one or both variables, are easily formulated in the Bayesian framework. We show that BUGS is a useful, flexible

  15. [A medical image semantic modeling based on hierarchical Bayesian networks].

    Science.gov (United States)

    Lin, Chunyi; Ma, Lihong; Yin, Junxun; Chen, Jianyu

    2009-04-01

    A semantic modeling approach for medical image semantic retrieval based on hierarchical Bayesian networks was proposed, in allusion to characters of medical images. It used GMM (Gaussian mixture models) to map low-level image features into object semantics with probabilities, then it captured high-level semantics through fusing these object semantics using a Bayesian network, so that it built a multi-layer medical image semantic model, aiming to enable automatic image annotation and semantic retrieval by using various keywords at different semantic levels. As for the validity of this method, we have built a multi-level semantic model from a small set of astrocytoma MRI (magnetic resonance imaging) samples, in order to extract semantics of astrocytoma in malignant degree. Experiment results show that this is a superior approach.

  16. A Bayesian nonlinear mixed-effects disease progression model

    Science.gov (United States)

    Kim, Seongho; Jang, Hyejeong; Wu, Dongfeng; Abrams, Judith

    2016-01-01

    A nonlinear mixed-effects approach is developed for disease progression models that incorporate variation in age in a Bayesian framework. We further generalize the probability model for sensitivity to depend on age at diagnosis, time spent in the preclinical state and sojourn time. The developed models are then applied to the Johns Hopkins Lung Project data and the Health Insurance Plan for Greater New York data using Bayesian Markov chain Monte Carlo and are compared with the estimation method that does not consider random-effects from age. Using the developed models, we obtain not only age-specific individual-level distributions, but also population-level distributions of sensitivity, sojourn time and transition probability. PMID:26798562

  17. Exemplar models as a mechanism for performing Bayesian inference.

    Science.gov (United States)

    Shi, Lei; Griffiths, Thomas L; Feldman, Naomi H; Sanborn, Adam N

    2010-08-01

    Probabilistic models have recently received much attention as accounts of human cognition. However, most research in which probabilistic models have been used has been focused on formulating the abstract problems behind cognitive tasks and their optimal solutions, rather than on mechanisms that could implement these solutions. Exemplar models are a successful class of psychological process models in which an inventory of stored examples is used to solve problems such as identification, categorization, and function learning. We show that exemplar models can be used to perform a sophisticated form of Monte Carlo approximation known as importance sampling and thus provide a way to perform approximate Bayesian inference. Simulations of Bayesian inference in speech perception, generalization along a single dimension, making predictions about everyday events, concept learning, and reconstruction from memory show that exemplar models can often account for human performance with only a few exemplars, for both simple and relatively complex prior distributions. These results suggest that exemplar models provide a possible mechanism for implementing at least some forms of Bayesian inference. PMID:20702863

  18. DPpackage: Bayesian Semi- and Nonparametric Modeling in R

    OpenAIRE

    Alejandro Jara; Timothy Hanson; Quintana, Fernando A.; Peter Müller; Rosner, Gary L.

    2011-01-01

    Data analysis sometimes requires the relaxation of parametric assumptions in order to gain modeling flexibility and robustness against mis-specification of the probability model. In the Bayesian context, this is accomplished by placing a prior distribution on a function space, such as the space of all probability distributions or the space of all regression functions. Unfortunately, posterior distributions ranging over function spaces are highly complex and hence sampling methods play a key r...

  19. Hierarchical Bayesian Modeling of Hitting Performance in Baseball

    OpenAIRE

    Jensen, Shane T.; McShane, Blake; Wyner, Abraham J.

    2009-01-01

    We have developed a sophisticated statistical model for predicting the hitting performance of Major League baseball players. The Bayesian paradigm provides a principled method for balancing past performance with crucial covariates, such as player age and position. We share information across time and across players by using mixture distributions to control shrinkage for improved accuracy. We compare the performance of our model to current sabermetric methods on a held-out seaso...

  20. A New Bayesian Unit Root Test in Stochastic Volatility Models

    OpenAIRE

    Yong Li; Jun Yu

    2010-01-01

    A new posterior odds analysis is proposed to test for a unit root in volatility dynamics in the context of stochastic volatility models. This analysis extends the Bayesian unit root test of So and Li (1999, Journal of Business Economic Statistics) in two important ways. First, a numerically more stable algorithm is introduced to compute the Bayes factor, taking into account the special structure of the competing models. Owing to its numerical stability, the algorithm overcomes the problem of ...

  1. Nonparametric Bayesian inference of the microcanonical stochastic block model

    CERN Document Server

    Peixoto, Tiago P

    2016-01-01

    A principled approach to characterize the hidden modular structure of networks is to formulate generative models, and then infer their parameters from data. When the desired structure is composed of modules or "communities", a suitable choice for this task is the stochastic block model (SBM), where nodes are divided into groups, and the placement of edges is conditioned on the group memberships. Here, we present a nonparametric Bayesian method to infer the modular structure of empirical networks, including the number of modules and their hierarchical organization. We focus on a microcanonical variant of the SBM, where the structure is imposed via hard constraints. We show how this simple model variation allows simultaneously for two important improvements over more traditional inference approaches: 1. Deeper Bayesian hierarchies, with noninformative priors replaced by sequences of priors and hyperpriors, that not only remove limitations that seriously degrade the inference on large networks, but also reveal s...

  2. Introduction to Hierarchical Bayesian Modeling for Ecological Data

    CERN Document Server

    Parent, Eric

    2012-01-01

    Making statistical modeling and inference more accessible to ecologists and related scientists, Introduction to Hierarchical Bayesian Modeling for Ecological Data gives readers a flexible and effective framework to learn about complex ecological processes from various sources of data. It also helps readers get started on building their own statistical models. The text begins with simple models that progressively become more complex and realistic through explanatory covariates and intermediate hidden states variables. When fitting the models to data, the authors gradually present the concepts a

  3. A localization model to localize multiple sources using Bayesian inference

    Science.gov (United States)

    Dunham, Joshua Rolv

    Accurate localization of a sound source in a room setting is important in both psychoacoustics and architectural acoustics. Binaural models have been proposed to explain how the brain processes and utilizes the interaural time differences (ITDs) and interaural level differences (ILDs) of sound waves arriving at the ears of a listener in determining source location. Recent work shows that applying Bayesian methods to this problem is proving fruitful. In this thesis, pink noise samples are convolved with head-related transfer functions (HRTFs) and compared to combinations of one and two anechoic speech signals convolved with different HRTFs or binaural room impulse responses (BRIRs) to simulate room positions. Through exhaustive calculation of Bayesian posterior probabilities and using a maximal likelihood approach, model selection will determine the number of sources present, and parameter estimation will result in azimuthal direction of the source(s).

  4. Effects of error covariance structure on estimation of model averaging weights and predictive performance

    Science.gov (United States)

    Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steve B.

    2013-01-01

    When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, CE, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cekresolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek

  5. Bayesian multimodel inference of soil microbial respiration models: Theory, application and future prospective

    Science.gov (United States)

    Elshall, A. S.; Ye, M.; Niu, G. Y.; Barron-Gafford, G.

    2015-12-01

    Models in biogeoscience involve uncertainties in observation data, model inputs, model structure, model processes and modeling scenarios. To accommodate for different sources of uncertainty, multimodal analysis such as model combination, model selection, model elimination or model discrimination are becoming more popular. To illustrate theoretical and practical challenges of multimodal analysis, we use an example about microbial soil respiration modeling. Global soil respiration releases more than ten times more carbon dioxide to the atmosphere than all anthropogenic emissions. Thus, improving our understanding of microbial soil respiration is essential for improving climate change models. This study focuses on a poorly understood phenomena, which is the soil microbial respiration pulses in response to episodic rainfall pulses (the "Birch effect"). We hypothesize that the "Birch effect" is generated by the following three mechanisms. To test our hypothesis, we developed and assessed five evolving microbial-enzyme models against field measurements from a semiarid Savannah that is characterized by pulsed precipitation. These five model evolve step-wise such that the first model includes none of these three mechanism, while the fifth model includes the three mechanisms. The basic component of Bayesian multimodal analysis is the estimation of marginal likelihood to rank the candidate models based on their overall likelihood with respect to observation data. The first part of the study focuses on using this Bayesian scheme to discriminate between these five candidate models. The second part discusses some theoretical and practical challenges, which are mainly the effect of likelihood function selection and the marginal likelihood estimation methods on both model ranking and Bayesian model averaging. The study shows that making valid inference from scientific data is not a trivial task, since we are not only uncertain about the candidate scientific models, but also about

  6. Bayesian network models in brain functional connectivity analysis

    OpenAIRE

    Ide, Jaime S.; Zhang, Sheng; Chiang-shan R. Li

    2013-01-01

    Much effort has been made to better understand the complex integration of distinct parts of the human brain using functional magnetic resonance imaging (fMRI). Altered functional connectivity between brain regions is associated with many neurological and mental illnesses, such as Alzheimer and Parkinson diseases, addiction, and depression. In computational science, Bayesian networks (BN) have been used in a broad range of studies to model complex data set in the presence of uncertainty and wh...

  7. Differential gene co-expression networks via Bayesian biclustering models

    OpenAIRE

    Gao, Chuan; Zhao, Shiwen; McDowell, Ian C.; Brown, Christopher D.; Barbara E Engelhardt

    2014-01-01

    Identifying latent structure in large data matrices is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are locally co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes whose covariation may be observed in only a subset of the samples. Our biclustering me...

  8. Bayesian parsimonious covariance estimation for hierarchical linear mixed models

    OpenAIRE

    Frühwirth-Schnatter, Sylvia; Tüchler, Regina

    2004-01-01

    We considered a non-centered parameterization of the standard random-effects model, which is based on the Cholesky decomposition of the variance-covariance matrix. The regression type structure of the non-centered parameterization allows to choose a simple, conditionally conjugate normal prior on the Cholesky factor. Based on the non-centered parameterization, we search for a parsimonious variance-covariance matrix by identifying the non-zero elements of the Cholesky factors using Bayesian va...

  9. Model averaging for semiparametric additive partial linear models

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    To improve the prediction accuracy of semiparametric additive partial linear models(APLM) and the coverage probability of confidence intervals of the parameters of interest,we explore a focused information criterion for model selection among ALPM after we estimate the nonparametric functions by the polynomial spline smoothing,and introduce a general model average estimator.The major advantage of the proposed procedures is that iterative backfitting implementation is avoided,which thus results in gains in computational simplicity.The resulting estimators are shown to be asymptotically normal.A simulation study and a real data analysis are presented for illustrations.

  10. Bayesian regression model for seasonal forecast of precipitation over Korea

    Science.gov (United States)

    Jo, Seongil; Lim, Yaeji; Lee, Jaeyong; Kang, Hyun-Suk; Oh, Hee-Seok

    2012-08-01

    In this paper, we apply three different Bayesian methods to the seasonal forecasting of the precipitation in a region around Korea (32.5°N-42.5°N, 122.5°E-132.5°E). We focus on the precipitation of summer season (June-July-August; JJA) for the period of 1979-2007 using the precipitation produced by the Global Data Assimilation and Prediction System (GDAPS) as predictors. Through cross-validation, we demonstrate improvement for seasonal forecast of precipitation in terms of root mean squared error (RMSE) and linear error in probability space score (LEPS). The proposed methods yield RMSE of 1.09 and LEPS of 0.31 between the predicted and observed precipitations, while the prediction using GDAPS output only produces RMSE of 1.20 and LEPS of 0.33 for CPC Merged Analyzed Precipitation (CMAP) data. For station-measured precipitation data, the RMSE and LEPS of the proposed Bayesian methods are 0.53 and 0.29, while GDAPS output is 0.66 and 0.33, respectively. The methods seem to capture the spatial pattern of the observed precipitation. The Bayesian paradigm incorporates the model uncertainty as an integral part of modeling in a natural way. We provide a probabilistic forecast integrating model uncertainty.

  11. Dissecting Magnetar Variability with Bayesian Hierarchical Models

    Science.gov (United States)

    Huppenkothen, Daniela; Brewer, Brendon J.; Hogg, David W.; Murray, Iain; Frean, Marcus; Elenbaas, Chris; Watts, Anna L.; Levin, Yuri; van der Horst, Alexander J.; Kouveliotou, Chryssa

    2015-09-01

    Neutron stars are a prime laboratory for testing physical processes under conditions of strong gravity, high density, and extreme magnetic fields. Among the zoo of neutron star phenomena, magnetars stand out for their bursting behavior, ranging from extremely bright, rare giant flares to numerous, less energetic recurrent bursts. The exact trigger and emission mechanisms for these bursts are not known; favored models involve either a crust fracture and subsequent energy release into the magnetosphere, or explosive reconnection of magnetic field lines. In the absence of a predictive model, understanding the physical processes responsible for magnetar burst variability is difficult. Here, we develop an empirical model that decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. The cascades of spikes that we model might be formed by avalanches of reconnection, or crust rupture aftershocks. Using Markov Chain Monte Carlo sampling augmented with reversible jumps between models with different numbers of parameters, we characterize the posterior distributions of the model parameters and the number of components per burst. We relate these model parameters to physical quantities in the system, and show for the first time that the variability within a burst does not conform to predictions from ideas of self-organized criticality. We also examine how well the properties of the spikes fit the predictions of simplified cascade models for the different trigger mechanisms.

  12. A note on moving average models for Gaussian random fields

    DEFF Research Database (Denmark)

    Hansen, Linda Vadgård; Thorarinsdottir, Thordis L.

    The class of moving average models offers a flexible modeling framework for Gaussian random fields with many well known models such as the Matérn covariance family and the Gaussian covariance falling under this framework. Moving average models may also be viewed as a kernel smoothing of a Lévy...

  13. Statistical modelling of railway track geometry degradation using hierarchical Bayesian models

    OpenAIRE

    Andrade, António Ramos; Teixeira, P. Fonseca

    2015-01-01

    Railway maintenance planners require a predictive model that can assess the railway track geometry degradation. The present paper uses a hierarchical Bayesian model as a tool to model the main two quality indicators related to railway track geometry degradation: the standard deviation of longitudinal level defects and the standard deviation of horizontal alignment defects. Hierarchical Bayesian Models (HBM) are flexible statistical models that allow specifying different spatially correlated c...

  14. AIC, BIC, Bayesian evidence against the interacting dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Szydłowski, Marek, E-mail: marek.szydlowski@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244, Kraków (Poland); Mark Kac Complex Systems Research Centre, Jagiellonian University, Reymonta 4, 30-059, Kraków (Poland); Krawiec, Adam, E-mail: adam.krawiec@uj.edu.pl [Institute of Economics, Finance and Management, Jagiellonian University, Łojasiewicza 4, 30-348, Kraków (Poland); Mark Kac Complex Systems Research Centre, Jagiellonian University, Reymonta 4, 30-059, Kraków (Poland); Kurek, Aleksandra, E-mail: alex@oa.uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244, Kraków (Poland); Kamionka, Michał, E-mail: kamionka@astro.uni.wroc.pl [Astronomical Institute, University of Wrocław, ul. Kopernika 11, 51-622, Wrocław (Poland)

    2015-01-14

    Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative—the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam’s principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock–Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam’s razor we are inclined to reject this model.

  15. AIC, BIC, Bayesian evidence against the interacting dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Szydlowski, Marek [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Krawiec, Adam [Jagiellonian University, Institute of Economics, Finance and Management, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Kurek, Aleksandra [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Kamionka, Michal [University of Wroclaw, Astronomical Institute, Wroclaw (Poland)

    2015-01-01

    Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting ΛCDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative - the ΛCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam's principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), h(z), baryon acoustic oscillation, the Alcock- Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting ΛCDM model when compared to the ΛCDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the ΛCDM model. Given the weak or almost non-existing support for the interacting ΛCDM model and bearing in mind Occam's razor we are inclined to reject this model. (orig.)

  16. Dissecting magnetar variability with Bayesian hierarchical models

    CERN Document Server

    Huppenkothen, D; Hogg, D W; Murray, I; Frean, M; Elenbaas, C; Watts, A L; Levin, Y; van der Horst, A J; Kouveliotou, C

    2015-01-01

    Neutron stars are a prime laboratory for testing physical processes under conditions of strong gravity, high density, and extreme magnetic fields. Among the zoo of neutron star phenomena, magnetars stand out for their bursting behaviour, ranging from extremely bright, rare giant flares to numerous, less energetic recurrent bursts. The exact trigger and emission mechanisms for these bursts are not known; favoured models involve either a crust fracture and subsequent energy release into the magnetosphere, or explosive reconnection of magnetic field lines. In the absence of a predictive model, understanding the physical processes responsible for magnetar burst variability is difficult. Here, we develop an empirical model that decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. The cascades of spikes that we model might be formed by avalanches of reconnection, or crust rupture afte...

  17. A Bayesian Network View on Nested Effects Models

    Directory of Open Access Journals (Sweden)

    Fröhlich Holger

    2009-01-01

    Full Text Available Nested effects models (NEMs are a class of probabilistic models that were designed to reconstruct a hidden signalling structure from a large set of observable effects caused by active interventions into the signalling pathway. We give a more flexible formulation of NEMs in the language of Bayesian networks. Our framework constitutes a natural generalization of the original NEM model, since it explicitly states the assumptions that are tacitly underlying the original version. Our approach gives rise to new learning methods for NEMs, which have been implemented in the /Bioconductor package nem. We validate these methods in a simulation study and apply them to a synthetic lethality dataset in yeast.

  18. Probe Error Modeling Research Based on Bayesian Network

    Institute of Scientific and Technical Information of China (English)

    Wu Huaiqiang; Xing Zilong; Zhang Jian; Yan Yan

    2015-01-01

    Probe calibration is carried out under specific conditions; most of the error caused by the change of speed parameter has not been corrected. In order to reduce the measuring error influence on measurement accuracy, this article analyzes the relationship between speed parameter and probe error, and use Bayesian network to establish the model of probe error. Model takes account of prior knowledge and sample data, with the updating of data, which can reflect the change of the errors of the probe and constantly revised modeling results.

  19. A Bayesian Model for Discovering Typological Implications

    CERN Document Server

    Daumé, Hal

    2009-01-01

    A standard form of analysis for linguistic typology is the universal implication. These implications state facts about the range of extant languages, such as ``if objects come after verbs, then adjectives come after nouns.'' Such implications are typically discovered by painstaking hand analysis over a small sample of languages. We propose a computational model for assisting at this process. Our model is able to discover both well-known implications as well as some novel implications that deserve further study. Moreover, through a careful application of hierarchical analysis, we are able to cope with the well-known sampling problem: languages are not independent.

  20. Bayesian inference and model comparison for metallic fatigue data

    KAUST Repository

    Babuška, Ivo

    2016-02-23

    In this work, we present a statistical treatment of stress-life (S-N) data drawn from a collection of records of fatigue experiments that were performed on 75S-T6 aluminum alloys. Our main objective is to predict the fatigue life of materials by providing a systematic approach to model calibration, model selection and model ranking with reference to S-N data. To this purpose, we consider fatigue-limit models and random fatigue-limit models that are specially designed to allow the treatment of the run-outs (right-censored data). We first fit the models to the data by maximum likelihood methods and estimate the quantiles of the life distribution of the alloy specimen. To assess the robustness of the estimation of the quantile functions, we obtain bootstrap confidence bands by stratified resampling with respect to the cycle ratio. We then compare and rank the models by classical measures of fit based on information criteria. We also consider a Bayesian approach that provides, under the prior distribution of the model parameters selected by the user, their simulation-based posterior distributions. We implement and apply Bayesian model comparison methods, such as Bayes factor ranking and predictive information criteria based on cross-validation techniques under various a priori scenarios.

  1. Bayesian inference and model comparison for metallic fatigue data

    Science.gov (United States)

    Babuška, Ivo; Sawlan, Zaid; Scavino, Marco; Szabó, Barna; Tempone, Raúl

    2016-06-01

    In this work, we present a statistical treatment of stress-life (S-N) data drawn from a collection of records of fatigue experiments that were performed on 75S-T6 aluminum alloys. Our main objective is to predict the fatigue life of materials by providing a systematic approach to model calibration, model selection and model ranking with reference to S-N data. To this purpose, we consider fatigue-limit models and random fatigue-limit models that are specially designed to allow the treatment of the run-outs (right-censored data). We first fit the models to the data by maximum likelihood methods and estimate the quantiles of the life distribution of the alloy specimen. To assess the robustness of the estimation of the quantile functions, we obtain bootstrap confidence bands by stratified resampling with respect to the cycle ratio. We then compare and rank the models by classical measures of fit based on information criteria. We also consider a Bayesian approach that provides, under the prior distribution of the model parameters selected by the user, their simulation-based posterior distributions. We implement and apply Bayesian model comparison methods, such as Bayes factor ranking and predictive information criteria based on cross-validation techniques under various a priori scenarios.

  2. A comparative analysis of 9 multi-model averaging approaches in hydrological continuous streamflow simulation

    Science.gov (United States)

    Arsenault, Richard; Gatien, Philippe; Renaud, Benoit; Brissette, François; Martel, Jean-Luc

    2015-10-01

    This study aims to test whether a weighted combination of several hydrological models can simulate flows more accurately than the models taken individually. In addition, the project attempts to identify the most efficient model averaging method and the optimal number of models to include in the weighting scheme. In order to address the first objective, streamflow was simulated using four lumped hydrological models (HSAMI, HMETS, MOHYSE and GR4J-6), each of which were calibrated with three different objective functions on 429 watersheds. The resulting 12 hydrographs (4 models × 3 metrics) were weighted and combined with the help of 9 averaging methods which are the simple arithmetic mean (SAM), Akaike information criterion (AICA), Bates-Granger (BGA), Bayes information criterion (BICA), Bayesian model averaging (BMA), Granger-Ramanathan average variant A, B and C (GRA, GRB and GRC) and the average by SCE-UA optimization (SCA). The same weights were then applied to the hydrographs in validation mode, and the Nash-Sutcliffe Efficiency metric was measured between the averaged and observed hydrographs. Statistical analyses were performed to compare the accuracy of weighted methods to that of individual models. A Kruskal-Wallis test and a multi-objective optimization algorithm were then used to identify the most efficient weighted method and the optimal number of models to integrate. Results suggest that the GRA, GRB, GRC and SCA weighted methods perform better than the individual members. Model averaging from these four methods were superior to the best of the individual members in 76% of the cases. Optimal combinations on all watersheds included at least one of each of the four hydrological models. None of the optimal combinations included all members of the ensemble of 12 hydrographs. The Granger-Ramanathan average variant C (GRC) is recommended as the best compromise between accuracy, speed of execution, and simplicity.

  3. Predicting coastal cliff erosion using a Bayesian probabilistic model

    Science.gov (United States)

    Hapke, C.; Plant, N.

    2010-01-01

    Regional coastal cliff retreat is difficult to model due to the episodic nature of failures and the along-shore variability of retreat events. There is a growing demand, however, for predictive models that can be used to forecast areas vulnerable to coastal erosion hazards. Increasingly, probabilistic models are being employed that require data sets of high temporal density to define the joint probability density function that relates forcing variables (e.g. wave conditions) and initial conditions (e.g. cliff geometry) to erosion events. In this study we use a multi-parameter Bayesian network to investigate correlations between key variables that control and influence variations in cliff retreat processes. The network uses Bayesian statistical methods to estimate event probabilities using existing observations. Within this framework, we forecast the spatial distribution of cliff retreat along two stretches of cliffed coast in Southern California. The input parameters are the height and slope of the cliff, a descriptor of material strength based on the dominant cliff-forming lithology, and the long-term cliff erosion rate that represents prior behavior. The model is forced using predicted wave impact hours. Results demonstrate that the Bayesian approach is well-suited to the forward modeling of coastal cliff retreat, with the correct outcomes forecast in 70-90% of the modeled transects. The model also performs well in identifying specific locations of high cliff erosion, thus providing a foundation for hazard mapping. This approach can be employed to predict cliff erosion at time-scales ranging from storm events to the impacts of sea-level rise at the century-scale. ?? 2010.

  4. Skilloscopy: Bayesian modeling of decision makers' skill

    OpenAIRE

    Di Fatta, Giuseppe; Haworth, Guy

    2013-01-01

    This paper proposes and demonstrates an approach, Skilloscopy, to the assessment of decision makers. In an increasingly sophisticated, connected and information-rich world, decision making is becoming both more important and more difficult. At the same time, modelling decision-making on computers is becoming more feasible and of interest, partly because the information-input to those decisions is increasingly on record. The aims of Skilloscopy are to rate and rank decision makers in a d...

  5. DPpackage: Bayesian Semi- and Nonparametric Modeling in R

    Directory of Open Access Journals (Sweden)

    Alejandro Jara

    2011-04-01

    Full Text Available Data analysis sometimes requires the relaxation of parametric assumptions in order to gain modeling flexibility and robustness against mis-specification of the probability model. In the Bayesian context, this is accomplished by placing a prior distribution on a function space, such as the space of all probability distributions or the space of all regression functions. Unfortunately, posterior distributions ranging over function spaces are highly complex and hence sampling methods play a key role. This paper provides an introduction to a simple, yet comprehensive, set of programs for the implementation of some Bayesian nonparametric and semiparametric models in R, DPpackage. Currently, DPpackage includes models for marginal and conditional density estimation, receiver operating characteristic curve analysis, interval-censored data, binary regression data, item response data, longitudinal and clustered data using generalized linear mixed models, and regression data using generalized additive models. The package also contains functions to compute pseudo-Bayes factors for model comparison and for eliciting the precision parameter of the Dirichlet process prior, and a general purpose Metropolis sampling algorithm. To maximize computational efficiency, the actual sampling for each model is carried out using compiled C, C++ or Fortran code.

  6. Lack of confidence in approximate Bayesian computation model choice.

    Science.gov (United States)

    Robert, Christian P; Cornuet, Jean-Marie; Marin, Jean-Michel; Pillai, Natesh S

    2011-09-13

    Approximate Bayesian computation (ABC) have become an essential tool for the analysis of complex stochastic models. Grelaud et al. [(2009) Bayesian Anal 3:427-442] advocated the use of ABC for model choice in the specific case of Gibbs random fields, relying on an intermodel sufficiency property to show that the approximation was legitimate. We implemented ABC model choice in a wide range of phylogenetic models in the Do It Yourself-ABC (DIY-ABC) software [Cornuet et al. (2008) Bioinformatics 24:2713-2719]. We now present arguments as to why the theoretical arguments for ABC model choice are missing, because the algorithm involves an unknown loss of information induced by the use of insufficient summary statistics. The approximation error of the posterior probabilities of the models under comparison may thus be unrelated with the computational effort spent in running an ABC algorithm. We then conclude that additional empirical verifications of the performances of the ABC procedure as those available in DIY-ABC are necessary to conduct model choice. PMID:21876135

  7. Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.

    Science.gov (United States)

    Hack, C Eric

    2006-04-17

    Physiologically based toxicokinetic (PBTK) and toxicodynamic (TD) models of bromate in animals and humans would improve our ability to accurately estimate the toxic doses in humans based on available animal studies. These mathematical models are often highly parameterized and must be calibrated in order for the model predictions of internal dose to adequately fit the experimentally measured doses. Highly parameterized models are difficult to calibrate and it is difficult to obtain accurate estimates of uncertainty or variability in model parameters with commonly used frequentist calibration methods, such as maximum likelihood estimation (MLE) or least squared error approaches. The Bayesian approach called Markov chain Monte Carlo (MCMC) analysis can be used to successfully calibrate these complex models. Prior knowledge about the biological system and associated model parameters is easily incorporated in this approach in the form of prior parameter distributions, and the distributions are refined or updated using experimental data to generate posterior distributions of parameter estimates. The goal of this paper is to give the non-mathematician a brief description of the Bayesian approach and Markov chain Monte Carlo analysis, how this technique is used in risk assessment, and the issues associated with this approach. PMID:16466842

  8. Bayesian hierarchical modeling for detecting safety signals in clinical trials.

    Science.gov (United States)

    Xia, H Amy; Ma, Haijun; Carlin, Bradley P

    2011-09-01

    Detection of safety signals from clinical trial adverse event data is critical in drug development, but carries a challenging statistical multiplicity problem. Bayesian hierarchical mixture modeling is appealing for its ability to borrow strength across subgroups in the data, as well as moderate extreme findings most likely due merely to chance. We implement such a model for subject incidence (Berry and Berry, 2004 ) using a binomial likelihood, and extend it to subject-year adjusted incidence rate estimation under a Poisson likelihood. We use simulation to choose a signal detection threshold, and illustrate some effective graphics for displaying the flagged signals.

  9. Bayesian parameter estimation for nonlinear modelling of biological pathways

    Directory of Open Access Journals (Sweden)

    Ghasemi Omid

    2011-12-01

    Full Text Available Abstract Background The availability of temporal measurements on biological experiments has significantly promoted research areas in systems biology. To gain insight into the interaction and regulation of biological systems, mathematical frameworks such as ordinary differential equations have been widely applied to model biological pathways and interpret the temporal data. Hill equations are the preferred formats to represent the reaction rate in differential equation frameworks, due to their simple structures and their capabilities for easy fitting to saturated experimental measurements. However, Hill equations are highly nonlinearly parameterized functions, and parameters in these functions cannot be measured easily. Additionally, because of its high nonlinearity, adaptive parameter estimation algorithms developed for linear parameterized differential equations cannot be applied. Therefore, parameter estimation in nonlinearly parameterized differential equation models for biological pathways is both challenging and rewarding. In this study, we propose a Bayesian parameter estimation algorithm to estimate parameters in nonlinear mathematical models for biological pathways using time series data. Results We used the Runge-Kutta method to transform differential equations to difference equations assuming a known structure of the differential equations. This transformation allowed us to generate predictions dependent on previous states and to apply a Bayesian approach, namely, the Markov chain Monte Carlo (MCMC method. We applied this approach to the biological pathways involved in the left ventricle (LV response to myocardial infarction (MI and verified our algorithm by estimating two parameters in a Hill equation embedded in the nonlinear model. We further evaluated our estimation performance with different parameter settings and signal to noise ratios. Our results demonstrated the effectiveness of the algorithm for both linearly and nonlinearly

  10. Uncertainty of mass discharge estimates from contaminated sites using a fully Bayesian framework

    DEFF Research Database (Denmark)

    Troldborg, Mads; Nowak, Wolfgang; Binning, Philip John;

    2011-01-01

    plane. The method accounts for: (1) conceptual model uncertainty through Bayesian model averaging, (2) heterogeneity through Bayesian geostatistics with an uncertain geostatistical model, and (3) measurement uncertainty. An ensemble of unconditional steady-state plume realizations is generated through...

  11. Model Averaging Software for Dichotomous Dose Response Risk Estimation

    Directory of Open Access Journals (Sweden)

    Matthew W. Wheeler

    2008-02-01

    Full Text Available Model averaging has been shown to be a useful method for incorporating model uncertainty in quantitative risk estimation. In certain circumstances this technique is computationally complex, requiring sophisticated software to carry out the computation. We introduce software that implements model averaging for risk assessment based upon dichotomous dose-response data. This software, which we call Model Averaging for Dichotomous Response Benchmark Dose (MADr-BMD, fits the quantal response models, which are also used in the US Environmental Protection Agency benchmark dose software suite, and generates a model-averaged dose response model to generate benchmark dose and benchmark dose lower bound estimates. The software fulfills a need for risk assessors, allowing them to go beyond one single model in their risk assessments based on quantal data by focusing on a set of models that describes the experimental data.

  12. Bayesian joint modeling of longitudinal and spatial survival AIDS data.

    Science.gov (United States)

    Martins, Rui; Silva, Giovani L; Andreozzi, Valeska

    2016-08-30

    Joint analysis of longitudinal and survival data has received increasing attention in the recent years, especially for analyzing cancer and AIDS data. As both repeated measurements (longitudinal) and time-to-event (survival) outcomes are observed in an individual, a joint modeling is more appropriate because it takes into account the dependence between the two types of responses, which are often analyzed separately. We propose a Bayesian hierarchical model for jointly modeling longitudinal and survival data considering functional time and spatial frailty effects, respectively. That is, the proposed model deals with non-linear longitudinal effects and spatial survival effects accounting for the unobserved heterogeneity among individuals living in the same region. This joint approach is applied to a cohort study of patients with HIV/AIDS in Brazil during the years 2002-2006. Our Bayesian joint model presents considerable improvements in the estimation of survival times of the Brazilian HIV/AIDS patients when compared with those obtained through a separate survival model and shows that the spatial risk of death is the same across the different Brazilian states. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26990773

  13. A study of finite mixture model: Bayesian approach on financial time series data

    Science.gov (United States)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir

    2014-07-01

    Recently, statistician have emphasized on the fitting finite mixture model by using Bayesian method. Finite mixture model is a mixture of distributions in modeling a statistical distribution meanwhile Bayesian method is a statistical method that use to fit the mixture model. Bayesian method is being used widely because it has asymptotic properties which provide remarkable result. In addition, Bayesian method also shows consistency characteristic which means the parameter estimates are close to the predictive distributions. In the present paper, the number of components for mixture model is studied by using Bayesian Information Criterion. Identify the number of component is important because it may lead to an invalid result. Later, the Bayesian method is utilized to fit the k-component mixture model in order to explore the relationship between rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia. Lastly, the results showed that there is a negative effect among rubber price and stock market price for all selected countries.

  14. Modeling operational risks of the nuclear industry with Bayesian networks

    International Nuclear Information System (INIS)

    Basically, planning a new industrial plant requires information on the industrial management, regulations, site selection, definition of initial and planned capacity, and on the estimation of the potential demand. However, this is far from enough to assure the success of an industrial enterprise. Unexpected and extremely damaging events may occur that deviates from the original plan. The so-called operational risks are not only in the system, equipment, process or human (technical or managerial) failures. They are also in intentional events such as frauds and sabotage, or extreme events like terrorist attacks or radiological accidents and even on public reaction to perceived environmental or future generation impacts. For the nuclear industry, it is a challenge to identify and to assess the operational risks and their various sources. Early identification of operational risks can help in preparing contingency plans, to delay the decision to invest or to approve a project that can, at an extreme, affect the public perception of the nuclear energy. A major problem in modeling operational risk losses is the lack of internal data that are essential, for example, to apply the loss distribution approach. As an alternative, methods that consider qualitative and subjective information can be applied, for example, fuzzy logic, neural networks, system dynamic or Bayesian networks. An advantage of applying Bayesian networks to model operational risk is the possibility to include expert opinions and variables of interest, to structure the model via causal dependencies among these variables, and to specify subjective prior and conditional probabilities distributions at each step or network node. This paper suggests a classification of operational risks in industry and discusses the benefits and obstacles of the Bayesian networks approach to model those risks. (author)

  15. Averaging and exact perturbations in LTB dust models

    CERN Document Server

    Sussman, Roberto A

    2012-01-01

    We introduce a scalar weighed average ("q-average") acting on concentric comoving domains in spherically symmetric Lemaitre-Tolman-Bondi (LTB) dust models. The resulting averaging formalism allows for an elegant coordinate independent dynamical study of the models, providing as well a valuable theoretical insight on the properties of scalar averaging in inhomogeneous spacetimes. The q-averages of those covariant scalars common to FLRW models (the "q-scalars") identically satisfy FLRW evolution laws and determine for every domain a unique FLRW background state. All curvature and kinematic proper tensors and their invariant contractions are expressible in terms of the q-scalars and their linear and quadratic local fluctuations, which convey the effects of inhomogeneity through the ratio of Weyl to Ricci curvature invariants and the magnitude of radial gradients. We define also non-local fluctuations associated with the intuitive notion of a "contrast" with respect to FLRW reference averaged values assigned to a...

  16. BAYESIAN ESTIMATION IN SHARED COMPOUND POISSON FRAILTY MODELS

    Directory of Open Access Journals (Sweden)

    David D. Hanagal

    2015-06-01

    Full Text Available In this paper, we study the compound Poisson distribution as the shared frailty distribution and two different baseline distributions namely Pareto and linear failure rate distributions for modeling survival data. We are using the Markov Chain Monte Carlo (MCMC technique to estimate parameters of the proposed models by introducing the Bayesian estimation procedure. In the present study, a simulation is done to compare the true values of parameters with the estimated values. We try to fit the proposed models to a real life bivariate survival data set of McGrilchrist and Aisbett (1991 related to kidney infection. Also, we present a comparison study for the same data by using model selection criterion, and suggest a better frailty model out of two proposed frailty models.

  17. Experimental validation of a Bayesian model of visual acuity.

    LENUS (Irish Health Repository)

    Dalimier, Eugénie

    2009-01-01

    Based on standard procedures used in optometry clinics, we compare measurements of visual acuity for 10 subjects (11 eyes tested) in the presence of natural ocular aberrations and different degrees of induced defocus, with the predictions given by a Bayesian model customized with aberrometric data of the eye. The absolute predictions of the model, without any adjustment, show good agreement with the experimental data, in terms of correlation and absolute error. The efficiency of the model is discussed in comparison with image quality metrics and other customized visual process models. An analysis of the importance and customization of each stage of the model is also given; it stresses the potential high predictive power from precise modeling of ocular and neural transfer functions.

  18. Assessing global vegetation activity using spatio-temporal Bayesian modelling

    Science.gov (United States)

    Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.

    2016-04-01

    This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support

  19. Theory-based Bayesian models of inductive learning and reasoning.

    Science.gov (United States)

    Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles

    2006-07-01

    Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.

  20. Non-parametric Bayesian modeling of cervical mucus symptom

    OpenAIRE

    Bin, Riccardo De; Scarpa, Bruno

    2014-01-01

    The analysis of the cervical mucus symptom is useful to identify the period of maximum fertility of a woman. In this paper we analyze the daily evolution of the cervical mucus symptom during the menstrual cycle, based on the data collected in two retrospective studies, in which the mucus symptom is treated as an ordinal variable. To produce our statistical model, we follow a non-parametric Bayesian approach. In particular, we use the idea of non-parametric mixtures of rounded continuous kerne...

  1. Bayesian Gaussian Copula Factor Models for Mixed Data.

    Science.gov (United States)

    Murray, Jared S; Dunson, David B; Carin, Lawrence; Lucas, Joseph E

    2013-06-01

    Gaussian factor models have proven widely useful for parsimoniously characterizing dependence in multivariate data. There is a rich literature on their extension to mixed categorical and continuous variables, using latent Gaussian variables or through generalized latent trait models acommodating measurements in the exponential family. However, when generalizing to non-Gaussian measured variables the latent variables typically influence both the dependence structure and the form of the marginal distributions, complicating interpretation and introducing artifacts. To address this problem we propose a novel class of Bayesian Gaussian copula factor models which decouple the latent factors from the marginal distributions. A semiparametric specification for the marginals based on the extended rank likelihood yields straightforward implementation and substantial computational gains. We provide new theoretical and empirical justifications for using this likelihood in Bayesian inference. We propose new default priors for the factor loadings and develop efficient parameter-expanded Gibbs sampling for posterior computation. The methods are evaluated through simulations and applied to a dataset in political science. The models in this paper are implemented in the R package bfa.

  2. Bayesian statistic methods and theri application in probabilistic simulation models

    Directory of Open Access Journals (Sweden)

    Sergio Iannazzo

    2007-03-01

    Full Text Available Bayesian statistic methods are facing a rapidly growing level of interest and acceptance in the field of health economics. The reasons of this success are probably to be found on the theoretical fundaments of the discipline that make these techniques more appealing to decision analysis. To this point should be added the modern IT progress that has developed different flexible and powerful statistical software framework. Among them probably one of the most noticeably is the BUGS language project and its standalone application for MS Windows WinBUGS. Scope of this paper is to introduce the subject and to show some interesting applications of WinBUGS in developing complex economical models based on Markov chains. The advantages of this approach reside on the elegance of the code produced and in its capability to easily develop probabilistic simulations. Moreover an example of the integration of bayesian inference models in a Markov model is shown. This last feature let the analyst conduce statistical analyses on the available sources of evidence and exploit them directly as inputs in the economic model.

