WorldWideScience

Sample records for bay wetlands conservation

  1. Gradient Analysis and Classification of Carolina Bay Vegetation: A Framework for Bay Wetlands Conservation and Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Diane De Steven,Ph.D.; Maureen Tone,PhD.

    1997-10-01

    This report address four project objectives: (1) Gradient model of Carolina bay vegetation on the SRS--The authors use ordination analyses to identify environmental and landscape factors that are correlated with vegetation composition. Significant factors can provide a framework for site-based conservation of existing diversity, and they may also be useful site predictors for potential vegetation in bay restorations. (2) Regional analysis of Carolina bay vegetation diversity--They expand the ordination analyses to assess the degree to which SRS bays encompass the range of vegetation diversity found in the regional landscape of South Carolina's western Upper Coastal Plain. Such comparisons can indicate floristic status relative to regional potentials and identify missing species or community elements that might be re-introduced or restored. (3) Classification of vegetation communities in Upper Coastal Plain bays--They use cluster analysis to identify plant community-types at the regional scale, and explore how this classification may be functional with respect to significant environmental and landscape factors. An environmentally-based classification at the whole-bay level can provide a system of templates for managing bays as individual units and for restoring bays to desired plant communities. (4) Qualitative model for bay vegetation dynamics--They analyze present-day vegetation in relation to historic land uses and disturbances. The distinctive history of SRS bays provides the possibility of assessing pathways of post-disturbance succession. They attempt to develop a coarse-scale model of vegetation shifts in response to changing site factors; such qualitative models can provide a basis for suggesting management interventions that may be needed to maintain desired vegetation in protected or restored bays.

  2. 76 FR 22785 - Wetland Conservation

    Science.gov (United States)

    2011-04-25

    ... 7 CFR Part 12 RIN 0578-AA58 Wetland Conservation AGENCY: Office of the Secretary, United States... concerning the Natural Resources Conservation Service's (NRCS) coordination responsibilities. DATES..., Director, Ecological Sciences Division, U.S. Department of Agriculture, Natural Resources Conservation...

  3. Bat response to carolina bays and wetland restoration in the southeastern U.S. Coastal Plain.

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Jennifer M.; Michael A. Menzel; John C. Kilgo; W. Mark Ford; ; John W. Edwards.

    2005-09-01

    Abstract: Bat activity in the southeastern United States is concentrated over riparian areas and wetland habitats. The restoration and creation of wetlands for mitigation purposes is becoming common in the Southeast. Understanding the effects of these restoration efforts on wetland flora and fauna is thus becoming increasingly important. Because bats (Order: Chiroptera) consist of many species that are of conservation concern and are commonly associated with wetland and riparian habitats in the Southeast (making them a good general indicator for the condition of wetland habitats), we monitored bat activity over restored and reference Carolina bays surrounded by pine savanna (Pinus spp.) or mixed pine-hardwood habitat types at the Savannah River Site in South Carolina. In order to determine how wetland restoration efforts affected the bat community, we monitored bat activity above drained Carolina bays pre- and post-restoration. Our results indicate that bat activity was greater over reference (i.e., undrained) than drained bays prior to the restorative efforts. One year following combined hydrologic and vegetation treatment, however, bat activity was generally greater over restored than reference bays. Bat activity was also greater over both reference and restored bays than in random, forested interior locations. We found significantly more bat activity after restoration than prior to restoration for all but one species in the treatment bays, suggesting that Carolina bay restoration can have almost immediate positive impacts on bat activity.

  4. Resilience of coastal wetlands to extreme hydrologicevents in Apalachicola Bay

    Science.gov (United States)

    Medeiros, S. C.; Singh, A.; Tahsin, S.

    2017-12-01

    Extreme hydrologic events such as hurricanes and droughts continuously threaten wetlands which provide key ecosystem services in coastal areas. The recovery time for vegetation after impact fromthese extreme events can be highly variable depending on the hazard type and intensity. Apalachicola Bay in Florida is home to a rich variety of saltwater and freshwater wetlands and is subject to a wide rangeof hydrologic hazards. Using spatiotemporal changes in Landsat-based empirical vegetation indices, we investigate the impact of hurricane and drought on both freshwater and saltwater wetlands from year 2000to 2015 in Apalachicola Bay. Our results indicate that saltwater wetlands are more resilient than freshwater wetlands and suggest that in response to hurricanes, the coastal wetlands took almost a year to recover,while recovery following a drought period was observed after only a month.

  5. 77 FR 74167 - Information Collection Request: Highly Erodible Land Conservation and Wetland Conservation

    Science.gov (United States)

    2012-12-13

    ... Farm Service Agency Information Collection Request: Highly Erodible Land Conservation and Wetland Conservation AGENCIES: Farm Service Agency, USDA. ACTION: Notice; request for comments. SUMMARY: In accordance... associated with Highly Erodible Land Conservation and Wetland Conservation certification requirements. This...

  6. Microbial diversity in restored wetlands of San Francisco Bay

    Energy Technology Data Exchange (ETDEWEB)

    Theroux, Susanna [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Hartman, Wyatt [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; He, Shaomei [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Univ. of Wisconsin, Madison, WI (United States); Tringe, Susannah [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2013-12-09

    Wetland ecosystems may serve as either a source or a sink for atmospheric carbon and greenhouse gases. This delicate carbon balance is influenced by the activity of belowground microbial communities that return carbon dioxide and methane to the atmosphere. Wetland restoration efforts in the San Francisco Bay-Delta region may help to reverse land subsidence and possibly increase carbon storage in soils. However, the effects of wetland restoration on microbial communities, which mediate soil metabolic activity and carbon cycling, are poorly studied. In an effort to better understand the underlying factors which shape the balance of carbon flux in wetland soils, we targeted the microbial communities in a suite of restored and historic wetlands in the San Francisco Bay-Delta region. Using DNA and RNA sequencing, coupled with greenhouse gas monitoring, we profiled the diversity and metabolic potential of the wetland soil microbial communities along biogeochemical and wetland age gradients. Our results show relationships among geochemical gradients, availability of electron acceptors, and microbial community composition. Our study provides the first genomic glimpse into microbial populations in natural and restored wetlands of the San Francisco Bay-Delta region and provides a valuable benchmark for future studies.

  7. Control of hardwood regeneration in restored carolina bay depression wetlands.

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Lee, J.; Barton, Christopher, D.; Blake, John, I.

    2012-06-01

    Carolina bays are depression wetlands located in the coastal plain region of the eastern United States. Disturbance of this wetland type has been widespread, and many sites contain one or more drainage ditches. Restoration of bays is of interest because they are important habitats for rare flora and fauna. Previous bay restoration projects have identified flood-tolerant woody competitors in the seedbank and re-sprouting as impediments to the establishment of desired herbaceous wetland vegetation communities. We restored 3 bays on the Savannah River Site, South Carolina, by plugging drainage ditches, harvesting residual pine/hardwood stands within the bays, and monitoring the vegetative response of the seedbank to the hydrologic change. We applied a foliar herbicide on one-half of each bay to control red maple (Acerrubrum), sweetgum (Liquidambar styraciflua), and water oak (Quercus nigra) sprouting, and we tested its effectiveness across a hydrologic gradient in each bay. Hardwood regeneration was partially controlled by flooding in bays that exhibited long growing season hydroperiods. The findings also indicated that herbicide application was an effective means for managing hardwood regeneration and re-sprouting in areas where hydrologic control was ineffective. Herbicide use had no effect on species richness in the emerging vegetation community. In late-season drawdown periods, or in bays where hydroperiods are short, more than one herbicide application may be necessary.

  8. Microbial diversity and carbon cycling in San Francisco Bay wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Theroux, Susanna [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Hartman, Wyatt [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; He, Shaomei [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Univ. of Wisconsin, Madison, WI (United States); Tringe, Susannah [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2014-03-21

    Wetland restoration efforts in San Francisco Bay aim to rebuild habitat for endangered species and provide an effective carbon storage solution, reversing land subsidence caused by a century of industrial and agricultural development. However, the benefits of carbon sequestration may be negated by increased methane production in newly constructed wetlands, making these wetlands net greenhouse gas (GHG) sources to the atmosphere. We investigated the effects of wetland restoration on below-ground microbial communities responsible for GHG cycling in a suite of historic and restored wetlands in SF Bay. Using DNA and RNA sequencing, coupled with real-time GHG monitoring, we profiled the diversity and metabolic potential of wetland soil microbial communities. The wetland soils harbor diverse communities of bacteria and archaea whose membership varies with sampling location, proximity to plant roots and sampling depth. Our results also highlight the dramatic differences in GHG production between historic and restored wetlands and allow us to link microbial community composition and GHG cycling with key environmental variables including salinity, soil carbon and plant species.

  9. Conservation of Mexican wetlands: role of the North American Wetlands Conservation Act

    Science.gov (United States)

    Wilson, M.H.; Ryan, D.A.

    1997-01-01

    Mexico's wetlands support a tremendous biological diversity and provide significant natural resource benefits to local communities. Because they are also critical stopover and wintering grounds for much of North America's waterfowl and other migratory birds, Mexico has become an important participant in continental efforts to conserve these resources through the North American Wetlands Conservation Act. Funding from the Act has supported partnerships in a number of Mexico's priority wetlands to conduct data analyses and dissemination, mapping, environmental education, wetland restoration, development of sustainable economic alternatives for local people, and reserve planning and management. These partnerships, with the close involvement of Mexico's Federal Government authority, the Instituto Nacional de Ecologia, have advanced conservation in a uniquely Mexican model that differs from that employed in the United States and Canada.

  10. Investigating mitigation opportunities in coastal wetlands losses of Galveston Bay due to sea level rise

    Science.gov (United States)

    Sun, D.; Imtiaz, H.

    2017-12-01

    As the climate changes over the course of the future, sea level is predicted to rise at an accelerated rate. Coastal wetlands will be affected by the relative sea level rise at each specific area. This study utilized GIS data produced by the Sea Level Affecting Marshes Model (SLAMM) to determine the response of coastal wetlands along the west coast of Galveston Bay to sea level rise. Spatial analysis was conducted using the data from SLAMM along with current and future projected land use along the west coast. Wetland area was lost under all sea level rise scenarios through 2100 when considering land use and development, with significant amounts lost under future development plans. Mitigation methods were evaluated to determine which combinations would allow maintenance of wetland stocks as sea level rises and development along the coast continues. This study suggested a combination of hard protection structures and wetland creation methods to maintain a balance between conservation of the wetland ecosystem and increased demands for land for development along the western coast of the Bay.

  11. 76 FR 82075 - Highly Erodible Land and Wetland Conservation

    Science.gov (United States)

    2011-12-30

    ... Secretary 7 CFR Part 12 RIN 0560-AH97 Highly Erodible Land and Wetland Conservation AGENCY: Office of the... ``good faith'' provisions in the USDA regulations allow violators of highly erodible land conservation (HELC) or wetland conservation (WC) provisions to retain eligibility for USDA program benefits if...

  12. Flora characteristics of Chenier Wetland in Bohai Bay and biogeographic relations with adjacent wetlands

    Science.gov (United States)

    Zhao, Yanyun; Lu, Zhaohua; Liu, Jingtao; Hu, Shugang

    2017-12-01

    A key step towards the restoration of heavily disturbed fragile coastal wetland ecosystems is determining the composition and characteristics of the plant communities involved. This study determined and characterized the community of higher plants in the Chenier wetland of Bohai Bay using a combination of field surveys, quadrat approaches, and multivariate statistical analyses. This community was then compared to other adjacent wetlands (Tianjin, Qinhuangdao, Laizhouwan, Jiaozhouwan, and Yellow River Delta wetland) located near the Huanghai and Bohai Seas using principal coordinate analysis (PCoA). Results showed a total of 56 higher plant species belonging to 52 genera from 20 families in Chenier wetland, the majority of which were dicotyledons. Single-species families were predominant, while larger families, including Gramineae, Compositae, Leguminosae, and Chenopodiaceae contained a higher number of species (each⩾6 species). Cosmopolitan species were also dominant with apparent intrazonality. Abundance (number of species) of temperate species was twice that of tropical taxa. Species number of perennial herbs, such as Gramineae and Compositae, was generally higher. Plant diversity in the Chenier wetland, based on the Shannon-Wiener index, was observed to be between the Qinhuangdao and Laizhouwan indices, while no significant difference was found in other wetlands using the Simpson index. Despite these slight differences in diversity, PCoA based on species abundance and composition of the wetland flora suggest that the Bohai Chenier community was highly similar to the coastal wetlands in Tianjin and Laizhouwan, further suggesting that these two wetlands could be important breeding grounds and resources for the restoration of the plant ecosystem in the Chenier wetland.

  13. The Legal Structure of Taiwan’s Wetland Conservation Act

    Directory of Open Access Journals (Sweden)

    Yi-Yuan Su

    2014-12-01

    Full Text Available In July of 2013, Taiwan passed its Wetland Conservation Act and will begin the implementation of the Act on 2 February 2015. With this Act, Taiwan has become the second Asian country to have specific legislation on wetland conservation and protection. This new law enables the society to achieve sustainable utilization on wetland ecological services. The core concepts of the Wetland Conversation Act include biological diversity conservation and wise use of wetland resources. Special political circumstances prevent Taiwan from registering its wetlands as a conservation priority under the Ramsar Convention. This new law allows the government to evaluate and assign a specific area as a “Wetland of Importance.” Under this status, any development activities within the designated area shall be prohibited unless the developer prepares a usage plan for review. The usage plan and the original usage of the natural resources within the wetland area shall also follow the “wise use” principle to protect the wetland and biological service system. However, this new law does not provide clear separation between the two different “wise use” standards. If the development is deemed necessary, new law provides compensation mitigation measures to extend the surface of the wetland and provides additional habitats for various species. Wetland conservation and management rely heavily on systematic research and fundamental data regarding Taiwan’s wetlands. Determining how to adopt these scientific methodologies and transfer them into enforceable mechanisms is a sizeable challenge for both biologists and lawyers as the Wetland Conservation Act creates many legal norms without clarifying definitions. This article will review the current wetland regulations from the legal perspective and provide suggestions for enforcement in the future.

  14. Incentives for wetlands conservation in the Mufindi wetlands of the ...

    African Journals Online (AJOL)

    Sustainable wetland management has to some extent become a high priority for world's environmentalists. Achieving sustainable wetland management may require an increase in the voluntary adoption of best management practices by both local communities and the government. This may be preceded by more tailored ...

  15. Conservation of Louisiana's coastal wetland forests

    Science.gov (United States)

    Jim L. Chambers; Richard F. Keim; William H. Conner; John W. Jr. Day; Stephen P. Faulkner; Emile S. Gardiner; Melinda s. Hughes; Sammy L. King; Kenneth W. McLeod; Craig A. Miller; J. Andrew Nyman; Gary P. Shaffer

    2006-01-01

    Large-scale efforts to protect and restore coastal wetlands and the concurrent renewal of forest harvesting in cypress-tupelo swamps have brought new attention to Louisiana's coastal wetland forests in recent years. Our understanding of these coastal wetland forests has been limited by inadequate data and the lack of a comprehensive review of existing information...

  16. Conservation and restoration of forested wetlands: new techniques and perspectives

    Science.gov (United States)

    James Johnston; Steve Hartley; Antonio Martucci

    2000-01-01

    A partnership of state and federal agencies and private organizations is developing advanced spatial analysis techniques applied for conservation and restoration of forested wetlands. The project goal is to develop an application to assist decisionmakers in defining the eligibility of land sites for entry in the Wetland Reserve Program (WRP) of the U.S. Department of...

  17. The Mid-Atlantic Regional Wetland Conservation Effects Assessment Project

    Science.gov (United States)

    Megan Lang; Greg McCarty; Mark Walbridge; Patrick Hunt; Tom Ducey; Clinton Church; Jarrod Miller; Laurel Kluber; Ali Sadeghi; Martin Rabenhorst; Amir Sharifi; In-Young Yeo; Andrew Baldwin; Margaret Palmer; Tom Fisher; Dan Fenstermaher; Sanchul Lee; Owen McDonough; Metthea Yepsen; Liza McFarland; Anne Gustafson; Rebecca Fox; Chris Palardy; William Effland; Mari-Vaughn Johnson; Judy Denver; Scott Ator; Joseph Mitchell; Dennis Whigham

    2016-01-01

    Wetlands impart many important ecosystem services, including maintenance of water quality, regulation of the climate and hydrological flows, and enhancement of biodiversity through the provision of food and habitat. The conversion of natural lands to agriculture has led to broad scale historic wetland loss, but current US Department of Agriculture conservation programs...

  18. Part I, Introduction: Ecology and Regional Context of Tidal Wetlands in the San Francisco Bay National Estuarine Research Reserve

    Directory of Open Access Journals (Sweden)

    Matthew C. Ferner

    2011-12-01

    Full Text Available This two-part special issue reviews the basic ecology of tidal wetlands in the San Francisco Estuary. Several articles highlight the well-preserved tracts of historic tidal marsh found at China Camp State Park and Rush Ranch Open Space Preserve. These two protected areas serve as important reference sites for wetland restoration and conservation and also comprise San Francisco Bay National Estuarine Research Reserve (SF Bay NERR. SF Bay NERR is part of the National Oceanic and Atmospheric Administration’s nationwide network of 28 estuarine research reserves (http://www.nerrs.noaa.gov that all share common goals: (1 conducting standardized long-term monitoring, (2 supporting applied environmental research, (3 providing stewardship of estuarine natural resources, and (4 linking science with decision making in pursuit of effective solutions to coastal management problems.

  19. Mobile Bay: Chapter K in Emergent wetlands status and trends in the northern Gulf of Mexico: 1950-2010

    Science.gov (United States)

    Handley, Larry; Spear, Kathryn A.; Jones, Stephen; Thatcher, Cindy A.

    2011-01-01

    Mobile Bay is the largest bay found in Alabama’s coastal area (Handley et al., 2007). It was named an Estuary of National Significance in 1995 under the U.S. Environmental Protection Agency’s (EPA) National Estuary Program (NEP), and its Comprehensive Conservation Management Plan was completed in 2002. Mobile Bay is 1,070 km2 (413 miles2) in area and 51 km (32 miles) long, making it the sixth largest estuary in the continental United States (Mobile Bay NEP, 2008). Its ecosystem provides habitat for more than 300 species of birds, 310 species of fish, 68 species of reptiles, 57 species of mammals, 40 species of amphibians, and 15 species of shrimp (Mobile Bay NEP, 1997). Mobile Bay lies between the Mississippi and Atlantic Flyways (Mobile Bay NEP, 2003). Commercial and residential development and industrial use is heavy in the Mobile Bay area. Although local growth and industrial markets support the Mobile Bay area economy, the resulting environmental damage to the very ecosystem upon which they depend remains a threat to the environment, economy, and population.The Mobile Bay ecosystem boasts high biological diversity and productivity and supports many freshwater and saltwater species of recreational and commercial importance. The great diversity of Mobile Bay reflects the diversity of Alabama, which is home to the largest number of different plant and animal species of all states east of the Mississippi River (Stein, 2002), and is bolstered by the unique climate and geographic conditions surrounding the bay. Freshwater inflow from the Mobile-Tensaw River Delta, ranging from 60,000 to 3,700,000 gallons per second (Wallace, 1996), mixes with saltwater from the Gulf of Mexico, which enters Mobile Bay via wind and tides (Burgan and Engle, 2006). Because of the unique conditions surrounding Mobile Bay, including shallow waters, a dynamic climate, and artificial hydrologic modifications—such as the construction of the Mobile Bay Causeway in the 1920s, which serves

  20. Pre-Construction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield (HAAF) Wetlands Restoration Site. Part 2

    National Research Council Canada - National Science Library

    Best, Elly P; Fredrickson, Herbert L; Hintelmann, Holger; Clarisse, Olivier; Dimock, Brian; Lutz, Charles H; Lotufo, Gui R; Millward, Rod N; Bednar, Anthony J; Furey, John S

    2007-01-01

    ...) is working with the San Francisco Basin Regional Water Board, California State Coastal Conservancy, and San Francisco Bay Conservation and Development Commission to reconstruct wetlands at the former...

  1. Tampa Bay coastal wetlands: nineteenth to twentieth century tidal marsh-to-mangrove conversion

    Science.gov (United States)

    Raabe, Ellen A.; Roy, Laura C.; McIvor, Carole C.

    2012-01-01

    Currently, mangroves dominate the tidal wetlands of Tampa Bay, Florida, but an examination of historic navigation charts revealed dominance of tidal marshes with a mangrove fringe in the 1870s. This study's objective was to conduct a new assessment of wetland change in Tampa Bay by digitizing nineteenth century topographic and public land surveys and comparing these to modern coastal features at four locations. We differentiate between wetland loss, wetland gain through marine transgression, and a wetland conversion from marsh to mangrove. Wetland loss was greatest at study sites to the east and north. Expansion of the intertidal zone through marine transgression, across adjacent low-lying land, was documented primarily near the mouth of the bay. Generally, the bay-wide marsh-to-mangrove ratio reversed from 86:14 to 25:75 in 125 years. Conversion of marsh to mangrove wetlands averaged 72 % at the four sites, ranging from 52 % at Old Tampa Bay to 95 % at Feather Sound. In addition to latitudinal influences, intact wetlands and areas with greater freshwater influence exhibited a lower rate of marsh-to-mangrove conversion. Two sources for nineteenth century coastal landscape were in close agreement, providing an unprecedented view of historic conditions in Tampa Bay.

  2. Strategy and scenario for wetland conservation in India

    Directory of Open Access Journals (Sweden)

    Monjit Paul

    2011-01-01

    Full Text Available Wetlands are the most important ecosystems for the organisms in Animal Kingdom (including human beings and Plant Kingdom. There are about hundred species of flora in and around Indian Wetlands. They include Sagittaria montividensis, Cryptocoryne ciliata, Cyperus spp., Acrostichum aureum, Ipomoea aquatica, etc. They are also the habitats of several mammals like the marsh mongoose, small Indian mongoose, palm civet and the small Indian civet. Endangered species like the Indian mud turtle have also been found in the wetlands. Certain species of birds also visit the wetlands. Prominent ones are grebe, coot, darter, shag, cormorant, teals, egrets, jacanas, snipes, tern, eagle, sand piper, gulls, rails and kingfishers. The wetlands are important for production of foods and human safety. The East Kolkata wetlands with their garbage farms and fishponds have provided the city with three facilities, i.e., food, sanitation and livelihood. They also provide ecological security to the city of Kolkata. Over the past few years, wetlands have come under severe threat. With the population explosion, some of the largest fish farms have been converted from pisiculture to paddy cultivation. Industries also empty their wastewater effluent without treatment to the channels flowing eastward and these ultimately land up in the wetlands. This has caused substantial amount of deposits of metal in the canal sludge and made the wastewater incapable for the consumption by the fishes and the plants grown in the wetland. Nevertheless, due to urbanization or human interference, the wetland and its unique ecosystem biodiversity are in danger. After Ramsar Convention, 1971, different acts have been passed in India for conservation of wetlands, along with conducting general awareness program for the local people by the government, conducting different programs, management of wetlands, and research by the government, NGOs and other institutions.

  3. Modeling the climatic and subsurface stratigraphy controls on the hydrology of a Carolina Bay wetland in South Carolina, USA

    Science.gov (United States)

    Ge Sun; Timothy J. Callahan; Jennifer E. Pyzoha; Carl C. Trettin

    2006-01-01

    Restoring depressional wetlands or geographically isolated wetlands such as cypress swamps and Carolina bays on the Atlantic Coastal Plains requires a clear understanding of the hydrologic processes and water balances. The objectives of this paper are to (1) test a distributed forest hydrology model, FLATWOODS, for a Carolina bay wetland system using seven years of...

  4. Monitoring wetland inundation dynamics in response to weather variability in the Chesapeake Bay watershed

    Science.gov (United States)

    Wetlands provide a broad range of ecosystem services, including flood control, water purification, groundwater replenishment, and biodiversity support. The provision of these services, which are especially valued in the Chesapeake Bay Watershed, is largely controlled by varying levels of wetness. ...

  5. Factors that influence the hydrologic recovery of wetlands in the Northern Tampa Bay area, Florida

    Science.gov (United States)

    Metz, P.A.

    2011-01-01

    Reductions in groundwater withdrawals from Northern Tampa Bay well fields were initiated in mid-2002 to improve the hydrologic condition of wetlands in these areas by allowing surface and groundwater levels to recover to previously higher levels. Following these reductions, water levels at some long-term wetland monitoring sites have recovered, while others have not recovered as expected. To understand why water levels for some wetlands have not increased, nine wetlands with varying impacts from well field pumping were examined based on four factors known to influence the hydrologic condition of wetlands in west-central Florida. These factors are the level of the potentiometric surface of the Upper Floridan aquifer underlying the wetland, recent karst activity near and beneath the wetland, permeability of the underlying sediments, and the topographic position of the wetland in the landscape.

  6. Wetlands Conservation and Use. Issue Pac.

    Science.gov (United States)

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    The materials in this educational packet are designed for use with students in grades 4 through 7. They consist of an overview, teaching guides and student data sheets for three activities, and a poster. The overview stresses the significance of wetland habitats in all 50 states. The needs of wildlife and humans are also considered in respect to…

  7. Climatic Alterations of Wetlands: Conservation and Adaptation Practices in Bangladesh

    Science.gov (United States)

    Siddiquee, S. A.

    2016-02-01

    Unique geographic location and geo-morphological conditions of Bangladesh have made the wetlands of this country one of the most vulnerable to climate change. Wetland plays a crucial role in maintaining the ecological balance of ecosystems and cultural figures and which occupy around 50% of the area. Drought, excessive temperature, mountain snowfields and glaciers melting, riverbank erosion, salinity intrusion, flashflood, storm surges, higher water temperatures, precipitation anomalies, coastal cyclones, seasonal anomalies and extremes are main threats to the wetland ecosystem. Enhanced UV-B radiation and increased summer precipitation will significantly increase dissolved organic carbon concentrations altering major biogeochemical cycles and also will result into the expansion of range for many invasive aquatic weeds. Generally, rising temperature will lower water quality through a fall in oxygen concentrations, release of phosphorus from sediments, increased thermal stability, and altered mixing patterns. As a result biodiversity is getting degraded, many species of flora and fauna are getting threatened, and wetland-based ecosystem is getting degenerated. At the same time, the living conditions of local people are deteriorating as livelihoods, socioeconomic institutions, and extensive cultural values as well. For conserving and managing wetlands technology, legislation, educational knowledge, action plan strategy and restoration practices are required. In order to address the human needs in the changing climate community-based adaptation approaches and wetland restoration, practices had been taken in almost every type of wetlands in Bangladesh. Therefore, Bangladesh now needs a comprehensive strategy and integrated system combining political, economic, social, technological approaches and institutional supports to address sustainable wetland restoration, conservation and the newly added crisis, climate change.

  8. Environmental attitudes and preference for wetland conservation in Malaysia

    DEFF Research Database (Denmark)

    Hassan, Suziana Binti

    2017-01-01

    The incorporation of latent psychological factors in wetland valuation studies may improve our understanding of why some people value ecosystem services while others do not. This article focuses on public preferences for enhanced protection of the Setiu Wetland in Malaysia and explores the influe......The incorporation of latent psychological factors in wetland valuation studies may improve our understanding of why some people value ecosystem services while others do not. This article focuses on public preferences for enhanced protection of the Setiu Wetland in Malaysia and explores...... the influence of environmental attitude on preference and the willingness to pay (WTP) for wetland conservation. The study reported here employs a discrete choice experiment to investigate household's WTP for a set of wetland attributes. A scale-adjusted latent class (SALC) model is applied to identify a latent...... components. A handful of responses in Class 4 were respondents more likely to be in the ‘Risk of overuse’ group and less likely to be ‘Anthropocentric’. The result suggests that natural resource managers need to evaluate people's concerns over environmental protection to understand potentially conflicting...

  9. 75 FR 78667 - Cooperative Conservation Partnership Initiative-Chesapeake Bay Watershed

    Science.gov (United States)

    2010-12-16

    ... Corporation Cooperative Conservation Partnership Initiative--Chesapeake Bay Watershed AGENCY: Commodity Credit... Chesapeake Bay Watershed priority areas (see attached map). DATES: Effective Date: The notice of request is... Cooperative Conservation Partnership Initiative--Chesapeake Bay Watershed Overview of the Cooperative...

  10. Hardwood re-sprout control in hydrologically restored Carolina Bay depression wetlands.

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Lee, Justin

    2009-06-01

    Carolina bays are isolated depression wetlands located in the upper coastal plain region of the eastern Unites States. Disturbance of this wetland type has been widespread, and many sites contain one or more drainage ditches as a result of agricultural conversion. Restoration of bays is of interest because they are important habitats for rare flora and fauna species. Previous bay restoration projects have identified woody competitors in the seedbank and re-sprouting as impediments to the establishment of herbaceous wetland vegetation communities. Three bays were hydrologically restored on the Savannah River Site, SC, by plugging drainage ditches. Residual pine/hardwood stands within the bays were harvested and the vegetative response of the seedbank to the hydrologic change was monitored. A foliar herbicide approved for use in wetlands (Habitat® (Isopropylamine salt of Imazapyr)) was applied on one-half of each bay to control red maple (Acer rubrum L.), sweet gum (Liquidambar styraciflua L.), and water oak (Quercus nigra L.) sprouting. The effectiveness of the foliar herbicide was tested across a hydrologic gradient in an effort to better understand the relationship between depth and duration of flooding, the intensity of hardwood re-sprout pressure, and the need for hardwood management practices such as herbicide application.

  11. DDT Analysis of Wetland Sediments in Upper Escambia Bay, Florida

    Science.gov (United States)

    Hopko, M. N.; Wright, J.; Liebens, J.; Vaughan, P.

    2017-12-01

    Dichlorodiphenyltrichloroethane (DDT) was a commonly used pesticide from World War II through the 1960's. DDT is generally used to control mosquito populations and as an agricultural insecticide. The pesticide and its degradation products (DDD and DDE) can bioaccumulate within ecosystems having negative implications for animal and human health. Consequently, DDT usage was banned in the United States in 1973. In a contaminant study performed in Escambia Bay, Florida, in 2009, DDT was present in 25% of study sites, most of which were located in the upper bay wetlands. Concentrations were well above the Florida Department of Environmental Protection's (FDEP) Probable Effect Level (PEL) and ratios of DDT and its metabolites indicated a recent introduction to the system. A follow-up study performed in 2016 found no DDT, but did show DDE at several sites. The current study repeated sampling in May 2017 at sites from the 2009 and 2016 studies. Sediment samples were collected in triplicate using a ponar sampler and DDT, DDD and DDE were extracted using EPA methods 3540c and 3620c. Extracts were analyzed using a gas chromatograph with electron capture detection (GC-ECD) as per EPA method 8081c. Sediment was also analyzed for organic carbon and particle size using an elemental NC analyzer and a laser diffraction particle sizer. Results show the presence of breakdown products DDE and DDD at multiple sites, but no detectable levels of DDT at any site. Sampling sites with high levels of DDT contamination in 2009 show only breakdown products in both 2016 and 2017. Particle size has little influence on DDD or DDE concentrations but OC is a controlling factor as indicated for contaminated sites by Pearson correlations between OC and DDE and DDD of 0.82 and 0.92, respectively. The presence of only DDD and/or DDE in the 2016 and 2017 studies indicates that the parent, DDT, has not been re-introduced into the watershed since 2009 but is degrading in the environment.

  12. 76 FR 5820 - Meeting Announcements: North American Wetlands Conservation Council; Neotropical Migratory Bird...

    Science.gov (United States)

    2011-02-02

    ...] Meeting Announcements: North American Wetlands Conservation Council; Neotropical Migratory Bird... Conservation Act (NAWCA) grant proposals for recommendation to the Migratory Bird Conservation Commission (Commission). This meeting is open to the public. The Advisory Group for the Neotropical Migratory Bird...

  13. China's coastal wetlands: conservation history, implementation efforts, existing issues and strategies for future improvement.

    Science.gov (United States)

    Sun, Zhigao; Sun, Wenguang; Tong, Chuan; Zeng, Congsheng; Yu, Xiang; Mou, Xiaojie

    2015-06-01

    China has approximately 5.80×10(6)ha coastal wetlands by 2014, accounting for 10.82% of the total area of natural wetlands. Healthy coastal wetland ecosystems play an important role in guaranteeing the territory ecological security and the sustainable development of coastal zone in China. In this paper, the natural geography and the past and present status of China's coastal wetlands were introduced and the five stages (1950s-1970s, 1980s-1991, 1992-2002, 2003-2010 and 2011-present) of China's coastal wetlands conservation from the foundation of the People's Republic in 1949 to present were distinguished and reviewed. Over the past decades, China has made great efforts in coastal wetland conservation, as signified by the implementation of coastal wetland restoration projects, the construction of coastal wetland nature reserves, the practice of routine ecological monitoring and two national wetland surveys, the promulgation of local wetland conservation statutes and specific regulations, the coordination mechanism to enhance management capacity, the wide development of coastal wetland research and public participation, and the extensive communication to strengthen international cooperation. Nonetheless, six major issues recently emerged in China's coastal wetland conservation are evidently existed, including the increasing threats of pollution and human activities, the increasing adverse effects of threaten factors on ecosystem function, the increasing threats of coastal erosion and sea-level rising, the insufficient funding for coastal wetlands conservation, the imperfect legal and management system for coastal wetlands, and the insufficient education, research and international cooperation. Although the threats and pressures on coastal wetlands conservation are still apparent, the future of China's coastal wetlands looks promising since the Chinese government understands that the sustainable development in coastal zone requires new attitudes, sound policies and

  14. Agricultural conservation practices and wetland ecosystem services in the wetland-rich Piedmont–Coastal Plain region

    Science.gov (United States)

    Diane De Steven; Richard Lowrance

    2011-01-01

    In the eastern U.S. Coastal Plain and Piedmont region, diverse inland wetlands (riverine, depressional, wet flats) have been impacted by or converted to agriculture. Farm Bill conservation practices that restore or enhance wetlands can return their ecological functions and services to the agricultural landscape. We review the extent of regional knowledge regarding the...

  15. Comparison of Qinzhou bay wetland landscape information extraction by three methods

    Directory of Open Access Journals (Sweden)

    X. Chang

    2014-04-01

    and OO is 219 km2, 193.70 km2, 217.40 km2 respectively. The result indicates that SC is in the f irst place, followed by OO approach, and the third DT method when used to extract Qingzhou Bay coastal wetland.

  16. Wetlands and agriculture: Are we heading for confrontation or conservation

    Science.gov (United States)

    Brij Gopal

    2000-01-01

    Wetlands and agriculture are closely linked. Historically, agriculture had its beginning in riparian wetland habitats and expanded into other wetlands. Later, large areas of riverine, palustrine, and coastal wetlands were converted into paddy fields or drained for agriculture. Agriculture has grown most at the expense of natural wetlands. Today, the intensive...

  17. Factors affecting spatial and temporal variability in material exchange between the Southern Everglades wetlands and Florida Bay (USA)

    Science.gov (United States)

    Sutula, Martha A.; Perez, Brian C.; Reyes, Enrique; Childers, Daniel L.; Davis, Steve; Day, John W.; Rudnick, David; Sklar, Fred

    2003-08-01

    Physical and biological processes controlling spatial and temporal variations in material concentration and exchange between the Southern Everglades wetlands and Florida Bay were studied for 2.5 years in three of the five major creek systems draining the watershed. Daily total nitrogen (TN), and total phosphorus (TP) fluxes were measured for 2 years in Taylor River, and ten 10-day intensive studies were conducted in this creek to estimate the seasonal flux of dissolved inorganic nitrogen (N), phosphorus (P), total organic carbon (TOC), and suspended matter. Four 10-day studies were conducted simultaneously in Taylor, McCormick, and Trout Creeks to study the spatial variation in concentration and flux. The annual fluxes of TOC, TN, and TP from the Southern Everglades were estimated from regression equations. The Southern Everglades watershed, a 460-km 2 area that includes Taylor Slough and the area south of the C-111 canal, exported 7.1 g C m -2, 0.46 g N m -2, and 0.007 g P m -2, annually. Everglades P flux is three to four orders of magnitude lower than published flux estimates from wetlands influenced by terrigenous sedimentary inputs. These low P flux values reflect both the inherently low P content of Everglades surface water and the efficiency of Everglades carbonate sediments and biota in conserving and recycling this limiting nutrient. The seasonal variation of freshwater input to the watershed was responsible for major temporal variations in N, P, and C export to Florida Bay; approximately 99% of the export occurred during the rainy season. Wind-driven forcing was most important during the later stages of the dry season when low freshwater head coincided with southerly winds, resulting in a net import of water and materials into the wetlands. We also observed an east to west decrease in TN:TP ratio from 212:1 to 127:1. Major spatial gradients in N:P ratios and nutrient concentration and flux among the creek were consistent with the westward decrease in

  18. A conceptual hydrologic model for a forested Carolina bay depressional wetland on the Coastal Plain of South Carolina, USA

    Science.gov (United States)

    Jennifer E. Pyzoha; Timothy J. Callahan; Ge Sun; Carl C. Trettin; Masato Miwa

    2008-01-01

    This paper describes how climate influences the hydrology of an ephemeral depressional wetland. Surface water and groundwater elevation data were collected for 7 years in a Coastal Plain watershed in South Carolina USA containing depressional wetlands, known as Carolina bays. Rainfall and temperature data were compared with water-table well and piezometer data in and...

  19. North American Wetlands Conservation Act: Contributions to Bird Conservation in Coastal Areas of the U.S.

    Science.gov (United States)

    Keith McKnight; Robert Ford; Jennifer Kross

    2005-01-01

    The North American Wetlands Conservation Act (NAWCA) was passed in 1989, and has been instrumental in restoring, protecting, and enhancing 3.5 million has of wetland and associated habitats across North America. The objective of this study was to assess the extent to which NAWCA projects have addressed the priority habitat needs expressed by the North American...

  20. Environmental Valuation of Conserving the Setiu Wetland in Malaysia

    DEFF Research Database (Denmark)

    Hassan, Suziana Binti

    Malaysia is one of the new emerging economies in Southeast Asia, but as many systems and institutions are still under development, it is comparable many other developing countries in terms of environmental, economic valuation research. Empirical evidence shows that many valuation studies conducted...... in developing countries are of poor quality and questioning the relevancy of its outcomes. In Malaysia, the Choice Experiment (CE) methods is still new in the sense that several techniques need to be improved and adapted, and many research questions remain yet to be answered. Therefore, this thesis will enrich...... the application of CE literature by applying the Stated Preference (SP) technique to the economic valuation of non-marketed environmental services from wetland conservation. This thesis consists of three empirical papers divided into two topics. The first part concerns the methodological improvement of SP survey...

  1. Soil Microbial Community Structure Evolution along Halophyte Succession in Bohai Bay Wetland

    OpenAIRE

    Cong, Mingyang; Cao, Di; Sun, Jingkuan; Shi, Fuchen

    2014-01-01

    It is urgent to recover Bohai Bay costal wetland ecosystem because of covering a large area of severe saline-alkali soil. To explore the relationship between halophyte herbaceous succession and microbial community structure, we chose four local communities which played an important role in improving soil microenvironment. We performed phospholipid fatty acid analysis, measured soil parameters, and evaluated shifts of microbial community structure. Results showed that microbial community struc...

  2. Freshwater lenses as ecological and population sustenance, case study in the coastal wetland of Samborombón Bay (Argentina).

    Science.gov (United States)

    Tanjal, Carolina; Carol, Eleonora; Richiano, Sebastián; Santucci, Lucía

    2017-09-15

    Freshwater lenses associated to shell ridges and sand sheets exist on the coastal wetland of Samborombón Bay. As they constitute one of the most vulnerable aquifer systems, it is the aim of this study to determine the hydrogeochemical processes that condition the chemical quality of its groundwater and to assess their present and future capability as sustenance of native woods and local villagers. To achieve this, hydrogeomorphological field surveys were made and groundwater samples were taken. Results show that lenses have a mean thickness of 12m and its chemical quality depends on the dissolution of CO 2(g) and carbonates, weathering of silicates and ion exchange. Lenses can be affected by long-term climatic variability and mining. The study of morphology and geochemistry of the freshwater lenses bring lights into important information about the management of water resources and conservation of the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. [Periodic characteristics of soil CO2 flux in mangrove wetland of Quanzhou Bay, China].

    Science.gov (United States)

    Wang, Zong-Lin; Wu, Yan-You; Xing, De-Ke; Liu, Rong-Cheng; Zhou Gui-Yao; Zhao, Kuan

    2014-09-01

    Mangrove wetland ecosystem in Quanzhou Bay in Fujian Province is newly restored with a regular semidiurnal tide. Soil CO2 concentration in the mangrove soil was determined by Li-840 portable gas analyzer, and periodic characteristics of soil CO2 emission was investigated. The soil CO2 flux in the wetland soil was relatively small because the mangrove was young. The change trends of soil CO2 concentration and flux with time were consistent in Kandelia obovate and Aegiceras corniculatum communities in the intertidal periods. The CO2 concentration and flux in the wetland soil were 557.08-2211.50 μmol · mol(-1) and -0.21-0.40 μmol · m(-2) · s(-1), respectively. The average CO2 flux in the wetland soil was 0.26 μmol · mol(-1) · s(-1) in the intertidal of morning and evening tides (early intertidal) and -0.01 μmol · m(-2) · s(-1) in the intertidal of evening and morning tides (late intertidal), respectively. At the same time after the tide, the concentration and flux of CO2 in the mangrove soil in early intertidal was higher than that in late intertidal. In early intertidal, the relationship between the flux and instantaneous concentration of CO2 in the wetland soil was expressed as a bell-shaped curve, and CO2 flux increased first and then decreased with the increasing CO2 concentration, which was in conformity with Gaussian distribution.

  4. Temporary wetlands: Challenges and solutions to conserving a ‘disappearing’ ecosystem

    Science.gov (United States)

    Calhoun, Aram J.K.; Mushet, David M.; Bell, Kathleen P.; Boix, Dani; Fitzsimons, James A.; Isselin-Nondedeu, Francis

    2017-01-01

    Frequent drying of ponded water, and support of unique, highly specialized assemblages of often rare species, characterize temporary wetlands, such as vernal pools, gilgais, and prairie potholes. As small aquatic features embedded in a terrestrial landscape, temporary wetlands enhance biodiversity and provide aesthetic, biogeochemical, and hydrologic functions. Challenges to conserving temporary wetlands include the need to: (1) integrate freshwater and terrestrial biodiversity priorities; (2) conserve entire ‘pondscapes’ defined by connections to other aquatic and terrestrial systems; (3) maintain natural heterogeneity in environmental gradients across and within wetlands, especially gradients in hydroperiod; (4) address economic impact on landowners and developers; (5) act without complete inventories of these wetlands; and (6) work within limited or non-existent regulatory protections. Because temporary wetlands function as integral landscape components, not singly as isolated entities, their cumulative loss is ecologically detrimental yet not currently part of the conservation calculus. We highlight approaches that use strategies for conserving temporary wetlands in increasingly human-dominated landscapes that integrate top-down management and bottom-up collaborative approaches. Diverse conservation activities (including education, inventory, protection, sustainable management, and restoration) that reduce landowner and manager costs while achieving desired ecological objectives will have the greatest probability of success in meeting conservation goals.

  5. Dynamics of sediment carbon stocks across intertidal wetland habitats of Moreton Bay, Australia.

    Science.gov (United States)

    Hayes, Matthew A; Jesse, Amber; Hawke, Bruce; Baldock, Jeff; Tabet, Basam; Lockington, David; Lovelock, Catherine E

    2017-10-01

    Coastal wetlands are known for high carbon storage within their sediments, but our understanding of the variation in carbon storage among intertidal habitats, particularly over geomorphological settings and along elevation gradients, is limited. Here, we collected 352 cores from 18 sites across Moreton Bay, Australia. We assessed variation in sediment organic carbon (OC) stocks among different geomorphological settings (wetlands within riverine settings along with those with reduced riverine influence located on tide-dominated sand islands), across elevation gradients, with distance from shore and among habitat and vegetation types. We used mid-infrared (MIR) spectroscopy combined with analytical data and partial least squares regression to quantify the carbon content of ~2500 sediment samples and provide fine-scale spatial coverage of sediment OC stocks to 150 cm depth. We found sites in river deltas had larger OC stocks (175-504 Mg/ha) than those in nonriverine settings (44-271 Mg/ha). Variation in OC stocks among nonriverine sites was high in comparison with riverine and mixed geomorphic settings, with sites closer to riverine outflow from the east and south of Moreton Bay having higher stocks than those located on the sand islands in the northwest of the bay. Sediment OC stocks increased with elevation within nonriverine settings, but not in riverine geomorphic settings. Sediment OC stocks did not differ between mangrove and saltmarsh habitats. OC stocks did, however, differ between dominant species across the research area and within geomorphic settings. At the landscape scale, the coastal wetlands of the South East Queensland catchments (17,792 ha) are comprised of approximately 4,100,000-5,200,000 Mg of sediment OC. Comparatively high variation in OC storage between riverine and nonriverine geomorphic settings indicates that the availability of mineral sediments and terrestrial derived OC may exert a strong influence over OC storage potential across

  6. Survival strategies of people in a Sri Lankan wetland : livelihood, health and nature conservation in Muthurajawela

    NARCIS (Netherlands)

    Hoogvorst, A.

    2003-01-01

    Key words: Anthropology, emic, environment, etic, gender, health, livelihoods, Muthurajawela, nature-conservation, survival strategies, Sri Lanka, wetland.The objective of this study was to contribute to a better understanding of how poor people living in a sensitive wetland ecosystem

  7. 77 FR 73 - Cooperative Conservation Partnership Initiative and Wetlands Reserve Enhancement Program

    Science.gov (United States)

    2012-01-03

    ... Partnership Initiative and Wetlands Reserve Enhancement Program AGENCY: Natural Resources Conservation Service... (CCPI) and up to $25 million in the Wetlands Reserve Enhancement Program (WREP) through MRBI. These... State Conservationists, with input from the State Technical Committees and State water quality agencies...

  8. Flooded area and plant zonation in isolated wetlands in well fields in the Northern Tampa Bay Region, Florida, following reductions in groundwater-withdrawal rates

    Science.gov (United States)

    Haag, Kim H.; Pfeiffer, William R.

    2012-01-01

    The extent and duration of the flooded area were compared in two reference wetlands and nine wetlands in well fields in the northern Tampa Bay region, Florida, to determine whether reductions in well-field groundwater-withdrawal rates resulted in increases in wetland flooded area. Flooded area, expressed as a percentage of the total wetland area, was used to provide a quantitative and comparable line of evidence for describing the hydrologic conditions in isolated wetlands of different sizes and locations.

  9. Landowner preferences for wetlands conservation programs in two Southern Ontario watersheds.

    Science.gov (United States)

    Trenholm, Ryan; Haider, Wolfgang; Lantz, Van; Knowler, Duncan; Haegeli, Pascal

    2017-09-15

    Wetlands in the region of Southern Ontario, Canada have declined substantially from their historic area. Existing regulations and programs have not abated this decline. However, reversing this trend by protecting or restoring wetlands will increase the supply of important ecosystem services. In particular, these actions will contribute to moderating the impacts of extreme weather predicted to result from climate change as well as reducing phosphorous loads in Lake Erie and ensuing eutrophication. Since the majority of land in the region is privately owned, landowners can play an important role. Thus, we assessed landowner preferences for voluntary incentive-based wetlands conservation programs using separate choice experiments mailed to farm and non-farm landowners in the Grand River and Upper Thames River watersheds. Latent class models were separately estimated for the two data sets. Marginal willingness to accept, compensating surplus, and participation rates were estimated from the resulting models to gain insight into the financial compensation required by landowners and their potential participation. Many of the participating landowners appear willing to participate in wetlands conservation at reasonable cost, with more willing groups notably marked by past participation in incentive-based conservation programs. They generally favor wetlands conservation programs that divert smaller areas of land to wetlands conservation, target marginal agricultural land, use treed buffers to protect wetlands, offer technical help, and pay financial incentives. However, landowners appear reluctant to receive public recognition of their wetland conservation actions. Our results are of interest to natural resource managers designing or refining wetlands conservation programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. What Role do Nor'Easters have on the Jamaica Bay Wetlands Sediment Budget?

    Science.gov (United States)

    Clarke, R. C.; Bentley, S. J.; Wang, H.; Smith, J.

    2017-12-01

    The wetlands of Jamaica Bay, located on the outskirts of Queens, New York, have lost over half their surface area in the last 50 years due both anthropogenic and natural causes, including channel dredging, urban drainage construction, and greater tidal amplitudes partially due to rising local sea levels. Superstorm Sandy made landfall in 2014 as a powerful coastal geomorphic agent, highlighting the vulnerability of that region to large cyclonic storms that are more commonly encountered along coastal reaches of southeastern North America. After this event, research aimed at quantifying the geomorphic impact of Superstorm Sandy and to evaluate the record of past documented major winter storms on Jamaica Bay's wetlands. 12 sediment cores were collected from the surface of remaining wetlands in August 2014 by the USGS Wetland and Aquatic Research Center; the cores have been analyzed for Pb-210/Cs-137 geochronology, organic content, and water content to establish chronology of mineral sediment supply to the wetlands over the past 120 years. Most cores were found to be organic-rich, marked with periodic cm-scale beds with increased mineral content. Historic storm data, dating as far back as the late 1800's, were used to identify hurricanes and major winter storms determined by the National Weather Service passing within 100 km of the study area. Likely storm-event deposits in each core were identified as layers with mineral content higher than the core mean plus one standard deviation, and were matched to historic events via radioisotope geochronology, incorporating age-model uncertainty. Overall, 22 out of the 35 defined storm layers match the timing of historic strong storms (within uncertainty ranging from 2 to 5 years) from 1894 to Superstorm Sandy in 2014. Our findings show that over multidecadal timescales, nor'easters and winter storms play a role in the vertical accretion of sediment in the Jamaica Bay wetlands, but are substantially less important than sediment

  11. Wetland macroinvertebrates of Prentiss Bay, Lake Huron, Michigan: diversity and functional group composition

    Science.gov (United States)

    Merritt, R.W.; Benbow, M.E.; Hudson, P.L.

    2002-01-01

    The Great Lakes support many fish and waterbirds that depend directly or indirectly on coastal wetlands during some portion of their life cycle. It is known that macroinvertebrates make up an important part of wetland food webs and ecosystem function; however, our understanding of species distribution within and among wetlands has only recently received attention. We investigated the macroinvertebrates of a freshwater marsh (Prentiss Bay) in the Les Chenaux Island Area of Northern Lake Huron, Michigan. Macroinvertebrate taxa diversity and functional feeding group composition were compared between two habitats. A shallow depositional habitat with higher vegetation diversity and little wave action was compared to a deeper erosional habitat with fewer plant species and more wave action. A total of 83 taxa were collected over the summer of 1996, representing two phyla (Arthropoda and Mollusca) and five classes (Arachnida, Bivalvia, Malacostraca, Gastropoda and Insecta). A total of 79 genera were identified, with 92% being insects (39 families composed of at least 73 genera). Of the total, 42 insect genera were common to both habitats,while relatively fewer were collected exclusively from the erosional compared the depositional habitat. When habitats were pooled, predators comprised about 50% of the functional group taxa, while gathering collectors and shredders each were about 20%. Filtering collectors and scrapers each represented groups were lower. These data suggest that vegetation diversity, depth and wave action affect taxa composition and functional group organization of the Prentiss Bay marsh.

  12. Effects of conservation practices on fishes, amphibians, and reptiles within agricultural streams and wetlands

    Science.gov (United States)

    Conservation practices have been traditionally used to manage soil and water resources to improve agricultural production, and now include methods to reduce the environmental impacts of agriculture on streams and wetlands. These practices have been regularly implemented within agricultural watershed...

  13. Multispecies benefits of wetland conservation for marsh birds, frogs, and species at risk.

    Science.gov (United States)

    Tozer, Douglas C; Steele, Owen; Gloutney, Mark

    2018-04-15

    Wetlands conserved using water level manipulation, cattle exclusion, naturalization of uplands, and other techniques under the North American Waterfowl Management Plan ("conservation project wetlands") are important for ducks, geese, and swans ("waterfowl"). However, the assumption that conservation actions for waterfowl also benefit other wildlife is rarely quantified. We modeled detection and occupancy of species at sites within 42 conservation project wetlands compared to sites within 52 similar nearby unmanaged wetlands throughout southern Ontario, Canada, and small portions of the adjacent U.S., using citizen science data collected by Bird Studies Canada's Great Lakes Marsh Monitoring Program, including 2 waterfowl and 13 non-waterfowl marsh-breeding bird species (n = 413 sites) and 7 marsh-breeding frog species (n = 191 sites). Occupancy was significantly greater at conservation project sites compared to unmanaged sites in 7 of 15 (47%) bird species and 3 of 7 (43%) frog species, with occupancy being higher by a difference of 0.12-0.38 across species. Notably, occupancy of priority conservation concern or at-risk Black Tern (Chlidonias niger), Common Gallinule (Gallinula galeata), Least Bittern (Ixobrychus exilis), Sora (Porzana carolina), and Western Chorus Frog (Pseudacris triseriata) was significantly higher at conservation project sites compared to unmanaged sites. The results demonstrate the utility of citizen science to inform wetland conservation, and suggest that actions under the North American Waterfowl Management Plan are effective for conserving non-waterfowl species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Assessment of the content, structure, and source of soil dissolved organic matter in the coastal wetlands of Jiaozhou Bay, China

    Science.gov (United States)

    Xi, Min; Zi, Yuanyuan; Wang, Qinggai; Wang, Sen; Cui, Guolu; Kong, Fanlong

    2018-02-01

    The contents and the spectral analysis of dissolved organic matter (DOM) in four typical wetlands, such as naked tidal, suaeda salsa, reed and spartina, were conducted to investigate the content, structure, and source of DOM in coastal wetland soil. The soil samples were obtained from Jiaozhou Bay in January, April, July, and October of 2014. Results showed that the DOM contents in soil of four typical wetland were in order of spartina wetland > naked tidal > suaeda salsa wetland > reed wetland in horizontal direction, and decreased with the increase of soil depth on vertical section. In addition, the DOM contents changed with the seasons, in order of spring > summer > autumn > winter. The structural characteristics of DOM in Jiaozhou Bay wetland, such as aromaticity, hydrophobicity, molecular weight, polymerization degree of benzene ring carbon frame structure and so on were in order of spartina wetland > naked tidal > suaeda salsa wetland > reed wetland in the horizontal direction. On the vertical direction, they showed a decreasing trend with the increase of soil depth. The results of three dimensional fluorescence spectra and fluorescence spectrum parameters (FI, HIX, and BIX) indicated that the DOM in Jiaozhou Bay was mainly derived from the biological activities. The contents and structure of DOM had certain relevance, but the contents and source as well as the structure and source of DOM had no significant correlation. The external pollution including domestic sewage, industrial wastewater, and aquaculture sewage affected the correlation among the content, structure and source of DOM by influencing the percentage of non-fluorescent substance in DOM and disturbing the determination of protein-like fluorescence.

  15. Gap analysis and conservation network for freshwater wetlands in Central Yangtze Ecoregion.

    Science.gov (United States)

    Xiaowen, Li; Haijin, Zhuge; Li, Mengdi

    2013-01-01

    The Central Yangtze Ecoregion contains a large area of internationally important freshwater wetlands and supports a huge number of endangered waterbirds; however, these unique wetlands and the biodiversity they support are under the constant threats of human development pressures, and the prevailing conservation strategies generated based on the local scale cannot adequately be used as guidelines for ecoregion-based conservation initiatives for Central Yangtze at the broad scale. This paper aims at establishing and optimizing an ecological network for freshwater wetland conservation in the Central Yangtze Ecoregion based on large-scale gap analysis. A group of focal species and GIS-based extrapolation technique were employed to identify the potential habitats and conservation gaps, and the optimized conservation network was then established by combining existing protective system and identified conservation gaps. Our results show that only 23.49% of the potential habitats of the focal species have been included in the existing nature reserves in the Central Yangtze Ecoregion. To effectively conserve over 80% of the potential habitats for the focal species by optimizing the existing conservation network for the freshwater wetlands in Central Yangtze Ecoregion, it is necessary to establish new wetland nature reserves in 22 county units across Hubei, Anhui, and Jiangxi provinces.

  16. [Soil organic carbon content and its distribution pattern in Hangzhou Bay coastal wetlands].

    Science.gov (United States)

    Shao, Xue-xin; Yang, Wen-ying; Wu, Ming; Jiang, Ke-yi

    2011-03-01

    In this paper, the soil organic carbon (SOC) content and its distribution pattern in the natural intertidal zones and reclaimed wetlands of Hangzhou Bay were studied, aimed to explore the effects of vegetation succession, exotic species invasion, and reclamation on the SOC in costal wetlands of the Bay. In intertidal zones, the surface SOC content ranged from 4.41 to 8.58 g x kg(-1), with an average of 6.45 g x kg(-1), and differed significantly under different vegetations, with a tendency of under Phragmites australis (8.56 +/- 0.04 g x kg(-1)) > Spartina alterniflora (7.31 +/- 0.08 g x kg(-1)) > Scirpus mariqueter (5.48 +/- 0.29 g x kg(-1)) > mudflats (4.47 +/- 0.09 g x kg(-1)); in reclaimed wetlands, the surface SOC content was 7.46 +/- 0.25 g x kg(-1) in the 1960s, 1.96 +/- 0.46 g x kg(-1) in the 1980s, and 5.12 +/- 0.16 g x kg(-1) in 2003, showing a trend of increased after an initial decrease with increasing reclamation year. The SOC in the profiles all showed a decreasing trend from the surface to the bottom. The SOC in intertidal zones and reclaimed wetlands was significantly negatively correlated with soil pH, and positively correlated with soil total nitrogen (TN), suggesting a large reserve of organic nitrogen in TN. The correlation between SOC and soil C/N ratio was not obvious in intertidal zones, but significantly positive in reclaimed wetlands, indicating that reclamation affected soil C/N ratio to a certain extent. This study showed that in the intertidal zones, soil carbon sequestration capacity increased gradually with plant community succession. However, the invasion of exotic species Spartina alternflora might decrease the capacity of carbon sequestration in intertidal zones. It was also found that the changes of soil moisture content, particle composition, vegetation coverage, and reclamation history were the main factors affecting the SOC distribution in reclaimed wetlands.

  17. Soil Microbial Community Structure Evolution along Halophyte Succession in Bohai Bay Wetland

    Directory of Open Access Journals (Sweden)

    Mingyang Cong

    2014-01-01

    Full Text Available It is urgent to recover Bohai Bay costal wetland ecosystem because of covering a large area of severe saline-alkali soil. To explore the relationship between halophyte herbaceous succession and microbial community structure, we chose four local communities which played an important role in improving soil microenvironment. We performed phospholipid fatty acid analysis, measured soil parameters, and evaluated shifts of microbial community structure. Results showed that microbial community structure changed significantly along succession and bacteria community was dominant. Total phospholipid fatty acid content increased in different successional stages but decreased with depth, with similar variations in bacterial and fungal biomass. Soil organic carbon and especially total nitrogen were positively correlated with microbial biomass. Colonization of pioneering salt-tolerant plants Suaeda glauca in saline-alkali bare land changed total soil microorganism content and composition. These results showed that belowground processes were strongly related with aboveground halophyte succession. Fungal/bacterial ratio, Gram-negative/Gram-positive bacteria ratio, total microbial biomass, and fungi and bacteria content could indicate the degree of succession stages in Bohai Bay wetland ecosystem. And also these findings demonstrated that microbial community biomass and composition evolved along with vegetation succession environmental variables.

  18. Study of Circulation in the Tillamook Bay and the Surrounding Wetland Applying Triple-Nested Models Downscaling from Global Ocean to Estuary

    Science.gov (United States)

    To study the circulation and water quality in the Tillamook Bay, Oregon, a high-resolution estuarine model that covers the shallow bay and the surrounding wetland has been developed. The estuarine circulation at Tillamook Bay is mainly driven by the tides and the river flows and ...

  19. Projected wetland densities under climate change: Habitat loss but little geographic shift in conservation strategy

    Science.gov (United States)

    Sofaer, Helen R.; Skagen, Susan K.; Barsugli, Joseph J.; Rashford, Benjamin S.; Reese, Gordon C.; Hoeting, Jennifer A.; Wood, Andrew W.; Noon, Barry R.

    2016-01-01

    Climate change poses major challenges for conservation and management because it alters the area, quality, and spatial distribution of habitat for natural populations. To assess species’ vulnerability to climate change and target ongoing conservation investments, researchers and managers often consider the effects of projected changes in climate and land use on future habitat availability and quality and the uncertainty associated with these projections. Here, we draw on tools from hydrology and climate science to project the impact of climate change on the density of wetlands in the Prairie Pothole Region of the USA, a critical area for breeding waterfowl and other wetland-dependent species. We evaluate the potential for a trade-off in the value of conservation investments under current and future climatic conditions and consider the joint effects of climate and land use. We use an integrated set of hydrological and climatological projections that provide physically based measures of water balance under historical and projected future climatic conditions. In addition, we use historical projections derived from ten general circulation models (GCMs) as a baseline from which to assess climate change impacts, rather than historical climate data. This method isolates the impact of greenhouse gas emissions and ensures that modeling errors are incorporated into the baseline rather than attributed to climate change. Our work shows that, on average, densities of wetlands (here defined as wetland basins holding water) are projected to decline across the U.S. Prairie Pothole Region, but that GCMs differ in both the magnitude and the direction of projected impacts. However, we found little evidence for a shift in the locations expected to provide the highest wetland densities under current vs. projected climatic conditions. This result was robust to the inclusion of projected changes in land use under climate change. We suggest that targeting conservation towards wetland

  20. Effect of conservation efforts and ecological variables on waterbird population sizes in wetlands of the Yangtze River

    Science.gov (United States)

    Zhang, Yong; Jia, Qiang; Prins, Herbert H. T.; Cao, Lei; de Boer, Willem Frederik

    2015-11-01

    Forage quality and availability, climatic factors, and a wetland’s conservation status are expected to affect the densities of wetland birds. However, the conservation effectiveness is often poorly studied. Here, using twelve years’ census data collected from 78 wetlands in the Yangtze River floodplain, we aimed to understand the effect of these variables on five Anatidae species, and evaluate the effectiveness of the conservation measures by comparing population trends of these species among wetlands that differ in conservations status. We showed that the slope angle of a wetland and the variation thereof best explain the differences in densities of four species. We also found that the population abundances of the Anatidae species generally declined in wetlands along the Yangtze River floodplain over time, with a steeper decline in wetlands with a lower protection status, indicating that current conservation policies might deliver benefits for wintering Anatidae species in China, as population sizes of the species were buffered to some extent against decline in numbers in wetlands with a higher level protection status. We recommend several protection measures to stop the decline of these Anatidae species in wetlands along the Yangtze River floodplain, which are of great importance for the East Asian-Australasian Flyway.

  1. Addressing Trade-offs: Experiences from Conservation and Development Initiatives in the Mkuze Wetlands, South Africa

    Directory of Open Access Journals (Sweden)

    Annika C. Dahlberg

    2009-12-01

    Full Text Available Present-day conservation policies generally include the aim to integrate biodiversity conservation and local development, and describe this as a win-win solution that can satisfy all interests. This is challenged by research claiming that many efforts fail to match practice to rhetoric. South Africa has made strong commitments to fulfill the dual goals of conservation and development, and the iSimangaliso Wetland Park is promoted as an example of this. We explore present and potential outcomes of conservation and development interventions in a community bordering the Wetland Park through the perspective of different stakeholders, with the aim of uncovering opportunities and risks. In terms of improving local livelihoods as well as involvement in conservation, the success of the studied interventions varied. Local communities may accept restrictions on resource use as a result of realistic and fairly negotiated trade-offs, but if perceived as unjust and imposed from above, then mistrust and resistance will increase. In this area, collaboration between conservation organizations and the local community had improved, but still faced problems associated with unequal power relations, unrealistic expectations, and a lack of trust, transparency, and communication. As unsustainable efforts are a waste of funds and engagement, and may even become counterproductive, policy visions need to be matched by realistic allocations of staff, time, funds, and training. At the national and international level, the true cost of conservation has to be recognized and budgeted for if efforts at integrating conservation and development are to succeed.

  2. Trends in Accretion Rates of Riverine Sediments in a Distal Bay and Wetlands Using 7-Beryllium as a Tracer: Fourleague Bay, Louisiana.

    Science.gov (United States)

    Restreppo, G. A.; Bentley, S. J.; Wang, J.; Xu, K.

    2017-12-01

    To combat land loss along the Mississippi River Delta, Louisiana has launched a historic campaign to sustain and regrow coastal lands using, in part, sediment diversions. Previous research has focused primarily on sand sized sediment load, which is usually deposited proximal to a river's delta or a diversion's outlet. Fine sediments constitute the majority of sediment load in the Mississippi, but are under-studied with respect to dispersal processes, particularly in terms of sediment supply to distal deltaic bays and wetlands. The Atchafalaya River and associated wetlands serve as prime study areas for this purpose. Bimonthly time-series push cores were collected from May 2015 to May 2016 along ten sites within Fourleague Bay, Louisiana. Fourleague Bay has remained stable against the deteriorative effects of relative sea level rise, standing out along Louisiana's declining coastline. Of the ten field sites, five are located across a longitudinal transect in the middle bay, while the other five are located in adjacent marshes. All sites fall within 10 to 30 km of the Atchafalaya Delta, extending south towards the Gulf of Mexico. Cores were extruded in 2 cm intervals, dried, ground, and analyzed via gamma spectrometry for the presence of 7Be. Inventories of 7Be were then calculated and used to determine daily mass accretion rate (MAR) over twelve months. Average MAR values for the bay and the marshes are compared with Atchafalaya River discharge, wind data, and atmospheric pressure through the year of sampling. Peak marsh MAR, 0.88 ± 0.20 kg m-2 d-1, occurs just after historically high river discharge. Peak bay MAR, 1.2 ± 0.67 kg m-2 d-1, occurs during seasonal low river discharge and calm winds. Average bay and marsh MARs have a moderate to strong, negative correlation when compared. Results indicate sediment bypass of the bay floor during periods of moderate to high river discharge, entering the marshes directly when inundation occurs and enhanced by the passage

  3. Hydrogeochemistry and sustainability of freshwater lenses in the Samborombón Bay wetland, Argentina

    Science.gov (United States)

    Carol, Eleonora; García, Leandro; Borzi, Guido

    2015-07-01

    Freshwater lenses constitute one of the most vulnerable aquifer systems in the world, especially in coastal wetland areas. The objectives of this work are to determine the hydrogeochemical processes that regulate the quality of the freshwater lenses in a sector of the Samborombón Bay wetland, and to assess their sustainability as regards the development of mining activities. A hydrochemical evaluation of groundwater was undertaken on the basis of major ion, trace and environmental isotope data. The deterioration in time of the freshwater lenses in relation to mining was studied on the basis of the analysis of topographic charts, aerial photography and satellite imaging. The results obtained show that the CO2(g) that dissolves in the rainwater infiltrating and recharging the lenses is converted to HCO3-, which dissolves the carbonate facies of the sediment. The exchange of Ca2+ for Na+, the incongruent dissolution of basic plagioclase and the reprecipitation of carbonate produce a change of the Ca-HCO3 facies to Na-HCO3. In depth, the pH increases with the groundwater flow, and the volcanic glassis dissolved, releasing F-and As. Besides, the evapotranspiration processes cause the saline content to increase slightly. As the only sources of drinking water in the region are the freshwater lenses occurring in the shell ridges, mining operations have deteriorated this resource and decreased the freshwater reserves in the lenses. The study undertaken made it possible to develop some preservation, remediation and management guidelines aimed at the sustainability of the water resources in the region.

  4. Waterbird population estimates for a key staging site in Kazakhstan : a contribution to wetland conservation on the Central Asian flyway

    NARCIS (Netherlands)

    Schielzeth, Holger; Eichhorn, Gotz; Heinicke, Thomas; Kamp, Johannes; Koshkin, Maxim A.; Koshkin, Alexej V.; Lachmann, Lars

    Realistic population size estimates for waterbirds are crucial for the application of wetland conservation strategies, since the identification of internationally important wetlands is based on local numbers relative to the population size of the respective species. Central Asia is a poorly surveyed

  5. Long-Distance Delivery of Fine Sediment to Wetlands from a Bay-Head Delta: A Possible Analog for Large River-Sediment Diversions and Coastal Wetland Restoration.

    Science.gov (United States)

    Restreppo, G. A.; Bentley, S. J.; Xu, K.; Wang, J.

    2016-02-01

    Large river-sediment diversions are being proposed as primary tools for wetland restoration and land building in the Mississippi River Deltaic Plain. To date, much emphasis in the study of diversion performance has focused on proximal sand-rich deposition. To better understand far-field dispersal and deposition of fine sediments, which account for the majority of sediment supply, sediment cores from Fourleague Bay, Louisiana and adjacent marshes are being analyzed for 7Be, a naturally occurring radioisotope, as well as mineral and water content. The bay, which receives about 2% of total sediment discharge from the Atchafalaya River, is 20 km long and extends southeastward from the river's outlets. During 2015, time-series cores have been collected from ten sites, five located in the bay and five from the marshes, and have been analyzed for 7Be using gamma spectrometry. All sites fall within a distance of 9 km to 25 km from the outlet of the Atchafalaya River. Preliminary results show that cores sampled during the summer season, collected July 2015, contain higher activity of 7Be in the marsh cores, with no detectable 7Be contained in bay cores. The highest activity of 7Be, 3.2 ± 0.79 dpm/g, was found in the top two centimeters of the marsh core closest to the river mouth, site FLM-1. No activity was detectable beyond a depth of 4-6 cm. Surficial activity declined in samples further from the river mouth, with the lowest detectable value being 1.8 ± 0.72 dpm/g in the top two centimeters of site FLM-5. Results show that the range of influence for fine sediment delivery to wetlands is > 10 km, suggesting that the area that may be nourished sediment from a large diversion extends far beyond the footprint of proximal sandy deltaic deposits.

  6. Magnitude and seasonality of wetland methane emissions from the Hudson Bay Lowlands (Canada

    Directory of Open Access Journals (Sweden)

    C. A. Pickett-Heaps

    2011-04-01

    Full Text Available The Hudson Bay Lowlands (HBL is the second largest boreal wetland ecosystem in the world and an important natural source of global atmospheric methane. We quantify the HBL methane emissions by using the GEOS-Chem chemical transport model to simulate aircraft measurements over the HBL from the ARCTAS and pre-HIPPO campaigns in May–July 2008, together with continuous 2004–2008 surface observations at Fraserdale (southern edge of HBL and Alert (Arctic background. The difference in methane concentrations between Fraserdale and Alert is shown to be a good indicator of HBL emissions, and implies a sharp seasonal onset of emissions in late May (consistent with the aircraft data, a peak in July–August, and a seasonal shut-off in September. The model, in which seasonal variation of emission is mainly driven by surface temperature, reproduces well the observations in summer but its seasonal shoulders are too broad. We suggest that this reflects the suppression of emissions by snow cover and greatly improve the model simulation by accounting for this effect. Our resulting best estimate for HBL methane emissions is 2.3 Tg a−1, several-fold higher than previous estimates (Roulet et al., 1994; Worthy et al., 2000.

  7. Magnitude and Seasonality of Wetland Methane Emissions from the Hudson Bay Lowlands (Canada)

    Science.gov (United States)

    Pickett-Heaps, C. A.; Jacob, D. J.; Wecht, K. J.; Kort, E. A.; Wofsy, S. C.; Diskin, G. S.; Worthy, D. E. J.; Kaplan, J. O.; Bey, I.; Drevet, J.

    2011-01-01

    The Hudson Bay Lowlands (HBL) is the second largest boreal wetland ecosystem in the world and an important natural source of global atmospheric methane. We quantify the HBL methane emissions by using the GEOS-Chem chemical transport model to simulate aircraft measurements over the HBL from the ARCTAS and pre-HIPPO campaigns in May-July 2008, together with continuous 2004-2008 surface observations at Fraserdale (southern edge of HBL) and Alert (Arctic background). The difference in methane concentrations between Fraserdale and Alert is shown to be a good indicator of HBL emissions, and implies a sharp seasonal onset of emissions in late May (consistent with the aircraft data), a peak in July-August, and a seasonal shut-off in September. The model, in which seasonal variation of emission is mainly driven by surface temperature, reproduces well the observations in summer but its seasonal shoulders are too broad. We suggest that this reflects the suppression of emissions by snow cover and greatly improve the model simulation by accounting for this effect. Our resulting best estimate for HBL methane emissions is 2.3 Tg/a, several-fold higher than previous estimates (Roulet et al., 1994; Worthy et al., 2000).

  8. BUFFER ZONE METHOD, LAND USE PLANNING AND CONSERVATION STRATEGIES ABOUT WETLANDS UNDER URBANIZATION PRESSURE IN TURKEY

    OpenAIRE

    Ergen, Baris

    2010-01-01

    Wetlands are special areas that they offer habitat for terrestrial and water life. Wetlands are nest sides also for amphibian, for this reason wetlands offer wide range diversity for species. Wetlands are also reproduction regions for birds. Wetlands have special importance for ecosystem because they obstruct erosion. Wetlands absorb contaminants from water therefore wetlands contribute to clean water and they offer more potable water. Wetlands obstruct waterflood. In that case wetlands must ...

  9. Hydrogeochemistry of groundwater in coastal wetlands: implications for coastal conservation in Scotland.

    Science.gov (United States)

    Malcolm, R; Soulsby, C

    2001-01-29

    Groundwater in a shallow coastal aquifer in north east Scotland was monitored over the hydrological year October 1996-September 1997. Groundwater flow from inland areas sustained freshwater conditions in a dune-wetland complex of conservation importance. In particular, seasonal flooding of the coastal wetlands due to water table rise provided important roosting and breeding habitats for waterfowl. Hydrogeochemical analysis revealed that groundwater in the shallow sand aquifer was circum-neutral, and non-saline, despite being within 50 m of the sea and only 1 m above the mean high water mark. Calcium and HCO3 were the dominant cation and anion respectively, reflecting weathering processes in the aquifer. Use of the geochemical code NETPATH indicated that calcite weathering in shell fragments within the sand was the primary source of Ca and alkalinity generation. The concentrations of Na and Cl were also important, though these can be explained primarily by atmospheric inputs from precipitation. In detail, the spatial and temporal variation in groundwater chemistry was remarkably complex for what intuitively appeared a simple aquifer system. Temporal variations in groundwater chemistry mainly related to the seasonal event of groundwater recharge. Thus, the main period of rising groundwater levels resulted in a marked dilution of solutes in the aquifer, implying that water storage greatly increased in a relatively short period. A period of several weeks appeared to be required for dissolution processes to proceed to equilibrium. Spatial variation in groundwater chemistry appears to relate to the spatial distribution of geochemical processes in different hydrogeological units. Sulphate reduction, alkalinity generation and Fe precipitation appear to be locally important processes. The chemistry of groundwater maintains the wetland habitat by providing freshwater conditions that allow populations of various plant species to flourish. The potentially large recharge

  10. Bat Response To Carolina Bays and Wetland Restoration in the Southeastern U.S. Coastal Plain

    Science.gov (United States)

    Jennifer M. Menzel; Michael A. Menzel; John C. Kilgo; W. Mark Ford; John W. Edwards

    2005-01-01

    Bat activity in the southeastern United States is concentrated over riparian areas and wetland habitats. The restoration and creation of wetlands for mitigation purposes is becoming common in the Southeast. Understanding the effects of these restoration efforts on wetland flora and fauna is thus becoming increasingly important. Because bats (Order: Chiroptera) consist...

  11. Seawater-groundwater exchange and nutrients carried by submarine groundwater discharge in different types of wetlands at Jiaozhou Bay, China

    Science.gov (United States)

    Qu, Wenjing; Li, Hailong; Huang, Hao; Zheng, Chunmiao; Wang, Chaoyue; Wang, Xuejing; Zhang, Yan

    2017-12-01

    In Jiaozhou Bay, there are four wetland types, including sandy beaches, mud flats, tidal marshes, and estuarine intertidal zones. Four typical transects representing each of the wetland types were selected to investigate the flow dynamics, seawater-groundwater exchange and nutrients carried by submarine groundwater discharge (SGD). Based on field measurements of groundwater heads and salinity along each transect, the SGD averaged over the observation period was estimated using generalized Darcy's law. The SGD along the four transects ranges from 3.6 × 10-3 to 7.6 cm/d with the maximum occurring at the sandy beach. The SGD rate has a good correlation with the hydraulic conductivities of the wetland sediments. There is a positive correlation between the ratio of NO3-N/DIN and SGD rates. The SGD-associated nutrient output rate ranges from 3.3 × 10-2 to 9.5 mmol/m2/d for DIN (dissolved inorganic nitrogen), and from 6.2 × 10-5 to 1.8 × 10-2 mmol/m2/d for DIP (dissolved inorganic phosphorus). Compared to the nutrients delivered by the river, nutrients carried by SGD provide a more important source for the phosphate-limited environment to plankton in Jiaozhou Bay.

  12. Accumulation of Trace Metals in Anadara granosa and Anadara inaequivalvis from Pattani Bay and the Setiu Wetlands.

    Science.gov (United States)

    Pradit, Siriporn; Shazili, Noor Azhar Mohamed; Towatana, Prawit; Saengmanee, Wuttipong

    2016-04-01

    This study was undertaken to assess the levels of trace metals (As, Cd, Cu, Pb, and Zn) in two common species of cockles (Anadara granosa and Anadara inaequivalvis) from two coastal areas in Thailand (Pattani Bay) and Malaysia (the Setiu Wetlands). A total of 350 cockles were collected in February and September 2014. Trace metals were determined by Inductively Coupled Plasma Mass Spectrometry. We observed that cockles in both areas had a higher accumulation of metals in September. Notably, the biota-sediment accumulation (BSAF) of Cd was highest in both areas. A strong positive correlation of Cd with the length of the cockles at Pattani Bay (r(2) = 0.597) and the Setiu Wetlands (r(2) = 0.675) was noted. It was suggested that As could be a limiting element (BSAF < 1) of cockles obtained from Pattani Bay. In comparison with the permissible limits set by the Thailand Ministry of Public Health and the Malaysia Food Regulations, mean values of As, Cd, Cu, Pb, and Zn were within acceptable limits, but the maximum values of Cd and Pb exceeded the limits for both areas. Regular monitoring of trace metals in cockles from both areas is suggested for more definitive contamination determination.

  13. Biodiversity inventories and conservation of the marine fishes of Bootless Bay, Papua New Guinea

    Science.gov (United States)

    2012-01-01

    Background The effective management and conservation of biodiversity is predicated on clearly defined conservation targets. Species number is frequently used as a metric for conservation prioritization and monitoring changes in ecosystem health. We conducted a series of synoptic surveys focusing on the fishes of the Bootless Bay region of Papua New Guinea to generate a checklist of fishes of the region. Bootless Bay lies directly south of Port Moresby, the capital of Papua New Guinea, and experiences the highest human population density of any marine area in the country. Our checklist will set a baseline against which future environmental changes can be tracked. Results We generated a checklist of 488 fish species in 72 families found in Bootless Bay during a two-week sampling effort. Using incident-based methods of species estimation, we extrapolate there to be approximately 940 fish species in Bootless Bay, one of the lowest reported numbers in Papua New Guinea. Conclusions Our data suggest that the Bootless Bay ecosystem of Papua New Guinea, while diverse in absolute terms, has lower fish biodiversity compared to other shallow marine areas within the country. These differences in faunal diversity are most likely a combination of unequal sampling effort as well as biophysical factors within Bootless Bay compounded by historical and/or contemporary anthropogenic disturbances. PMID:22849436

  14. Biodiversity inventories and conservation of the marine fishes of Bootless Bay, Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Drew Joshua A

    2012-08-01

    Full Text Available Abstract Background The effective management and conservation of biodiversity is predicated on clearly defined conservation targets. Species number is frequently used as a metric for conservation prioritization and monitoring changes in ecosystem health. We conducted a series of synoptic surveys focusing on the fishes of the Bootless Bay region of Papua New Guinea to generate a checklist of fishes of the region. Bootless Bay lies directly south of Port Moresby, the capital of Papua New Guinea, and experiences the highest human population density of any marine area in the country. Our checklist will set a baseline against which future environmental changes can be tracked. Results We generated a checklist of 488 fish species in 72 families found in Bootless Bay during a two-week sampling effort. Using incident-based methods of species estimation, we extrapolate there to be approximately 940 fish species in Bootless Bay, one of the lowest reported numbers in Papua New Guinea. Conclusions Our data suggest that the Bootless Bay ecosystem of Papua New Guinea, while diverse in absolute terms, has lower fish biodiversity compared to other shallow marine areas within the country. These differences in faunal diversity are most likely a combination of unequal sampling effort as well as biophysical factors within Bootless Bay compounded by historical and/or contemporary anthropogenic disturbances.

  15. Conservation of biodiversity in the Sango Bay area, southern Uganda

    African Journals Online (AJOL)

    A series of biodiversity and socio-economic surveys carried out in the Sango Bay area of southern Uganda revealed high biodiversity values for some taxa in some sites. Use of this biodiversity and reliance on it by local communities was widespread. Biodiversity scores were given to all species and these were coupled with ...

  16. Biodiversity inventory and conservation opportunity of Suwi wetlands, Muara Ancalong, East Kalimantan, Indonesia

    Science.gov (United States)

    Wahyudi, Deni; Kusneti, Monica; Suimah

    2017-02-01

    Suwi wetlands lays in location permit of palm oil plantation, which has been cleared partially, but then abandoned because is not suitable for palm oil. Considering the biological richness and the usage, the wetlands is important to be conserved, the most possible is managed as an Essential Ecosystem. The main objective of this study was to conduct an inventory of species diversity of Suwi wetlands. Habitat condition and utilization was recorded as important supporting information. The fieldworks have been done from 2013 to 2016. Camera traps and mistnetts were used and randomly done several times in a place where animal were suspected presence. Direct observations were done in the morning and afternoon especially for bird and mammal inventory while dark night observations were done for the presence of crocodile. The result of fieldworks found 12 species of mammals, 63 species of birds, 9 species of reptiles and 38 species of fish, which 30 of the total 122 species are protected, based on Indonesian law as well as international rule. Proboscis monkey (Nasalis larvatus) is an endemic and one of conservation priority species of Indonesia. Meanwhile, Siamese crocodile (Crocodylus siamensis) is one of the most world's endangered crocodilians.

  17. Mangrove and Freshwater Wetland Conservation Through Carbon Offsets: A Cost-Benefit Analysis for Establishing Environmental Policies.

    Science.gov (United States)

    Vázquez-González, César; Moreno-Casasola, Patricia; Hernández, María Elizabeth; Campos, Adolfo; Espejel, Ileana; Fermán-Almada, José Luis

    2017-02-01

    Mexico has extensive coastal wetlands (4,243,137 ha), and one of its most important sites is the Alvarado Lagoon System, located in the Papaloapan River Basin on the Gulf of Mexico. The land cover dedicated to livestock and sugarcane has increased: by 25 % in 2005 and 50 % in 2010, with a loss of wetland vegetation and the carbon that it stores. We found that the Net Present Value of mangrove carbon offsets profit is equal to $5822.71, that of broad-leaved marshes is $7958.86, cattail marshes $5250.33, and forested wetlands $8369.41 per hectare, during a 30-year-carbonoffset contract. However, the opportunity cost from conserving wetland instead of growing sugarcane is positive according to REDD+ methodology, e.g., broad-leaved marsh conservation ranged from $6.73 to $20 USD/t CO2e, that of cattail marshes from $12.20 to $32.65 USD/t CO2e, and forested wetlands from $7.15 to $20.60 USD/t CO2e, whereas the opportunity cost between conservation and livestock was negative, it means that conservation is more profitable. The cost-benefit analysis for assessing investment projects from a governmental perspective is useful to determine the viability of conserving coastal wetlands through carbon offset credits. It also shows why in some areas it is not possible to conserve ecosystems due to the opportunity cost of changing from one economic activity (livestock and sugarcane) to carbon offsets for protecting wetlands. Furthermore, it allows for a comparison of carbon markets and assessment in terms of REDD+ and its methods for determining the social cost per ton of carbon avoided.

  18. Mapping elevations of tidal wetland restoration sites in San Francisco Bay: Comparing accuracy of aerial lidar with a singlebeam echosounder

    Science.gov (United States)

    Athearn, N.D.; Takekawa, John Y.; Jaffe, B.; Hattenbach, B.J.; Foxgrover, A.C.

    2010-01-01

    The southern edge of San Francisco Bay is surrounded by former salt evaporation ponds, where tidal flow has been restricted since the mid to late 1890s. These ponds are now the focus of a large wetland restoration project, and accurate measurement of current pond bathymetry and adjacent mud flats has been critical to restoration planning. Aerial light detection and ranging (lidar) has become a tool for mapping surface elevations, but its accuracy had rarely been assessed for wetland habitats. We used a singlebeam echosounder system we developed for surveying shallow wetlands to map submerged pond bathymetry in January of 2004 and compared those results with aerial lidar surveys in two ponds that were dry in May of 2004. From those data sets, we compared elevations for 5164 (Pond E9, 154 ha) and 2628 (Pond E14, 69 ha) echosounder and lidar points within a 0.375-m radius of each other (0.750-m diameter lidar spot size). We found that mean elevations of the lidar points were lower than the echosounder results by 5 ?? 0.1 cm in Pond E9 and 2 ?? 0.2 cm in Pond E14. Only a few points (5% in Pond E9, 2% in Pond E14) differed by more than 20 cm, and some of these values may be explained by residual water in the ponds during the lidar survey or elevation changes that occurred between surveys. Our results suggest that aerial lidar may be a very accurate and rapid way to assess terrain elevations for wetland restoration projects. ?? 2010 Coastal Education and Research Foundation.

  19. Spatial patterns in soil biogeochemical process rates along a Louisiana wetland salinity gradient in the Barataria Bay estuarine system

    Science.gov (United States)

    Roberts, B. J.; Rich, M. W.; Sullivan, H. L.; Bledsoe, R.; Dawson, M.; Donnelly, B.; Marton, J. M.

    2014-12-01

    Louisiana has the highest rates of coastal wetland loss in the United States. In addition to being lost, Louisiana wetlands experience numerous other environmental stressors including changes in salinity regime (both increases from salt water intrusion and decreases from the creation of river diversions) and climate change induced changes in vegetation (e.g. the northward expansion of Avicennia germinans (black mangrove) into salt marshes). In this study, we examined how these changes might influence biogeochemical process rates important in regulating carbon balance and the cycling, retention, and removal of nutrients in Louisiana wetlands. Specifically, we measured net soil greenhouse gas fluxes and collected cores for the determination of rates of greenhouse gas production, denitrification potential, nitrification potential, iron reduction, and phosphorus sorption from surface (0-5cm) and subsurface (10-15cm) depths for three plots in each of 4 sites along the salinity gradient: a freshwater marsh site, a brackish (7 ppt) marsh site, a salt marsh (17 ppt), and a Avicennia germinans stand (17 ppt; adjacent to salt marsh site) in the Barataria Bay estuarine system. Most biogeochemical processes displayed similar spatial patterns with salt marsh rates being lower than rates in freshwater and/or brackish marsh sites and not having significantly different rates than in Avicennia germinans stands. Rates in surface soils were generally higher than in subsurface soils. These patterns were generally consistent with spatial patterns in soil properties with soil water content, organic matter quantity and quality, and extractable nutrients generally being higher in freshwater and brackish marsh sites than salt marsh and Avicennia germinans sites, especially in surface soils. These spatial patterns suggest that the ability of coastal wetlands to retain and remove nutrients might change significantly in response to future climate changes in the region and that these

  20. Emergent Macrophytes Support Zooplankton in a Shallow Tropical Lake: A Basis for Wetland Conservation

    Science.gov (United States)

    Gebrehiwot, Mesfin; Kifle, Demeke; Triest, Ludwig

    2017-12-01

    Understanding the biodiversity value of littoral zones of lakes is a priority for aquatic biodiversity conservation. However, less emphasis has been given to the littoral part of tropical African lakes, with many of the previous researches focusing only on the open water side. The aim of the present study was, therefore, to investigate the impact of the littoral zone of a shallow freshwater tropical lake (Ziway, Ethiopia), dominated by two emergent macrophytes, on zooplankton community structure. We hypothesized that the wetland vegetation serves as a preferred microhabitat for zooplankton communities. A lake with substantial coverage of emergent macrophytes was monitored monthly from January to August, 2016. The monitoring included the measurements of physical, chemical, and biological parameters. Sampling sites were selected to represent areas of the macrophyte vegetation ( Typha latifolia and Phragmites australis) and the open water part of the lake. Sites with macrophyte vegetation were found to be the home of more dense and diverse zooplankton community. However, during the period of high vegetation loss, the density of crustacean zooplankton showed significant reduction within the patches of macrophytes. From biodiversity conservation perspective, it was concluded that the preservation of such small areas of macrophytes covering the littoral zone of lakes could be as important as protecting the whole lake. However, the rapid degradation of wetland vegetation by human activities is a real threat to the lake ecosystem. In the not-too-far future, it could displace and evict riparian vegetation and the biota it supports.

  1. Building a Habitat Conversion Model for San Francisco Bay Wetlands: A Multi-species Approach for Integrating GIS and Field Data

    Science.gov (United States)

    Diana Stralberg; Nils Warnock; Nadav Nur; Hildie Spautz; Gary W. Page

    2005-01-01

    More than 80 percent of San Francisco Bay's original tidal wetlands have been altered or displaced, reducing available habitat for a range of tidal marsh-dependent species, including the Federally listed California Clapper Rail (Rallus longirostris obsoletus) and three endemic Song Sparrow (Melospiza melodia) subspecies. In...

  2. Surface sediment properties and heavy metal pollution assessment in the Shallow Sea Wetland of the Liaodong Bay, China.

    Science.gov (United States)

    Wang, Jin; Ye, Siyuan; Laws, Edward A; Yuan, Hongming; Ding, Xigui; Zhao, Guangming

    2017-07-15

    Liaodong Bay, a semi-enclosed bay located in northeastern China, is impacted by the discharges of five rivers. We analyzed 100 surface sediment samples from the Shallow Sea Wetland of Liaodong Bay for grain size and concentrations of organic carbon (Corg) and heavy metals. The ranges of the heavy metal concentrations were 2.32-17μg/g (As), 0.025-1.03μg/g (Cd), 18.9-131μg/g (Cr), 4.6-36.1μg/g (Cu), 0.012-0.29μg/g (Hg), 13.7-33.9μg/g (Pb), and 17.4-159μg/g (Zn). Pollution assessments revealed that some stations were moderately to highly polluted with As, Cd, and Hg. Severe pollution was apparent in the Xiaoling River estuary; lower concentrations of heavy metals were observed in other river mouths, where the sediments were more coarse. The distributions of the heavy metals were closely associated with Corg and grain size. Copyright © 2017. Published by Elsevier Ltd.

  3. Diversity and distribution of aquatic insects in Southern Brazil wetlands: implications for biodiversity conservation in a Neotropical region.

    Science.gov (United States)

    Maltchik, Leonardo; Dalzochio, Marina Schmidt; Stenert, Cristina; Rolon, Ana Silvia

    2012-03-01

    The selection of priority areas is an enormous challenge for biodiversity conservation. Some biogeographic methods have been used to identify the priority areas to conservation, and panbiogeography is one of them. This study aimed at the utilization of panbiogeographic tools, to identify the distribution patterns of aquatic insect genera, in wetland systems of an extensive area in the Neotropical region (approximately 280 000km2), and to compare the distribution of the biogeographic units identified by the aquatic insects, with the conservation units of Southern Brazil. We analyzed the distribution pattern of 82 genera distributed in four orders of aquatic insects (Diptera, Odonata, Ephemeroptera and Trichoptera) in Southern Brazil wetlands. Therefore, 32 biogeographic nodes corresponded to the priority areas for conservation of the aquatic insect diversity. Among this total, 13 were located in the Atlantic Rainforest, 16 in the Pampa and three amongst both biomes. The distribution of nodes showed that only 15% of the dispersion centers of insects were inserted in conservation units. The four priority areas pointed by node cluster criterion must be considered in further inclusions of areas for biodiversity conservation in Southern Brazil wetlands, since such areas present species from different ancestral biota. The inclusion of such areas into the conservation units would be a strong way to conserve the aquatic biodiversity in this region.

  4. Long-term Strategic Planning for a Resilient Metro Colombo: An Economic Case for Wetland Conservation and Management

    Science.gov (United States)

    Rozenberg, J.

    2015-12-01

    Colombo faces recurrent floods that threaten its long-term economic development. Its urban wetlands have been identified by local agencies as a critical component of its flood reduction system, but they have declined rapidly in recent years due to continuous infilling, unmanaged land development and dredging to create lakes. In collaboration with government agencies, NGOs and local universities, the World Bank has carried out a Robust Decision Making analysis to examine the value of Colombo urban wetlands, both in the short-term and long-term, and identify what are the most viable strategies available to increase the city's flood resilience in an unclear future (in terms of climate change and patterns of urban development). This has involved the use of numerous hydrological and socio-economic scenarios as well as the evaluation of some wetlands benefits, like ecosystem services, wastewater treatment, or recreational services. The analysis has determined that if all urban wetlands across the Colombo catchment were lost, in some scenarios the metropolitan area would have to cope with an annual average flood loss of approximately 1% of Colombo GDP in the near future. For long-term strategies, trade-offs between urban development, lake creation and wetland conservation were analyzed and it was concluded that an active management of urban wetlands was the lowest regret option. Finally, the analysis also revealed that in the future, with climate change and fast urban development, wetlands will not be sufficient to protect Colombo against severe floods. Pro-active urban planning and land-use management are therefore necessary, both to protect existing wetlands and to reduce future exposure. The use of many different scenarios, the consideration of several policy options, and the open participatory process ensured policy-makers' buy-in and lead to the decision to actively protect urban wetlands in Colombo.