  3. Bayesian calibration of power plant models for accurate performance prediction

    International Nuclear Information System (INIS)

    Highlights: • Bayesian calibration is applied to power plant performance prediction. • Measurements from a plant in operation are used for model calibration. • A gas turbine performance model and steam cycle model are calibrated. • An integrated plant model is derived. • Part load efficiency is accurately predicted as a function of ambient conditions. - Abstract: Gas turbine combined cycles are expected to play an increasingly important role in the balancing of supply and demand in future energy markets. Thermodynamic modeling of these energy systems is frequently applied to assist in decision making processes related to the management of plant operation and maintenance. In most cases, model inputs, parameters and outputs are treated as deterministic quantities and plant operators make decisions with limited or no regard of uncertainties. As the steady integration of wind and solar energy into the energy market induces extra uncertainties, part load operation and reliability are becoming increasingly important. In the current study, methods are proposed to not only quantify various types of uncertainties in measurements and plant model parameters using measured data, but to also assess their effect on various aspects of performance prediction. The authors aim to account for model parameter and measurement uncertainty, and for systematic discrepancy of models with respect to reality. For this purpose, the Bayesian calibration framework of Kennedy and O’Hagan is used, which is especially suitable for high-dimensional industrial problems. The article derives a calibrated model of the plant efficiency as a function of ambient conditions and operational parameters, which is also accurate in part load. The article shows that complete statistical modeling of power plants not only enhances process models, but can also increases confidence in operational decisions

  4. Simultaneous inference for model averaging of derived parameters

    DEFF Research Database (Denmark)

    Jensen, Signe Marie; Ritz, Christian

    2015-01-01

    Model averaging is a useful approach for capturing uncertainty due to model selection. Currently, this uncertainty is often quantified by means of approximations that do not easily extend to simultaneous inference. Moreover, in practice there is a need for both model averaging and simultaneous...... inference for derived parameters calculated in an after-fitting step. We propose a method for obtaining asymptotically correct standard errors for one or several model-averaged estimates of derived parameters and for obtaining simultaneous confidence intervals that asymptotically control the family...

  5. Characterizing economic trends by Bayesian stochastic model specification search

    DEFF Research Database (Denmark)

    Grassi, Stefano; Proietti, Tommaso

    We extend a recently proposed Bayesian model selection technique, known as stochastic model specification search, for characterising the nature of the trend in macroeconomic time series. In particular, we focus on autoregressive models with possibly time-varying intercept and slope and decide...... on whether their parameters are fixed or evolutive. Stochastic model specification is carried out to discriminate two alternative hypotheses concerning the generation of trends: the trend-stationary hypothesis, on the one hand, for which the trend is a deterministic function of time and the short run...... the traditional Nelson and Plosser dataset. The broad conclusion is that most series are better represented by autoregressive models with time-invariant intercept and slope and coefficients that are close to boundary of the stationarity region. The posterior distribution of the autoregressive parameters...

  6. Efficient multilevel brain tumor segmentation with integrated bayesian model classification.

    Science.gov (United States)

    Corso, J J; Sharon, E; Dube, S; El-Saden, S; Sinha, U; Yuille, A

    2008-05-01

    We present a new method for automatic segmentation of heterogeneous image data that takes a step toward bridging the gap between bottom-up affinity-based segmentation methods and top-down generative model based approaches. The main contribution of the paper is a Bayesian formulation for incorporating soft model assignments into the calculation of affinities, which are conventionally model free. We integrate the resulting model-aware affinities into the multilevel segmentation by weighted aggregation algorithm, and apply the technique to the task of detecting and segmenting brain tumor and edema in multichannel magnetic resonance (MR) volumes. The computationally efficient method runs orders of magnitude faster than current state-of-the-art techniques giving comparable or improved results. Our quantitative results indicate the benefit of incorporating model-aware affinities into the segmentation process for the difficult case of glioblastoma multiforme brain tumor. PMID:18450536

  7. Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model

    Science.gov (United States)

    Meng, Jia; Zhang, Jianqiu(Michelle); Qi, Yuan(Alan); Chen, Yidong; Huang, Yufei

    2010-12-01

    The problem of uncovering transcriptional regulation by transcription factors (TFs) based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM) is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ([InlineEquation not available: see fulltext.]) status and Estrogen Receptor negative ([InlineEquation not available: see fulltext.]) status, respectively.

  8. Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model

    Directory of Open Access Journals (Sweden)

    Qi Yuan(Alan

    2010-01-01

    Full Text Available Abstract The problem of uncovering transcriptional regulation by transcription factors (TFs based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ( status and Estrogen Receptor negative ( status, respectively.

  9. Exploring the Influence of Neighborhood Characteristics on Burglary Risks: A Bayesian Random Effects Modeling Approach

    Directory of Open Access Journals (Sweden)

    Hongqiang Liu

    2016-06-01

    Full Text Available A Bayesian random effects modeling approach was used to examine the influence of neighborhood characteristics on burglary risks in Jianghan District, Wuhan, China. This random effects model is essentially spatial; a spatially structured random effects term and an unstructured random effects term are added to the traditional non-spatial Poisson regression model. Based on social disorganization and routine activity theories, five covariates extracted from the available data at the neighborhood level were used in the modeling. Three regression models were fitted and compared by the deviance information criterion to identify which model best fit our data. A comparison of the results from the three models indicates that the Bayesian random effects model is superior to the non-spatial models in fitting the data and estimating regression coefficients. Our results also show that neighborhoods with above average bar density and department store density have higher burglary risks. Neighborhood-specific burglary risks and posterior probabilities of neighborhoods having a burglary risk greater than 1.0 were mapped, indicating the neighborhoods that should warrant more attention and be prioritized for crime intervention and reduction. Implications and limitations of the study are discussed in our concluding section.

  10. Bayesian inference for generalized linear models for spiking neurons

    Directory of Open Access Journals (Sweden)

    Sebastian Gerwinn

    2010-05-01

    Full Text Available Generalized Linear Models (GLMs are commonly used statistical methods for modelling the relationship between neural population activity and presented stimuli. When the dimension of the parameter space is large, strong regularization has to be used in order to fit GLMs to datasets of realistic size without overfitting. By imposing properly chosen priors over parameters, Bayesian inference provides an effective and principled approach for achieving regularization. Here we show how the posterior distribution over model parameters of GLMs can be approximated by a Gaussian using the Expectation Propagation algorithm. In this way, we obtain an estimate of the posterior mean and posterior covariance, allowing us to calculate Bayesian confidence intervals that characterize the uncertainty about the optimal solution. From the posterior we also obtain a different point estimate, namely the posterior mean as opposed to the commonly used maximum a posteriori estimate. We systematically compare the different inference techniques on simulated as well as on multi-electrode recordings of retinal ganglion cells, and explore the effects of the chosen prior and the performance measure used. We find that good performance can be achieved by choosing an Laplace prior together with the posterior mean estimate.

  11. One-Stage and Bayesian Two-Stage Optimal Designs for Mixture Models

    OpenAIRE

    Lin, Hefang

    1999-01-01

    In this research, Bayesian two-stage D-D optimal designs for mixture experiments with or without process variables under model uncertainty are developed. A Bayesian optimality criterion is used in the first stage to minimize the determinant of the posterior variances of the parameters. The second stage design is then generated according to an optimality procedure that collaborates with the improved model from first stage data. Our results show that the Bayesian two-stage D-D optimal design...

  12. Bayesian Dose-Response Modeling in Sparse Data

    Science.gov (United States)

    Kim, Steven B.

    This book discusses Bayesian dose-response modeling in small samples applied to two different settings. The first setting is early phase clinical trials, and the second setting is toxicology studies in cancer risk assessment. In early phase clinical trials, experimental units are humans who are actual patients. Prior to a clinical trial, opinions from multiple subject area experts are generally more informative than the opinion of a single expert, but we may face a dilemma when they have disagreeing prior opinions. In this regard, we consider compromising the disagreement and compare two different approaches for making a decision. In addition to combining multiple opinions, we also address balancing two levels of ethics in early phase clinical trials. The first level is individual-level ethics which reflects the perspective of trial participants. The second level is population-level ethics which reflects the perspective of future patients. We extensively compare two existing statistical methods which focus on each perspective and propose a new method which balances the two conflicting perspectives. In toxicology studies, experimental units are living animals. Here we focus on a potential non-monotonic dose-response relationship which is known as hormesis. Briefly, hormesis is a phenomenon which can be characterized by a beneficial effect at low doses and a harmful effect at high doses. In cancer risk assessments, the estimation of a parameter, which is known as a benchmark dose, can be highly sensitive to a class of assumptions, monotonicity or hormesis. In this regard, we propose a robust approach which considers both monotonicity and hormesis as a possibility. In addition, We discuss statistical hypothesis testing for hormesis and consider various experimental designs for detecting hormesis based on Bayesian decision theory. Past experiments have not been optimally designed for testing for hormesis, and some Bayesian optimal designs may not be optimal under a

  13. MATHEMATICAL RISK ANALYSIS: VIA NICHOLAS RISK MODEL AND BAYESIAN ANALYSIS

    Directory of Open Access Journals (Sweden)

    Anass BAYAGA

    2010-07-01

    Full Text Available The objective of this second part of a two-phased study was to explorethe predictive power of quantitative risk analysis (QRA method andprocess within Higher Education Institution (HEI. The method and process investigated the use impact analysis via Nicholas risk model and Bayesian analysis, with a sample of hundred (100 risk analysts in a historically black South African University in the greater Eastern Cape Province.The first findings supported and confirmed previous literature (KingIII report, 2009: Nicholas and Steyn, 2008: Stoney, 2007: COSA, 2004 that there was a direct relationship between risk factor, its likelihood and impact, certiris paribus. The second finding in relation to either controlling the likelihood or the impact of occurrence of risk (Nicholas risk model was that to have a brighter risk reward, it was important to control the likelihood ofoccurrence of risks as compared with its impact so to have a direct effect on entire University. On the Bayesian analysis, thus third finding, the impact of risk should be predicted along three aspects. These aspects included the human impact (decisions made, the property impact (students and infrastructural based and the business impact. Lastly, the study revealed that although in most business cases, where as business cycles considerably vary dependingon the industry and or the institution, this study revealed that, most impacts in HEI (University was within the period of one academic.The recommendation was that application of quantitative risk analysisshould be related to current legislative framework that affects HEI.

  14. Bayesian predictive modeling for genomic based personalized treatment selection.

    Science.gov (United States)

    Ma, Junsheng; Stingo, Francesco C; Hobbs, Brian P

    2016-06-01

    Efforts to personalize medicine in oncology have been limited by reductive characterizations of the intrinsically complex underlying biological phenomena. Future advances in personalized medicine will rely on molecular signatures that derive from synthesis of multifarious interdependent molecular quantities requiring robust quantitative methods. However, highly parameterized statistical models when applied in these settings often require a prohibitively large database and are sensitive to proper characterizations of the treatment-by-covariate interactions, which in practice are difficult to specify and may be limited by generalized linear models. In this article, we present a Bayesian predictive framework that enables the integration of a high-dimensional set of genomic features with clinical responses and treatment histories of historical patients, providing a probabilistic basis for using the clinical and molecular information to personalize therapy for future patients. Our work represents one of the first attempts to define personalized treatment assignment rules based on large-scale genomic data. We use actual gene expression data acquired from The Cancer Genome Atlas in the settings of leukemia and glioma to explore the statistical properties of our proposed Bayesian approach for personalizing treatment selection. The method is shown to yield considerable improvements in predictive accuracy when compared to penalized regression approaches. PMID:26575856

  15. a Bayesian Synthesis of Predictions from Different Models for Setting Water Quality Criteria

    Science.gov (United States)

    Arhonditsis, G. B.; Ecological Modelling Laboratory

    2011-12-01

    Skeptical views of the scientific value of modelling argue that there is no true model of an ecological system, but rather several adequate descriptions of different conceptual basis and structure. In this regard, rather than picking the single "best-fit" model to predict future system responses, we can use Bayesian model averaging to synthesize the forecasts from different models. Hence, by acknowledging that models from different areas of the complexity spectrum have different strengths and weaknesses, the Bayesian model averaging is an appealing approach to improve the predictive capacity and to overcome the ambiguity surrounding the model selection or the risk of basing ecological forecasts on a single model. Our study addresses this question using a complex ecological model, developed by Ramin et al. (2011; Environ Modell Softw 26, 337-353) to guide the water quality criteria setting process in the Hamilton Harbour (Ontario, Canada), along with a simpler plankton model that considers the interplay among phosphate, detritus, and generic phytoplankton and zooplankton state variables. This simple approach is more easily subjected to detailed sensitivity analysis and also has the advantage of fewer unconstrained parameters. Using Markov Chain Monte Carlo simulations, we calculate the relative mean standard error to assess the posterior support of the two models from the existing data. Predictions from the two models are then combined using the respective standard error estimates as weights in a weighted model average. The model averaging approach is used to examine the robustness of predictive statements made from our earlier work regarding the response of Hamilton Harbour to the different nutrient loading reduction strategies. The two eutrophication models are then used in conjunction with the SPAtially Referenced Regressions On Watershed attributes (SPARROW) watershed model. The Bayesian nature of our work is used: (i) to alleviate problems of spatiotemporal

  16. Bayesian reduced-order models for multiscale dynamical systems

    CERN Document Server

    Koutsourelakis, P S

    2010-01-01

    While existing mathematical descriptions can accurately account for phenomena at microscopic scales (e.g. molecular dynamics), these are often high-dimensional, stochastic and their applicability over macroscopic time scales of physical interest is computationally infeasible or impractical. In complex systems, with limited physical insight on the coherent behavior of their constituents, the only available information is data obtained from simulations of the trajectories of huge numbers of degrees of freedom over microscopic time scales. This paper discusses a Bayesian approach to deriving probabilistic coarse-grained models that simultaneously address the problems of identifying appropriate reduced coordinates and the effective dynamics in this lower-dimensional representation. At the core of the models proposed lie simple, low-dimensional dynamical systems which serve as the building blocks of the global model. These approximate the latent, generating sources and parameterize the reduced-order dynamics. We d...

  17. Aggregated Residential Load Modeling Using Dynamic Bayesian Networks

    Energy Technology Data Exchange (ETDEWEB)

    Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai

    2014-09-28

    Abstract—It is already obvious that the future power grid will have to address higher demand for power and energy, and to incorporate renewable resources of different energy generation patterns. Demand response (DR) schemes could successfully be used to manage and balance power supply and demand under operating conditions of the future power grid. To achieve that, more advanced tools for DR management of operations and planning are necessary that can estimate the available capacity from DR resources. In this research, a Dynamic Bayesian Network (DBN) is derived, trained, and tested that can model aggregated load of Heating, Ventilation, and Air Conditioning (HVAC) systems. DBNs can provide flexible and powerful tools for both operations and planing, due to their unique analytical capabilities. The DBN model accuracy and flexibility of use is demonstrated by testing the model under different operational scenarios.

  18. A Bayesian approach to the modelling of alpha Cen A

    CERN Document Server

    Bazot, M; Christensen-Dalsgaard, J

    2012-01-01

    Determining the physical characteristics of a star is an inverse problem consisting in estimating the parameters of models for the stellar structure and evolution, knowing certain observable quantities. We use a Bayesian approach to solve this problem for alpha Cen A, which allows us to incorporate prior information on the parameters to be estimated, in order to better constrain the problem. Our strategy is based on the use of a Markov Chain Monte Carlo (MCMC) algorithm to estimate the posterior probability densities of the stellar parameters: mass, age, initial chemical composition,... We use the stellar evolutionary code ASTEC to model the star. To constrain this model both seismic and non-seismic observations were considered. Several different strategies were tested to fit these values, either using two or five free parameters in ASTEC. We are thus able to show evidence that MCMC methods become efficient with respect to more classical grid-based strategies when the number of parameters increases. The resul...

  19. Bayesian 2D Deconvolution: A Model for Diffuse Ultrasound Scattering

    Directory of Open Access Journals (Sweden)

    Oddvar Husby

    2001-10-01

    Full Text Available Observed medical ultrasound images are degraded representations of the true acoustic tissue reflectance. The degradation is due to blur and speckle, and significantly reduces the diagnostic value of the images. In order to remove both blur and speckle we have developed a new statistical model for diffuse scattering in 2D ultrasound radio-frequency images, incorporating both spatial smoothness constraints and a physical model for diffuse scattering. The modeling approach is Bayesian in nature, and we use Markov chain Monte Carlo methods to obtain the restorations. The results from restorations of some real and simulated radio-frequency ultrasound images are presented and compared with results produced by Wiener filtering.

  20. Performance and Prediction: Bayesian Modelling of Fallible Choice in Chess

    Science.gov (United States)

    Haworth, Guy; Regan, Ken; di Fatta, Giuseppe

    Evaluating agents in decision-making applications requires assessing their skill and predicting their behaviour. Both are well developed in Poker-like situations, but less so in more complex game and model domains. This paper addresses both tasks by using Bayesian inference in a benchmark space of reference agents. The concepts are explained and demonstrated using the game of chess but the model applies generically to any domain with quantifiable options and fallible choice. Demonstration applications address questions frequently asked by the chess community regarding the stability of the rating scale, the comparison of players of different eras and/or leagues, and controversial incidents possibly involving fraud. The last include alleged under-performance, fabrication of tournament results, and clandestine use of computer advice during competition. Beyond the model world of games, the aim is to improve fallible human performance in complex, high-value tasks.

  1. Advances in Bayesian Model Based Clustering Using Particle Learning

    Energy Technology Data Exchange (ETDEWEB)

    Merl, D M

    2009-11-19

    Recent work by Carvalho, Johannes, Lopes and Polson and Carvalho, Lopes, Polson and Taddy introduced a sequential Monte Carlo (SMC) alternative to traditional iterative Monte Carlo strategies (e.g. MCMC and EM) for Bayesian inference for a large class of dynamic models. The basis of SMC techniques involves representing the underlying inference problem as one of state space estimation, thus giving way to inference via particle filtering. The key insight of Carvalho et al was to construct the sequence of filtering distributions so as to make use of the posterior predictive distribution of the observable, a distribution usually only accessible in certain Bayesian settings. Access to this distribution allows a reversal of the usual propagate and resample steps characteristic of many SMC methods, thereby alleviating to a large extent many problems associated with particle degeneration. Furthermore, Carvalho et al point out that for many conjugate models the posterior distribution of the static variables can be parametrized in terms of [recursively defined] sufficient statistics of the previously observed data. For models where such sufficient statistics exist, particle learning as it is being called, is especially well suited for the analysis of streaming data do to the relative invariance of its algorithmic complexity with the number of data observations. Through a particle learning approach, a statistical model can be fit to data as the data is arriving, allowing at any instant during the observation process direct quantification of uncertainty surrounding underlying model parameters. Here we describe the use of a particle learning approach for fitting a standard Bayesian semiparametric mixture model as described in Carvalho, Lopes, Polson and Taddy. In Section 2 we briefly review the previously presented particle learning algorithm for the case of a Dirichlet process mixture of multivariate normals. In Section 3 we describe several novel extensions to the original

  2. A space-averaged model of branched structures

    CERN Document Server

    Lopez, Diego; Michelin, Sébastien

    2014-01-01

    Many biological systems and artificial structures are ramified, and present a high geometric complexity. In this work, we propose a space-averaged model of branched systems for conservation laws. From a one-dimensional description of the system, we show that the space-averaged problem is also one-dimensional, represented by characteristic curves, defined as streamlines of the space-averaged branch directions. The geometric complexity is then captured firstly by the characteristic curves, and secondly by an additional forcing term in the equations. This model is then applied to mass balance in a pipe network and momentum balance in a tree under wind loading.

  3. Road network safety evaluation using Bayesian hierarchical joint model.

    Science.gov (United States)

    Wang, Jie; Huang, Helai

    2016-05-01

    Safety and efficiency are commonly regarded as two significant performance indicators of transportation systems. In practice, road network planning has focused on road capacity and transport efficiency whereas the safety level of a road network has received little attention in the planning stage. This study develops a Bayesian hierarchical joint model for road network safety evaluation to help planners take traffic safety into account when planning a road network. The proposed model establishes relationships between road network risk and micro-level variables related to road entities and traffic volume, as well as socioeconomic, trip generation and network density variables at macro level which are generally used for long term transportation plans. In addition, network spatial correlation between intersections and their connected road segments is also considered in the model. A road network is elaborately selected in order to compare the proposed hierarchical joint model with a previous joint model and a negative binomial model. According to the results of the model comparison, the hierarchical joint model outperforms the joint model and negative binomial model in terms of the goodness-of-fit and predictive performance, which indicates the reasonableness of considering the hierarchical data structure in crash prediction and analysis. Moreover, both random effects at the TAZ level and the spatial correlation between intersections and their adjacent segments are found to be significant, supporting the employment of the hierarchical joint model as an alternative in road-network-level safety modeling as well.

  4. Semi-parametric Bayesian Partially Identified Models based on Support Function

    OpenAIRE

    Liao, Yuan; De Simoni, Anna

    2012-01-01

    We provide a comprehensive semi-parametric study of Bayesian partially identified econometric models. While the existing literature on Bayesian partial identification has mostly focused on the structural parameter, our primary focus is on Bayesian credible sets (BCS's) of the unknown identified set and the posterior distribution of its support function. We construct a (two-sided) BCS based on the support function of the identified set. We prove the Bernstein-von Mises theorem for the posterio...

  5. A Bayesian analysis of two probability models describing thunderstorm activity at Cape Kennedy, Florida

    Science.gov (United States)

    Williford, W. O.; Hsieh, P.; Carter, M. C.

    1974-01-01

    A Bayesian analysis of the two discrete probability models, the negative binomial and the modified negative binomial distributions, which have been used to describe thunderstorm activity at Cape Kennedy, Florida, is presented. The Bayesian approach with beta prior distributions is compared to the classical approach which uses a moment method of estimation or a maximum-likelihood method. The accuracy and simplicity of the Bayesian method is demonstrated.

  6. Inversion of hierarchical Bayesian models using Gaussian processes.

    Science.gov (United States)

    Lomakina, Ekaterina I; Paliwal, Saee; Diaconescu, Andreea O; Brodersen, Kay H; Aponte, Eduardo A; Buhmann, Joachim M; Stephan, Klaas E

    2015-09-01

    Over the past decade, computational approaches to neuroimaging have increasingly made use of hierarchical Bayesian models (HBMs), either for inferring on physiological mechanisms underlying fMRI data (e.g., dynamic causal modelling, DCM) or for deriving computational trajectories (from behavioural data) which serve as regressors in general linear models. However, an unresolved problem is that standard methods for inverting the hierarchical Bayesian model are either very slow, e.g. Markov Chain Monte Carlo Methods (MCMC), or are vulnerable to local minima in non-convex optimisation problems, such as variational Bayes (VB). This article considers Gaussian process optimisation (GPO) as an alternative approach for global optimisation of sufficiently smooth and efficiently evaluable objective functions. GPO avoids being trapped in local extrema and can be computationally much more efficient than MCMC. Here, we examine the benefits of GPO for inverting HBMs commonly used in neuroimaging, including DCM for fMRI and the Hierarchical Gaussian Filter (HGF). Importantly, to achieve computational efficiency despite high-dimensional optimisation problems, we introduce a novel combination of GPO and local gradient-based search methods. The utility of this GPO implementation for DCM and HGF is evaluated against MCMC and VB, using both synthetic data from simulations and empirical data. Our results demonstrate that GPO provides parameter estimates with equivalent or better accuracy than the other techniques, but at a fraction of the computational cost required for MCMC. We anticipate that GPO will prove useful for robust and efficient inversion of high-dimensional and nonlinear models of neuroimaging data. PMID:26048619

  7. Modelling of population dynamics of red king crab using Bayesian approach

    Directory of Open Access Journals (Sweden)

    Bakanev Sergey ...

    2012-10-01

    Modeling population dynamics based on the Bayesian approach enables to successfully resolve the above issues. The integration of the data from various studies into a unified model based on Bayesian parameter estimation method provides a much more detailed description of the processes occurring in the population.

  8. Bayesian Framework for Water Quality Model Uncertainty Estimation and Risk Management

    Science.gov (United States)

    A formal Bayesian methodology is presented for integrated model calibration and risk-based water quality management using Bayesian Monte Carlo simulation and maximum likelihood estimation (BMCML). The primary focus is on lucid integration of model calibration with risk-based wat...

  9. Dynamic Bayesian Network Modeling of Game Based Diagnostic Assessments. CRESST Report 837

    Science.gov (United States)

    Levy, Roy

    2014-01-01

    Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…

  10. Bayesian modeling of censored partial linear models using scale-mixtures of normal distributions

    Science.gov (United States)

    Castro, Luis M.; Lachos, Victor H.; Ferreira, Guillermo P.; Arellano-Valle, Reinaldo B.

    2012-10-01

    Regression models where the dependent variable is censored (limited) are usually considered in statistical analysis. Particularly, the case of a truncation to the left of zero and a normality assumption for the error terms is studied in detail by [1] in the well known Tobit model. In the present article, this typical censored regression model is extended by considering a partial linear model with errors belonging to the class of scale mixture of normal distributions. We achieve a fully Bayesian inference by adopting a Metropolis algorithm within a Gibbs sampler. The likelihood function is utilized to compute not only some Bayesian model selection measures but also to develop Bayesian case-deletion influence diagnostics based on the q-divergence measures. We evaluate the performances of the proposed methods with simulated data. In addition, we present an application in order to know what type of variables affect the income of housewives.

  11. Bayesian network models for error detection in radiotherapy plans

    Science.gov (United States)

    Kalet, Alan M.; Gennari, John H.; Ford, Eric C.; Phillips, Mark H.

    2015-04-01

    The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.

  12. Bayes model averaging of cyclical decompositions in economic time series

    NARCIS (Netherlands)

    R.H. Kleijn (Richard); H.K. van Dijk (Herman)

    2003-01-01

    textabstractA flexible decomposition of a time series into stochastic cycles under possible non-stationarity is specified, providing both a useful data analysis tool and a very wide model class. A Bayes procedure using Markov Chain Monte Carlo (MCMC) is introduced with a model averaging approach whi

  13. Time Series ARIMA Models of Undergraduate Grade Point Average.

    Science.gov (United States)

    Rogers, Bruce G.

    The Auto-Regressive Integrated Moving Average (ARIMA) Models, often referred to as Box-Jenkins models, are regression methods for analyzing sequential dependent observations with large amounts of data. The Box-Jenkins approach, a three-stage procedure consisting of identification, estimation and diagnosis, was used to select the most appropriate…

  14. Designing and testing inflationary models with Bayesian networks

    CERN Document Server

    Price, Layne C; Frazer, Jonathan; Easther, Richard

    2015-01-01

    Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use $N_f$--quadratic inflation as an illustrative example, finding that the number of $e$-folds $N_*$ between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.

  15. Designing and testing inflationary models with Bayesian networks

    Energy Technology Data Exchange (ETDEWEB)

    Price, Layne C. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Physics; Auckland Univ. (New Zealand). Dept. of Physics; Peiris, Hiranya V. [Univ. College London (United Kingdom). Dept. of Physics and Astronomy; Frazer, Jonathan [DESY Hamburg (Germany). Theory Group; Univ. of the Basque Country, Bilbao (Spain). Dept. of Theoretical Physics; Basque Foundation for Science, Bilbao (Spain). IKERBASQUE; Easther, Richard [Auckland Univ. (New Zealand). Dept. of Physics

    2015-11-15

    Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often ignored but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use N{sub f}-quadratic inflation as an illustrative example, finding that the number of e-folds N{sub *} between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.

  16. Bayesian modeling and significant features exploration in wavelet power spectra

    Directory of Open Access Journals (Sweden)

    D. V. Divine

    2007-01-01

    Full Text Available This study proposes and justifies a Bayesian approach to modeling wavelet coefficients and finding statistically significant features in wavelet power spectra. The approach utilizes ideas elaborated in scale-space smoothing methods and wavelet data analysis. We treat each scale of the discrete wavelet decomposition as a sequence of independent random variables and then apply Bayes' rule for constructing the posterior distribution of the smoothed wavelet coefficients. Samples drawn from the posterior are subsequently used for finding the estimate of the true wavelet spectrum at each scale. The method offers two different significance testing procedures for wavelet spectra. A traditional approach assesses the statistical significance against a red noise background. The second procedure tests for homoscedasticity of the wavelet power assessing whether the spectrum derivative significantly differs from zero at each particular point of the spectrum. Case studies with simulated data and climatic time-series prove the method to be a potentially useful tool in data analysis.

  17. A unified Bayesian hierarchical model for MRI tissue classification.

    Science.gov (United States)

    Feng, Dai; Liang, Dong; Tierney, Luke

    2014-04-15

    Various works have used magnetic resonance imaging (MRI) tissue classification extensively to study a number of neurological and psychiatric disorders. Various noise characteristics and other artifacts make this classification a challenging task. Instead of splitting the procedure into different steps, we extend a previous work to develop a unified Bayesian hierarchical model, which addresses both the partial volume effect and intensity non-uniformity, the two major acquisition artifacts, simultaneously. We adopted a normal mixture model with the means and variances depending on the tissue types of voxels to model the observed intensity values. We modeled the relationship among the components of the index vector of tissue types by a hidden Markov model, which captures the spatial similarity of voxels. Furthermore, we addressed the partial volume effect by construction of a higher resolution image in which each voxel is divided into subvoxels. Finally, We achieved the bias field correction by using a Gaussian Markov random field model with a band precision matrix designed in light of image filtering. Sparse matrix methods and parallel computations based on conditional independence are exploited to improve the speed of the Markov chain Monte Carlo simulation. The unified model provides more accurate tissue classification results for both simulated and real data sets. PMID:24738112

  18. Analysis of nonlinear systems using ARMA [autoregressive moving average] models

    International Nuclear Information System (INIS)

    While many vibration systems exhibit primarily linear behavior, a significant percentage of the systems encountered in vibration and model testing are mildly to severely nonlinear. Analysis methods for such nonlinear systems are not yet well developed and the response of such systems is not accurately predicted by linear models. Nonlinear ARMA (autoregressive moving average) models are one method for the analysis and response prediction of nonlinear vibratory systems. In this paper we review the background of linear and nonlinear ARMA models, and illustrate the application of these models to nonlinear vibration systems. We conclude by summarizing the advantages and disadvantages of ARMA models and emphasizing prospects for future development. 14 refs., 11 figs

  19. State-space average modelling of 18-pulse diode rectifier

    OpenAIRE

    Griffo, Antonio; Wang, J B; Howe, D.

    2008-01-01

    The paper presents an averaged-value model of the direct symmetric topology of 18-pulse autotransformer AC-DC rectifiers. The model captures the key features of the dynamic characteristics of the rectifiers, while being time invariant and computationally efficient. The developed models, validated by comparison of the resultant transient and steady state behaviours with those obtained from detailed simulations can, therefore, be used for stability assessment of electric power syste...

  20. Bayesian modeling of animal- and herd-level prevalences.

    Science.gov (United States)

    Branscum, A J; Gardner, I A; Johnson, W O

    2004-12-15

    We reviewed Bayesian approaches for animal-level and herd-level prevalence estimation based on cross-sectional sampling designs and demonstrated fitting of these models using the WinBUGS software. We considered estimation of infection prevalence based on use of a single diagnostic test applied to a single herd with binomial and hypergeometric sampling. We then considered multiple herds under binomial sampling with the primary goal of estimating the prevalence distribution and the proportion of infected herds. A new model is presented that can be used to estimate the herd-level prevalence in a region, including the posterior probability that all herds are non-infected. Using this model, inferences for the distribution of prevalences, mean prevalence in the region, and predicted prevalence of herds in the region (including the predicted probability of zero prevalence) are also available. In the models presented, both animal- and herd-level prevalences are modeled as mixture distributions to allow for zero infection prevalences. (If mixture models for the prevalences were not used, prevalence estimates might be artificially inflated, especially in herds and regions with low or zero prevalence.) Finally, we considered estimation of animal-level prevalence based on pooled samples. PMID:15579338

  1. Bayesian Methods for Analyzing Structural Equation Models with Covariates, Interaction, and Quadratic Latent Variables

    Science.gov (United States)

    Lee, Sik-Yum; Song, Xin-Yuan; Tang, Nian-Sheng

    2007-01-01

    The analysis of interaction among latent variables has received much attention. This article introduces a Bayesian approach to analyze a general structural equation model that accommodates the general nonlinear terms of latent variables and covariates. This approach produces a Bayesian estimate that has the same statistical optimal properties as a…

  2. A Bayesian Network Approach to Modeling Learning Progressions and Task Performance. CRESST Report 776

    Science.gov (United States)

    West, Patti; Rutstein, Daisy Wise; Mislevy, Robert J.; Liu, Junhui; Choi, Younyoung; Levy, Roy; Crawford, Aaron; DiCerbo, Kristen E.; Chappel, Kristina; Behrens, John T.

    2010-01-01

    A major issue in the study of learning progressions (LPs) is linking student performance on assessment tasks to the progressions. This report describes the challenges faced in making this linkage using Bayesian networks to model LPs in the field of computer networking. The ideas are illustrated with exemplar Bayesian networks built on Cisco…

  3. Comparison of Bayesian and frequentist approaches in modelling risk of preterm birth near the Sydney Tar Ponds, Nova Scotia, Canada

    Directory of Open Access Journals (Sweden)

    Canty Angelo

    2007-09-01

    Full Text Available Abstract Background This study compares the Bayesian and frequentist (non-Bayesian approaches in the modelling of the association between the risk of preterm birth and maternal proximity to hazardous waste and pollution from the Sydney Tar Pond site in Nova Scotia, Canada. Methods The data includes 1604 observed cases of preterm birth out of a total population of 17559 at risk of preterm birth from 144 enumeration districts in the Cape Breton Regional Municipality. Other covariates include the distance from the Tar Pond; the rate of unemployment to population; the proportion of persons who are separated, divorced or widowed; the proportion of persons who have no high school diploma; the proportion of persons living alone; the proportion of single parent families and average income. Bayesian hierarchical Poisson regression, quasi-likelihood Poisson regression and weighted linear regression models were fitted to the data. Results The results of the analyses were compared together with their limitations. Conclusion The results of the weighted linear regression and the quasi-likelihood Poisson regression agrees with the result from the Bayesian hierarchical modelling which incorporates the spatial effects.

  4. A Bayesian model of category-specific emotional brain responses.

    Science.gov (United States)

    Wager, Tor D; Kang, Jian; Johnson, Timothy D; Nichols, Thomas E; Satpute, Ajay B; Barrett, Lisa Feldman

    2015-04-01

    Understanding emotion is critical for a science of healthy and disordered brain function, but the neurophysiological basis of emotional experience is still poorly understood. We analyzed human brain activity patterns from 148 studies of emotion categories (2159 total participants) using a novel hierarchical Bayesian model. The model allowed us to classify which of five categories--fear, anger, disgust, sadness, or happiness--is engaged by a study with 66% accuracy (43-86% across categories). Analyses of the activity patterns encoded in the model revealed that each emotion category is associated with unique, prototypical patterns of activity across multiple brain systems including the cortex, thalamus, amygdala, and other structures. The results indicate that emotion categories are not contained within any one region or system, but are represented as configurations across multiple brain networks. The model provides a precise summary of the prototypical patterns for each emotion category, and demonstrates that a sufficient characterization of emotion categories relies on (a) differential patterns of involvement in neocortical systems that differ between humans and other species, and (b) distinctive patterns of cortical-subcortical interactions. Thus, these findings are incompatible with several contemporary theories of emotion, including those that emphasize emotion-dedicated brain systems and those that propose emotion is localized primarily in subcortical activity. They are consistent with componential and constructionist views, which propose that emotions are differentiated by a combination of perceptual, mnemonic, prospective, and motivational elements. Such brain-based models of emotion provide a foundation for new translational and clinical approaches. PMID:25853490

  5. Bayesian Belief Networks Approach for Modeling Irrigation Behavior

    Science.gov (United States)

    Andriyas, S.; McKee, M.

    2012-12-01

    Canal operators need information to manage water deliveries to irrigators. Short-term irrigation demand forecasts can potentially valuable information for a canal operator who must manage an on-demand system. Such forecasts could be generated by using information about the decision-making processes of irrigators. Bayesian models of irrigation behavior can provide insight into the likely criteria which farmers use to make irrigation decisions. This paper develops a Bayesian belief network (BBN) to learn irrigation decision-making behavior of farmers and utilizes the resulting model to make forecasts of future irrigation decisions based on factor interaction and posterior probabilities. Models for studying irrigation behavior have been rarely explored in the past. The model discussed here was built from a combination of data about biotic, climatic, and edaphic conditions under which observed irrigation decisions were made. The paper includes a case study using data collected from the Canal B region of the Sevier River, near Delta, Utah. Alfalfa, barley and corn are the main crops of the location. The model has been tested with a portion of the data to affirm the model predictive capabilities. Irrigation rules were deduced in the process of learning and verified in the testing phase. It was found that most of the farmers used consistent rules throughout all years and across different types of crops. Soil moisture stress, which indicates the level of water available to the plant in the soil profile, was found to be one of the most significant likely driving forces for irrigation. Irrigations appeared to be triggered by a farmer's perception of soil stress, or by a perception of combined factors such as information about a neighbor irrigating or an apparent preference to irrigate on a weekend. Soil stress resulted in irrigation probabilities of 94.4% for alfalfa. With additional factors like weekend and irrigating when a neighbor irrigates, alfalfa irrigation

  6. Confronting different models of community structure to species-abundance data: a Bayesian model comparison

    NARCIS (Netherlands)

    Etienne, R.S.; Olff, H.

    2005-01-01

    Species abundances are undoubtedly the most widely available macroecological data, but can we use them to distinguish among several models of community structure? Here we present a Bayesian analysis of species-abundance data that yields a full joint probability distribution of each model's parameter

  7. Confronting different models of community structure to species-abundance data : a Bayesian model comparison

    NARCIS (Netherlands)

    Etienne, RS; Olff, H

    2005-01-01

    Species abundances are undoubtedly the most widely available macroecological data, but can we use them to distinguish among several models of community structure? Here we present a Bayesian analysis of species-abundance data that yields a full joint probability distribution of each model's parameter

  8. Modelling spatial heteroskedasticity by volatility modulated moving averages

    OpenAIRE

    Nguyen, Michele; Veraart, Almut E. D.

    2016-01-01

    Spatial heteroskedasticity refers to stochastically changing variances and covariances in space. Such features have been observed in, for example, air pollution and vegetation data. We study how volatility modulated moving averages can model this by developing theory, simulation and statistical inference methods. For illustration, we also apply our procedure to sea surface temperature anomaly data from the International Research Institute for Climate and Society.

  9. Assessing fit in Bayesian models for spatial processes

    KAUST Repository

    Jun, M.

    2014-09-16

    © 2014 John Wiley & Sons, Ltd. Gaussian random fields are frequently used to model spatial and spatial-temporal data, particularly in geostatistical settings. As much of the attention of the statistics community has been focused on defining and estimating the mean and covariance functions of these processes, little effort has been devoted to developing goodness-of-fit tests to allow users to assess the models\\' adequacy. We describe a general goodness-of-fit test and related graphical diagnostics for assessing the fit of Bayesian Gaussian process models using pivotal discrepancy measures. Our method is applicable for both regularly and irregularly spaced observation locations on planar and spherical domains. The essential idea behind our method is to evaluate pivotal quantities defined for a realization of a Gaussian random field at parameter values drawn from the posterior distribution. Because the nominal distribution of the resulting pivotal discrepancy measures is known, it is possible to quantitatively assess model fit directly from the output of Markov chain Monte Carlo algorithms used to sample from the posterior distribution on the parameter space. We illustrate our method in a simulation study and in two applications.