  5. Phosphorus fractionation and distribution in sediments from wetlands and canals of a water conservation area in the Florida Everglades

    Science.gov (United States)

    Qingren Wang; Yuncong Li; Ying. Ouyang

    2011-01-01

    Phosphorus (P) fractionation and distribution in sediments are of great concern in the Florida Everglades ecosystem because potential eutrophication of surface waters usually results from P external loading and stability. Intact core sediment samples were collected to a depth of 35 cm from wetlands and canals across Water Conservation Area 3 (WCA‐3) of the Florida...

  6. The Efficacy of Constructed Stream-Wetland Complexes at Reducing the Flux of Suspended Solids to Chesapeake Bay.

    Science.gov (United States)

    Filoso, Solange; Smith, Sean M C; Williams, Michael R; Palmer, Margaret A

    2015-08-04

    Studies documenting the capacity of restored streams to reduce pollutant loads indicate that they are relatively ineffective when principal watershed stressors remain intact. Novel restorations are being designed to increase the hydraulic connectivity between stream channels and floodplains to enhance pollutant removal, and their popularity has increased the need for measurements of potential load reductions. Herein we summarize input-output budgets of total suspended solids (TSS) in two Coastal Plain lowland valleys modified to create stream-wetland complexes located above the head-of-tide on the western shore of Chesapeake Bay. Loads entering (input) and exiting (output) the reconfigured valleys over three years were 103 ± 26 and 85 ± 21 tons, respectively, and 41 ± 10 and 46 ± 9 tons, respectively. In both cases, changes in loads within the reconfigured valleys were insignificant relative to cumulative errors. High variability of TSS retention among stormflow events suggests that the capacity of these systems to trap and retain solids and their sustainability depend on the magnitude of TSS loads originating upstream, design characteristics, and the frequency and magnitude of large storms. Constructed stream-wetland complexes receiving relatively high TSS loads may experience progressive physical and chemical changes that limit their sustainability.

  7. Modeling of Waves, Hydrodynamics and Sediment Transport for Protection of Wetlands at Braddock Bay, New York

    Science.gov (United States)

    2015-03-01

    north spit, and break as they enter the basin . The clockwise circulation within the bay produces erosional hot spots in the south and central re- gions... hydrographic survey data available for Braddock Bay and recent LIDAR (Light Detection and Ranging) data, past study reports, as well as other...elevation maps ( DEM ) database, and an ADCIRC mesh for Lake Ontario using the GeoDas database. The horizontal datum used for coordinate data input

  8. Dengue fever in the San Juan Bay Estuary: Evaluating the Role of Wetland Ecosystem Services

    Science.gov (United States)

    Dengue is transmitted by Aedes aegypti, a species that thrives in cities. Here we ask which elements within the urban environment could be managed to reduce the potential for Dengue occurrence. In particular, we study the potential of wetlands in the SJBE to buffer from vector pr...

  9. Ornithofauna and its conservation in the Kuttanad wetlands, southern portion of Vembanad-Kole Ramsar site, India

    Directory of Open Access Journals (Sweden)

    S.P. Narayanan

    2011-04-01

    Full Text Available The avifauna of Kuttanad was studied from January 1995 to June 2007. Two-hundred-and-twenty-five taxa of birds belonging to 15 orders and 59 families were recorded. Among the birds recorded, 38% were migrants. Fifty-five species were found to breed in the area. Family Scolopaceidae showed maximum species diversity. European Roller Coracias garrulus recorded during this study is the first report of this species from Kerala. Ten globally threatened species were recorded. Kuttanad wetland shows greater species diversity, especially in the wetland birds, than the Kole wetlands of Kerala. Kumarakom heronry holds 8% of the biogeographical population of the Near Threatened Oriental Darter. Landscape alteration, hunting, felling of nesting trees and pesticides are the major detrimental factors for the survival of birds. Conservation aspects of birds of this region are discussed.

  10. Dietary use and conservation concern of edible wetland plants at indo-burma hotspot: a case study from northeast India

    Directory of Open Access Journals (Sweden)

    Singh HB

    2011-10-01

    Full Text Available Abstract Background The wetlands of the North East India fall among the global hotspots of biodiversity. However, they have received very little attention with relation to their intrinsic values to human kind; therefore their conservation is hardly addressed. These wetlands are critical for the sustenance of the tribal communities. Methods Field research was conducted during 2003 to 2006 in seven major wetlands of four districts of Manipur state, Northeast India (viz. Imphal-East, Imphal-West, Thoubal, and Bishnupur. A total of 224 wetland-plant-collectors were interviewed for the use and economics of species using semi-structured questionnaires and interview schedules. Imphal, Bishenpur and Thoubal markets were investigated in detail for influx and consumption pattern of these plants. The collectors were also inquired for medicinal use of wetland species. Nutritive values of 21 species were analyzed in laboratory. The vouchers were collected for all the species and deposited in the CSIR-NEIST (Formerly Regional Research Laboratory, Substation, Lamphelpat, Imphal, Manipur, India. Results We recorded 51 edible wetland species used by indigenous people for food and medicinal purposes. Thirty eight species had high medicinal values and used in the traditional system to treat over 22 diseases. At least 27 species were traded in three markets studied (i.e. Imphal, Thoubal and Bishenpur, involving an annual turnover of 113 tons of wetland edible plants and a gross revenue of Rs. 907, 770/- (US$1 = Rs. 45/-. The Imphal market alone supplies 60% of the total business. Eighty per cent of the above mentioned species are very often used by the community. The community has a general opinion that the availability of 45% species has depleted in recent times, 15 species need consideration for conservation while another 7 species deserved immediate protection measures. The nutrient analysis showed that these species contribute to the dietary balance of tribal

  11. Dietary use and conservation concern of edible wetland plants at Indo-Burma hotspot: a case study from Northeast India.

    Science.gov (United States)

    Jain, A; Sundriyal, M; Roshnibala, S; Kotoky, R; Kanjilal, P B; Singh, H B; Sundriyal, R C

    2011-10-04

    The wetlands of the North East India fall among the global hotspots of biodiversity. However, they have received very little attention with relation to their intrinsic values to human kind; therefore their conservation is hardly addressed. These wetlands are critical for the sustenance of the tribal communities. Field research was conducted during 2003 to 2006 in seven major wetlands of four districts of Manipur state, Northeast India (viz. Imphal-East, Imphal-West, Thoubal, and Bishnupur). A total of 224 wetland-plant-collectors were interviewed for the use and economics of species using semi-structured questionnaires and interview schedules. Imphal, Bishenpur and Thoubal markets were investigated in detail for influx and consumption pattern of these plants. The collectors were also inquired for medicinal use of wetland species. Nutritive values of 21 species were analyzed in laboratory. The vouchers were collected for all the species and deposited in the CSIR-NEIST (Formerly Regional Research Laboratory), Substation, Lamphelpat, Imphal, Manipur, India. We recorded 51 edible wetland species used by indigenous people for food and medicinal purposes. Thirty eight species had high medicinal values and used in the traditional system to treat over 22 diseases. At least 27 species were traded in three markets studied (i.e. Imphal, Thoubal and Bishenpur), involving an annual turnover of 113 tons of wetland edible plants and a gross revenue of Rs. 907, 770/- (US$1 = Rs. 45/-). The Imphal market alone supplies 60% of the total business. Eighty per cent of the above mentioned species are very often used by the community. The community has a general opinion that the availability of 45% species has depleted in recent times, 15 species need consideration for conservation while another 7 species deserved immediate protection measures. The nutrient analysis showed that these species contribute to the dietary balance of tribal communities. Considering the importance of wild

  12. Dietary use and conservation concern of edible wetland plants at indo-burma hotspot: a case study from northeast India

    Science.gov (United States)

    2011-01-01

    Background The wetlands of the North East India fall among the global hotspots of biodiversity. However, they have received very little attention with relation to their intrinsic values to human kind; therefore their conservation is hardly addressed. These wetlands are critical for the sustenance of the tribal communities. Methods Field research was conducted during 2003 to 2006 in seven major wetlands of four districts of Manipur state, Northeast India (viz. Imphal-East, Imphal-West, Thoubal, and Bishnupur). A total of 224 wetland-plant-collectors were interviewed for the use and economics of species using semi-structured questionnaires and interview schedules. Imphal, Bishenpur and Thoubal markets were investigated in detail for influx and consumption pattern of these plants. The collectors were also inquired for medicinal use of wetland species. Nutritive values of 21 species were analyzed in laboratory. The vouchers were collected for all the species and deposited in the CSIR-NEIST (Formerly Regional Research Laboratory), Substation, Lamphelpat, Imphal, Manipur, India. Results We recorded 51 edible wetland species used by indigenous people for food and medicinal purposes. Thirty eight species had high medicinal values and used in the traditional system to treat over 22 diseases. At least 27 species were traded in three markets studied (i.e. Imphal, Thoubal and Bishenpur), involving an annual turnover of 113 tons of wetland edible plants and a gross revenue of Rs. 907, 770/- (US$1 = Rs. 45/-). The Imphal market alone supplies 60% of the total business. Eighty per cent of the above mentioned species are very often used by the community. The community has a general opinion that the availability of 45% species has depleted in recent times, 15 species need consideration for conservation while another 7 species deserved immediate protection measures. The nutrient analysis showed that these species contribute to the dietary balance of tribal communities. Conclusions

  13. Using Internet search behavior to assess public awareness of protected wetlands.

    Science.gov (United States)

    Do, Yuno; Kim, Ji Yoon; Lineman, Maurice; Kim, Dong-Kyun; Joo, Gea-Jae

    2015-02-01

    Improving public awareness of protected wetlands facilitates sustainable wetland management, which depends on public participation. One way of gauging public interest is by tracking Internet search behavior (ISB). We assessed public awareness of issues related to protected wetland areas (PWAs) in South Korea by examining the frequencies of specific queries (PWAs, Ramsar, Upo wetland, Sunchon Bay, etc.) using relative search volumes (RSVs) obtained from an Internet search engine. RSV shows how many times a search term is used relative to a second search term during a specific period. Public awareness of PWAs changed from 2007 to 2013. Initially the majority of Internet searches were related to the most well-known tidal and inland wetlands Sunchon Bay and Upo wetlands, which are the largest existing wetlands in Korea with the greatest historical exposure. Public awareness, as reflected in RSVs, of wetlands increased significantly following PWA designation for the wetlands in 2008, which followed the Ramsar 10th Conference of Contracting Parties to the Convention on Wetlands (COP10) meeting. Public interest was strongly correlated to the number of news articles in the popular media, as evidenced by the increase in Internet searches for specific wetlands and words associated with specific wetlands. Correspondingly, the number of visitors to specific wetlands increased. To increase public interest in wetlands, wetland aspects that enhance wetland conservation should be promoted by the government and enhanced via public education. Our approach can be used to gauge public awareness and participation in a wide range of conservation efforts. © 2014 Society for Conservation Biology.

  14. 78 FR 75939 - Bay Delta Habitat Conservation Plan and Natural Community Conservation Plan, Sacramento, CA...

    Science.gov (United States)

    2013-12-13

    ... patterns, including breeding, feeding, and sheltering (50 CFR 17.3(c)). NMFS defines ``harm'' to include... impairing essential behavioral patterns, including breeding, spawning, rearing, migrating, feeding, or... conservation strategy includes measures that will be implemented outside of the statutory Delta to complement...

  15. Humboldt Bay Wetlands Review and Baylands Analysis. Volume II. Base Information.

    Science.gov (United States)

    1980-08-01

    in the bay although Aurellia sp. may often be found there during the summer. Pelagia sp. and especially Chrysaora sp. may cause considerable pain if...Silverweed (Potentilla pacifica ) was also measured in the Nehalem brackish marsh with a low value for peak biomass. 214 Freshwater Marshes Freshwater... pacifica 579 Oregon (Eilers 1975) FRESHWATER MARSHES: Carex r 08tata 420 -- England (Pearsall & Gorham 1956) Carex roStata 738 -- Minnesota (Bernard

  16. The coupling of bay hydrodynamics with sediment supply and micro-tidal wetland stability under high rates of relative sea level rise

    Science.gov (United States)

    Wang, J.; Xu, K.; Restreppo, G. A.; Bentley, S. J.; Meng, X.; Zhang, X.

    2017-12-01

    Due to global sea level rise, local subsidence and sediment deficit, the Mississippi River (MR) deltaic plain has lost a total of 25% of coastal Louisiana's wetlands during the last century, leading to huge losses of ecological services, economic and social crises. Ecosystem-based restoration strategies which rely on coastal system processes and feedbacks are urgently needed. Understanding linkages between estuarine and coastal systems and the adjacent marshlands will help the designing strategies. To investigate bay hydrodynamics and its impacts on the adjacent micro-tidal wetland stability, hourly measurements of wave, tidal current, and benthic sediment concentration in summer, winter, and spring of 2015-2016 were conducted in Fourleague Bay, Louisiana, USA. The bay-marsh system has been stable for almost 80 years under high relative sea level rising rate, which is 11 km southeast of the Atchafalaya River mouth, with a water depth of 1-3 m. High-temporal resolution data indicate that benthic sediment resuspension is mainly caused by wind-driven waves with a dominant periodicity of 4.8 d. The sediment flux reaches 28 g·m-1·s-1 per unit depth in cm during the events. Net sediment transport is northwestward in summer, and southeastward in winter and spring. Sediment flux available for surrounding marsh varies from 0-500 g·m-1·s-1. An optimal inundation depth of 50 cm is estimated by the equilibrium wetland elevation change model under high relative sea level rising rate of 1.57 cm·yr-1. Seasonal variations of river discharge and wind direction (particularly speeds >3 m·s-1) greatly impact potential sediment contribution from bay to the surrounding wetlands. Three sediment transport regimes are concluded based on the seasonal variations of river discharge and wind direction: the `bypassing' season, the resuspension-accumulation season, and the combined `bypassing' and resuspension-accumulation season. The bay hydrodynamic processes and their impacts on the

  17. A network model framework for prioritizing wetland conservation in the Great Plains

    Science.gov (United States)

    Albanese, Gene; Haukos, David A.

    2017-01-01

    ContextPlaya wetlands are the primary habitat for numerous wetland-dependent species in the Southern Great Plains of North America. Plant and wildlife populations that inhabit these wetlands are reciprocally linked through the dispersal of individuals, propagules and ultimately genes among local populations.ObjectiveTo develop and implement a framework using network models for conceptualizing, representing and analyzing potential biological flows among 48,981 spatially discrete playa wetlands in the Southern Great Plains.MethodsWe examined changes in connectivity patterns and assessed the relative importance of wetlands to maintaining these patterns by targeting wetlands for removal based on network centrality metrics weighted by estimates of habitat quality and probability of inundation.ResultsWe identified several distinct, broad-scale sub networks and phase transitions among playa wetlands in the Southern Plains. In particular, for organisms that can disperse >2 km a dense and expansive wetland sub network emerges in the Southern High Plains. This network was characterized by localized, densely connected wetland clusters at link distances (h) >2 km but <5 km and was most sensitive to changes in wetland availability (p) and configuration when h = 4 km, and p = 0.2–0.4. It transitioned to a single, large connected wetland system at broader spatial scales even when the proportion of inundated wetland was relatively low (p = 0.2).ConclusionsOur findings suggest that redundancy in the potential for broad and fine-scale movements insulates this system from damage and facilitates system-wide connectivity among populations with different dispersal capacities.

  18. Louisiana Coastal Wetlands Conservation Plan Boundary, Geographic NAD83, LDNR (1998) [conservation_plan_boundary_LDNR_1998

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a polygon dataset depicting the areas of coastal wetlands in the state of Louisiana. This area encloses the tidally influenced coastal region three feet or...

  19. The role of protected area wetlands in waterfowl habitat conservation: implications for protected area network design

    Science.gov (United States)

    Beatty, William S.; Kesler, Dylan C.; Webb, Elisabeth B.; Raedeke, Andrew H.; Naylor, Luke W.; Humburg, Dale D.

    2014-01-01

    The principal goal of protected area networks is biodiversity preservation, but efficacy of such networks is directly linked to animal movement within and outside area boundaries. We examined wetland selection patterns of mallards (Anas platyrhynchos) during non-breeding periods from 2010 to 2012 to evaluate the utility of protected areas to migratory waterfowl in North America. We tracked 33 adult females using global positioning system (GPS) satellite transmitters and implemented a use-availability resource selection design to examine mallard use of wetlands under varying degrees of protection. Specifically, we examined effects of proximities to National Wildlife Refuges, private land, state wildlife management areas, Wetland Reserve Program easements (WRP), and waterfowl sanctuaries on mallard wetland selection. In addition, we included landscape-level variables that measured areas of sanctuary and WRP within the surrounding landscape of each used and available wetland. We developed 8 wetland selection models according to season (autumn migration, winter, spring migration), hunting season (present, absent), and time period (diurnal, nocturnal). Model averaged parameter estimates indicated wetland selection patterns varied across seasons and time periods, but ducks consistently selected wetlands with greater areas of sanctuary and WRP in the surrounding landscape. Consequently, WRP has the potential to supplement protected area networks in the midcontinent region. Additionally, seasonal variation in wetland selection patterns indicated considering the effects of habitat management and anthropogenic disturbances on migratory waterfowl during the non-breeding period is essential in designing protected area networks.

  20. Waterbird egg mercury concentrations in response to wetland restoration in south San Francisco Bay, California

    Science.gov (United States)

    Ackerman, Joshua T.; Herzog, Mark P.; Hartman, Christopher A.; Watts, Trevor C.; Barr, Jarred R.

    2014-01-01

    The conversion of 50–90 percent of 15,100 acres of former salt evaporation ponds to tidal marsh habitat in the south San Francisco Bay, California, is planned as part of the South Bay Salt Pond Restoration Project. This large-scale habitat restoration may change the bioavailability of methylmercury. The South Bay already is known to have high methylmercury concentrations, with methylmercury concentrations in several waterbirds species more than known toxicity thresholds where avian reproduction is impaired. In this 2013 study, we continued monitoring bird egg mercury concentrations in response to the restoration of the Pond A8/A7/A5 Complex to a potential tidal marsh in the future. The restoration of the Pond A8/A7/A5 Complex began in autumn 2010, and the Pond A8 Notch was opened 5 feet (one of eight gates) to muted tidal action on June 1, 2011, and then closed in the winter. In autumn 2010, internal levees between Ponds A8, A7, and A5 were breached and water depths were substantially increased by flooding the Pond A8/A7/A5 Complex in February 2011. In June 2012, 15 feet (three of eight gates) of the Pond A8 Notch was opened, and then closed in December 2012. In June 2013, 15 feet of the Pond A8 Notch again was opened, and the Pond A8/A7/A5 Complex was a relatively deep and large pond with muted tidal action in the summer. This report synthesizes waterbird data from the 2013 breeding season, and combines it with our prior study’s data from 2010 and 2011.

  1. Can rice field channels contribute to biodiversity conservation in Southern Brazilian wetlands?

    Directory of Open Access Journals (Sweden)

    Leonardo Maltchik

    2011-12-01

    species in agroecosystems has attracted attention. Irrigation channels can improve habitats and offer conditions for freshwater species conservation. Two questions from biodiversity conservation point of view are: 1 Can the irrigated channels maintain a rich diversity of macrophytes, macroinvertebrates and amphibians over the cultivation cycle? 2 Do richness, abundance and composition of aquatic species change over the rice cultivation cycle? For this, a set of four rice field channels was randomly selected in Southern Brazilian wetlands. In each channel, six sample collection events were carried out over the rice cultivation cycle (June 2005 to June 2006. A total of 160 taxa were identified in irrigated channels, including 59 macrophyte species, 91 taxa of macroinvertebrate and 10 amphibian species. The richness and abundance of macrophytes, macroinvertebrates and amphibians did not change significantly over the rice cultivation cycle. However, the species composition of these groups in the irrigation channels varied between uncultivated and cultivated periods. Our results showed that the species diversity found in the irrigation channels, together with the permanence of water enables these man-made aquatic networks to function as important systems that can contribute to the conservation of biodiversity in regions where the wetlands were converted into rice fields. The conservation of the species in agriculture, such as rice field channels, may be an important alternative for biodiversity conservation in Southern Brazil, where more than 90% of wetland systems have already been lost and the remaining ones are still at high risk due to the expansion of rice production. Rev. Biol. Trop. 59 (4: 1895-1914. Epub 2011 December 01.

  2. Integrating Federal and State data records to report progress in establishing agricultural conservation practices on Chesapeake Bay farms

    Science.gov (United States)

    Hively, W. Dean; Devereux, Olivia H.; Claggett, Peter

    2013-01-01

    In response to the Executive Order for Chesapeake Bay Protection and Restoration (E.O. #13508, May 12, 2009), the U.S. Geological Survey (USGS) took on the task of acquiring and assessing agricultural conservation practice data records for U.S. Department of Agriculture (USDA) programs, and transferred those datasets in aggregated format to State jurisdictional agencies for use in reporting conservation progress to the Chesapeake Bay Program Partnership (CBP Partnership). Under the guidelines and regulations that have been developed to protect and restore water-quality in the Chesapeake Bay, the six State jurisdictions that fall within the Chesapeake Bay watershed are required to report their progress in promoting agricultural conservation practices to the CBP Partnership on an annual basis. The installation and adoption of agricultural best management practices is supported by technical and financial assistance from both Federal and State conservation programs. The farm enrollment data for USDA conservation programs are confidential, but agencies can obtain access to the privacy-protected data if they are established as USDA Conservation Cooperators. The datasets can also be released to the public if they are first aggregated to protect farmer privacy. In 2012, the USGS used its Conservation Cooperator status to obtain implementation data for conservation programs sponsored by the USDA Natural Resources Conservation Service (NRCS) and the USDA Farm Service Agency (FSA) for farms within the Chesapeake Bay watershed. Three jurisdictions (Delaware, Pennsylvania, and West Virginia) used the USGS-provided aggregated dataset to report conservation progress in 2012, whereas the remaining three jurisdictions (Maryland, New York, and Virginia) used jurisdictional Conservation Cooperator Agreements to obtain privacy-protected data directly from the USDA. This report reviews the status of conservation data sharing between the USDA and the various jurisdictions, discusses the

  3. Wetland InSAR

    Science.gov (United States)

    Wdowinski, S.; Kim, S.; Amelung, F.; Dixon, T.

    2006-12-01

    Wetlands are transition zones where the flow of water, the nutrient cycling, and the sun energy meet to produce a unique and very productive ecosystem. They provide critical habitat for a wide variety of plant and animal species, including the larval stages of many ocean fish. Wetlands also have a valuable economical importance, as they filter nutrients and pollutants from fresh water used by human and provide aquatic habitats for outdoor recreation, tourism, and fishing. Globally, many such regions are under severe environmental stress, mainly from urban development, pollution, and rising sea level. However, there is increasing recognition of the importance of these habitats, and mitigation and restoration activities have begun in a few regions. A key element in wetlands conservation, management, and restoration involves monitoring its hydrologic system, as the entire ecosystem depends on its water supply. Heretofore, hydrologic monitoring of wetlands are conducted by stage (water level) stations, which provide good temporal resolution, but suffer from poor spatial resolution, as stage station are typically distributed several, or even tens of kilometers, from one another. Wetland application of InSAR provides the needed high spatial resolution hydrological observations, complementing the high temporal resolution terrestrial observations. Although conventional wisdom suggests that interferometry does not work in vegetated areas, several studies have shown that both L- and C-band interferograms with short acquisition intervals (1-105 days) can maintain excellent coherence over wetlands. In this study we explore the usage of InSAR for detecting water level changes in various wetland environments around the world, including the Everglades (south Florida), Louisiana Coast (southern US), Chesapeake Bay (eastern US), Pantanal (Brazil), Okavango Delta (Botswana), and Lena Delta (Siberia). Our main study area is the Everglades wetland (south Florida), which is covered by

  4. The role of surface and subsurface processes in keeping pace with sea level rise in intertidal wetlands of Moreton Bay, Queensland, Australia

    Science.gov (United States)

    Lovelock, Catherine E.; Bennion, Vicki; Grinham, Alistair; Cahoon, Donald R.

    2011-01-01

    Increases in the elevation of the soil surfaces of mangroves and salt marshes are key to the maintenance of these habitats with accelerating sea level rise. Understanding the processes that give rise to increases in soil surface elevation provides science for management of landscapes for sustainable coastal wetlands. Here, we tested whether the soil surface elevation of mangroves and salt marshes in Moreton Bay is keeping up with local rates of sea level rise (2.358 mm y-1) and whether accretion on the soil surface was the most important process for keeping up with sea level rise. We found variability in surface elevation gains, with sandy areas in the eastern bay having the highest surface elevation gains in both mangrove and salt marsh (5.9 and 1.9 mm y-1) whereas in the muddier western bay rates of surface elevation gain were lower (1.4 and -0.3 mm y-1 in mangrove and salt marsh, respectively). Both sides of the bay had similar rates of surface accretion (~7–9 mm y-1 in the mangrove and 1–3 mm y-1 in the salt marsh), but mangrove soils in the western bay were subsiding at a rate of approximately 8 mm y-1, possibly due to compaction of organic sediments. Over the study surface elevation increments were sensitive to position in the intertidal zone (higher when lower in the intertidal) and also to variation in mean sea level (higher at high sea level). Although surface accretion was the most important process for keeping up with sea level rise in the eastern bay, subsidence largely negated gains made through surface accretion in the western bay indicating a high vulnerability to sea level rise in these forests.

  5. [Dynamics of carbon, nitrogen and phosphorus storage of three dominant marsh plants in Hangzhou Bay coastal wetland].

    Science.gov (United States)

    Shao, Xue-xin; Li, Wen-hua; Wu, Ming; Yang, Wen-ying; Jiang, Ke-yi; Ye, Xiao-qi

    2013-09-01

    Salt marshes perform important ecosystem functions in carbon, nitrogen and phosphorus recycling. The plant biomass, content and pools of C, N and P were measured seasonally in three marsh species Phragmites australis, Spartina alterniflora and Scirpus mariquezer in Hangzhou Bay coastal wetland for the dynamics of C, N and P storage. The results showed that seasonal variation of aboveground biomass displayed a unimodal curve. The seasonal variability of plant OC content in the aboveground part of the plants was not significant, while the TN and TP content decreased significantly from spring to winter. The seasonal variability of plant C, N and P pools was significant. And there was a significant relationship between plant C/N/P pools and biomass. The pools among plant species were significantly different. S. mariqueter had the lowest C/N/P pools. TN pool in the aboveground part of P. australis was higher than that of S. aterniflora, but its TP pool was lower than that of S. alterniflora, and there was no significant difference for OC pools between P. australis and S. alterniflora. C fixation of the three marsh species was 380%, 376% and 55.5% of the average C fixation of terrestrial vegetations in China, and 463%, 458% and 67.7% of the average C fixation of terrestrial vegetations of the world. Considering the purification capacity of N and P, July would be the best harvest time of the study area for three plants. And the harvest of S. alterniflora could remove the biggest amount of P, since P was a limiting nutrient for phytoplankton growth. In conclusion, the marsh plants had strong C fixation and N/P purification ability.

  6. Bengal Bay clone ST772-MRSA-V outbreak: conserved clone causes investigation challenges.

    Science.gov (United States)

    Blomfeldt, A; Larssen, K W; Moghen, A; Haugum, K; Steen, T W; Jørgensen, S B; Aamot, H V

    2017-03-01

    The Bengal Bay clone, ST772-MRSA-V, associated with multi-drug resistance, Panton-Valentine leukocidin (PVL) and skin and soft tissue infections, is emerging worldwide. In Norway, a country with low prevalence of meticillin-resistant Staphylococcus aureus (MRSA), increased occurrence of ST772-MRSA-V has also caused hospital outbreaks. The conserved nature of this clone challenged the outbreak investigations. To evaluate the usefulness of S. aureus protein A (spa) typing, multiple-locus variable number tandem repeat fingerprinting/analysis (MLVF/MLVA) and pulsed-field gel electrophoresis (PFGE) when investigating outbreaks with a conserved MRSA clone. A panel of 25 MRSA isolates collected in 2004-2014, consisting of six hospital outbreak isolates and 19 sporadic isolates, were analysed using spa typing, polymerase chain reaction detection of genes encoding PVL, MLVF/MLVA and PFGE. All isolates were ST772-MRSA-V-t657 and resistant to erythromycin, gentamicin and norfloxacin, and 88% were PVL positive. PFGE could not discriminate between the isolates (≥85% similarity). MLVF resolved five types [Simpson's index of diversity (SID)=0.56], MLVA resolved six types (SID=0.66), and both methods separated the hospital isolates into two defined outbreaks. MLVF/MLVA could not discriminate all epidemiologically unlinked cases and identical genotypes originated from a timespan of 10 years. MLVA was regarded as most suitable due to its higher discriminatory power and ability to provide unambiguous profiles. However, the Bengal Bay clone may require higher resolution methods for exact demarcation of outbreaks due to low diversity among isolates. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  7. Managing wetlands for waterbirds: How managers can make a difference in improving habitat to support a North American Bird Conservation Plan

    Science.gov (United States)

    Erwin, R.M.; Laubhan, M.K.; Cornely, J.E.; Bradshaw, D.M.; Bonney, Rick; Pashley, David N.; Cooper, Robert; Niles, Larry

    2000-01-01

    Wetlands are the most productive ecosystems in the world, yet they have suffered more loss and degradation than any other ecosystem. Not surprisingly, 50% (29 of 58) of all the bird species in the U. S. (excluding Hawaii and territories) that are listed either as federally threatened or endangered, or are on the U. S. Fish & Wildlife Service 1995 List of Migratory Nongame Birds of Management Concern, occupy wetland or aquatic habitats even though many remaining wetlands across the North American landscape already are managed primarily for waterbirds. Some of these wetlands are administered by federal and state entities (e.g., national wildlife refuges, national and state parks, state wetland management areas) or are maintained on private lands through federally supported restoration and enhancement programs (e.g., Conservation Reserve Program, Wetland Reserve Program, Waterfowl Production Areas, and Partners for Wildlife). Private organizations, such as the National Audubon Society, The Nature Conservancy, and private hunting clubs, also own wetland areas that are managed specifically to benefit wildlife. If management philosophies are altered to consider the entire complex of wetlands, many wetlands can provide benefits to a broad array of waterbirds, as opposed to just one or a few species. However, challenges for natural resource managers are in forming partnerships with owners-managers of wetlands where the objectives are not primarily wildlife oriented. These owners or managers need to be included in wetland training workshops in an attempt to educate them about wetland values and secondary wildlife benefits that may be derived in flooded agricultural lands, aquaculture ponds, altered coastal marshes (mosquito control), and salt evaporation ponds. In some cases, compensation for crop damages by wildlife may be a necessary part of any cooperative agreements. In the development of a North American Bird Conservation Plan we propose a four-step approach and

  8. Hydrology and water quality of a field and riparian buffer adjacent to a mangrove wetland in Jobos Bay Watershed, Puerto Rico

    Science.gov (United States)

    Models that estimate the effects of agricultural conservation practices on water quantity and quality have become increasingly important tools for short- and long-term assessments. In this study, we simulated the water quality and hydrology of a portion of the Jobos Bay watershed, Puerto Rico using...

  9. Influence of climate change, tidal mixing, and watershed urbanization on historical water quality in Newport Bay, a saltwater wetland and tidal embayment in southern California.

    Science.gov (United States)

    Pednekar, Abhishek M; Grant, Stanley B; Jeong, Youngsul; Poon, Ying; Oancea, Carmen

    2005-12-01

    Historical coliform measurements (n = 67,269; 32 years) in Newport Bay, a regionally important saltwater wetland and tidal embayment in southern California, have been compiled and analyzed. Coliform concentrations in Newport Bay decrease along an inland-to-ocean gradient, consistent with the hypothesis that this tidal embayment attenuates fecal pollution from inland sources. Nearly 70% of the variability in the coliform record can be attributed to seasonal and interannual variability in local rainfall, implying that stormwater runoff from the surrounding watershed is a primary source of coliform in Newport Bay. The storm loading rate of coliform from the San Diego Creek watershed--the largest watershed draining into Newport Bay--appears to be unaffected by the dramatic shift away from agricultural land-use that occurred in the watershed over the study period. Further, the peak loading of coliform during storms is larger than can be reasonably attributed to sources of human sewage, suggesting that nonhuman fecal pollution and/or bacterial regrowth contribute to the coliform load. Summer time measurements of coliform exhibit interannual trends, but these trends are site specific, apparently due to within-Bay variability in land-use, inputs of dry-weather runoff, and tidal mixing rates. Overall, these results suggest that efforts to improve water quality in Newport Bay will likely have greater efficacy during dry weather summer periods. Water quality during winter storms, on the other hand, appears to be dominated by factors outside of local management control; namely, virtually unlimited nonhuman sources of coliform in the watershed and global climate patterns, such as the El Nino Southern Oscillation, that modulate rainfall and stormwater runoff in southern California.

  10. Seasonal variations in the water quality of a tropical wetland dominated by floating meadows and its implication for conservation of Ramsar wetlands

    Science.gov (United States)

    Tuboi, Chongpi; Irengbam, Michelle; Hussain, Syed Ainul

    2018-02-01

    The Loktak Lake is a palustrine wetland located in the Barak-Chindwin river basin of Northeast India. The Lake is characterized by floating meadows of various thickness which support severely depleted endangered Eld's deer (Rucervus eldii) and sympatric hog deer (Axis porcinus). The southern part of the Lake is protected as Keibul Lamjao National Park as the last remaining habitat of the Eld's deer in India. The Loktak Lake has been included in the Montreux record as it is changing its ecological character due to anthropogenic pressures especially due to water pollution. We examined the seasonal pattern of water quality of Loktak Lake and compared it with the Keibul Lamjao National Park with a view to suggest measures for removal of this wetland from the Montreux record and for improved conservation. The evaluation of spatio-temporal variations in the water quality parameters over two years was carried out using multivariate statistical analysis. Hierarchical cluster analysis grouped the 11 sampling sites into four groups, less polluted, medium polluted, highly polluted and most polluted and the 12 months into three time periods. Principal Component Analysis identified three factors in the data structure which explained 92.9% of the total variance of the data set which was used to group the selected parameters according to common features and to evaluate the influence of each group on the overall variation in water quality. Significant difference in terms of water quality parameters were observed across different parts of the lake and seasons (ANOVA, p integrated approach in reduction of nutrient inputs, enhanced flushing mechanism and restoration of environmental flow which has been disrupted due to damming.

  11. The Beetle (Coleoptera and True bug (Heteroptera species pool of the alpine “Pian di Gembro” wetland (Villa di Tirano, Italy and its conservation

    Directory of Open Access Journals (Sweden)

    Matteo Montagna

    2011-04-01

    Full Text Available he C oleoptera and Heteroptera species pool was investigated in the “Pian di Gembro” wetland (Villa di T irano, Sondrio, Italy. T he wetland consists of a bog and its surroundings, referred to as wetland components, that are both subjected to a diversified intermediate management regime (DIMR. T he application of the DIMR for plant species conservation resulted in the establishment of 11 wetland zones with a characteristic vegetation. In a three year sampling program, 997 C oleoptera and Heteroptera representing 141 species from 14 families were collected. Among these species, 64 species share both wetland components, 11 are restricted to the bog and 63 were found in the surroundings only. Among the species pool there were 23 tyrphophile taxa and only one tyrphobiont. With the exception of one zone, all zones are inhabited by zone-specific species. By taking into account both the general species pool and the pool of species of particular interest to conservationists, only one zone can be considered as redundant since it is inhabited by species that occur also in other zones. Hence, all the zones, with one exception, are effective for species pool conservation. The existing DIMR implemented for plant species conservation is also effective for conserving the species pool of C oleoptera and Heteroptera.

  12. Exploring drivers of wetland hydrologic fluxes across parameters and space

    Science.gov (United States)

    Jones, C. N.; Cheng, F. Y.; Mclaughlin, D. L.; Basu, N. B.; Lang, M.; Alexander, L. C.

    2017-12-01

    Depressional wetlands provide diverse ecosystem services, ranging from critical habitat to the regulation of landscape hydrology. The latter is of particular interest, because while hydrologic connectivity between depressional wetlands and downstream waters has been a focus of both scientific research and policy, it remains difficult to quantify the mode, magnitude, and timing of this connectivity at varying spatial and temporary scales. To do so requires robust empirical and modeling tools that accurately represent surface and subsurface flowpaths between depressional wetlands and other landscape elements. Here, we utilize a parsimonious wetland hydrology model to explore drivers of wetland water fluxes in different archetypal wetland-rich landscapes. We validated the model using instrumented sites from regions that span North America: Prairie Pothole Region (south-central Canada), Delmarva Peninsula (Mid-Atlantic Coastal Plain), and Big Cypress Swamp (southern Florida). Then, using several national scale datasets (e.g., National Wetlands Inventory, USFWS; National Hydrography Dataset, USGS; Soil Survey Geographic Database, NRCS), we conducted a global sensitivity analysis to elucidate dominant drivers of simulated fluxes. Finally, we simulated and compared wetland hydrology in five contrasting landscapes dominated by depressional wetlands: prairie potholes, Carolina and Delmarva bays, pocosins, western vernal pools, and Texas coastal prairie wetlands. Results highlight specific drivers that vary across these regions. Largely, hydroclimatic variables (e.g., PET/P ratios) controlled the timing and magnitude of wetland connectivity, whereas both wetland morphology (e.g., storage capacity and watershed size) and soil characteristics (e.g., ksat and confining layer depth) controlled the duration and mode (surface vs. subsurface) of wetland connectivity. Improved understanding of the drivers of wetland hydrologic connectivity supports enhanced, region

  13. 75 FR 8989 - Meeting Announcements: North American Wetlands Conservation Council; Neotropical Migratory Bird...

    Science.gov (United States)

    2010-02-26

    ... advise the Director, Fish and Wildlife Service, on the strategic direction and management of the NMBCA... INFORMATION CONTACT: Michael J. Johnson, Council Coordinator, by phone at (703) 358-1784; by e-mail at dbhc... wetland acquisition, restoration, enhancement, and management projects for recommendation to, and final...

  14. Chapter 16 - conservation and use of coastal wetland forests in Louisiana

    Science.gov (United States)

    Stephen P. Faulkner; Jim L. Chambers; William H. Conner; Richard F. Keim; John W. Day; Emile S. Gardiner; Melinda S. Hughes; Sammy L. King; Kenneth W. McLeod; Craig A. Miller; J. Andrew Nyman; Gary P. Shaffer

    2007-01-01

    The natural ecosystems of coastal Louisiana reflect the underlying geomorphic processes responsible for their formation. The majority of Louisiana's wetland forests are found in the lower reaches of the Mississipp Alluvial Valley and the Deltaic Plain. The sediments, water, and energy of the Mississippi River have shaped the Deltaic Plain as natural deltas have...

  15. Diversity and distribution of aquatic insects in Southern Brazil wetlands: implications for biodiversity conservation in a Neotropical region

    Directory of Open Access Journals (Sweden)

    Leonardo Maltchik

    2012-03-01

    Full Text Available The selection of priority areas is an enormous challenge for biodiversity conservation. Some biogeographic methods have been used to identify the priority areas to conservation, and panbiogeography is one of them. This study aimed at the utilization of panbiogeographic tools, to identify the distribution patterns of aquatic insect genera, in wetland systems of an extensive area in the Neotropical region (~280 000km², and to compare the distribution of the biogeographic units identified by the aquatic insects, with the conservation units of Southern Brazil. We analyzed the distribution pattern of 82 genera distributed in four orders of aquatic insects (Diptera, Odonata, Ephemeroptera and Trichoptera in Southern Brazil wetlands. Therefore, 32 biogeographic nodes corresponded to the priority areas for conservation of the aquatic insect diversity. Among this total, 13 were located in the Atlantic Rainforest, 16 in the Pampa and three amongst both biomes. The distribution of nodes showed that only 15% of the dispersion centers of insects were inserted in conservation units. The four priority areas pointed by node cluster criterion must be considered in further inclusions of areas for biodiversity conservation in Southern Brazil wetlands, since such areas present species from differrent ancestral biota. The inclusion of such areas into the conservation units would be a strong way to conserve the aquatic biodiversity in this region.La selección de áreas prioritarias es un enorme desafío para la conservación de la biodiversidad. Métodos biogeográficos se han utilizado para identificar áreas prioritarias para la conservación, como la panbiogeografía. Este estudio tuvo como objetivo el empleo de herramientas panbiogeográficas, para identificar los patrones de distribución de los géneros de insectos acuáticos, en los sistemas de humedales de una extensa área de la región Neotropical (~280 000km², y así comparar la distribución de las

  16. Diet, female reproduction and conservation of Jagor's water snake, Enhydris jagorii in Bung Ka Loh wetland, Uttaradit province, Thailand

    Directory of Open Access Journals (Sweden)

    Chattraphas Pongcharoen

    2016-05-01

    Full Text Available Jagor's water snake (Enhydris jagorii is a freshwater snake that is endemic to the Chao Phraya-Ta Chin basin, Thailand. However, habitat change and destruction are the main threats to this snake, where a large area of the wetland has been rapidly transformed into urban and agricultural areas. Moreover, uncontrolled fishing seriously threatens the remaining population of this snake. In order to protect this species, information on its natural history is required. This study was conducted in the Bung Ka Loh wetland during October, 2010 to August, 2014 when 108 specimens of this species were collected. Analysis of the stomach contents revealed that it is piscivorous, with cyprinids being the dominant prey. Prey items were usually less than 10% of the snake body mass and multiple prey items were occasionally found. No significant difference in diet was noted between the sexes. In addition, predation on this snake by Cylindrophis ruffus was first recorded in this study. The smallest gravid female collected had a snout-vent length of 34.0 cm. The clutch size and mass ranged from 1 to 28 embryos and 3.1–123.0 g, respectively, and both of these quantities increased significantly with increased female size. Reproduction was possibly seasonal and occurred in the rainy season. A preliminary study of other wetlands in the central plain of Thailand failed to detect the existence of this species. Accordingly, the conservation status of this species should be changed from Data Deficient to Critically Endangered.

  17. Using chemical, microbial and fluorescence techniques to understand contaminant sources and pathways to wetlands in a conservation site.

    Science.gov (United States)

    Rhymes, J; Jones, L; Lapworth, D J; White, D; Fenner, N; McDonald, J E; Perkins, T L

    2015-04-01

    Nutrients and faecal contaminants can enter wetland systems in a number of ways, with both biological and potentially human-health implications. In this study we used a combination of inorganic chemistry, dissolved organic matter (DOM) fluorescence and Escherichia coli and total coliform (TC) count techniques to study the sources and multiple pathways of contamination affecting a designated sand dune site of international conservation importance, surrounded by agricultural land. Analysis of stream samples, groundwater and dune slack wetlands revealed multiple input pathways. These included riverbank seepage, runoff events and percolation of nutrients from adjacent pasture into the groundwater, as well as some on-site sources. The combined techniques showed that off-site nutrient inputs into the sand dune system were primarily from fertilisers, revealed by high nitrate concentrations, and relatively low tryptophan-like fulvic-like ratios<0.4Ramanunits (R.U.). The E. coli and TC counts recorded across the site confirm a relatively minor source of bacterial and nutrient inputs from on-site grazers. Attenuation of the nutrient concentrations in streams, in groundwater and in run-off inputs occurs within the site, restoring healthier groundwater nutrient concentrations showing that contaminant filtration by the sand dunes provides a valuable ecosystem service. However, previous studies show that this input of nutrients has a clear adverse ecological impact. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Treatment Wetlands

    OpenAIRE

    Dotro, Gabriela; Langergraber, Günter; Molle, Pascal; Nivala, Jaime; Puigagut, Jaume; Stein, Otto; Von Sperling, Marcos

    2017-01-01

    Overview of Treatment Wetlands; Fundamentals of Treatment Wetlands; Horizontal Flow Wetlands; Vertical Flow Wetlands; French Vertical Flow Wetlands; Intensified and Modified Wetlands; Free Water Surface Wetlands; Other Applications; Additional Aspects.

  19. Predicted effect of landscape position on wildlife habitat value of Conservation Reserve Enhancement Program wetlands in a tile-drained agricultural region

    Science.gov (United States)

    Otis, David L.; Crumpton, William R.; Green, David; Loan-Wilsey, Anna; Cooper, Tom; Johnson, Rex R.

    2013-01-01

    Justification for investment in restored or constructed wetland projects are often based on presumed net increases in ecosystem services. However, quantitative assessment of performance metrics is often difficult and restricted to a single objective. More comprehensive performance assessments could help inform decision-makers about trade-offs in services provided by alternative restoration program design attributes. The primary goal of the Iowa Conservation Reserve Enhancement Program is to establish wetlands that efficiently remove nitrates from tile-drained agricultural landscapes. A secondary objective is provision of wildlife habitat. We used existing wildlife habitat models to compare relative net change in potential wildlife habitat value for four alternative landscape positions of wetlands within the watershed. Predicted species richness and habitat value for birds, mammals, amphibians, and reptiles generally increased as the wetland position moved lower in the watershed. However, predicted average net increase between pre- and post-project value was dependent on taxonomic group. The increased average wetland area and changes in surrounding upland habitat composition among landscape positions were responsible for these differences. Net change in predicted densities of several grassland bird species at the four landscape positions was variable and species-dependent. Predicted waterfowl breeding activity was greater for lower drainage position wetlands. Although our models are simplistic and provide only a predictive index of potential habitat value, we believe such assessment exercises can provide a tool for coarse-level comparisons of alternative proposed project attributes and a basis for constructing informed hypotheses in auxiliary empirical field studies.

  20. Wooden Bay Window (Rowshan Conservation in Saudi-Hejazi Heritage Buildings

    Directory of Open Access Journals (Sweden)

    A. A. Adas

    2013-07-01

    Full Text Available A prominent feature of the architectural style of heritage buildings in western Saudi Arabia (Hijaz cities such as Jeddah is the extensive use in their facades of projected intricately carved wooden bay window (Rowshan sl, Rawasheen pl. Throughout Balad or the old town in Jeddah, the element of Rowshan can be found made from many different types of woods such as teak, Javan, mahogany, other types of african and middle eastern woods and with different sizes, proportions, and varied intricate ornamentations and motifs. Besides its aesthetic value, the rawasheen and their many components and parts provide other functions such as ventilation, lighting, and spatial and visual privacy for building interiors from the outside. The profound degradation of Rawasheen is impacting the authenticity and heritage value of old buildings in historical Jeddah because of many factors that include: extensive moisture damage, using improper repair methods and joinery techniques to maintain rawasheen, using unsuitable cleaning products and wood paints, and replacing damaged parts with unkown types of wood. In order to prevent any further deterioration of Rawasheen, documentation of rawasheen and its components using recent digital methodologies and the utilization of proper repair techniques must be followed when working with these elements to ensure longevity of conservation, and preservation of value and authenticity.Through the disucssion of Rowshan repair methodology that was developed that include the digital documentation of all intricate details of rowshan panels and wood engraving which allowed replicating damaged elements beyond repair and applied to a listed building in old Jeddah, the paper provides Rowshan repair guidelines which relate to documentation, diagnostic methods, investigations and tests, repair methodology and reinforcement.