  10. A Bayesian model for the analysis of transgenerational epigenetic variation.

    Science.gov (United States)

    Varona, Luis; Munilla, Sebastián; Mouresan, Elena Flavia; González-Rodríguez, Aldemar; Moreno, Carlos; Altarriba, Juan

    2015-01-23

    Epigenetics has become one of the major areas of biological research. However, the degree of phenotypic variability that is explained by epigenetic processes still remains unclear. From a quantitative genetics perspective, the estimation of variance components is achieved by means of the information provided by the resemblance between relatives. In a previous study, this resemblance was described as a function of the epigenetic variance component and a reset coefficient that indicates the rate of dissipation of epigenetic marks across generations. Given these assumptions, we propose a Bayesian mixed model methodology that allows the estimation of epigenetic variance from a genealogical and phenotypic database. The methodology is based on the development of a T: matrix of epigenetic relationships that depends on the reset coefficient. In addition, we present a simple procedure for the calculation of the inverse of this matrix ( T-1: ) and a Gibbs sampler algorithm that obtains posterior estimates of all the unknowns in the model. The new procedure was used with two simulated data sets and with a beef cattle database. In the simulated populations, the results of the analysis provided marginal posterior distributions that included the population parameters in the regions of highest posterior density. In the case of the beef cattle dataset, the posterior estimate of transgenerational epigenetic variability was very low and a model comparison test indicated that a model that did not included it was the most plausible.

  11. MAXIMUM LIKELIHOOD ESTIMATION FOR PERIODIC AUTOREGRESSIVE MOVING AVERAGE MODELS.

    Science.gov (United States)

    Vecchia, A.V.

    1985-01-01

    A useful class of models for seasonal time series that cannot be filtered or standardized to achieve second-order stationarity is that of periodic autoregressive moving average (PARMA) models, which are extensions of ARMA models that allow periodic (seasonal) parameters. An approximation to the exact likelihood for Gaussian PARMA processes is developed, and a straightforward algorithm for its maximization is presented. The algorithm is tested on several periodic ARMA(1, 1) models through simulation studies and is compared to moment estimation via the seasonal Yule-Walker equations. Applicability of the technique is demonstrated through an analysis of a seasonal stream-flow series from the Rio Caroni River in Venezuela.

  12. Analytical network-averaging of the tube model:. Rubber elasticity

    Science.gov (United States)

    Khiêm, Vu Ngoc; Itskov, Mikhail

    2016-10-01

    In this paper, a micromechanical model for rubber elasticity is proposed on the basis of analytical network-averaging of the tube model and by applying a closed-form of the Rayleigh exact distribution function for non-Gaussian chains. This closed-form is derived by considering the polymer chain as a coarse-grained model on the basis of the quantum mechanical solution for finitely extensible dumbbells (Ilg et al., 2000). The proposed model includes very few physically motivated material constants and demonstrates good agreement with experimental data on biaxial tension as well as simple shear tests.

  13. A global climate model based, Bayesian climate projection for northern extra-tropical land areas

    Science.gov (United States)

    Arzhanov, Maxim M.; Eliseev, Alexey V.; Mokhov, Igor I.

    2012-04-01

    Projections with contemporary global climate models (GCMs) still markedly deviate from each other on magnitude of climate changes, in particular, in middle to subpolar latitudes. In this work, a climate projection based on the ensemble of 18 CMIP3 GCM models forced by SRES A1B scenario is performed for the northern extra-tropical land. To assess the change of soil state, off-line simulations are performed with the Deep Soil Simulator (DSS) developed at the A.M.Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS). This model is forced by output of the above-mentioned GCM simulations. Ensemble mean and ensemble standard deviation for any variable are calculated by using Bayesian averaging which allows to enhance a contribution from more realistic models and diminish that from less realistic models. As a result, uncertainty for soil and permafrost variables become substantially narrower. The Bayesian weights for each model are calculated based on their performance for the present-day surface air temperature (SAT) and permafrost distributions, and for SAT trend during the 20th century. The results, except for intra-ensemble standard deviations, are not very sensitive to particular choice of Bayesian traits. Averaged over the northern extra-tropical land, annual mean surface air temperature in the ensemble increases by 3.1 ± 1.4 K (ensemble mean±intra-ensemble standard deviation) during the 21st century. Precipitation robustly increases in the pan-Arctic and decreases in the Mediterranean/Black Sea region. The models agree on near-surface permafrost degradation during the 21st century. The area underlain by near-surface permafrost decreases from the contemporary value 20 ± 3 mln sq. km to 14 ± 3 mln sq. km in the late 21st century. This leads to risk for geocryological hazard due to soil subsidence. This risk is classified as moderate to high in the southern and western parts of Siberia and Tibet in Eurasia, and in the region from Alaska

  14. Bayesian Analysis of Marginal Log-Linear Graphical Models for Three Way Contingency Tables

    OpenAIRE

    Ntzoufras, Ioannis; Tarantola, Claudia

    2008-01-01

    This paper deals with the Bayesian analysis of graphical models of marginal independence for three way contingency tables. We use a marginal log-linear parametrization, under which the model is defined through suitable zero-constraints on the interaction parameters calculated within marginal distributions. We undertake a comprehensive Bayesian analysis of these models, involving suitable choices of prior distributions, estimation, model determination, as well as the allied computational issue...

  15. Bayesian Analysis of Graphical Models of Marginal Independence for Three Way Contingency Tables

    OpenAIRE

    Tarantola, Claudia; Ntzoufras, Ioannis

    2012-01-01

    This paper deals with the Bayesian analysis of graphical models of marginal independence for three way contingency tables. Each marginal independence model corresponds to a particular factorization of the cell probabilities and a conjugate analysis based on Dirichlet prior can be performed. We illustrate a comprehensive Bayesian analysis of such models, involving suitable choices of prior parameters, estimation, model determination, as well as the allied computational issues. The posterior di...

  16. Bayesian adaptive combination of short-term wind speed forecasts from neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gong; Shi, Jing; Zhou, Junyi [Department of Industrial and Manufacturing Engineering, North Dakota State University, Dept. 2485, PO Box 6050, Fargo, ND 58108 (United States)

    2011-01-15

    Short-term wind speed forecasting is of great importance for wind farm operations and the integration of wind energy into the power grid system. Adaptive and reliable methods and techniques of wind speed forecasts are urgently needed in view of the stochastic nature of wind resource varying from time to time and from site to site. This paper presents a robust two-step methodology for accurate wind speed forecasting based on Bayesian combination algorithm, and three neural network models, namely, adaptive linear element network (ADALINE), backpropagation (BP) network, and radial basis function (RBF) network. The hourly average wind speed data from two North Dakota sites are used to demonstrate the effectiveness of the proposed approach. The results indicate that, while the performances of the neural networks are not consistent in forecasting 1-h-ahead wind speed for the two sites or under different evaluation metrics, the Bayesian combination method can always provide adaptive, reliable and comparatively accurate forecast results. The proposed methodology provides a unified approach to tackle the challenging model selection issue in wind speed forecasting. (author)

  17. Competing risk models in reliability systems, a weibull distribution model with bayesian analysis approach

    Science.gov (United States)

    Iskandar, Ismed; Satria Gondokaryono, Yudi

    2016-02-01

    In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range

  18. Bayesian network model of crowd emotion and negative behavior

    Science.gov (United States)

    Ramli, Nurulhuda; Ghani, Noraida Abdul; Hatta, Zulkarnain Ahmad; Hashim, Intan Hashimah Mohd; Sulong, Jasni; Mahudin, Nor Diana Mohd; Rahman, Shukran Abd; Saad, Zarina Mat

    2014-12-01

    The effects of overcrowding have become a major concern for event organizers. One aspect of this concern has been the idea that overcrowding can enhance the occurrence of serious incidents during events. As one of the largest Muslim religious gathering attended by pilgrims from all over the world, Hajj has become extremely overcrowded with many incidents being reported. The purpose of this study is to analyze the nature of human emotion and negative behavior resulting from overcrowding during Hajj events from data gathered in Malaysian Hajj Experience Survey in 2013. The sample comprised of 147 Malaysian pilgrims (70 males and 77 females). Utilizing a probabilistic model called Bayesian network, this paper models the dependence structure between different emotions and negative behaviors of pilgrims in the crowd. The model included the following variables of emotion: negative, negative comfortable, positive, positive comfortable and positive spiritual and variables of negative behaviors; aggressive and hazardous acts. The study demonstrated that emotions of negative, negative comfortable, positive spiritual and positive emotion have a direct influence on aggressive behavior whereas emotion of negative comfortable, positive spiritual and positive have a direct influence on hazardous acts behavior. The sensitivity analysis showed that a low level of negative and negative comfortable emotions leads to a lower level of aggressive and hazardous behavior. Findings of the study can be further improved to identify the exact cause and risk factors of crowd-related incidents in preventing crowd disasters during the mass gathering events.

  19. A Bayesian Semiparametric Model for Radiation Dose-Response Estimation.

    Science.gov (United States)

    Furukawa, Kyoji; Misumi, Munechika; Cologne, John B; Cullings, Harry M

    2016-06-01

    In evaluating the risk of exposure to health hazards, characterizing the dose-response relationship and estimating acceptable exposure levels are the primary goals. In analyses of health risks associated with exposure to ionizing radiation, while there is a clear agreement that moderate to high radiation doses cause harmful effects in humans, little has been known about the possible biological effects at low doses, for example, below 0.1 Gy, which is the dose range relevant to most radiation exposures of concern today. A conventional approach to radiation dose-response estimation based on simple parametric forms, such as the linear nonthreshold model, can be misleading in evaluating the risk and, in particular, its uncertainty at low doses. As an alternative approach, we consider a Bayesian semiparametric model that has a connected piece-wise-linear dose-response function with prior distributions having an autoregressive structure among the random slope coefficients defined over closely spaced dose categories. With a simulation study and application to analysis of cancer incidence data among Japanese atomic bomb survivors, we show that this approach can produce smooth and flexible dose-response estimation while reasonably handling the risk uncertainty at low doses and elsewhere. With relatively few assumptions and modeling options to be made by the analyst, the method can be particularly useful in assessing risks associated with low-dose radiation exposures. PMID:26581473

  20. A Bayesian Generative Model for Learning Semantic Hierarchies

    Directory of Open Access Journals (Sweden)

    Roni eMittelman

    2014-05-01

    Full Text Available Building fine-grained visual recognition systems that are capable of recognizing tens of thousands of categories, has received much attention in recent years. The well known semantic hierarchical structure of categories and concepts, has been shown to provide a key prior which allows for optimal predictions. The hierarchical organization of various domains and concepts has been subject to extensive research, and led to the development of the WordNet domains hierarchy [18], which was also used to organize the images in the ImageNet [11] dataset, in which the category count approaches the human capacity. Still, for the human visual system, the form of the hierarchy must be discovered with minimal use of supervision or innate knowledge. In this work, we propose a new Bayesian generative model for learning such domain hierarchies, based on semantic input. Our model is motivated by the super-subordinate organization of domain labels and concepts that characterizes WordNet, and accounts for several important challenges: maintaining context information when progressing deeper into the hierarchy, learning a coherent semantic concept for each node, and modeling uncertainty in the perception process.

  1. Forecasting Rice Productivity and Production of Odisha, India, Using Autoregressive Integrated Moving Average Models

    Directory of Open Access Journals (Sweden)

    Rahul Tripathi

    2014-01-01

    Full Text Available Forecasting of rice area, production, and productivity of Odisha was made from the historical data of 1950-51 to 2008-09 by using univariate autoregressive integrated moving average (ARIMA models and was compared with the forecasted all Indian data. The autoregressive (p and moving average (q parameters were identified based on the significant spikes in the plots of partial autocorrelation function (PACF and autocorrelation function (ACF of the different time series. ARIMA (2, 1, 0 model was found suitable for all Indian rice productivity and production, whereas ARIMA (1, 1, 1 was best fitted for forecasting of rice productivity and production in Odisha. Prediction was made for the immediate next three years, that is, 2007-08, 2008-09, and 2009-10, using the best fitted ARIMA models based on minimum value of the selection criterion, that is, Akaike information criteria (AIC and Schwarz-Bayesian information criteria (SBC. The performances of models were validated by comparing with percentage deviation from the actual values and mean absolute percent error (MAPE, which was found to be 0.61 and 2.99% for the area under rice in Odisha and India, respectively. Similarly for prediction of rice production and productivity in Odisha and India, the MAPE was found to be less than 6%.

  2. Using Averaged Modeling for Capacitors Voltages Observer in NPC Inverter

    Directory of Open Access Journals (Sweden)

    Bassem Omri

    2012-01-01

    Full Text Available This paper developed an adaptive observer to estimate capacitors voltages of a three-level neutral-point-clamped (NPC inverter. A robust estimated method using one parameter is proposed, which eliminates the voltages sensors. An averaged modeling of the inverter was used to develop the observer. This kind of modeling allows a good trade-off between simulation cost and precision. Circuit model of the inverter (implemented in Simpower Matlab simulator associated to the observer algorithm was used to validate the proposed algorithm.

  3. Bayesian Diagnostic Network: A Powerful Model for Representation and Reasoning of Engineering Diagnostic Knowledge

    Institute of Scientific and Technical Information of China (English)

    HU Zhao-yong

    2005-01-01

    Engineering diagnosis is essential to the operation of industrial equipment. The key to successful diagnosis is correct knowledge representation and reasoning. The Bayesian network is a powerful tool for it. This paper utilizes the Bayesian network to represent and reason diagnostic knowledge, named Bayesian diagnostic network. It provides a three-layer topologic structure based on operating conditions, possible faults and corresponding symptoms. The paper also discusses an approximate stochastic sampling algorithm. Then a practical Bayesian network for gas turbine diagnosis is constructed on a platform developed under a Visual C++ environment. It shows that the Bayesian network is a powerful model for representation and reasoning of diagnostic knowledge. The three-layer structure and the approximate algorithm are effective also.

  4. Macroscopic Models of Clique Tree Growth for Bayesian Networks

    Data.gov (United States)

    National Aeronautics and Space Administration — In clique tree clustering, inference consists of propagation in a clique tree compiled from a Bayesian network. In this paper, we develop an analytical approach to...

  5. Bayesian Maximum Entropy Integration of Ozone Observations and Model Predictions: A National Application.

    Science.gov (United States)

    Xu, Yadong; Serre, Marc L; Reyes, Jeanette; Vizuete, William

    2016-04-19

    To improve ozone exposure estimates for ambient concentrations at a national scale, we introduce our novel Regionalized Air Quality Model Performance (RAMP) approach to integrate chemical transport model (CTM) predictions with the available ozone observations using the Bayesian Maximum Entropy (BME) framework. The framework models the nonlinear and nonhomoscedastic relation between air pollution observations and CTM predictions and for the first time accounts for variability in CTM model performance. A validation analysis using only noncollocated data outside of a validation radius rv was performed and the R(2) between observations and re-estimated values for two daily metrics, the daily maximum 8-h average (DM8A) and the daily 24-h average (D24A) ozone concentrations, were obtained with the OBS scenario using ozone observations only in contrast with the RAMP and a Constant Air Quality Model Performance (CAMP) scenarios. We show that, by accounting for the spatial and temporal variability in model performance, our novel RAMP approach is able to extract more information in terms of R(2) increase percentage, with over 12 times for the DM8A and over 3.5 times for the D24A ozone concentrations, from CTM predictions than the CAMP approach assuming that model performance does not change across space and time.

  6. Nitrate source apportionment in a subtropical watershed using Bayesian model

    International Nuclear Information System (INIS)

    Nitrate (NO3−) pollution in aquatic system is a worldwide problem. The temporal distribution pattern and sources of nitrate are of great concern for water quality. The nitrogen (N) cycling processes in a subtropical watershed located in Changxing County, Zhejiang Province, China were greatly influenced by the temporal variations of precipitation and temperature during the study period (September 2011 to July 2012). The highest NO3− concentration in water was in May (wet season, mean ± SD = 17.45 ± 9.50 mg L−1) and the lowest concentration occurred in December (dry season, mean ± SD = 10.54 ± 6.28 mg L−1). Nevertheless, no water sample in the study area exceeds the WHO drinking water limit of 50 mg L−1 NO3−. Four sources of NO3− (atmospheric deposition, AD; soil N, SN; synthetic fertilizer, SF; manure and sewage, M and S) were identified using both hydrochemical characteristics [Cl−, NO3−, HCO3−, SO42−, Ca2+, K+, Mg2+, Na+, dissolved oxygen (DO)] and dual isotope approach (δ15N–NO3− and δ18O–NO3−). Both chemical and isotopic characteristics indicated that denitrification was not the main N cycling process in the study area. Using a Bayesian model (stable isotope analysis in R, SIAR), the contribution of each source was apportioned. Source apportionment results showed that source contributions differed significantly between the dry and wet season, AD and M and S contributed more in December than in May. In contrast, SN and SF contributed more NO3− to water in May than that in December. M and S and SF were the major contributors in December and May, respectively. Moreover, the shortcomings and uncertainties of SIAR were discussed to provide implications for future works. With the assessment of temporal variation and sources of NO3−, better agricultural management practices and sewage disposal programs can be implemented to sustain water quality in subtropical watersheds. - Highlights: • Nitrate concentration in water displayed

  7. A flexible bayesian model for testing for transmission ratio distortion.

    Science.gov (United States)

    Casellas, Joaquim; Manunza, Arianna; Mercader, Anna; Quintanilla, Raquel; Amills, Marcel

    2014-12-01

    Current statistical approaches to investigate the nature and magnitude of transmission ratio distortion (TRD) are scarce and restricted to the most common experimental designs such as F2 populations and backcrosses. In this article, we describe a new Bayesian approach to check TRD within a given biallelic genetic marker in a diploid species, providing a highly flexible framework that can accommodate any kind of population structure. This model relies on the genotype of each offspring and thus integrates all available information from either the parents' genotypes or population-specific allele frequencies and yields TRD estimates that can be corroborated by the calculation of a Bayes factor (BF). This approach has been evaluated on simulated data sets with appealing statistical performance. As a proof of concept, we have also tested TRD in a porcine population with five half-sib families and 352 offspring. All boars and piglets were genotyped with the Porcine SNP60 BeadChip, whereas genotypes from the sows were not available. The SNP-by-SNP screening of the pig genome revealed 84 SNPs with decisive evidences of TRD (BF > 100) after accounting for multiple testing. Many of these regions contained genes related to biological processes (e.g., nucleosome assembly and co-organization, DNA conformation and packaging, and DNA complex assembly) that are critically associated with embryonic viability. The implementation of this method, which overcomes many of the limitations of previous approaches, should contribute to fostering research on TRD in both model and nonmodel organisms. PMID:25271302

  8. A Bayesian model of context-sensitive value attribution

    Science.gov (United States)

    Rigoli, Francesco; Friston, Karl J; Martinelli, Cristina; Selaković, Mirjana; Shergill, Sukhwinder S; Dolan, Raymond J

    2016-01-01

    Substantial evidence indicates that incentive value depends on an anticipation of rewards within a given context. However, the computations underlying this context sensitivity remain unknown. To address this question, we introduce a normative (Bayesian) account of how rewards map to incentive values. This assumes that the brain inverts a model of how rewards are generated. Key features of our account include (i) an influence of prior beliefs about the context in which rewards are delivered (weighted by their reliability in a Bayes-optimal fashion), (ii) the notion that incentive values correspond to precision-weighted prediction errors, (iii) and contextual information unfolding at different hierarchical levels. This formulation implies that incentive value is intrinsically context-dependent. We provide empirical support for this model by showing that incentive value is influenced by context variability and by hierarchically nested contexts. The perspective we introduce generates new empirical predictions that might help explaining psychopathologies, such as addiction. DOI: http://dx.doi.org/10.7554/eLife.16127.001 PMID:27328323

  9. Modeling hypoxia in the Chesapeake Bay: Ensemble estimation using a Bayesian hierarchical model

    Science.gov (United States)

    Stow, Craig A.; Scavia, Donald

    2009-02-01

    Quantifying parameter and prediction uncertainty in a rigorous framework can be an important component of model skill assessment. Generally, models with lower uncertainty will be more useful for prediction and inference than models with higher uncertainty. Ensemble estimation, an idea with deep roots in the Bayesian literature, can be useful to reduce model uncertainty. It is based on the idea that simultaneously estimating common or similar parameters among models can result in more precise estimates. We demonstrate this approach using the Streeter-Phelps dissolved oxygen sag model fit to 29 years of data from Chesapeake Bay. Chesapeake Bay has a long history of bottom water hypoxia and several models are being used to assist management decision-making in this system. The Bayesian framework is particularly useful in a decision context because it can combine both expert-judgment and rigorous parameter estimation to yield model forecasts and a probabilistic estimate of the forecast uncertainty.

  10. Bayesian inference for partially identified models exploring the limits of limited data

    CERN Document Server

    Gustafson, Paul

    2015-01-01

    Introduction Identification What Is against Us? What Is for Us? Some Simple Examples of Partially Identified ModelsThe Road Ahead The Structure of Inference in Partially Identified Models Bayesian Inference The Structure of Posterior Distributions in PIMs Computational Strategies Strength of Bayesian Updating, Revisited Posterior MomentsCredible Intervals Evaluating the Worth of Inference Partial Identification versus Model Misspecification The Siren Call of Identification Comp

  11. The stability of a zonally averaged thermohaline circulation model

    CERN Document Server

    Schmidt, G A

    1995-01-01

    A combination of analytical and numerical techniques are used to efficiently determine the qualitative and quantitative behaviour of a one-basin zonally averaged thermohaline circulation ocean model. In contrast to earlier studies which use time stepping to find the steady solutions, the steady state equations are first solved directly to obtain the multiple equilibria under identical mixed boundary conditions. This approach is based on the differentiability of the governing equations and especially the convection scheme. A linear stability analysis is then performed, in which the normal modes and corresponding eigenvalues are found for the various equilibrium states. Resonant periodic solutions superimposed on these states are predicted for various types of forcing. The results are used to gain insight into the solutions obtained by Mysak, Stocker and Huang in a previous numerical study in which the eddy diffusivities were varied in a randomly forced one-basin zonally averaged model. Resonant stable oscillat...

  12. Model characteristics of average skill boxers’ competition functioning

    OpenAIRE

    Martsiv V.P.

    2015-01-01

    Purpose: analysis of competition functioning of average skill boxers. Material: 28 fights of boxers-students have been analyzed. The following coefficients have been determined: effectiveness of punches, reliability of defense. The fights were conducted by formula: 3 rounds (3 minutes - every round). Results: models characteristics of boxers for stage of specialized basic training have been worked out. Correlations between indicators of specialized and general exercises have been determined. ...

  13. Reliability assessment using degradation models: bayesian and classical approaches

    Directory of Open Access Journals (Sweden)

    Marta Afonso Freitas

    2010-04-01

    Full Text Available Traditionally, reliability assessment of devices has been based on (accelerated life tests. However, for highly reliable products, little information about reliability is provided by life tests in which few or no failures are typically observed. Since most failures arise from a degradation mechanism at work for which there are characteristics that degrade over time, one alternative is monitor the device for a period of time and assess its reliability from the changes in performance (degradation observed during that period. The goal of this article is to illustrate how degradation data can be modeled and analyzed by using "classical" and Bayesian approaches. Four methods of data analysis based on classical inference are presented. Next we show how Bayesian methods can also be used to provide a natural approach to analyzing degradation data. The approaches are applied to a real data set regarding train wheels degradation.Tradicionalmente, o acesso à confiabilidade de dispositivos tem sido baseado em testes de vida (acelerados. Entretanto, para produtos altamente confiáveis, pouca informação a respeito de sua confiabilidade é fornecida por testes de vida no quais poucas ou nenhumas falhas são observadas. Uma vez que boa parte das falhas é induzida por mecanismos de degradação, uma alternativa é monitorar o dispositivo por um período de tempo e acessar sua confiabilidade através das mudanças em desempenho (degradação observadas durante aquele período. O objetivo deste artigo é ilustrar como dados de degradação podem ser modelados e analisados utilizando-se abordagens "clássicas" e Bayesiana. Quatro métodos de análise de dados baseados em inferência clássica são apresentados. A seguir, mostramos como os métodos Bayesianos podem também ser aplicados para proporcionar uma abordagem natural à análise de dados de degradação. As abordagens são aplicadas a um banco de dados real relacionado à degradação de rodas de trens.

  14. Bayesian Safety Risk Modeling of Human-Flightdeck Automation Interaction

    Science.gov (United States)

    Ancel, Ersin; Shih, Ann T.

    2015-01-01

    Usage of automatic systems in airliners has increased fuel efficiency, added extra capabilities, enhanced safety and reliability, as well as provide improved passenger comfort since its introduction in the late 80's. However, original automation benefits, including reduced flight crew workload, human errors or training requirements, were not achieved as originally expected. Instead, automation introduced new failure modes, redistributed, and sometimes increased workload, brought in new cognitive and attention demands, and increased training requirements. Modern airliners have numerous flight modes, providing more flexibility (and inherently more complexity) to the flight crew. However, the price to pay for the increased flexibility is the need for increased mode awareness, as well as the need to supervise, understand, and predict automated system behavior. Also, over-reliance on automation is linked to manual flight skill degradation and complacency in commercial pilots. As a result, recent accidents involving human errors are often caused by the interactions between humans and the automated systems (e.g., the breakdown in man-machine coordination), deteriorated manual flying skills, and/or loss of situational awareness due to heavy dependence on automated systems. This paper describes the development of the increased complexity and reliance on automation baseline model, named FLAP for FLightdeck Automation Problems. The model development process starts with a comprehensive literature review followed by the construction of a framework comprised of high-level causal factors leading to an automation-related flight anomaly. The framework was then converted into a Bayesian Belief Network (BBN) using the Hugin Software v7.8. The effects of automation on flight crew are incorporated into the model, including flight skill degradation, increased cognitive demand and training requirements along with their interactions. Besides flight crew deficiencies, automation system

  15. Errata: A survey of Bayesian predictive methods for model assessment, selection and comparison

    Directory of Open Access Journals (Sweden)

    Aki Vehtari

    2014-03-01

    Full Text Available Errata for “A survey of Bayesian predictive methods for model assessment, selection and comparison” by A. Vehtari and J. Ojanen, Statistics Surveys, 6 (2012, 142–228. doi:10.1214/12-SS102.

  16. Statistical modelling of railway track geometry degradation using Hierarchical Bayesian models

    International Nuclear Information System (INIS)

    Railway maintenance planners require a predictive model that can assess the railway track geometry degradation. The present paper uses a Hierarchical Bayesian model as a tool to model the main two quality indicators related to railway track geometry degradation: the standard deviation of longitudinal level defects and the standard deviation of horizontal alignment defects. Hierarchical Bayesian Models (HBM) are flexible statistical models that allow specifying different spatially correlated components between consecutive track sections, namely for the deterioration rates and the initial qualities parameters. HBM are developed for both quality indicators, conducting an extensive comparison between candidate models and a sensitivity analysis on prior distributions. HBM is applied to provide an overall assessment of the degradation of railway track geometry, for the main Portuguese railway line Lisbon–Oporto. - Highlights: • Rail track geometry degradation is analysed using Hierarchical Bayesian models. • A Gibbs sampling strategy is put forward to estimate the HBM. • Model comparison and sensitivity analysis find the most suitable model. • We applied the most suitable model to all the segments of the main Portuguese line. • Tackling spatial correlations using CAR structures lead to a better model fit

  17. Bayesian modelling of clusters of galaxies from multi-frequency pointed Sunyaev--Zel'dovich observations

    OpenAIRE

    Feroz, F.; Hobson, M. P.; Zwart, J T L; Saunders, R. D. E.; Grainge, K. J. B.

    2008-01-01

    We present a Bayesian approach to modelling galaxy clusters using multi-frequency pointed observations from telescopes that exploit the Sunyaev--Zel'dovich effect. We use the recently developed MultiNest technique (Feroz, Hobson & Bridges, 2008) to explore the high-dimensional parameter spaces and also to calculate the Bayesian evidence. This permits robust parameter estimation as well as model comparison. Tests on simulated Arcminute Microkelvin Imager observations of a cluster, in the prese...

  18. Operational risk modelling and organizational learning in structured finance operations: a Bayesian network approach

    OpenAIRE

    Andrew Sanford; Imad Moosa

    2015-01-01

    This paper describes the development of a tool, based on a Bayesian network model, that provides posteriori predictions of operational risk events, aggregate operational loss distributions, and Operational Value-at-Risk, for a structured finance operations unit located within one of Australia's major banks. The Bayesian network, based on a previously developed causal framework, has been designed to model the smaller and more frequent, attritional operational loss events. Given the limited ava...

  19. Maximum-likelihood model averaging to profile clustering of site types across discrete linear sequences.

    Directory of Open Access Journals (Sweden)

    Zhang Zhang

    2009-06-01

    Full Text Available A major analytical challenge in computational biology is the detection and description of clusters of specified site types, such as polymorphic or substituted sites within DNA or protein sequences. Progress has been stymied by a lack of suitable methods to detect clusters and to estimate the extent of clustering in discrete linear sequences, particularly when there is no a priori specification of cluster size or cluster count. Here we derive and demonstrate a maximum likelihood method of hierarchical clustering. Our method incorporates a tripartite divide-and-conquer strategy that models sequence heterogeneity, delineates clusters, and yields a profile of the level of clustering associated with each site. The clustering model may be evaluated via model selection using the Akaike Information Criterion, the corrected Akaike Information Criterion, and the Bayesian Information Criterion. Furthermore, model averaging using weighted model likelihoods may be applied to incorporate model uncertainty into the profile of heterogeneity across sites. We evaluated our method by examining its performance on a number of simulated datasets as well as on empirical polymorphism data from diverse natural alleles of the Drosophila alcohol dehydrogenase gene. Our method yielded greater power for the detection of clustered sites across a breadth of parameter ranges, and achieved better accuracy and precision of estimation of clusters, than did the existing empirical cumulative distribution function statistics.

  20. Pulsar average waveforms and hollow cone beam models

    Science.gov (United States)

    Backer, D. C.

    1975-01-01

    An analysis of pulsar average waveforms at radio frequencies from 40 MHz to 15 GHz is presented. The analysis is based on the hypothesis that the observer sees one cut of a hollow-cone beam pattern and that stationary properties of the emission vary over the cone. The distributions of apparent cone widths for different observed forms of the average pulse profiles (single, double/unresolved, double/resolved, triple and multiple) are in modest agreement with a model of a circular hollow-cone beam with random observer-spin axis orientation, a random cone axis-spin axis alignment, and a small range of physical hollow-cone parameters for all objects.

  1. Bayesian network as a modelling tool for risk management in agriculture

    DEFF Research Database (Denmark)

    Rasmussen, Svend; Madsen, Anders L.; Lund, Mogens

    The importance of risk management increases as farmers become more exposed to risk. But risk management is a difficult topic because income risk is the result of the complex interaction of multiple risk factors combined with the effect of an increasing array of possible risk management tools....... In this paper we use Bayesian networks as an integrated modelling approach for representing uncertainty and analysing risk management in agriculture. It is shown how historical farm account data may be efficiently used to estimate conditional probabilities, which are the core elements in Bayesian network models....... We further show how the Bayesian network model RiBay is used for stochastic simulation of farm income, and we demonstrate how RiBay can be used to simulate risk management at the farm level. It is concluded that the key strength of a Bayesian network is the transparency of assumptions...

  2. A Bayesian approach for temporally scaling climate for modeling ecological systems.

    Science.gov (United States)

    Post van der Burg, Max; Anteau, Michael J; McCauley, Lisa A; Wiltermuth, Mark T

    2016-05-01

    With climate change becoming more of concern, many ecologists are including climate variables in their system and statistical models. The Standardized Precipitation Evapotranspiration Index (SPEI) is a drought index that has potential advantages in modeling ecological response variables, including a flexible computation of the index over different timescales. However, little development has been made in terms of the choice of timescale for SPEI. We developed a Bayesian modeling approach for estimating the timescale for SPEI and demonstrated its use in modeling wetland hydrologic dynamics in two different eras (i.e., historical [pre-1970] and contemporary [post-2003]). Our goal was to determine whether differences in climate between the two eras could explain changes in the amount of water in wetlands. Our results showed that wetland water surface areas tended to be larger in wetter conditions, but also changed less in response to climate fluctuations in the contemporary era. We also found that the average timescale parameter was greater in the historical period, compared with the contemporary period. We were not able to determine whether this shift in timescale was due to a change in the timing of wet-dry periods or whether it was due to changes in the way wetlands responded to climate. Our results suggest that perhaps some interaction between climate and hydrologic response may be at work, and further analysis is needed to determine which has a stronger influence. Despite this, we suggest that our modeling approach enabled us to estimate the relevant timescale for SPEI and make inferences from those estimates. Likewise, our approach provides a mechanism for using prior information with future data to assess whether these patterns may continue over time. We suggest that ecologists consider using temporally scalable climate indices in conjunction with Bayesian analysis for assessing the role of climate in ecological systems.

  3. A Bayesian approach for temporally scaling climate for modeling ecological systems.

    Science.gov (United States)

    Post van der Burg, Max; Anteau, Michael J; McCauley, Lisa A; Wiltermuth, Mark T

    2016-05-01

    With climate change becoming more of concern, many ecologists are including climate variables in their system and statistical models. The Standardized Precipitation Evapotranspiration Index (SPEI) is a drought index that has potential advantages in modeling ecological response variables, including a flexible computation of the index over different timescales. However, little development has been made in terms of the choice of timescale for SPEI. We developed a Bayesian modeling approach for estimating the timescale for SPEI and demonstrated its use in modeling wetland hydrologic dynamics in two different eras (i.e., historical [pre-1970] and contemporary [post-2003]). Our goal was to determine whether differences in climate between the two eras could explain changes in the amount of water in wetlands. Our results showed that wetland water surface areas tended to be larger in wetter conditions, but also changed less in response to climate fluctuations in the contemporary era. We also found that the average timescale parameter was greater in the historical period, compared with the contemporary period. We were not able to determine whether this shift in timescale was due to a change in the timing of wet-dry periods or whether it was due to changes in the way wetlands responded to climate. Our results suggest that perhaps some interaction between climate and hydrologic response may be at work, and further analysis is needed to determine which has a stronger influence. Despite this, we suggest that our modeling approach enabled us to estimate the relevant timescale for SPEI and make inferences from those estimates. Likewise, our approach provides a mechanism for using prior information with future data to assess whether these patterns may continue over time. We suggest that ecologists consider using temporally scalable climate indices in conjunction with Bayesian analysis for assessing the role of climate in ecological systems. PMID:27217947

  4. A Bayesian approach for temporally scaling climate for modeling ecological systems

    Science.gov (United States)

    Post van der Burg, Max; Anteau, Michael J.; McCauley, Lisa A.; Wiltermuth, Mark T.

    2016-01-01

    With climate change becoming more of concern, many ecologists are including climate variables in their system and statistical models. The Standardized Precipitation Evapotranspiration Index (SPEI) is a drought index that has potential advantages in modeling ecological response variables, including a flexible computation of the index over different timescales. However, little development has been made in terms of the choice of timescale for SPEI. We developed a Bayesian modeling approach for estimating the timescale for SPEI and demonstrated its use in modeling wetland hydrologic dynamics in two different eras (i.e., historical [pre-1970] and contemporary [post-2003]). Our goal was to determine whether differences in climate between the two eras could explain changes in the amount of water in wetlands. Our results showed that wetland water surface areas tended to be larger in wetter conditions, but also changed less in response to climate fluctuations in the contemporary era. We also found that the average timescale parameter was greater in the historical period, compared with the contemporary period. We were not able to determine whether this shift in timescale was due to a change in the timing of wet–dry periods or whether it was due to changes in the way wetlands responded to climate. Our results suggest that perhaps some interaction between climate and hydrologic response may be at work, and further analysis is needed to determine which has a stronger influence. Despite this, we suggest that our modeling approach enabled us to estimate the relevant timescale for SPEI and make inferences from those estimates. Likewise, our approach provides a mechanism for using prior information with future data to assess whether these patterns may continue over time. We suggest that ecologists consider using temporally scalable climate indices in conjunction with Bayesian analysis for assessing the role of climate in ecological systems.

  5. Bayesian Multi-Energy Computed Tomography reconstruction approaches based on decomposition models

    International Nuclear Information System (INIS)

    Multi-Energy Computed Tomography (MECT) makes it possible to get multiple fractions of basis materials without segmentation. In medical application, one is the soft-tissue equivalent water fraction and the other is the hard-matter equivalent bone fraction. Practical MECT measurements are usually obtained with polychromatic X-ray beams. Existing reconstruction approaches based on linear forward models without counting the beam poly-chromaticity fail to estimate the correct decomposition fractions and result in Beam-Hardening Artifacts (BHA). The existing BHA correction approaches either need to refer to calibration measurements or suffer from the noise amplification caused by the negative-log pre-processing and the water and bone separation problem. To overcome these problems, statistical DECT reconstruction approaches based on non-linear forward models counting the beam poly-chromaticity show great potential for giving accurate fraction images.This work proposes a full-spectral Bayesian reconstruction approach which allows the reconstruction of high quality fraction images from ordinary polychromatic measurements. This approach is based on a Gaussian noise model with unknown variance assigned directly to the projections without taking negative-log. Referring to Bayesian inferences, the decomposition fractions and observation variance are estimated by using the joint Maximum A Posteriori (MAP) estimation method. Subject to an adaptive prior model assigned to the variance, the joint estimation problem is then simplified into a single estimation problem. It transforms the joint MAP estimation problem into a minimization problem with a non-quadratic cost function. To solve it, the use of a monotone Conjugate Gradient (CG) algorithm with suboptimal descent steps is proposed.The performances of the proposed approach are analyzed with both simulated and experimental data. The results show that the proposed Bayesian approach is robust to noise and materials. It is also

  6. ESTIMATE OF THE HYPSOMETRIC RELATIONSHIP WITH NONLINEAR MODELS FITTED BY EMPIRICAL BAYESIAN METHODS

    Directory of Open Access Journals (Sweden)

    Monica Fabiana Bento Moreira

    2015-09-01

    Full Text Available In this paper we propose a Bayesian approach to solve the inference problem with restriction on parameters, regarding to nonlinear models used to represent the hypsometric relationship in clones of Eucalyptus sp. The Bayesian estimates are calculated using Monte Carlo Markov Chain (MCMC method. The proposed method was applied to different groups of actual data from which two were selected to show the results. These results were compared to the results achieved by the minimum square method, highlighting the superiority of the Bayesian approach, since this approach always generate the biologically consistent results for hipsometric relationship.

  7. Bayesian Proteoform Modeling Improves Protein Quantification of Global Proteomic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; Datta, Susmita; Payne, Samuel H.; Kang, Jiyun; Bramer, Lisa M.; Nicora, Carrie D.; Shukla, Anil K.; Metz, Thomas O.; Rodland, Karin D.; Smith, Richard D.; Tardiff, Mark F.; McDermott, Jason E.; Pounds, Joel G.; Waters, Katrina M.

    2014-12-01

    As the capability of mass spectrometry-based proteomics has matured, tens of thousands of peptides can be measured simultaneously, which has the benefit of offering a systems view of protein expression. However, a major challenge is that with an increase in throughput, protein quantification estimation from the native measured peptides has become a computational task. A limitation to existing computationally-driven protein quantification methods is that most ignore protein variation, such as alternate splicing of the RNA transcript and post-translational modifications or other possible proteoforms, which will affect a significant fraction of the proteome. The consequence of this assumption is that statistical inference at the protein level, and consequently downstream analyses, such as network and pathway modeling, have only limited power for biomarker discovery. Here, we describe a Bayesian model (BP-Quant) that uses statistically derived peptides signatures to identify peptides that are outside the dominant pattern, or the existence of multiple over-expressed patterns to improve relative protein abundance estimates. It is a research-driven approach that utilizes the objectives of the experiment, defined in the context of a standard statistical hypothesis, to identify a set of peptides exhibiting similar statistical behavior relating to a protein. This approach infers that changes in relative protein abundance can be used as a surrogate for changes in function, without necessarily taking into account the effect of differential post-translational modifications, processing, or splicing in altering protein function. We verify the approach using a dilution study from mouse plasma samples and demonstrate that BP-Quant achieves similar accuracy as the current state-of-the-art methods at proteoform identification with significantly better specificity. BP-Quant is available as a MatLab ® and R packages at https://github.com/PNNL-Comp-Mass-Spec/BP-Quant.

  8. Bayesian parameter inference and model selection by population annealing in systems biology.

    Science.gov (United States)

    Murakami, Yohei

    2014-01-01

    Parameter inference and model selection are very important for mathematical modeling in systems biology. Bayesian statistics can be used to conduct both parameter inference and model selection. Especially, the framework named approximate Bayesian computation is often used for parameter inference and model selection in systems biology. However, Monte Carlo methods needs to be used to compute Bayesian posterior distributions. In addition, the posterior distributions of parameters are sometimes almost uniform or very similar to their prior distributions. In such cases, it is difficult to choose one specific value of parameter with high credibility as the representative value of the distribution. To overcome the problems, we introduced one of the population Monte Carlo algorithms, population annealing. Although population annealing is usually used in statistical mechanics, we showed that population annealing can be used to compute Bayesian posterior distributions in the approximate Bayesian computation framework. To deal with un-identifiability of the representative values of parameters, we proposed to run the simulations with the parameter ensemble sampled from the posterior distribution, named "posterior parameter ensemble". We showed that population annealing is an efficient and convenient algorithm to generate posterior parameter ensemble. We also showed that the simulations with the posterior parameter ensemble can, not only reproduce the data used for parameter inference, but also capture and predict the data which was not used for parameter inference. Lastly, we introduced the marginal likelihood in the approximate Bayesian computation framework for Bayesian model selection. We showed that population annealing enables us to compute the marginal likelihood in the approximate Bayesian computation framework and conduct model selection depending on the Bayes factor.

  9. Forecasts of time averages with a numerical weather prediction model

    Science.gov (United States)

    Roads, J. O.

    1986-01-01

    Forecasts of time averages of 1-10 days in duration by an operational numerical weather prediction model are documented for the global 500 mb height field in spectral space. Error growth in very idealized models is described in order to anticipate various features of these forecasts and in order to anticipate what the results might be if forecasts longer than 10 days were carried out by present day numerical weather prediction models. The data set for this study is described, and the equilibrium spectra and error spectra are documented; then, the total error is documented. It is shown how forecasts can immediately be improved by removing the systematic error, by using statistical filters, and by ignoring forecasts beyond about a week. Temporal variations in the error field are also documented.

  10. Averaged hole mobility model of biaxially strained Si

    Institute of Scientific and Technical Information of China (English)

    Song Jianjun; Zhu He; Yang Jinyong; Zhang Heming; Xuan Rongxi; Hu Huiyong

    2013-01-01

    We aim to establisha model of the averaged hole mobility of strained Si grown on (001),(101),and (111) relaxed Si1-xGex substrates.The results obtained from our calculation show that their hole mobility values corresponding to strained Si (001),(101) and (111) increase by at most about three,two and one times,respectively,in comparison with the unstrained Si.The results can provide a valuable reference to the understanding and design of strained Si-based device physics.

  11. A Bayesian model of stereopsis depth and motion direction discrimination.

    Science.gov (United States)

    Read, J C A

    2002-02-01

    The extraction of stereoscopic depth from retinal disparity, and motion direction from two-frame kinematograms, requires the solution of a correspondence problem. In previous psychophysical work [Read and Eagle (2000) Vision Res 40: 3345-3358], we compared the performance of the human stereopsis and motion systems with correlated and anti-correlated stimuli. We found that, although the two systems performed similarly for narrow-band stimuli, broadband anti-correlated kinematograms produced a strong perception of reversed motion, whereas the stereograms appeared merely rivalrous. I now model these psychophysical data with a computational model of the correspondence problem based on the known properties of visual cortical cells. Noisy retinal images are filtered through a set of Fourier channels tuned to different spatial frequencies and orientations. Within each channel, a Bayesian analysis incorporating a prior preference for small disparities is used to assess the probability of each possible match. Finally, information from the different channels is combined to arrive at a judgement of stimulus disparity. Each model system--stereopsis and motion--has two free parameters: the amount of noise they are subject to, and the strength of their preference for small disparities. By adjusting these parameters independently for each system, qualitative matches are produced to psychophysical data, for both correlated and anti-correlated stimuli, across a range of spatial frequency and orientation bandwidths. The motion model is found to require much higher noise levels and a weaker preference for small disparities. This makes the motion model more tolerant of poor-quality reverse-direction false matches encountered with anti-correlated stimuli, matching the strong perception of reversed motion that humans experience with these stimuli. In contrast, the lower noise level and tighter prior preference used with the stereopsis model means that it performs close to chance with

  12. Inherently irrational? A computational model of escalation of commitment as Bayesian Updating.

    Science.gov (United States)

    Gilroy, Shawn P; Hantula, Donald A

    2016-06-01

    Monte Carlo simulations were performed to analyze the degree to which two-, three- and four-step learning histories of losses and gains correlated with escalation and persistence in extended extinction (continuous loss) conditions. Simulated learning histories were randomly generated at varying lengths and compositions and warranted probabilities were determined using Bayesian Updating methods. Bayesian Updating predicted instances where particular learning sequences were more likely to engender escalation and persistence under extinction conditions. All simulations revealed greater rates of escalation and persistence in the presence of heterogeneous (e.g., both Wins and Losses) lag sequences, with substantially increased rates of escalation when lags comprised predominantly of losses were followed by wins. These methods were then applied to human investment choices in earlier experiments. The Bayesian Updating models corresponded with data obtained from these experiments. These findings suggest that Bayesian Updating can be utilized as a model for understanding how and when individual commitment may escalate and persist despite continued failures.

  13. Bayesian Network Based Fault Prognosis via Bond Graph Modeling of High-Speed Railway Traction Device

    Directory of Open Access Journals (Sweden)

    Yunkai Wu

    2015-01-01

    component-level faults accurately for a high-speed railway traction system, a fault prognosis approach via Bayesian network and bond graph modeling techniques is proposed. The inherent structure of a railway traction system is represented by bond graph model, based on which a multilayer Bayesian network is developed for fault propagation analysis and fault prediction. For complete and incomplete data sets, two different parameter learning algorithms such as Bayesian estimation and expectation maximization (EM algorithm are adopted to determine the conditional probability table of the Bayesian network. The proposed prognosis approach using Pearl’s polytree propagation algorithm for joint probability reasoning can predict the failure probabilities of leaf nodes based on the current status of root nodes. Verification results in a high-speed railway traction simulation system can demonstrate the effectiveness of the proposed approach.

  14. Bayesian data analysis

    CERN Document Server

    Gelman, Andrew; Stern, Hal S; Dunson, David B; Vehtari, Aki; Rubin, Donald B

    2013-01-01

    FUNDAMENTALS OF BAYESIAN INFERENCEProbability and InferenceSingle-Parameter Models Introduction to Multiparameter Models Asymptotics and Connections to Non-Bayesian ApproachesHierarchical ModelsFUNDAMENTALS OF BAYESIAN DATA ANALYSISModel Checking Evaluating, Comparing, and Expanding ModelsModeling Accounting for Data Collection Decision AnalysisADVANCED COMPUTATION Introduction to Bayesian Computation Basics of Markov Chain Simulation Computationally Efficient Markov Chain Simulation Modal and Distributional ApproximationsREGRESSION MODELS Introduction to Regression Models Hierarchical Linear

  15. Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data.

    Science.gov (United States)

    Ferragina, A; de los Campos, G; Vazquez, A I; Cecchinato, A; Bittante, G

    2015-11-01

    The aim of this study was to assess the performance of Bayesian models commonly used for genomic selection to predict "difficult-to-predict" dairy traits, such as milk fatty acid (FA) expressed as percentage of total fatty acids, and technological properties, such as fresh cheese yield and protein recovery, using Fourier-transform infrared (FTIR) spectral data. Our main hypothesis was that Bayesian models that can estimate shrinkage and perform variable selection may improve our ability to predict FA traits and technological traits above and beyond what can be achieved using the current calibration models (e.g., partial least squares, PLS). To this end, we assessed a series of Bayesian methods and compared their prediction performance with that of PLS. The comparison between models was done using the same sets of data (i.e., same samples, same variability, same spectral treatment) for each trait. Data consisted of 1,264 individual milk samples collected from Brown Swiss cows for which gas chromatographic FA composition, milk coagulation properties, and cheese-yield traits were available. For each sample, 2 spectra in the infrared region from 5,011 to 925 cm(-1) were available and averaged before data analysis. Three Bayesian models: Bayesian ridge regression (Bayes RR), Bayes A, and Bayes B, and 2 reference models: PLS and modified PLS (MPLS) procedures, were used to calibrate equations for each of the traits. The Bayesian models used were implemented in the R package BGLR (http://cran.r-project.org/web/packages/BGLR/index.html), whereas the PLS and MPLS were those implemented in the WinISI II software (Infrasoft International LLC, State College, PA). Prediction accuracy was estimated for each trait and model using 25 replicates of a training-testing validation procedure. Compared with PLS, which is currently the most widely used calibration method, MPLS and the 3 Bayesian methods showed significantly greater prediction accuracy. Accuracy increased in moving from

  16. Bayesian forecasting and scalable multivariate volatility analysis using simultaneous graphical dynamic models

    OpenAIRE

    Gruber, Lutz F.; West, Mike

    2016-01-01

    The recently introduced class of simultaneous graphical dynamic linear models (SGDLMs) defines an ability to scale on-line Bayesian analysis and forecasting to higher-dimensional time series. This paper advances the methodology of SGDLMs, developing and embedding a novel, adaptive method of simultaneous predictor selection in forward filtering for on-line learning and forecasting. The advances include developments in Bayesian computation for scalability, and a case study in exploring the resu...

  17. Bayesian inference in partially identified models: Is the shape of the posterior distribution useful?

    OpenAIRE

    Gustafson, Paul

    2014-01-01

    Partially identified models are characterized by the distribution of observables being compatible with a set of values for the target parameter, rather than a single value. This set is often referred to as an identification region. From a non-Bayesian point of view, the identification region is the object revealed to the investigator in the limit of increasing sample size. Conversely, a Bayesian analysis provides the identification region plus the limiting posterior distribution over this reg...

  18. Modeling and Forecasting Average Temperature for Weather Derivative Pricing

    Directory of Open Access Journals (Sweden)

    Zhiliang Wang

    2015-01-01

    Full Text Available The main purpose of this paper is to present a feasible model for the daily average temperature on the area of Zhengzhou and apply it to weather derivatives pricing. We start by exploring the background of weather derivatives market and then use the 62 years of daily historical data to apply the mean-reverting Ornstein-Uhlenbeck process to describe the evolution of the temperature. Finally, Monte Carlo simulations are used to price heating degree day (HDD call option for this city, and the slow convergence of the price of the HDD call can be found through taking 100,000 simulations. The methods of the research will provide a frame work for modeling temperature and pricing weather derivatives in other similar places in China.

  19. Geographical mapping and Bayesian spatial modeling of malaria incidence in Sistan and Baluchistan province, Iran

    Institute of Scientific and Technical Information of China (English)

    Farid Zayeri; Masoud Salehi; Hasan Pirhosseini

    2011-01-01

    Objective:To present the geographical map of malaria and identify some of the important environmental factors of this disease in Sistan and Baluchistan province, Iran.Methods:We used the registered malaria data to compute the standard incidence rates (SIRs) of malaria in different areas of Sistan and Baluchistan province for a nine-year period (from 2001 to 2009). Statistical analyses consisted of two different parts: geographical mapping of malaria incidence rates, and modeling the environmental factors. The empirical Bayesian estimates of malaria SIRs were utilized for geographical mapping of malaria and a Poisson random effects model was used for assessing the effect of environmental factors on malaria SIRs.Results:In general, 64 926 new cases of malaria were registered in Sistan and Baluchistan Province from 2001 to 2009. Among them, 42 695 patients (65.8%) were male and 22 231 patients (34.2%) were female. Modeling the environmental factors showed that malaria incidence rates had positive relationship with humidity, elevation, average minimum temperature and average maximum temperature, while rainfall had negative effect on malaria SIRs in this province.Conclusions:The results of the present study reveals that malaria is still a serious health problem in Sistan and Baluchistan province, Iran. Geographical map and related environmental factors of malaria can help the health policy makers to intervene in high risk areas more efficiently and allocate the resources in a proper manner.

  20. BAYESIAN FORECASTS COMBINATION TO IMPROVE THE ROMANIAN INFLATION PREDICTIONS BASED ON ECONOMETRIC MODELS

    Directory of Open Access Journals (Sweden)

    Mihaela Simionescu

    2014-12-01

    Full Text Available There are many types of econometric models used in predicting the inflation rate, but in this study we used a Bayesian shrinkage combination approach. This methodology is used in order to improve the predictions accuracy by including information that is not captured by the econometric models. Therefore, experts’ forecasts are utilized as prior information, for Romania these predictions being provided by Institute for Economic Forecasting (Dobrescu macromodel, National Commission for Prognosis and European Commission. The empirical results for Romanian inflation show the superiority of a fixed effects model compared to other types of econometric models like VAR, Bayesian VAR, simultaneous equations model, dynamic model, log-linear model. The Bayesian combinations that used experts’ predictions as priors, when the shrinkage parameter tends to infinite, improved the accuracy of all forecasts based on individual models, outperforming also zero and equal weights predictions and naïve forecasts.

  1. Determinants of Low Birth Weight in Malawi: Bayesian Geo-Additive Modelling.

    Directory of Open Access Journals (Sweden)

    Alfred Ngwira

    Full Text Available Studies on factors of low birth weight in Malawi have neglected the flexible approach of using smooth functions for some covariates in models. Such flexible approach reveals detailed relationship of covariates with the response. The study aimed at investigating risk factors of low birth weight in Malawi by assuming a flexible approach for continuous covariates and geographical random effect. A Bayesian geo-additive model for birth weight in kilograms and size of the child at birth (less than average or average and higher with district as a spatial effect using the 2010 Malawi demographic and health survey data was adopted. A Gaussian model for birth weight in kilograms and a binary logistic model for the binary outcome (size of child at birth were fitted. Continuous covariates were modelled by the penalized (p splines and spatial effects were smoothed by the two dimensional p-spline. The study found that child birth order, mother weight and height are significant predictors of birth weight. Secondary education for mother, birth order categories 2-3 and 4-5, wealth index of richer family and mother height were significant predictors of child size at birth. The area associated with low birth weight was Chitipa and areas with increased risk to less than average size at birth were Chitipa and Mchinji. The study found support for the flexible modelling of some covariates that clearly have nonlinear influences. Nevertheless there is no strong support for inclusion of geographical spatial analysis. The spatial patterns though point to the influence of omitted variables with some spatial structure or possibly epidemiological processes that account for this spatial structure and the maps generated could be used for targeting development efforts at a glance.

  2. Bayesian Modeling of ChIP-chip Data Through a High-Order Ising Model

    KAUST Repository

    Mo, Qianxing

    2010-01-29

    ChIP-chip experiments are procedures that combine chromatin immunoprecipitation (ChIP) and DNA microarray (chip) technology to study a variety of biological problems, including protein-DNA interaction, histone modification, and DNA methylation. The most important feature of ChIP-chip data is that the intensity measurements of probes are spatially correlated because the DNA fragments are hybridized to neighboring probes in the experiments. We propose a simple, but powerful Bayesian hierarchical approach to ChIP-chip data through an Ising model with high-order interactions. The proposed method naturally takes into account the intrinsic spatial structure of the data and can be used to analyze data from multiple platforms with different genomic resolutions. The model parameters are estimated using the Gibbs sampler. The proposed method is illustrated using two publicly available data sets from Affymetrix and Agilent platforms, and compared with three alternative Bayesian methods, namely, Bayesian hierarchical model, hierarchical gamma mixture model, and Tilemap hidden Markov model. The numerical results indicate that the proposed method performs as well as the other three methods for the data from Affymetrix tiling arrays, but significantly outperforms the other three methods for the data from Agilent promoter arrays. In addition, we find that the proposed method has better operating characteristics in terms of sensitivities and false discovery rates under various scenarios. © 2010, The International Biometric Society.

  3. Bayesian biostatistics

    CERN Document Server

    Lesaffre, Emmanuel

    2012-01-01

    The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets. Through examples, exercises and a combination of introd

  4. Hierarchical Bayesian Spatio Temporal Model Comparison on the Earth Trapped Particle Forecast

    International Nuclear Information System (INIS)

    We compared two hierarchical Bayesian spatio temporal (HBST) results, Gaussian process (GP) and autoregressive (AR) models, on the Earth trapped particle forecast. Two models were employed on the South Atlantic Anomaly (SAA) region. Electron of >30 keV (mep0e1) from National Oceanic and Atmospheric Administration (NOAA) 15-18 satellites data was chosen as the particle modeled. We used two weeks data to perform the model fitting on a 5°x5° grid of longitude and latitude, and 31 August 2007 was set as the date of forecast. Three statistical validations were performed on the data, i.e. the root mean square error (RMSE), mean absolute percentage error (MAPE) and bias (BIAS). The statistical analysis showed that GP model performed better than AR with the average of RMSE = 0.38 and 0.63, MAPE = 11.98 and 17.30, and BIAS = 0.32 and 0.24, for GP and AR, respectively. Visual validation on both models with the NOAA map's also confirmed the superior of the GP than the AR. The variance of log flux minimum = 0.09 and 1.09, log flux maximum = 1.15 and 1.35, and in successively represents GP and AR

  5. Parameterizing Bayesian network Representations of Social-Behavioral Models by Expert Elicitation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Stephen J.; Dalton, Angela C.; Whitney, Paul D.; White, Amanda M.

    2010-05-23

    Bayesian networks provide a general framework with which to model many natural phenomena. The mathematical nature of Bayesian networks enables a plethora of model validation and calibration techniques: e.g parameter estimation, goodness of fit tests, and diagnostic checking of the model assumptions. However, they are not free of shortcomings. Parameter estimation from relevant extant data is a common approach to calibrating the model parameters. In practice it is not uncommon to find oneself lacking adequate data to reliably estimate all model parameters. In this paper we present the early development of a novel application of conjoint analysis as a method for eliciting and modeling expert opinions and using the results in a methodology for calibrating the parameters of a Bayesian network.

  6. B2Z: R Package for Bayesian Two-Zone Models

    Directory of Open Access Journals (Sweden)

    João Vitor Dias Monteiro

    2011-08-01

    Full Text Available A primary issue in industrial hygiene is the estimation of a worker's exposure to chemical, physical and biological agents. Mathematical modeling is increasingly being used as a method for assessing occupational exposures. However, predicting exposure in real settings is constrained by lack of quantitative knowledge of exposure determinants. Recently, Zhang, Banerjee, Yang, Lungu, and Ramachandran (2009 proposed Bayesian hierarchical models for estimating parameters and exposure concentrations for the two-zone differential equation models and for predicting concentrations in a zone near and far away from the source of contamination.Bayesian estimation, however, can often require substantial amounts of user-defined code and tuning. In this paper, we introduce a statistical software package, B2Z, built upon the R statistical computing platform that implements a Bayesian model for estimating model parameters and exposure concentrations in two-zone models. We discuss the algorithms behind our package and illustrate its use with simulated and real data examples.

  7. Another look at Bayesian analysis of AMMI models for genotype-environment data

    NARCIS (Netherlands)

    Josse, J.; Eeuwijk, van F.A.; Piepho, H.P.; Denis, J.B.

    2014-01-01

    Linear–bilinear models are frequently used to analyze two-way data such as genotype-by-environment data. A well-known example of this class of models is the additive main effects and multiplicative interaction effects model (AMMI). We propose a new Bayesian treatment of such models offering a proper

  8. Bayesian network modeling method based on case reasoning for emergency decision-making

    Directory of Open Access Journals (Sweden)

    XU Lei

    2013-06-01

    Full Text Available Bayesian network has the abilities of probability expression, uncertainty management and multi-information fusion.It can support emergency decision-making, which can improve the efficiency of decision-making.Emergency decision-making is highly time sensitive, which requires shortening the Bayesian Network modeling time as far as possible.Traditional Bayesian network modeling methods are clearly unable to meet that requirement.Thus, a Bayesian network modeling method based on case reasoning for emergency decision-making is proposed.The method can obtain optional cases through case matching by the functions of similarity degree and deviation degree.Then,new Bayesian network can be built through case adjustment by case merging and pruning.An example is presented to illustrate and test the proposed method.The result shows that the method does not have a huge search space or need sample data.The only requirement is the collection of expert knowledge and historical case models.Compared with traditional methods, the proposed method can reuse historical case models, which can reduce the modeling time and improve the efficiency.

  9. Time-series gas prediction model using LS-SVR within a Bayesian framework

    Institute of Scientific and Technical Information of China (English)

    Qiao Meiying; Ma Xiaoping; Lan Jianyi; Wang Ying

    2011-01-01

    The traditional least squares support vector regression (LS-SVR) model, using cross validation to determine the regularization parameter and kernel parameter, is time-consuming. We propose a Bayesian evidence framework to infer the LS-SVR model parameters. Three levels Bayesian inferences are used to determine the model parameters, regularization hyper-parameters and tune the nuclear parameters by model comparison. On this basis, we established Bayesian LS-SVR time-series gas forecasting models and provide steps for the algorithm. The gas outburst data of a Hebi 10th mine working face is used to validate the model. The optimal embedding dimension and delay time of the time series were obtained by the smallest differential entropy method. Finally, within a MATLAB7.1 environment, we used actual coal gas data to compare the traditional LS-SVR and the Bayesian LS-SVR with LS-SVMlab1.5 Toolbox simulation. The results show that the Bayesian framework of an LS-SVR significantly improves the speed and accuracy of the forecast

  10. Probabilistic Inference: Task Dependency and Individual Differences of Probability Weighting Revealed by Hierarchical Bayesian Modeling.

    Science.gov (United States)

    Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno

    2016-01-01

    Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  11. Probabilistic inference: Task dependency and individual differences of probability weighting revealed by hierarchical Bayesian modelling

    Directory of Open Access Journals (Sweden)

    Moritz eBoos

    2016-05-01

    Full Text Available Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modelling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities by two (likelihoods design. Five computational models of cognitive processes were compared with the observed behaviour. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model’s success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modelling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modelling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision.

  12. Truth, models, model sets, AIC, and multimodel inference: a Bayesian perspective

    Science.gov (United States)

    Barker, Richard J.; Link, William A.

    2015-01-01

    Statistical inference begins with viewing data as realizations of stochastic processes. Mathematical models provide partial descriptions of these processes; inference is the process of using the data to obtain a more complete description of the stochastic processes. Wildlife and ecological scientists have become increasingly concerned with the conditional nature of model-based inference: what if the model is wrong? Over the last 2 decades, Akaike's Information Criterion (AIC) has been widely and increasingly used in wildlife statistics for 2 related purposes, first for model choice and second to quantify model uncertainty. We argue that for the second of these purposes, the Bayesian paradigm provides the natural framework for describing uncertainty associated with model choice and provides the most easily communicated basis for model weighting. Moreover, Bayesian arguments provide the sole justification for interpreting model weights (including AIC weights) as coherent (mathematically self consistent) model probabilities. This interpretation requires treating the model as an exact description of the data-generating mechanism. We discuss the implications of this assumption, and conclude that more emphasis is needed on model checking to provide confidence in the quality of inference.

  13. Bayesian dynamic regression models for interval censored survival data with application to children dental health.

    Science.gov (United States)

    Wang, Xiaojing; Chen, Ming-Hui; Yan, Jun

    2013-07-01

    Cox models with time-varying coefficients offer great flexibility in capturing the temporal dynamics of covariate effects on event times, which could be hidden from a Cox proportional hazards model. Methodology development for varying coefficient Cox models, however, has been largely limited to right censored data; only limited work on interval censored data has been done. In most existing methods for varying coefficient models, analysts need to specify which covariate coefficients are time-varying and which are not at the time of fitting. We propose a dynamic Cox regression model for interval censored data in a Bayesian framework, where the coefficient curves are piecewise constant but the number of pieces and the jump points are covariate specific and estimated from the data. The model automatically determines the extent to which the temporal dynamics is needed for each covariate, resulting in smoother and more stable curve estimates. The posterior computation is carried out via an efficient reversible jump Markov chain Monte Carlo algorithm. Inference of each coefficient is based on an average of models with different number of pieces and jump points. A simulation study with three covariates, each with a coefficient of different degree in temporal dynamics, confirmed that the dynamic model is preferred to the existing time-varying model in terms of model comparison criteria through conditional predictive ordinate. When applied to a dental health data of children with age between 7 and 12 years, the dynamic model reveals that the relative risk of emergence of permanent tooth 24 between children with and without an infected primary predecessor is the highest at around age 7.5, and that it gradually reduces to one after age 11. These findings were not seen from the existing studies with Cox proportional hazards models. PMID:23389549

  14. Order-Constrained Reference Priors with Implications for Bayesian Isotonic Regression, Analysis of Covariance and Spatial Models

    Science.gov (United States)

    Gong, Maozhen

    Selecting an appropriate prior distribution is a fundamental issue in Bayesian Statistics. In this dissertation, under the framework provided by Berger and Bernardo, I derive the reference priors for several models which include: Analysis of Variance (ANOVA)/Analysis of Covariance (ANCOVA) models with a categorical variable under common ordering constraints, the conditionally autoregressive (CAR) models and the simultaneous autoregressive (SAR) models with a spatial autoregression parameter rho considered. The performances of reference priors for ANOVA/ANCOVA models are evaluated by simulation studies with comparisons to Jeffreys' prior and Least Squares Estimation (LSE). The priors are then illustrated in a Bayesian model of the "Risk of Type 2 Diabetes in New Mexico" data, where the relationship between the type 2 diabetes risk (through Hemoglobin A1c) and different smoking levels is investigated. In both simulation studies and real data set modeling, the reference priors that incorporate internal order information show good performances and can be used as default priors. The reference priors for the CAR and SAR models are also illustrated in the "1999 SAT State Average Verbal Scores" data with a comparison to a Uniform prior distribution. Due to the complexity of the reference priors for both CAR and SAR models, only a portion (12 states in the Midwest) of the original data set is considered. The reference priors can give a different marginal posterior distribution compared to a Uniform prior, which provides an alternative for prior specifications for areal data in Spatial statistics.

  15. Bayesian modelling of the emission spectrum of the JET Li-BES system

    CERN Document Server

    Kwak, Sehyun; Brix, M; Ghim, Y -c; Contributors, JET

    2015-01-01

    A Bayesian model of the emission spectrum of the JET lithium beam has been developed to infer the intensity of the Li I (2p-2s) line radiation and associated uncertainties. The detected spectrum for each channel of the lithium beam emission spectroscopy (Li-BES) system is here modelled by a single Li line modified by an instrumental function, Bremsstrahlung background, instrumental offset, and interference filter curve. Both the instrumental function and the interference filter curve are modelled with non-parametric Gaussian processes. All free parameters of the model, the intensities of the Li line, Bremsstrahlung background, and instrumental offset, are inferred using Bayesian probability theory with a Gaussian likelihood for photon statistics and electronic background noise. The prior distributions of the free parameters are chosen as Gaussians. Given these assumptions, the intensity of the Li line and corresponding uncertainties are analytically available using a Bayesian linear inversion technique. The p...

  16. Factors contributing to academic achievement: a Bayesian structure equation modelling study

    Science.gov (United States)

    Payandeh Najafabadi, Amir T.; Omidi Najafabadi, Maryam; Farid-Rohani, Mohammad Reza

    2013-06-01

    In Iran, high school graduates enter university after taking a very difficult entrance exam called the Konkoor. Therefore, only the top-performing students are admitted by universities to continue their bachelor's education in statistics. Surprisingly, statistically, most of such students fall into the following categories: (1) do not succeed in their education despite their excellent performance on the Konkoor and in high school; (2) graduate with a grade point average (GPA) that is considerably lower than their high school GPA; (3) continue their master's education in majors other than statistics and (4) try to find jobs unrelated to statistics. This article employs the well-known and powerful statistical technique, the Bayesian structural equation modelling (SEM), to study the academic success of recent graduates who have studied statistics at Shahid Beheshti University in Iran. This research: (i) considered academic success as a latent variable, which was measured by GPA and other academic success (see below) of students in the target population; (ii) employed the Bayesian SEM, which works properly for small sample sizes and ordinal variables; (iii), which is taken from the literature, developed five main factors that affected academic success and (iv) considered several standard psychological tests and measured characteristics such as 'self-esteem' and 'anxiety'. We then study the impact of such factors on the academic success of the target population. Six factors that positively impact student academic success were identified in the following order of relative impact (from greatest to least): 'Teaching-Evaluation', 'Learner', 'Environment', 'Family', 'Curriculum' and 'Teaching Knowledge'. Particularly, influential variables within each factor have also been noted.

  17. A spatially-averaged mathematical model of kidney branching morphogenesis

    KAUST Repository

    Zubkov, V.S.

    2015-08-01

    © 2015 Published by Elsevier Ltd. Kidney development is initiated by the outgrowth of an epithelial ureteric bud into a population of mesenchymal cells. Reciprocal morphogenetic responses between these two populations generate a highly branched epithelial ureteric tree with the mesenchyme differentiating into nephrons, the functional units of the kidney. While we understand some of the mechanisms involved, current knowledge fails to explain the variability of organ sizes and nephron endowment in mice and humans. Here we present a spatially-averaged mathematical model of kidney morphogenesis in which the growth of the two key populations is described by a system of time-dependant ordinary differential equations. We assume that branching is symmetric and is invoked when the number of epithelial cells per tip reaches a threshold value. This process continues until the number of mesenchymal cells falls below a critical value that triggers cessation of branching. The mathematical model and its predictions are validated against experimentally quantified C57Bl6 mouse embryonic kidneys. Numerical simulations are performed to determine how the final number of branches changes as key system parameters are varied (such as the growth rate of tip cells, mesenchyme cells, or component cell population exit rate). Our results predict that the developing kidney responds differently to loss of cap and tip cells. They also indicate that the final number of kidney branches is less sensitive to changes in the growth rate of the ureteric tip cells than to changes in the growth rate of the mesenchymal cells. By inference, increasing the growth rate of mesenchymal cells should maximise branch number. Our model also provides a framework for predicting the branching outcome when ureteric tip or mesenchyme cells change behaviour in response to different genetic or environmental developmental stresses.

  18. Technical Note: Probabilistically constraining proxy age–depth models within a Bayesian hierarchical reconstruction model

    Directory of Open Access Journals (Sweden)

    J. P. Werner

    2015-03-01

    Full Text Available Reconstructions of the late-Holocene climate rely heavily upon proxies that are assumed to be accurately dated by layer counting, such as measurements of tree rings, ice cores, and varved lake sediments. Considerable advances could be achieved if time-uncertain proxies were able to be included within these multiproxy reconstructions, and if time uncertainties were recognized and correctly modeled for proxies commonly treated as free of age model errors. Current approaches for accounting for time uncertainty are generally limited to repeating the reconstruction using each one of an ensemble of age models, thereby inflating the final estimated uncertainty – in effect, each possible age model is given equal weighting. Uncertainties can be reduced by exploiting the inferred space–time covariance structure of the climate to re-weight the possible age models. Here, we demonstrate how Bayesian hierarchical climate reconstruction models can be augmented to account for time-uncertain proxies. Critically, although a priori all age models are given equal probability of being correct, the probabilities associated with the age models are formally updated within the Bayesian framework, thereby reducing uncertainties. Numerical experiments show that updating the age model probabilities decreases uncertainty in the resulting reconstructions, as compared with the current de facto standard of sampling over all age models, provided there is sufficient information from other data sources in the spatial region of the time-uncertain proxy. This approach can readily be generalized to non-layer-counted proxies, such as those derived from marine sediments.

  19. Bayesian model selection for a finite element model of a large civil aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, F. M. (François M.); Rutherford, A. C. (Amanda C.)

    2004-01-01

    Nine aircraft stiffness parameters have been varied and used as inputs to a finite element model of an aircraft to generate natural frequency and deflection features (Goge, 2003). This data set (147 input parameter configurations and associated outputs) is now used to generate a metamodel, or a fast running surrogate model, using Bayesian model selection methods. Once a forward relationship is defined, the metamodel may be used in an inverse sense. That is, knowing the measured output frequencies and deflections, what were the input stiffness parameters that caused them?

  20. Nonparametric Bayesian Sparse Factor Models with application to Gene Expression modelling

    CERN Document Server

    Knowles, David

    2010-01-01

    A nonparametric Bayesian extension of Factor Analysis (FA) is proposed where observed data Y is modeled as a linear superposition, G, of a potentially infinite number of hidden factors, X. The Indian Buffet Process (IBP) is used as a prior on G to incorporate sparsity and to allow the number of latent features to be inferred. The model's utility for modeling gene expression data is investigated using randomly generated datasets based on a known sparse connectivity matrix for E. Coli, and on three biological datasets of increasing complexity.

  1. Bayesian model selection applied to artificial neural networks used for water resources modeling

    Science.gov (United States)

    Kingston, Greer B.; Maier, Holger R.; Lambert, Martin F.

    2008-04-01

    Artificial neural networks (ANNs) have proven to be extremely valuable tools in the field of water resources engineering. However, one of the most difficult tasks in developing an ANN is determining the optimum level of complexity required to model a given problem, as there is no formal systematic model selection method. This paper presents a Bayesian model selection (BMS) method for ANNs that provides an objective approach for comparing models of varying complexity in order to select the most appropriate ANN structure. The approach uses Markov Chain Monte Carlo posterior simulations to estimate the evidence in favor of competing models and, in this study, three known methods for doing this are compared in terms of their suitability for being incorporated into the proposed BMS framework for ANNs. However, it is acknowledged that it can be particularly difficult to accurately estimate the evidence of ANN models. Therefore, the proposed BMS approach for ANNs incorporates a further check of the evidence results by inspecting the marginal posterior distributions of the hidden-to-output layer weights, which unambiguously indicate any redundancies in the hidden layer nodes. The fact that this check is available is one of the greatest advantages of the proposed approach over conventional model selection methods, which do not provide such a test and instead rely on the modeler's subjective choice of selection criterion. The advantages of a total Bayesian approach to ANN development, including training and model selection, are demonstrated on two synthetic and one real world water resources case study.

  2. Model characteristics of average skill boxers’ competition functioning

    Directory of Open Access Journals (Sweden)

    Martsiv V.P.

    2015-08-01

    Full Text Available Purpose: analysis of competition functioning of average skill boxers. Material: 28 fights of boxers-students have been analyzed. The following coefficients have been determined: effectiveness of punches, reliability of defense. The fights were conducted by formula: 3 rounds (3 minutes - every round. Results: models characteristics of boxers for stage of specialized basic training have been worked out. Correlations between indicators of specialized and general exercises have been determined. It has been established that sportsmanship of boxers manifests as increase of punches’ density in a fight. It has also been found that increase of coefficient of punches’ effectiveness results in expansion of arsenal of technical-tactic actions. Importance of consideration of standard specialized loads has been confirmed. Conclusions: we have recommended means to be applied in training process at this stage of training. On the base of our previous researches we have made recommendations on complex assessment of sportsmen-students’ skillfulness. Besides, we have shown approaches to improvement of different sides of sportsmen’s fitness.

  3. Semiparametric Bayesian inference on skew-normal joint modeling of multivariate longitudinal and survival data.

    Science.gov (United States)

    Tang, An-Min; Tang, Nian-Sheng

    2015-02-28

    We propose a semiparametric multivariate skew-normal joint model for multivariate longitudinal and multivariate survival data. One main feature of the posited model is that we relax the commonly used normality assumption for random effects and within-subject error by using a centered Dirichlet process prior to specify the random effects distribution and using a multivariate skew-normal distribution to specify the within-subject error distribution and model trajectory functions of longitudinal responses semiparametrically. A Bayesian approach is proposed to simultaneously obtain Bayesian estimates of unknown parameters, random effects and nonparametric functions by combining the Gibbs sampler and the Metropolis-Hastings algorithm. Particularly, a Bayesian local influence approach is developed to assess the effect of minor perturbations to within-subject measurement error and random effects. Several simulation studies and an example are presented to illustrate the proposed methodologies. PMID:25404574

  4. A Bayesian network model for assessing natural estrogen fate and transport in a swine waste lagoon.

    Science.gov (United States)

    Lee, Boknam; Kullman, Seth W; Yost, Erin; Meyer, Michael T; Worley-Davis, Lynn; Williams, C Michael; Reckhow, Kenneth H

    2014-10-01

    Commercial swine waste lagoons are regarded as a major reservoir of natural estrogens, which have the potential to produce adverse physiological effects on exposed aquatic organisms and wildlife. However, there remains limited understanding of the complex mechanisms of physical, chemical, and biological processes that govern the fate and transport of natural estrogens within an anaerobic swine lagoon. To improve lagoon management and ultimately help control the offsite transport of these compounds from swine operations, a probabilistic Bayesian network model was developed to assess natural estrogen fate and budget and then compared against data collected from a commercial swine field site. In general, the model was able to describe the estrogen fate and budget in both the slurry and sludge stores within the swine lagoon. Sensitivity analysis within the model demonstrated that the estrogen input loading from the associated barn facility was the most important factor in controlling estrogen concentrations within the lagoon slurry storage, whereas the settling rate was the most significant factor in the lagoon sludge storage. The degradation reactions were shown to be minor in both stores based on prediction of average total estrogen concentrations. Management scenario evaluations demonstrated that the best possible management options to reduce estrogen levels in the lagoon are either to adjust the estrogen input loading from swine barn facilities or to effectively enhance estrogen bonding with suspended solids through the use of organic polymers or inorganic coagulants.

  5. A Bayesian network model for assessing natural estrogen fate and transport in a swine waste lagoon.

    Science.gov (United States)

    Lee, Boknam; Kullman, Seth W; Yost, Erin; Meyer, Michael T; Worley-Davis, Lynn; Williams, C Michael; Reckhow, Kenneth H

    2014-10-01

    Commercial swine waste lagoons are regarded as a major reservoir of natural estrogens, which have the potential to produce adverse physiological effects on exposed aquatic organisms and wildlife. However, there remains limited understanding of the complex mechanisms of physical, chemical, and biological processes that govern the fate and transport of natural estrogens within an anaerobic swine lagoon. To improve lagoon management and ultimately help control the offsite transport of these compounds from swine operations, a probabilistic Bayesian network model was developed to assess natural estrogen fate and budget and then compared against data collected from a commercial swine field site. In general, the model was able to describe the estrogen fate and budget in both the slurry and sludge stores within the swine lagoon. Sensitivity analysis within the model demonstrated that the estrogen input loading from the associated barn facility was the most important factor in controlling estrogen concentrations within the lagoon slurry storage, whereas the settling rate was the most significant factor in the lagoon sludge storage. The degradation reactions were shown to be minor in both stores based on prediction of average total estrogen concentrations. Management scenario evaluations demonstrated that the best possible management options to reduce estrogen levels in the lagoon are either to adjust the estrogen input loading from swine barn facilities or to effectively enhance estrogen bonding with suspended solids through the use of organic polymers or inorganic coagulants. PMID:24798317

  6. The Determinants of Gini Coefficient in Iran Based on Bayesian Model Averaging

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrara

    2015-03-01

    Full Text Available This paper has tried to apply BMA approach in order to investigate important influential variables on Gini coefficient in Iran over the period 1976-2010. The results indicate that the GDP growth is the most important variable affecting the Gini coefficient and has a positive influence on it. Also the second and third effective variables on Gini coefficient are respectively the ratio of government current expenditure to GDP and the ratio of oil revenue to GDP which lead to an increase in inequality. This result is corresponding with rentier state theory in Iran economy. Injection of massive oil revenue to Iran's economy and its high share of the state budget leads to inefficient government spending and an increase in rent-seeking activities in the country. Economic growth is possibly a result of oil revenue in Iran economy which has caused inequality in distribution of income.