  1. Socioeconomic status, immigration/acculturation, and ethnic variations in breast conserving surgery, San Francisco Bay area.

    Science.gov (United States)

    Gomez, Scarlett L; France, Anne-Marie; Lee, Marion M

    2004-01-01

    Previous studies have demonstrated substantial variations in breast conserving surgery (BCS) across sociodemographic groups. This study explored the joint influences of socioeconomic, immigration/acculturation, and clinical factors on ethnic differences in breast cancer surgery for early-stage disease. The study used interview data for 297 women, under the age of 70, who resided in the San Francisco Bay area, and had been diagnosed with primary early-stage breast cancer (carcinoma in-situ or invasive) between January 1990 and December 1992. The proportion of patients who either had undergone BCS or had no surgery was 45%, 20%, 45%, and 34%, among Whites, Chinese, Blacks, and Hispanics, respectively. The proportion of patients diagnosed at in-situ or localized stages, with tumors of less than 4 centimeters, was higher among those who received BCS or no surgery, compared to those who had undergone a mastectomy. White women who received BCS/no surgery tended to be younger than their counterparts who underwent mastectomies, but Chinese and Black women who received BCS/no surgery were older. The proportion of women diagnosed in smaller, private hospitals was higher among those receiving BCS/no surgery, although these associations varied by ethnicity. Women who had undergone BCS/no surgery were characterized as being of higher socioeconomic status, more acculturated, and less likely to be recent immigrants. In a multivariate regression model adjusting for clinical, socioeconomic, and immigration/acculturation factors, Chinese women were more likely than Whites to have a mastectomy, rather than BCS/no surgery (odds ratio, 2.8; 95% confidence interval, 1.0-7.8). Use of BCS or no surgery was associated with various clinical, socioeconomic, and immigration/acculturation characteristics, although some of the associations varied by ethnicity. However, these factors did not account for the reduced presence of BCS, or no surgery, among Chinese women.

  2. Assessing the effects of USDA conservation programs on ecosystem services provided by wetlands

    Science.gov (United States)

    The Conservation Effects Assessment Project (CEAP) is led by the U.S. Department of Agriculture (USDA) in an effort to quantify the environmental effects of conservation programs and practices on privately owned agricultural landscapes across the United States. CEAP’s approach includes application ...

  3. Landsat classification of surface-water presence during multiple years to assess response of playa wetlands to climatic variability across the Great Plains Landscape Conservation Cooperative region

    Science.gov (United States)

    Manier, Daniel J.; Rover, Jennifer R.

    2018-02-15

    To improve understanding of the distribution of ecologically important, ephemeral wetland habitats across the Great Plains, the occurrence and distribution of surface water in playa wetland complexes were documented for four different years across the Great Plains Landscape Conservation Cooperative (GPLCC) region. This information is important because it informs land and wildlife managers about the timing and location of habitat availability. Data with an accurate timestamp that indicate the presence of water, the percent of the area inundated with water, and the spatial distribution of playa wetlands with water are needed for a host of resource inventory, monitoring, and research applications. For example, the distribution of inundated wetlands forms the spatial pattern of available habitat for resident shorebirds and water birds, stop-over habitats for migratory birds, connectivity and clustering of wetland habitats, and surface waters that recharge the Ogallala aquifer; there is considerable variability in the distribution of playa wetlands holding water through time. Documentation of these spatially and temporally intricate processes, here, provides data required to assess connections between inundation and multiple environmental drivers, such as climate, land use, soil, and topography. Climate drivers are understood to interact with land cover, land use and soil attributes in determining the amount of water that flows overland into playa wetlands. Results indicated significant spatial variability represented by differences in the percent of playas inundated among States within the GPLCC. Further, analysis-of-variance comparison of differences in inundation between years showed significant differences in all cases. Although some connections with seasonal moisture patterns may be observed, the complex spatial-temporal gradients of precipitation, temperature, soils, and land use need to be combined as covariates in multivariate models to effectively account for

  4. Biomonitoring of Heavy metals using the bivalve molluscs in sunderban mangrove wetland, Northeast Coast of Bay of bengal (india): possible risks to Human health

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Henrique; Cardoso, Ines [Departamento de Biologia Animal/Instituto de Oceanografia, Campo Grande, Lisboa (Portugal); Chatterjee, Mousumi; Kumar Bhattacharya, Asok; Aftab Alam, Mohammad [Department of Marine Science, University of Calcutta, Calcutta (India); Kanta Satpathy, Kamala [Indira Gandhi Centre for Atomic Research, Environmental and Industrial Safety Section, Safety Group, Kalpakkam, Tamil Nadu (India); Kumar Sarkar, Santosh

    2008-02-15

    The suitability of using four bivalve molluscs (Sanguinolaria acuminata, Anadara granosa, Meretrix meretrix, and Pelecyora trigona) in biomonitoring of heavy metals (Cu, Pb, Cd, Zn, and Hg) collected from intertidal regions of the Sunderban mangrove wetland, northeastern part of the Bay of Bengal, were evaluated. Both speciesdependent variability and temporal variations were pronounced. A high degree of organ specificity was evident in the bivalves where gill and mantle exhibited higher metal accumulation due to ion exchange property of the mucous layer covering these organs while shells represent very poor accumulation. Elevated values of Zn and Cu reflect high potential for biomagnification through marine food chain. Metal concentrations in different body size groups of the bivalves do not follow uniform trend. Correlation coefficient between different metal couplings as tested statistically revealed significant coupling for Pb-Zn, Pb-Cu, Zn-Cu, and Hg-Cu. Concentrations of all the metals in specific organs (visceral mass, mantle and gill) of the bivalves exceeded the safe levels according to the international standards for metals compiled by Food and Agricultural Organization of the United Nations and would be of great risk for human consumption. It is concluded that the mussel and clam are suitable biomonitors to employ in programs designed to assess changes in metal pollution in the Sunderban mangrove wetland. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  5. Integrating research and management to conserve wildfowl (Anatidae) and wetlands in the Mississippi Alluvial Valley, U.S.A

    Science.gov (United States)

    Reinecke, K.J.; Loesch, C.R.; Birkan, Marcel

    1996-01-01

    Efforts to conserve winter habitat for wildfowl, Anatidae, in the alluvial valley of the lower Mississippi River, U.S.A., are directed by the Lower Mississippi Valley (LMV) Joint Venture of the North American Waterfowl Management Plan (NA WMP). The Joint Venture is based on a biological framework developed through cooperative planning by wildfowl researchers and managers. Important elements of the framework include: (1) numeric population goals, (2) assumptions about potential limiting factors, (3) explicit relationships between wildfowl abundance and habitat characteristics, (4) numeric foraging habitat goals, and (5) criteria for evaluating success. The population goal of the Joint Venture for the Mississippi Alluvial Valley (MA V) is to enable 4.3 million ducks to, survive winter and join continental breeding populations in spring. Currently, available data suggest that foraging habitat is the primary factor limiting duck populations in the MA II. To establish a goal for foraging habitat, we assumed the length of the wintering period is 110 days and calculated that a population of 4.3 million breeding ducks (plus 15% to account for winter mortality) would need 546 million duck-days of food in the preceding winter. Then, we used estimates of daily energy requirements, food densities, and food energy values to calculate the carrying capacity or number of duck-days of food available in the three primary foraging habitats in the MAV (flooded croplands, forested wetlands, and moist-soil wetlands). Thus, availability of foraging habitat can be used as a criterion for evaluating success of the Joint Venture if accurate inventories of foraging habitat can be conducted. Development of an explicit biological framework for the Joint Venture enabled wildfowl managers and researchers to establish specific objectives for management of foraging habitat and identify priority problems requiring further study.

  6. The Mangroves of Kenya: general information. Compiled for Netherlands Wetlands Conservation and Training Programme, 1996.

    OpenAIRE

    Martens, Els

    1996-01-01

    The report contains general information on mangroves in Kenya with the following main topics: Mangrove ecology, Mangrove distribution, Mangrove vegetation, Mangrove associated flora, Mangrove fauna, Values and utilization, threats. Interactions between mangroves, seagrasses & coral reefs. Main problems related to mangrove management and Conservation. Managing mangroves to insure their survival.

  7. CAN PALYNOLOGY CONTRIBUTE TO PLANT DIVERSITY CONSERVATION ACTIVITIES? THE WETLAND PLANTS IN SOUTHERN PO PLAIN AS A CASE STUDY.

    Directory of Open Access Journals (Sweden)

    F. Buldrini

    2013-04-01

    Full Text Available The vegetation of the Po Plain has long been modified by natural and human factors. The present plant landscape is almost entirely anthropogenic. Many hydro-hygrophilous species, quite common until a few decades ago, are now very rare and in danger of extinction, so conservation programmes are necessary for their protection and maintenance. It is known that the former vegetation can be reconstructed thanks to palynological data, but assessing the real presence of a given species is not always possible. This work aims to understand whether palynology can give information about the presence and identification of hydro-hygrophilous species, supporting the classical flora analyses commonly conducted on herbarium data. In some cases, these species are well characterized from a morphopalynological and phytogeographical viewpoint: the plant occurrence may be suggested even by pollen findings in surface-samples. Discovering the presence of some of these species by pollen morphotypes offers a real opportunity to gear the reintroduction/reinforcing programmes, but ecological analysis will obviously be essential to ascertain the real suitability of the chosen sites, according to the ecological requirements of the species. Our analysis refers to wetlands of the southern Po plain within the Modena Province, where detailed palynological data about present and historical local flora were available.

  8. Conflicts between groundwater development and wetland conservation in the Spanish Mediterranean area; Conflictos entre el desarrollo de las aguas subterraneas y la conservacion de los humedales del litoral mediterraneo espanol

    Energy Technology Data Exchange (ETDEWEB)

    Fornes, J. M.; Hera, A. de la; Ballesteros, B.; Aragon, R.

    2008-07-01

    Conflicts between groundwater use and wetland conservation are especially relevant in arid and semi-arid zones, where the areas of these natural ecosystems have decreased in the last decades. Fifty years ago, wetland losses didn't cause any conflicts because they were not valued positively. The situation has changed due to the advances in agricultural technologies, to the disappearance of marshy diseases and the development of Ecology as a science. Nowadays, there is a general awareness that wetlands must be protected. Some of the most important conflicts between groundwater development and coastal wetland conservation have taken place in Valencia (Almenara and Pego-Oliva wetlands). These two cases are analysed in this paper, together with the current situation of the Mar Menor in Murcia. (Author) 34 refs.

  9. Seasonal Dynamics of Soil Labile Organic Carbon and Enzyme Activities in Relation to Vegetation Types in Hangzhou Bay Tidal Flat Wetland.

    Directory of Open Access Journals (Sweden)

    Xuexin Shao

    Full Text Available Soil labile organic carbon and soil enzymes play important roles in the carbon cycle of coastal wetlands that have high organic carbon accumulation rates. Soils under three vegetations (Phragmites australis, Spartina alterniflora, and Scirpusm mariqueter as well as bare mudflat in Hangzhou Bay wetland of China were collected seasonally. Seasonal dynamics and correlations of soil labile organic carbon fractions and soil enzyme activities were analyzed. The results showed that there were significant differences among vegetation types in the contents of soil organic carbon (SOC and dissolved organic carbon (DOC, excepting for that of microbial biomass carbon (MBC. The P. australis soil was with the highest content of both SOC (7.86 g kg-1 and DOC (306 mg kg-1, while the S. mariqueter soil was with the lowest content of SOC (6.83 g kg-1, and the bare mudflat was with the lowest content of DOC (270 mg kg-1. Soil enzyme activities were significantly different among vegetation types except for urease. The P. australis had the highest annual average activity of alkaline phosphomonoesterase (21.4 mg kg-1 h-1, and the S. alterniflora had the highest annual average activities of β-glycosidase (4.10 mg kg-1 h-1 and invertase (9.81 mg g-1 24h-1; however, the bare mudflat had the lowest activities of alkaline phosphomonoesterase (16.2 mg kg-1 h-1, β-glycosidase (2.87 mg kg-1 h-1, and invertase (8.02 mg g-1 24h-1. Analysis also showed that the soil labile organic carbon fractions and soil enzyme activities had distinct seasonal dynamics. In addition, the soil MBC content was significantly correlated with the activities of urease and β-glucosidase. The DOC content was significantly correlated with the activities of urease, alkaline phosphomonoesterase, and invertase. The results indicated that vegetation type is an important factor influencing the spatial-temporal variation of soil enzyme activities and labile organic carbon in coastal wetlands.

  10. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: review of a 28-year study.

    Science.gov (United States)

    Drake, Bert G

    2014-11-01

    An ongoing field study of the effects of elevated atmospheric CO2 on a brackish wetland on Chesapeake Bay, started in 1987, is unique as the longest continually running investigation of the effects of elevated CO2 on an ecosystem. Since the beginning of the study, atmospheric CO2 increased 18%, sea level rose 20 cm, and growing season temperature varied with approximately the same range as predicted for global warming in the 21st century. This review looks back at this study for clues about how the effects of rising sea level, temperature, and precipitation interact with high atmospheric CO2 to alter the physiology of C3 and C4 photosynthetic species, carbon assimilation, evapotranspiration, plant and ecosystem nitrogen, and distribution of plant communities in this brackish wetland. Rising sea level caused a shift to higher elevations in the Scirpus olneyi C3 populations on the wetland, displacing the Spartina patens C4 populations. Elevated CO2 stimulated carbon assimilation in the Scirpus C3 species measured by increased shoot and root density and biomass, net ecosystem production, dissolved organic and inorganic carbon, and methane production. But elevated CO2 also decreased biomass of the grass, S. patens C4. The elevated CO2 treatment reduced tissue nitrogen concentration in shoots, roots, and total canopy nitrogen, which was associated with reduced ecosystem respiration. Net ecosystem production was mediated by precipitation through soil salinity: high salinity reduced the CO2 effect on net ecosystem production, which was zero in years of severe drought. The elevated CO2 stimulation of shoot density in the Scirpus C3 species was sustained throughout the 28 years of the study. Results from this study suggest that rising CO2 can add substantial amounts of carbon to ecosystems through stimulation of carbon assimilation, increased root exudates to supply nitrogen fixation, reduced dark respiration, and improved water and nitrogen use efficiency. Published

  11. Seasonal Dynamics of Soil Labile Organic Carbon and Enzyme Activities in Relation to Vegetation Types in Hangzhou Bay Tidal Flat Wetland.

    Science.gov (United States)

    Shao, Xuexin; Yang, Wenying; Wu, Ming

    2015-01-01

    Soil labile organic carbon and soil enzymes play important roles in the carbon cycle of coastal wetlands that have high organic carbon accumulation rates. Soils under three vegetations (Phragmites australis, Spartina alterniflora, and Scirpusm mariqueter) as well as bare mudflat in Hangzhou Bay wetland of China were collected seasonally. Seasonal dynamics and correlations of soil labile organic carbon fractions and soil enzyme activities were analyzed. The results showed that there were significant differences among vegetation types in the contents of soil organic carbon (SOC) and dissolved organic carbon (DOC), excepting for that of microbial biomass carbon (MBC). The P. australis soil was with the highest content of both SOC (7.86 g kg-1) and DOC (306 mg kg-1), while the S. mariqueter soil was with the lowest content of SOC (6.83 g kg-1), and the bare mudflat was with the lowest content of DOC (270 mg kg-1). Soil enzyme activities were significantly different among vegetation types except for urease. The P. australis had the highest annual average activity of alkaline phosphomonoesterase (21.4 mg kg-1 h-1), and the S. alterniflora had the highest annual average activities of β-glycosidase (4.10 mg kg-1 h-1) and invertase (9.81 mg g-1 24h-1); however, the bare mudflat had the lowest activities of alkaline phosphomonoesterase (16.2 mg kg-1 h-1), β-glycosidase (2.87 mg kg-1 h-1), and invertase (8.02 mg g-1 24h-1). Analysis also showed that the soil labile organic carbon fractions and soil enzyme activities had distinct seasonal dynamics. In addition, the soil MBC content was significantly correlated with the activities of urease and β-glucosidase. The DOC content was significantly correlated with the activities of urease, alkaline phosphomonoesterase, and invertase. The results indicated that vegetation type is an important factor influencing the spatial-temporal variation of soil enzyme activities and labile organic carbon in coastal wetlands.

  12. Remote sensing techniques and geographic information systems for wetland conservation and management: monitoring scrub encroachment in Biebrza National Park

    NARCIS (Netherlands)

    Schmidt, A.M.; Piórkowski, H.; Bartoszuk, H.

    2000-01-01

    The Biebrza National Park in Poland is one of the most precious wetland areas in Europe. It was established in 1993 and designated Ramsar site in 1995. Despite its protection status, the open wetland landscape is currently being threatened by the encroachment of shrubs and trees, assumed to have a

  13. Public views of wetlands and waterfowl conservation in the United States—Results of a survey to inform the 2018 update of the North American Waterfowl Management Plan

    Science.gov (United States)

    Wilkins, Emily J.; Miller, Holly M.

    2018-01-24

    Executive SummaryThis report provides information from a general public survey conducted in early 2017 to help inform the North American Waterfowl Management Plan (NAWMP) 2018 update. This report is intended for use by the NAWMP advisory committees and anyone interested in the human dimensions of wetlands and waterfowl management. A mail-out survey was sent to 5,000 addresses in the United States, which were selected randomly in proportion to the population of each State. A total of 1,030 completed surveys representing 49 States were returned, resulting in a 23 percent overall response rate.When comparing the demographics of the respondents to the U.S. census data, this sample overrepresented people who are male, older, highly educated, and white. Data were weighted on gender and age to make the results more representative of the overall U.S. population. Additionally, this sample had higher participation rates in all wildlife-related recreation activities than has been found in previous studies; this indicates there may have been selection bias, with people interested in nature-related topics more likely to complete the survey. Therefore, results likely represent a segment of the U.S. public that is more oriented toward and aware of wildlife and conservation issues than the general public as a whole. Because of this bias, responses for each question were also broken down by recreationist type (hunters, anglers, wildlife viewers, and no wildlife-related recreation). Additionally, responses for each question were split by administrative flyway (Atlantic, Central, Mississippi, Pacific) and residency (urban, urban cluster, rural) to better understand the different groups.Most respondents knew of wetlands in their local area or community, and more than half had visited wetlands in the previous 12 months. Of those who had visited wetlands, the most common reasons were for walking/hiking/biking and enjoying nature/picnicking. In addition, this sample was very concerned

  14. Assessing vulnerable and expanding vegetation stands and species in the San Francisco Bay Area for conservation management under climate change

    Science.gov (United States)

    Morueta-Holme, N.; Heller, N. E.; McLaughlin, B.; Weiss, S. B.; Ackerly, D.

    2015-12-01

    The distribution of suitable climatic areas for species and vegetation types is expected to shift due to ongoing climate change. While the pace at which current distributions will shift is hard to quantify, predictions of where climatically suitable areas will be in the future can allow us to map 1) areas currently occupied by a species or vegetation type unlikely to persist through the end of this century (vulnerable stands), 2) areas likely to do better in the future and serve as nuclei for population expansion (expanding stands), and 3) areas likely to act as climate refugia (persisting stands). We quantified the vulnerability of 27 individual plant species and 27 vegetation types in the San Francisco Bay Area as well as the conservation importance, vulnerability, and resilience of selected management sites for climate change resilient conservation. To this end, we developed California-wide models of species and vegetation distributions using climate data from the 2014 California Basin Characterization Model at a 270 m resolution, projected to 18 different end-of century climate change scenarios. Combining these distribution models with high resolution maps of current vegetation, we were able to map projected vulnerable, expanding, and persisting stands within the Bay Area. We show that vegetation and species are expected to shift considerably within the study region over the next decades; although we also identify refugia potentially able to offset some of the negative impacts of climate change. We discuss the implications for managers that wish to incorporate climate change in conservation decisions, in particular related to choosing species for restoration, identifying areas to collect seeds for restoration, and preparing for expected major vegetation changes. Our evaluation of individual management sites highlights the need for stronger coordination of efforts across sites to prioritize monitoring and protection of species whose ranges are contracting

  15. Assessing the Fauna Diversity of Marudu Bay Mangrove Forest, Sabah, Malaysia, for Future Conservation

    Directory of Open Access Journals (Sweden)

    Mohamed Zakaria

    2015-04-01

    Full Text Available Mangrove is an evergreen, salt tolerant plant community, which grows in inter-tidal coastal zones of tropical and subtropical regions of the world. They are ecologically important for many fauna species and are rich in food resources and consist of many different vegetation structures. They serve as ideal foraging and nursery grounds for a wide array of species such as birds, mammals, reptiles, fishes and aquatic invertebrates. In spite of their crucial role, around 50% of mangrove habitats have been lost and degraded in the past two decades. The fauna diversity of mangrove habitat at Marudu Bay, Sabah, East Malaysia was examined using various methods: i.e. aquatic invertebrates by swap nets, fish by angling rods and cast nets, reptiles, birds, and mammals through direct sighting. The result showed that Marudu Bay mangrove habitats harbored a diversity of fauna species including 22 aquatic invertebrate species (encompassing 11 crustacean species, six mollusk species and four worm species, 36 fish species, 74 bird species, four reptile species, and four mammal species. The wide array of fauna species could be due to the availability of complex vegetation structures, sheltered beaches and tidal mudflats, which are rich in food resources and also offer safe foraging and breeding grounds for them. These heterogeneous habitats must be protected in a sustainable way in order to ensure the continued presence of aquatic and terrestrial fauna species for future generations.

  16. Concentration of polybrominated diphenyl ethers (PBDEs) in sediment cores of Sundarban mangrove wetland, northeastern part of Bay of Bengal (India)

    International Nuclear Information System (INIS)

    Binelli, Andrea; Sarkar, Santosh Kumar; Chatterjee, Mousumi; Riva, Consuelo; Parolini, Marco; Bhattacharya, Bhaskar deb; Bhattacharya, Asok Kumar; Satpathy, Kamala Kanta

    2007-01-01

    The paper presents the first comprehensive survey of congener profiles (12 congeners) of polybrominated diphenyl ethers (PBDEs) in core sediment samples ( 12 PBDE values ranging from 0.08 to 29.03 ng g -1 , reflecting moderate to low contamination closely in conformity to other Asian aquatic environments. The general order of decreasing congener contribution to the total load was: BDE 47 > 99 > 100 > 154, similar to the distribution pattern worldwide. Although tetrabromodiphenyl ether BDE 47 was found in all samples followed by hexabromodiphenyl ether BDE-154, they were not necessarily the dominant congeners. No uniform temporal trend on PBDE levels was recorded probably due to particular hydrological characteristics of the wetland and/on non-homologous inputs from point sources (untreated municipal wastewater and local industries, electronic wastes from the dump sites, etc.) of these compounds. Because of the propensity of PBDEs to accumulate in various compartments of wildlife and human food webs, evaluation of biological tissues should be undertaken as a high priority

  17. San Francisco Bay Water Quality Improvement Fund

    Science.gov (United States)

    EPAs grant program to protect and restore San Francisco Bay. The San Francisco Bay Water Quality Improvement Fund (SFBWQIF) has invested in 58 projects along with 70 partners contributing to restore wetlands, water quality, and reduce polluted runoff.,

  18. Water Quality in Estuarine Wetland Restoration: An Examination of Dissolved Oxygen and Nutrients in the South Bay Salt Pond Restoration Project

    Science.gov (United States)

    Stein, S.; Nanus, L.

    2016-12-01

    The South Bay Salt Pond Restoration Project (SBSPRP) was established in 2003 from 15,100 acres of former Cargill salt harvesting ponds in the San Francisco Bay Area. Since then, the SBSPRP has utilized an adaptive management framework to restore the ponds with the goal of habitat restoration, public access, and flood protection as its guiding principles. The SBSPRP is the largest wetland restoration project on the West Coast and the complexity of the project is compounded by nearby land use, including wastewater facilities and urban development. The majority of previous water quality studies in the area have primarily focused on legacy pollutants, such as methylated mercury. For a selection of Alviso ponds with diverse management histories, the spatial and temporal variability of water quality parameters including dissolved oxygen (DO), nitrate (NO3), and ammonium (NH4) were examined during summer 2016. Two ponds (A21 and A17) are tidally controlled, with water entering and exiting the ponds based on changes in tide levels; these ponds also receive treated wastewater via Coyote Creek slough. Two other ponds (A3W and A8) are managed ponds, with elevated gates partially controlling the water level and no direct flow of wastewater entering these ponds. DO varied between 2.48-9.25 mg/L across all ponds, with significantly lower DO in tidal ponds (mean = 3.9 mg/L) compared with the managed ponds (mean = 6.7 mg/L). Nutrient concentrations also differed between the managed ponds and tidal ponds. 70% of samples in the managed ponds were below the detection limit of 0.81 µM NO3-N. NO3 concentrations in the tidal ponds, located closest to the wastewater facilities, ranged from 47.6 - 111.8 µM NO3-N; DO values were negatively correlated with both NO3 and NH4 in the tidal ponds. These results suggest that greater considerations for DO and other water quality parameters may be of use in future adaptive management strategies in the SBSPRP.

  19. Incorporating future change into current conservation planning: Evaluating tidal saline wetland migration along the U.S. Gulf of Mexico coast under alternative sea-level rise and urbanization scenarios

    Science.gov (United States)

    Enwright, Nicholas M.; Griffith, Kereen T.; Osland, Michael J.

    2015-11-02

    In this study, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, quantified the potential for landward migration of tidal saline wetlands along the U.S. Gulf of Mexico coast under alternative future sea-level rise and urbanization scenarios. Our analyses focused exclusively on tidal saline wetlands (that is, mangrove forests, salt marshes, and salt flats), and we combined these diverse tidal saline wetland ecosystems into a single grouping, “tidal saline wetland.” Collectively, our approach and findings can provide useful information for scientists and environmental planners working to develop future-focused adaptation strategies for conserving coastal landscapes and the ecosystem goods and services provided by tidal saline wetlands. The primary product of this work is a public dataset that identifies locations where landward migration of tidal saline wetlands is expected to occur under alternative future sea-level rise and urbanization scenarios. In addition to identifying areas where landward migration of tidal saline wetlands is possible because of the absence of barriers, these data also identify locations where landward migration of these wetlands could be prevented by barriers associated with current urbanization, future urbanization, and levees.

  20. It′s like herding monkeys into a conservation enclosure: The formation and establishment of the Jozani-Chwaka Bay National Park, Zanzibar, Tanzania

    Directory of Open Access Journals (Sweden)

    Fred Saunders

    2011-01-01

    Full Text Available This manuscript examines a project that is representative of an emerging trend of new generation Integrated Conservation Development Projects in parts of Africa that combine socio-economic development with an emphasis on local institutional change. These ′local′ projects are interlinked with global networks of conservation interests that provide technical expertise and resourcing. In the Jozani-Chawka Bay area, project planners brokered a community governance and benefit sharing agreement that has been lauded as a watershed moment for conservation policy in Zanzibar. Key hurdles for establishing Zanzibar′s first national park, the Jozani-Chwaka Bay National Park, were limiting community access to customary forest resources, farmer-red colobus monkey conflict, and setting up a supportive institutional arrangement. The conflict resolution and institutional strategies adopted by the conservation planners with the aid of international funding provide insights that help explain why the project has been able to maintain a ′fragile′ localised compliance with conservation goals at the Jozani-Pete village. This has been achieved despite lingering resentment over red colobus crop damage claims, and perceptions of insignificant conservation related benefits flowing to individuals and communities. This finding raises broader concerns about whether containment strategies to ground fragile project arrangements are conducive to engendering the longer term support of local communities for new generation Integrated Conservation Development Projects.

  1. Grass assemblages and diversity of conservation areas on the coastal plain south of Maputo Bay, Mozambique

    Directory of Open Access Journals (Sweden)

    S. J. Siebert

    2004-09-01

    Full Text Available A floristic analysis of the grass species assemblages of the Licuati Forest and Maputo Elephant Reserves south of Maputo Bay, Mozambique, is presented. Sampling of grass data was undertaken in six previously described, major vegetation types. TWINSPAN divisions distinguished grass assemblages that are characteristic for these major vegetation types of the study area. The results were supported by an Indirect Gradient Analysis. Further TWINSPAN divisions of a larger Maputaland data set indicated a floristic relationship between grass assemblages of similar major vegetation types in the study area and South Africa. This relationship was supported by high similarity values (> 65%, obtained with Sorenson's Coefficient. The coefficient also indicated varying degrees of similarity between grass assemblages of different major vegetation types within the study area. A rich diversity of 115 grass species and infraspecific taxa was recorded for the study area. The Chloridoideae and Panicoideae dominate the grass diversity and the genera with the most species include Eragrostis, Panicum and Digitaria. Most grass species in the study area are perennials and have a tufted growth form, but this varies considerably between vegetation types.

  2. Artificial wetlands as tools for frog conservation: stability and variability of reproduction characteristics in Sahara frog populations in Tunisian man-made lakes.

    Science.gov (United States)

    Bellakhal, Meher; Neveu, André; Fertouna-Bellakhal, Mouna; Aleya, Lotfi

    2017-12-01

    Amphibian populations are in decline principally due to climate change, environmental contaminants, and the reduction in wetlands. Even though data concerning current population trends are scarce, artificial wetlands appear to play a vital role in amphibian conservation. This study concerns the reproductive biology of the Sahara frog over a 2-year period in four Tunisian man-made lakes. Each month, gonad state (parameters: K, GSI, LCI), fecundity, and fertility of females (using 1227 clutches) were evaluated in the field under controlled conditions. Clutches were present for 110-130 days at two of the sites, but only for 60-80 days at the other two. Maximum egg laying occurred in May, corresponding to the highest point in the gonad somatic index. Clutch densities were higher in the smaller lakes. Female fecundity was in relation to body size; mean clutch fecundity attained 1416 eggs, with no differences observed according to site. Egg fertility varied over a 1-year period, with a maximum in May followed by a decrease when water temperature was at its highest. Eggs were smaller at the beginning of spawning; maximum size was in May, which might explain the higher fertility, but no maternal influence was detected. Embryonic development was strictly dependent on temperature. The population at each site appeared as a small patch within a metapopulation in overall good health, as shown by the relative temporal stability in reproduction variables. Constructed wetlands may therefore play an important role in the conservation of amphibians, especially in semi-arid zones.

  3. The Effect of Climate Change on Land Use and Wetlands Conservation in Western Canada: An Application of Positive Mathematical Programming

    NARCIS (Netherlands)

    Whitey, P.; Kooten, van G.C.

    2011-01-01

    This study examines the impact of climate change on land use in the Prairie Pothole Region of Western Canada, with particular emphasis on how climate change will impact wetlands. A multi-region Positive Mathematical Programming model calibrates land use in the area to observed acreage in 2006.

  4. 7 CFR Exhibit M to Subpart G of... - Implementation Procedures for the Conservation of Wetlands and Highly Erodible Land Affecting...

    Science.gov (United States)

    2010-01-01

    ... converted wetland. This ineligibility extends to any commodity produced during the crop year that the... responsibilities. a. Required information. Every applicant for a Farmer Program loan or a loan to an Indian Tribe... responsibility on FmHA or its successor agency under Public Law 103-354 borrowers using other USDA financial...

  5. Archaeal rhizosphere communities differ between the native and invasive lines of the wetland plant phragmites australis (common reed) in a Chesapeake Bay subestuary

    Science.gov (United States)

    Phragmites australis, a common wetland plant species worldwide, is best known in North America as persistent invasive species. Only in recent decades was a native line, Phragmites australis subsp. americanus, confirmed in North American wetlands. This study investigated whether the two lines suppo...

  6. Nitrate fate and transport through current and former depressional wetlands in an agricultural landscape, Choptank Watershed, Maryland, United States

    Science.gov (United States)

    Denver, J.M.; Ator, S.W.; Lang, M.W.; Fisher, T.R.; Gustafson, A.B.; Fox, R.; Clune, J.W.; McCarty, G.W.

    2014-01-01

    Understanding local groundwater hydrology and geochemistry is critical for evaluating the effectiveness of wetlands at mitigating agricultural impacts on surface waters. The effectiveness of depressional wetlands at mitigating nitrate (NO3) transport from fertilized row crops, through groundwater, to local streams was examined in the watershed of the upper Choptank River, a tributary of Chesapeake Bay on the Atlantic Coastal Plain. Hydrologic, geochemical, and water quality data were collected from January of 2008 through December of 2009 from surface waters and networks of piezometers installed in and around current or former depressional wetlands of three major types along a gradient of anthropogenic alteration: (1) natural wetlands with native vegetation (i.e., forested); (2) prior-converted croplands, which are former wetlands located in cultivated fields; and (3) hydrologically restored wetlands, including one wetland restoration and one shallow water management area. These data were collected to estimate the orientation of groundwater flow paths and likely interactions of groundwater containing NO3 from agricultural sources with reducing conditions associated with wetlands of different types. Natural wetlands were found to have longer periods of soil saturation and reducing conditions conducive to denitrification compared to the other wetland types studied. Because natural wetlands are typically located in groundwater recharge areas along watershed divides, nitrogen (N) from nearby agriculture was not intercepted. However, these wetlands likely improve water quality in adjacent streams via dilution. Soil and geochemical conditions conducive to denitrification were also present in restored wetlands and prior-converted croplands, and substantial losses of agricultural NO3 were observed in groundwater flowing through these wetland sediments. However, delivery of NO3 from agricultural areas through groundwater to these wetlands resulting in opportunities for

  7. Extending REDD+ to mangroves and wetlands for small island states and a case study for the conservation of mangroves and inter-tidal mudflats in Singapore

    Directory of Open Access Journals (Sweden)

    Lin Heng LYE

    2013-07-01

    Full Text Available This paper briefly discusses the prospects of using coastal wetlands as REDD+ projects for small island states. The paper contends that the city-state of Singapore would do well to enhance existing laws to more specifically address the challenges and threats faced in conserving mangroves and inter-tidal mudflats, and support their conservation and rehabilitation, not just to facilitate the implementation of REDD+ projects but also to meet other goals like biodiversity conservation and climate change adaptation. The proposal is to expand Sungei Buloh to encompass the mudflats at Kranji which is home to the mangrove horseshoe crab (Carcinoscrorpius rotundicauda; aligned with inter-tidal and coastal management strategies advanced under the auspices of the Ramsar Convention, the Convention on Biological Diversity and the IUCN. However, there are considerable challenges in maintaining an intact eco-system in the face of rapid development, not only in Singapore itself but also in the neighbouring state of Johor, Malaysia. The paper examines the specific legal strategies that will be required to meet the various objectives of conservation in the context of Singapore's laws and the challenges posed by the development plans of both Singapore and Malaysia.

  8. Assessment of tidal range energy resources based on flux conservation in Jiantiao Bay, China

    Science.gov (United States)

    Du, Min; Wu, He; Yu, Huaming; Lv, Ting; Li, Jiangyu; Yu, Yujun

    2017-12-01

    La Rance Tidal Range Power Station in France and Jiangxia Tidal Range Power Station in China have been both long-term successful commercialized operations as kind of role models for public at large for more than 40 years. The Sihwa Lake Tidal Range Power Station in South Korea has also developed to be the largest marine renewable power station with its installed capacity 254 MW since 2010. These practical applications prove that the tidal range energy as one kind of marine renewable energy exploitation and utilization technology is becoming more and more mature and it is used more and more widely. However, the assessment of the tidal range energy resources is not well developed nowadays. This paper summarizes the main problems in tidal range power resource assessment, gives a brief introduction to tidal potential energy theory, and then we present an analyzed and estimated method based on the tide numerical modeling. The technical characteristics and applicability of these two approaches are compared with each other. Furthermore, based on the theory of tidal range energy generation combined with flux conservation, this paper proposes a new assessment method that include a series of evaluation parameters and it can be easily operated to calculate the tidal range energy of the sea. Finally, this method is applied on assessment of the tidal range power energy of the Jiantiao Harbor in Zhejiang Province, China for demonstration and examination.

  9. 7 CFR 12.30 - NRCS responsibilities regarding wetlands.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false NRCS responsibilities regarding wetlands. 12.30 Section 12.30 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Wetland Conservation § 12.30 NRCS responsibilities regarding wetlands. (a) Technical and...

  10. Michigan Wetlands: Yours To Protect. A Citizen's Guide to Local Involvement in Wetland Protection. Second Edition.

    Science.gov (United States)

    Cwikiel, Wilfred

    This guidebook is designed to assist concerned Michigan citizens, local governments, conservation organizations, landowners, and others in their efforts to initiate wetlands protection activities. Chapter 1 focuses on wetland functions, values, losses, and the urgent need to protect wetland resources. Chapter 2 discusses wetland identification and…

  11. Kansas Protects and Restores Wetlands, Streams and Riparian Areas

    Science.gov (United States)

    Wetland Program Development Grant (WPDG) in 2007 when the Kansas State Conservation Commission began identifying team members interested in developing a framework for a comprehensive Kansas Wetland and Aquatic Resources Conservation Plan.

  12. Constructed Wetlands

    Science.gov (United States)

    these systems can improve water quality, engineers and scientists construct systems that replicate the functions of natural wetlands. Constructed wetlands are treatment systems that use natural processes

  13. Factors affecting coastal wetland loss and restoration

    Science.gov (United States)

    Cahoon, D.R.; Phillips, S.W.

    2007-01-01

    Opening paragraph: Tidal and nontidal wetlands in the Chesapeake Bay watershed provide vital hydrologic, water-quality, and ecological functions. Situated at the interface of land and water, these valuable habitats are vulnerable to alteration and loss by human activities including direct conversion to non-wetland habitat by dredge-and-fill activities from land development, and to the effects of excessive nutrients, altered hydrology and runoff, contaminants, prescribed fire management, and invasive species. Processes such as sea-level rise and climate change also impact wetlands. Although local, State, and Federal regulations provide for protection of wetland resources, the conversion and loss of wetland habitats continue in the Bay watershed. Given the critical values of wetlands, the Chesapeake 2000 Agreement has a goal to achieve a net gain in wetlands by restoring 25,000 acres of tidal and nontidal wetlands by 2010. The USGS has synthesized findings on three topics: (1) sea-level rise and wetland loss, (2) wetland restoration, and (3) factors affecting wetland diversity.

  14. Conservation.

    Science.gov (United States)

    National Audubon Society, New York, NY.

    This set of teaching aids consists of seven Audubon Nature Bulletins, providing the teacher and student with informational reading on various topics in conservation. The bulletins have these titles: Plants as Makers of Soil, Water Pollution Control, The Ground Water Table, Conservation--To Keep This Earth Habitable, Our Threatened Air Supply,…

  15. Diverse characteristics of wetlands restored under the Wetlands Reserve Program in the Southeastern United States

    Science.gov (United States)

    Diane De Steven; Joel M. Gramling

    2012-01-01

    The Wetlands Reserve Program (WRP) restores converted or degraded wetlands on private working lands; however, the nature and outcomes of such efforts are undocumented in the Southeastern U.S. Identification of wetland types is needed to assess the program's conservation benefits, because ecological functions differ with hydrogeomorphic (HGM) type. We reviewed...

  16. Coastal and wetland ecosystems of the Chesapeake Bay watershed: Applying palynology to understand impacts of changing climate, sea level, and land use

    Science.gov (United States)

    Willard, Debra A.; Bernhardt, Christopher E.; Hupp, Cliff R.; Newell, Wayne L.

    2015-01-01

    The mid-Atlantic region and Chesapeake Bay watershed have been influenced by fluctuations in climate and sea level since the Cretaceous, and human alteration of the landscape began ~12,000 years ago, with greatest impacts since colonial times. Efforts to devise sustainable management strategies that maximize ecosystem services are integrating data from a range of scientific disciplines to understand how ecosystems and habitats respond to different climatic and environmental stressors. Palynology has played an important role in improving understanding of the impact of changing climate, sea level, and land use on local and regional vegetation. Additionally, palynological analyses have provided biostratigraphic control for surficial mapping efforts and documented agricultural activities of both Native American populations and European colonists. This field trip focuses on sites where palynological analyses have supported efforts to understand the impacts of changing climate and land use on the Chesapeake Bay ecosystem.

  17. Use of Land Use Land Cover Change Mapping Products in Aiding Coastal Habitat Conservation and Restoration Efforts of the Mobile Bay NEP

    Science.gov (United States)

    Spruce, Joseph P.; Swann, Roberta; Smooth, James

    2010-01-01

    The Mobile Bay region has undergone significant land use land cover change (LULC) over the last 35 years, much of which is associated with urbanization. These changes have impacted the region s water quality and wildlife habitat availability. In addition, much of the region is low-lying and close to the Gulf, which makes the region vulnerable to hurricanes, climate change (e.g., sea level rise), and sometimes man-made disasters such as the Deepwater Horizon (DWH) oil spill. Land use land cover change information is needed to help coastal zone managers and planners to understand and mitigate the impacts of environmental change on the region. This presentation discusses selective results of a current NASA-funded project in which Landsat data over a 34-year period (1974-2008) is used to produce, validate, refine, and apply land use land cover change products to aid coastal habitat conservation and restoration needs of the Mobile Bay National Estuary Program (MB NEP). The project employed a user defined classification scheme to compute LULC change mapping products for the entire region, which includes the majority of Mobile and Baldwin counties. Additional LULC change products have been computed for select coastal HUC-12 sub-watersheds adjacent to either Mobile Bay or the Gulf of Mexico, as part of the MB NEP watershed profile assessments. This presentation will include results of additional analyses of LULC change for sub-watersheds that are currently high priority areas, as defined by MB NEP. Such priority sub-watersheds include those that are vulnerable to impacts from the DWH oil spill, as well as sub-watersheds undergoing urbanization. Results demonstrating the nature and permanence of LULC change trends for these higher priority sub-watersheds and results characterizing change for the entire 34-year period and at approximate 10-year intervals across this period will also be presented. Future work will include development of value-added coastal habitat quality

  18. Variation in tidal wetland plant diversity and composition within and among coastal estuaries: assessing the relative importance of environmental gradients

    Science.gov (United States)

    Question: Does wetland plant composition vary more by estuarine type (differentiated by the degree of riverine versus oceanic influence) or habitat type within estuaries (defined by US National Wetlands Inventory [NWI] marsh classes)? Location: Oregon estuaries: Netarts Bay, ...

  19. 7 CFR 12.23 - Conservation plans and conservation systems.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Conservation plans and conservation systems. 12.23 Section 12.23 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Highly Erodible Land Conservation § 12.23 Conservation plans and conservation systems. (a) Use of...

  20. Tidal wetland vegetation and ecotone profiles: The Rush Ranch Open Space Preserve

    Science.gov (United States)

    The Rush Ranch Open Space Preserve (Rush Ranch) is a component site of the San Francisco Bay National Estuarine Research Reserve (SF Bay NERR) that includes one of the largest undiked tidal wetlands in the San Francisco Estuary. The brackish tidal wetlands grade into transitional vegetation and unde...

  1. Relative effects of landscape-scale wetland amount and landscape matrix quality on wetland vertebrates: a 'meta-analysis.

    Science.gov (United States)

    Quesnelle, Pauline E; Lindsay, Kathryn E; Fahrigi, Lenore

    2015-04-01

    Conservation management of wetland-dependent species generally focuses on preserving or increasing wetland habitat. However, the quality of the landscape matrix (the intervening non-wetland portion of the landscape) has been shown to be more important than wetland availability for some wetland-dependent species. We used meta-analysis to compare the effects of wetland amount (measured as the area of wetland habitat in a landscape) and matrix quality (measured as the area of forest cover in the same landscape) on the population abundance of wetland-dependent vertebrates. We combined data across 63 studies conducted in forested ecoregions worldwide and extracted 330 population responses for 155 species, at the spatial scale that best predicted the effects of wetland. amount and forest amount for each response. In addition, to ensure that our results were not biased by the scale selected, we assessed whether the relative effects of wetland and forest amount were scale dependent. We found that the amount of wetland in a landscape had a larger effect than the amount of forest on the abundance of mammals and birds whereas, surprisingly, for amphibians the amount of forest in a landscape was more important than the amount of wetland. For reptiles, both wetland amount and forest amount showed only weak,effects on abundance. These results were not scale dependent, i.e., they were consistent across spatial scales. Our results suggest that the population distribution of wetland-dependent amphibians is more strongly related to landscape matrix quality than to wetland availability in a landscape, likely due to their requirement for access to terrestrial resources. We conclude that conservation policies for wetland biodiversity that focus only on wetland habitat will be ineffective in conserving many of these species. In addition, population viability analyses based only on wetland amount may overestimate the capacity of a landscape to support populations of wetland

  2. Reduction of avian diversity in created versus natural and restored wetlands

    OpenAIRE

    Sebastián-González, Esther; Green, Andy J.

    2016-01-01

    Natural wetland ecosystems continue to suffer widespread destruction and degradation. Many recent studies argue that artificial or restored wetlands compensate for wetland loss and are valuable for waterbird conservation. However, detailed comparisons of the value of natural, artificial and restored wetlands are lacking. Our aim was to assess if the restoration or creation of wetlands can fully compensate for the loss of natural wetlands for waterbirds. We compared the waterbird communities i...

  3. Modeling the Hydrologic Processes of a Depressional Forested Wetland in South Carolina, U.S.A.

    Science.gov (United States)

    Ge Sun; Timothy Callahan; Jennifer E. Pyzoha; Carl C. Trettin; Devendra M. Amatya

    2004-01-01

    Depressional forested wetlands or geographically isolated wetlands such as cypress swamps and Carolina bays are common land features in the Atlantic Coastal Plain of the southeastern US. Those wetlands play important roles in providing wildlife habitats, water quality improvement, and carbon sequestration. Great stresses have been imposed on those important ecosystems...

  4. Assessing wetland loss impacts on watershed hydrology using an improved modeling approach

    Science.gov (United States)

    Despite the importance of wetland impacts on water cycling, the Chesapeake Bay Watershed (CBW) has experienced significant wetland losses. The resultant environmental degradation has not been fully characterized. Our aim is to assess wetland loss impacts on watershed hydrology for an agricultural wa...

  5. Contamination of sediments in the floodplain wetlands of the lower ...

    Indian Academy of Sciences (India)

    Samantha Naidoo

    2018-03-29

    Mar 29, 2018 ... 2010). The danger of metals being present in wetlands in quantities exceeding those deposited via natural processes is primarily associ- ...... Khechfe A I 1997 Benthic microalgae as bio-indicators of sediment quality in San Francisco Bay; MSc Dissertation,. Paper 1452. Kotze D C 2000 Wetlands and Water ...

  6. National Wetlands Inventory Lines

    Data.gov (United States)

    Minnesota Department of Natural Resources — Linear wetland features (including selected streams, ditches, and narrow wetland bodies) mapped as part of the National Wetlands Inventory (NWI). The National...