  7. Which level of model complexity is justified by your data? A Bayesian answer

    Science.gov (United States)

    Schöniger, Anneli; Illman, Walter; Wöhling, Thomas; Nowak, Wolfgang

    2016-04-01

    When judging the plausibility and utility of a subsurface flow or transport model, the question of justifiability arises: which level of model complexity can still be justified by the available calibration data? Although it is common sense that more data are needed to reasonably constrain the parameter space of a more complex model, there is a lack of tools that can objectively quantify model justifiability as a function of the available data. We propose an approach to determine model justifiability in the context of comparing alternative conceptual models. Our approach rests on Bayesian model averaging (BMA). BMA yields posterior model probabilities that point the modeler to an optimal trade-off between model performance in reproducing a given calibration data set and model complexity. To find out which level of complexity can be justified by the available data, we disentangle the complexity component of the trade-off from its performance counterpart. Technically, we remove the performance component from the BMA analysis by replacing the actually observed data values with potential measurement values as predicted by the models. Our proposed analysis results in a "model confusion matrix". Based on this matrix, the modeler can identify the maximum level of model complexity that could possibly be justified by the available amount and type of data. As a side product, model (dis-)similarity is revealed. We have applied the model justifiability analysis to a case of aquifer characterization via hydraulic tomography. Four models of vastly different complexity have been proposed to represent the heterogeneity in hydraulic conductivity of a sandbox aquifer, ranging from a homogeneous medium to geostatistical random fields. We have used drawdown data from two to six pumping tests to condition the models and to determine model justifiability as a function of data set size. Our test case shows that a geostatistical parameterization scheme requires a substantial amount of

  8. Basic and Advanced Bayesian Structural Equation Modeling With Applications in the Medical and Behavioral Sciences

    CERN Document Server

    Lee, Sik-Yum

    2012-01-01

    This book provides clear instructions to researchers on how to apply Structural Equation Models (SEMs) for analyzing the inter relationships between observed and latent variables. Basic and Advanced Bayesian Structural Equation Modeling introduces basic and advanced SEMs for analyzing various kinds of complex data, such as ordered and unordered categorical data, multilevel data, mixture data, longitudinal data, highly non-normal data, as well as some of their combinations. In addition, Bayesian semiparametric SEMs to capture the true distribution of explanatory latent variables are introduce

  9. Featuring Multiple Local Optima to Assist the User in the Interpretation of Induced Bayesian Network Models

    DEFF Research Database (Denmark)

    Dalgaard, Jens; Pena, Jose; Kocka, Tomas

    2004-01-01

    We propose a method to assist the user in the interpretation of the best Bayesian network model indu- ced from data. The method consists in extracting relevant features from the model (e.g. edges, directed paths and Markov blankets) and, then, assessing the con¯dence in them by studying multiple...

  10. Bayesian interpolation in a dynamic sinusoidal model with application to packet-loss concealment

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Christensen, Mads Græsbøll; Cemgil, Ali Taylan;

    2010-01-01

    a Bayesian inference scheme for the missing observations, hidden states and model parameters of the dynamic model. The inference scheme is based on a Markov chain Monte Carlo method known as Gibbs sampler. We illustrate the performance of the inference scheme to the application of packet-loss concealment...

  11. An Explanation of the Effectiveness of Latent Semantic Indexing by Means of a Bayesian Regression Model.

    Science.gov (United States)

    Story, Roger E.

    1996-01-01

    Discussion of the use of Latent Semantic Indexing to determine relevancy in information retrieval focuses on statistical regression and Bayesian methods. Topics include keyword searching; a multiple regression model; how the regression model can aid search methods; and limitations of this approach, including complexity, linearity, and…

  12. Bayesian prediction of spatial count data using generalized linear mixed models

    DEFF Research Database (Denmark)

    Christensen, Ole Fredslund; Waagepetersen, Rasmus Plenge

    2002-01-01

    Spatial weed count data are modeled and predicted using a generalized linear mixed model combined with a Bayesian approach and Markov chain Monte Carlo. Informative priors for a data set with sparse sampling are elicited using a previously collected data set with extensive sampling. Furthermore, ...

  13. A Test of Bayesian Observer Models of Processing in the Eriksen Flanker Task

    Science.gov (United States)

    White, Corey N.; Brown, Scott; Ratcliff, Roger

    2012-01-01

    Two Bayesian observer models were recently proposed to account for data from the Eriksen flanker task, in which flanking items interfere with processing of a central target. One model assumes that interference stems from a perceptual bias to process nearby items as if they are compatible, and the other assumes that the interference is due to…

  14. Markov Model of Wind Power Time Series UsingBayesian Inference of Transition Matrix

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Berthelsen, Kasper Klitgaard; Bak-Jensen, Birgitte;

    2009-01-01

    This paper proposes to use Bayesian inference of transition matrix when developing a discrete Markov model of a wind speed/power time series and 95% credible interval for the model verification. The Dirichlet distribution is used as a conjugate prior for the transition matrix. Three discrete Markov...

  15. Generating Hourly Rainfall Model using Bayesian Time Series Model (A Case Study at Sentral Station, Bondowoso

    Directory of Open Access Journals (Sweden)

    Entin Hidayah

    2011-02-01

    Full Text Available Disaggregation of hourly rainfall data is very important to fulfil the input of continual rainfall-runoff model, when the availability of automatic rainfall records are limited. Continual rainfall-runoff modeling requires rainfall data in form of series of hourly. Such specification can be obtained by temporal disaggregation in single site. The paper attempts to generate single-site rainfall model based upon time series (AR1 model by adjusting and establishing dummy procedure. Estimated with Bayesian Markov Chain Monte Carlo (MCMC the objective variable is hourly rainfall depth. Performance of model has been evaluated by comparison of history data and model prediction. The result shows that the model has a good performance for dry interval periods. The performance of the model good represented by smaller number of MAE by 0.21 respectively.

  16. Model Data Fusion: developing Bayesian inversion to constrain equilibrium and mode structure

    CERN Document Server

    Hole, M J; Bertram, J; Svensson, J; Appel, L C; Blackwell, B D; Dewar, R L; Howard, J

    2010-01-01

    Recently, a new probabilistic "data fusion" framework based on Bayesian principles has been developed on JET and W7-AS. The Bayesian analysis framework folds in uncertainties and inter-dependencies in the diagnostic data and signal forward-models, together with prior knowledge of the state of the plasma, to yield predictions of internal magnetic structure. A feature of the framework, known as MINERVA (J. Svensson, A. Werner, Plasma Physics and Controlled Fusion 50, 085022, 2008), is the inference of magnetic flux surfaces without the use of a force balance model. We discuss results from a new project to develop Bayesian inversion tools that aim to (1) distinguish between competing equilibrium theories, which capture different physics, using the MAST spherical tokamak; and (2) test the predictions of MHD theory, particularly mode structure, using the H-1 Heliac.

  17. Introduction to Bayesian statistics

    CERN Document Server

    Bolstad, William M

    2016-01-01

    There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this Third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian staistics. The author continues to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inferenfe cfor discrete random variables, bionomial proprotion, Poisson, normal mean, and simple linear regression. In addition, newly-developing topics in the field are presented in four new chapters: Bayesian inference with unknown mean and variance; Bayesian inference for Multivariate Normal mean vector; Bayesian inference for Multiple Linear RegressionModel; and Computati...

  18. A Bayesian Calibration-Prediction Method for Reducing Model-Form Uncertainties with Application in RANS Simulations

    CERN Document Server

    Wu, J -L; Xiao, H

    2015-01-01

    Model-form uncertainties in complex mechanics systems are a major obstacle for predictive simulations. Reducing these uncertainties is critical for stake-holders to make risk-informed decisions based on numerical simulations. For example, Reynolds-Averaged Navier-Stokes (RANS) simulations are increasingly used in mission-critical systems involving turbulent flows. However, for many practical flows the RANS predictions have large model-form uncertainties originating from the uncertainty in the modeled Reynolds stresses. Recently, a physics-informed Bayesian framework has been proposed to quantify and reduce model-form uncertainties in RANS simulations by utilizing sparse observation data. However, in the design stage of engineering systems, measurement data are usually not available. In the present work we extend the original framework to scenarios where there are no available data on the flow to be predicted. In the proposed method, we first calibrate the model discrepancy on a related flow with available dat...

  19. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2010-01-01

    Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente

  20. Introduction of a methodology for visualization and graphical interpretation of Bayesian classification models.

    Science.gov (United States)

    Balfer, Jenny; Bajorath, Jürgen

    2014-09-22

    Supervised machine learning models are widely used in chemoinformatics, especially for the prediction of new active compounds or targets of known actives. Bayesian classification methods are among the most popular machine learning approaches for the prediction of activity from chemical structure. Much work has focused on predicting structure-activity relationships (SARs) on the basis of experimental training data. By contrast, only a few efforts have thus far been made to rationalize the performance of Bayesian or other supervised machine learning models and better understand why they might succeed or fail. In this study, we introduce an intuitive approach for the visualization and graphical interpretation of naïve Bayesian classification models. Parameters derived during supervised learning are visualized and interactively analyzed to gain insights into model performance and identify features that determine predictions. The methodology is introduced in detail and applied to assess Bayesian modeling efforts and predictions on compound data sets of varying structural complexity. Different classification models and features determining their performance are characterized in detail. A prototypic implementation of the approach is provided. PMID:25137527

  1. Bayesian Analysis for Exponential Random Graph Models Using the Adaptive Exchange Sampler*

    OpenAIRE

    Jin, Ick Hoon; Yuan, Ying; Liang, Faming

    2013-01-01

    Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the intractable normalizing constant and model degeneracy. In this paper, we consider a fully Bayesian analysis for exponential random graph models using the adaptive exchange sampler, which solves the intractable normalizing constant and model degeneracy issues encountered in Markov chain Monte Carlo (MCMC) simulati...

  2. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations

    Directory of Open Access Journals (Sweden)

    Sirén Jukka

    2008-12-01

    Full Text Available Abstract Background During the most recent decade many Bayesian statistical models and software for answering questions related to the genetic structure underlying population samples have appeared in the scientific literature. Most of these methods utilize molecular markers for the inferences, while some are also capable of handling DNA sequence data. In a number of earlier works, we have introduced an array of statistical methods for population genetic inference that are implemented in the software BAPS. However, the complexity of biological problems related to genetic structure analysis keeps increasing such that in many cases the current methods may provide either inappropriate or insufficient solutions. Results We discuss the necessity of enhancing the statistical approaches to face the challenges posed by the ever-increasing amounts of molecular data generated by scientists over a wide range of research areas and introduce an array of new statistical tools implemented in the most recent version of BAPS. With these methods it is possible, e.g., to fit genetic mixture models using user-specified numbers of clusters and to estimate levels of admixture under a genetic linkage model. Also, alleles representing a different ancestry compared to the average observed genomic positions can be tracked for the sampled individuals, and a priori specified hypotheses about genetic population structure can be directly compared using Bayes' theorem. In general, we have improved further the computational characteristics of the algorithms behind the methods implemented in BAPS facilitating the analyses of large and complex datasets. In particular, analysis of a single dataset can now be spread over multiple computers using a script interface to the software. Conclusion The Bayesian modelling methods introduced in this article represent an array of enhanced tools for learning the genetic structure of populations. Their implementations in the BAPS software are

  3. Deposition times in the northeastern United States during the Holocene: establishing valid priors for Bayesian age models

    Science.gov (United States)

    Goring, S.; Williams, J. W.; Blois, J. L.; Jackson, S. T.; Paciorek, C. J.; Booth, R. K.; Marlon, J. R.; Blaauw, M.; Christen, J. A.

    2012-08-01

    Bayesian approaches since there is strong variation in the gamma parameters both in the most recent sediments and throughout the Holocene. Time-averaged gamma distributions for lacustrine (α = 1.35, β = 19.64) and palustrine samples (α = 1.40, β = 20.72) show lower overall deposition times, but variability remains. The variation in gamma parameters through time may require the use of multiple gamma distributions during the Holocene to generate accurate age-depth models. We present estimates of gamma parameters for deposition times at 1000 yr intervals. The parameters generated in this study can be used directly within Bacon to act as Bayesian priors for sedimentary age models.

  4. A Software Risk Analysis Model Using Bayesian Belief Network

    Institute of Scientific and Technical Information of China (English)

    Yong Hu; Juhua Chen; Mei Liu; Yang Yun; Junbiao Tang

    2006-01-01

    The uncertainty during the period of software project development often brings huge risks to contractors and clients. Ifwe can find an effective method to predict the cost and quality of software projects based on facts like the project character and two-side cooperating capability at the beginning of the project, we can reduce the risk.Bayesian Belief Network(BBN) is a good tool for analyzing uncertain consequences, but it is difficult to produce precise network structure and conditional probability table. In this paper, we built up network structure by Delphi method for conditional probability table learning, and learn update probability table and nodes' confidence levels continuously according to the application cases, which made the evaluation network have learning abilities, and evaluate the software development risk of organization more accurately. This paper also introduces EM algorithm, which will enhance the ability to produce hidden nodes caused by variant software projects.

  5. Using Bayesian Model Selection to Characterize Neonatal Eeg Recordings

    Science.gov (United States)

    Mitchell, Timothy J.

    2009-12-01

    The brains of premature infants must undergo significant maturation outside of the womb and are thus particularly susceptible to injury. Electroencephalographic (EEG) recordings are an important diagnostic tool in determining if a newborn's brain is functioning normally or if injury has occurred. However, interpreting the recordings is difficult and requires the skills of a trained electroencephelographer. Because these EEG specialists are rare, an automated interpretation of newborn EEG recordings would increase access to an important diagnostic tool for physicians. To automate this procedure, we employ Bayesian probability theory to compute the posterior probability for the EEG features of interest and use the results in a program designed to mimic EEG specialists. Specifically, we will be identifying waveforms of varying frequency and amplitude, as well as periods of flat recordings where brain activity is minimal.

  6. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    KAUST Repository

    Elsheikh, Ahmed H.

    2014-02-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems. © 2013 Elsevier Inc.

  7. Incorporating Parameter Uncertainty in Bayesian Segmentation Models: Application to Hippocampal Subfield Volumetry

    DEFF Research Database (Denmark)

    Iglesias, J. E.; Sabuncu, M. R.; Van Leemput, Koen

    2012-01-01

    Many successful segmentation algorithms are based on Bayesian models in which prior anatomical knowledge is combined with the available image information. However, these methods typically have many free parameters that are estimated to obtain point estimates only, whereas a faithful Bayesian anal...... in a recent method for hippocampal subfield segmentation, and show a significant improvement in an Alzheimer’s disease classification task. As an additional benefit, the method also yields informative “error bars” on the segmentation results for each of the individual sub-structures....

  8. Adaptive surrogate modeling for response surface approximations with application to bayesian inference

    KAUST Repository

    Prudhomme, Serge

    2015-09-17

    Parameter estimation for complex models using Bayesian inference is usually a very costly process as it requires a large number of solves of the forward problem. We show here how the construction of adaptive surrogate models using a posteriori error estimates for quantities of interest can significantly reduce the computational cost in problems of statistical inference. As surrogate models provide only approximations of the true solutions of the forward problem, it is nevertheless necessary to control these errors in order to construct an accurate reduced model with respect to the observables utilized in the identification of the model parameters. Effectiveness of the proposed approach is demonstrated on a numerical example dealing with the Spalart–Allmaras model for the simulation of turbulent channel flows. In particular, we illustrate how Bayesian model selection using the adapted surrogate model in place of solving the coupled nonlinear equations leads to the same quality of results while requiring fewer nonlinear PDE solves.

  9. Averaging principle for second-order approximation of heterogeneous models with homogeneous models

    OpenAIRE

    Fibich, Gadi; Gavious, Arieh; Solan, Eilon

    2012-01-01

    Typically, models with a heterogeneous property are considerably harder to analyze than the corresponding homogeneous models, in which the heterogeneous property is replaced by its average value. In this study we show that any outcome of a heterogeneous model that satisfies the two properties of differentiability and symmetry is O(ɛ2) equivalent to the outcome of the corresponding homogeneous model, where ɛ is the level of heterogeneity. We then use this averaging principle to obtain new resu...

  10. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    Science.gov (United States)

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  11. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    Science.gov (United States)

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes. PMID:27343475

  12. Modeling and Analysis of Call Center Arrival Data: A Bayesian Approach

    OpenAIRE

    Refik Soyer; M. Murat Tarimcilar

    2008-01-01

    In this paper, we present a modulated Poisson process model to describe and analyze arrival data to a call center. The attractive feature of this model is that it takes into account both covariate and time effects on the call volume intensity, and in so doing, enables us to assess the effectiveness of different advertising strategies along with predicting the arrival patterns. A Bayesian analysis of the model is developed and an extension of the model is presented to describe potential hetero...

  13. Bayesian inference of models and hyper-parameters for robust optic-flow estimation

    OpenAIRE

    Héas, Patrick; Herzet, Cédric; Memin, Etienne

    2012-01-01

    International audience Selecting optimal models and hyper-parameters is crucial for accurate optic-flow estimation. This paper provides a solution to the problem in a generic Bayesian framework. The method is based on a conditional model linking the image intensity function, the unknown velocity field, hyper-parameters and the prior and likelihood motion models. Inference is performed on each of the three-level of this so-defined hierarchical model by maximization of marginalized \\textit{a...

  14. Using Bayesian statistics for modeling PTSD through Latent Growth Mixture Modeling: implementation and discussion

    Directory of Open Access Journals (Sweden)

    Sarah Depaoli

    2015-03-01

    Full Text Available Background: After traumatic events, such as disaster, war trauma, and injuries including burns (which is the focus here, the risk to develop posttraumatic stress disorder (PTSD is approximately 10% (Breslau & Davis, 1992. Latent Growth Mixture Modeling can be used to classify individuals into distinct groups exhibiting different patterns of PTSD (Galatzer-Levy, 2015. Currently, empirical evidence points to four distinct trajectories of PTSD patterns in those who have experienced burn trauma. These trajectories are labeled as: resilient, recovery, chronic, and delayed onset trajectories (e.g., Bonanno, 2004; Bonanno, Brewin, Kaniasty, & Greca, 2010; Maercker, Gäbler, O'Neil, Schützwohl, & Müller, 2013; Pietrzak et al., 2013. The delayed onset trajectory affects only a small group of individuals, that is, about 4–5% (O'Donnell, Elliott, Lau, & Creamer, 2007. In addition to its low frequency, the later onset of this trajectory may contribute to the fact that these individuals can be easily overlooked by professionals. In this special symposium on Estimating PTSD trajectories (Van de Schoot, 2015a, we illustrate how to properly identify this small group of individuals through the Bayesian estimation framework using previous knowledge through priors (see, e.g., Depaoli & Boyajian, 2014; Van de Schoot, Broere, Perryck, Zondervan-Zwijnenburg, & Van Loey, 2015. Method: We used latent growth mixture modeling (LGMM (Van de Schoot, 2015b to estimate PTSD trajectories across 4 years that followed a traumatic burn. We demonstrate and compare results from traditional (maximum likelihood and Bayesian estimation using priors (see, Depaoli, 2012, 2013. Further, we discuss where priors come from and how to define them in the estimation process. Results: We demonstrate that only the Bayesian approach results in the desired theory-driven solution of PTSD trajectories. Since the priors are chosen subjectively, we also present a sensitivity analysis of the

  15. Estimating expected value of sample information for incomplete data models using Bayesian approximation.

    Science.gov (United States)

    Kharroubi, Samer A; Brennan, Alan; Strong, Mark

    2011-01-01

    Expected value of sample information (EVSI) involves simulating data collection, Bayesian updating, and reexamining decisions. Bayesian updating in incomplete data models typically requires Markov chain Monte Carlo (MCMC). This article describes a revision to a form of Bayesian Laplace approximation for EVSI computation to support decisions in incomplete data models. The authors develop the approximation, setting out the mathematics for the likelihood and log posterior density function, which are necessary for the method. They compare the accuracy of EVSI estimates in a case study cost-effectiveness model using first- and second-order versions of their approximation formula and traditional Monte Carlo. Computational efficiency gains depend on the complexity of the net benefit functions, the number of inner-level Monte Carlo samples used, and the requirement or otherwise for MCMC methods to produce the posterior distributions. This methodology provides a new and valuable approach for EVSI computation in health economic decision models and potential wider benefits in many fields requiring Bayesian approximation. PMID:21512189

  16. Bayesian Uncertainty Quantification for Subsurface Inversion Using a Multiscale Hierarchical Model

    KAUST Repository

    Mondal, Anirban

    2014-07-03

    We consider a Bayesian approach to nonlinear inverse problems in which the unknown quantity is a random field (spatial or temporal). The Bayesian approach contains a natural mechanism for regularization in the form of prior information, can incorporate information from heterogeneous sources and provide a quantitative assessment of uncertainty in the inverse solution. The Bayesian setting casts the inverse solution as a posterior probability distribution over the model parameters. The Karhunen-Loeve expansion is used for dimension reduction of the random field. Furthermore, we use a hierarchical Bayes model to inject multiscale data in the modeling framework. In this Bayesian framework, we show that this inverse problem is well-posed by proving that the posterior measure is Lipschitz continuous with respect to the data in total variation norm. Computational challenges in this construction arise from the need for repeated evaluations of the forward model (e.g., in the context of MCMC) and are compounded by high dimensionality of the posterior. We develop two-stage reversible jump MCMC that has the ability to screen the bad proposals in the first inexpensive stage. Numerical results are presented by analyzing simulated as well as real data from hydrocarbon reservoir. This article has supplementary material available online. © 2014 American Statistical Association and the American Society for Quality.

  17. Discriminative variable subsets in Bayesian classification with mixture models, with application in flow cytometry studies.

    Science.gov (United States)

    Lin, Lin; Chan, Cliburn; West, Mike

    2016-01-01

    We discuss the evaluation of subsets of variables for the discriminative evidence they provide in multivariate mixture modeling for classification. The novel development of Bayesian classification analysis presented is partly motivated by problems of design and selection of variables in biomolecular studies, particularly involving widely used assays of large-scale single-cell data generated using flow cytometry technology. For such studies and for mixture modeling generally, we define discriminative analysis that overlays fitted mixture models using a natural measure of concordance between mixture component densities, and define an effective and computationally feasible method for assessing and prioritizing subsets of variables according to their roles in discrimination of one or more mixture components. We relate the new discriminative information measures to Bayesian classification probabilities and error rates, and exemplify their use in Bayesian analysis of Dirichlet process mixture models fitted via Markov chain Monte Carlo methods as well as using a novel Bayesian expectation-maximization algorithm. We present a series of theoretical and simulated data examples to fix concepts and exhibit the utility of the approach, and compare with prior approaches. We demonstrate application in the context of automatic classification and discriminative variable selection in high-throughput systems biology using large flow cytometry datasets. PMID:26040910

  18. A Bayesian model for predicting face recognition performance using image quality

    NARCIS (Netherlands)

    Dutta, Abhishek; Veldhuis, Raymond; Spreeuwers, Luuk

    2014-01-01

    Quality of a pair of facial images is a strong indicator of the uncertainty in decision about identity based on that image pair. In this paper, we describe a Bayesian approach to model the relation between image quality (like pose, illumination, noise, sharpness, etc) and corresponding face recognit

  19. The Bayesian Evaluation of Categorization Models: Comment on Wills and Pothos (2012)

    Science.gov (United States)

    Vanpaemel, Wolf; Lee, Michael D.

    2012-01-01

    Wills and Pothos (2012) reviewed approaches to evaluating formal models of categorization, raising a series of worthwhile issues, challenges, and goals. Unfortunately, in discussing these issues and proposing solutions, Wills and Pothos (2012) did not consider Bayesian methods in any detail. This means not only that their review excludes a major…

  20. A Bayesian Approach for Nonlinear Structural Equation Models with Dichotomous Variables Using Logit and Probit Links

    Science.gov (United States)

    Lee, Sik-Yum; Song, Xin-Yuan; Cai, Jing-Heng

    2010-01-01

    Analysis of ordered binary and unordered binary data has received considerable attention in social and psychological research. This article introduces a Bayesian approach, which has several nice features in practical applications, for analyzing nonlinear structural equation models with dichotomous data. We demonstrate how to use the software…

  1. Discriminative variable subsets in Bayesian classification with mixture models, with application in flow cytometry studies.

    Science.gov (United States)

    Lin, Lin; Chan, Cliburn; West, Mike

    2016-01-01

    We discuss the evaluation of subsets of variables for the discriminative evidence they provide in multivariate mixture modeling for classification. The novel development of Bayesian classification analysis presented is partly motivated by problems of design and selection of variables in biomolecular studies, particularly involving widely used assays of large-scale single-cell data generated using flow cytometry technology. For such studies and for mixture modeling generally, we define discriminative analysis that overlays fitted mixture models using a natural measure of concordance between mixture component densities, and define an effective and computationally feasible method for assessing and prioritizing subsets of variables according to their roles in discrimination of one or more mixture components. We relate the new discriminative information measures to Bayesian classification probabilities and error rates, and exemplify their use in Bayesian analysis of Dirichlet process mixture models fitted via Markov chain Monte Carlo methods as well as using a novel Bayesian expectation-maximization algorithm. We present a series of theoretical and simulated data examples to fix concepts and exhibit the utility of the approach, and compare with prior approaches. We demonstrate application in the context of automatic classification and discriminative variable selection in high-throughput systems biology using large flow cytometry datasets.

  2. Calibration of crash risk models on freeways with limited real-time traffic data using Bayesian meta-analysis and Bayesian inference approach.

    Science.gov (United States)

    Xu, Chengcheng; Wang, Wei; Liu, Pan; Li, Zhibin

    2015-12-01

    This study aimed to develop a real-time crash risk model with limited data in China by using Bayesian meta-analysis and Bayesian inference approach. A systematic review was first conducted by using three different Bayesian meta-analyses, including the fixed effect meta-analysis, the random effect meta-analysis, and the meta-regression. The meta-analyses provided a numerical summary of the effects of traffic variables on crash risks by quantitatively synthesizing results from previous studies. The random effect meta-analysis and the meta-regression produced a more conservative estimate for the effects of traffic variables compared with the fixed effect meta-analysis. Then, the meta-analyses results were used as informative priors for developing crash risk models with limited data. Three different meta-analyses significantly affect model fit and prediction accuracy. The model based on meta-regression can increase the prediction accuracy by about 15% as compared to the model that was directly developed with limited data. Finally, the Bayesian predictive densities analysis was used to identify the outliers in the limited data. It can further improve the prediction accuracy by 5.0%.

  3. Scale dependence in the effects of leaf ecophysiological traits on photosynthesis: Bayesian parameterization of photosynthesis models.

    Science.gov (United States)

    Feng, Xiaohui; Dietze, Michael

    2013-12-01

    Relationships between leaf traits and carbon assimilation rates are commonly used to predict primary productivity at scales from the leaf to the globe. We addressed how the shape and magnitude of these relationships vary across temporal, spatial and taxonomic scales to improve estimates of carbon dynamics. Photosynthetic CO2 and light response curves, leaf nitrogen (N), chlorophyll (Chl) concentration and specific leaf area (SLA) of 25 grassland species were measured. In addition, C3 and C4 photosynthesis models were parameterized using a novel hierarchical Bayesian approach to quantify the effects of leaf traits on photosynthetic capacity and parameters at different scales. The effects of plant physiological traits on photosynthetic capacity and parameters varied among species, plant functional types and taxonomic scales. Relationships in the grassland biome were significantly different from the global average. Within-species variability in photosynthetic parameters through the growing season could be attributed to the seasonal changes of leaf traits, especially leaf N and Chl, but these responses followed qualitatively different relationships from the across-species relationship. The results suggest that one broad-scale relationship is not sufficient to characterize ecosystem condition and change at multiple scales. Applying trait relationships without articulating the scales may cause substantial carbon flux estimation errors. PMID:23952643

  4. An Application of Bayesian Approach in Modeling Risk of Death in an Intensive Care Unit.

    Directory of Open Access Journals (Sweden)

    Rowena Syn Yin Wong

    Full Text Available There are not many studies that attempt to model intensive care unit (ICU risk of death in developing countries, especially in South East Asia. The aim of this study was to propose and describe application of a Bayesian approach in modeling in-ICU deaths in a Malaysian ICU.This was a prospective study in a mixed medical-surgery ICU in a multidisciplinary tertiary referral hospital in Malaysia. Data collection included variables that were defined in Acute Physiology and Chronic Health Evaluation IV (APACHE IV model. Bayesian Markov Chain Monte Carlo (MCMC simulation approach was applied in the development of four multivariate logistic regression predictive models for the ICU, where the main outcome measure was in-ICU mortality risk. The performance of the models were assessed through overall model fit, discrimination and calibration measures. Results from the Bayesian models were also compared against results obtained using frequentist maximum likelihood method.The study involved 1,286 consecutive ICU admissions between January 1, 2009 and June 30, 2010, of which 1,111 met the inclusion criteria. Patients who were admitted to the ICU were generally younger, predominantly male, with low co-morbidity load and mostly under mechanical ventilation. The overall in-ICU mortality rate was 18.5% and the overall mean Acute Physiology Score (APS was 68.5. All four models exhibited good discrimination, with area under receiver operating characteristic curve (AUC values approximately 0.8. Calibration was acceptable (Hosmer-Lemeshow p-values > 0.05 for all models, except for model M3. Model M1 was identified as the model with the best overall performance in this study.Four prediction models were proposed, where the best model was chosen based on its overall performance in this study. This study has also demonstrated the promising potential of the Bayesian MCMC approach as an alternative in the analysis and modeling of in-ICU mortality outcomes.

  5. Equifinality of formal (DREAM) and informal (GLUE) bayesian approaches in hydrologic modeling?

    Energy Technology Data Exchange (ETDEWEB)

    Vrugt, Jasper A [Los Alamos National Laboratory; Robinson, Bruce A [Los Alamos National Laboratory; Ter Braak, Cajo J F [NON LANL; Gupta, Hoshin V [NON LANL

    2008-01-01

    In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented using the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.

  6. Comparison of a Bayesian Network with a Logistic Regression Model to Forecast IgA Nephropathy

    Directory of Open Access Journals (Sweden)

    Michel Ducher

    2013-01-01

    Full Text Available Models are increasingly used in clinical practice to improve the accuracy of diagnosis. The aim of our work was to compare a Bayesian network to logistic regression to forecast IgA nephropathy (IgAN from simple clinical and biological criteria. Retrospectively, we pooled the results of all biopsies (n=155 performed by nephrologists in a specialist clinical facility between 2002 and 2009. Two groups were constituted at random. The first subgroup was used to determine the parameters of the models adjusted to data by logistic regression or Bayesian network, and the second was used to compare the performances of the models using receiver operating characteristics (ROC curves. IgAN was found (on pathology in 44 patients. Areas under the ROC curves provided by both methods were highly significant but not different from each other. Based on the highest Youden indices, sensitivity reached (100% versus 67% and specificity (73% versus 95% using the Bayesian network and logistic regression, respectively. A Bayesian network is at least as efficient as logistic regression to estimate the probability of a patient suffering IgAN, using simple clinical and biological data obtained during consultation.

  7. Comparison of a Bayesian network with a logistic regression model to forecast IgA nephropathy.

    Science.gov (United States)

    Ducher, Michel; Kalbacher, Emilie; Combarnous, François; Finaz de Vilaine, Jérome; McGregor, Brigitte; Fouque, Denis; Fauvel, Jean Pierre

    2013-01-01

    Models are increasingly used in clinical practice to improve the accuracy of diagnosis. The aim of our work was to compare a Bayesian network to logistic regression to forecast IgA nephropathy (IgAN) from simple clinical and biological criteria. Retrospectively, we pooled the results of all biopsies (n = 155) performed by nephrologists in a specialist clinical facility between 2002 and 2009. Two groups were constituted at random. The first subgroup was used to determine the parameters of the models adjusted to data by logistic regression or Bayesian network, and the second was used to compare the performances of the models using receiver operating characteristics (ROC) curves. IgAN was found (on pathology) in 44 patients. Areas under the ROC curves provided by both methods were highly significant but not different from each other. Based on the highest Youden indices, sensitivity reached (100% versus 67%) and specificity (73% versus 95%) using the Bayesian network and logistic regression, respectively. A Bayesian network is at least as efficient as logistic regression to estimate the probability of a patient suffering IgAN, using simple clinical and biological data obtained during consultation.

  8. Elicitation by design in ecology: using expert opinion to inform priors for Bayesian statistical models.

    Science.gov (United States)

    Choy, Samantha Low; O'Leary, Rebecca; Mengersen, Kerrie

    2009-01-01

    Bayesian statistical modeling has several benefits within an ecological context. In particular, when observed data are limited in sample size or representativeness, then the Bayesian framework provides a mechanism to combine observed data with other "prior" information. Prior information may be obtained from earlier studies, or in their absence, from expert knowledge. This use of the Bayesian framework reflects the scientific "learning cycle," where prior or initial estimates are updated when new data become available. In this paper we outline a framework for statistical design of expert elicitation processes for quantifying such expert knowledge, in a form suitable for input as prior information into Bayesian models. We identify six key elements: determining the purpose and motivation for using prior information; specifying the relevant expert knowledge available; formulating the statistical model; designing effective and efficient numerical encoding; managing uncertainty; and designing a practical elicitation protocol. We demonstrate this framework applies to a variety of situations, with two examples from the ecological literature and three from our experience. Analysis of these examples reveals several recurring important issues affecting practical design of elicitation in ecological problems.

  9. Bayesian spatio-temporal modeling of particulate matter concentrations in Peninsular Malaysia

    Science.gov (United States)

    Manga, Edna; Awang, Norhashidah

    2016-06-01

    This article presents an application of a Bayesian spatio-temporal Gaussian process (GP) model on particulate matter concentrations from Peninsular Malaysia. We analyze daily PM10 concentration levels from 35 monitoring sites in June and July 2011. The spatiotemporal model set in a Bayesian hierarchical framework allows for inclusion of informative covariates, meteorological variables and spatiotemporal interactions. Posterior density estimates of the model parameters are obtained by Markov chain Monte Carlo methods. Preliminary data analysis indicate information on PM10 levels at sites classified as industrial locations could explain part of the space time variations. We include the site-type indicator in our modeling efforts. Results of the parameter estimates for the fitted GP model show significant spatio-temporal structure and positive effect of the location-type explanatory variable. We also compute some validation criteria for the out of sample sites that show the adequacy of the model for predicting PM10 at unmonitored sites.

  10. Hybrid Hot Strip Rolling Force Prediction using a Bayesian Trained Artificial Neural Network and Analytical Models

    Directory of Open Access Journals (Sweden)

    Abdelkrim Moussaoui

    2006-01-01

    Full Text Available The authors discuss the combination of an Artificial Neural Network (ANN with analytical models to improve the performance of the prediction model of finishing rolling force in hot strip rolling mill process. The suggested model was implemented using Bayesian Evidence based training algorithm. It was found that the Bayesian Evidence based approach provided a superior and smoother fit to the real rolling mill data. Completely independent set of real rolling data were used to evaluate the capacity of the fitted ANN model to predict the unseen regions of data. As a result, test rolls obtained by the suggested hybrid model have shown high prediction quality comparatively to the usual empirical prediction models.

  11. A Bayesian network approach to knowledge integration and representation of farm irrigation: 2. Model validation

    Science.gov (United States)

    Robertson, D. E.; Wang, Q. J.; Malano, H.; Etchells, T.

    2009-02-01

    For models to be useful, they need to adequately describe the systems they represent. The probabilistic nature of Bayesian network models has traditionally meant that model validation is difficult. In this paper we present a process to validate Inteca-Farm, a Bayesian network model of farm irrigation that we described in the first paper of this series. We assessed three aspects of the quality of model predictions, namely, bias, accuracy, and skill, for the two variables for which validation data are available directly or indirectly. We also examined model predictions for any systematic errors. The validation results show that the bias and accuracy of the two validated variables are within acceptable tolerances and that systematic errors are minimal. This suggests that Inteca-Farm is a plausible representation of farm irrigation system in the Shepparton Irrigation Region of northern Victoria, Australia.

  12. Bayesball: A Bayesian hierarchical model for evaluating fielding in major league baseball

    OpenAIRE

    Jensen, Shane T.; Shirley, Kenneth E.; Wyner, Abraham J.

    2008-01-01

    The use of statistical modeling in baseball has received substantial attention recently in both the media and academic community. We focus on a relatively under-explored topic: the use of statistical models for the analysis of fielding based on high-resolution data consisting of on-field location of batted balls. We combine spatial modeling with a hierarchical Bayesian structure in order to evaluate the performance of individual fielders while sharing information between fielders at each posi...

  13. A new model test in high energy physics in frequentist and Bayesian statistical formalisms

    OpenAIRE

    Kamenshchikov, Andrey

    2016-01-01

    A problem of a new physical model test given observed experimental data is a typical one for modern experiments of high energy physics (HEP). A solution of the problem may be provided with two alternative statistical formalisms, namely frequentist and Bayesian, which are widely spread in contemporary HEP searches. A characteristic experimental situation is modeled from general considerations and both the approaches are utilized in order to test a new model. The results are juxtaposed, what de...

  14. Linking hydrology, ecosystem function, and livelihood sustainability in African papyrus wetlands using a Bayesian Network Model

    Science.gov (United States)

    van Dam, A.; Gettel, G. M.; Kipkemboi, J.; Rahman, M. M.

    2011-12-01

    Papyrus wetlands in East Africa provide ecosystem services supporting the livelihoods of millions but are rapidly degrading due to economic development. For ecosystem conservation, an integrated understanding of the natural and social processes driving ecosystem change is needed. This research focuses on integrating the causal relationships between hydrology, ecosystem function, and livelihood sustainability in Nyando wetland, western Kenya. Livelihood sustainability is based on ecosystem services that include plant and animal harvest for building material and food, conversion of wetlands to crop and grazing land, water supply, and water quality regulation. Specific objectives were: to integrate studies of hydrology, ecology, and livelihood activities using a Bayesian Network (BN) model and include stakeholder involvement in model development. The BN model (Netica 4.16) had 35 nodes with seven decision nodes describing demography, economy, papyrus market, and rainfall, and two target nodes describing ecosystem function (defined by groundwater recharge, nutrient and sediment retention, and biodiversity) and livelihood sustainability (drinking water supply, crop production, livestock production, and papyrus yield). The conditional probability tables were populated using results of ecohydrological and socio-economic field work and consultations with stakeholders. The model was evaluated for an average year with decision node probabilities set according to data from research, expert opinion, and stakeholders' views. Then, scenarios for dry and wet seasons and for economic development (low population growth and unemployment) and policy development (more awareness of wetland value) were evaluated. In an average year, the probability for maintaining a "good" level of sediment and nutrient retention functions, groundwater recharge, and biodiversity was about 60%. ("Good" is defined by expert opinion based on ongoing field research.) In the dry season, the probability was

  15. A Bayesian Approach for Parameter Estimation and Prediction using a Computationally Intensive Model

    CERN Document Server

    Higdon, Dave; Schunck, Nicolas; Sarich, Jason; Wild, Stefan M

    2014-01-01

    Bayesian methods have been very successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based model $\\eta(\\theta)$ where $\\theta$ denotes the uncertain, best input setting. Hence the statistical model is of the form $y = \\eta(\\theta) + \\epsilon$, where $\\epsilon$ accounts for measurement, and possibly other error sources. When non-linearity is present in $\\eta(\\cdot)$, the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and non-standard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. While quite generally applicable, MCMC requires thousands, or even millions of evaluations of the physics model $\\eta(\\cdot)$. This is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we pr...

  16. bspmma: An R Package for Bayesian Semiparametric Models for Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Deborah Burr

    2012-07-01

    Full Text Available We introduce an R package, bspmma, which implements a Dirichlet-based random effects model specific to meta-analysis. In meta-analysis, when combining effect estimates from several heterogeneous studies, it is common to use a random-effects model. The usual frequentist or Bayesian models specify a normal distribution for the true effects. However, in many situations, the effect distribution is not normal, e.g., it can have thick tails, be skewed, or be multi-modal. A Bayesian nonparametric model based on mixtures of Dirichlet process priors has been proposed in the literature, for the purpose of accommodating the non-normality. We review this model and then describe a competitor, a semiparametric version which has the feature that it allows for a well-defined centrality parameter convenient for determining whether the overall effect is significant. This second Bayesian model is based on a different version of the Dirichlet process prior, and we call it the "conditional Dirichlet model". The package contains functions to carry out analyses based on either the ordinary or the conditional Dirichlet model, functions for calculating certain Bayes factors that provide a check on the appropriateness of the conditional Dirichlet model, and functions that enable an empirical Bayes selection of the precision parameter of the Dirichlet process. We illustrate the use of the package on two examples, and give an interpretation of the results in these two different scenarios.

  17. Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating.

    Science.gov (United States)

    Cooray, Gerald K; Sengupta, Biswa; Douglas, Pamela K; Friston, Karl

    2016-01-15

    Seizure activity in EEG recordings can persist for hours with seizure dynamics changing rapidly over time and space. To characterise the spatiotemporal evolution of seizure activity, large data sets often need to be analysed. Dynamic causal modelling (DCM) can be used to estimate the synaptic drivers of cortical dynamics during a seizure; however, the requisite (Bayesian) inversion procedure is computationally expensive. In this note, we describe a straightforward procedure, within the DCM framework, that provides efficient inversion of seizure activity measured with non-invasive and invasive physiological recordings; namely, EEG/ECoG. We describe the theoretical background behind a Bayesian belief updating scheme for DCM. The scheme is tested on simulated and empirical seizure activity (recorded both invasively and non-invasively) and compared with standard Bayesian inversion. We show that the Bayesian belief updating scheme provides similar estimates of time-varying synaptic parameters, compared to standard schemes, indicating no significant qualitative change in accuracy. The difference in variance explained was small (less than 5%). The updating method was substantially more efficient, taking approximately 5-10min compared to approximately 1-2h. Moreover, the setup of the model under the updating scheme allows for a clear specification of how neuronal variables fluctuate over separable timescales. This method now allows us to investigate the effect of fast (neuronal) activity on slow fluctuations in (synaptic) parameters, paving a way forward to understand how seizure activity is generated.

  18. Cyclist activity and injury risk analysis at signalized intersections: a Bayesian modelling approach.

    Science.gov (United States)

    Strauss, Jillian; Miranda-Moreno, Luis F; Morency, Patrick

    2013-10-01

    This study proposes a two-equation Bayesian modelling approach to simultaneously study cyclist injury occurrence and bicycle activity at signalized intersections as joint outcomes. This approach deals with the potential presence of endogeneity and unobserved heterogeneities and is used to identify factors associated with both cyclist injuries and volumes. Its application to identify high-risk corridors is also illustrated. Montreal, Quebec, Canada is the application environment, using an extensive inventory of a large sample of signalized intersections containing disaggregate motor-vehicle traffic volumes and bicycle flows, geometric design, traffic control and built environment characteristics in the vicinity of the intersections. Cyclist injury data for the period of 2003-2008 is used in this study. Also, manual bicycle counts were standardized using temporal and weather adjustment factors to obtain average annual daily volumes. Results confirm and quantify the effects of both bicycle and motor-vehicle flows on cyclist injury occurrence. Accordingly, more cyclists at an intersection translate into more cyclist injuries but lower injury rates due to the non-linear association between bicycle volume and injury occurrence. Furthermore, the results emphasize the importance of turning motor-vehicle movements. The presence of bus stops and total crosswalk length increase cyclist injury occurrence whereas the presence of a raised median has the opposite effect. Bicycle activity through intersections was found to increase as employment, number of metro stations, land use mix, area of commercial land use type, length of bicycle facilities and the presence of schools within 50-800 m of the intersection increase. Intersections with three approaches are expected to have fewer cyclists than those with four. Using Bayesian analysis, expected injury frequency and injury rates were estimated for each intersection and used to rank corridors. Corridors with high bicycle volumes

  19. Optimal speech motor control and token-to-token variability: a Bayesian modeling approach.

    Science.gov (United States)

    Patri, Jean-François; Diard, Julien; Perrier, Pascal

    2015-12-01

    The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the central nervous system selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of this approach, one of its drawbacks is the intrinsic contradiction between the concept of optimality and the observed experimental intra-speaker token-to-token variability. The present paper proposes an alternative approach by formulating feedforward optimal control in a probabilistic Bayesian modeling framework. This is illustrated by controlling a biomechanical model of the vocal tract for speech production and by comparing it with an existing optimal control model (GEPPETO). The essential elements of this optimal control model are presented first. From them the Bayesian model is constructed in a progressive way. Performance of the Bayesian model is evaluated based on computer simulations and compared to the optimal control model. This approach is shown to be appropriate for solving the speech planning problem while accounting for variability in a principled way.

  20. Non-stationary Bayesian estimation of parameters from a body cover model of the vocal folds.

    Science.gov (United States)

    Hadwin, Paul J; Galindo, Gabriel E; Daun, Kyle J; Zañartu, Matías; Erath, Byron D; Cataldo, Edson; Peterson, Sean D

    2016-05-01

    The evolution of reduced-order vocal fold models into clinically useful tools for subject-specific diagnosis and treatment hinges upon successfully and accurately representing an individual patient in the modeling framework. This, in turn, requires inference of model parameters from clinical measurements in order to tune a model to the given individual. Bayesian analysis is a powerful tool for estimating model parameter probabilities based upon a set of observed data. In this work, a Bayesian particle filter sampling technique capable of estimating time-varying model parameters, as occur in complex vocal gestures, is introduced. The technique is compared with time-invariant Bayesian estimation and least squares methods for determining both stationary and non-stationary parameters. The current technique accurately estimates the time-varying unknown model parameter and maintains tight credibility bounds. The credibility bounds are particularly relevant from a clinical perspective, as they provide insight into the confidence a clinician should have in the model predictions. PMID:27250162

  1. Optimal speech motor control and token-to-token variability: a Bayesian modeling approach.

    Science.gov (United States)

    Patri, Jean-François; Diard, Julien; Perrier, Pascal

    2015-12-01

    The remarkable capacity of the speech motor system to adapt to various speech conditions is due to an excess of degrees of freedom, which enables producing similar acoustical properties with different sets of control strategies. To explain how the central nervous system selects one of the possible strategies, a common approach, in line with optimal motor control theories, is to model speech motor planning as the solution of an optimality problem based on cost functions. Despite the success of this approach, one of its drawbacks is the intrinsic contradiction between the concept of optimality and the observed experimental intra-speaker token-to-token variability. The present paper proposes an alternative approach by formulating feedforward optimal control in a probabilistic Bayesian modeling framework. This is illustrated by controlling a biomechanical model of the vocal tract for speech production and by comparing it with an existing optimal control model (GEPPETO). The essential elements of this optimal control model are presented first. From them the Bayesian model is constructed in a progressive way. Performance of the Bayesian model is evaluated based on computer simulations and compared to the optimal control model. This approach is shown to be appropriate for solving the speech planning problem while accounting for variability in a principled way. PMID:26497359

  2. Pulsar average wave forms and hollow-cone beam models

    Science.gov (United States)

    Backer, D. C.

    1976-01-01

    Pulsar wave forms have been analyzed from observations conducted over a wide radio-frequency range to assess the wave-form morphologies and to measure wave-form widths. The results of the analysis compare favorably with the predictions of a model with a hollow-cone beam of fixed dimensions and with random orientation of both the observer and the cone axis with respect to the pulsar spin axis. A class of three-component wave forms is included in the model by adding a central pencil beam to the hollow-cone hypothesis. The consequences of a number of discrepancies between observations and quantitative predictions of the model are discussed.

  3. Prediction and assimilation of surf-zone processes using a Bayesian network: Part II: Inverse models

    Science.gov (United States)

    Plant, Nathaniel G.; Holland, K. Todd

    2011-01-01

    A Bayesian network model has been developed to simulate a relatively simple problem of wave propagation in the surf zone (detailed in Part I). Here, we demonstrate that this Bayesian model can provide both inverse modeling and data-assimilation solutions for predicting offshore wave heights and depth estimates given limited wave-height and depth information from an onshore location. The inverse method is extended to allow data assimilation using observational inputs that are not compatible with deterministic solutions of the problem. These inputs include sand bar positions (instead of bathymetry) and estimates of the intensity of wave breaking (instead of wave-height observations). Our results indicate that wave breaking information is essential to reduce prediction errors. In many practical situations, this information could be provided from a shore-based observer or from remote-sensing systems. We show that various combinations of the assimilated inputs significantly reduce the uncertainty in the estimates of water depths and wave heights in the model domain. Application of the Bayesian network model to new field data demonstrated significant predictive skill (R2 = 0.7) for the inverse estimate of a month-long time series of offshore wave heights. The Bayesian inverse results include uncertainty estimates that were shown to be most accurate when given uncertainty in the inputs (e.g., depth and tuning parameters). Furthermore, the inverse modeling was extended to directly estimate tuning parameters associated with the underlying wave-process model. The inverse estimates of the model parameters not only showed an offshore wave height dependence consistent with results of previous studies but the uncertainty estimates of the tuning parameters also explain previously reported variations in the model parameters.

  4. Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models

    Science.gov (United States)

    Plant, Nathaniel G.; Holland, K. Todd

    2011-01-01

    Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.

  5. Bayesian simultaneous equation models for the analysis of energy intake and partitioning in growing pigs

    DEFF Research Database (Denmark)

    Strathe, Anders Bjerring; Jørgensen, Henry; Kebreab, E;

    2012-01-01

    ABSTRACT SUMMARY The objective of the current study was to develop Bayesian simultaneous equation models for modelling energy intake and partitioning in growing pigs. A key feature of the Bayesian approach is that parameters are assigned prior distributions, which may reflect the current state...... of nature. In the models, rates of metabolizable energy (ME) intake, protein deposition (PD) and lipid deposition (LD) were treated as dependent variables accounting for residuals being correlated. Two complementary equation systems were used to model ME intake (MEI), PD and LD. Informative priors were...... genders (barrows, boars and gilts) selected on the basis of similar birth weight. The pigs were fed four diets based on barley, wheat and soybean meal supplemented with crystalline amino acids to meet or exceed Danish nutrient requirement standards. Nutrient balances and gas exchanges were measured at c...

  6. Bayesian inference for a wavefront model of the Neolithisation of Europe

    CERN Document Server

    Baggaley, Andrew W; Shukurov, Anvar; Boys, Richard J; Golightly, Andrew

    2012-01-01

    We consider a wavefront model for the spread of Neolithic culture across Europe, and use Bayesian inference techniques to provide estimates for the parameters within this model, as constrained by radiocarbon data from Southern and Western Europe. Our wavefront model allows for both an isotropic background spread (incorporating the effects of local geography), and a localized anisotropic spread associated with major waterways. We introduce an innovative numerical scheme to track the wavefront, allowing us to simulate the times of the first arrival at any site orders of magnitude more efficiently than traditional PDE approaches. We adopt a Bayesian approach to inference and use Gaussian process emulators to facilitate further increases in efficiency in the inference scheme, thereby making Markov chain Monte Carlo methods practical. We allow for uncertainty in the fit of our model, and also infer a parameter specifying the magnitude of this uncertainty. We obtain a magnitude for the background spread of order 1 ...

  7. A Bayesian Combined Model for Time-Dependent Turning Movement Proportions Estimation at Intersections

    Directory of Open Access Journals (Sweden)

    Pengpeng Jiao

    2014-01-01

    Full Text Available Time-dependent turning movement flows are very important input data for intelligent transportation systems but are impossible to be detected directly through current traffic surveillance systems. Existing estimation models have proved to be not accurate and reliable enough during all intervals. An improved way to address this problem is to develop a combined model framework that can integrate multiple submodels running simultaneously. This paper first presents a back propagation neural network model to estimate dynamic turning movements, as well as the self-adaptive learning rate approach and the gradient descent with momentum method for solving. Second, this paper develops an efficient Kalman filtering model and designs a revised sequential Kalman filtering algorithm. Based on the Bayesian method using both historical data and currently estimated results for error calibration, this paper further integrates above two submodels into a Bayesian combined model framework and proposes a corresponding algorithm. A field survey is implemented at an intersection in Beijing city to collect both time series of link counts and actual time-dependent turning movement flows, including historical and present data. The reported estimation results show that the Bayesian combined model is much more accurate and stable than other models.

  8. Calibration of complex models through Bayesian evidence synthesis: a demonstration and tutorial.

    Science.gov (United States)

    Jackson, Christopher H; Jit, Mark; Sharples, Linda D; De Angelis, Daniela

    2015-02-01

    Decision-analytic models must often be informed using data that are only indirectly related to the main model parameters. The authors outline how to implement a Bayesian synthesis of diverse sources of evidence to calibrate the parameters of a complex model. A graphical model is built to represent how observed data are generated from statistical models with unknown parameters and how those parameters are related to quantities of interest for decision making. This forms the basis of an algorithm to estimate a posterior probability distribution, which represents the updated state of evidence for all unknowns given all data and prior beliefs. This process calibrates the quantities of interest against data and, at the same time, propagates all parameter uncertainties to the results used for decision making. To illustrate these methods, the authors demonstrate how a previously developed Markov model for the progression of human papillomavirus (HPV-16) infection was rebuilt in a Bayesian framework. Transition probabilities between states of disease severity are inferred indirectly from cross-sectional observations of prevalence of HPV-16 and HPV-16-related disease by age, cervical cancer incidence, and other published information. Previously, a discrete collection of plausible scenarios was identified but with no further indication of which of these are more plausible. Instead, the authors derive a Bayesian posterior distribution, in which scenarios are implicitly weighted according to how well they are supported by the data. In particular, we emphasize the appropriate choice of prior distributions and checking and comparison of fitted models.

  9. A Genomic Bayesian Multi-trait and Multi-environment Model.

    Science.gov (United States)

    Montesinos-López, Osval A; Montesinos-López, Abelardo; Crossa, José; Toledo, Fernando H; Pérez-Hernández, Oscar; Eskridge, Kent M; Rutkoski, Jessica

    2016-09-08

    When information on multiple genotypes evaluated in multiple environments is recorded, a multi-environment single trait model for assessing genotype × environment interaction (G × E) is usually employed. Comprehensive models that simultaneously take into account the correlated traits and trait × genotype × environment interaction (T × G × E) are lacking. In this research, we propose a Bayesian model for analyzing multiple traits and multiple environments for whole-genome prediction (WGP) model. For this model, we used Half-[Formula: see text] priors on each standard deviation term and uniform priors on each correlation of the covariance matrix. These priors were not informative and led to posterior inferences that were insensitive to the choice of hyper-parameters. We also developed a computationally efficient Markov Chain Monte Carlo (MCMC) under the above priors, which allowed us to obtain all required full conditional distributions of the parameters leading to an exact Gibbs sampling for the posterior distribution. We used two real data sets to implement and evaluate the proposed Bayesian method and found that when the correlation between traits was high (>0.5), the proposed model (with unstructured variance-covariance) improved prediction accuracy compared to the model with diagonal and standard variance-covariance structures. The R-software package Bayesian Multi-Trait and Multi-Environment (BMTME) offers optimized C++ routines to efficiently perform the analyses.

  10. Bayesian structured additive regression modeling of epidemic data: application to cholera

    Directory of Open Access Journals (Sweden)

    Osei Frank B

    2012-08-01

    Full Text Available Abstract Background A significant interest in spatial epidemiology lies in identifying associated risk factors which enhances the risk of infection. Most studies, however, make no, or limited use of the spatial structure of the data, as well as possible nonlinear effects of the risk factors. Methods We develop a Bayesian Structured Additive Regression model for cholera epidemic data. Model estimation and inference is based on fully Bayesian approach via Markov Chain Monte Carlo (MCMC simulations. The model is applied to cholera epidemic data in the Kumasi Metropolis, Ghana. Proximity to refuse dumps, density of refuse dumps, and proximity to potential cholera reservoirs were modeled as continuous functions; presence of slum settlers and population density were modeled as fixed effects, whereas spatial references to the communities were modeled as structured and unstructured spatial effects. Results We observe that the risk of cholera is associated with slum settlements and high population density. The risk of cholera is equal and lower for communities with fewer refuse dumps, but variable and higher for communities with more refuse dumps. The risk is also lower for communities distant from refuse dumps and potential cholera reservoirs. The results also indicate distinct spatial variation in the risk of cholera infection. Conclusion The study highlights the usefulness of Bayesian semi-parametric regression model analyzing public health data. These findings could serve as novel information to help health planners and policy makers in making effective decisions to control or prevent cholera epidemics.

  11. A simple depth-averaged model for dry granular flow

    Science.gov (United States)

    Hung, Chi-Yao; Stark, Colin P.; Capart, Herve

    Granular flow over an erodible bed is an important phenomenon in both industrial and geophysical settings. Here we develop a depth-averaged theory for dry erosive flows using balance equations for mass, momentum and (crucially) kinetic energy. We assume a linearized GDR-Midi rheology for granular deformation and Coulomb friction along the sidewalls. The theory predicts the kinematic behavior of channelized flows under a variety of conditions, which we test in two sets of experiments: (1) a linear chute, where abrupt changes in tilt drive unsteady uniform flows; (2) a rotating drum, to explore steady non-uniform flow. The theoretical predictions match the experimental results well in all cases, without the need to tune parameters or invoke an ad hoc equation for entrainment at the base of the flow. Here we focus on the drum problem. A dimensionless rotation rate (related to Froude number) characterizes flow geometry and accounts not just for spin rate, drum radius and gravity, but also for grain size, wall friction and channel width. By incorporating Coriolis force the theory can treat behavior under centrifuge-induced enhanced gravity. We identify asymptotic flow regimes at low and high dimensionless rotation rates that exhibit distinct power-law scaling behaviors.

  12. Bayesian Statistical Inference in Ion-Channel Models with Exact Missed Event Correction.

    Science.gov (United States)

    Epstein, Michael; Calderhead, Ben; Girolami, Mark A; Sivilotti, Lucia G

    2016-07-26

    The stochastic behavior of single ion channels is most often described as an aggregated continuous-time Markov process with discrete states. For ligand-gated channels each state can represent a different conformation of the channel protein or a different number of bound ligands. Single-channel recordings show only whether the channel is open or shut: states of equal conductance are aggregated, so transitions between them have to be inferred indirectly. The requirement to filter noise from the raw signal further complicates the modeling process, as it limits the time resolution of the data. The consequence of the reduced bandwidth is that openings or shuttings that are shorter than the resolution cannot be observed; these are known as missed events. Postulated models fitted using filtered data must therefore explicitly account for missed events to avoid bias in the estimation of rate parameters and therefore assess parameter identifiability accurately. In this article, we present the first, to our knowledge, Bayesian modeling of ion-channels with exact missed events correction. Bayesian analysis represents uncertain knowledge of the true value of model parameters by considering these parameters as random variables. This allows us to gain a full appreciation of parameter identifiability and uncertainty when estimating values for model parameters. However, Bayesian inference is particularly challenging in this context as the correction for missed events increases the computational complexity of the model likelihood. Nonetheless, we successfully implemented a two-step Markov chain Monte Carlo method that we called "BICME", which performs Bayesian inference in models of realistic complexity. The method is demonstrated on synthetic and real single-channel data from muscle nicotinic acetylcholine channels. We show that parameter uncertainty can be characterized more accurately than with maximum-likelihood methods. Our code for performing inference in these ion channel

  13. A Bayesian model for predicting face recognition performance using image quality

    OpenAIRE

    Dutta, Abhishek; Veldhuis, Raymond; Spreeuwers, Luuk

    2014-01-01

    Quality of a pair of facial images is a strong indicator of the uncertainty in decision about identity based on that image pair. In this paper, we describe a Bayesian approach to model the relation between image quality (like pose, illumination, noise, sharpness, etc) and corresponding face recognition performance. Experiment results based on the MultiPIE data set show that our model can accurately aggregate verification samples into groups for which the verification performance varies fairly...

  14. Bayesian model for strategic level risk assessment in continuing airthworthiness of air transport

    OpenAIRE

    Jayakody-Arachchige, Dhanapala

    2010-01-01

    Continuing airworthiness (CAW) of aircraft is an essential pre-requisite for the safe operation of air transport. Human errors that occur in CAW organizations and processes could undermine the airworthiness and constitute a risk to flight safety. This thesis reports on a generic Bayesian model that has been designed to assess and quantify this risk. The model removes the vagueness inherent in the subjective methods of assessment of risk and its qualitative expression. Instead, relying on a...

  15. A Bayesian Estimation of Real Business-Cycle Models for the Turkish Economy

    OpenAIRE

    Hüseyin Taştan; Bekir Aşık

    2014-01-01

    We estimate a canonical small open economy real business-cycle model and its several extensions using a Bayesian approach to explore the effects of different structural shocks on macroeconomic fluctuations in Turkey. Alternative models include several theoretical exogenous shocks, such as those to temporary and permanent productivity, world interest rates, preferences, and domestic spending, as driving forces together with financial frictions. Results indicate that output is mostly driven by ...

  16. A Note on Bayesian Estimation for the Negative-Binomial Model

    OpenAIRE

    L. Lio, Y.

    2009-01-01

    2000 Mathematics Subject Classification: 62F15. The Negative Binomial model, which is generated by a simple mixture model, has been widely applied in the social, health and economic market prediction. The most commonly used methods were the maximum likelihood estimate (MLE) and the moment method estimate (MME). Bradlow et al. (2002) proposed a Bayesian inference with beta-prime and Pearson Type VI as priors for the negative binomial distribution. It is due to the complicated posterior dens...

  17. A Hierarchical Bayesian Model to Predict Self-Thinning Line for Chinese Fir in Southern China.

    Directory of Open Access Journals (Sweden)

    Xiongqing Zhang

    Full Text Available Self-thinning is a dynamic equilibrium between forest growth and mortality at full site occupancy. Parameters of the self-thinning lines are often confounded by differences across various stand and site conditions. For overcoming the problem of hierarchical and repeated measures, we used hierarchical Bayesian method to estimate the self-thinning line. The results showed that the self-thinning line for Chinese fir (Cunninghamia lanceolata (Lamb.Hook. plantations was not sensitive to the initial planting density. The uncertainty of model predictions was mostly due to within-subject variability. The simulation precision of hierarchical Bayesian method was better than that of stochastic frontier function (SFF. Hierarchical Bayesian method provided a reasonable explanation of the impact of other variables (site quality, soil type, aspect, etc. on self-thinning line, which gave us the posterior distribution of parameters of self-thinning line. The research of self-thinning relationship could be benefit from the use of hierarchical Bayesian method.

  18. Bayesian Model on Fatigue Crack Growth Rate of Type 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sanhae; Yoon, Jae Young; Hwang, Il Soon [Nuclear Materials Laboratory, Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    The fatigue crack growth rate curve is typically estimated by deterministic methods in accordance with the ASME Boiler and Pressure Vessel Code Sec. XI. The reliability of nuclear materials must also consider the environmental effect. This can be overcome by probabilistic methods that estimate the degradation of materials. In this study, fatigue tests were carried out on Type 304 stainless steel (STS 304) to obtain a fatigue crack growth rate curve and Paris' law constants. Tests were conducted on a constant load and a constant delta K, respectively. The unknown constants of Paris' law were updated probabilistically by Bayesian inference and the method can be used for the probabilistic structural integrity assessment of other nuclear materials. In this paper, Paris' law constants including C and m for Type 304 stainless steel were determined by probabilistic approach with Bayesian Inference. The Bayesian update process is limited in accuracy, because this method should assume initial data distribution. If we select an appropriate distribution, this updating method is powerful enough to get data results considering the environment and materials. Until now, remaining lives of NPPs are estimated by deterministic methods using a priori model to finally assess structural integrity. Bayesian approach can utilize in-service inspection data derived from aged properties.

  19. Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection

    DEFF Research Database (Denmark)

    Bork, Lasse; Møller, Stig Vinther

    2015-01-01

    We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves...... substantially. The states in which housing markets have been the most volatile are the states in which model change and parameter shifts have been needed the most....

  20. Bayesian methods for multivariate modeling of pleiotropic SNP associations and genetic risk prediction

    Directory of Open Access Journals (Sweden)

    Stephen W Hartley

    2012-09-01

    Full Text Available Genome-wide association studies (GWAS have identified numerous associations between genetic loci and individual phenotypes; however, relatively few GWAS have attempted to detect pleiotropic associations, in which loci are simultaneously associated with multiple distinct phenotypes. We show that pleiotropic associations can be directly modeled via the construction of simple Bayesian networks, and that these models can be applied to produce single or ensembles of Bayesian classifiers that leverage pleiotropy to improve genetic risk prediction.The proposed method includes two phases: (1 Bayesian model comparison, to identify SNPs associated with one or more traits; and (2 cross validation feature selection, in which a final set of SNPs is selected to optimize prediction.To demonstrate the capabilities and limitations of the method, a total of 1600 case-control GWAS datasets with 2 dichotomous phenotypes were simulated under 16 scenarios, varying the association strengths of causal SNPs, the size of the discovery sets, the balance between cases and controls, and the number of pleiotropic causal SNPs.Across the 16 scenarios, prediction accuracy varied from 90% to 50%. In the 14 scenarios that included pleiotropically-associated SNPs, the pleiotropic model search and prediction methods consistently outperformed the naive model search and prediction. In the 2 scenarios in which there were no true pleiotropic SNPs, the differences between the pleiotropic and naive model searches were minimal.

  1. cudaBayesreg: Parallel Implementation of a Bayesian Multilevel Model for fMRI Data Analysis

    Directory of Open Access Journals (Sweden)

    Adelino R. Ferreira da Silva

    2011-10-01

    Full Text Available Graphic processing units (GPUs are rapidly gaining maturity as powerful general parallel computing devices. A key feature in the development of modern GPUs has been the advancement of the programming model and programming tools. Compute Unified Device Architecture (CUDA is a software platform for massively parallel high-performance computing on Nvidia many-core GPUs. In functional magnetic resonance imaging (fMRI, the volume of the data to be processed, and the type of statistical analysis to perform call for high-performance computing strategies. In this work, we present the main features of the R-CUDA package cudaBayesreg which implements in CUDA the core of a Bayesian multilevel model for the analysis of brain fMRI data. The statistical model implements a Gibbs sampler for multilevel/hierarchical linear models with a normal prior. The main contribution for the increased performance comes from the use of separate threads for fitting the linear regression model at each voxel in parallel. The R-CUDA implementation of the Bayesian model proposed here has been able to reduce significantly the run-time processing of Markov chain Monte Carlo (MCMC simulations used in Bayesian fMRI data analyses. Presently, cudaBayesreg is only configured for Linux systems with Nvidia CUDA support.

  2. Bayesian hierarchical models combining different study types and adjusting for covariate imbalances: a simulation study to assess model performance.

    Directory of Open Access Journals (Sweden)

    C Elizabeth McCarron

    Full Text Available BACKGROUND: Bayesian hierarchical models have been proposed to combine evidence from different types of study designs. However, when combining evidence from randomised and non-randomised controlled studies, imbalances in patient characteristics between study arms may bias the results. The objective of this study was to assess the performance of a proposed Bayesian approach to adjust for imbalances in patient level covariates when combining evidence from both types of study designs. METHODOLOGY/PRINCIPAL FINDINGS: Simulation techniques, in which the truth is known, were used to generate sets of data for randomised and non-randomised studies. Covariate imbalances between study arms were introduced in the non-randomised studies. The performance of the Bayesian hierarchical model adjusted for imbalances was assessed in terms of bias. The data were also modelled using three other Bayesian approaches for synthesising evidence from randomised and non-randomised studies. The simulations considered six scenarios aimed at assessing the sensitivity of the results to changes in the impact of the imbalances and the relative number and size of studies of each type. For all six scenarios considered, the Bayesian hierarchical model adjusted for differences within studies gave results that were unbiased and closest to the true value compared to the other models. CONCLUSIONS/SIGNIFICANCE: Where informed health care decision making requires the synthesis of evidence from randomised and non-randomised study designs, the proposed hierarchical Bayesian method adjusted for differences in patient characteristics between study arms may facilitate the optimal use of all available evidence leading to unbiased results compared to unadjusted analyses.

  3. Averaging principle for second-order approximation of heterogeneous models with homogeneous models.

    Science.gov (United States)

    Fibich, Gadi; Gavious, Arieh; Solan, Eilon

    2012-11-27

    Typically, models with a heterogeneous property are considerably harder to analyze than the corresponding homogeneous models, in which the heterogeneous property is replaced by its average value. In this study we show that any outcome of a heterogeneous model that satisfies the two properties of differentiability and symmetry is O(ε(2)) equivalent to the outcome of the corresponding homogeneous model, where ε is the level of heterogeneity. We then use this averaging principle to obtain new results in queuing theory, game theory (auctions), and social networks (marketing). PMID:23150569

  4. Mapping and prediction of schistosomiasis in Nigeria using compiled survey data and Bayesian geospatial modelling

    Directory of Open Access Journals (Sweden)

    Uwem F. Ekpo

    2013-05-01

    Full Text Available Schistosomiasis prevalence data for Nigeria were extracted from peer-reviewed journals and reports, geo-referenced and collated in a nationwide geographical information system database for the generation of point prevalence maps. This exercise revealed that the disease is endemic in 35 of the country’s 36 states, including the federal capital territory of Abuja, and found in 462 unique locations out of 833 different survey locations. Schistosoma haematobium, the predominant species in Nigeria, was found in 368 locations (79.8% covering 31 states, S. mansoni in 78 (16.7% locations in 22 states and S. intercalatum in 17 (3.7% locations in two states. S. haematobium and S. mansoni were found to be co-endemic in 22 states, while co-occurrence of all three species was only seen in one state (Rivers. The average prevalence for each species at each survey location varied between 0.5% and 100% for S. haematobium, 0.2% to 87% for S. mansoni and 1% to 10% for S. intercalatum. The estimated prevalence of S. haematobium, based on Bayesian geospatial predictive modelling with a set of bioclimatic variables, ranged from 0.2% to 75% with a mean prevalence of 23% for the country as a whole (95% confidence interval (CI: 22.8-23.1%. The model suggests that the mean temperature, annual precipitation and soil acidity significantly influence the spatial distribution. Prevalence estimates, adjusted for school-aged children in 2010, showed that the prevalence is <10% in most states with a few reaching as high as 50%. It was estimated that 11.3 million children require praziquantel annually (95% CI: 10.3-12.2 million.

  5. Bayesian approaches to spatial inference: Modelling and computational challenges and solutions

    Science.gov (United States)

    Moores, Matthew; Mengersen, Kerrie

    2014-12-01

    We discuss a range of Bayesian modelling approaches for spatial data and investigate some of the associated computational challenges. This paper commences with a brief review of Bayesian mixture models and Markov random fields, with enabling computational algorithms including Markov chain Monte Carlo (MCMC) and integrated nested Laplace approximation (INLA). Following this, we focus on the Potts model as a canonical approach, and discuss the challenge of estimating the inverse temperature parameter that controls the degree of spatial smoothing. We compare three approaches to addressing the doubly intractable nature of the likelihood, namely pseudo-likelihood, path sampling and the exchange algorithm. These techniques are applied to satellite data used to analyse water quality in the Great Barrier Reef.

  6. Use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio

    Directory of Open Access Journals (Sweden)

    Fidel Ernesto Castro Morales

    2016-03-01

    Full Text Available Abstract Objectives: to propose the use of a Bayesian hierarchical model to study the allometric scaling of the fetoplacental weight ratio, including possible confounders. Methods: data from 26 singleton pregnancies with gestational age at birth between 37 and 42 weeks were analyzed. The placentas were collected immediately after delivery and stored under refrigeration until the time of analysis, which occurred within up to 12 hours. Maternal data were collected from medical records. A Bayesian hierarchical model was proposed and Markov chain Monte Carlo simulation methods were used to obtain samples from distribution a posteriori. Results: the model developed showed a reasonable fit, even allowing for the incorporation of variables and a priori information on the parameters used. Conclusions: new variables can be added to the modelfrom the available code, allowing many possibilities for data analysis and indicating the potential for use in research on the subject.

  7. Kernel Averaged Predictors for Spatio-Temporal Regression Models.

    Science.gov (United States)

    Heaton, Matthew J; Gelfand, Alan E

    2012-12-01

    In applications where covariates and responses are observed across space and time, a common goal is to quantify the effect of a change in the covariates on the response while adequately accounting for the spatio-temporal structure of the observations. The most common approach for building such a model is to confine the relationship between a covariate and response variable to a single spatio-temporal location. However, oftentimes the relationship between the response and predictors may extend across space and time. In other words, the response may be affected by levels of predictors in spatio-temporal proximity to the response location. Here, a flexible modeling framework is proposed to capture such spatial and temporal lagged effects between a predictor and a response. Specifically, kernel functions are used to weight a spatio-temporal covariate surface in a regression model for the response. The kernels are assumed to be parametric and non-stationary with the data informing the parameter values of the kernel. The methodology is illustrated on simulated data as well as a physical data set of ozone concentrations to be explained by temperature. PMID:24010051

  8. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning

    CERN Document Server

    Brochu, Eric; de Freitas, Nando

    2010-01-01

    We present a tutorial on Bayesian optimization, a method of finding the maximum of expensive cost functions. Bayesian optimization employs the Bayesian technique of setting a prior over the objective function and combining it with evidence to get a posterior function. This permits a utility-based selection of the next observation to make on the objective function, which must take into account both exploration (sampling from areas of high uncertainty) and exploitation (sampling areas likely to offer improvement over the current best observation). We also present two detailed extensions of Bayesian optimization, with experiments---active user modelling with preferences, and hierarchical reinforcement learning---and a discussion of the pros and cons of Bayesian optimization based on our experiences.

  9. A sequential point process model and Bayesian inference for spatial point patterns with linear structures

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    We introduce a flexible spatial point process model for spatial point patterns exhibiting linear structures, without incorporating a latent line process. The model is given by an underlying sequential point process model, i.e. each new point is generated given the previous points. Under this model...... previous points is such that the dependent cluster point is likely to occur closely to a previous cluster point. We demonstrate the flexibility of the model for producing point patterns with linear structures, and propose to use the model as the likelihood in a Bayesian setting when analyzing a spatial...

  10. Non-parametric Bayesian graph models reveal community structure in resting state fMRI

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Madsen, Kristoffer H.; Siebner, Hartwig Roman;

    2014-01-01

    Modeling of resting state functional magnetic resonance imaging (rs-fMRI) data using network models is of increasing interest. It is often desirable to group nodes into clusters to interpret the communication patterns between nodes. In this study we consider three different nonparametric Bayesian...... Diagonal Model (IDM). The models define probabilities of generating links within and between clusters and the difference between the models lies in the restrictions they impose upon the between-cluster link probabilities. IRM is the most flexible model with no restrictions on the probabilities of links...

  11. Regularization of non-homogeneous dynamic Bayesian networks with global information-coupling based on hierarchical Bayesian models

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Husmeier, Dirk

    2013-01-01

    To relax the homogeneity assumption of classical dynamic Bayesian networks (DBNs), various recent studies have combined DBNs with multiple changepoint processes. The underlying assumption is that the parameters associated with time series segments delimited by multiple changepoints are a priori inde

  12. Bayesian model selection framework for identifying growth patterns in filamentous fungi.

    Science.gov (United States)

    Lin, Xiao; Terejanu, Gabriel; Shrestha, Sajan; Banerjee, Sourav; Chanda, Anindya

    2016-06-01

    This paper describes a rigorous methodology for quantification of model errors in fungal growth models. This is essential to choose the model that best describes the data and guide modeling efforts. Mathematical modeling of growth of filamentous fungi is necessary in fungal biology for gaining systems level understanding on hyphal and colony behaviors in different environments. A critical challenge in the development of these mathematical models arises from the indeterminate nature of their colony architecture, which is a result of processing diverse intracellular signals induced in response to a heterogeneous set of physical and nutritional factors. There exists a practical gap in connecting fungal growth models with measurement data. Here, we address this gap by introducing the first unified computational framework based on Bayesian inference that can quantify individual model errors and rank the statistical models based on their descriptive power against data. We show that this Bayesian model comparison is just a natural formalization of Occam׳s razor. The application of this framework is discussed in comparing three models in the context of synthetic data generated from a known true fungal growth model. This framework of model comparison achieves a trade-off between data fitness and model complexity and the quantified model error not only helps in calibrating and comparing the models, but also in making better predictions and guiding model refinements. PMID:27000772

  13. Stochastic structural optimization using particle swarm optimization, surrogate models and Bayesian statistics

    Institute of Scientific and Technical Information of China (English)

    Jongbin Im; Jungsun Park

    2013-01-01

    This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO),surrogate models and Bayesian statistics.PSO is a random/stochastic search algorithm designed to find the global optimum.However,PSO needs many evaluations compared to gradient-based optimization.This means PSO increases the analysis costs of structural optimization.One of the methods to reduce computing costs in stochastic optimization is to use approximation techniques.In this work,surrogate models are used,including the response surface method (RSM) and Kriging.When surrogate models are used,there are some errors between exact values and approximated values.These errors decrease the reliability of the optimum values and discard the realistic approximation of using surrogate models.In this paper,Bayesian statistics is used to obtain more reliable results.To verify and confirm the efficiency of the proposed method using surrogate models and Bayesian statistics for stochastic structural optimization,two numerical examples are optimized,and the optimization of a hub sleeve is demonstrated as a practical problem.

  14. An empirical Bayesian approach for model-based inference of cellular signaling networks

    Directory of Open Access Journals (Sweden)

    Klinke David J

    2009-11-01

    Full Text Available Abstract Background A common challenge in systems biology is to infer mechanistic descriptions of biological process given limited observations of a biological system. Mathematical models are frequently used to represent a belief about the causal relationships among proteins within a signaling network. Bayesian methods provide an attractive framework for inferring the validity of those beliefs in the context of the available data. However, efficient sampling of high-dimensional parameter space and appropriate convergence criteria provide barriers for implementing an empirical Bayesian approach. The objective of this study was to apply an Adaptive Markov chain Monte Carlo technique to a typical study of cellular signaling pathways. Results As an illustrative example, a kinetic model for the early signaling events associated with the epidermal growth factor (EGF signaling network was calibrated against dynamic measurements observed in primary rat hepatocytes. A convergence criterion, based upon the Gelman-Rubin potential scale reduction factor, was applied to the model predictions. The posterior distributions of the parameters exhibited complicated structure, including significant covariance between specific parameters and a broad range of variance among the parameters. The model predictions, in contrast, were narrowly distributed and were used to identify areas of agreement among a collection of experimental studies. Conclusion In summary, an empirical Bayesian approach was developed for inferring the confidence that one can place in a particular model that describes signal transduction mechanisms and for inferring inconsistencies in experimental measurements.