  7. A New Species of the Bay Goby Genus Eucyclogobius, Endemic to Southern California: Evolution, Conservation, and Decline.

    Science.gov (United States)

    Swift, Camm C; Spies, Brenton; Ellingson, Ryan A; Jacobs, David K

    2016-01-01

    A geographically isolated set of southern localities of the formerly monotypic goby genus Eucyclogobius is known to be reciprocally monophyletic and substantially divergent in mitochondrial sequence and nuclear microsatellite-based phylogenies relative to populations to the north along the California coast. To clarify taxonomic and conservation status, we conducted a suite of analyses on a comprehensive set of morphological counts and measures from across the range of Eucyclogobius and describe the southern populations as a new species, the Southern Tidewater Goby, Eucyclogobius kristinae, now separate from the Northern Tidewater Goby Eucyclogobius newberryi (Girard 1856). In addition to molecular distinction, adults of E. kristinae are diagnosed by: 1) loss of the anterior supratemporal lateral-line canals resulting in higher neuromast counts, 2) lower pectoral and branched caudal ray counts, and 3) sets of measurements identified via discriminant analysis. These differences suggest ecological distinction of the two species. Previous studies estimated lineage separation at 2-4 million years ago, and mitochondrial sequence divergence exceeds that of other recognized fish species. Fish from Santa Monica Artesian Springs (Los Angeles County) northward belong to E. newberryi; those from Aliso Creek (Orange County) southward constitute E. kristinae. The lagoonal habitat of Eucyclogobius has been diminished or degraded, leading to special conservation status at state and federal levels beginning in 1980. Habitat of the newly described species has been impacted by a range of anthropogenic activities, including the conversion of closing lagoons to open tidal systems in the name of restoration. In the last 30 years, E. kristinae has only been observed in nine intermittently occupied lagoonal systems in northern San Diego County; it currently persists in only three sites. Thus, the new species is in imminent danger of extinction and will require ongoing active management.

  8. 7 CFR 1410.11 - Farmable Wetlands Program.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Farmable Wetlands Program. 1410.11 Section 1410.11... Wetlands Program. (a) In addition to other allowable enrollments, land may be enrolled in this program through the Farmable Wetlands Program (FWP) within the overall Conservation Reserve Program provided for...

  9. Shoreline Stabilization Design and Wetland Restoration

    National Research Council Canada - National Science Library

    Hill, Carlton

    2001-01-01

    ...) and the Commonwealth of Virginia, Department of Conservation and Recreation (DCR). The project was for the design of shoreline stabilization and potential wetland restoration at five sites within LAFB...

  10. Evaluating hydroperiod response in restored Carolina Bay Westlands using soil physicochemical properties

    Science.gov (United States)

    Christopher D. Barton; Danielle M. Andrews; Randall K. Kolka

    2008-01-01

    Carolina bays are shallow depression wetlands found in the southeastern United States that have been severely altered by human activity. The need to restore these complex and diverse systems is well established, but our limited understanding of wetland hydrologic processes in these systems hinders our ability to assess the effectiveness of bay restoration efforts....

  11. The Willapa Bay Oyster Reserves in Washington State: Fishery collapse, creating a sustainable replacement, and the potential for habitat conservation and restoration

    Science.gov (United States)

    Oysters have been an important resource in Washington state since the mid 1800’s and are intimately associated with recent history of the Willapa Bay estuary just as they have defined social culture around much larger US east coast systems. The Willapa Bay oyster reserves were set aside to preserve...

  12. Importance of Carolina Bays to the Avifauna of Pinelands in the Southeastern United States

    Science.gov (United States)

    Stephen Czapka; John Kilgo

    2011-01-01

    Past anthropogenic activity has led to the destruction or alteration of Carolina bay wetlands throughout the southeastern United States. Presently, urban development, combined with a 2001 ruling by the US Supreme Court relaxing protection of isolated wetlands, poses an increasing threat to these and other isolated wetland systems; however, little information exists on...

  13. Fringe wetlands

    International Nuclear Information System (INIS)

    Lugo, A.E.

    1990-01-01

    Fringe wetlands are characterized by the dominance of few species, a clear species zonation, synchrony of ecological processes with episodic events, and simplicity in the structure of vegetation. The structure and ecosystem dynamics of fringe forested wetlands are presented with emphasis on saltwater wetlands because they have been studied more than freshwater ones. The study areas were Caribbean and Florida mangroves. Fringe wetlands are found on the water edge of oceans, inland estuaries, and lakes. Water motion in the fringe is bi-directional and perpendicular to the forest and due mostly to tidal energy in oceanic and estuarine fringes. in lakes, water moves in and out of the fringe under the influence of wind, waves, or seiches. some fringe forests are occasionally flushed by terrestrial runoff or aquifer discharge. In contrast, fringe forests located on small offshore islands or steep coastal shroes are isolated from terrestrial runoff or aquifer discharge, and their hydroperiod is controlled by tides and waves only. Literature reviews suggest that ecosystem parameters such as vegetation structure, tree growth, primary productivity, and organic matter in sediments respond proportionally to hydrologic energy. Human activity that impacts on fringe forested wetlands include harvesting of trees, oil pollution and eutrophication. 72 refs., 12 figs., 9 tabs

  14. An approach for evaluating the repeatability of rapid wetland assessment methods: The effects of training and experience

    Science.gov (United States)

    We sampled 92 wetlands from four different basins in the United States to quantify observer repeatability in rapid wetland condition assessment using the Delaware Rapid Assessment Protocol (DERAP). In the Inland Bays basin of Delaware, 58 wetland sites were sampled by multiple ob...

  15. Integrating field sampling, spatial statistics and remote sensing to map wetland vegetation in the Pantanal, Brazil

    NARCIS (Netherlands)

    Arieira, J.; Karssenberg, D.J.; Jong, S.M. de; Addink, E.A.; Couto, E.G.; Nunes Da Cunha, C.; Skøien, J.

    2011-01-01

    Development of efficient methodologies for mapping wetland vegetation is of key importance to wetland conservation. Here we propose the integration of a number of statistical techniques, in particular cluster analysis, universal kriging and error propagation modelling, to integrate

  16. Wetland Microbial Community Response to Restoration

    Science.gov (United States)

    Theroux, S.; Hartman, W.; Tringe, S. G.

    2015-12-01

    Wetland restoration has been proposed as a potential long-term carbon storage solution, with a goal of engineering geochemical dynamics to accelerate peat accretion and encourage greenhouse gas (GHG) sequestration. However, wetland microbial community composition and metabolic rates are poorly understood and their predicted response to wetland restoration is a veritable unknown. In an effort to better understand the underlying factors that shape the balance of carbon flux in wetland soils, we targeted the microbial communities along a salinity gradient ranging from freshwater tidal marshes to hypersaline ponds in the San Francisco Bay-Delta region. Using 16S rRNA gene sequencing and shotgun metagenomics, coupled with greenhouse gas measurements, we sampled sixteen sites capturing a range in salinity and restoration status. Seawater delivers sulfate to wetland ecosystems, encouraging sulfate reduction and discouraging methane production. As expected, we observed the highest rates of methane production in the freshwater wetlands. Recently restored wetlands had significantly higher rates of methane production compared to their historic counterparts that could be attributed to variations in trace metal and organic carbon content in younger wetlands. In contrast, our sequencing results revealed an almost immediate return of the indigenous microbial communities following seasonal flooding and full tidal restoration in saline and hypersaline wetlands and managed ponds. Notably, we found elevated methane production rates in hypersaline ponds, the result of methylotrophic methane production confirmed by sequence data and lab incubations. Our study links belowground microbial communities and their aboveground greenhouse gas production and highlights the inherent complexity in predicting wetland microbial response in the face of both natural and unnatural disturbances.

  17. National Wetlands Inventory Points

    Data.gov (United States)

    Minnesota Department of Natural Resources — Wetland point features (typically wetlands that are too small to be as area features at the data scale) mapped as part of the National Wetlands Inventory (NWI). The...

  18. National Wetlands Inventory Polygons

    Data.gov (United States)

    Minnesota Department of Natural Resources — Wetland area features mapped as part of the National Wetlands Inventory (NWI). The National Wetlands Inventory is a national program sponsored by the US Fish and...

  19. Kansas Playa Wetlands

    Data.gov (United States)

    Kansas Data Access and Support Center — This digital dataset provides information about the distribution, areal extent, and morphometry of playa wetlands throughout western Kansas. Playa wetlands were...

  20. North American Wetlands and Mosquito Control

    Directory of Open Access Journals (Sweden)

    Gabrielle E. Sakolsky-Hoopes

    2012-12-01

    Full Text Available Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems. Mosquito control in wetlands is a complex issue influenced by numerous factors, including many hard to quantify elements such as human perceptions, cultural predispositions, and political climate. In spite of considerable progress during the last decades, habitat protection and environmentally sound habitat management still remain inextricably tied to politics and economics. Furthermore, the connections are often complex, and occur at several levels, ranging from local businesses and politicians, to national governments and multinational institutions. Education is the key to lasting wetlands conservation. Integrated mosquito abatement strategies incorporate many approaches and practicable options, as described herein, and need to be well-defined, effective, and ecologically and economically sound for the wetland type and for the mosquito species of concern. The approach will certainly differ in response to disease outbreaks caused by mosquito-vectored pathogens versus quality of life issues caused by nuisance-biting mosquitoes. In this contribution, we provide an overview of the ecological setting and context for mosquito control in wetlands, present pertinent information on wetlands mosquitoes, review the mosquito abatement options available for current wetlands managers and mosquito control professionals, and outline some necessary considerations when devising mosquito control strategies. Although the emphasis is on North American wetlands, most of the material is applicable to wetlands everywhere.

  1. North American Wetlands and Mosquito Control

    Science.gov (United States)

    Rey, Jorge R.; Walton, William E.; Wolfe, Roger J.; Connelly, Roxanne; O’Connell, Sheila M.; Berg, Joe; Sakolsky-Hoopes, Gabrielle E.; Laderman, Aimlee D.

    2012-01-01

    Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems. Mosquito control in wetlands is a complex issue influenced by numerous factors, including many hard to quantify elements such as human perceptions, cultural predispositions, and political climate. In spite of considerable progress during the last decades, habitat protection and environmentally sound habitat management still remain inextricably tied to politics and economics. Furthermore, the connections are often complex, and occur at several levels, ranging from local businesses and politicians, to national governments and multinational institutions. Education is the key to lasting wetlands conservation. Integrated mosquito abatement strategies incorporate many approaches and practicable options, as described herein, and need to be well-defined, effective, and ecologically and economically sound for the wetland type and for the mosquito species of concern. The approach will certainly differ in response to disease outbreaks caused by mosquito-vectored pathogens versus quality of life issues caused by nuisance-biting mosquitoes. In this contribution, we provide an overview of the ecological setting and context for mosquito control in wetlands, present pertinent information on wetlands mosquitoes, review the mosquito abatement options available for current wetlands managers and mosquito control professionals, and outline some necessary considerations when devising mosquito control strategies. Although the emphasis is on North American wetlands, most of the material is applicable to wetlands everywhere. PMID:23222252

  2. Foreword: function, classification and management of Asian wetlands

    Science.gov (United States)

    Turnipseed, D. Phil; Middleton, Beth A.

    2014-01-01

    Asian wetland conservation is critical for future environmental protection in the region, but these wetlands are understudied. In particular, there is a lack of research studies published in English due to the limited access of Asian researchers to western scientific journals. This special feature of Wetlands showcases primary research conducted in Asian wetlands and was sponsored by various agencies of the U.S. and Chinese governments including the U.S. Geological Survey, U.S. Department of State, and The State Forestry Administration of the People’s Republic of China. The featured articles should be of great value to wetland scientists, managers and policy-makers with an interest in the conservation of Asian wetlands.

  3. Analysis of Selected Functional Characteristics of Wetlands.

    Science.gov (United States)

    1979-02-01

    functioning in this capa- *1 city . Assessing the value of wetlands for water quality improvements also de- pends on one’s individual bias or perspective... sponges ; rather they release excess moisture during wet periods and deplete supply during dry months. *R. R. Bay, (1967) in a study on forested peat...1, Water Quality. Indeed, the research re- quirements for shoreline protection, stormwater storage, and groundwater re- charge are all similar and can

  4. Lost lake - restoration of a Carolina bay

    Energy Technology Data Exchange (ETDEWEB)

    Hanlin, H.G.; McLendon, J.P. [Univ. of South Carolina, Aiken, SC (United States). Dept. of Biology and Geology; Wike, L.D. [Univ. of South Carolina, Aiken, SC (United States). Dept. of Biology and Geology]|[Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Dietsch, B.M. [Univ. of South Carolina, Aiken, SC (United States). Dept. of Biology and Geology]|[Univ. of Georgia, Aiken, SC (United States)

    1994-09-01

    Carolina bays are shallow wetland depressions found only on the Atlantic Coastal Plain. Although these isolated interstream wetlands support many types of communities, they share the common features of having a sandy margin, a fluctuating water level, an elliptical shape, and a northwest to southeast orientation. Lost Lake, an 11.3 hectare Carolina bay, was ditched and drained for agricultural production before establishment of the Savannah River Site in 1950. Later it received overflow from a seepage basin containing a variety of chemicals, primarily solvents and some heavy metals. In 1990 a plan was developed for the restoration of Lost Lake, and restoration activities were complete by mid-1991. Lost Lake is the first known project designed for the restoration and recovery of a Carolina bay. The bay was divided into eight soil treatment zones, allowing four treatments in duplicate. Each of the eight zones was planted with eight species of native wetland plants. Recolonization of the bay by amphibians and reptiles is being evaluated by using drift fences with pitfall traps and coverboard arrays in each of the treatment zones. Additional drift fences in five upland habitats were also established. Hoop turtle traps, funnel minnow traps, and dip nets were utilized for aquatic sampling. The presence of 43 species common to the region has been documented at Lost Lake. More than one-third of these species show evidence of breeding populations being established. Three species found prior to the restoration activity and a number of species common to undisturbed Carolina bays were not encountered. Colonization by additional species is anticipated as the wetland undergoes further succession.

  5. "Wetlands: Water Living Filters?",

    OpenAIRE

    Dordio, Ana; Palace, A. J.; Pinto, Ana Paula

    2008-01-01

    Human societies have indirectly used natural wetlands as wastewater discharge sites for many centuries. Observations of the wastewater depuration capacity of natural wetlands have led to a greater understanding of the potential of these ecosystems for pollutant assimilation and have stimulated the development of artificial wetlands systems for treatment of wastewaters from a variety of sources. Constructed wetlands, in contrast to natural wetlands, are human-made systems that are designed, bu...

  6. Wetland features and landscape context predict the risk of wetland habitat loss.

    Science.gov (United States)

    Gutzwiller, Kevin J; Flather, Curtis H

    2011-04-01

    Wetlands generally provide significant ecosystem services and function as important harbors of biodiversity. To ensure that these habitats are conserved, an efficient means of identifying wetlands at risk of conversion is needed, especially in the southern United States where the rate of wetland loss has been highest in recent decades. We used multivariate adaptive regression splines to develop a model to predict the risk of wetland habitat loss as a function of wetland features and landscape context. Fates of wetland habitats from 1992 to 1997 were obtained from the National Resources Inventory for the U.S. Forest Service's Southern Region, and land-cover data were obtained from the National Land Cover Data. We randomly selected 70% of our 40 617 observations to build the model (n = 28 432), and randomly divided the remaining 30% of the data into five Test data sets (n = 2437 each). The wetland and landscape variables that were important in the model, and their relative contributions to the model's predictive ability (100 = largest, 0 = smallest), were land-cover/ land-use of the surrounding landscape (100.0), size and proximity of development patches within 570 m (39.5), land ownership (39.1), road density within 570 m (37.5), percent woody and herbaceous wetland cover within 570 m (27.8), size and proximity of development patches within 5130 m (25.7), percent grasslands/herbaceous plants and pasture/hay cover within 5130 m (21.7), wetland type (21.2), and percent woody and herbaceous wetland cover within 1710 m (16.6). For the five Test data sets, Kappa statistics (0.40, 0.50, 0.52, 0.55, 0.56; P prediction of wetland habitat loss (69.1, 80.4, 81.7, 82.3, 83.1) indicated the model generally had substantial predictive ability across the South. Policy analysts and land-use planners can use the model and associated maps to prioritize at-risk wetlands for protection, evaluate wetland habitat connectivity, predict future conversion of wetland habitat based on

  7. Development of a "Hydrologic Equivalent Wetland" Concept for Modeling Cumulative Effects of Wetlands on Watershed Hydrology

    Science.gov (United States)

    Wang, X.; Liu, T.; Li, R.; Yang, X.; Duan, L.; Luo, Y.

    2012-12-01

    Wetlands are one of the most important watershed microtopographic features that affect, in combination rather than individually, hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models, such as the Soil and Water Assessment Tool (SWAT), can be a best resort if wetlands can be appropriately represented in the models. However, the exact method that should be used to incorporate wetlands into hydrologic models is the subject of much disagreement in the literature. In addition, there is a serious lack of information about how to model wetland conservation-restoration effects using such kind of integrated modeling approach. The objectives of this study were to: 1) develop a "hydrologic equivalent wetland" (HEW) concept; and 2) demonstrate how to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba of Canada, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota of the United States. The HEWs were defined in terms of six calibrated parameters: the fraction of the subbasin area that drains into wetlands (WET_FR), the volume of water stored in the wetlands when filled to their normal water level (WET_NVOL), the volume of water stored in the wetlands when filled to their maximum water level (WET_MXVOL), the longest tributary channel length in the subbasin (CH_L1), Manning's n value for the tributary channels (CH_N1), and Manning's n value for the main channel (CH_N2). The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes

  8. Wetlands ‘Zaymische’ as a promising protected natural territories in the republic of Tatarstan

    Science.gov (United States)

    Assanova, N. Yu; Mingasova, N. M.

    2018-01-01

    The article reviews the data of a comprehensive survey of wetlands of the Kuibyshev reservoir (Zelenodolsk district of Republic of Tatarstan). The study discusses wetlands as one of the key elements of the ecological frame of the city of Kazan and Republic of Tatarstan. Change of the status to reserve or national park is recommended for the conservation of wetlands.

  9. 10 CFR 1022.11 - Floodplain or wetland determination.

    Science.gov (United States)

    2010-01-01

    ... Program Technical Report Y-87-1, January 1987, or successor document; (2) U.S. Fish and Wildlife Service... ENVIRONMENTAL REVIEW REQUIREMENTS Procedures for Floodplain and Wetland Reviews § 1022.11 Floodplain or wetland...., U.S. Army Corps of Engineers, Natural Resources Conservation Service); (3) Information contained in...

  10. Ohio Uses Wetlands Program Development Grants to Protect Wetlands

    Science.gov (United States)

    The wetland water quality standards require the use of ORAM score to determine wetland quality. OEPA has also used these tools to evaluate wetland mitigation projects, develop performance standards for wetland mitigation banks and In Lieu Fee programs an.

  11. Wonderful Wetlands: An Environmental Education Curriculum Guide for Wetlands.

    Science.gov (United States)

    King County Parks Div., Redmond, WA.

    This curriculum guide was designed to give teachers, students, and society a better understanding of wetlands in the hope that they learn why wetlands should be valued and preserved. It explores what is meant by wetlands, functions and values of wetlands, wetland activities, and wetland offerings which benefit animal and plant life, recreation,…

  12. Detection and characterizacion of Colombian wetlands using Alos Palsar and MODIS imagery

    OpenAIRE

    L.M. Estupinan-Suarez; C. Florez-Ayala; M.J. Quinones; A.M. Pacheco; A.C. Santos

    2015-01-01

    Wetlands regulate the flow of water and play a key role in risk management of extreme flooding and drought. In Colombia, wetland conservation has been a priority for the government. However, there is an information gap neither an inventory nor a national baseline map exists. In this paper, we present a method that combines a wetlands thematic map with remote sensing derived data, and hydrometeorological stations data in order to characterize the Colombian wetlands. Following the adop...

  13. Wetland Program Pilot Grants

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Wetland Grant Database (WGD) houses grant data for Wetland Program Development Grants (created by EPA in 1990 under the Clean Water Act Section 104(b)(3)...

  14. Percent Wetland Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  15. Why are wetlands important?

    Science.gov (United States)

    Wetlands are among the most productive ecosystems in the world, comparable to rain forests and coral reefs. An immense variety of species of microbes, plants, insects, amphibians, reptiles, birds, fish, and mammals can be part of a wetland ecosystem.

  16. VSWI Wetlands Advisory Layer

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset represents the DEC Wetlands Program's Advisory layer. This layer makes the most up-to-date, non-jurisdictional, wetlands mapping avaiable to the public...

  17. Percent Wetland Cover (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  18. The significant surface-water connectivity of "geographically isolated wetlands"

    Science.gov (United States)

    Calhoun, Aram J.K.; Mushet, David M.; Alexander, Laurie C.; DeKeyser, Edward S.; Fowler, Laurie; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Richter, Stephen; Walls, Susan

    2017-01-01

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be “geographically isolated” shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying “geographically isolated wetlands” based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of “geographically isolated wetlands”. Wetlands surrounded by uplands vary in function and surface-water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the “geographically isolated” grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation’s diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface-water connectivity of wetlands fully embedded in upland landscapes.

  19. Exploring Policy Options to Stop the Loss of Wetlands on Prairie Landscapes

    Science.gov (United States)

    Serran, J.; Creed, I. F.

    2013-12-01

    nutrients once in the wetland. Finally, the function indicators are aggregated to provide an overall function score for each wetland. This overall value estimates a wetland's potential to provide ecosystem services compared to other wetlands on the landscape. The function indicators in combination with 'scarcity' as indicated by the historical wetland loss rates allows policy makers to adjust thresholds between wetland function scores and policy and management objectives. The wetland function assessment system offers a scientific foundation upon which wetland policy can be built. To exemplify its policy potential, we conduct quantitative ';future' scenarios to determine priority wetlands for protection under different development scenarios - this scenario analysis reveals the necessity of making tradeoffs among wetland functions, as wetlands with high ecological function may not be the same wetlands with high hydrological function. The project's resulting wetland function assessment system will improve conservation and restoration/remediation efforts by identifying high functioning wetlands, by revealing the necessity of tradeoffs, and by directing conservation towards preserving wetlands that provide important ecosystem services while allowing other wetlands to be developed.

  20. Wetlands Research Program. Wetland Evaluation Technique (WET). Volume 1. Literature Review and Evaluation Rationale.

    Science.gov (United States)

    1991-10-01

    flooding frequency of downstream wetlands, and thus decrease production export ( Kondratieff and Simmons 1984, Voshell and Parker 1985/VA:R, Perry and Sheldon...release outlets) can alter hydroperiods within and below the impounded area, reduce the outflow of detritus ( Kondratieff and Simmons 1984, Voshell and...lake. Limnol. Oceanogr. 21:684-696. Knight, R. L., B. R. Winchester, and J. C. Higman. 1984. Carolina Bays- Kondratieff , P. F., and G. M. Simmons, Jr

  1. Monterey Bay Aquarium Volunteer Guide Scheduling Analysis

    Science.gov (United States)

    2014-12-01

    wetlands/aviary 1 24 splash zone—rocky shore, coral reef kingdom 8 play your part 25 sandy seafloor 9 wetlands/aviary 2 26 octopus/deep reef 10...conservation, and by rehabilitating injured ocean wildlife. The Aquarium has a large and diverse staff that includes aquarists, scientific divers...objective function that minimizes the total flow over the network. Equation 2 is the network flow constraint where the total flow into a node minus the

  2. Depressional Wetlands Affect Watershed Hydrological, Biogeochemical, and Ecological Functions.

    Science.gov (United States)

    Evenson, Grey R; Golden, Heather E; Lane, Charles R; McLaughlin, Daniel L; D'Amico, Ellen

    2018-02-13

    Depressional wetlands of the extensive U.S. and Canadian Prairie Pothole Region afford numerous ecosystem processes that maintain healthy watershed functioning. However, these wetlands have been lost at a prodigious rate over past decades due to drainage for development, climate effects, and other causes. Options for management entities to protect the existing wetlands - and their functions - may focus on conserving wetlands based on spatial location vis-à-vis a floodplain or on size limitations (e.g., permitting smaller wetlands to be destroyed but not larger wetlands). Yet the effects of such management practices and the concomitant loss of depressional wetlands on watershed-scale hydrological, biogeochemical, and ecological functions are largely unknown. Using a hydrological model, we analyzed how different loss scenarios by wetland size and proximal location to the stream network affected watershed storage (i.e., inundation patterns and residence times), connectivity (i.e., streamflow contributing areas), and export (i.e., streamflow) in a large watershed in the Prairie Pothole Region of North Dakota, USA. Depressional wetlands store consequential amounts of precipitation and snowmelt. The loss of smaller depressional wetlands (watershed connectivity and storage characteristics of larger wetlands. The wetland management scenario based on stream proximity (i.e., protecting wetlands 30-m and ~450-m from the stream) alone resulted in considerable landscape heterogeneity loss and decreased inundated area and residence times. With more snowmelt and precipitation available for runoff with wetland losses, contributing area increased across all loss scenarios. We additionally found that depressional wetlands attenuated peak flows; the probability of increased downstream flooding from wetland loss was also consistent across all loss scenarios. It is evident from this study that optimizing wetland management for one end-goal (e.g., protection of large depressional

  3. 398 ASSESSMENT OF WETLAND VALUATION PROCESSES FOR ...

    African Journals Online (AJOL)

    Osondu

    the economic benefits of wetlands can help set priorities and allocate spending on conservation initiatives. ... Estate Management, School of Environmental. Sciences, College of Science and Technology, Covenant. University .... held B. Sc Degree, 15.3% held Higher National. Diploma (HND), 1.4% held Ordinary National.

  4. Wetland Resources Action Planning (WRAP) toolkit

    DEFF Research Database (Denmark)

    Bunting, Stuart W.; Smith, Kevin G.; Lund, Søren

    2013-01-01

    The Wetland Resources Action Planning (WRAP) toolkit is a toolkit of research methods and better management practices used in HighARCS (Highland Aquatic Resources Conservation and Sustainable Development), an EU-funded project with field experiences in China, Vietnam and India. It aims...... to communicate best practices in conserving biodiversity and sustaining ecosystem services to potential users and to promote the wise-use of aquatic resources, improve livelihoods and enhance policy information....

  5. Do geographically isolated wetlands influence landscape functions?

    Science.gov (United States)

    Cohen, Matthew J; Creed, Irena F; Alexander, Laurie; Basu, Nandita B; Calhoun, Aram J K; Craft, Christopher; D'Amico, Ellen; DeKeyser, Edward; Fowler, Laurie; Golden, Heather E; Jawitz, James W; Kalla, Peter; Kirkman, L Katherine; Lane, Charles R; Lang, Megan; Leibowitz, Scott G; Lewis, David Bruce; Marton, John; McLaughlin, Daniel L; Mushet, David M; Raanan-Kiperwas, Hadas; Rains, Mark C; Smith, Lora; Walls, Susan C

    2016-02-23

    Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs.

  6. Applications of Remote Sensing for Studying Lateral Carbon Fluxes and Inundation Dynamics in Tidal Wetlands

    Science.gov (United States)

    Lamb, B. T.; Tzortziou, M.; McDonald, K. C.

    2017-12-01

    Wetlands play a key role in Earth's carbon cycle. However, wetland carbon cycling exhibits a high level of spatiotemporal dynamism, and thus, is not as well understood as carbon cycling in other ecosystems. In order to accurately characterize wetland carbon cycling and fluxes, wetland vegetation phenology, seasonal inundation dynamics, and tidal regimes must be understood as these factors influence carbon generation and transport. Here, we use radar remote sensing to map wetland properties in the Chesapeake Bay, the largest estuary in the United States with more than 1,500 square miles of tidal wetlands, across a range of tidal amplitudes, salinity regimes, and soil organic matter content levels. We have been using Sentinel-1 and ALOS PALSAR-1 radar measurements to characterize vegetation and seasonal inundation dynamics with the future goal of characterizing salinity gradients and tidal regimes. Differences in radar backscatter from various surface targets has been shown to effectively discriminate between dry soil, wet soil, vegetated areas, and open water. Radar polarization differences and ratios are particularly effective at distinguishing between vegetated and non-vegetated areas. Utilizing these principles, we have been characterizing wetland types using supervised classification techniques including: Random Forest, Maximum Likelihood, and Minimum Distance. The National Wetlands Inventory has been used as training and validation data. Ideally, the techniques we outline in this research will be applicable to the characterization of wetlands in coastal areas outside of Chesapeake Bay.

  7. Wetland Management - A Success Story In Transition - Restoration of Bhoj Wetland, India

    Science.gov (United States)

    Mudgal, M. K.; Tech, B. M.; Miwwa

    Wetlands are beautiful, biologically diverse, hydrologically disperse and ecological vibrant landscape world wide, embracing soils, water, plants, animals and human be- ing. The population growth in the catchment of wetlands led to multifarious human interventions for deriving maximum benefit from the wetlands and their catchments neglecting and disrespecting the principles of sustainability. This act of destruction has been pronounced in developing countries which are under the grip of poverty, illiteracy and lack of environmental education. SBhoj WetlandS is a Lake situated ´ in Central India, Earthen Dam across the river KOLANS in 1061 AD by then ruler king BHOJ. Till 1950 this Wetland was served as a principal source of water supply, even not requiring filtration. As the city grew and the wetland started getting encir- cled by habitation and urban development, the anthropogenic pressures on the lake increased, thus accelerating the process of eutrophication, making the water unfit for human consumption without due treatment due to deterioration of quality of water. For the conservation and management of Bhoj Wetland (Lake Bhopal) a project is under- taken in the financial assistance from Japan Bank for International Cooperation (JBIC, Japan). The project envisages tackle various issues of conservation and management ofn the wetlands under a multi prongs strategies and manner. Although these issues are deeply interrelated and interlinked but for operational and management ease, these issues have been divided into various sub projects which are being tackled indepen- dently, albeit with undercurrent knowledge and understanding of the related issues and interconnectivity with each other. The Project itself is an apt example of the spectrum of varied problems and issues that come to light when attempts are made for sustain- able conservation and management of a wetland. The Project as envisaged intends to conserve and manage through 14 sub projects as under:- Sub

  8. Land Use in Korean Tidal Wetlands: Impacts and Management Strategies

    Science.gov (United States)

    Hong, Sun-Kee; Koh, Chul-Hwan; Harris, Richard R.; Kim, Jae-Eun; Lee, Jeom-Sook; Ihm, Byung-Sun

    2010-05-01

    The coastal landscapes in southwestern Korea include a diverse array of tidal wetlands and salt marshes. These coastal zones link the ecological functions of marine tidal wetlands and freshwater ecosystems with terrestrial ecosystems. They are rich in biological diversity and play important roles in sustaining ecological health and processing environmental pollutants. Korean tidal wetlands are particularly important as nurseries for economically important fishes and habitats for migratory birds. Diking, draining, tourism, and conversion to agricultural and urban uses have adversely affected Korean tidal wetlands. Recent large development projects have contributed to further losses. Environmental impact assessments conducted for projects affecting tidal wetlands and their surrounding landscapes should be customized for application to these special settings. Adequate environmental impact assessments will include classification of hydrogeomorphic units and consideration of their responses to biological and environmental stressors. As is true worldwide, Korean laws and regulations are changing to be more favorable to the conservation and protection of tidal wetlands. More public education needs to be done at the local level to build support for tidal wetland conservation. Some key public education points include the role of tidal wetlands in maintaining healthy fish populations and reducing impacts of nonpoint source pollution. There is also a need to develop procedures for integrating economic and environmental objectives within the overall context of sustainable management and land uses.

  9. Land use in Korean tidal wetlands: impacts and management strategies.

    Science.gov (United States)

    Hong, Sun-Kee; Koh, Chul-Hwan; Harris, Richard R; Kim, Jae-Eun; Lee, Jeom-Sook; Ihm, Byung-Sun

    2010-05-01

    The coastal landscapes in southwestern Korea include a diverse array of tidal wetlands and salt marshes. These coastal zones link the ecological functions of marine tidal wetlands and freshwater ecosystems with terrestrial ecosystems. They are rich in biological diversity and play important roles in sustaining ecological health and processing environmental pollutants. Korean tidal wetlands are particularly important as nurseries for economically important fishes and habitats for migratory birds. Diking, draining, tourism, and conversion to agricultural and urban uses have adversely affected Korean tidal wetlands. Recent large development projects have contributed to further losses. Environmental impact assessments conducted for projects affecting tidal wetlands and their surrounding landscapes should be customized for application to these special settings. Adequate environmental impact assessments will include classification of hydrogeomorphic units and consideration of their responses to biological and environmental stressors. As is true worldwide, Korean laws and regulations are changing to be more favorable to the conservation and protection of tidal wetlands. More public education needs to be done at the local level to build support for tidal wetland conservation. Some key public education points include the role of tidal wetlands in maintaining healthy fish populations and reducing impacts of nonpoint source pollution. There is also a need to develop procedures for integrating economic and environmental objectives within the overall context of sustainable management and land uses.

  10. Status, trends, and changes in freshwater inflows to bay systems in the Corpus Christi Bay National Estuary Program study area

    Science.gov (United States)

    Asquith, W.H.; Mosier, J. G.; Bush, P.W.

    1997-01-01

    This report presents the results of a study to quantify current (1983–93) mean freshwater inflows to the six bay systems (open water and wetlands) in the Corpus Christi Bay National Estuary Program study area, to test for historical temporal trends in inflows, and to quantify historical and projected changes in inflows. The report also addresses the adequacy of existing data to estimate freshwater inflows.

  11. Integrated landscape-based approach of remote sensing, GIS, and physical modelling to study the hydrological connectivity of wetlands to the downstream water: progress and challenge

    Science.gov (United States)

    Yeo, I. Y.

    2015-12-01

    We report the recent progress on our effort to improve the mapping of wetland dynamics and the modelling of its functioning and hydrological connection to the downstream waters. Our study focused on the Coastal Plain of the Chesapeake Bay Watershed (CBW), the Delmarva Peninsula, where the most of wetlands in CBW are densely distributed. The wetland ecosystem plays crucial roles in improving water quality and ecological integrity for the downstream waters and the Chesapeake Bay, and headwater wetlands in the region, such as Delmarva Bay, are now subject to the legal protection under the Clean Water Rules. We developed new wetland maps using time series Landsat images and a highly accurate LiDAR map over last 30 years. These maps show the changes in surface water fraction at a 30-m grid cell at annual time scale. Using GIS, we analyse these maps to characterize changing dynamics of wetland inundation due to the physical environmental factors (e.g., weather variability, tide) and assessed the hydrological connection of wetlands to the downstream water at the watershed scale. Focusing on the two adjacent watersheds in the upper region of the Choptank River Basin, we study how wetland inundation dynamics and the hydrologic linkage of wetlands to downstream water would vary by the local hydrogeological setting and attempt to identify the key landscape factors affecting the wetland ecosystems and functioning. We then discuss the potential of using remote sensing products to improve the physical modelling of wetlands from our experience with SWAT (Soil and Water Assessment Tool).

  12. Freshwater Wetlands: A Citizen's Primer.

    Science.gov (United States)

    Catskill Center for Conservation and Development, Inc., Hobart, NY.

    The purpose of this "primer" for the general public is to describe the general characteristics of wetlands and how wetland alteration adversely affects the well-being of humans. Particular emphasis is placed on wetlands in New York State and the northeast. Topics discussed include wetland values, destruction of wetlands, the costs of…

  13. San Francisco Bay Water Quality Improvement Fund Map Service, San Francisco CA, 2012, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — The San Francisco Bay Water Quality Improvement Fund is a competitive grant program that is helping implement TMDLs to improve water quality, protect wetlands, and...

  14. Madagascar Conservation & Development - Early View (Wetlands ...

    African Journals Online (AJOL)

    Circuit court du marché des produits agricolesj : pour une gestion efficace du paysage ouvert, cas du bassin-versant de Maningory, Madagascar · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Annick Ravaka, Bruno S Ramamonjisoa, Harifidy Rakoto Ratsimba, Aina ...

  15. USGS Tampa Bay Pilot Study

    Science.gov (United States)

    Yates, K.K.; Cronin, T. M.; Crane, M.; Hansen, M.; Nayeghandi, A.; Swarzenski, P.; Edgar, T.; Brooks, G.R.; Suthard, B.; Hine, A.; Locker, S.; Willard, D.A.; Hastings, D.; Flower, B.; Hollander, D.; Larson, R.A.; Smith, K.

    2007-01-01

    Many of the nation's estuaries have been environmentally stressed since the turn of the 20th century and will continue to be impacted in the future. Tampa Bay, one the Gulf of Mexico's largest estuaries, exemplifies the threats that our estuaries face (EPA Report 2001, Tampa Bay Estuary Program-Comprehensive Conservation and Management Plan (TBEP-CCMP)). More than 2 million people live in the Tampa Bay watershed, and the population constitutes to grow. Demand for freshwater resources, conversion of undeveloped areas to resident and industrial uses, increases in storm-water runoff, and increased air pollution from urban and industrial sources are some of the known human activities that impact Tampa Bay. Beginning on 2001, additional anthropogenic modifications began in Tampa Bat including construction of an underwater gas pipeline and a desalinization plant, expansion of existing ports, and increased freshwater withdrawal from three major tributaries to the bay. In January of 2001, the Tampa Bay Estuary Program (TBEP) and its partners identifies a critical need for participation from the U.S. Geological Survey (USGS) in providing multidisciplinary expertise and a regional-scale, integrated science approach to address complex scientific research issue and critical scientific information gaps that are necessary for continued restoration and preservation of Tampa Bay. Tampa Bay stakeholders identified several critical science gaps for which USGS expertise was needed (Yates et al. 2001). These critical science gaps fall under four topical categories (or system components): 1) water and sediment quality, 2) hydrodynamics, 3) geology and geomorphology, and 4) ecosystem structure and function. Scientists and resource managers participating in Tampa Bay studies recognize that it is no longer sufficient to simply examine each of these estuarine system components individually, Rather, the interrelation among system components must be understood to develop conceptual and

  16. Mex Bay

    African Journals Online (AJOL)

    user

    2015-02-23

    Feb 23, 2015 ... surveys to assess the vulnerability of the most important physical and eutrophication parameters along. El- Mex Bay coast. As a result of increasing population and industrial development, poorly untreated industrial waste, domestic sewage, shipping industry and agricultural runoff are being released to the.

  17. Detecting wetland changes in Shanghai, China using FORMOSAT and Landsat TM imagery

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Bo; Zhou, Yun-xuan; Thom, Ronald M.; Diefenderfer, Heida L.; Yuan, Qing

    2015-07-14

    Understanding the state of wetland ecosystems and their changes at the national and local levels is critical for wetland conservation, management, decision-making, and policy development practices. This study analyzed the wetlands in Shanghai, a province-level city, using remote sensing, image processing, and geographic information systems (GIS) techniques based on the Chinese national wetland inventory procedure and standards. FORMOSAT imagery acquired in 2012 and Navy nautical charts of the Yangtze estuarine area were used in conjunction with object-oriented segmentation, expert interpretation, and field validation to determine wetland status. Landsat imagery from 1985, 1995, 2000, 2003 and 2013 as well as social-economic data collected from 1985 to 2013 were used to further assess wetland changes. In 2013, Shanghai contained 376,970.6 ha of wetlands, and 78.8% of all wetlands were in marine or estuarine systems. Estuarine waters comprised the single largest wetland category. Between the first national wetland inventory in 2003 and the second national wetland inventory in 2013, Shanghai lost 50,519.13 ha of wetlands, amounting to a mean annual loss rate of 1.2% or an 11.8% loss over the decade. Declines were proportionately higher in marine and estuarine wetlands, with an annual loss of 1.8%, while there was a sharp increase of 1882.6% in constructed water storage areas for human uses. Diking, filling, impoundment and reclamation, which are all attributable to the economic development and urbanization associated with population increases, were the major factors that explained the gain and loss of wetlands. Additional factors affecting wetland losses and gains include sediment trapping by the hydropower system, which reduces supply to the estuary and erodes wetlands, and sediment trapping by the jetties, spur dikes, and diversion bulwark associated with a navigation channel deepening project, which has the converse effect, increasing saltmarsh wetland area at

  18. Importance of Carolina Bays to the Avifauna of Pinelands in the Southeastern United States.

    Energy Technology Data Exchange (ETDEWEB)

    Czapka, Stephen, J.; Kilgo, John, C.

    2011-07-01

    Abstract - Past anthropogenic activity has led to the destruction or alteration of Carolina bay wetlands throughout the southeastern United States. Presently, urban development, combined with a 2001 ruling by the US Supreme Court relaxing protection of isolated wetlands, poses an increasing threat to these and other isolated wetland systems; however, little information exists on the importance of these wetland systems to birds. We compared breeding and wintering bird communities of upland pine (Pinus spp.) forests with and without Carolina bays. Estimated species richness was greater in pine forests with Carolina bays than without during the winter (31.7 ± 1.3 [mean ± SE] vs. 26.9 ± 1.2; P = 0.027), but not in the breeding season (27.9 ± 2.2 vs. 26.3 ± 2.2; P = 0.644). Total relative abundance did not differ between pine forests with Carolina bays and those without in either the breeding (148.0 ± 16.0 vs. 129.4 ± 10.4 birds/40 ha; P = 0.675) or winter (253.0 ± 36.4 vs. 148.8 ± 15.1 birds/40 ha; P = 0.100) seasons. However, 23 species, 43% of which were wetland-dependent, were observed only in pine forests with bays during the breeding season, and 20 species, 30% of which were wetland-dependent, were observed only in such sites during winter. In contrast, only 6 and 1 species were observed only in pine forests without bays during the breeding and winter seasons, respectively, indicating that few species were negatively affected by the presence of bays. Thus, Carolina bays appear to enrich the avifauna of pine forests in the southeastern United States.

  19. Sea-Level Rise: Estuarine Wetlands of Mustang Island at Imminent Risk of Submergence

    Science.gov (United States)

    Radosavljevic, B.; Gibeaut, J.; Tissot, P.

    2012-04-01

    Coastal areas in Texas are vulnerable to sea-level rise (SLR) because of high rates of land subsidence and flat topography. Estuarine wetlands in particular, are highly threatened by SLR because the small tidal range limits their vertical distribution. In order to offset wetland submergence induced by SLR, the rate of vertical accretion must at least equal the rate of SLR. To investigate wetland susceptibility to SLR-driven submergence, accretion rates in different wetland environments of Mustang Island (MUI), Texas, were determined using a Cesium-137 marker horizon technique. Comparisons of relative volumetric contributions of mineral and organic matter to accretion were made, as well. Mustang Island is located in the Coastal Bend of the south-central Texas coast, bounded by the waters of the Gulf of Mexico and Corpus Christi Bay. The tide range in Texas bays and estuaries is small (

  20. Floodwater utilisation values of wetland services – a case study in Northeastern China

    Directory of Open Access Journals (Sweden)

    S. B. Lü

    2012-02-01

    Full Text Available Water plays a significant role in wetlands. Floodwater utilisation in wetlands brings a wide range of wetland services, from goods production and water regulation to animal protection and aesthetics related to water supply in wetlands. In this study, the floodwater utilisation values of wetland services were estimated within the Momoge wetland and Xianghai wetland in western Jilin province of northeastern China. From 2003 to 2008, the floodwater diverted from the Nenjiang and Tao'er River is 381 million m3, which translates into a monetary value of approximately 1.35 billion RMB in 2008 (RMB: Chinese Currency, RMB 6.80 = US$ 1, and the ratio of economic value, eco-environmental value, and social value is 1:12:2. Besides the monetary value of the water itself, excessive floodwater utilisation may bring losses to wetlands; the threshold floodwater utilisation volumes in wetlands are discussed. Floodwater utilisation can alleviate water shortages in wetlands, and the evaluation of floodwater utilisation in wetland services in monetary terms is a guide for the effective use of the floodwater resources and for the conservation of wetlands.

  1. The Carolina Bay Restoration Project - Final Report 2000-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Christopher

    2007-12-15

    A Wetlands Mitigation Bank was established at SRS in 1997 as a compensatory alternative for unavoidable wetland losses. Prior to restoration activities, 16 sites included in the project were surveyed for the SRS Site Use system to serve as a protective covenant. Pre-restoration monitoring ended in Fall 2000, and post restoration monitoring began in the Winter/Spring of 2001. The total interior harvest in the 16 bays after harvesting the trees was 19.6 ha. The margins in the opencanopy, pine savanna margin treatments were thinned. Margins containing areas with immature forested stands (bay 5184 and portions of bay 5011) were thinned using a mechanical shredder in November 2001. Over 126 hectares were included in the study areas (interior + margin). Planting of two tree species and the transplanting of wetland grass species was successful. From field surveys, it was estimated that approximately 2700 Nyssa sylvatica and 1900 Taxodium distichum seedlings were planted in the eight forested bays resulting in an average planting density of ≈ 490 stems ha-1. One hundred seedlings of each species per bay (where available) were marked to evaluate survivability and growth. Wetland grass species were transplanted from donor sites on SRS to plots that ranged in size from 100 – 300 m2, depending on wetland size. On 0.75 and 0.6 meter centers, respectively, 2198 plugs of Panicum hemitomon and 3021 plugs Leersia hexandra were transplanted. New shoots originating from the stumps were treated with a foliar herbicide (Garlon® 4) during the summer of 2001 using backpack sprayers. Preliminary information from 2000-2004 regarding the hydrologic, vegetation and faunal response to restoration is presented in this status report.

  2. Reconstruction of Anacostia wetlands: success?

    Science.gov (United States)

    Hammerschlag, R.S.; Perry, M.C.

    2002-01-01

    . Revegetation, which is a product of direct plantings (16 species comprised of 350,000 plants) and by establishment of volunteer plants, must be considered successful. Remarkably, full vegetation cover was achieved by the end of the first year (1993). Species diversity is high with 100-130 wetland species occupying portions of the wetland. Good species differentiation (incipient plant communities) can be noted at areas of sediment elevation differences. There is a good range of predominant species (five to eight) with rice cutgrass (Leersia oryzoides) initially being dominant but in later years becoming codominant. Even the native wild rice (Zizania aquatica) is making a substantive comeback. Invasive plants such as purple loosestrife (Lythrum salicaria) and phragmites (Phragmites australis) are being watched and dealt with as appropriate. There has been important habitat creation, and a resulting increase in fauna can be expected, particularly as the acreage reconstructed at Kenilworth has more than doubled with similarly reconstructed wetlands at Kingman Lake (42 acres), which were completed during the summer of 2000, just a quarter of a mile down river. One of the challenges with the Kingman marsh reconstruction has been protecting against the grazing pressure of native Canada geese (Branm canadensis). In the long run, these revived Anacostia wetlands are bound to improve local conditions and will contribute to a rejuvenated Chesapeake Bay system.

  3. Causes of hot-spot wetland loss in the Mississippi delta plain

    Science.gov (United States)

    Morton, R.A.; Tiling, G.; Ferina, N.F.

    2003-01-01

    Field surveys and sediment cores were used to estimate marsh erosion and land subsidence at Madison Bay, a well-known wetland loss hot spot in coastal Louisiana. Former marshes of Madison Bay are under about 1 m of water. Nearly two-thirds of the permanent flooding was caused by rapid subsidence in the late 1960s, whereas the other third was caused by subsequent erosion. Subsidence rates near Madison Bay since the 1960s (???20 mm/yr) are an order of magnitude greater than deltaic subsidence rates averaged for the past 400-4000 yr (???2 mm/yr). The rapid acceleration and unexpected decline in wetland losses in the Mississippi delta plain are difficult to explain on the basis of most physical and biogeochemical processes. There are, however, close temporal and spatial correlations among regional wetland loss, high subsidence rates, and large-volume fluid production from nearby hydrocarbon fields. The decreased rates of wetland loss since the 1970s may be related to decreased rates of subsidence caused by significantly decreased rates of subsurface fluid withdrawal. Annual fluid production from the Lapeyrouse, Lirette, and Bay Baptiste fields that encompass Madison Bay accelerated in the 1960s, peaked about 1970, and then declined abruptly. Large decreases in pore pressure in the Lapeyrouse field have likely altered subsurface stresses and reactivated a major fault that coincides with the wetland loss hot spot. Therefore, wetland losses at Madison Bay can be closely linked to rapid subsidence and possible fault reactivation induced by long-term, large-volume hydrocarbon production. ?? 2003. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  4. Microbiology of wetlands

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Dedysh, S.N.

    2013-01-01

    Wetlands are ecologically as well as economically important systems due to their high productivity, their nutrient (re)cycling capacities, and their prominent contribution to global greenhouse gas emissions. Being on the transition between terrestrial and—aquatic ecosystems, wetlands are buffers for

  5. Analysing how plants in coastal wetlands respond to varying tidal regimes throughout their life cycles.

    Science.gov (United States)

    Xie, Tian; Cui, Baoshan; Li, Shanze

    2017-10-15

    Important to conserve plant species in coastal wetlands throughout their life cycle. All life stages in these habitats are exposed to varying tidal cycles. It is necessary to investigate all life stages as to how they respond to varying tidal regimes. We examine three wetlands containing populations of an endangered halophyte species, each subjected to different tidal regimes: (1). wetlands completely closed to tidal cycles; (2). wetlands directly exposed to tidal cycles (3). wetlands exposed to a partially closed tidal regime. Our results showed that the most threatened stage varied between wetlands subjected to these varying tidal regimes. We hypothesis that populations of this species have adapted to these different tidal regimes. Such information is useful in developing management options for coastal wetlands and modifying future barriers restricting tidal flushing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. SWS European Chapter Meeting on wetland restoration-Challenges and opportunities

    DEFF Research Database (Denmark)

    Hoffmann, Carl Christian; Brix, Hans; Kronvang, Brian B.

    2014-01-01

    and promote the protection of existing wet-lands and work for restoration of degraded wetlands.The EU Habitats Directive (HD) and the EU Water FrameworkDirective (WFD) are important policy instruments in wetland con-servation. Thus, restoration of wetlands and constructed wetlandshave become increasingly...... popular as mitigation options in RiverBasin Management Plans under the WFD to reduce nitrogen andphosphorus losses from fields to catchments.An important task for wetland scientists is to enhance our basicand applied understanding of the interlinked hydrological, bio-geochemical and ecological processes...... in naturally and restoredwetlands. Sound wetland science is not least needed to assist pol-icy makers and planners in the process of wetland conservationand restoration to ensure sustainable solutions for biodiversity andenvironment.This special issue is an outcome of the SWS European ChapterMeeting 17–21st...

  7. Characterising and modelling groundwater discharge in anagricultural wetland on the French Atlantic coast

    Directory of Open Access Journals (Sweden)

    Ph. Weng

    2003-01-01

    Full Text Available Interaction between a wetland and its surrounding aquifer was studied in the Rochefort agricultural marsh (150 km2. Groundwater discharge in the marsh was measured with a network of nested piezometers. Hydrological modelling of the wetland showed that a water volume of 770,000 m3 yr–1 is discharging into the marsh, but that this water flux essentially takes place along the lateral borders of the wetland. However, this natural discharge volume represents only 20% of the artificial freshwater injected each year into the wetland to maintain the water level close to the soil surface. Understanding and quantifying the groundwater component in wetland hydrology is crucial for wetland management and conservation. Keywords: wetland, hydrology, groundwater, modelling, marsh

  8. Guidelines for Developing Wetlands in Agricultural Catchments

    International Nuclear Information System (INIS)

    2017-03-01

    This publication presents the results of an international research project on optimizing the capture and storage of water by assessing nutrient using water conservation zones in agricultural landscapes. Eight countries from Asia-Pacific, Africa and Europe participated in the project. Field studies were established in all participating countries using isotopic and nuclear techniques to assess three types of water conservation zones that are used to harvest water for irrigation, crop production and improve downstream water quality. In addition, isotopic and nuclear techniques were used to collect data to identify the ideal locations in the landscapes for developing wetlands. The publication provides information to researchers working in the area of soil and water management, natural resource managers, policy makers and farmers. For those working to develop wetlands, information is provided to support planning, monitoring and evaluation.

  9. Matéria orgânica e textura do solo em veredas conservadas e antropizadas no bioma Cerrado Organic matter and texture of the soil in conserved and altered wetlands in the Cerrado biome

    Directory of Open Access Journals (Sweden)

    Ricardo F. de Sousa

    2011-08-01

    Full Text Available As veredas são ecossistemas úmidos, geralmente associados a solos hidromórficos e ao afloramento do lençol freático, ocorrendo com frequência nas proximidades das nascentes e cursos d'água da região do Cerrado. Este trabalho objetivou estudar os solos de veredas situadas no bioma Cerrado, em ambientes conservados e antropizados (em áreas agrícolas e de pecuária, por meio da determinação da textura e da matéria orgânica do solo. Três veredas foram selecionadas para amostragem de solo, sendo: uma conservada, circundada por vegetação natural; uma área antropizada, com pastagem em seu entorno e uma outra, também antropizada, com culturas anuais (agricultura em seu entorno. As amostras de solo foram coletadas em diferentes profundidades, ao longo de linhas de referência dispostas segundo sua posição no relevo, nos terços superior, médio e inferior de uma das vertentes, acompanhando de modo aproximado o sentido da linha de drenagem da vereda. Verificou-se que os teores de argila na região inferior do relevo são maiores em ambientes antropizados e os teores de silte são maiores na vereda adjacente à área agrícola. No terço inferior das vertentes os teores de matéria orgânica são menores em veredas adjacentes às áreas com pastagens e agricultura.Veredas (a type of wetland are humid ecosystems, generally associated to hydromorphic soils and shallow water table, which occur frequently in the neighborhood of the springs and watercourses in the Cerrado region. The objective of this work was to study wetland soils located in undisturbed (native forest and disturbed (agriculture and pasture environments by means of determination of the soil texture and organic matter contents. Three wetlands were selected for this study: undisturbed wetland, surrounded by natural vegetation; disturbed wetland, surrounded by pasture areas; and disturbed wetland, surrounded by cultivated areas. Soil samples were collected at three different

  10. Research Advances on Marine Ecological Effect and Repairing Techniques of Coastal Mangrove Wetland

    OpenAIRE

    Li, Na; Chen, Pimao; Qiao, Peipei; Qin, Chuanxin

    2014-01-01

    Coastal mangrove wetland is one of the areas whose global ecological environmental conditions have severely changed. Its ecosystem is vulnerable to damaged. The international community has paid attention to conservation and wisely use of mangrove wetland. This paper describes five parts of coastal mangrove wetland at home and abroad, including seawater’s purification effect of nitrogen and phosphorus, seawater’s adsorption of heavy metals, the functions of carbon sequestration and climate...

  11. Using Remote Sensing Data to Evaluate Habitat Loss in the Mobile, Galveston, and Tampa Bay Watersheds

    Science.gov (United States)

    Steffen, Morgan; Estes, Maurice G.; Al-Hamdan, Mohammad

    2010-01-01

    The Gulf of Mexico has experienced dramatic wetland habitat area losses over the last two centuries. These losses not only damage species diversity, but contribute to water quality, flood control, and aspects of the Gulf coast economy. Overall wetland losses since the 1950s were examined using land cover/land use (LCLU) change analysis in three Gulf coast watershed regions: Mobile Bay, Galveston Bay, and Tampa Bay. Two primary causes of this loss, LCLU change and climate change, were then assessed using LCLU maps, U.S. census population data, and available current and historical climate data from NOAA. Sea level rise, precipitation, and temperature effects were addressed, with emphasis on analysis of the effects of sea level rise on salt marsh degradation. Ecological impacts of wetland loss, including fishery depletion, eutrophication, and hypoxia were addressed using existing literature and data available from NOAA. These ecological consequences in turn have had an affect on the Gulf coast economy, which was analyzed using fishery data and addressing public health impacts of changes in the environment caused by wetland habitat loss. While recent federal and state efforts to reduce wetland habitat loss have been relatively successful, this study implies a need for more aggressive action in the Gulf coast area, as the effects of wetland loss reach far beyond individual wetland systems themselves to the Gulf of Mexico as a whole.

  12. Counteracting wetland overgrowth increases breeding and staging bird abundances

    Science.gov (United States)

    Lehikoinen, Petteri; Lehikoinen, Aleksi; Mikkola-Roos, Markku; Jaatinen, Kim

    2017-01-01

    Human actions have led to loss and degradation of wetlands, impairing their suitability as habitat especially for waterbirds. Such negative effects may be mitigated through habitat management. To date scientific evidence regarding the impacts of these actions remains scarce. We studied guild specific abundances of breeding and staging birds in response to habitat management on 15 Finnish wetlands. In this study management actions comprised several means of vegetation removal to thwart overgrowth. Management cost efficiency was assessed by examining the association between site-specific costs and bird abundances. Several bird guilds exhibited positive connections with both habitat management as well as with invested funds. Most importantly, however, red-listed species and species with special conservation concern as outlined by the EU showed positive correlations with management actions, underlining the conservation value of wetland management. The results suggest that grazing was especially efficient in restoring overgrown wetlands. As a whole this study makes it clear that wetland habitat management constitutes a feasible conservation tool. The marked association between invested funds and bird abundance may prove to be a valuable tool for decision makers when balancing costs and impact of conservation measures against one another.

  13. Addressing the Multiple Drivers of Wetland Ecosystems Degradation in Lagos, Nigeria

    Science.gov (United States)

    Agboola, J.; Ndimele, P. E.; Odunuga, S.; Akanni, A.; Kosemani, B.; Ahove, M.

    2015-12-01

    Several body of knowledge have noted the importance of wetland ecosystems in climate moderation, resource supply and flood risk reduction amongst others. Relevant as it may, rapidly increasing population and uncontrolled urban development poses a challenge in some regions and require understanding of the ecosystem components and drivers of change over a long period of time. Thus, the main thrust of this paper is to analyse multiple drivers of wetland ecosystems degradation in the last 30 years in the Lagos megacity using field study, desktop review, satellite data and laboratory analysis. Key drivers identified includes: conversion of wetlands to settlements and waste sink, land use planning that neglects wetland conservation and restoration, ineffective legal status for wetlands, over exploitation leading to degradation and fragmentation of wetland ecosystems governance. In stemming further loss of this vital ecosystem, this study adopted and proposed respectively, the Drivers, Pressure, State, Impact and Response (DPSIR) and Integrated Planning Approach (IPA) frameworks in analysing policy and governance issues in wetland development. These analyses figured out amongst others, strict conservation and sustainable use of wetland resources, habitat restoration, climate adaptation measures, legal protection and wetland management institution as major responses to current multiple pressures facing wetland ecosystems in Lagos. For these frameworks to be made meaningful, weak coordination among government agencies and institutional capacity in implementation and law enforcement, unsustainable resource extraction by private/business organization and issues on alternative sources of income on the part of the local communities amongst others needs to be addressed.

  14. Estado del conocimiento de humedales del norte patagónico (Argentina: aspectos relevantes e importancia para la conservación de la biodiversidad regional State of the knowledge of north Patagonian wetlands (Argentina: major aspects and importance for regional biodiversity conservation

    Directory of Open Access Journals (Sweden)

    MARÍA G PEROTTI

    2005-12-01

    wetland is due to land use, species introduction, and the interaction of these disturbances with climate change. In this paper we summarize geographic, geomorphological and climatic information of several wetlands located in North Patagonia (Argentina. Besides, we present information on aquatic vegetation, fish and amphibian fauna distributions and endemisms with the aim of emphasizing the importance of wetlands to sustain regional biodiversity. Finally, we highlight the processes impacting wetlands at present time and point out the importance of obtaining basic information for management and conservation strategies

  15. Millennium Ecosystem Assessment: Ecosystems and human well-being: wetlands and water synthesis

    NARCIS (Netherlands)

    Finlayson, M.; Cruz, R.D.; Davidson, N.; Alder, J.; Cork, S.; Groot, de R.S.; Lévêque, C.; Milton, G.R.; Peterson, G.; Pritchard, D.; Ratner, B.D.; Reid, W.V.; Revenga, C.; Rivera, M.; Schutyser, F.; Siebentritt, M.; Stuip, M.; Tharme, R.; Butchard, S.; Dieme-Amting, E.; Gitay, H.; Raaymakers, S.; Taylor, D.

    2005-01-01

    The Wetlands and Water synthesis was designed for the Ramsar Convention to meet the need for information about the consequences of ecosystem change for human well-being and sought to strengthen the link between scientific knowledge and decision-making for the conservation and wise use of wetlands.

  16. Forecasting climate change impacts on the distribution of wetland habitat in the Midwestern United states.

    Science.gov (United States)

    Garris, Heath W; Mitchell, Randall J; Fraser, Lauchlan H; Barrett, Linda R

    2015-02-01

    Shifting precipitation patterns brought on by climate change threaten to alter the future distribution of wetlands. We developed a set of models to understand the role climate plays in determining wetland formation on a landscape scale and to forecast changes in wetland distribution for the Midwestern United States. These models combined 35 climate variables with 21 geographic and anthropogenic factors thought to encapsulate other major drivers of wetland distribution for the Midwest. All models successfully recreated a majority of the variation in current wetland area within the Midwest, and showed that wetland area was significantly associated with climate, even when controlling for landscape context. Inferential (linear) models identified a consistent negative association between wetland area and isothermality. This is likely the result of regular inundation in areas where precipitation accumulates as snow, then melts faster than drainage capacity. Moisture index seasonality was identified as a key factor distinguishing between emergent and forested wetland types, where forested wetland area at the landscape scale is associated with a greater seasonal variation in water table depth. Forecasting models (neural networks) predicted an increase in potential wetland area in the coming century, with areas conducive to forested wetland formation expanding more rapidly than areas conducive to emergent wetlands. Local cluster analyses identified Iowa and Northeastern Missouri as areas of anticipated wetland expansion, indicating both a risk to crop production within the Midwest Corn Belt and an opportunity for wetland conservation, while Northern Minnesota and Michigan are potentially at risk of wetland losses under a future climate. © 2014 John Wiley & Sons Ltd.

  17. Wetland Change Detection in Protected and Unprotected Indus Coastal and Inland Delta

    Science.gov (United States)

    Baig, M. H. Ali; Sultan, M.; Riaz Khan, M.; Zhang, L.; Kozlova, M.; Malik, N. Abbas; Wang, S.

    2017-09-01

    Worth of wetland sites lies in their ecological importance. They enhance ecosystem via provision of ecological services like improving water quality, groundwater infiltration, flood risk reduction and biodiversity regulation. Like other parts of the world Pakistan is also facing wetlands degradation. Ecological and economic significance of wetlands was recognized officially in 1971 as Pakistan became signatory of Ramsar wetland convention. Wetlands provide habitat to species of ecological and economic importance. Despite being recognized for international importance, Ramsar figures state that almost half of Pakistan's wetlands are at moderate or prominent level threat. Wetlands ecosystems are deteriorating at a rapid rate, if uncontrolled this trend may lead to substantial losses. Therefore, management of these resources demands regular monitoring. Present study is dedicated to assessing levels of change overtime in three distinct types of wetlands in Pakistan i.e. Indus delta a coastal wetland, Uchhali complex an inland wetland which are both protected sites while another site Nurri Lagoon which is not sheltered under any category of protected areas. Remotely sensed data has remarkable applications in change detection. Multitemporal Landsat images were used to map changes occurring from 2006 to 2016. Results reveal that wetland area has considerably decreased for all types. Both protected sites have experienced degradation though impact is comparatively lesser than unprotected Nurri lagoon. Significance of protection strategies cannot be denied, it is recommended that mere declaration of a site protected area is not sufficient. It is equally important to control non-point pollutants and ensuring the compliance of conservation strategy.

  18. A survey of the wetlands and floodplains of the borrow area and wetland/shorebird complex for the remedial action at the chemical plant area of the Weldon Spring Site

    Energy Technology Data Exchange (ETDEWEB)

    Van Lonkhuyzen, R.; Yin, S.; Hlohowskyj, I.

    1995-02-01

    The US Department of Energy is conducting cleanup operations at the Weldon Spring site, St. Charles, Missouri, that will include development of a 77-ha (191-acre) soil borrow area. Eight wetlands, including riverine and palustrine emergent wetland types and totaling 0.9 ha (2.2 acres), will be eliminated during excavation of the borrow area. A 23-ha (57-acre) wetland/shorebird complex will be created at the Busch Conservation Area. The complex will include 2 ha (5 acres) of palustrine emergent wetland as mitigation for wetland losses in the borrow area.

  19. Trace metal concentrations in zooplankton from the eastern Arabian Sea and western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Rejomon, G.; Balachandran, K.K.; Nair, M.; Joseph, T.; DineshKumar, P.K.; Achuthankutty, C.T.; Nair, K.K.C.; Pillai, N.G.K.

    continental shelf of 0.5 million km 2 and an exclu- sive economic zone of 2.02 million km 2 . The coastal zone of the country with its wetlands, lagoons, mangroves, sea-grass beds, coral reefs, and shallow bays, creeks, and estuaries is rich in natural sources... program, trace metal distribution in surface seawater and zooplankton of the Bay of Bengal was studied in the Indian exclusive economic zone of the Arabian Sea and Bay of Bengal. The investigation in the Bay of Bengal (Cruise No. 209, November 2002...

  20. Sedimentation and bathymetric change in San Pablo Bay, 1856-1983

    Science.gov (United States)

    Jaffe, Bruce E.; Smith, Richard E.; Torresan, Laura Zink

    1998-01-01

    A long-term perspective of erosion and deposition in San Francisco Bay is vital to understanding and managing wetland change, harbor and channel siltation, and other sediment-related phenomena such as particle and particle-associated substance (pollutants, trace metals, etc.) transport and deposition. A quantitative comparison of historical hydrographic surveys provides this perspective. This report presents results of such a comparison for San Pablo Bay, California. Six hydrographic surveys from 1856 to 1983 were analyzed to determine long-term changes in the sediment system of San Pablo Bay. Each survey was gridded using surface modeling software. Changes between survey periods were computed by differencing grids. Patterns and volumes of erosion and deposition in the Bay are derived from difference grids. More than 350 million cubic meters of sediment was deposited in San Pablo Bay from 1856 to 1983. This is equivalent to a Baywide accumulation rate of approximately 1 cm/yr. However, sediment deposition was not constant over time or throughout the Bay. Over two-thirds of that sediment was debris from hydraulic mining that accumulated from 1856 to 1887. During this period, deposition occurred in nearly the entire Bay. In contrast, from 1951 to 1983 much of the Bay changed from being depositional to erosional as sediment supply diminished and currents and waves continued to remove sediment from the Bay. The decrease in sediment supply is likely the result of upstream flood-control and water-distribution projects that have reduced peak flows, which are responsible for the greatest sediment transport. One consequence of the change in sedimentation was a loss of about half of the tidal flat areas from the late 1800's to the 1980's. Change in sedimentation must also have affected flow in the Bay, areas where polluted sediments were deposited, exchange of sediment between the nearshore and wetlands, and wave energy reaching the shoreline that was available to erode

  1. Wetlands in changed landscapes: the influence of habitat transformation on the physico-chemistry of temporary depression wetlands.

    Directory of Open Access Journals (Sweden)

    Matthew S Bird

    Full Text Available Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m; although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%, relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%. The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality.

  2. Wetlands in changed landscapes: the influence of habitat transformation on the physico-chemistry of temporary depression wetlands.

    Science.gov (United States)

    Bird, Matthew S; Day, Jenny A

    2014-01-01

    Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated) occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology) are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis) indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m); although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%), relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%). The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m) buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality.

  3. Responses of upland herpetofauna to the restoration of Carolina Bays and thinning of forested Bay Margins.

    Energy Technology Data Exchange (ETDEWEB)

    Ledvina, Joseph A.

    2008-05-01

    Research on the effects of wetland restoration on reptiles and amphibians is becoming more common, but almost all of these studies have observed the colonization of recently disturbed habitats that were completely dry at the time of restoration. In a similar manner, investigations herpetofaunal responses to forest management have focused on clearcuts, and less intensive stand manipulations are not as well studied. To evaluate community and population responses of reptiles and amphibians to hydrology restoration and canopy removal in the interior of previously degraded Carolina bays, I monitored herpetofauna in the uplands adjacent to six historically degraded Carolina bays at the Savannah River Site (SRS) in South Carolina for four years after restoration. To evaluate the effects of forest thinning on upland herpetofauna, forests were thinned in the margins of three of these bays. I used repeated measures ANOVA to compare species richness and diversity and the abundance of selected species and guilds between these bays and with those at three reference bays that were not historically drained and three control bays that remained degraded. I also used Non-metric Multidimensional Scaling (NMDS) to look for community-level patterns based treatments.

  4. Surficial and vertical distribution of heavy metals in different estuary wetlands in the Pearl river, South China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Honggang; Cui, Baoshan [State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing (China); Zhang, Kejiang [Xinjiang Research Center of Water and Wastewater Treatment, Xinjiang Deland Co., LTD., Urumqi (China)

    2012-10-15

    A total of 87 soil profiles sampled from five types of wetlands in the Pearl River estuary were analyzed to investigate the surficial and vertical distributions of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn). The results show that wetlands directly connected with rivers (e.g., riparian wetlands, estuarine wetlands, and mangrove wetlands) has much higher metal concentrations than those indirectly connected with rivers (e.g., pond wetlands and reclaimed wetlands). The river water is the major pollution source for all investigated heavy metals. The vertical distribution of heavy metals can be classified into three patterns: (i) linear distribution pattern. The concentration of heavy metals gradually decreases with an increase in soil depth (for riparian and estuarine wetlands); (ii) irregular and stable pattern (for pond and reclaimed wetlands); and (iii) middle enrichment pattern (for mangrove wetlands). In addition to river-borne inputs, a variety of vegetation composition, hydraulic conditions, and human activities also contribute to the variation in distribution of heavy metals in different wetlands. Soil properties (e.g., particle size, pH, salinity, and SOM) also affect the distribution of trace metals in each soil layer. The major pollution source of heavy metals is industrial wastewater. Other sources include agriculture and domestic premises, and atmospheric deposition. This study provides a sound basis for the risk assessment of heavy metals in the studied wetlands and for wetland conservation in general. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Principles of Wetland Restoration

    Science.gov (United States)

    the return of a degraded ecosystem to a close approximation of its remaining natural potential - is experiencing a groundswell of support across the United States. The number of stream, river, lake, wetland and estuary restoration projects grows yearly

  6. Wetlands and infectious diseases

    Directory of Open Access Journals (Sweden)

    Robert H. Zimmerman

    2001-01-01

    Full Text Available There is a historical association between wetlands and infectious disease that has led to the modification of wetlands to prevent disease. At the same time there has been the development of water resources projects that increase the risk of disease. The demand for more water development projects and the increased pressure to make natural wetlands economically beneficial creates the need for an ecological approach to wetland management and health assessment. The environmental and health interactions are many. There is a need to take into account the landscape, spatial boundaries, and cross-boundary interactions in water development projects as well as alternative methods to provide water for human needs. The research challenges that need to be addressed are discussed.

  7. Wetland Groundwater Processes

    National Research Council Canada - National Science Library

    Williams, Greg

    1993-01-01

    This technical note summarizes hydrologic and hydraulic (H AND H) processes and the related terminology that will likely be encountered during an evaluation of the effect of ground-water processes on wetland function...

  8. Estimating restorable wetland water storage at landscape scales

    Science.gov (United States)

    Jones, Charles Nathan; Evenson, Grey R.; McLaughlin, Daniel L.; Vanderhoof, Melanie; Lang, Megan W.; McCarty, Greg W.; Golden, Heather E.; Lane, Charles R.; Alexander, Laurie C.

    2018-01-01

    Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many landscapes and used to guide restoration efforts, few studies have directly quantified the associated wetland storage capacity. Here, we present a novel raster-based approach to quantify both contemporary and potential (i.e., restorable) storage capacities of individual depressional basins across landscapes. We demonstrate the utility of this method by applying it to the Delmarva Peninsula, a region punctuated by both depressional wetlands and drainage ditches. Across the entire peninsula, we estimated that restoration (i.e., plugging ditches) could increase storage capacity by 80%. Focusing on an individual watershed, we found that over 59% of restorable storage capacity occurs within 20 m of the drainage network, and that 93% occurs within 1 m elevation of the drainage network. Our demonstration highlights widespread ditching in this landscape, spatial patterns of both contemporary and potential storage capacities, and clear opportunities for hydrologic restoration. In Delmarva and more broadly, our novel approach can inform targeted landscape-scale conservation and restoration efforts to optimize hydrologically mediated wetland functions.

  9. Metal pollution across the upper delta plain wetlands and its adjacent shallow sea wetland, northeast of China: implications for the filtration functions of wetlands.

    Science.gov (United States)

    Liu, Jin; Ye, Siyuan; Yuan, Hongming; Ding, Xigui; Zhao, Guangming; Yang, Shixiong; He, Lei; Wang, Jin; Pei, Shaofeng; Huang, Xiaoyu

    2018-02-01

    Grain size and concentrations of organic carbon (Corg) and particulate metals (PMs) As, Cd, Cr, Cu, Hg, Pb, Zn, Al, Fe, and Mn of 373 surface sediment samples, salinities in 67 surface water samples, were analyzed in various environments, including the upper delta plain wetlands (UDPW), its adjacent shallow sea wetland (SSW) in the Liaodong Bay, and river channels that are running through the Liaohe Delta, to evaluate the spatial distribution, transportation environmental dynamics of metals, and the provenance of metal pollution and assess the filtration functions of wetlands. The concentrations of PMs for UDPW were generally higher by a factor of ~ 10-22% compared with its analogues in SSW, suggesting the accumulation of PMs within the UDPW indicates that the UDPW systems are efficiently physical and chemical traps for PMs of anthropogenic sources by retaining and storing pollutants flowing into the sea. However, there was sever sewage irrigation-induced Cd pollution with a geo-accumulation index of 0.62-3.11 in an area of ~ 86 km 2 of the adjacent shallow sea wetland, where large amount wetlands were historically moved for agriculture in the UDPW. Remarkably, the distributions of PMs were controlled by salinity-induced desorption and re-adsorption mechanisms and significantly dispersed the contamination coverage by the three-dimensional hydrodynamic and sedimentation processes that dominated by inputs of freshwater and ocean dynamics including NE-SW tidal currents and NE-E longshore drifts in the SSW of the Liaodong Bay. A high agreement between the UDPW and the SSW datasets in principal component analysis essentially reflects that the characteristics of PM sources in the SSW were actually inherited from that in the UDPW, with a much closer relationship among metals, organic matter, and fine particulates in SSW than that of UDPW, which was judged by their correlation coefficient range of 0.406-0.919 in SSW against those of 0.042-0.654 in UDPW.

  10. Futures Analysis of Urban Land Use and Wetland Change in Saskatoon, Canada: An Application in Strategic Environmental Assessment

    Directory of Open Access Journals (Sweden)

    Anton Sizo

    2015-01-01

    Full Text Available This paper presents a scenario-based approach to strategic environmental assessment (SEA for wetland trend analysis and land use and land cover (LUC modeling in an urban environment. The application is focused on the Saskatoon urban environment, a rapidly growing urban municipality in Canada’s prairie pothole region. Alternative future LUC was simulated using remote sensing data and city spatial planning documentation using a Markov Chain technique. Two alternatives were developed and compared for LUC change and threats to urban wetland sustainability: a zero alternative that simulated trends in urban development and wetland conservation under a business as usual scenario, in the absence of prescribed planning and zoning actions; and an alternative focused on implementation of current urban development plans, which simulated future LUC to account for prescribed wetland conservation strategies. Results show no improvement in future wetland conditions under the city’s planned growth and wetland conservation scenario versus the business as usual scenario. Results also indicate that a blanket wetland conservation strategy for the city may not be sufficient to overcome the historic trend of urban wetland loss; and that spatially distributed conservation rates, based on individual wetland water catchment LUC peculiarities, may be more effective in terms of wetland conservation. The paper also demonstrates the challenges to applied SEA in a rapidly changing urban planning context, where data are often sparse and inconsistent across the urban region, and provides potential solutions through LUC classification and prediction tools to help overcome data limitations to support land use planning decisions for wetland conservation.

  11. Optimizing water depth for wetland-dependent wildlife could increase wetland restoration success, water efficiency, and water security

    Science.gov (United States)

    Nadeau, Christopher P.; Conway, Courtney J.

    2015-01-01

    Securing water for wetland restoration efforts will be increasingly difficult as human populations demand more water and climate change alters the hydrologic cycle. Minimizing water use at a restoration site could help justify water use to competing users, thereby increasing future water security. Moreover, optimizing water depth for focal species will increase habitat quality and the probability that the restoration is successful. We developed and validated spatial habitat models to optimize water depth within wetland restoration projects along the lower Colorado River intended to benefit California black rails (Laterallus jamaicensis coturniculus). We observed a 358% increase in the number of black rails detected in the year after manipulating water depth to maximize the amount of predicted black rail habitat in two wetlands. The number of black rail detections in our restoration sites was similar to those at our reference site. Implementing the optimal water depth in each wetland decreased water use while simultaneously increasing habitat suitability for the focal species. Our results also provide experimental confirmation of past descriptive accounts of black rail habitat preferences and provide explicit water depth recommendations for future wetland restoration efforts for this species of conservation concern; maintain surface water depths between saturated soil and 100 mm. Efforts to optimize water depth in restored wetlands around the world would likely increase the success of wetland restorations for the focal species while simultaneously minimizing and justifying water use.

  12. [Research progress on wetland ecotourism].

    Science.gov (United States)

    Wang, Li-Long; Lu, Lin

    2009-06-01

    Wetland is rich in biodiversity and cultural diversity, possessing higher tourism value and environmental education and community participation functions. Wetland ecotourism reflects the sustainable development of tourism economy and wetland protection, having received great concern from governments and scholars at home and abroad. This paper summarized the related theories and practices, discussed the research advances in wetland ecotourism from the aspects of significance, progress, contents, methods and results, and pointed out the important research fields in the future, aimed to accelerate the development of wetland ecotourism research and to provide reference about the resources exploitation, environment protection, and scientific administration of wetland and related scenic areas.

  13. The influence of local- and landscape-level factors on wetland breeding birds in the Prairie Pothole Region of North and South Dakota

    Science.gov (United States)

    Igl, Lawrence D.; Shaffer, Jill A.; Johnson, Douglas H.; Buhl, Deborah A.

    2017-08-17

    restored Federal wetlands. After adjusting for wetland size and the date and location of the surveys, our results demonstrated that incorporating wetland- and landscape-level factors in models can improve our ability to predict abundances of wetland birds in this region. The top model for eight of the nine focal species included wetland- and landscape-level factors, whereas the best model for Blue-winged Teal included only wetland-level attributes. Although local factors (for example, percent open water or emergent vegetation) in individual wetlands are important factors for some wetland breeding birds, it is important that natural resource managers consider landscape-level factors beyond the local factors in their conservation plans for wetland birds.

  14. Wetlands & Deepwater Habitats - MO 2012 East West Gateway Wetlands (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — Cowardin’s Classification of Wetlands and Deep Water Habitats of the United States (http://www.npwrc.usgs.gov/resource/wetlands/classwet/index.htm), together with...

  15. Metro Multnomah Wetlands - Multnomah Channel Wetland Restoration Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Multnomah Channel Wetland Restoration Monitoring Project characterizes wetlands use by juvenile salmonids and other fishes in the Multnomah Channel Marsh Natural...

  16. Sediment diatom species and community response to nitrogen addition in Oregon (USA) estuarine tidal wetlands

    Science.gov (United States)

    Sediment microalgae play an important role in nutrient cycling and are important primary producers in the food web in Pacific Northwest estuaries. This study examines the effects of nitrogen addition to benthic microalgae in tidal wetlands of Yaquina Bay estuary on the Oregon c...

  17. The research of ecology-oriented reasonable deployment of water resources at Shuangtaizi estuary wetland

    Science.gov (United States)

    Lu, Xiaofeng; Wang, Tieliang; Su, Fangli; Zhou, Linfei; Li, Bo

    2011-06-01

    Shuangtaizi estuary wetland, the largest natural conservation district in China, and one of the best preserved, largest ecological lands with the most complete vegetation types in the world, is located in Panjin city, Liaoning Province. In recent years, the degradation of Shuangtaizi estuary wetland is very serious. In order to rescue lives in the wetland and protect valuable natural resources, the information system of Shuangtaizi estuary wetland was built with `3S' technology, and the minimum, optimum, and maximum eco-environmental water requirements were calculated respectively. Furthermore, for restoring the ecological functions of wetland and preventing wetland degradation, the balance between supply and demand of water resource was analyzed, and an optimal allocation scheme of water resources was proposed based on three kinds of equilibrium.

  18. Drainage investment and wetland loss: an analysis of the national resources inventory data

    Science.gov (United States)

    Douglas, Aaron J.; Johnson, Richard L.

    1994-01-01

    The United States Soil Conservation Service (SCS) conducts a survey for the purpose of establishing an agricultural land use database. This survey is called the National Resources Inventory (NRI) database. The complex NRI land classification system, in conjunction with the quantitative information gathered by the survey, has numerous applications. The current paper uses the wetland area data gathered by the NRI in 1982 and 1987 to examine empirically the factors that generate wetland loss in the United States. The cross-section regression models listed here use the quantity of wetlands, the stock of drainage capital, the realty value of farmland and drainage costs to explain most of the cross-state variation in wetland loss rates. Wetlands preservation efforts by federal agencies assume that pecuniary economic factors play a decisive role in wetland drainage. The empirical models tested in the present paper validate this assumption.

  19. Wetland Program Development Grants (WPDGs)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Wetland Grant Database (WGD) houses grant data for Wetland Program Development Grants (created by EPA in 1990 under the Clean Water Act Section 104(b)(3)...

  20. Wetlands Restoration Definitions and Distinctions

    Science.gov (United States)

    Ecological restoration is a valuable endeavor that has proven very difficult to define. The term indicates that degraded and destroyed natural wetland systems will be reestablished to sites where they once existed. But, what wetland ecosystems are we talki

  1. Wetland Restoration and Sediment Removal

    Data.gov (United States)

    Department of the Interior — In 2008, Minnesota’s Private Lands Program and Wetland Management Districts began to compare different methods of restoring prairie pothole wetlands to see if there...

  2. Detecting emergence, growth, and senescence of wetland vegetation with polarimetric synthetic aperture radar (SAR) data

    Science.gov (United States)

    Gallant, Alisa L.; Kaya, Shannon G.; White, Lori; Brisco, Brian; Roth, Mark F.; Sadinski, Walter J.; Rover, Jennifer

    2014-01-01

    Wetlands provide ecosystem goods and services vitally important to humans. Land managers and policymakers working to conserve wetlands require regularly updated information on the statuses of wetlands across the landscape. However, wetlands are challenging to map remotely with high accuracy and consistency. We investigated the use of multitemporal polarimetric synthetic aperture radar (SAR) data acquired with Canada’s Radarsat-2 system to track within-season changes in wetland vegetation and surface water. We speculated, a priori, how temporal and morphological traits of different types of wetland vegetation should respond over a growing season with respect to four energy-scattering mechanisms. We used ground-based monitoring data and other ancillary information to assess the limits and consistency of the SAR data for tracking seasonal changes in wetlands. We found the traits of different types of vertical emergent wetland vegetation were detected well with the SAR data and corresponded with our anticipated backscatter responses. We also found using data from Landsat’s optical/infrared sensors in conjunction with SAR data helped remove confusion of wetland features with upland grasslands. These results suggest SAR data can provide useful monitoring information on the statuses of wetlands over time.

  3. A comprehensive evaluation of the crustacean assemblages in southern Iberian Mediterranean wetlands

    Directory of Open Access Journals (Sweden)

    Juan Diego Gilbert

    2014-09-01

    Full Text Available Although Mediterranean wetlands were recognized as biodiversity hotspots, most of them are nowadays threatened by human activities that have led to habitat loss and degradation. A total of 36 wetlands were monitored to assess species richness of branchiopods and copepods by using accumulation curves and non-parametric estimators. Three different types of wetlands were identified: i temporary freshwaters-subsaline-hyposaline (TFSH; ii permanent freshwaters-subsaline-hyposaline (PFSH; and iii mesosaline-hypersaline (MH wetlands (including temporary and permanent ones. A total of 60 species were recorded; they belong to seven different orders. A large number (37% of rare species (present in only one wetland were found while only 11% of the total species were common (i.e., present in more than 20% of wetlands. Species richness was related to wetland typology, with the largest number of species observed in TFSH, followed by MH and by PFSH wetlands. We have found that rare species are mainly present in temporary wetlands, the most vulnerable to hydrological changes; hence, these types of wetlands represent unique sites deserving conservation

  4. IMPACTS OF WETLAND DEGRADATION IN NIGER DELTA NIGERIA AND ITS SIGNIFICANCE IN FLOOD CONTROL

    Directory of Open Access Journals (Sweden)

    Enwere Chidimma Loveline

    2015-08-01

    Full Text Available  Wetlands perform a wide variety of functions that include flood control, ground water recharge, shore line stabilization, storm protection and climate moderation. However, despite these huge wetland functions, it has witnessed poor appreciation and dreadful conditions. Niger Delta has witnessed constant coastal erosion and rising sea level, this has led to large portions of the landmass being eroded. This paper aims to review some environmental effects of flooding in the Niger Delta region of Nigeria to provide the desired knowledge of role that wetlands play in reducing flood impacts. However, having witnessed the flood, the experience opened my eyes to the environmental challenges facing Niger Delta with respect to Wetlands degradation, poor perception of wetland values and functions, poor environmental practices and non-implementation of environmental regulations. This memorable experience rekindled the desire and motivation to seek a solution to wetland degradation with the aim of recognizing significance of wetlands at the centre of achieving both livelihood and biodiversity improvements to address coastal flooding problem.The study therefore concludes that wetlands are very significant in flood control and thus the conservation and restoration of wetlands, should put in place measures to reduce wetland destruction.International Journal of EnvironmentVolume-4, Issue-3, June-August 2015Page: 177-184

  5. Detecting Emergence, Growth, and Senescence of Wetland Vegetation with Polarimetric Synthetic Aperture Radar (SAR Data

    Directory of Open Access Journals (Sweden)

    Alisa L. Gallant

    2014-03-01

    Full Text Available Wetlands provide ecosystem goods and services vitally important to humans. Land managers and policymakers working to conserve wetlands require regularly updated information on the statuses of wetlands across the landscape. However, wetlands are challenging to map remotely with high accuracy and consistency. We investigated the use of multitemporal polarimetric synthetic aperture radar (SAR data acquired with Canada’s Radarsat-2 system to track within-season changes in wetland vegetation and surface water. We speculated, a priori, how temporal and morphological traits of different types of wetland vegetation should respond over a growing season with respect to four energy-scattering mechanisms. We used ground-based monitoring data and other ancillary information to assess the limits and consistency of the SAR data for tracking seasonal changes in wetlands. We found the traits of different types of vertical emergent wetland vegetation were detected well with the SAR data and corresponded with our anticipated backscatter responses. We also found using data from Landsat’s optical/infrared sensors in conjunction with SAR data helped remove confusion of wetland features with upland grasslands. These results suggest SAR data can provide useful monitoring information on the statuses of wetlands over time.

  6. Carbon in Natural, Cultivated, and Restored Depressional Wetlands in the Mid-Atlantic Coastal Plain.

    Science.gov (United States)

    Fenstermacher, D E; Rabenhorst, M C; Lang, M W; McCarty, G W; Needelman, B A

    2016-03-01

    Aerial extent of wetland ecosystems has decreased dramatically since precolonial times due to the conversion of these areas for human use. Wetlands provide various ecosystem services, and conservation efforts are being made to restore wetlands and their functions, including soil carbon storage. This Mid-Atlantic Regional USDA Wetland Conservation Effects Assessment Project study was conducted to evaluate the effects and effectiveness of wetland conservation practices along the Mid-Atlantic Coastal Plain. This study examined 48 wetland sites in Delaware, Maryland, Virginia, and North Carolina under natural, prior converted cropland, and 5- to 10-yr post wetland restoration states. The North Carolina sites mainly contained soils dominated by organic soil materials and therefore were analyzed separately from the rest of the sites, which primarily contained mineral soils. Soil samples were collected using the bulk density core method by horizon to a depth of 1 m and were analyzed for percent carbon. The natural wetlands were found to have significantly greater carbon stocks (21.5 ± 5.2 kg C m) than prior converted croplands (7.95 ± 1.93 kg C m; wetlands (4.82 ± 1.13 kg C m; wetlands, and the relatively young age of the restored sites. Wetlands were either restored by plugging drainage structures, with minimal surface disturbance, or by scraping the surface (i.e., excavation) to increase hydroperiod. Sites restored with the scraping technique had significantly lower carbon stocks (2.70 ± 0.38 kg C m) than those restored by passive techniques (6.06 ± 1.50 kg C m; = 0.09). Therefore, techniques that involve excavation and scraping to restore hydrology appear to negatively affect C storage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. The impact of human activities on biodiversity conservation in a ...

    African Journals Online (AJOL)

    The study was undertaken at the Muni-Pomadze coastal wetland in the Central Region of Ghana. The wetland, located about 56 km west of Accra, is an important habitat for wildlife of both local and global conservation significance. This study investigated the effects of human activities (e.g. farming, hunting, fuelwood ...

  8. Wetlands: The changing regulatory landscape

    International Nuclear Information System (INIS)

    Glick, R.M.

    1993-01-01

    Protection of wetlands became a national issue in 1988 when President George Bush pledged no net loss of wetlands in the US under his open-quotes environmental presidency.close quotes As wetlands became a national issue, the job of protecting them became an obligation for many groups, including hydro-power developers. Now, when a site selected for development includes an area that may be classified as a wetland, the developer quickly discovers the importance of recognizing and protecting these natural habitats. Federal legislation severely limits development of wetland, and most states increase the restrictions with their own wetlands regulations. The difficulty of defining wetlands complicates federal and state enforcement. Land that appears to be dry may in fact be classified as a wetland. So, even if a site appears dry, potential hydro developers must confirm whether or not any jurisdictional wetlands are present. Regulated lands include much more than marshes and swamps. Further complicating the definition of wetlands, a recent court decision found that even artificially created wetlands, such as man-made ponds, may be subject to regulation. Hydro developers must be aware of current regulatory requirements before they consider development of any site that may contain wetlands. To be certain that a site is open-quotes buildableclose quotes from the standpoint of wetlands regulation, a developer must verify (with the help of state agencies) that the property does not contain any jurisdictional wetlands. If it does, the regulatory process before development becomes much more complicated. For the short term, uncertainty abounds and extreme caution is in order. Because the regulatory process has become so complex and an agreeable definition of wetlands so elusive, the trend among the Corps and collaborating agencies is to constrict nationwide permits in favor of narrowing the jurisdictional definition of wetlands

  9. The Fate and Stability of Eroding Wetland Soil Carbon in a Subsiding Deltaic Coastal Plain

    Science.gov (United States)

    White, J. R.; Steinmuller, H.; Chambers, L. G.; Fontenot, A.

    2017-12-01

    Coastal wetlands can respond to rapid rates of relative sea level rise via wetland submergence and/or erosion, which occur when wetlands are unable to vertically accrete to keep pace with sea level rise. As coastal wetlands erode, previously sequestered organic carbon is exposed to oxygen-rich estuarine water. This transition in redox from anaerobic to aerobic condition can trigger increased mineralization rates of decades to centuries'-old soil carbon. Barataria Bay, Louisiana has one of the highest coastal wetland land loss rates in the United States, primarily due to eustatic sea level rise coupled with coastal subsidence. Marsh-edge erosion rates measured over the past two years are on the order of 1.5 meters per year. Meter long soil cores were obtained from vegetated wetland sites and sectioned into 11 intervals to investigate aerobic and anaerobic mineralization rates with depth. In surface soils, organic carbon mineralization rates averaged 16 times greater than anaerobic mineralization rates. In deeper, older soils, the aerobic mineralization rate was still an order of magnitude greater than the anaerobic rate, suggesting a significant portion of this older, soil carbon is readily cycling back to the atmosphere after erosion followed by mineralization by microorganisms. These results have consequences for increased atmospheric CO2 concentrations in the future, as stable coastlines worldwide will be subjected to Barataria-bay levels of sea level rise in the next 50-75 years.

  10. A methodology proposed for a South African national wetland inventory

    CSIR Research Space (South Africa)

    Thompson, M

    2002-03-01

    Full Text Available In order to manage and conserve wetland resources effectively in South Africa, it is essential to have accurate information on their location and boundaries. The need for an inventory of this nature has also been accentuated through various...

  11. Spatial Planning of a climate adaptation zone for wetland ecosystems

    NARCIS (Netherlands)

    Vos, C.C.; Hoek, van der D.C.J.; Vonk, M.

    2010-01-01

    Here we present a spatial planning approach for the implementation of adaptation measures to climate change in conservation planning for ecological networks. We analyse the wetland ecosystems of the Dutch National Ecological Network for locations where the effectiveness of the network might be

  12. The Niger Delta wetland ecosystem: What threatens it and why ...

    African Journals Online (AJOL)

    %username%

    2015-04-20

    Apr 20, 2015 ... Technology. Review. The Niger Delta wetland ecosystem: What threatens it and why should we protect it? Chidumeje Ndidi Patience Okonkwo*, Lalit Kumar and Subhashni Taylor. School of ... such as GIS and remote sensing in the conservation and management of this important ecosystem. Key words: ...

  13. Groundwater influence on water budget of a small constructed floodplain wetland in the Ridge and Valley of Virginia, USA

    OpenAIRE

    Ludwig, Andrea L.; Hession, W. Cully

    2015-01-01

    Study region: A floodplain in the headwaters of a tributary to the Chesapeake Bay, Ridge and Valley of the Eastern United States. Study focus: This study investigated the influence of groundwater exchange in the annual wetland hydrologic budget and identified spatial and temporal variability in groundwater hydraulic gradients using an array of nested piezometers. New hydrological insights for the region: Data showed that the created wetland met hydrologic success criteria, and that t...