  15. Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters

    Science.gov (United States)

    Kuczera, George; Kavetski, Dmitri; Franks, Stewart; Thyer, Mark

    2006-11-01

    SummaryCalibration and prediction in conceptual rainfall-runoff (CRR) modelling is affected by the uncertainty in the observed forcing/response data and the structural error in the model. This study works towards the goal of developing a robust framework for dealing with these sources of error and focuses on model error. The characterisation of model error in CRR modelling has been thwarted by the convenient but indefensible treatment of CRR models as deterministic descriptions of catchment dynamics. This paper argues that the fluxes in CRR models should be treated as stochastic quantities because their estimation involves spatial and temporal averaging. Acceptance that CRR models are intrinsically stochastic paves the way for a more rational characterisation of model error. The hypothesis advanced in this paper is that CRR model error can be characterised by storm-dependent random variation of one or more CRR model parameters. A simple sensitivity analysis is used to identify the parameters most likely to behave stochastically, with variation in these parameters yielding the largest changes in model predictions as measured by the Nash-Sutcliffe criterion. A Bayesian hierarchical model is then formulated to explicitly differentiate between forcing, response and model error. It provides a very general framework for calibration and prediction, as well as for testing hypotheses regarding model structure and data uncertainty. A case study calibrating a six-parameter CRR model to daily data from the Abercrombie catchment (Australia) demonstrates the considerable potential of this approach. Allowing storm-dependent variation in just two model parameters (with one of the parameters characterising model error and the other reflecting input uncertainty) yields a substantially improved model fit raising the Nash-Sutcliffe statistic from 0.74 to 0.94. Of particular significance is the use of posterior diagnostics to test the key assumptions about the data and model errors

  16. Bayesian Option Pricing Using Mixed Normal Heteroskedasticity Models

    DEFF Research Database (Denmark)

    Rombouts, Jeroen V.K.; Stentoft, Lars Peter

    While stochastic volatility models improve on the option pricing error when compared to the Black-Scholes-Merton model, mispricings remain. This paper uses mixed normal heteroskedasticity models to price options. Our model allows for significant negative skewness and time varying higher order...

  17. Bayesian modelling of the emission spectrum of the Joint European Torus Lithium Beam Emission Spectroscopy system.

    Science.gov (United States)

    Kwak, Sehyun; Svensson, J; Brix, M; Ghim, Y-C

    2016-02-01

    A Bayesian model of the emission spectrum of the JET lithium beam has been developed to infer the intensity of the Li I (2p-2s) line radiation and associated uncertainties. The detected spectrum for each channel of the lithium beam emission spectroscopy system is here modelled by a single Li line modified by an instrumental function, Bremsstrahlung background, instrumental offset, and interference filter curve. Both the instrumental function and the interference filter curve are modelled with non-parametric Gaussian processes. All free parameters of the model, the intensities of the Li line, Bremsstrahlung background, and instrumental offset, are inferred using Bayesian probability theory with a Gaussian likelihood for photon statistics and electronic background noise. The prior distributions of the free parameters are chosen as Gaussians. Given these assumptions, the intensity of the Li line and corresponding uncertainties are analytically available using a Bayesian linear inversion technique. The proposed approach makes it possible to extract the intensity of Li line without doing a separate background subtraction through modulation of the Li beam. PMID:26931843

  18. A Bayesian Hierarchical Model for Reconstructing Sea Levels: From Raw Data to Rates of Change

    CERN Document Server

    Cahill, Niamh; Horton, Benjamin P; Parnell, Andrew C

    2015-01-01

    We present a holistic Bayesian hierarchical model for reconstructing the continuous and dynamic evolution of relative sea-level (RSL) change with fully quantified uncertainty. The reconstruction is produced from biological (foraminifera) and geochemical ({\\delta}13C) sea-level indicators preserved in dated cores of salt-marsh sediment. Our model is comprised of three modules: (1) A Bayesian transfer function for the calibration of foraminifera into tidal elevation, which is flexible enough to formally accommodate additional proxies (in this case bulk-sediment {\\delta}13C values); (2) A chronology developed from an existing Bchron age-depth model, and (3) An existing errors-in-variables integrated Gaussian process (EIV-IGP) model for estimating rates of sea-level change. We illustrate our approach using a case study of Common Era sea-level variability from New Jersey, U.S.A. We develop a new Bayesian transfer function (B-TF), with and without the {\\delta}13C proxy and compare our results to those from a widely...

  19. Modelling Odor Decoding in the Antennal Lobe by Combining Sequential Firing Rate Models with Bayesian Inference.

    Science.gov (United States)

    Cuevas Rivera, Dario; Bitzer, Sebastian; Kiebel, Stefan J

    2015-10-01

    The olfactory information that is received by the insect brain is encoded in the form of spatiotemporal patterns in the projection neurons of the antennal lobe. These dense and overlapping patterns are transformed into a sparse code in Kenyon cells in the mushroom body. Although it is clear that this sparse code is the basis for rapid categorization of odors, it is yet unclear how the sparse code in Kenyon cells is computed and what information it represents. Here we show that this computation can be modeled by sequential firing rate patterns using Lotka-Volterra equations and Bayesian online inference. This new model can be understood as an 'intelligent coincidence detector', which robustly and dynamically encodes the presence of specific odor features. We found that the model is able to qualitatively reproduce experimentally observed activity in both the projection neurons and the Kenyon cells. In particular, the model explains mechanistically how sparse activity in the Kenyon cells arises from the dense code in the projection neurons. The odor classification performance of the model proved to be robust against noise and time jitter in the observed input sequences. As in recent experimental results, we found that recognition of an odor happened very early during stimulus presentation in the model. Critically, by using the model, we found surprising but simple computational explanations for several experimental phenomena. PMID:26451888

  20. Modelling Odor Decoding in the Antennal Lobe by Combining Sequential Firing Rate Models with Bayesian Inference.

    Directory of Open Access Journals (Sweden)

    Dario Cuevas Rivera

    2015-10-01

    Full Text Available The olfactory information that is received by the insect brain is encoded in the form of spatiotemporal patterns in the projection neurons of the antennal lobe. These dense and overlapping patterns are transformed into a sparse code in Kenyon cells in the mushroom body. Although it is clear that this sparse code is the basis for rapid categorization of odors, it is yet unclear how the sparse code in Kenyon cells is computed and what information it represents. Here we show that this computation can be modeled by sequential firing rate patterns using Lotka-Volterra equations and Bayesian online inference. This new model can be understood as an 'intelligent coincidence detector', which robustly and dynamically encodes the presence of specific odor features. We found that the model is able to qualitatively reproduce experimentally observed activity in both the projection neurons and the Kenyon cells. In particular, the model explains mechanistically how sparse activity in the Kenyon cells arises from the dense code in the projection neurons. The odor classification performance of the model proved to be robust against noise and time jitter in the observed input sequences. As in recent experimental results, we found that recognition of an odor happened very early during stimulus presentation in the model. Critically, by using the model, we found surprising but simple computational explanations for several experimental phenomena.

  1. Modelling Odor Decoding in the Antennal Lobe by Combining Sequential Firing Rate Models with Bayesian Inference

    Science.gov (United States)

    Cuevas Rivera, Dario; Bitzer, Sebastian; Kiebel, Stefan J.

    2015-01-01

    The olfactory information that is received by the insect brain is encoded in the form of spatiotemporal patterns in the projection neurons of the antennal lobe. These dense and overlapping patterns are transformed into a sparse code in Kenyon cells in the mushroom body. Although it is clear that this sparse code is the basis for rapid categorization of odors, it is yet unclear how the sparse code in Kenyon cells is computed and what information it represents. Here we show that this computation can be modeled by sequential firing rate patterns using Lotka-Volterra equations and Bayesian online inference. This new model can be understood as an ‘intelligent coincidence detector’, which robustly and dynamically encodes the presence of specific odor features. We found that the model is able to qualitatively reproduce experimentally observed activity in both the projection neurons and the Kenyon cells. In particular, the model explains mechanistically how sparse activity in the Kenyon cells arises from the dense code in the projection neurons. The odor classification performance of the model proved to be robust against noise and time jitter in the observed input sequences. As in recent experimental results, we found that recognition of an odor happened very early during stimulus presentation in the model. Critically, by using the model, we found surprising but simple computational explanations for several experimental phenomena. PMID:26451888

  2. Finding the right balance between groundwater model complexity and experimental effort via Bayesian model selection

    Science.gov (United States)

    Schöniger, Anneli; Illman, Walter A.; Wöhling, Thomas; Nowak, Wolfgang

    2015-12-01

    Groundwater modelers face the challenge of how to assign representative parameter values to the studied aquifer. Several approaches are available to parameterize spatial heterogeneity in aquifer parameters. They differ in their conceptualization and complexity, ranging from homogeneous models to heterogeneous random fields. While it is common practice to invest more effort into data collection for models with a finer resolution of heterogeneities, there is a lack of advice which amount of data is required to justify a certain level of model complexity. In this study, we propose to use concepts related to Bayesian model selection to identify this balance. We demonstrate our approach on the characterization of a heterogeneous aquifer via hydraulic tomography in a sandbox experiment (Illman et al., 2010). We consider four increasingly complex parameterizations of hydraulic conductivity: (1) Effective homogeneous medium, (2) geology-based zonation, (3) interpolation by pilot points, and (4) geostatistical random fields. First, we investigate the shift in justified complexity with increasing amount of available data by constructing a model confusion matrix. This matrix indicates the maximum level of complexity that can be justified given a specific experimental setup. Second, we determine which parameterization is most adequate given the observed drawdown data. Third, we test how the different parameterizations perform in a validation setup. The results of our test case indicate that aquifer characterization via hydraulic tomography does not necessarily require (or justify) a geostatistical description. Instead, a zonation-based model might be a more robust choice, but only if the zonation is geologically adequate.

  3. Bayesian approach to color-difference models based on threshold and constant-stimuli methods.

    Science.gov (United States)

    Brusola, Fernando; Tortajada, Ignacio; Lengua, Ismael; Jordá, Begoña; Peris, Guillermo

    2015-06-15

    An alternative approach based on statistical Bayesian inference is presented to deal with the development of color-difference models and the precision of parameter estimation. The approach was applied to simulated data and real data, the latter published by selected authors involved with the development of color-difference formulae using traditional methods. Our results show very good agreement between the Bayesian and classical approaches. Among other benefits, our proposed methodology allows one to determine the marginal posterior distribution of each random individual parameter of the color-difference model. In this manner, it is possible to analyze the effect of individual parameters on the statistical significance calculation of a color-difference equation. PMID:26193510

  4. Bayesian networks modeling for thermal error of numerical control machine tools

    Institute of Scientific and Technical Information of China (English)

    Xin-hua YAO; Jian-zhong FU; Zi-chen CHEN

    2008-01-01

    The interaction between the heat source location,its intensity,thermal expansion coefficient,the machine system configuration and the running environment creates complex thermal behavior of a machine tool,and also makes thermal error prediction difficult.To address this issue,a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented.The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques.Due to the effective combination of domain knowledge and sampled data,the BN method could adapt to the change of running state of machine,and obtain satisfactory prediction accuracy.Ex-periments on spindle thermal deformation were conducted to evaluate the modeling performance.Experimental results indicate that the BN method performs far better than the least squares(LS)analysis in terms of modeling estimation accuracy.

  5. From least squares to multilevel modeling: A graphical introduction to Bayesian inference

    Science.gov (United States)

    Loredo, Thomas J.

    2016-01-01

    This tutorial presentation will introduce some of the key ideas and techniques involved in applying Bayesian methods to problems in astrostatistics. The focus will be on the big picture: understanding the foundations (interpreting probability, Bayes's theorem, the law of total probability and marginalization), making connections to traditional methods (propagation of errors, least squares, chi-squared, maximum likelihood, Monte Carlo simulation), and highlighting problems where a Bayesian approach can be particularly powerful (Poisson processes, density estimation and curve fitting with measurement error). The "graphical" component of the title reflects an emphasis on pictorial representations of some of the math, but also on the use of graphical models (multilevel or hierarchical models) for analyzing complex data. Code for some examples from the talk will be available to participants, in Python and in the Stan probabilistic programming language.

  6. PARALLEL ADAPTIVE MULTILEVEL SAMPLING ALGORITHMS FOR THE BAYESIAN ANALYSIS OF MATHEMATICAL MODELS

    KAUST Repository

    Prudencio, Ernesto

    2012-01-01

    In recent years, Bayesian model updating techniques based on measured data have been applied to many engineering and applied science problems. At the same time, parallel computational platforms are becoming increasingly more powerful and are being used more frequently by the engineering and scientific communities. Bayesian techniques usually require the evaluation of multi-dimensional integrals related to the posterior probability density function (PDF) of uncertain model parameters. The fact that such integrals cannot be computed analytically motivates the research of stochastic simulation methods for sampling posterior PDFs. One such algorithm is the adaptive multilevel stochastic simulation algorithm (AMSSA). In this paper we discuss the parallelization of AMSSA, formulating the necessary load balancing step as a binary integer programming problem. We present a variety of results showing the effectiveness of load balancing on the overall performance of AMSSA in a parallel computational environment.

  7. Bayesian model comparison in nonlinear BOLD fMRI hemodynamics

    DEFF Research Database (Denmark)

    Jacobsen, Danjal Jakup; Hansen, Lars Kai; Madsen, Kristoffer Hougaard

    2008-01-01

    Nonlinear hemodynamic models express the BOLD (blood oxygenation level dependent) signal as a nonlinear, parametric functional of the temporal sequence of local neural activity. Several models have been proposed for both the neural activity and the hemodynamics. We compare two such combined models...

  8. Bayesian Data Assimilation for Improved Modeling of Road Traffic

    NARCIS (Netherlands)

    Van Hinsbergen, C.P.Y.

    2010-01-01

    This thesis deals with the optimal use of existing models that predict certain phenomena of the road traffic system. Such models are extensively used in Advanced Traffic Information Systems (ATIS), Dynamic Traffic Management (DTM) or Model Predictive Control (MPC) approaches in order to improve the

  9. A note on Bayesian nonparametric priors derived from exponentially tilted Poisson-Kingman models

    OpenAIRE

    Cerquetti, Annalisa

    2007-01-01

    We derive the class of normalized generalized Gamma processes from Poisson-Kingman models (Pitman, 2003) with tempered alfa-stable mixing distribution. Relying on this construction it can be shown that in Bayesian nonparametrics, results on quantities of statistical interest under those priors, like the analogous of the Blackwell-MacQueen prediction rules or the distribution of the number of distinct elements observed in a sample, arise as immediate consequences of Pitman's results.

  10. GNU MCSim : bayesian statistical inference for SBML-coded systems biology models

    OpenAIRE

    Bois, Frédéric Y.

    2009-01-01

    International audience Statistical inference about the parameter values of complex models, such as the ones routinely developed in systems biology, is efficiently performed through Bayesian numerical techniques. In that framework, prior information and multiple levels of uncertainty can be seamlessly integrated. GNU MCSim was precisely developed to achieve those aims, in a general non-linear differential context. Starting with version 5.3.0, GNU MCSim reads in and simulates Systems Biology...

  11. Data-driven and Model-based Verification:a Bayesian Identification Approach

    OpenAIRE

    Haesaert, S Sofie; Hof, van den, S.; Abate, A.

    2015-01-01

    This work develops a measurement-driven and model-based formal verification approach, applicable to systems with partly unknown dynamics. We provide a principled method, grounded on reachability analysis and on Bayesian inference, to compute the confidence that a physical system driven by external inputs and accessed under noisy measurements, verifies a temporal logic property. A case study is discussed, where we investigate the bounded- and unbounded-time safety of a partly unknown linear ti...

  12. Bayesian network as a modelling tool for risk management in agriculture

    OpenAIRE

    Svend Rasmussen; Madsen, Anders L.; Mogens Lund

    2013-01-01

    The importance of risk management increases as farmers become more exposed to risk. But risk management is a difficult topic because income risk is the result of the complex interaction of multiple risk factors combined with the effect of an increasing array of possible risk management tools. In this paper we use Bayesian networks as an integrated modelling approach for representing uncertainty and analysing risk management in agriculture. It is shown how historical farm account data may be e...

  13. A space-time multivariate Bayesian model to analyse road traffic accidents by severity

    OpenAIRE

    Boulieri, A; Liverani, S; Hoogh, K. de; Blangiardo, M.

    2016-01-01

    The paper investigates the dependences between levels of severity of road traffic accidents, accounting at the same time for spatial and temporal correlations. The study analyses road traffic accidents data at ward level in England over the period 2005–2013. We include in our model multivariate spatially structured and unstructured effects to capture the dependences between severities, within a Bayesian hierarchical formulation. We also include a temporal component to capture the time effects...

  14. Computational model of an infant brain subjected to periodic motion simplified modelling and Bayesian sensitivity analysis.

    Science.gov (United States)

    Batterbee, D C; Sims, N D; Becker, W; Worden, K; Rowson, J

    2011-11-01

    Non-accidental head injury in infants, or shaken baby syndrome, is a highly controversial and disputed topic. Biomechanical studies often suggest that shaking alone cannot cause the classical symptoms, yet many medical experts believe the contrary. Researchers have turned to finite element modelling for a more detailed understanding of the interactions between the brain, skull, cerebrospinal fluid (CSF), and surrounding tissues. However, the uncertainties in such models are significant; these can arise from theoretical approximations, lack of information, and inherent variability. Consequently, this study presents an uncertainty analysis of a finite element model of a human head subject to shaking. Although the model geometry was greatly simplified, fluid-structure-interaction techniques were used to model the brain, skull, and CSF using a Eulerian mesh formulation with penalty-based coupling. Uncertainty and sensitivity measurements were obtained using Bayesian sensitivity analysis, which is a technique that is relatively new to the engineering community. Uncertainty in nine different model parameters was investigated for two different shaking excitations: sinusoidal translation only, and sinusoidal translation plus rotation about the base of the head. The level and type of sensitivity in the results was found to be highly dependent on the excitation type.

  15. Improving inferences from short-term ecological studies with Bayesian hierarchical modeling: white-headed woodpeckers in managed forests.

    Science.gov (United States)

    Linden, Daniel W; Roloff, Gary J

    2015-08-01

    Pilot studies are often used to design short-term research projects and long-term ecological monitoring programs, but data are sometimes discarded when they do not match the eventual survey design. Bayesian hierarchical modeling provides a convenient framework for integrating multiple data sources while explicitly separating sample variation into observation and ecological state processes. Such an approach can better estimate state uncertainty and improve inferences from short-term studies in dynamic systems. We used a dynamic multistate occupancy model to estimate the probabilities of occurrence and nesting for white-headed woodpeckers Picoides albolarvatus in recent harvest units within managed forests of northern California, USA. Our objectives were to examine how occupancy states and state transitions were related to forest management practices, and how the probabilities changed over time. Using Gibbs variable selection, we made inferences using multiple model structures and generated model-averaged estimates. Probabilities of white-headed woodpecker occurrence and nesting were high in 2009 and 2010, and the probability that nesting persisted at a site was positively related to the snag density in harvest units. Prior-year nesting resulted in higher probabilities of subsequent occurrence and nesting. We demonstrate the benefit of forest management practices that increase the density of retained snags in harvest units for providing white-headed woodpecker nesting habitat. While including an additional year of data from our pilot study did not drastically alter management recommendations, it changed the interpretation of the mechanism behind the observed dynamics. Bayesian hierarchical modeling has the potential to maximize the utility of studies based on small sample sizes while fully accounting for measurement error and both estimation and model uncertainty, thereby improving the ability of observational data to inform conservation and management strategies

  16. Estimation of temporal gait parameters using Bayesian models on acceleration signals.

    Science.gov (United States)

    López-Nava, I H; Muñoz-Meléndez, A; Pérez Sanpablo, A I; Alessi Montero, A; Quiñones Urióstegui, I; Núñez Carrera, L

    2016-01-01

    The purpose of this study is to develop a system capable of performing calculation of temporal gait parameters using two low-cost wireless accelerometers and artificial intelligence-based techniques as part of a larger research project for conducting human gait analysis. Ten healthy subjects of different ages participated in this study and performed controlled walking tests. Two wireless accelerometers were placed on their ankles. Raw acceleration signals were processed in order to obtain gait patterns from characteristic peaks related to steps. A Bayesian model was implemented to classify the characteristic peaks into steps or nonsteps. The acceleration signals were segmented based on gait events, such as heel strike and toe-off, of actual steps. Temporal gait parameters, such as cadence, ambulation time, step time, gait cycle time, stance and swing phase time, simple and double support time, were estimated from segmented acceleration signals. Gait data-sets were divided into two groups of ages to test Bayesian models in order to classify the characteristic peaks. The mean error obtained from calculating the temporal gait parameters was 4.6%. Bayesian models are useful techniques that can be applied to classification of gait data of subjects at different ages with promising results.

  17. Gene function classification using Bayesian models with hierarchy-based priors

    Directory of Open Access Journals (Sweden)

    Neal Radford M

    2006-10-01

    Full Text Available Abstract Background We investigate whether annotation of gene function can be improved using a classification scheme that is aware that functional classes are organized in a hierarchy. The classifiers look at phylogenic descriptors, sequence based attributes, and predicted secondary structure. We discuss three Bayesian models and compare their performance in terms of predictive accuracy. These models are the ordinary multinomial logit (MNL model, a hierarchical model based on a set of nested MNL models, and an MNL model with a prior that introduces correlations between the parameters for classes that are nearby in the hierarchy. We also provide a new scheme for combining different sources of information. We use these models to predict the functional class of Open Reading Frames (ORFs from the E. coli genome. Results The results from all three models show substantial improvement over previous methods, which were based on the C5 decision tree algorithm. The MNL model using a prior based on the hierarchy outperforms both the non-hierarchical MNL model and the nested MNL model. In contrast to previous attempts at combining the three sources of information in this dataset, our new approach to combining data sources produces a higher accuracy rate than applying our models to each data source alone. Conclusion Together, these results show that gene function can be predicted with higher accuracy than previously achieved, using Bayesian models that incorporate suitable prior information.

  18. A High Performance Bayesian Computing Framework for Spatiotemporal Uncertainty Modeling

    Science.gov (United States)

    Cao, G.

    2015-12-01

    All types of spatiotemporal measurements are subject to uncertainty. With spatiotemporal data becomes increasingly involved in scientific research and decision making, it is important to appropriately model the impact of uncertainty. Quantitatively modeling spatiotemporal uncertainty, however, is a challenging problem considering the complex dependence and dataheterogeneities.State-space models provide a unifying and intuitive framework for dynamic systems modeling. In this paper, we aim to extend the conventional state-space models for uncertainty modeling in space-time contexts while accounting for spatiotemporal effects and data heterogeneities. Gaussian Markov Random Field (GMRF) models, also known as conditional autoregressive models, are arguably the most commonly used methods for modeling of spatially dependent data. GMRF models basically assume that a geo-referenced variable primarily depends on its neighborhood (Markov property), and the spatial dependence structure is described via a precision matrix. Recent study has shown that GMRFs are efficient approximation to the commonly used Gaussian fields (e.g., Kriging), and compared with Gaussian fields, GMRFs enjoy a series of appealing features, such as fast computation and easily accounting for heterogeneities in spatial data (e.g, point and areal). This paper represents each spatial dataset as a GMRF and integrates them into a state-space form to statistically model the temporal dynamics. Different types of spatial measurements (e.g., categorical, count or continuous), can be accounted for by according link functions. A fast alternative to MCMC framework, so-called Integrated Nested Laplace Approximation (INLA), was adopted for model inference.Preliminary case studies will be conducted to showcase the advantages of the described framework. In the first case, we apply the proposed method for modeling the water table elevation of Ogallala aquifer over the past decades. In the second case, we analyze the

  19. A Bayesian framework for parameter estimation in dynamical models.

    Directory of Open Access Journals (Sweden)

    Flávio Codeço Coelho

    Full Text Available Mathematical models in biology are powerful tools for the study and exploration of complex dynamics. Nevertheless, bringing theoretical results to an agreement with experimental observations involves acknowledging a great deal of uncertainty intrinsic to our theoretical representation of a real system. Proper handling of such uncertainties is key to the successful usage of models to predict experimental or field observations. This problem has been addressed over the years by many tools for model calibration and parameter estimation. In this article we present a general framework for uncertainty analysis and parameter estimation that is designed to handle uncertainties associated with the modeling of dynamic biological systems while remaining agnostic as to the type of model used. We apply the framework to fit an SIR-like influenza transmission model to 7 years of incidence data in three European countries: Belgium, the Netherlands and Portugal.

  20. Bayesian Inference in the Time Varying Cointegration Model

    OpenAIRE

    Gary Koop; Roberto Leon-Gonzalez; Rodney Strachan

    2008-01-01

    There are both theoretical and empirical reasons for believing that the pa- rameters of macroeconomic models may vary over time. However, work with time-varying parameter models has largely involved Vector autoregressions (VARs), ignoring cointegration. This is despite the fact that cointegration plays an important role in informing macroeconomists on a range of issues. In this paper we develop time varying parameter models which permit coin- tegration. Time-varying parameter VARs (TVP-VARs) ...

  1. Bayesian Nonstationary Gaussian Process Models via Treed Process Convolutions

    OpenAIRE

    Liang, Waley Wei Jie

    2012-01-01

    Spatial modeling with stationary Gaussian processes (GPs) has been widely used, but the assumption that the correlation structure is independent of spatial location is invalid in many applications. Various nonstationary GP models have been developed to solve this problem, however, many of them become impractical when the sample size is large. To tackle this problem, a more computationally efficient GP model is developed by convolving a smoothing kernel with a latent process. Nonstationarit...

  2. Integrating Anticipatory Competence into a Bayesian Driver Model

    OpenAIRE

    Möbus, Claus; Eilers, Mark

    2011-01-01

    We present a probabilistic model architecture combining a layered model of human driver expertise with a cognitive map and beliefs about the driver-vehicle state to describe the effect of anticipations on driver actions. It implements the sensory-motor system of human drivers with autonomous, goal-based attention allocation and anticipation processes. The model has emergent properties and combines reactive with prospective behavior based on anticipated or imagined percepts obtained from a Bay...

  3. A fully Bayesian method for jointly fitting instrumental calibration and X-ray spectral models

    International Nuclear Information System (INIS)

    Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is 'pragmatic' in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use a principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.

  4. A Fully Bayesian Method for Jointly Fitting Instrumental Calibration and X-Ray Spectral Models

    Science.gov (United States)

    Xu, Jin; van Dyk, David A.; Kashyap, Vinay L.; Siemiginowska, Aneta; Connors, Alanna; Drake, Jeremy; Meng, Xiao-Li; Ratzlaff, Pete; Yu, Yaming

    2014-10-01

    Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is "pragmatic" in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use a principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.

  5. A fully Bayesian method for jointly fitting instrumental calibration and X-ray spectral models

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jin; Yu, Yaming [Department of Statistics, University of California, Irvine, Irvine, CA 92697-1250 (United States); Van Dyk, David A. [Statistics Section, Imperial College London, Huxley Building, South Kensington Campus, London SW7 2AZ (United Kingdom); Kashyap, Vinay L.; Siemiginowska, Aneta; Drake, Jeremy; Ratzlaff, Pete [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Connors, Alanna; Meng, Xiao-Li, E-mail: jinx@uci.edu, E-mail: yamingy@ics.uci.edu, E-mail: dvandyk@imperial.ac.uk, E-mail: vkashyap@cfa.harvard.edu, E-mail: asiemiginowska@cfa.harvard.edu, E-mail: jdrake@cfa.harvard.edu, E-mail: pratzlaff@cfa.harvard.edu, E-mail: meng@stat.harvard.edu [Department of Statistics, Harvard University, 1 Oxford Street, Cambridge, MA 02138 (United States)

    2014-10-20

    Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is 'pragmatic' in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use a principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.

  6. Combining Bayesian Networks and Agent Based Modeling to develop a decision-support model in Vietnam

    Science.gov (United States)

    Nong, Bao Anh; Ertsen, Maurits; Schoups, Gerrit

    2016-04-01

    Complexity and uncertainty in natural resources management have been focus themes in recent years. Within these debates, with the aim to define an approach feasible for water management practice, we are developing an integrated conceptual modeling framework for simulating decision-making processes of citizens, in our case in the Day river area, Vietnam. The model combines Bayesian Networks (BNs) and Agent-Based Modeling (ABM). BNs are able to combine both qualitative data from consultants / experts / stakeholders, and quantitative data from observations on different phenomena or outcomes from other models. Further strengths of BNs are that the relationship between variables in the system is presented in a graphical interface, and that components of uncertainty are explicitly related to their probabilistic dependencies. A disadvantage is that BNs cannot easily identify the feedback of agents in the system once changes appear. Hence, ABM was adopted to represent the reaction among stakeholders under changes. The modeling framework is developed as an attempt to gain better understanding about citizen's behavior and factors influencing their decisions in order to reduce uncertainty in the implementation of water management policy.

  7. A Bayesian Semiparametric Item Response Model with Dirichlet Process Priors

    Science.gov (United States)

    Miyazaki, Kei; Hoshino, Takahiro

    2009-01-01

    In Item Response Theory (IRT), item characteristic curves (ICCs) are illustrated through logistic models or normal ogive models, and the probability that examinees give the correct answer is usually a monotonically increasing function of their ability parameters. However, since only limited patterns of shapes can be obtained from logistic models…

  8. A Bayesian state-space formulation of dynamic occupancy models.

    Science.gov (United States)

    Royle, J Andrew; Kéry, Marc

    2007-07-01

    Species occurrence and its dynamic components, extinction and colonization probabilities, are focal quantities in biogeography and metapopulation biology, and for species conservation assessments. It has been increasingly appreciated that these parameters must be estimated separately from detection probability to avoid the biases induced by non-detection error. Hence, there is now considerable theoretical and practical interest in dynamic occupancy models that contain explicit representations of metapopulation dynamics such as extinction, colonization, and turnover as well as growth rates. We describe a hierarchical parameterization of these models that is analogous to the state-space formulation of models in time series, where the model is represented by two components, one for the partially observable occupancy process and another for the observations conditional on that process. This parameterization naturally allows estimation of all parameters of the conventional approach to occupancy models, but in addition, yields great flexibility and extensibility, e.g., to modeling heterogeneity or latent structure in model parameters. We also highlight the important distinction between population and finite sample inference; the latter yields much more precise estimates for the particular sample at hand. Finite sample estimates can easily be obtained using the state-space representation of the model but are difficult to obtain under the conventional approach of likelihood-based estimation. We use R and WinBUGS to apply the model to two examples. In a standard analysis for the European Crossbill in a large Swiss monitoring program, we fit a model with year-specific parameters. Estimates of the dynamic parameters varied greatly among years, highlighting the irruptive population dynamics of that species. In the second example, we analyze route occupancy of Cerulean Warblers in the North American Breeding Bird Survey (BBS) using a model allowing for site

  9. Joint Segmentation and Deconvolution of Ultrasound Images Using a Hierarchical Bayesian Model Based on Generalized Gaussian Priors.

    Science.gov (United States)

    Zhao, Ningning; Basarab, Adrian; Kouame, Denis; Tourneret, Jean-Yves

    2016-08-01

    This paper proposes a joint segmentation and deconvolution Bayesian method for medical ultrasound (US) images. Contrary to piecewise homogeneous images, US images exhibit heavy characteristic speckle patterns correlated with the tissue structures. The generalized Gaussian distribution (GGD) has been shown to be one of the most relevant distributions for characterizing the speckle in US images. Thus, we propose a GGD-Potts model defined by a label map coupling US image segmentation and deconvolution. The Bayesian estimators of the unknown model parameters, including the US image, the label map, and all the hyperparameters are difficult to be expressed in a closed form. Thus, we investigate a Gibbs sampler to generate samples distributed according to the posterior of interest. These generated samples are finally used to compute the Bayesian estimators of the unknown parameters. The performance of the proposed Bayesian model is compared with the existing approaches via several experiments conducted on realistic synthetic data and in vivo US images. PMID:27187959

  10. Bayesian Analysis of Geostatistical Models With an Auxiliary Lattice

    KAUST Repository

    Park, Jincheol

    2012-04-01

    The Gaussian geostatistical model has been widely used for modeling spatial data. However, this model suffers from a severe difficulty in computation: it requires users to invert a large covariance matrix. This is infeasible when the number of observations is large. In this article, we propose an auxiliary lattice-based approach for tackling this difficulty. By introducing an auxiliary lattice to the space of observations and defining a Gaussian Markov random field on the auxiliary lattice, our model completely avoids the requirement of matrix inversion. It is remarkable that the computational complexity of our method is only O(n), where n is the number of observations. Hence, our method can be applied to very large datasets with reasonable computational (CPU) times. The numerical results indicate that our model can approximate Gaussian random fields very well in terms of predictions, even for those with long correlation lengths. For real data examples, our model can generally outperform conventional Gaussian random field models in both prediction errors and CPU times. Supplemental materials for the article are available online. © 2012 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.

  11. A Pseudo-Bayesian Model for Stock Returns In Financial Crises

    Directory of Open Access Journals (Sweden)

    Eric S. Fung

    2011-12-01

    Full Text Available Recently, there has been a considerable interest in the Bayesian approach for explaining investors' behaviorial biases by incorporating conservative and representative heuristics when making financial decisions, (see, for example, Barberis, Shleifer and Vishny (1998. To establish a quantitative link between some important market anomalies and investors' behaviorial biases, Lam, Liu, and Wong (2010 introduced a pseudo-Bayesian approach for developing properties of stock returns, where weights induced by investors' conservative and representative heuristics are assigned to observations of the earning shocks and stock prices. In response to the recent global financial crisis, we introduce a new pseudo-Bayesian model to incorporate the impact of a financial crisis. Properties of stock returns during the financial crisis and recovery from the crisis are established. The proposed model can be applied to investigate some important market anomalies including short-term underreaction, long-term overreaction, and excess volatility during financial crisis. We also explain in some detail the linkage between these market anomalies and investors' behavioral biases during financial crisis.

  12. Bayesian cross-validation for model evaluation and selection, with application to the North American Breeding Bird Survey

    Science.gov (United States)

    Link, William; Sauer, John R.

    2016-01-01

    The analysis of ecological data has changed in two important ways over the last 15 years. The development and easy availability of Bayesian computational methods has allowed and encouraged the fitting of complex hierarchical models. At the same time, there has been increasing emphasis on acknowledging and accounting for model uncertainty. Unfortunately, the ability to fit complex models has outstripped the development of tools for model selection and model evaluation: familiar model selection tools such as Akaike's information criterion and the deviance information criterion are widely known to be inadequate for hierarchical models. In addition, little attention has been paid to the evaluation of model adequacy in context of hierarchical modeling, i.e., to the evaluation of fit for a single model. In this paper, we describe Bayesian cross-validation, which provides tools for model selection and evaluation. We describe the Bayesian predictive information criterion and a Bayesian approximation to the BPIC known as the Watanabe-Akaike information criterion. We illustrate the use of these tools for model selection, and the use of Bayesian cross-validation as a tool for model evaluation, using three large data sets from the North American Breeding Bird Survey.

  13. Approximate Bayesian inference in semi-mechanistic models

    OpenAIRE

    Aderhold, Andrej; Husmeier, Dirk; Grzegorczyk, Marco

    2016-01-01

    Inference of interaction networks represented by systems of differential equations is a challenging problem in many scientific disciplines. In the present article, we follow a semi-mechanistic modelling approach based on gradient matching. We investigate the extent to which key factors, including the kinetic model, statistical formulation and numerical methods, impact upon performance at network reconstruction. We emphasize general lessons for computational statisticians when faced with the c...

  14. A Semiparametric Bayesian Model for Repeatedly Repeated Binary Outcomes

    OpenAIRE

    Quintana, Fernando A.; Müller, Peter; Rosner, Gary L.; Mary V Relling

    2008-01-01

    We discuss the analysis of data from single nucleotide polymorphism (SNP) arrays comparing tumor and normal tissues. The data consist of sequences of indicators for loss of heterozygosity (LOH) and involve three nested levels of repetition: chromosomes for a given patient, regions within chromosomes, and SNPs nested within regions. We propose to analyze these data using a semiparametric model for multi-level repeated binary data. At the top level of the hierarchy we assume a sampling model fo...

  15. A Bayesian semiparametric model for bivariate sparse longitudinal data.

    Science.gov (United States)

    Das, Kiranmoy; Li, Runze; Sengupta, Subhajit; Wu, Rongling

    2013-09-30

    Mixed-effects models have recently become popular for analyzing sparse longitudinal data that arise naturally in biological, agricultural and biomedical studies. Traditional approaches assume independent residuals over time and explain the longitudinal dependence by random effects. However, when bivariate or multivariate traits are measured longitudinally, this fundamental assumption is likely to be violated because of intertrait dependence over time. We provide a more general framework where the dependence of the observations from the same subject over time is not assumed to be explained completely by the random effects of the model. We propose a novel, mixed model-based approach and estimate the error-covariance structure nonparametrically under a generalized linear model framework. We use penalized splines to model the general effect of time, and we consider a Dirichlet process mixture of normal prior for the random-effects distribution. We analyze blood pressure data from the Framingham Heart Study where body mass index, gender and time are treated as covariates. We compare our method with traditional methods including parametric modeling of the random effects and independent residual errors over time. We conduct extensive simulation studies to investigate the practical usefulness of the proposed method. The current approach is very helpful in analyzing bivariate irregular longitudinal traits. PMID:23553747

  16. A new model test in high energy physics in frequentist and Bayesian statistical formalisms

    CERN Document Server

    Kamenshchikov, Andrey

    2016-01-01

    A problem of a new physical model test given observed experimental data is a typical one for modern experiments of high energy physics (HEP). A solution of the problem may be provided with two alternative statistical formalisms, namely frequentist and Bayesian, which are widely spread in contemporary HEP searches. A characteristic experimental situation is modeled from general considerations and both the approaches are utilized in order to test a new model. The results are juxtaposed, what demonstrates their consistency in this work. An effect of a systematic uncertainty treatment in the statistical analysis is also considered.

  17. An object-oriented Bayesian network modeling the causes of leg disorders in finisher herds

    DEFF Research Database (Denmark)

    Jensen, Tina Birk; Kristensen, Anders Ringgaard; Toft, Nils;

    2009-01-01

    pigs (e.g. results from diagnostic tests) were used to estimate the most likely cause of leg disorders at herd level. As information to the model originated from two different levels, we used an object-oriented structure in order to ease the specification of the Bayesian network. Hence, a Herd class...... the behaviour of the model, we investigated the value of different levels of evidence in two fictitious herds with different herd characteristics related to the risk of leg disorders (e.g. purchase policy, production type and the stocking density in pens). The model enabled us to demonstrate the value...

  18. A population-based Bayesian approach to the minimal model of glucose and insulin homeostasis

    DEFF Research Database (Denmark)

    Andersen, Kim Emil; Højbjerre, Malene

    2005-01-01

    -posed estimation problem, where the reconstruction most often has been done by non-linear least squares techniques separately for each entity. The minmal model was originally specified for a single individual and does not combine several individuals with the advantage of estimating the metabolic portrait...... to a population-based model. The estimation of the parameters are efficiently implemented in a Bayesian approach where posterior inference is made through the use of Markov chain Monte Carlo techniques. Hereby we obtain a powerful and flexible modelling framework for regularizing the ill-posed estimation problem...