  14. South Florida wetlands ecosystem; biogeochemical processes in peat

    Science.gov (United States)

    Orem, William; ,

    1996-01-01

    The South Florida wetlands ecosystem is an environment of great size and ecological diversity (figs. 1 and 2). The landscape diversity and subtropical setting of this ecosystem provide a habitat for an abundance of plants and wildlife, some of which are unique to South Florida. South Florida wetlands are currently in crisis, however, due to the combined effects of agriculture, urbanization, and nearly 100 years of water management. Serious problems facing this ecosystem include (1) phosphorus contamination producing nutrient enrichment, which is causing changes in the native vegetation, (2) methylmercury contamination of fish and other wildlife, which poses a potential threat to human health, (3) changes in the natural flow of water in the region, resulting in more frequent drying of wetlands, loss of organic soils, and a reduction in freshwater flow to Florida Bay, (4) hypersalinity, massive algal blooms, and seagrass loss in parts of Florida Bay, and (5) a decrease in wildlife populations, especially those of wading birds. This U.S. Geological Survey (USGS) project focuses on the role of organic-rich sediments (peat) of South Florida wetlands in regulating the concentrations and impact of important chemical species in the environment. The cycling of carbon, nitrogen, phosphorus, and sulfur in peat is an important factor in the regulation of water quality in the South Florida wetlands ecosystem. These elements are central to many of the contamination issues facing South Florida wetlands, such as nutrient enrichment, mercury toxicity, and loss of peat. Many important chemical and biological reactions occur in peat and control the fate of chemical species in wetlands. Wetland scientists often refer to these reactions as biogeochemical processes, because they are chemical reactions usually mediated by microorganisms in a geological environment. An understanding of the biogeochemical processes in peat of South Florida wetlands will provide a basis for evaluating the

  15. In Situ Wetland Restoration Demonstration

    Science.gov (United States)

    2016-06-01

    applied to the soil (see Figure 5-3). iv. The benthic community was sampled for abundance, taxa richness, Biotic Index, functional feeding groups ...1 Figure 1-2 Freshwater Tidal Wetland...process (Chadwick, 2008). Figure 1-2 Freshwater Tidal Wetland ESTCP Project ER-200825 In Situ Wetland Restoration Demonstration ER-200825 Final

  16. Dynamic conservation for migratory species.

    Science.gov (United States)

    Reynolds, Mark D; Sullivan, Brian L; Hallstein, Eric; Matsumoto, Sandra; Kelling, Steve; Merrifield, Matthew; Fink, Daniel; Johnston, Alison; Hochachka, Wesley M; Bruns, Nicholas E; Reiter, Matthew E; Veloz, Sam; Hickey, Catherine; Elliott, Nathan; Martin, Leslie; Fitzpatrick, John W; Spraycar, Paul; Golet, Gregory H; McColl, Christopher; Morrison, Scott A

    2017-08-01

    In an era of unprecedented and rapid global change, dynamic conservation strategies that tailor the delivery of habitat to when and where it is most needed can be critical for the persistence of species, especially those with diverse and dispersed habitat requirements. We demonstrate the effectiveness of such a strategy for migratory waterbirds. We analyzed citizen science and satellite data to develop predictive models of bird populations and the availability of wetlands, which we used to determine temporal and spatial gaps in habitat during a vital stage of the annual migration. We then filled those gaps using a reverse auction marketplace to incent qualifying landowners to create temporary wetlands on their properties. This approach is a cost-effective way of adaptively meeting habitat needs for migratory species, optimizes conservation outcomes relative to investment, and can be applied broadly to other conservation challenges.

  17. Relative value of managed wetlands and tidal marshlands for wintering northern pintails

    Science.gov (United States)

    Coates, Peter S.; Casazza, Michael L.; Halstead, Brian J.; Fleskes, Joseph P.

    2012-01-01

    Northern pintail Anas acuta (hereafter, pintail) populations have declined substantially throughout the western US since the 1970s, largely as a result of converting wetlands to cropland. Managed wetlands have been developed throughout the San Francisco Bay estuaries to provide wildlife habitat, particularly for waterfowl. Many of these areas were historically tidal baylands and plans are underway to remove dikes and restore tidal action. The relationship between tidal baylands and waterfowl populations is poorly understood. Our objective was to provide information on selection and avoidance of managed and tidal marshland by pintails. During 1991–1993 and 1998–2000, we radio-marked and relocated 330 female pintails (relocations, n =11,574) at Suisun Marsh, the largest brackish water estuary within San Francisco Bay, to estimate resource selection functions during the nonbreeding months (winter). Using a distance-based modeling approach, we calculated selection functions for different ecological communities (e.g., tidal baylands) and investigated variation explained by time of day (day or night hours) to account for differences in pintail behavior (i.e., foraging vs. roosting). We found strong evidence for selection of managed wetlands. Pintails also avoided tidal marshes and bays and channels. We did not detect differences in selection function between day and night hours for managed wetlands but the degree of avoidance of other habitats varied by time of day. We also found that areas subjected to tidal action did not influence the selection of immediately adjacent managed wetlands. If current management goals include providing habitat for wintering waterfowl populations, particularly pintail, then we recommend wildlife managers focus tidal restoration on areas that are not currently managed wetland and/or improve conditions in areas of managed wetlands to increase local carrying capacities

  18. Dynamic response of desert wetlands to abrupt climate change

    Science.gov (United States)

    Springer, Kathleen; Manker, Craig; Pigati, Jeffrey S.

    2015-01-01

    Desert wetlands are keystone ecosystems in arid environments and are preserved in the geologic record as groundwater discharge (GWD) deposits. GWD deposits are inherently discontinuous and stratigraphically complex, which has limited our understanding of how desert wetlands responded to past episodes of rapid climate change. Previous studies have shown that wetlands responded to climate change on glacial to interglacial timescales, but their sensitivity to short-lived climate perturbations is largely unknown. Here, we show that GWD deposits in the Las Vegas Valley (southern Nevada, United States) provide a detailed and nearly complete record of dynamic hydrologic changes during the past 35 ka (thousands of calibrated 14C years before present), including cycles of wetland expansion and contraction that correlate tightly with climatic oscillations recorded in the Greenland ice cores. Cessation of discharge associated with rapid warming events resulted in the collapse of entire wetland systems in the Las Vegas Valley at multiple times during the late Quaternary. On average, drought-like conditions, as recorded by widespread erosion and the formation of desert soils, lasted for a few centuries. This record illustrates the vulnerability of desert wetland flora and fauna to abrupt climate change. It also shows that GWD deposits can be used to reconstruct paleohydrologic conditions at millennial to submillennial timescales and informs conservation efforts aimed at protecting these fragile ecosystems in the face of anthropogenic warming.

  19. Predicting Spatial Variability of Soil Organic Carbon in Delmarva Bays

    OpenAIRE

    Blumenthal, Kinsey Megan

    2016-01-01

    Agricultural productivity, ecosystem health, and wetland restoration rely on soil organic carbon (SOC) as vital for microbial activity and plant health. This study assessed: (1) accuracy of topographic-based non-linear models for predicting SOC; and (2) the effect of analytic strategies and soil condition on performance of spectral-based models for predicting SOC. SOC data came from 28 agriculturally converted Delmarva Bays sampled down to 1 meter. R2 was used as an indicator of model perform...

  20. Potential risk to wood storks (Mycteria americana) from mercury in Carolina Bay fish

    International Nuclear Information System (INIS)

    Brant, H.A.; Jagoe, C.H.; Snodgrass, J.W.; Bryan, A.L.; Gariboldi, J.C.

    2002-01-01

    Fish mercury levels from some Carolina bays pose risk to wood stork. - Carolina bays are freshwater wetlands that serve as important feeding habitats for the endangered wood stork (Mycteria americana). Water levels in these bays fluctuate greatly and tend to be acidic and rich in dissolved organic carbon (DOC), factors that favor mercury (Hg) methylation and bioaccumulation in fish. To assess potential risks to wood storks consuming mercury contaminated fish in bays, we sampled fish from 10 bays on the Savannah River Site (SRS), South Carolina, an area with documented use by wood storks. Whole body mercury concentrations in 258 fishes of three species (Erimyzon sucetta, Acantharchus pomotis and Esox americanus) commonly consumed by wood storks were determined. Risk factors for nestlings and free-ranging adults were calculated using published no and lowest observable adverse effect concentration (NOAEC and LOAEC) values for birds. Fish from higher trophic levels and those from wetlands with relatively shallow maximum depths and fluctuating water levels were more likely to exceed NOAEC and LOAEC values. Calculation of exposure rates of nestling wood storks indicated they are at highest risk during the first 10 days of the nestling period. These calculations suggest that there is potential concern for wood storks foraging in relatively shallow bays with fluctuating water levels, even though there is no obvious local source of mercury to these wetlands

  1. A Total Economic Valuation of Wetland Ecosystem Services: An Evidence from Jagadishpur Ramsar Site, Nepal.

    Science.gov (United States)

    Baral, Sony; Basnyat, Bijendra; Khanal, Rajendra; Gauli, Kalyan

    Wetlands are the most productive ecosystem and provide wide arrays of wetland ecosystems (goods and services) to the local communities in particular and global communities in general. However, management of the wetland often does not remain priority and recognized as the unproductive waste land mainly due to poor realization of the economic value of the wetlands. Taking this into account, the study estimated the total economic value of the Jagadishpur Reservoir taking into account direct, indirect, and nonuse value. The study prioritized six major values of the reservoir which include wetland goods consumption, tourism, irrigation, carbon sequestration, biodiversity conservation, and conservation for future use (existence and option value). The study used market and nonmarket based valuation techniques to estimate total economic value of the reservoir. Household survey, focus group discussions, and interaction with the tourism entrepreneurs and district stakeholders were carried out to collect information. The study estimated the total annual economic value of the reservoir as NRs 94.5 million, where option/existence value remains main contributor followed by direct use value such as wetland goods and tourism and indirect use value, for example, carbon sequestration, biodiversity conservation, and irrigation. The study reveals that the local communities gave high importance to the future use value and are willing to make investment for conservation and restoration of reservoir given its conservation significance.

  2. A Total Economic Valuation of Wetland Ecosystem Services: An Evidence from Jagadishpur Ramsar Site, Nepal

    Directory of Open Access Journals (Sweden)

    Sony Baral

    2016-01-01

    Full Text Available Wetlands are the most productive ecosystem and provide wide arrays of wetland ecosystems (goods and services to the local communities in particular and global communities in general. However, management of the wetland often does not remain priority and recognized as the unproductive waste land mainly due to poor realization of the economic value of the wetlands. Taking this into account, the study estimated the total economic value of the Jagadishpur Reservoir taking into account direct, indirect, and nonuse value. The study prioritized six major values of the reservoir which include wetland goods consumption, tourism, irrigation, carbon sequestration, biodiversity conservation, and conservation for future use (existence and option value. The study used market and nonmarket based valuation techniques to estimate total economic value of the reservoir. Household survey, focus group discussions, and interaction with the tourism entrepreneurs and district stakeholders were carried out to collect information. The study estimated the total annual economic value of the reservoir as NRs 94.5 million, where option/existence value remains main contributor followed by direct use value such as wetland goods and tourism and indirect use value, for example, carbon sequestration, biodiversity conservation, and irrigation. The study reveals that the local communities gave high importance to the future use value and are willing to make investment for conservation and restoration of reservoir given its conservation significance.

  3. Chesapeake Bay TMDL Document

    Science.gov (United States)

    This page provides the Total Maximum Daily Load (TMDL) report for the Chesapeake Bay. It includes the executive summary, main report, and appendices. The Chesapeake Bay TMDL was established by U.S. EPA Region 3 on December 29, 2010

  4. Chesapeake Bay TMDL

    Science.gov (United States)

    In 2010 EPA established the Chesapeake Bay TMDL, a comprehensive pollution diet with accountability measures to restore clean water in the bay and local waters. It set limits for nutrients and sediment to meet water quality standards across the watershed

  5. The role of reserves and anthropogenic habitats for functional connectivity and resilience of ephemeral wetlands.

    Science.gov (United States)

    Uden, Daniel R; Hellman, Michelle L; Angeler, David G; Allen, Craig R

    Ecological reserves provide important wildlife habitat in many landscapes, and the functional connectivity of reserves and other suitable habitat patches is crucial for the persistence and resilience of spatially structured populations. To maintain or increase connectivity at spatial scales larger than individual patches, conservation actions may focus on creating and maintaining reserves and/or influencing management on non-reserves. Using a graph-theoretic approach, we assessed the functional connectivity and spatial distribution of wetlands in the Rainwater Basin of Nebraska, USA, an intensively cultivated agricultural matrix, at four assumed, but ecologically realistic, anuran dispersal distances. We compared connectivity in the current landscape to the historical landscape and putative future landscapes, and evaluated the importance of individual and aggregated reserve and non-reserve wetlands for maintaining connectivity. Connectivity was greatest in the historical landscape, where wetlands were also the most densely distributed. The construction of irrigation reuse pits for water storage has maintained connectivity in the current landscape by replacing destroyed wetlands, but these pits likely provide suboptimal habitat. Also, because there are fewer total wetlands (i.e., wetlands and irrigation reuse pits) in the current landscape than the historical landscape, and because the distribution of current wetlands is less clustered than that of historical wetlands, larger and longer dispersing, sometimes nonnative species may be favored over smaller, shorter dispersing species of conservation concern. Because of their relatively low number, wetland reserves do not affect connectivity as greatly as non-reserve wetlands or irrigation reuse pits; however, they likely provide the highest quality anuran habitat. To improve future levels of resilience in this wetland habitat network, management could focus on continuing to improve the conservation status of non

  6. FGD liner experiments with wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Mitsch, W.J.; Ahn, C.; Wolfe, W.E.

    1999-07-01

    The construction of artificial wetlands for wastewater treatment often requires impermeable liners not only to protect groundwater resources but also to ensure that there is adequate water in the wetland to support appropriate aquatic life, particularly wetland vegetation. Liners or relatively impervious site soils are very important to the success of constructed treatment wetlands in areas where ground water levels are typically close to the ground surface. This study, carried out at the Olentangy River Wetland Research Park, investigated the use of FGD material from sulfur scrubbers as a possible liner material for constructed wetlands. While several studies have investigated the use of FGD material to line ponds, no studies have investigated the use of this material as a liner for constructed wetlands. They used experimental mesocosms to see the effect of FGD liner materials in constructed wetlands on water quality and on wetland plant growth. This paper presents the results of nutrient analyses and physicochemical investigation of leachate and surface outflow water samples collected from the mesocosms. Plant growth and biomass of wetland vegetation are also included in this paper. First two year results are reported by Ahn et al. (1998, 1999). The overall goal of this study is the identification of advantages and disadvantages of using FGD by-product as an artificial liner in constructed wetlands.

  7. Reducing sedimentation of depressional wetlands in agricultural landscapes

    Science.gov (United States)

    Skagen, S.K.; Melcher, Cynthia; Haukos, D.A.

    2008-01-01

    Depressional wetlands in agricultural landscapes are easily degraded by sediments and contaminants accumulated from their watersheds. Several best management practices can reduce transport of sediments into wetlands, including the establishment of vegetative buffers. We summarize the sources, transport dynamics, and effect of sediments, nutrients, and contaminants that threaten wetlands and the current knowledge of design and usefulness of grass buffers for protecting isolated wetlands. Buffer effectiveness is dependent on several factors, including vegetation structure, buffer width, attributes of the surrounding watershed (i.e., area, vegetative cover, slope and topography, soil type and structure, soil moisture, amount of herbicides and pesticides applied), and intensity and duration of rain events. To reduce dissolved contaminants from runoff, the water must infiltrate the soil where microbes or other processes can break down or sequester contaminants. But increasing infiltration also diminishes total water volume entering a wetland, which presents threats to wetland hydrology in semi-arid regions. Buffer effectiveness may be enhanced significantly by implementing other best management practices (e.g., conservation tillage, balancing input with nutrient requirements for livestock and crops, precision application of chemicals) in the surrounding watershed to diminish soil erosion and associated contaminant runoff. Buffers require regular maintenance to remove sediment build-up and replace damaged or over-mature vegetation. Further research is needed to establish guidelines for effective buffer width and structure, and such efforts should entail a coordinated, regional, multi-scale, multidisciplinary approach to evaluate buffer effectiveness and impacts. Direct measures in "real-world" systems and field validations of buffer-effectiveness models are crucial next steps in evaluating how grass buffers will impact the abiotic and biotic variables attributes that

  8. Effect of wetland management: are lentic wetlands refuges of plant-species diversity in the Andean–Orinoco Piedmont of Colombia?

    Science.gov (United States)

    Murillo-Pacheco, Johanna I.; Rös, Matthias; Castro-Lima, Francisco; Verdú, José R.; López-Iborra, Germán M.

    2016-01-01

    Accelerated degradation of the wetlands and fragmentation of surrounding vegetation in the Andean–Orinoco Piedmont are the main threats to diversity and ecological integrity of these ecosystems; however, information on this topic is of limited availability. In this region, we evaluated the value of 37 lentic wetlands as reservoirs of woody and aquatic plants and analyzed diversity and changes in species composition within and among groups defined according to management given by: (1) type (swamps, heronries, rice fields, semi-natural lakes, constructed lakes and fish farms) and (2) origins (natural, mixed and artificial). A total of 506 plant species were recorded: 80% woody and 20% aquatic. Of these, 411 species (81%) were considered species typical of the area (Meta Piedmont distribution). Diversity patterns seem to be driven by high landscape heterogeneity and wetland management. The fish farms presented the highest diversity of woody plants, while swamps ranked highest for aquatic plant diversity. Regarding wetland origin, the artificial systems were the most diverse, but natural wetlands presented the highest diversity of typical species and can therefore be considered representative ecosystems at the regional scale. Our results suggest that lentic wetlands act as refuges for native vegetation of Meta Piedmont forest, hosting 55% of the woody of Piedmont species and 29% of the aquatic species of Orinoco basin. The wetlands showed a high species turnover and the results indicated that small wetlands (mean ± SD: size = 11 ± 18.7 ha), with a small area of surrounding forest (10 ± 8.6 ha) supported high local and regional plant diversity. To ensure long-term conservation of lentic wetlands, it is necessary to develop management and conservation strategies that take both natural and created wetlands into account. PMID:27602263

  9. Effect of wetland management: are lentic wetlands refuges of plant-species diversity in the Andean-Orinoco Piedmont of Colombia?

    Science.gov (United States)

    Murillo-Pacheco, Johanna I; Rös, Matthias; Escobar, Federico; Castro-Lima, Francisco; Verdú, José R; López-Iborra, Germán M

    2016-01-01

    Accelerated degradation of the wetlands and fragmentation of surrounding vegetation in the Andean-Orinoco Piedmont are the main threats to diversity and ecological integrity of these ecosystems; however, information on this topic is of limited availability. In this region, we evaluated the value of 37 lentic wetlands as reservoirs of woody and aquatic plants and analyzed diversity and changes in species composition within and among groups defined according to management given by: (1) type (swamps, heronries, rice fields, semi-natural lakes, constructed lakes and fish farms) and (2) origins (natural, mixed and artificial). A total of 506 plant species were recorded: 80% woody and 20% aquatic. Of these, 411 species (81%) were considered species typical of the area (Meta Piedmont distribution). Diversity patterns seem to be driven by high landscape heterogeneity and wetland management. The fish farms presented the highest diversity of woody plants, while swamps ranked highest for aquatic plant diversity. Regarding wetland origin, the artificial systems were the most diverse, but natural wetlands presented the highest diversity of typical species and can therefore be considered representative ecosystems at the regional scale. Our results suggest that lentic wetlands act as refuges for native vegetation of Meta Piedmont forest, hosting 55% of the woody of Piedmont species and 29% of the aquatic species of Orinoco basin. The wetlands showed a high species turnover and the results indicated that small wetlands (mean ± SD: size = 11 ± 18.7 ha), with a small area of surrounding forest (10 ± 8.6 ha) supported high local and regional plant diversity. To ensure long-term conservation of lentic wetlands, it is necessary to develop management and conservation strategies that take both natural and created wetlands into account.

  10. Effect of wetland management: are lentic wetlands refuges of plant-species diversity in the Andean–Orinoco Piedmont of Colombia?

    Directory of Open Access Journals (Sweden)

    Johanna I. Murillo-Pacheco

    2016-08-01

    Full Text Available Accelerated degradation of the wetlands and fragmentation of surrounding vegetation in the Andean–Orinoco Piedmont are the main threats to diversity and ecological integrity of these ecosystems; however, information on this topic is of limited availability. In this region, we evaluated the value of 37 lentic wetlands as reservoirs of woody and aquatic plants and analyzed diversity and changes in species composition within and among groups defined according to management given by: (1 type (swamps, heronries, rice fields, semi-natural lakes, constructed lakes and fish farms and (2 origins (natural, mixed and artificial. A total of 506 plant species were recorded: 80% woody and 20% aquatic. Of these, 411 species (81% were considered species typical of the area (Meta Piedmont distribution. Diversity patterns seem to be driven by high landscape heterogeneity and wetland management. The fish farms presented the highest diversity of woody plants, while swamps ranked highest for aquatic plant diversity. Regarding wetland origin, the artificial systems were the most diverse, but natural wetlands presented the highest diversity of typical species and can therefore be considered representative ecosystems at the regional scale. Our results suggest that lentic wetlands act as refuges for native vegetation of Meta Piedmont forest, hosting 55% of the woody of Piedmont species and 29% of the aquatic species of Orinoco basin. The wetlands showed a high species turnover and the results indicated that small wetlands (mean ± SD: size = 11 ± 18.7 ha, with a small area of surrounding forest (10 ± 8.6 ha supported high local and regional plant diversity. To ensure long-term conservation of lentic wetlands, it is necessary to develop management and conservation strategies that take both natural and created wetlands into account.

  11. Project of revitalization of the special nature reserve Koviljski rit (Kovilj wetland)

    International Nuclear Information System (INIS)

    Matavulj, M.

    2002-01-01

    Together with Petrovaradin wetland positioned on the opposite banks of the river Danube, named in Serbian 'Koviljsko-Petrovaradinski rit' (Kovilj-Petrovaradin wetland), this area has been proposed for the registration of wetland areas of international significance according to the Ramsar Convention. The Kovilj-Petrovaradin wetland is being registered as the Natural treasure of special significance and is being classified into I category of protection as the Special Nature Reserve. The protection and conservation of this wetland area is in agreement with Action Plan of protection of rivers and accompanied wetlands in the frame of Paneuropean Strategy for the protection of biological and landscape diversity, accepted at the Strasburg Conference (1995). Being of such importance, this project should contribute to the raising of awareness of this special wetland value as well as to the importance of protection, conservation and improvement of this kind of ecosystems in general. Also, the objectives and results should contribute to the achieving of the wise use of this special wetland and of natural resources as a whole. (author)

  12. Ecosystem Services Valuation of Lakeside Wetland Park beside Chaohu Lake in China

    Directory of Open Access Journals (Sweden)

    Tan Li

    2016-07-01

    Full Text Available Wetland ecosystems are one of the three great ecosystems on Earth. With a deepening of research on wetland ecosystems, researchers have paid more and more attention to wetland ecosystem services such as flood mitigation, climate control, pollution prevention, soil-erosion prevention, biodiversity maintenance, and bio-productivity protection. This study focuses on a lakeside wetland ecosystem in Hefei, a city in central China, and estimates the value of ecosystem services such as material production, air purification, water conservation, biodiversity, recreation, species conservation, education and scientific research. We adopted the market value method, carbon tax method, afforestation cost method, shadow engineering method and contingent value method (CVM using questionnaire survey data during the study period. The results show that the total value of the ecosystem services of Lakeside Wetland Park was 144 million CNY in 2015. Among these services, the value of society service is the maximum at 91.73 million CNY, followed by ecological service and material production service (42.23 million CNY and 10.43 billion CNY in 2015 respectively. When considering wetland ecosystems for economic development, other services must be considered in addition to material production to obtain a longer-term economic value. This research reveals that there is scope for more comprehensive and integrated model development, including multiple wetland ecosystem services and appropriate handling of wetland ecosystem management impacts.

  13. Natural wetland in China

    African Journals Online (AJOL)

    AJL

    2011-01-04

    Jan 4, 2011 ... human, birds and biodiversity (Cao and Fox, 2009). Thus, it is time for China to .... 48 Afr. J. Environ. Sci. Technol. Figure 2. Range, migration and nesting map of Red-crowned crane (from the International Crane Foundation website_ ..... Response and adaptation of wetland ecosystem to climate changes. 5.

  14. Microbiology of wetlands

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Dedysh, S.N.

    2013-01-01

    Watersaturated soil and sediment ecosystems (i.e. wetlands) are ecologically as well as economically important systems due to their high productivity, their nutrient (re)cycling capacities and their prominent contribution to global greenhouse gas emissions. Being on the transition between

  15. Urban bat communities are affected by wetland size, quality, and pollution levels.

    Science.gov (United States)

    Straka, Tanja Maria; Lentini, Pia Eloise; Lumsden, Linda Faye; Wintle, Brendan Anthony; van der Ree, Rodney

    2016-07-01

    Wetlands support unique biota and provide important ecosystem services. These services are highly threatened due to the rate of loss and relative rarity of wetlands in most landscapes, an issue that is exacerbated in highly modified urban environments. Despite this, critical ecological knowledge is currently lacking for many wetland-dependent taxa, such as insectivorous bats, which can persist in urban areas if their habitats are managed appropriately. Here, we use a novel paired landscape approach to investigate the role of wetlands in urban bat conservation and examine local and landscape factors driving bat species richness and activity. We acoustically monitored bat activity at 58 urban wetlands and 35 nonwetland sites (ecologically similar sites without free-standing water) in the greater Melbourne area, southeastern Australia. We analyzed bat species richness and activity patterns using generalized linear mixed-effects models. We found that the presence of water in urban Melbourne was an important driver of bat species richness and activity at a landscape scale. Increasing distance to bushland and increasing levels of heavy metal pollution within the waterbody also negatively influenced bat richness and individual species activity. Areas with high levels of artificial night light had reduced bat species richness, and reduced activity for all species except those adapted to urban areas, such as the White-striped free-tailed bat (Austronomus australis). Increased surrounding tree cover and wetland size had a positive effect on bat species richness. Our findings indicate that wetlands form critical habitats for insectivorous bats in urban environments. Large, unlit, and unpolluted wetlands flanked by high tree cover in close proximity to bushland contribute most to the richness of the bat community. Our findings clarify the role of wetlands for insectivorous bats in urban areas and will also allow for the preservation, construction, and management of wetlands

  16. Sustainable wetland resource utilization of Sango Bay through Eco ...

    African Journals Online (AJOL)

    African Journal of Environmental Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 10 (2008) >. Log in or Register to get access to full text downloads.

  17. Sustainable wetland resource utilization of Sango Bay through Eco ...

    African Journals Online (AJOL)

    Defining and achieving sustainable development is a major issue for policy debates both in the developed and developing countries. Eco-tourism as an important niche market in the world tourism industry has been embraced by developing countries like Uganda, which are trying to use tourism as an engine of national ...

  18. An Introduction to the San Francisco Estuary Tidal Wetlands Restoration Series

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available Restoration of tidal wetlands may provide an important tool for improving ecological health and water management for beneficial uses of the San Francisco Estuary (hereafter “Estuary”. Given the large losses of tidal wetlands from San Francisco Bay and the Sacramento-San Joaquin Delta in the last 150 years, it seems logical to assume that restoring tidal wetlands will have benefits for a variety of aquatic and terrestrial native species that have declined during the same time period. However, many other changes have also occurred in the Estuary concurrent with the declines of native species. Other factors that might be important in species declines include the effects of construction of upstream dams, large and small water diversions within the Sacramento-San Joaquin Delta, agricultural pesticides, trace elements from industrial and agricultural activities, and invasions of alien species. Discussions among researchers, managers, and stakeholders have identified a number of uncertainties regarding the potential benefits of tidal wetland restoration. The articles of the Tidal Wetlands Restoration Series address four major issues of concern. Stated as questions, these are: 1. Will tidal wetland restoration enhance populations of native fishes? 2. Will wetland restoration increase rates of methylation of mercury? 3. Will primary production and other ecological processes in restored tidal wetlands result in net export of organic carbon to adjacent habitats, resulting in enhancement of the food web? Will the carbon produced contribute to the formation of disinfection byproducts when disinfected for use as drinking water? 4. Will restored tidal wetlands provide long-term ecosystem benefits that can be sustained in response to ongoing physical processes, including sedimentation and hydrodynamics? Reducing the uncertainty surrounding these issues is of critical importance because tidal wetland restoration is assumed to be a critical tool for

  19. Linking seasonal surface water dynamics with methane emissions and export from small, forested wetlands

    Science.gov (United States)

    Hondula, K. L.; Palmer, M.

    2017-12-01

    One of the biggest uncertainties about global methane sources and sinks is attributed to uncertainties regarding wetland area and its dynamics. This is exacerbated by confusion over the role of small, shallow water bodies like Delmarva bay wetlands that could be categorized as both wetlands and ponds. These small inland water bodies are often poorly quantified due to their size, closed forest canopies, and inter- and intra-annual variability in surface water extent. We are studying wetland-rich areas on the Delmarva Peninsula in the U.S. mid-Atlantic to address this uncertainty at the scale of individual wetland ecosystems (chamber measurements spanning from wetland center to upland, in order to quantify the areal extent of the methane emissions source area throughout seasonal changes in surface water inundation (water level 0 to > 1m depth). We estimated the size and temporal variability of the methane emissions source area by combining these measurements with daily estimates of the extent of surface water inundation derived from water level monitoring and a high-resolution digital elevation model. This knowledge is critical for informing land use decisions (e.g. restoring wetlands specifically for climate mitigation), the jurisdiction of environmental policies in the US, and for resolving major outstanding discrepancies in our understanding of the global methane budget.

  20. St Helena Bay (southern Benguela) then and now: muted climate ...

    African Journals Online (AJOL)

    Conservation measures, implemented to reverse past negative human impact, have benefitted marine mammals, the abundance of which has increased in the area, but additional conservation measures are necessary to reverse the decline in African penguins Spheniscus demersus. St Helena Bay shows a muted ...

  1. Baseline survey of anthropogenic pressures for the Lac Bay ecosystem, Bonaire

    NARCIS (Netherlands)

    Debrot, A.O.

    2012-01-01

    Lac Bay of Bonaire is a shallow non-estuarine lagoon of about 700 hectares, separated from the open sea by a shallow coral barrier-reef. It possesses the only major concentration of seagrass beds and mangroves of the island. It is a designated Ramsar wetland of international significance, an

  2. Applications of remote-sensing technology to environmental problems of Delaware and Delaware Bay

    Science.gov (United States)

    Bartlett, D.; Klemas, V.; Philpot, W.; Rogers, R.

    1975-01-01

    Digital processing of multispectral LANDSAT data was used to develop a computerized model for predicting oil slick movement within the Delaware Bay. LANDSAT imagery was also used to monitor offshore waste disposal sites for mapping of wetlands, and charting of tidal currents.

  3. ZEBRA MUSSEL COLONIZATION OF RUSTY CRAYFISH IN GREEN BAY, LAKE MICHIGAN

    Science.gov (United States)

    In August, 1995 six rusty crayfish colonized with zebra mussels were captured in small-meshed fyke-nets sets set apart as of a fish sampling effort at Peter's Marsh and Long-Tail Point Wetland in lower Green Bay. Mussels colonized virtually all areas of the crayfish bodies, but ...

  4. Evaluating Wetland Expansion in a Tallgrass Prairie-Wetland Restoration

    Science.gov (United States)

    Engelmann, Katie Mae

    Remote sensing is an effective tool to inventory and monitor wetlands at large spatial scales. This study examined the effect of wetland restoration practices at Glacial Ridge National Wildlife Refuge (GRNWR) in northwest Minnesota on the distribution, location, size and temporal changes of wetlands. A Geographic Object-Based Image Analysis (GEOBIA) land cover classification method was applied that integrated spectral data, LiDAR elevation, and LiDAR derived ancillary data of slope, aspect, and TWI. Accuracy of remote wetland mapping was compared with onsite wetland delineation. The GEOBIA method produced land cover classifications with high overall accuracy (88 - 91 percent). Wetland area from a June 12, 2007 classified image was 20.09 km2 out of a total area of 147.3 km 2. Classification of a July 22, 2014 image, showed wetlands covering an area of 37.96 km2. The results illustrate how wetland areas have changed spatially and temporally within the study landscape. These changes in hydrologic conditions encourage additional wetland development and expansion as plant communities colonize rewetted areas, and soil conditions develop characteristics typical of hydric soils.

  5. The influence of differing protected area status and environmental factors on the macroinvertebrate fauna of temperate austral wetlands

    Directory of Open Access Journals (Sweden)

    Toni Furlonge

    2015-07-01

    Full Text Available One means of conserving wetlands is to designate the area around them as ‘protected’. Although many different types of protected areas exist, ranging from international (Ramsar-listed to local importance, there is little information on how the type of protection influences biodiversity conservation. Studies of the effectiveness of protected area systems are a priority, if we are to understand their importance and design systems effectively. Many Tasmanian wetlands are regarded as having high to very high conservation values with more than 60% located within protected areas. This study tested macroinvertebrate richness and assemblage responses to a range of environmental attributes and differing types of protected area status at 66 protected Tasmanian (Australian wetlands. Two hundred and eighteen taxa were identified with an average of 33 species (or morphospecies and 18 families recorded per wetland. The wetland assemblages were idiosyncratic, four families contributed 21% of the total recorded and only two families contributed greater than 10%. Wetlands were not significantly nested on the basis of the composition of their macroinvertebrate assemblages. No single environmental attribute had a strong relationship with macroinvertebrate richness or assemblage composition and neither species richness nor assemblage composition varied significantly between different types of protected areas. Although the majority of protected area types were designed to support terrestrial conservation objectives rather than wetland values, our results suggest that the latter were also afforded protection. The state of the proximal zone (the terrestrial zone within 50m of the wetland edge and the type of aquatic habitat present (macrophyte or sediment-dominated substrates were the most important determinants of macroinvertebrate richness and assemblage composition across all types of protected wetlands. These results suggest that for temperate austral wetlands

  6. Anthropogenic protection alters the microbiome in intertidal mangrove wetlands in Hainan Island.

    Science.gov (United States)

    Yun, Juanli; Deng, Yongcui; Zhang, Hongxun

    2017-08-01

    Intertidal mangrove wetlands are of great economic and ecological importance. The regular influence of tides has led to the microbial communities in these wetlands differing significantly from those in other habitats. In this study, we investigated the microbiomes of the two largest mangrove wetlands in Hainan Island, China, which have different levels of anthropogenic protection. Soil samples were collected from the root zone of 13 mangrove species. The microbial composition, including key functional groups, was assessed using Illumina sequencing. Bioinformatics analysis showed that there was a significant difference in the microbiomes between the protected Bamen Bay and the unprotected Dongzhai Bay. The overall microbiome was assigned into 78 phyla and Proteobacteria was the most abundant phylum at both sites. In the protected wetland, there were fewer marine-related microbial communities, such as sulfate-reducing bacteria, and more terrestrial-related communities, such as Verrucomicrobia methanotrophs. We also observed distinct microbial compositions among the different mangrove species at the protected site. Our data suggest that the different microbiomes of the two mangrove wetlands are the result of a complex interaction of the different environmental variables at the two sites.

  7. Factors affecting biological recovery of wetland restorations

    Science.gov (United States)

    1999-06-01

    This report describes a long-term study to monitor and evaluate the ecosystem recovery of seven wetland restorations in south central Minnesota. The study looks at the impact of planting on wetland restoration success in inland wetlands and develops ...

  8. Natural wetland emissions of methylated trace elements

    NARCIS (Netherlands)

    Vriens, B.; Lenz, M.; Charlet, L.; Berg, M.; Winkel, L.H.E.

    2014-01-01

    Natural wetlands are well known for their significant methane emissions. However, trace element emissions via biomethylation and subsequent volatilization from pristine wetlands are virtually unstudied, even though wetlands constitute large reservoirs for trace elements. Here we show that the

  9. Opportunities to Improve Urban and Ecosystem Adaptation to Climate Change Through Conservation of Green Space.

    Science.gov (United States)

    Heller, N. E.

    2014-12-01

    The conservation of biotic communities in urbanized ecosystems is critical in light of heightened vulnerability due to climate change. Conservation of large open spaces around cities and smaller 'green' spaces within cities - such as forest patches and wetlands - has the capacity to diminish the vulnerability of human communities to higher temperatures, water shortages, increased flooding and other impacts of climate change. In addition, native species need to migrate to track their climate niches and the chances of successful migration will be increased if species have access to habitat throughout the landscape. Thus there is a strong rationale to do more conservation and restoration for both ecosystem and urban adaptation to climate change. Despite this alignment, planning efforts in the urban and ecosystem sectors are rarely done synergistically. As a result it is not clear how well plans will achieve biodiversity along with other ecosystem services goals. In this talk, I will discuss how urban adaptation planning can better align with ecosystem adaptation planning by drawing on research exploring sustainability plans and urban ecology in US cities, including work conducted in the San Francisco Bay Area by the Terrestrial Biodiversity and Climate Change Collaborative (TBC3). This research shows that there are considerable opportunities for linking agendas across sectors in ways that could yield multiple benefits. There are however both social and ecological challenges. In some cases difficult choices will need to be made about which values and services are most important, or where in the landscape different values should be prioritized.

  10. Restoration of Bhoj Wetlands At Bhopal, India

    Science.gov (United States)

    Shukla, S. S.; Kulshrestha, M.; Wetland Project, Bhoj

    Bhoj Wetlands comprise the two lakes at Bhopal, India. These wetlands are listed amongst the 21 lakes recognized by Ministry of Environment and Forest, India and are under consideration for Ramsar lake status. The twin lakes have a total water- spread area of 32.29 sq. kms and catchment area of 370.6 sq. kms and both lakes support a rich and diverse range of flora and fauna. Currently with the help of 7055-m Yen soft loan from Japan Bank for International Cooperation (JBIC), a comprehen- sive project called the Bhoj Wetland Project has been launched for Eco-conservation management of twin lakes and this is one of the most reputed projects of its kind being undertaken in India. This paper presents details of the various works being undertaken for restoration of these wetlands at Bhopal. The Bhoj Wetlands are located at Bhopal, a city founded in 11th century AD by King Bhoj and which became known for the worst industrial Gas tragedy in 1984 when thousands lost their lives. The city is still recovering and the Bhoj Wetland Project is playing a very crucial role in improving the overall environmental status of the City. These wetlands are at present facing acute en- vironmental degradation due to pollution from a number of sources such as inflow of untreated sewage and solid waste, silt erosion and inflow from catchment, commercial activities like washing of clothes and cleaning of vehicles etc., inflow of agricultural residues and pesticides, and encroachment by builders all of which are fast eroding the rich eco-culture, flora fauna in and around the wetlands. The Bhoj Wetland Project is being implemented since the year 1995 and is scheduled to end in March 2002. The project works are being undertaken under the overall aegis of Ministry of Housing Environment, Govt. of Madhya Pradesh (M.P.) State, India. All the detailed project reports (DPRs) and preliminary ground work was undertaken by the in-house staff of Bhoj Wetland project, resulting in huge amounts of

  11. Prairie wetland complexes as landscape functional units in a changing climate

    Science.gov (United States)

    Johnson, W. Carter; Werner, Brett; Guntenspergen, Glenn R.; Voldseth, Richard A.; Millett, Bruce; Naugle, David E.; Tulbure, Mirela; Carroll, Rosemary W.H.; Tracy, John; Olawsky, Craig

    2010-01-01

    The wetland complex is the functional ecological unit of the prairie pothole region (PPR) of central North America. Diverse complexes of wetlands contribute high spatial and temporal environmental heterogeneity, productivity, and biodiversity to these glaciated prairie landscapes. Climatewarming simulations using the new model WETLANDSCAPE (WLS) project major reductions in water volume, shortening of hydroperiods, and less-dynamic vegetation for prairie wetland complexes. The WLS model portrays the future PPR as a much less resilient ecosystem: The western PPR will be too dry and the eastern PPR will have too few functional wetlands and nesting habitat to support historic levels of waterfowl and other wetland-dependent species. Maintaining ecosystem goods and services at current levels in a warmer climate will be a major challenge for the conservation community.

  12. Restoration of ailing wetlands.

    Directory of Open Access Journals (Sweden)

    Oswald J Schmitz

    2012-01-01

    Full Text Available It is widely held that humankind's destructive tendencies when exploiting natural resources leads to irreparable harm to the environment. Yet, this thinking runs counter to evidence that many ecological systems damaged by severe natural environmental disturbances (e.g., hurricanes can restore themselves via processes of natural recovery. The emerging field of restoration ecology is capitalizing on the natural restorative tendencies of ecological systems to build a science of repairing the harm inflicted by humans on natural environment. Evidence for this, for example, comes from a new meta-analysis of 124 studies that synthesizes recovery of impacted wetlands worldwide. While it may take up to two human generations to see full recovery, there is promise, given human will, to restore many damaged wetlands worldwide.

  13. Wetlands - an underestimated economic resource?

    International Nuclear Information System (INIS)

    Gren, I.M.; Soederqvist, T.

    1996-01-01

    Wetlands are producing several valuable resources like fish, potential for recreation, water cleaning etc. These resources, and methods for assigning an economic value to them, are discussed in this article. Swedish and foreign empirical studies of the economic value of wetlands are reviewed. This review shows that socioeconomic estimates of the value of wetlands risk to be misleading if the direct and indirect values are not properly accounted for. 37 refs

  14. Simulating the Effects of Sea Level Rise on the Resilience and Migration of Tidal Wetlands along the Hudson River.

    Science.gov (United States)

    Tabak, Nava M; Laba, Magdeline; Spector, Sacha

    2016-01-01

    Sea Level Rise (SLR) caused by climate change is impacting coastal wetlands around the globe. Due to their distinctive biophysical characteristics and unique plant communities, freshwater tidal wetlands are expected to exhibit a different response to SLR as compared with the better studied salt marshes. In this study we employed the Sea Level Affecting Marshes Model (SLAMM), which simulates regional- or local-scale changes in tidal wetland habitats in response to SLR, and adapted it for application in a freshwater-dominated tidal river system, the Hudson River Estuary. Using regionally-specific estimated ranges of SLR and accretion rates, we produced simulations for a spectrum of possible future wetland distributions and quantified the projected wetland resilience, migration or loss in the HRE through the end of the 21st century. Projections of total wetland extent and migration were more strongly determined by the rate of SLR than the rate of accretion. Surprisingly, an increase in net tidal wetland area was projected under all scenarios, with newly-formed tidal wetlands expected to comprise at least 33% of the HRE's wetland area by year 2100. Model simulations with high rates of SLR and/or low rates of accretion resulted in broad shifts in wetland composition with widespread conversion of high marsh habitat to low marsh, tidal flat or permanent inundation. Wetland expansion and resilience were not equally distributed through the estuary, with just three of 48 primary wetland areas encompassing >50% of projected new wetland by the year 2100. Our results open an avenue for improving predictive models of the response of freshwater tidal wetlands to sea level rise, and broadly inform the planning of conservation measures of this critical resource in the Hudson River Estuary.

  15. The Carolina Bay Restoration Project - Status Report II 2000-2004.

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Christopher

    2006-07-13

    A Wetlands Mitigation Bank was established at SRS in 1997 as a compensatory alternative for unavoidable wetland losses. Prior to restoration activities, 16 sites included in the project were surveyed for the SRS Site Use system to serve as a protective covenant. Pre-restoration monitoring ended in Fall 2000, and post restoration monitoring began in the Winter/Spring of 2001. The total interior harvest in the 16 bays after harvesting the trees was 19.6 ha. The margins in the opencanopy, pine savanna margin treatments were thinned. Margins containing areas with immature forested stands (bay 5184 and portions of bay 5011) were thinned using a mechanical shredder in November 2001. Over 126 hectares were included in the study areas (interior + margin). Planting of two tree species and the transplanting of wetland grass species was successful. From field surveys, it was estimated that approximately 2700 Nyssa sylvatica and 1900 Taxodium distichum seedlings were planted in the eight forested bays resulting in an average planting density of ≈ 490 stems ha-1. One hundred seedlings of each species per bay (where available) were marked to evaluate survivability and growth. Wetland grass species were transplanted from donor sites on SRS to plots that ranged in size from 100 – 300 m2, depending on wetland size. On 0.75 and 0.6 meter centers, respectively, 2198 plugs of Panicum hemitomon and 3021 plugs Leersia hexandra were transplanted. New shoots originating from the stumps were treated with a foliar herbicide (Garlon® 4) during the summer of 2001 using backpack sprayers. Preliminary information from 2000-2004 regarding the hydrologic, vegetation and faunal response to restoration is presented in this status report. Post restoration monitoring will continue through 2005. A final report to the Mitigation Bank Review Team will be submitted in mid-2006.

  16. Diversity and abundance of amphibian species in the Guguftu highland and Chefa wetland, Amhara Regional State, Ethiopia

    Directory of Open Access Journals (Sweden)

    Abeje Kassie Teme

    2016-06-01

    Full Text Available Objective: To describe the population status, abundance and diversity of amphibians found in Guguftu highland and Chefa wetland. Methods: The present study dealed with amphibian diversity at Guguftu highland and Chefa wetland during the period of August 2015 to September 2015. Transect line and visual encounter survey methods were used in careful visual estimation and amphibians were recorded in all possible habitats of the study area. Results: The total of 251 individuals of amphibians within 12 species grouped into 5 families were recorded in the Guguftu highland and Chefa wetland. Chefa wetland had the highest species abundance as well as richness with a total of 231 individuals falling in 11 species. Conclusions: This study reveals that the Chefa wetland is rich in amphibian diversity and supports many more species. Further studies are needed on molecular basis, population structure, habitat use by amphibians for better understanding and also imposing several conservation strategies in Chefa wetland.

  17. Macroclimatic change expected to transform coastal wetland ecosystems this century

    Science.gov (United States)

    Gabler, Christopher A.; Osland, Michael J.; Grace, James B.; Stagg, Camille L.; Day, Richard H.; Hartley, Stephen B.; Enwright, Nicholas M.; From, Andrew S.; McCoy, Meagan L.; McLeod, Jennie L.

    2017-01-01

    Coastal wetlands, existing at the interface between land and sea, are highly vulnerable to climate change. Macroclimate (for example, temperature and precipitation regimes) greatly influences coastal wetland ecosystem structure and function. However, research on climate change impacts in coastal wetlands has concentrated primarily on sea-level rise and largely ignored macroclimatic drivers, despite their power to transform plant community structure and modify ecosystem goods and services. Here, we model wetland plant community structure based on macroclimate using field data collected across broad temperature and precipitation gradients along the northern Gulf of Mexico coast. Our analyses quantify strongly nonlinear temperature thresholds regulating the potential for marsh-to-mangrove conversion. We also identify precipitation thresholds for dominance by various functional groups, including succulent plants and unvegetated mudflats. Macroclimate-driven shifts in foundation plant species abundance will have large effects on certain ecosystem goods and services. Based on current and projected climatic conditions, we project that transformative ecological changes are probable throughout the region this century, even under conservative climate scenarios. Coastal wetland ecosystems are functionally similar worldwide, so changes in this region are indicative of potential future changes in climatically similar regions globally.