  19. Bayesian dynamical systems modelling in the social sciences.

    Science.gov (United States)

    Ranganathan, Shyam; Spaiser, Viktoria; Mann, Richard P; Sumpter, David J T

    2014-01-01

    Data arising from social systems is often highly complex, involving non-linear relationships between the macro-level variables that characterize these systems. We present a method for analyzing this type of longitudinal or panel data using differential equations. We identify the best non-linear functions that capture interactions between variables, employing Bayes factor to decide how many interaction terms should be included in the model. This method punishes overly complicated models and identifies models with the most explanatory power. We illustrate our approach on the classic example of relating democracy and economic growth, identifying non-linear relationships between these two variables. We show how multiple variables and variable lags can be accounted for and provide a toolbox in R to implement our approach.

  20. Automated Bayesian model development for frequency detection in biological time series

    Directory of Open Access Journals (Sweden)

    Oldroyd Giles ED

    2011-06-01

    Full Text Available Abstract Background A first step in building a mathematical model of a biological system is often the analysis of the temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains contain the complete knowledge of the system. However, for truncated, noisy time series with background trends this unique mapping breaks down and the question reduces to an inference problem of identifying the most probable frequencies. Results In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages over conventional methods by applying it to a number of test cases, including two types of biological time series. Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy, posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles highlights the problem of time series with limited length. The results show that the Bayesian frequency detection approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for modelling the data without pre-processing. Conclusions Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy time series, and

  1. An Active Lattice Model in a Bayesian Framework

    DEFF Research Database (Denmark)

    Carstensen, Jens Michael

    1996-01-01

    by penalizing deviations in alignment and lattice node distance. The Markov random field represents prior knowledge about the lattice structure, and through an observation model that incorporates the visual appearance of the nodes, we can simulate realizations from the posterior distribution. A maximum...

  2. Bayesian Estimation of Random Coefficient Dynamic Factor Models

    Science.gov (United States)

    Song, Hairong; Ferrer, Emilio

    2012-01-01

    Dynamic factor models (DFMs) have typically been applied to multivariate time series data collected from a single unit of study, such as a single individual or dyad. The goal of DFMs application is to capture dynamics of multivariate systems. When multiple units are available, however, DFMs are not suited to capture variations in dynamics across…

  3. A Bayesian model for implicit effects in perceptual identification.

    NARCIS (Netherlands)

    L.J. Schooler; R.M. Shiffrin; J.G.W. Raaijmakers

    2001-01-01

    Retrieving effectively from memory (REM; R. M. Shiffrin & M. Steyvers, 1997), an episodic model of memory, is extended to implicit memory phenomena. namely the perceptual identification studies reported in R. Ratcliff and G. McKoon (1997:), In those studies, the influence of prior study was greatest

  4. Learning Bayesian networks for discrete data

    KAUST Repository

    Liang, Faming

    2009-02-01

    Bayesian networks have received much attention in the recent literature. In this article, we propose an approach to learn Bayesian networks using the stochastic approximation Monte Carlo (SAMC) algorithm. Our approach has two nice features. Firstly, it possesses the self-adjusting mechanism and thus avoids essentially the local-trap problem suffered by conventional MCMC simulation-based approaches in learning Bayesian networks. Secondly, it falls into the class of dynamic importance sampling algorithms; the network features can be inferred by dynamically weighted averaging the samples generated in the learning process, and the resulting estimates can have much lower variation than the single model-based estimates. The numerical results indicate that our approach can mix much faster over the space of Bayesian networks than the conventional MCMC simulation-based approaches. © 2008 Elsevier B.V. All rights reserved.

  5. A Bayesian approach for modeling origin-destination matrices

    OpenAIRE

    Perrakis, Konstantinos; Karlis, Dimitris; COOLS, Mario; JANSSENS, Davy; Vanhoof, Koen; Wets, Geert

    2012-01-01

    The majority of origin destination (OD) matrix estimation methods focus on situations where weak or partial information, derived from sample travel surveys, is available. Information derived from travel census studies, in contrast, covers the entire population of a specific study area of interest. In such cases where reliable historical data exist, statistical methodology may serve as a flexible alternative to traditional travel demand models by incorporating estimation of trip-generation, tr...

  6. Robust Bayesian inference in Iq-Spherical models

    OpenAIRE

    Osiewalski, Jacek; Mark F.J. Steel

    1992-01-01

    The class of multivariate lq-spherical distributions is introduced and defined through their isodensity surfaces. We prove that, under a Jeffreys' type improper prior on the scale parameter, posterior inference on the location parameters is the same for all lq-spherical sampling models with common q. This gives us perfect inference robustness with respect to any departures from the reference case of independent sampling from the exponential power distribution.

  7. Modelling the dynamics of an experimental host-pathogen microcosm within a hierarchical Bayesian framework.

    Directory of Open Access Journals (Sweden)

    David Lunn

    Full Text Available The advantages of Bayesian statistical approaches, such as flexibility and the ability to acknowledge uncertainty in all parameters, have made them the prevailing method for analysing the spread of infectious diseases in human or animal populations. We introduce a Bayesian approach to experimental host-pathogen systems that shares these attractive features. Since uncertainty in all parameters is acknowledged, existing information can be accounted for through prior distributions, rather than through fixing some parameter values. The non-linear dynamics, multi-factorial design, multiple measurements of responses over time and sampling error that are typical features of experimental host-pathogen systems can also be naturally incorporated. We analyse the dynamics of the free-living protozoan Paramecium caudatum and its specialist bacterial parasite Holospora undulata. Our analysis provides strong evidence for a saturable infection function, and we were able to reproduce the two waves of infection apparent in the data by separating the initial inoculum from the parasites released after the first cycle of infection. In addition, the parameter estimates from the hierarchical model can be combined to infer variations in the parasite's basic reproductive ratio across experimental groups, enabling us to make predictions about the effect of resources and host genotype on the ability of the parasite to spread. Even though the high level of variability between replicates limited the resolution of the results, this Bayesian framework has strong potential to be used more widely in experimental ecology.

  8. Measuring hedonia and eudaimonia as motives for activities: Cross-national investigation through traditional and Bayesian structural equation modeling

    OpenAIRE

    Aleksandra eBujacz; Joar eVittersø; Veronika eHuta; Lukasz Dominik Kaczmarek

    2014-01-01

    Two major goals of this paper were, first to examine the cross-cultural consistency of the factor structure of the Hedonic and Eudaimonic Motives for Activities (HEMA) scale, and second to illustrate the advantages of using Bayesian estimation for such an examination. Bayesian estimation allows for more flexibility in model specification by making it possible to replace exact zero constraints (e.g. no cross-loadings) with approximate zero constraints (e.g. small cross-loadings). The stability...

  9. Measuring hedonia and eudaimonia as motives for activities: Cross-national investigation through traditional and Bayesian structural equation modeling

    OpenAIRE

    Bujacz, Aleksandra (red.); Vittersø, Joar; Huta, Veronika; Kaczmarek, Lukasz D.

    2014-01-01

    Two major goals of this paper were, first to examine the cross-cultural consistency of the factor structure of the Hedonic and Eudaimonic Motives for Activities (HEMA) scale, and second to illustrate the advantages of using Bayesian estimation for such an examination. Bayesian estimation allows for more flexibility in model specification by making it possible to replace exact zero constraints (e.g., no cross-loadings) with approximate zero constraints (e.g., small cross-loadings). The stabili...

  10. Bayesian risk-based decision method for model validation under uncertainty

    International Nuclear Information System (INIS)

    This paper develops a decision-making methodology for computational model validation, considering the risk of using the current model, data support for the current model, and cost of acquiring new information to improve the model. A Bayesian decision theory-based method is developed for this purpose, using a likelihood ratio as the validation metric for model assessment. An expected risk or cost function is defined as a function of the decision costs, and the likelihood and prior of each hypothesis. The risk is minimized through correctly assigning experimental data to two decision regions based on the comparison of the likelihood ratio with a decision threshold. A Bayesian validation metric is derived based on the risk minimization criterion. Two types of validation tests are considered: pass/fail tests and system response value measurement tests. The methodology is illustrated for the validation of reliability prediction models in a tension bar and an engine blade subjected to high cycle fatigue. The proposed method can effectively integrate optimal experimental design into model validation to simultaneously reduce the cost and improve the accuracy of reliability model assessment

  11. Bayesian Approach for Flexible Modeling of Semicompeting Risks Data

    OpenAIRE

    Han, Baoguang; Yu, Menggang; Dignam, James J.; Rathouz, Paul J.

    2014-01-01

    Semicompeting risks data arise when two types of events, non-terminal and terminal, are observed. When the terminal event occurs first, it censors the non-terminal event, but not vice versa. To account for possible dependent censoring of the non-terminal event by the terminal event and to improve prediction of the terminal event using the non-terminal event information, it is crucial to model their association properly. Motivated by a breast cancer clinical trial data analysis, we extend the ...

  12. Sequential estimation of neural models by Bayesian filtering

    OpenAIRE

    Closas Gómez, Pau

    2014-01-01

    Un dels reptes més difícils de la neurociència és el d'entendre la connectivitat del cervell. Aquest problema es pot tractar des de diverses perspectives, aquí ens centrem en els fenòmens locals que ocorren en una sola neurona. L'objectiu final és, doncs, entendre la dinàmica de les neurones i com la interconnexió amb altres neurones afecta al seu estat. Les observacions de traces del potencial de membrana constitueixen la principal font d'informació per a derivar models matemàtics d'una neur...

  13. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python

    Directory of Open Access Journals (Sweden)

    Thomas V Wiecki

    2013-08-01

    Full Text Available The diffusion model is a commonly used tool to infer latent psychological processes underlying decision making, and to link them to neural mechanisms based on reaction times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of reaction time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model, which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject / condition than non-hierarchical method, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g. fMRI influence decision making parameters. This paper will first describe the theoretical background of drift-diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the chi-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs

  14. A Comparison Between Two Average Modelling Techniques of AC-AC Power Converters

    OpenAIRE

    Pawel Szczesniak

    2015-01-01

    In this paper, a comparative evaluation of two modelling tools for switching AC-AC power converters is presented. Both of them are based on average modelling techniques. The first approach is based on the circuit averaging technique and consists in the topological manipulations, applied to a converters states. The second approach makes use of state-space averaged model of the converter and is based on analytical manipulations using the different state representations of a converter. The two m...

  15. Sequential Bayesian Detection: A Model-Based Approach

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J V

    2008-12-08

    Sequential detection theory has been known for a long time evolving in the late 1940's by Wald and followed by Middleton's classic exposition in the 1960's coupled with the concurrent enabling technology of digital computer systems and the development of sequential processors. Its development, when coupled to modern sequential model-based processors, offers a reasonable way to attack physics-based problems. In this chapter, the fundamentals of the sequential detection are reviewed from the Neyman-Pearson theoretical perspective and formulated for both linear and nonlinear (approximate) Gauss-Markov, state-space representations. We review the development of modern sequential detectors and incorporate the sequential model-based processors as an integral part of their solution. Motivated by a wealth of physics-based detection problems, we show how both linear and nonlinear processors can seamlessly be embedded into the sequential detection framework to provide a powerful approach to solving non-stationary detection problems.

  16. Construction of monitoring model and algorithm design on passenger security during shipping based on improved Bayesian network.

    Science.gov (United States)

    Wang, Jiali; Zhang, Qingnian; Ji, Wenfeng

    2014-01-01

    A large number of data is needed by the computation of the objective Bayesian network, but the data is hard to get in actual computation. The calculation method of Bayesian network was improved in this paper, and the fuzzy-precise Bayesian network was obtained. Then, the fuzzy-precise Bayesian network was used to reason Bayesian network model when the data is limited. The security of passengers during shipping is affected by various factors, and it is hard to predict and control. The index system that has the impact on the passenger safety during shipping was established on basis of the multifield coupling theory in this paper. Meanwhile, the fuzzy-precise Bayesian network was applied to monitor the security of passengers in the shipping process. The model was applied to monitor the passenger safety during shipping of a shipping company in Hainan, and the effectiveness of this model was examined. This research work provides guidance for guaranteeing security of passengers during shipping.

  17. Bayesian State-Space Modelling on High-Performance Hardware Using LibBi

    Directory of Open Access Journals (Sweden)

    Lawrence M. Murray

    2015-10-01

    Full Text Available LibBi is a software package for state space modelling and Bayesian inference on modern computer hardware, including multi-core central processing units, many-core graphics processing units, and distributed-memory clusters of such devices. The software parses a domain-specific language for model specification, then optimizes, generates, compiles and runs code for the given model, inference method and hardware platform. In presenting the software, this work serves as an introduction to state space models and the specialized methods developed for Bayesian inference with them. The focus is on sequential Monte Carlo (SMC methods such as the particle filter for state estimation, and the particle Markov chain Monte Carlo and SMC2 methods for parameter estimation. All are well-suited to current computer hardware. Two examples are given and developed throughout, one a linear three-element windkessel model of the human arterial system, the other a nonlinear Lorenz '96 model. These are specified in the prescribed modelling language, and LibBi demonstrated by performing inference with them. Empirical results are presented, including a performance comparison of the software with different hardware configurations.

  18. A Bayesian network approach to knowledge integration and representation of farm irrigation: 1. Model development

    Science.gov (United States)

    Wang, Q. J.; Robertson, D. E.; Haines, C. L.

    2009-02-01

    Irrigation is important to many agricultural businesses but also has implications for catchment health. A considerable body of knowledge exists on how irrigation management affects farm business and catchment health. However, this knowledge is fragmentary; is available in many forms such as qualitative and quantitative; is dispersed in scientific literature, technical reports, and the minds of individuals; and is of varying degrees of certainty. Bayesian networks allow the integration of dispersed knowledge into quantitative systems models. This study describes the development, validation, and application of a Bayesian network model of farm irrigation in the Shepparton Irrigation Region of northern Victoria, Australia. In this first paper we describe the process used to integrate a range of sources of knowledge to develop a model of farm irrigation. We describe the principal model components and summarize the reaction to the model and its development process by local stakeholders. Subsequent papers in this series describe model validation and the application of the model to assess the regional impact of historical and future management intervention.

  19. IONONEST—A Bayesian approach to modeling the lower ionosphere

    Science.gov (United States)

    Martin, Poppy L.; Scaife, Anna M. M.; McKay, Derek; McCrea, Ian

    2016-08-01

    Obtaining high-resolution electron density height profiles for the D region of the ionosphere as a well-sampled function of time is difficult for most methods of ionospheric measurement. Here we present a new method of using multifrequency riometry data for producing D region height profiles via inverse methods. To obtain these profiles, we use the nested sampling technique, implemented through our code, IONONEST. We demonstrate this approach using new data from the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) instrument and consider two electron density models. We compare the recovered height profiles from the KAIRA data with those from incoherent scatter radar using data from the European Incoherent Scatter Facility (EISCAT) instrument and find that there is good agreement between the two techniques, allowing for instrumental differences.

  20. Model Based Beamforming and Bayesian Inversion Signal Processing Methods for Seismic Localization of Underground Source

    DEFF Research Database (Denmark)

    Oh, Geok Lian

    the probability density function permits the incorporation of a priori information about the parameters, and also allow for incorporation of theoretical errors. This opens up the possibilities of application of inverse paradigm in the real-world geophysics inversion problems. In this PhD study, the Bayesian...... source. The examples show with the field data, inversion for localization is most advantageous when the forward model completely describe all the elastic wave components as is the case of the FDTD 3D elastic model. The simulation results of the inversion of the soil density values show that both...

  1. A Bayesian computational model for online character recognition and disability assessment during cursive eye writing

    Directory of Open Access Journals (Sweden)

    Julien eDiard

    2013-11-01

    Full Text Available This research involves a novel apparatus, in which the user is presented with an illusion inducing visual stimulus. The user perceives illusory movement that can be followed by the eye, so that smooth pursuit eye movements can be sustained in arbitrary directions. Thus, free-flow trajectories of any shape can be traced. In other words, coupled with an eye-tracking device, this apparatus enables "eye writing", which appears to be an original object of study. We adapt a previous model of reading and writing to this context. We describe a probabilistic model called the Bayesian Action-Perception for Eye On-Line model (BAP-EOL. It encodes probabilistic knowledge about isolated letter trajectories, their size, high-frequency components of the produced trajectory, and pupil diameter. We show how Bayesian inference, in this single model, can be used to solve several tasks, like letter recognition and novelty detection (i.e., recognizing when a presented character is not part of the learned database. We are interested in the potential use of the eye writing apparatus by motor impaired patients: the final task we solve by Bayesian inference is disability assessment (i.e., measuring and tracking the evolution of motor characteristics of produced trajectories. Preliminary experimental results are presented, which illustrate the method, showing the feasibility of character recognition in the context of eye writing. We then show experimentally how a model of the unknown character can be used to detect trajectories that are likely to be new symbols, and how disability assessment can be performed by opportunistically observing characteristics of fine motor control, as letter are being traced. Experimental analyses also help identify specificities of eye writing, as compared to handwriting, and the resulting technical challenges.

  2. Bayesian spatial semi-parametric modeling of HIV variation in Kenya.

    Directory of Open Access Journals (Sweden)

    Oscar Ngesa

    Full Text Available Spatial statistics has seen rapid application in many fields, especially epidemiology and public health. Many studies, nonetheless, make limited use of the geographical location information and also usually assume that the covariates, which are related to the response variable, have linear effects. We develop a Bayesian semi-parametric regression model for HIV prevalence data. Model estimation and inference is based on fully Bayesian approach via Markov Chain Monte Carlo (McMC. The model is applied to HIV prevalence data among men in Kenya, derived from the Kenya AIDS indicator survey, with n = 3,662. Past studies have concluded that HIV infection has a nonlinear association with age. In this study a smooth function based on penalized regression splines is used to estimate this nonlinear effect. Other covariates were assumed to have a linear effect. Spatial references to the counties were modeled as both structured and unstructured spatial effects. We observe that circumcision reduces the risk of HIV infection. The results also indicate that men in the urban areas were more likely to be infected by HIV as compared to their rural counterpart. Men with higher education had the lowest risk of HIV infection. A nonlinear relationship between HIV infection and age was established. Risk of HIV infection increases with age up to the age of 40 then declines with increase in age. Men who had STI in the last 12 months were more likely to be infected with HIV. Also men who had ever used a condom were found to have higher likelihood to be infected by HIV. A significant spatial variation of HIV infection in Kenya was also established. The study shows the practicality and flexibility of Bayesian semi-parametric regression model in analyzing epidemiological data.

  3. Bayesian modeling of perceived surface slant from actively-generated and passively-observed optic flow.

    Directory of Open Access Journals (Sweden)

    Corrado Caudek

    Full Text Available We measured perceived depth from the optic flow (a when showing a stationary physical or virtual object to observers who moved their head at a normal or slower speed, and (b when simulating the same optic flow on a computer and presenting it to stationary observers. Our results show that perceived surface slant is systematically distorted, for both the active and the passive viewing of physical or virtual surfaces. These distortions are modulated by head translation speed, with perceived slant increasing directly with the local velocity gradient of the optic flow. This empirical result allows us to determine the relative merits of two alternative approaches aimed at explaining perceived surface slant in active vision: an "inverse optics" model that takes head motion information into account, and a probabilistic model that ignores extra-retinal signals. We compare these two approaches within the framework of the bayesian theory. The "inverse optics" bayesian model produces veridical slant estimates if the optic flow and the head translation velocity are measured with no error; because of the influence of a "prior" for flatness, the slant estimates become systematically biased as the measurement errors increase. The bayesian model, which ignores the observer's motion, always produces distorted estimates of surface slant. Interestingly, the predictions of this second model, not those of the first one, are consistent with our empirical findings. The present results suggest that (a in active vision perceived surface slant may be the product of probabilistic processes which do not guarantee the correct solution, and (b extra-retinal signals may be mainly used for a better measurement of retinal information.

  4. Bayesian uncertainty assessment of flood predictions in ungauged urban basins for conceptual rainfall-runoff models

    Science.gov (United States)

    Sikorska, A. E.; Scheidegger, A.; Banasik, K.; Rieckermann, J.

    2012-04-01

    Urbanization and the resulting land-use change strongly affect the water cycle and runoff-processes in watersheds. Unfortunately, small urban watersheds, which are most affected by urban sprawl, are mostly ungauged. This makes it intrinsically difficult to assess the consequences of urbanization. Most of all, it is unclear how to reliably assess the predictive uncertainty given the structural deficits of the applied models. In this study, we therefore investigate the uncertainty of flood predictions in ungauged urban basins from structurally uncertain rainfall-runoff models. To this end, we suggest a procedure to explicitly account for input uncertainty and model structure deficits using Bayesian statistics with a continuous-time autoregressive error model. In addition, we propose a concise procedure to derive prior parameter distributions from base data and successfully apply the methodology to an urban catchment in Warsaw, Poland. Based on our results, we are able to demonstrate that the autoregressive error model greatly helps to meet the statistical assumptions and to compute reliable prediction intervals. In our study, we found that predicted peak flows were up to 7 times higher than observations. This was reduced to 5 times with Bayesian updating, using only few discharge measurements. In addition, our analysis suggests that imprecise rainfall information and model structure deficits contribute mostly to the total prediction uncertainty. In the future, flood predictions in ungauged basins will become more important due to ongoing urbanization as well as anthropogenic and climatic changes. Thus, providing reliable measures of uncertainty is crucial to support decision making.

  5. Waif goodbye! Average-size female models promote positive body image and appeal to consumers.

    Science.gov (United States)

    Diedrichs, Phillippa C; Lee, Christina

    2011-10-01

    Despite consensus that exposure to media images of thin fashion models is associated with poor body image and disordered eating behaviours, few attempts have been made to enact change in the media. This study sought to investigate an effective alternative to current media imagery, by exploring the advertising effectiveness of average-size female fashion models, and their impact on the body image of both women and men. A sample of 171 women and 120 men were assigned to one of three advertisement conditions: no models, thin models and average-size models. Women and men rated average-size models as equally effective in advertisements as thin and no models. For women with average and high levels of internalisation of cultural beauty ideals, exposure to average-size female models was associated with a significantly more positive body image state in comparison to exposure to thin models and no models. For men reporting high levels of internalisation, exposure to average-size models was also associated with a more positive body image state in comparison to viewing thin models. These findings suggest that average-size female models can promote positive body image and appeal to consumers. PMID:21500105

  6. Waif goodbye! Average-size female models promote positive body image and appeal to consumers.

    Science.gov (United States)

    Diedrichs, Phillippa C; Lee, Christina

    2011-10-01

    Despite consensus that exposure to media images of thin fashion models is associated with poor body image and disordered eating behaviours, few attempts have been made to enact change in the media. This study sought to investigate an effective alternative to current media imagery, by exploring the advertising effectiveness of average-size female fashion models, and their impact on the body image of both women and men. A sample of 171 women and 120 men were assigned to one of three advertisement conditions: no models, thin models and average-size models. Women and men rated average-size models as equally effective in advertisements as thin and no models. For women with average and high levels of internalisation of cultural beauty ideals, exposure to average-size female models was associated with a significantly more positive body image state in comparison to exposure to thin models and no models. For men reporting high levels of internalisation, exposure to average-size models was also associated with a more positive body image state in comparison to viewing thin models. These findings suggest that average-size female models can promote positive body image and appeal to consumers.

  7. Toward an Adaptive Learning System Framework: Using Bayesian Network to Manage Learner Model

    Directory of Open Access Journals (Sweden)

    Viet Anh Nguyen

    2012-12-01

    Full Text Available This paper represents a new approach to manage learner modeling in an adaptive learning system framework. It considers developing the basic components of an adaptive learning system such as the learner model, the course content model and the adaptation engine. We use the overlay model and Bayesian network to evaluate learners’ knowledge. In addition, we also propose a new content modeling method as well as adaptation engine to generate adaptive course based on learner’s knowledge. Based on this approach, we developed an adaptive learning system named is ACGS-II, that teaches students how to design an Entity Relationship model in a database system course. Empirical testing results for students who used the application indicate that our proposed model is very helpful as guidelines to develop adaptive learning system to meet learners’ demands.

  8. Assessing performance of Bayesian state-space models fit to Argos satellite telemetry locations processed with Kalman filtering.

    Science.gov (United States)

    Silva, Mónica A; Jonsen, Ian; Russell, Deborah J F; Prieto, Rui; Thompson, Dave; Baumgartner, Mark F

    2014-01-01

    Argos recently implemented a new algorithm to calculate locations of satellite-tracked animals that uses a Kalman filter (KF). The KF algorithm is reported to increase the number and accuracy of estimated positions over the traditional Least Squares (LS) algorithm, with potential advantages to the application of state-space methods to model animal movement data. We tested the performance of two Bayesian state-space models (SSMs) fitted to satellite tracking data processed with KF algorithm. Tracks from 7 harbour seals (Phoca vitulina) tagged with ARGOS satellite transmitters equipped with Fastloc GPS loggers were used to calculate the error of locations estimated from SSMs fitted to KF and LS data, by comparing those to "true" GPS locations. Data on 6 fin whales (Balaenoptera physalus) were used to investigate consistency in movement parameters, location and behavioural states estimated by switching state-space models (SSSM) fitted to data derived from KF and LS methods. The model fit to KF locations improved the accuracy of seal trips by 27% over the LS model. 82% of locations predicted from the KF model and 73% of locations from the LS model were GPS position. Uncertainty in KF model estimates (5.6 ± 5.6 km) was nearly half that of LS estimates (11.6 ± 8.4 km). Accuracy of KF and LS modelled locations was sensitive to precision but not to observation frequency or temporal resolution of raw Argos data. On average, 88% of whale locations estimated by KF models fell within the 95% probability ellipse of paired locations from LS models. Precision of KF locations for whales was generally higher. Whales' behavioural mode inferred by KF models matched the classification from LS models in 94% of the cases. State-space models fit to KF data can improve spatial accuracy of location estimates over LS models and produce equally reliable behavioural estimates. PMID:24651252

  9. Assessing performance of Bayesian state-space models fit to Argos satellite telemetry locations processed with Kalman filtering.

    Directory of Open Access Journals (Sweden)

    Mónica A Silva

    Full Text Available Argos recently implemented a new algorithm to calculate locations of satellite-tracked animals that uses a Kalman filter (KF. The KF algorithm is reported to increase the number and accuracy of estimated positions over the traditional Least Squares (LS algorithm, with potential advantages to the application of state-space methods to model animal movement data. We tested the performance of two Bayesian state-space models (SSMs fitted to satellite tracking data processed with KF algorithm. Tracks from 7 harbour seals (Phoca vitulina tagged with ARGOS satellite transmitters equipped with Fastloc GPS loggers were used to calculate the error of locations estimated from SSMs fitted to KF and LS data, by comparing those to "true" GPS locations. Data on 6 fin whales (Balaenoptera physalus were used to investigate consistency in movement parameters, location and behavioural states estimated by switching state-space models (SSSM fitted to data derived from KF and LS methods. The model fit to KF locations improved the accuracy of seal trips by 27% over the LS model. 82% of locations predicted from the KF model and 73% of locations from the LS model were <5 km from the corresponding interpolated GPS position. Uncertainty in KF model estimates (5.6 ± 5.6 km was nearly half that of LS estimates (11.6 ± 8.4 km. Accuracy of KF and LS modelled locations was sensitive to precision but not to observation frequency or temporal resolution of raw Argos data. On average, 88% of whale locations estimated by KF models fell within the 95% probability ellipse of paired locations from LS models. Precision of KF locations for whales was generally higher. Whales' behavioural mode inferred by KF models matched the classification from LS models in 94% of the cases. State-space models fit to KF data can improve spatial accuracy of location estimates over LS models and produce equally reliable behavioural estimates.

  10. Extracting a common high frequency signal from northern Quebec black spruce tree-rings with a Bayesian hierarchical model

    Directory of Open Access Journals (Sweden)

    J.-J. Boreux

    2009-03-01

    Full Text Available Dendrochronology, the scientific dating method based on the analysis of tree-ring growth patterns, has been frequently applied in climatology. The basic premise of dendroclimatology is that tree rings can be viewed as climate proxies, i.e. rings are assumed to contain some hidden information about past climate. From a statistical perspective, this extraction problem can be understood as the search of a hidden variable which represents the common signal within a collection of tree-ring width series. Classical average-based techniques used in dendrochronology have been, with different degrees of success (depending on tree species, regional factors and statistical methods, applied to estimate the mean behavior of this latent variable. Still, a precise quantification of uncertainties associated to the hidden variable distribution is difficult to assess. To model the error propagation throughout the extraction procedure, we propose and study a Bayesian hierarchical model that focuses on extracting an inter-annual high frequency signal. Our method is applied to black spruce (Picea mariana tree-rings recorded in northern Quebec and compared to a classical average-based techniques used by dendrochronologists.

  11. Extracting a common high frequency signal from Northern Quebec black spruce tree-rings with a Bayesian hierarchical model

    Directory of Open Access Journals (Sweden)

    J.-J. Boreux

    2009-10-01

    Full Text Available One basic premise of dendroclimatology is that tree rings can be viewed as climate proxies, i.e. rings are assumed to contain some hidden information about past climate. From a statistical perspective, this extraction problem can be understood as the search of a hidden variable which represents the common signal within a collection of tree-ring width series. Classical average-based techniques used in dendrochronology have been applied to estimate the mean behavior of this latent variable. Still, depending on tree species, regional factors and statistical methods, a precise quantification of uncertainties associated to the hidden variable distribution is difficult to assess. To model the error propagation throughout the extraction procedure, we propose and study a Bayesian hierarchical model that focuses on extracting an inter-annual high frequency signal. Our method is applied to black spruce (Picea mariana tree-rings recorded in Northern Quebec and compared to a classical average-based techniques used by dendrochronologists (Cook and Kairiukstis, 1992.

  12. Bayesian and maximum likelihood phylogenetic analyses of protein sequence data under relative branch-length differences and model violation

    Directory of Open Access Journals (Sweden)

    Harlow Timothy J

    2005-01-01

    Full Text Available Abstract Background Bayesian phylogenetic inference holds promise as an alternative to maximum likelihood, particularly for large molecular-sequence data sets. We have investigated the performance of Bayesian inference with empirical and simulated protein-sequence data under conditions of relative branch-length differences and model violation. Results With empirical protein-sequence data, Bayesian posterior probabilities provide more-generous estimates of subtree reliability than does the nonparametric bootstrap combined with maximum likelihood inference, reaching 100% posterior probability at bootstrap proportions around 80%. With simulated 7-taxon protein-sequence datasets, Bayesian posterior probabilities are somewhat more generous than bootstrap proportions, but do not saturate. Compared with likelihood, Bayesian phylogenetic inference can be as or more robust to relative branch-length differences for datasets of this size, particularly when among-sites rate variation is modeled using a gamma distribution. When the (known correct model was used to infer trees, Bayesian inference recovered the (known correct tree in 100% of instances in which one or two branches were up to 20-fold longer than the others. At ratios more extreme than 20-fold, topological accuracy of reconstruction degraded only slowly when only one branch was of relatively greater length, but more rapidly when there were two such branches. Under an incorrect model of sequence change, inaccurate trees were sometimes observed at less extreme branch-length ratios, and (particularly for trees with single long branches such trees tended to be more inaccurate. The effect of model violation on accuracy of reconstruction for trees with two long branches was more variable, but gamma-corrected Bayesian inference nonetheless yielded more-accurate trees than did either maximum likelihood or uncorrected Bayesian inference across the range of conditions we examined. Assuming an exponential

  13. Providing a Connection between a Bayesian Inverse Modeling Tool and a Coupled Hydrogeological Processes Modeling Software

    Science.gov (United States)

    Frystacky, H.; Osorio-Murillo, C. A.; Over, M. W.; Kalbacher, T.; Gunnell, D.; Kolditz, O.; Ames, D.; Rubin, Y.

    2013-12-01

    The Method of Anchored Distributions (MAD) is a Bayesian technique for characterizing the uncertainty in geostatistical model parameters. Open-source software has been developed in a modular framework such that this technique can be applied to any forward model software via a driver. This presentation is about the driver that has been developed for OpenGeoSys (OGS), open-source software that can simulate many hydrogeological processes, including couple processes. MAD allows the use of multiple data types for conditioning the spatially random fields and assessing model parameter likelihood. For example, if simulating flow and mass transport, the inversion target variable could be hydraulic conductivity and the inversion data types could be head, concentration, or both. The driver detects from the OGS files which processes and variables are being used in a given project and allows MAD to prompt the user to choose those that are to be modeled or to be treated deterministically. In this way, any combination of processes allowed by OGS can have MAD applied. As for the software, there are two versions, each with its own OGS driver. A Windows desktop version is available as a graphical user interface and is ideal for the learning and teaching environment. High-throughput computing can even be achieved with this version via HTCondor if large projects want to be pursued in a computer lab. In addition to this desktop application, a Linux version is available equipped with MPI such that it can be run in parallel on a computer cluster. All releases can be downloaded from the MAD Codeplex site given below.

  14. Nested sampling for Bayesian model comparison in the context of Salmonella disease dynamics.

    Directory of Open Access Journals (Sweden)

    Richard Dybowski

    Full Text Available Understanding the mechanisms underlying the observed dynamics of complex biological systems requires the statistical assessment and comparison of multiple alternative models. Although this has traditionally been done using maximum likelihood-based methods such as Akaike's Information Criterion (AIC, Bayesian methods have gained in popularity because they provide more informative output in the form of posterior probability distributions. However, comparison between multiple models in a Bayesian framework is made difficult by the computational cost of numerical integration over large parameter spaces. A new, efficient method for the computation of posterior probabilities has recently been proposed and applied to complex problems from the physical sciences. Here we demonstrate how nested sampling can be used for inference and model comparison in biological sciences. We present a reanalysis of data from experimental infection of mice with Salmonella enterica showing the distribution of bacteria in liver cells. In addition to confirming the main finding of the original analysis, which relied on AIC, our approach provides: (a integration across the parameter space, (b estimation of the posterior parameter distributions (with visualisations of parameter correlations, and (c estimation of the posterior predictive distributions for goodness-of-fit assessments of the models. The goodness-of-fit results suggest that alternative mechanistic models and a relaxation of the quasi-stationary assumption should be considered.

  15. A hierarchical bayesian model to quantify uncertainty of stream water temperature forecasts.

    Directory of Open Access Journals (Sweden)

    Guillaume Bal

    Full Text Available Providing generic and cost effective modelling approaches to reconstruct and forecast freshwater temperature using predictors as air temperature and water discharge is a prerequisite to understanding ecological processes underlying the impact of water temperature and of global warming on continental aquatic ecosystems. Using air temperature as a simple linear predictor of water temperature can lead to significant bias in forecasts as it does not disentangle seasonality and long term trends in the signal. Here, we develop an alternative approach based on hierarchical Bayesian statistical time series modelling of water temperature, air temperature and water discharge using seasonal sinusoidal periodic signals and time varying means and amplitudes. Fitting and forecasting performances of this approach are compared with that of simple linear regression between water and air temperatures using i an emotive simulated example, ii application to three French coastal streams with contrasting bio-geographical conditions and sizes. The time series modelling approach better fit data and does not exhibit forecasting bias in long term trends contrary to the linear regression. This new model also allows for more accurate forecasts of water temperature than linear regression together with a fair assessment of the uncertainty around forecasting. Warming of water temperature forecast by our hierarchical Bayesian model was slower and more uncertain than that expected with the classical regression approach. These new forecasts are in a form that is readily usable in further ecological analyses and will allow weighting of outcomes from different scenarios to manage climate change impacts on freshwater wildlife.

  16. Model averaging and value-at-risk based evaluation of large multi asset volatility models for risk management

    OpenAIRE

    Pesaran, Mohammad Hashem; Zaffaroni, Paolo

    2004-01-01

    This paper considers the problem of model uncertainty in the case of multi-asset volatility models and discusses the use of model averaging techniques as a way of dealing with the risk of inadvertently using false models in portfolio management. In particular, it is shown that under certain conditions portfolio returns based on an average model will be more fat-tailed than if based on an individual underlying model with the same average volatility. Evaluation of volatility models is also cons...

  17. Technical Note: Approximate Bayesian parameterization of a complex tropical forest model

    Science.gov (United States)

    Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.

    2013-08-01

    Inverse parameter estimation of process-based models is a long-standing problem in ecology and evolution. A key problem of inverse parameter estimation is to define a metric that quantifies how well model predictions fit to the data. Such a metric can be expressed by general cost or objective functions, but statistical inversion approaches are based on a particular metric, the probability of observing the data given the model, known as the likelihood. Deriving likelihoods for dynamic models requires making assumptions about the probability for observations to deviate from mean model predictions. For technical reasons, these assumptions are usually derived without explicit consideration of the processes in the simulation. Only in recent years have new methods become available that allow generating likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional MCMC, performs well in retrieving known parameter values from virtual field data generated by the forest model. We analyze the results of the parameter estimation, examine the sensitivity towards the choice and aggregation of model outputs and observed data (summary statistics), and show results from using this method to fit the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss differences of this approach to Approximate Bayesian Computing (ABC), another commonly used method to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can

  18. Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model

    Science.gov (United States)

    Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.

    2014-02-01

    Inverse parameter estimation of process-based models is a long-standing problem in many scientific disciplines. A key question for inverse parameter estimation is how to define the metric that quantifies how well model predictions fit to the data. This metric can be expressed by general cost or objective functions, but statistical inversion methods require a particular metric, the probability of observing the data given the model parameters, known as the likelihood. For technical and computational reasons, likelihoods for process-based stochastic models are usually based on general assumptions about variability in the observed data, and not on the stochasticity generated by the model. Only in recent years have new methods become available that allow the generation of likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional Markov chain Monte Carlo (MCMC) sampler, performs well in retrieving known parameter values from virtual inventory data generated by the forest model. We analyze the results of the parameter estimation, examine its sensitivity to the choice and aggregation of model outputs and observed data (summary statistics), and demonstrate the application of this method by fitting the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss how this approach differs from approximate Bayesian computation (ABC), another method commonly used to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation

  19. Technical Note: Approximate Bayesian parameterization of a complex tropical forest model

    Directory of Open Access Journals (Sweden)

    F. Hartig

    2013-08-01

    Full Text Available Inverse parameter estimation of process-based models is a long-standing problem in ecology and evolution. A key problem of inverse parameter estimation is to define a metric that quantifies how well model predictions fit to the data. Such a metric can be expressed by general cost or objective functions, but statistical inversion approaches are based on a particular metric, the probability of observing the data given the model, known as the likelihood. Deriving likelihoods for dynamic models requires making assumptions about the probability for observations to deviate from mean model predictions. For technical reasons, these assumptions are usually derived without explicit consideration of the processes in the simulation. Only in recent years have new methods become available that allow generating likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional MCMC, performs well in retrieving known parameter values from virtual field data generated by the forest model. We analyze the results of the parameter estimation, examine the sensitivity towards the choice and aggregation of model outputs and observed data (summary statistics, and show results from using this method to fit the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss differences of this approach to Approximate Bayesian Computing (ABC, another commonly used method to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter

  20. Constraints on cosmic-ray propagation models from a global Bayesian analysis

    CERN Document Server

    Trotta, R; Moskalenko, I V; Porter, T A; de Austri, R Ruiz; Strong, A W

    2010-01-01

    Research in many areas of modern physics such as, e.g., indirect searches for dark matter and particle acceleration in SNR shocks, rely heavily on studies of cosmic rays (CRs) and associated diffuse emissions (radio, microwave, X-rays, gamma rays). While very detailed numerical models of CR propagation exist, a quantitative statistical analysis of such models has been so far hampered by the large computational effort that those models require. Although statistical analyses have been carried out before using semi-analytical models (where the computation is much faster), the evaluation of the results obtained from such models is difficult, as they necessarily suffer from many simplifying assumptions, The main objective of this paper is to present a working method for a full Bayesian parameter estimation for a numerical CR propagation model. For this study, we use the GALPROP code, the most advanced of its kind, that uses astrophysical information, nuclear and particle data as input to self-consistently predict ...