  18. Tropical wetlands and REDD+: Three unique scientific challenges for policy

    Directory of Open Access Journals (Sweden)

    Daniel A Friess

    2013-07-01

    Full Text Available The carbon sequestration and storage value of terrestrial habitats is now increasingly appreciated, and is the basis for Payment for Ecosystem Service (PES policies such as REDD+. Tropical wetlands may be suitable for inclusion in such schemes because of the disproportionately large volume of carbon they are able to store. However, tropical wetlands offer a number of unique challenges for carbon management and policy compared to terrestrial forest systems: 1 Tropical wetlands are dynamic and subject to a wide range of physical and ecological processes that affect their long-term carbon storage potential – thus, such systems can quickly become a carbon source instead of a sink; 2 Carbon dynamics in tropical wetlands often operate over longer time-scales than are currently covered by REDD+ payments; and 3 Much of the carbon in a tropical wetland is stored in the soil, so monitoring, reporting and verification (MRV needs to adequately encapsulate the entire ecosystem and not just the vegetative component. This paper discusses these physical and biological concepts, and highlights key legal, management and policy questions that must be considered when constructing a policy framework to conserve these crucial ecosystems.

  19. Connecting carbon and nitrogen storage in rural wetland soil to groundwater abstraction for urban water supply.

    Science.gov (United States)

    Lewis, David Bruce; Feit, Sharon J

    2015-04-01

    We investigated whether groundwater abstraction for urban water supply diminishes the storage of carbon (C), nitrogen (N), and organic matter in the soil of rural wetlands. Wetland soil organic matter (SOM) benefits air and water quality by sequestering large masses of C and N. Yet, the accumulation of wetland SOM depends on soil inundation, so we hypothesized that groundwater abstraction would diminish stocks of SOM, C, and N in wetland soils. Predictions of this hypothesis were tested in two types of subtropical, depressional-basin wetland: forested swamps and herbaceous-vegetation marshes. In west-central Florida, >650 ML groundwater day(-1) are abstracted for use primarily in the Tampa Bay metropolis. At higher abstraction volumes, water tables were lower and wetlands had shorter hydroperiods (less time inundated). In turn, wetlands with shorter hydroperiods had 50-60% less SOM, C, and N per kg soil. In swamps, SOM loss caused soil bulk density to double, so areal soil C and N storage per m(2) through 30.5 cm depth was diminished by 25-30% in short-hydroperiod swamps. In herbaceous-vegetation marshes, short hydroperiods caused a sharper decline in N than in C. Soil organic matter, C, and N pools were not correlated with soil texture or with wetland draining-reflooding frequency. Many years of shortened hydroperiod were probably required to diminish soil organic matter, C, and N pools by the magnitudes we observed. This diminution might have occurred decades ago, but could be maintained contemporarily by the failure each year of chronically drained soils to retain new organic matter inputs. In sum, our study attributes the contraction of hydroperiod and loss of soil organic matter, C, and N from rural wetlands to groundwater abstraction performed largely for urban water supply, revealing teleconnections between rural ecosystem change and urban resource demand. © 2014 John Wiley & Sons Ltd.

  20. Capturing and Explaining Preference Heterogeneity for Wetland Management Options in the Kilombero Valley, Tanzania

    Science.gov (United States)

    Speelman, Stijn; Mombo, Felister; Vandermeulen, Valerie; Phillip, Damas; Van Huylenbroeck, Guido

    2015-01-01

    Wetland degradation has recently received considerable research attention. Although wetlands are valuable ecosystems, their actual value is difficult to measure because the services they provide often do not have market values. The current study seeks to investigate the preferences for wetland management options in the Kilombero Valley, central Tanzania using choice modeling. The results show that both respondents from the Kilombero Valley and Morogoro Municipality desire improvements in the condition of the wetlands. This indicates that the ongoing degradation is not socially optimal. A second finding is that the preferences for wetland conservation are heterogeneous and can be linked to livelihood characteristics. Communities living in the area, for example, are highly dependent on the wetland for their livelihood and would be impacted by conservation measures. Therefore, in order to reduce the pressure on wetlands, it is necessary and imperative to explore the options for alternative income-generating activities or to focus, for example, on technologies to improve efficiency and effectiveness in crop production.

  1. Factors affecting wetland connectivity for wintering semipalmated sandpipers (Calidris pusilla) in the Caribbean

    Science.gov (United States)

    Parks, Morgan A.; Collazo, Jaime A.; Ramos Alvarez, Katsi R.

    2016-01-01

    Wetland connectivity provides migratory shorebirds varying options to meet energy requirements to survive and complete their annual cycle. Multiple factors mediate movement and residency of spatially segregated wetlands. Information on these factors is lacking in the tropics, yet such information is invaluable for conservation design. The influence of seven biotic and abiotic factors on local movement and residency rates of Semipalmated Sandpipers (Calidris pusilla) among three major wetlands in southwestern Puerto Rico in 2013–2014 was assessed using multi-state models. The model with highest support (AICc wi= 0.78) indicated that weekly residency rates increased seasonally, and were positively influenced by bird abundance and the interaction of prey density and rainfall. Movement rates were negatively influenced by inter-wetland distance, which varied annually, ranging from 0.01 ± 0.004 to 0.33 ± 0.08. Age class (adult, juvenile), extent of shoreline habitat (km), and body condition (estimated percent fat) did not influence residency rates (95% CIs overlapped Betas). Our findings indicated that coastal wetlands in southwestern Puerto Rico were connected, pointing at the joint value of salt flats and mangroves for overwintering Semipalmated Sandpipers. Connectivity between different types of wetlands likely widens resource diversity, which is essential for coping with unpredictable environments. Additional work is needed to generalize our understanding of inter-wetland dynamics and their potential benefits to inform shorebird conservation strategies in the Caribbean.

  2. Identifying small depressional wetlands and using a topographic position index to infer hydroperiod regimes for pond-breeding amphibians

    Science.gov (United States)

    Riley, Jeffrey W.; Calhoun, Daniel L.; Barichivich, William J.; Walls, Susan C.

    2017-01-01

    Small, seasonal pools and temporary ponds (<4.0 ha) are the most numerous and biologically diverse wetlands in many natural landscapes. Thus, accurate determination of their numbers and spatial characteristics is beneficial for conservation and management of biodiversity associated with these freshwater systems. We examined the utility of a topographic position index (TPI) landscape classification to identify and classify depressional wetlands. We also assessed relationships between topographic characteristics and ponded duration of known wetlands to allow hydrological characteristics to be extended to non-monitored locations in similar landscapes. Our results indicate that this approach was successful at identifying wetlands, but did have higher errors of commission (10%) than omission (5%). Additionally, the TPI procedure provided a reasonable means to correlate general ponded duration characteristics (long/short) with wetland topography. Although results varied by hydrologic class, permanent/long ponded duration wetlands were more often classified correctly (80%) than were short ponded duration wetlands (67%). However, classification results were improved to 100 and 75% for permanent/long and short ponded duration wetlands, respectively, by removing wetlands occurring on an abrupt marine terrace that erroneously inflated pond topographic characteristics. Our study presents an approach for evaluating wetland suitability for species or guilds that are associated with key habitat characteristics, such as hydroperiod.

  3. A data-model integration approach toward improved understanding on wetland functions and hydrological benefits at the catchment scale

    Science.gov (United States)

    Yeo, I. Y.; Lang, M.; Lee, S.; Huang, C.; Jin, H.; McCarty, G.; Sadeghi, A.

    2017-12-01

    The wetland ecosystem plays crucial roles in improving hydrological function and ecological integrity for the downstream water and the surrounding landscape. However, changing behaviours and functioning of wetland ecosystems are poorly understood and extremely difficult to characterize. Improved understanding on hydrological behaviours of wetlands, considering their interaction with surrounding landscapes and impacts on downstream waters, is an essential first step toward closing the knowledge gap. We present an integrated wetland-catchment modelling study that capitalizes on recently developed inundation maps and other geospatial data. The aim of the data-model integration is to improve spatial prediction of wetland inundation and evaluate cumulative hydrological benefits at the catchment scale. In this paper, we highlight problems arising from data preparation, parameterization, and process representation in simulating wetlands within a distributed catchment model, and report the recent progress on mapping of wetland dynamics (i.e., inundation) using multiple remotely sensed data. We demonstrate the value of spatially explicit inundation information to develop site-specific wetland parameters and to evaluate model prediction at multi-spatial and temporal scales. This spatial data-model integrated framework is tested using Soil and Water Assessment Tool (SWAT) with improved wetland extension, and applied for an agricultural watershed in the Mid-Atlantic Coastal Plain, USA. This study illustrates necessity of spatially distributed information and a data integrated modelling approach to predict inundation of wetlands and hydrologic function at the local landscape scale, where monitoring and conservation decision making take place.

  4. WETLAND CHANGE DETECTION IN PROTECTED AND UNPROTECTED INDUS COASTAL AND INLAND DELTA

    Directory of Open Access Journals (Sweden)

    M. H. Ali Baig

    2017-09-01

    Full Text Available Worth of wetland sites lies in their ecological importance. They enhance ecosystem via provision of ecological services like improving water quality, groundwater infiltration, flood risk reduction and biodiversity regulation. Like other parts of the world Pakistan is also facing wetlands degradation. Ecological and economic significance of wetlands was recognized officially in 1971 as Pakistan became signatory of Ramsar wetland convention. Wetlands provide habitat to species of ecological and economic importance. Despite being recognized for international importance, Ramsar figures state that almost half of Pakistan’s wetlands are at moderate or prominent level threat. Wetlands ecosystems are deteriorating at a rapid rate, if uncontrolled this trend may lead to substantial losses. Therefore, management of these resources demands regular monitoring. Present study is dedicated to assessing levels of change overtime in three distinct types of wetlands in Pakistan i.e. Indus delta a coastal wetland, Uchhali complex an inland wetland which are both protected sites while another site Nurri Lagoon which is not sheltered under any category of protected areas. Remotely sensed data has remarkable applications in change detection. Multitemporal Landsat images were used to map changes occurring from 2006 to 2016. Results reveal that wetland area has considerably decreased for all types. Both protected sites have experienced degradation though impact is comparatively lesser than unprotected Nurri lagoon. Significance of protection strategies cannot be denied, it is recommended that mere declaration of a site protected area is not sufficient. It is equally important to control non-point pollutants and ensuring the compliance of conservation strategy.

  5. Surrounding land cover types as predictors of palustrine wetland vegetation quality in conterminous USA

    Science.gov (United States)

    Stapanian, Martin A.; Gara, Brian; Schumacher, William

    2018-01-01

    The loss of wetland habitats and their often-unique biological communities is a major environmental concern. We examined vegetation data obtained from 380 wetlands sampled in a statistical survey of wetlands in the USA. Our goal was to identify which surrounding land cover types best predict two indices of vegetation quality in wetlands at the regional scale. We considered palustrine wetlands in four regions (Coastal Plains, North Central East, Interior Plains, and West) in which the dominant vegetation was emergent, forested, or scrub-shrub. For each wetland, we calculated weighted proportions of eight land cover types surrounding the area in which vegetation was assessed, in four zones radiating from the edge of the assessment area to 2 km. Using Akaike's Information Criterion, we determined the best 1-, 2- and 3-predictor models of the two indices, using the weighted proportions of the land cover types as potential predictors. Mean values of the two indices were generally higher in the North Central East and Coastal Plains than the other regions for forested and emergent wetlands. In nearly all cases, the best predictors of the indices were not the dominant surrounding land cover types. Overall, proportions of forest (positive effect) and agriculture (negative effect) surrounding the assessment area were the best predictors of the two indices. One or both of these variables were included as predictors in 65 of the 72 models supported by the data. Wetlands surrounding the assessment area had a positive effect on the indices, and ranked third (33%) among the predictors included in supported models. Development had a negative effect on the indices and was included in only 28% of supported models. These results can be used to develop regional management plans for wetlands, such as creating forest buffers around wetlands, or to conserve zones between wetlands to increase habitat connectivity.

  6. Surrounding land cover types as predictors of palustrine wetland vegetation quality in conterminous USA.

    Science.gov (United States)

    Stapanian, Martin A; Gara, Brian; Schumacher, William

    2018-04-01

    The loss of wetland habitats and their often-unique biological communities is a major environmental concern. We examined vegetation data obtained from 380 wetlands sampled in a statistical survey of wetlands in the USA. Our goal was to identify which surrounding land cover types best predict two indices of vegetation quality in wetlands at the regional scale. We considered palustrine wetlands in four regions (Coastal Plains, North Central East, Interior Plains, and West) in which the dominant vegetation was emergent, forested, or scrub-shrub. For each wetland, we calculated weighted proportions of eight land cover types surrounding the area in which vegetation was assessed, in four zones radiating from the edge of the assessment area to 2km. Using Akaike's Information Criterion, we determined the best 1-, 2- and 3-predictor models of the two indices, using the weighted proportions of the land cover types as potential predictors. Mean values of the two indices were generally higher in the North Central East and Coastal Plains than the other regions for forested and emergent wetlands. In nearly all cases, the best predictors of the indices were not the dominant surrounding land cover types. Overall, proportions of forest (positive effect) and agriculture (negative effect) surrounding the assessment area were the best predictors of the two indices. One or both of these variables were included as predictors in 65 of the 72 models supported by the data. Wetlands surrounding the assessment area had a positive effect on the indices, and ranked third (33%) among the predictors included in supported models. Development had a negative effect on the indices and was included in only 28% of supported models. These results can be used to develop regional management plans for wetlands, such as creating forest buffers around wetlands, or to conserve zones between wetlands to increase habitat connectivity. Copyright © 2017. Published by Elsevier B.V.

  7. Prioritizing Wetlands for Waterbirds in a Boom and Bust System: Waterbird Refugia and Breeding in the Murray-Darling Basin.

    Science.gov (United States)

    Bino, Gilad; Kingsford, Richard T; Porter, John

    2015-01-01

    Dryland rivers have considerable flow variability, producing complex ecosystems, processes, and communities of organisms that vary over space and time. They are also among the more vulnerable of the world's ecosystems. A key strategy for conservation of dryland rivers is identifying and maintaining key sites for biodiversity conservation, particularly protecting the quantity and quality of flow and flooding regimes. Extreme variability considerably challenges freshwater conservation planning. We systematically prioritised wetlands for waterbirds (simultaneously for 52 species), across about 13.5% of the Murray-Darling Basin (1,061,469 km2), using a 30-year record of systematic aerial surveys of waterbird populations. Nine key wetlands in this area, primarily lakes, floodplains, and swamps, consistently contributed to a representation target (80%) of total abundances of all 52 waterbird species. The long temporal span of our data included dramatic availability (i.e., booms) and scarcity (i.e., busts) of water, providing a unique opportunity to test prioritisation at extremes of variation. These extremes represented periods when waterbirds were breeding or concentrating on refugia, varying wetland prioritisation. In dry years, important wetlands for waterbirds were riverine and lacustrine (12 wetlands) but this changed in wet years to lacustrine and palustrine (8 wetlands). Such variation in ecosystem condition substantially changes the relative importance of individual wetlands for waterbirds during boom and bust phases. Incorporating this variability is necessary for effective conservation of Murray-Darling Basin waterbirds, with considerable generality for other similarly variable systems around the world.

  8. Wakasa Bay Weather Forecast Maps

    Data.gov (United States)

    National Aeronautics and Space Administration — The AMSR-E Wakasa Bay Field Campaign was conducted over Wakasa Bay, Japan, in January and February, 2003. The Wakasa Bay Field Campaign includes joint research...

  9. Processes contributing to resilience of coastal wetlands to sea-level rise

    Science.gov (United States)

    Stagg, Camille L.; Krauss, Ken W.; Cahoon, Donald R.; Cormier, Nicole; Conner, William H.; Swarzenski, Christopher M.

    2016-01-01

    The objectives of this study were to identify processes that contribute to resilience of coastal wetlands subject to rising sea levels and to determine whether the relative contribution of these processes varies across different wetland community types. We assessed the resilience of wetlands to sea-level rise along a transitional gradient from tidal freshwater forested wetland (TFFW) to marsh by measuring processes controlling wetland elevation. We found that, over 5 years of measurement, TFFWs were resilient, although some marginally, and oligohaline marshes exhibited robust resilience to sea-level rise. We identified fundamental differences in how resilience is maintained across wetland community types, which have important implications for management activities that aim to restore or conserve resilient systems. We showed that the relative importance of surface and subsurface processes in controlling wetland surface elevation change differed between TFFWs and oligohaline marshes. The marshes had significantly higher rates of surface accretion than the TFFWs, and in the marshes, surface accretion was the primary contributor to elevation change. In contrast, elevation change in TFFWs was more heavily influenced by subsurface processes, such as root zone expansion or compaction, which played an important role in determining resilience of TFFWs to rising sea level. When root zone contributions were removed statistically from comparisons between relative sea-level rise and surface elevation change, sites that previously had elevation rate deficits showed a surplus. Therefore, assessments of wetland resilience that do not include subsurface processes will likely misjudge vulnerability to sea-level rise.

  10. Roofvogels in de Nederlandse wetlands

    NARCIS (Netherlands)

    Dijkstra, Cornelis; Beemster, Nicolaas; Zijlstra, Menno; van Eerden, M; Daan, Serge

    1995-01-01

    Roofvogels in de Nederlandse wetlands (1995). C. Dijkstra, N. Beemster, M. Zijlstra, M. van Eerden, S. Daan RWS, RDIJ, Flevobericht nr. 381. ISBN 90-369-1147-8. Dit Flevobericht vormt de eindrapportage van het onderzoeksproject " De betekenis van grootschalige wetlands voor roofvogels". De verwerkte

  11. Carbon dynamics in wetland restoration

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, K.; Ciborowski, J.; Gardner-Costa, J.; Slama, C. [Windsor Univ., ON (Canada); Daly, C.; Hornung, J. [Suncor Energy, Calgary, AB (Canada); Dixon, G.; Farwell, A. [Waterloo Univ., ON (Canada); Foote, L.; Frederick, K.; Roy, M. [Alberta Univ., Edmonton, AB (Canada); Liber, K. [Saskatchewan Univ., Saskatoon, SK (Canada); Smits, J. [Calgary Univ., AB (Canada); Wytrykush, C. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    2010-07-01

    This study focused on the reclamation of wetland ecosystems impacted by oil sands development in the boreal wetlands. Although these wetlands play an important role in global carbon balance, their ecosystem function is compromised by direct and regional anthropogenic disturbance and climate change. Large oil sand mining areas that require reclamation generate substantial quantities of extraction process-affected materials. In order to determine if the reclaimed wetlands were restored to equivalent ecosystem function, this study evaluated carbon flows and food web structure in oil sands-affected wetlands. The purpose was to determine whether a prescribed reclamation strategy or topsoil amendment accelerates reclaimed wetland development to produce self-sustaining peatlands. In addition to determining carbon fluxes, this study measured compartment standing stocks for residual hydrocarbons, organic substrate, bacterioplankton, phytoplankton, biofilm, macrophytes, detritus, zoobenthos and aquatic-terrestrial exports. Most biotic 28 compartments differed between oil-sands-affected and reference wetlands, but the difference lessened with age. Macroinvertebrate trophic diversity was lower in oil sands-affected wetlands. Peat amendment seemed to speed convergence for some compartments but not others. These results were discussed in the context of restoration of ecosystem function and optimization of reclamation strategies.

  12. Carbon Storage in US Wetlands.

    Science.gov (United States)

    Background/Question/Methods Wetland soils contain some of the highest stores of soil carbon in the biosphere. However, there is little understanding of the quantity and distribution of carbon stored in US wetlands or of the potential effects of human disturbance on these stocks. ...

  13. Chesapeake Bay Watershed - Protecting the Chesapeake Bay and its rivers through science, restoration, and partnership

    Science.gov (United States)

    ,

    2012-01-01

    The Chesapeake Bay, the Nation's largest estuary, has been degraded due to the impact of human-population increase, which has doubled since 1950, resulting in degraded water quality, loss of habitat, and declines in populations of biological communities. Since the mid-1980s, the Chesapeake Bay Program (CBP), a multi-agency partnership which includes the Department of Interior (DOI), has worked to restore the Bay ecosystem. The U.S. Geological Survey (USGS) has the critical role of providing unbiased scientific information that is utilized to document and understand ecosystem change to help assess the effectiveness of restoration strategies in the Bay and its watershed. The USGS revised its Chesapeake Bay science plan for 2006-2011 to address the collective needs of the CBP, DOI, and USGS with a mission to provide integrated science for improved understanding and management of the Bay ecosystem. The USGS science themes for this mission are: Causes and consequences of land-use change; Impact of climate change and associated hazards; Factors affecting water quality and quantity; Ability of habitat to support fish and bird populations; and Synthesis and forecasting to improve ecosystem assessment, conservation, and restoration.

  14. Phase 1 studies summary of major findings of the South Bay Salt Pond Restoration Project, South San Francisco Bay, California

    Science.gov (United States)

    Valoppi, Laura

    2018-04-02

    Executive SummaryThe South Bay Salt Pond Restoration Project (Project) is one of the largest restoration efforts in the United States. It is located in South San Francisco Bay of California. It is unique not only for its size—more than 15,000 acres—but also for its location adjacent to one of the nation’s largest urban areas, home to more than 4 million people (Alameda, Santa Clara, and San Mateo Counties). The Project is intended to restore and enhance wetlands in South San Francisco Bay while providing for flood management, wildlife-oriented public access, and recreation. Restoration goals of the project are to provide a mosaic of saltmarsh habitat to benefit marsh species and managed ponds to benefit waterbirds, throughout 3 complexes and 54 former salt ponds.Although much is known about the project area, significant uncertainties remain with a project of this geographic and temporal scale of an estimated 50 years to complete the restoration. For example, in order to convert anywhere from 50 to 90 percent of the existing managed ponds to saltmarsh habitat, conservation managers first enhance the habitat of managed ponds in order to increase use by waterbirds, and provide migratory, wintering, and nesting habitat for more than 90 species of waterbirds. Project managers have concluded that the best way to address these uncertainties is to carefully implement the project in phases and learn from the outcome of each phase. The Adaptive Management Plan (AMP) identifies specific restoration targets for multiple aspects of the Project and defines triggers that would necessitate some type of management action if a particular aspect is trending negatively. U.S. Geological Survey (USGS) biologist Laura Valoppi served as the project Lead Scientist and oversaw implementation of the AMP in coordination with other members of the Project Management Team (PMT), comprised of representatives from the California State Coastal Conservancy, California Department of Fish and

  15. Short Term Sediment Exchange Between Marshes and Bays Using Beryllium-7 as a Tracer, Fourleague Bay, Louisiana.

    Science.gov (United States)

    Restreppo, G. A.; Bentley, S. J.; Xu, K.; Wang, J.

    2016-12-01

    Modern delta models focus on the availability and exchange of coarse sediment as one of the major factors of deltaic growth or decay. Fine-grained sediment exchange within a river's delta is relatively poorly understood, as is the impact that this exchange has on land building and land loss. To better understand the dynamics of fine grain sediment exchange between river mouth, adjacent bays, and marshland, sediment cores from Fourleague Bay, LA, were collected and analyzed for 7Be, a naturally occurring radioisotope that serves as a marker for recently deposited sediment. Time-series push cores were collected every two months at ten sites, five located across a longitudinal transect in the middle bay and five located along adjacent marshes, from May 2015 to May 2016. All sites fall within 11 to 28 km of the Atchafalaya Delta, along a gradient extending towards the open ocean. Cores were extruded in 2 cm intervals, dried, ground, and analyzed via gamma spectrometry for the presence of 7Be. Inventories of 7Be were then calculated and used to determine bimonthly sedimentation rates over the course twelve months. Sediment deposition on the bay floor and marsh surface were then compared to Atchafalaya River discharge, wind speed and direction, and wave action. Preliminary results indicate patterns of initial fluvial sediment transfer from river to bay floor, then bay floor to marsh surface, with decreasing fluvial influence towards the open ocean. Sediment transport from bay to marsh appears to be coupled with meteorological forcing that induces bay-floor sediment resuspension and the flooding of marsh surfaces. This indirect mechanism of fluvial sediment supply to wetland surfaces may extend the region of influence for sediment delivery from man-made river-sediment diversions.

  16. Climate Change and Intertidal Wetlands

    Directory of Open Access Journals (Sweden)

    Pauline M. Ross

    2013-03-01

    Full Text Available Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  17. Geolocator tracking of Great Reed-Warblers (Acrocephalus arundinaceus) identifies key regions for migratory wetland specialists in the Middle East and sub-Saharan East Africa

    OpenAIRE

    Horns, Joshua J.; Buechley, Evam; Chynoweth, Mark William; Aktay, Lale; Çoban, Emrah; Kırpık, Mehmet Sli; Herman, Jordan M.; Şaşmaz, Yakup; Şekercioğlu, Çağan H.

    2016-01-01

    Wetland-dependent migratory songbirds represent one of the most vulnerable groups of birds on the planet, with >67% of wetland-obligate species threatened with extinction. One of the major hurdles for conservation efforts is determining the migration routes, stopover sites, and wintering sites of these species. We describe an annual migration cycle revealed by geolocator tracking of Great Reed-Warblers (Acrocephalus arundinaceus) breeding in the Aras River wetlands of eastern Turkey. Because ...

  18. Geolocator tracking of Great Reed-Warblers (acrocephalus arundinaceus) identifies key regions for migratory wetland specialists in the Middle East and sub-Saharan East Africa

    OpenAIRE

    Aktay, Lale; Horns J.J.; Buechley E., Chynoweth M.; Çoban E., Kirpik M.A., Herman J.M., Şaşmaz Y., Şekercioǧlu Ç.H.

    2016-01-01

    Wetland-dependent migratory songbirds represent one of the most vulnerable groups of birds on the planet, with >67% of wetland-obligate species threatened with extinction. One of the major hurdles for conservation efforts is determining the migration routes, stopover sites, and wintering sites of these species. We describe an annual migration cycle revealed by geolocator tracking of Great Reed-Warblers (Acrocephalus arundinaceus) breeding in the Aras River wetlands of eastern Turkey. Because ...

  19. eBay.com

    DEFF Research Database (Denmark)

    Engholm, Ida

    2014-01-01

    Celebrated as one of the leading and most valuable brands in the world, eBay has acquired iconic status on par with century-old brands such as Coca-Cola and Disney. The eBay logo is now synonymous with the world’s leading online auction website, and its design is associated with the company...

  20. Wetland related livelihoods, institutions and incentives for ...

    African Journals Online (AJOL)

    Wetlands are among the world's most productive environments and of tremendous economic benefits to society. Though wetland utilization for household agriculture and wetland resource extraction for household income generation may be the two most important factors driving wetland degradation in Tanzania the ...

  1. 40 CFR 230.41 - Wetlands.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Wetlands. 230.41 Section 230.41... Aquatic Sites § 230.41 Wetlands. (a)(1) Wetlands consist of areas that are inundated or saturated by...) Where wetlands are adjacent to open water, they generally constitute the transition to upland. The...

  2. Eten's Coastal Wetland, its geomorphology, water quality and biodiversity

    Science.gov (United States)

    Rojas Carbajal, T. V.; Bartl, K.; Loayza Muro, R.; Abad, J. D.

    2017-12-01

    The Eten's wetland is located in the lower part of the Chancay-Lambayeque River basin at the Peruvian coast. This wetland contains salt and fresh marshes, swamps, lagoons and an estuary which is the result of Reque River's morphodynamics. It provides a great source of totora (Schoenoplectus californicus), a native plant that is used for knitting hats which are an ancient cultural expression in Lambayeque. UNESCO recognized this wetland as one of the ecosystems with the greatest biodiversity along the South Pacific Coast, providing a unique habitat for migratory birds, such as the Peruvian Tern (Sternula lorata). This bird has been classified as endangered in 2005, by the International Union for Conservation of Nature (IUCN). When the area of a wetland is reduced, the resting point function is affected leading to loss in biodiversity due to the habitat conditions are not the same. In 2005, Lambayeque's government established an area of 1377 Ha in order to preserve wetland's ecosystem and Eten's archeological value but wet areas were reduced to 200 Ha. This reduction was promoted by agriculture, urbanization and an inadequate urban waste disposal. The scope of the study is to assess the environmental impacts that affect Eten's wetland. Preliminary results of an assessment with remote sensing indicate that: 1) the Reque River's geomorphic activity was reduced by urbanization, thus, the connection between surface water bodies has been lost, leading the drying out of ponds, 2) the conversion of wet areas to agricultural land, and 3) the natural interaction between the Reque River and the Pacific Ocean was modified due to water control upstream, resulting in a dryer wetland during the last years. Furthermore, the aquatic biodiversity of the wetland was assessed through a biomonitoring method in order to study the impact of water contamination. Four benthic macroinvertebrate Families (Hydrophilidae, Baetidae, Planorbidae and Palaemonidae) were found. The quality of the

  3. Pesticide concentrations in frog tissue and wetland habitats in alandscape dominated by agriculture

    Science.gov (United States)

    Smalling, Kelly L.; Reeves, Rebecca; Muths, Erin L.; Vandever, Mark W.; Battaglin, William A.; Hladik, Michelle; Pierce, Clay L.

    2015-01-01

    Habitat loss and exposure to pesticides are likely primary factors contributing to amphibian decline in agricultural landscapes. Conservation efforts have attempted to restore wetlands lost through landscape modifications to reduce contaminant loads in surface waters and providing quality habitat to wildlife. The benefits of this increased wetland area, perhaps especially for amphibians, may be negated if habitat quality is insufficient to support persistent populations. We examined the presence of pesticides and nutrients in water and sediment as indicators of habitat quality and assessed the bioaccumulation of pesticides in the tissue of two native amphibian species Pseudacris maculata (chorus frogs) and Lithobates pipiens (leopard frogs) at six wetlands (3 restored and 3 reference) in Iowa, USA. Restored wetlands are positioned on the landscape to receive subsurface tile drainage water while reference wetlands receive water from overland run-off and shallow groundwater sources. Concentrations of the pesticides frequently detected in water and sediment samples were not different between wetland types. The median concentration of atrazine in surface water was 0.2 μg/L. Reproductive abnormalities in leopard frogs have been observed in other studies at these concentrations. Nutrient concentrations were higher in the restored wetlands but lower than concentrations thought lethal to frogs. Complex mixtures of pesticides including up to 8 fungicides, some previously unreported in tissue, were detected with concentrations ranging from 0.08 to 1500 μg/kg wet weight. No significant differences in pesticide concentrations were observed between species, although concentrations tended to be higher in leopard frogs compared to chorus frogs, possibly because of differences in life histories. Our results provide information on habitat quality in restored wetlands that will assist state and federal agencies, landowners, and resource managers in identifying and

  4. The Blackwater NWR inundation model. Rising sea level on a low-lying coast: land use planning for wetlands

    Science.gov (United States)

    Larsen, Curt; Clark, Inga; Guntenspergen, Glenn; Cahoon, Don; Caruso, Vincent; Hupp, Cliff; Yanosky, Tom

    2004-01-01

    The Blackwater National Wildlife Refuge (BNWR), on the Eastern Shore of Chesapeake Bay (figure 1), occupies an area less than 1 meter above sea level. The Refuge has been featured prominently in studies of the impact of sea level rise on coastal wetlands. Most notably, the refuge has been sited by the Intergovernmental Panel on Climate Change (IPCC) as a key example of 'wetland loss' attributable to rising sea level due to global temperature increase. Comparative studies of aerial photos taken since 1938 show an expanding area of open water in the central area of the refuge. The expanding area of open water can be shown to parallel the record of sea level rise over the past 60 years. The U.S. Fish and Wildlife Service (FWS) manages the refuge to support migratory waterfowl and to preserve endangered upland species. High marsh vegetation is critical to FWS waterfowl management strategies. A broad area once occupied by high marsh has decreased with rising sea level. The FWS needs a planning tool to help predict current and future areas of high marsh available for waterfowl. 'Wetland loss' is a relative term. It is dependant on the boundaries chosen for measurement. Wetland vegetation, zoned by elevation and salinity (figure 3), respond to rising sea level. Wetlands migrate inland and upslope and may vary in areas depending on the adjacent land slopes. Refuge managers need a geospatial tool that allows them to predict future areas that will be converted to high and intertidal marsh. Shifts in location and area of coverage must be anticipated. Viability of a current marsh area is also important. When will sea level rise make short-term management strategies to maintain an area impractical? The USGS has developed an inundation model for the BNWR centered on the refuge and surrounding areas. Such models are simple in concept, but they require a detailed topographic map upon which to superimpose future sea level positions. The new system of LIDAR mapping of land and

  5. Remote sensing of wetlands applications and advances

    CERN Document Server

    Tiner, Ralph W; Klemas, Victor V

    2015-01-01

    Effectively Manage Wetland Resources Using the Best Available Remote Sensing Techniques Utilizing top scientists in the wetland classification and mapping field, Remote Sensing of Wetlands: Applications and Advances covers the rapidly changing landscape of wetlands and describes the latest advances in remote sensing that have taken place over the past 30 years for use in mapping wetlands. Factoring in the impact of climate change, as well as a growing demand on wetlands for agriculture, aquaculture, forestry, and development, this text considers the challenges that wetlands pose for remote sensing and provides a thorough introduction on the use of remotely sensed data for wetland detection. Taking advantage of the experiences of more than 50 contributing authors, the book describes a variety of techniques for mapping and classifying wetlands in a multitude of environments ranging from tropical to arctic wetlands including coral reefs and submerged aquatic vegetation. The authors discuss the advantages and di...

  6. Impacts of human-induced environmental change in wetlands on aquatic animals.

    Science.gov (United States)

    Sievers, Michael; Hale, Robin; Parris, Kirsten M; Swearer, Stephen E

    2018-02-01

    limitations of using only community- and population-level measures to assess habitat quality. Only four studies provided habitat-preference data, preventing investigation of the potential for altered wetlands to function as ecological traps. This is concerning because attempts to identify ecological traps may detect previously unidentified conservation risks. Although there was considerable variability amongst taxa, amphibians were typically the most sensitive taxon, and thus, may be a valuable bio-indicator of wetland quality. Despite suffering reduced survival and reproduction, measures such as time to and mass at metamorphosis were similar between altered and reference wetlands, suggesting that quantifying metamorphosis-related measures in isolation may not provide accurate information on habitat quality. Our review provides the most detailed evaluation to date of the ecological impacts of human alterations to wetland ecosystems. We emphasise that the role of wetlands in human-altered ecosystems can be complex, as they may represent important habitat but also pose potential risks to animals. Reduced availability of natural wetlands is increasing the importance of altered wetlands for aquatic animals. Consequently, we need to define what represents habitat quality from the perspective of animals, and gain a greater understanding of the underlying mechanisms of habitat selection and how these factors could be manipulated. Furthermore, strategies to enhance the quality of these wetlands should be implemented to maximise their conservation potential. © 2017 Cambridge Philosophical Society.

  7. Tidal wetlands of the Yaquina and Alsea River estuaries, Oregon: Geographic Information Systems layer development and recommendations for National Wetlands Inventory revisions

    Science.gov (United States)

    Brophy, Laura S.; Reusser, Deborah A.; Janousek, Christopher N.

    2013-01-01

    -scale wetland restoration and conservation action planning. Several new prioritization sites (not included in the 1999 prioritization) were identified in each estuary, consisting of NWI polygons formerly classified as nontidal wetland or upland. The GIS products of this project improve the accuracy and utility of the NWI data, and provide useful tools for estuarine resource management.

  8. Use of Geographic Information Systems to examine cumulative impacts of development on Mobile Bay, AL and Galveston Bay, TX

    International Nuclear Information System (INIS)

    Rosigno, P.F.; McNiff, M.E.; Watzin, M.C.; Ji, W.

    1993-01-01

    Databases from Mobile Bay, Alabama and Galveston Bay, Texas were compiled using ARC/INFO Geographic Information Systems (GIS) to examine the cumulative impacts from urbanization and industrialization on these two Gulf of Mexico estuaries. The databases included information on wetland habitats, pollution sources, metal contamination, bird-nesting sites, and oyster reefs, among others. A series of maps were used to represent the impacts within and between each ecosystem. These two estuaries share many similarities in the types of developmental pressures that each experience. However, difference in the magnitude of industrial activity, pollution loading, and urban growth coupled with distinct hydrodynamic and geochemical differences in sediment mineralogy, freshwater inflows and salinity regimens results in differing responses. With growing human population and extensive oil and gas development, the demands on Galveston Bay are quite different than those placed on Mobile Bay which has lower growth and less extensive oil and gas infrastructure. Mobile Bay tends to retain whatever contamination enters into the system because of the high levels of clay and organic carbon found in its sediment. Some of these chemicals bioaccumulate, posing an extra risk to natural resources. Geographic Information Systems provide natural resource managers with the technology to manage complex databases. The analytical and mapping capabilities of GIS can be used to consider cumulative effects in a regional context and to develop plans to protect ecologically sensitive areas

  9. Using Tradtional Ecological Knowledge to Protect Wetlands: the Swinomish Tribe's Wetland Cultural Assessment Project

    Science.gov (United States)

    Mitchell, T.

    2017-12-01

    "Traditional" wetland physical assessment modules do not adequately identify Tribal cultural values of wetlands and thus wetlands may not be adequately protected for cultural uses. This Swinomish Wetlands Cultural Assessment Project has developed a cultural resource scoring module that can be incorporated into wetland assessments to better inform wetland protections. Local native knowledge was gathered about the traditional uses of 99 native wetland plant species. A cultural scoring matrix was developed based on the presence of traditionally used plants in several use categories including: construction, ceremonial, subsistence, medicinal, common use, plant rarity, and place of value for each wetland. The combined score of the cultural and physcial modules provides an overall wetland score that relates to proscribed buffer protection widths. With this local native knowledge incorporated into wetland assessments, we are protecting and preserving Swinomish Reservation wetlands for both cultural uses and ecological functionality through the Tribe's wetland protection law.

  10. Discharge between San Antonio Bay and Aransas Bay, southern Gulf Coast, Texas, May-September 1999

    Science.gov (United States)

    East, Jeffery W.

    2001-01-01

    Along the Gulf Coast of Texas, many estuaries and bays are important habitat and nurseries for aquatic life. San Antonio Bay and Aransas Bay, located about 50 and 30 miles northeast, respectively, of Corpus Christi, are two important estuarine nurseries on the southern Gulf Coast of Texas (fig. 1). According to the Texas Parks and Wildlife Department, “Almost 80 percent of the seagrasses [along the Texas Gulf Coast] are located in the Laguna Madre, an estuary that begins just south of Corpus Christi Bay and runs southward 140 miles to South Padre Island. Most of the remaining seagrasses, about 45,000 acres, are located in the heavily traveled San Antonio, Aransas and Corpus Christi Bay areas” (Shook, 2000).Population growth has led to greater demands on water supplies in Texas. The Texas Water Development Board, the Texas Parks and Wildlife Department, and the Texas Natural Resource Conservation Commission have the cooperative task of determining inflows required to maintain the ecological health of the State’s streams, rivers, bays, and estuaries. To determine these inflow requirements, the three agencies collect data and conduct studies on the need for instream flows and freshwater/ saline water inflows to Texas estuaries.To assist in the determination of freshwater inflow requirements, the U.S. Geological Survey (USGS), in cooperation with the Texas Water Development Board, conducted a hydrographic survey of discharge (flow) between San Antonio Bay and Aransas Bay during the period May–September 1999. Automated instrumentation and acoustic technology were used to maximize the amount and quality of data that were collected, while minimizing personnel requirements. This report documents the discharge measured at two sites between the bays during May–September 1999 and describes the influences of meteorologic (wind and tidal) and hydrologic (freshwater inflow) conditions on discharge between the two bays. The movement of water between the bays is

  11. The emergence of treatment wetlands

    International Nuclear Information System (INIS)

    Cole, S.

    1998-01-01

    Judging by the growing number of wetlands built for wastewater treatment around the world, this natural technology seems to have firmly established roots. After almost 30 years of use in wastewater treatment, constructed treatment wetlands now number over 500 in Europe and 600 in North America. Marsh-type surface flow systems are most common in North America, but subsurface flow wetlands, where wastewater flows beneath the surface of a gravel-rock bed, predominate in Europe. The inexpensive, low maintenance technology is in high demand in Central America, Eastern Europe, and Asia. New applications, from nitrate-contaminated ground water to effluent from high-intensity livestock operations, are also increasing. But in the United States, treatment-wetland technology has not yet gained national regulatory acceptance. Some states and EPA regions are eager to endorse them, but others are wary of this nontraditional method of treating wastewater. In part, this reluctance exists because the technology is not yet completely understood. Treatment wetlands also pose a potential threat to wildlife attracted to this new habitat -an ecosystem exposed to toxic compounds. New efforts are under way, however, to place the technology onto firmer scientific and regulatory ground. Long-term demonstration and monitoring field studies are currently probing the inner workings of wetlands and their water quality capabilities to provide better data on how to design more effective systems. A recent study of US policy and regulatory issues surrounding treatment wetlands has recommended that the federal government actively promote the technology and clear the regulatory roadblocks to enable wider use. Proponents argue that the net environmental benefits of constructed wetlands, such as restoring habitat and increasing wetlands inventory, should be considered. 8 refs., 6 photos

  12. Conceptual model for invasive bivalve control on wetland productivity

    Science.gov (United States)

    Hartman, Rosemary; Brown, Larry R.; Thompson, Janet K.; Parchaso, Francis

    2017-01-01

    Tidal wetlands were the historically dominant features of many coastal regions around the world, including the San Francisco Estuary (Callaway et al. 2011; Whipple et al. 2012). These mosaics of varied interconnected habitats (Mitsch and Gosselink 1993) provide a host of ecosystem services, including biodiversity maintenance, fish and wildlife habitat, water quality improvement, flood abatement, and carbon sequestration (Rabenhorst 1995; Costanza et al. 1997; Bottom et al. 2005; Zedler and Kercher 2005; Barbier et al. 2010). They also support human activities and values such as recreation and aesthetic appreciation (Barbier et al. 2010; Milligan and Kraus-Polk 2016). Despite their critical functions, many wetland landscapes have been destroyed or irreparably altered, either incidentally or intentionally, by human activities (Holland et al. 2004; Zedler and Kercher 2005; Callaway et al. 2011; Cloern and Jassby 2012; Whipple et al. 2012; Schile et al. 2014). San Francisco Estuary (SFE) (see Figure 1) tidal wetlands were largely converted to other land uses in the late 1800s and early 1900s, with the extent of loss and new use varying by region. Wetland losses in the North, Central, and South San Francisco bays and Suisun Bay ranged from 70 percent to 93 percent to accommodate agricultural uses, salt production, managed waterfowl habitat, and urban development (Callaway et al. 2011). Landscape transformation within the most inland portion of the SFE, the Sacramento-San Joaquin Delta (Delta), was even more dramatic. Overall, today’s Delta contains 97 percent less freshwater tidal wetland than its historical state and nearly double the open water area (Whipple et al. 2012). The majority of the modern Delta consists of agricultural tracts protected from tidal waters by human-made dikes or levees, which are commonly armored with riprap. The de-watered, rich peat soils of these created islands have supported abundant agricultural production, but have oxidized, compacted

  13. Ecosystem services: developing sustainable management paradigms based on wetland functions and processes

    Science.gov (United States)

    Euliss, Ned H.; Mushet, David M.; Smith, Loren M.; Conner, William H.; Burkett, Virginia R.; Wilcox, Douglas A.; Hester, Mark W.; Zheng, Haochi

    2013-01-01

    In the late nineteenth century and twentieth century, there was considerable interest and activity to develop the United States for agricultural, mining, and many other purposes to improve the quality of human life standards and prosperity. Most of the work to support this development was focused along disciplinary lines with little attention focused on ecosystem service trade-offs or synergisms, especially those that transcended boundaries of scientific disciplines and specific interest groups. Concurrently, human population size has increased substantially and its use of ecosystem services has increased more than five-fold over just the past century. Consequently, the contemporary landscape has been highly modified for human use, leaving behind a fragmented landscape where basic ecosystem functions and processes have been broadly altered. Over this period, climate change also interacted with other anthropogenic effects, resulting in modern environmental problems having a complexity that is without historical precedent. The challenge before the scientific community is to develop new science paradigms that integrate relevant scientific disciplines to properly frame and evaluate modern environmental problems in a systems-type approach to better inform the decision-making process. Wetland science is a relatively new discipline that grew out of the conservation movement of the early twentieth century. In the United States, most of the conservation attention in the earlier days was on wildlife, but a growing human awareness of the importance of the environment led to the passage of the National Environmental Policy Act in 1969. Concurrently, there was a broadening interest in conservation science, and the scientific study of wetlands gradually gained acceptance as a scientific discipline. Pioneering wetland scientists became formally organized when they formed The Society of Wetland Scientists in 1980 and established a publication outlet to share wetland research

  14. Ecosystem services: developing sustainable management paradigms based on wetland functions and processes

    Science.gov (United States)

    Euliss, Ned H.; Mushet, David M.; Smith, Loren M.; Conner, William H.; Burkett, Virginia R.; Wilcox, Douglas A.; Hester, Mark W.; Zheng, Haochi

    2013-01-01

    In the late nineteenth century and twentieth century, there was considerable interest and activity to develop the United States for agricultural, mining, and many other purposes to improve the quality of human life standards and prosperity. Most of the work to support this development was focused along disciplinary lines with little attention focused on ecosystem service trade-offs or synergisms, especially those that transcended boundaries of scientific disciplines and specific interest groups. Concurrently, human population size has increased substantially and its use of ecosystem services has increased more than five-fold over just the past century. Consequently, the contemporary landscape has been highly modified for human use, leaving behind a fragmented landscape where basic ecosystem functions and processes have been broadly altered. Over this period, climate change also interacted with other anthropogenic effects, resulting in modern environmental problems having a complexity that is without historical precedent. The challenge before the scientific community is to develop new science paradigms that integrate relevant scientific disciplines to properly frame and evaluate modern environmental problems in a systems-type approach to better inform the decision-making process. Wetland science is a relatively new discipline that grew out of the conservation movement of the early twentieth century. In the United States, most of the conservation attention in the earlier days was on wildlife, but a growing human awareness of the importance of the environment led to the passage of the National Environmental Policy Act in 1969. Concurrently, there was a broadening interest in conservation science, and the scientific study of wetlands gradually gained acceptance as a scientific discipline. Pioneering wetland scientists became formally organized when they formed The Society of Wetland Scientists in 1980 and established a publication outlet to share wetland research

  15. Tibetan Buddhism, Wetland Transformation, and Environmentalism in Tibetan Pastoral Areas of Western China

    Directory of Open Access Journals (Sweden)

    Kabzung Gaerrang

    2017-01-01

    Full Text Available Alpine wetlands occupy a considerable area of the Tibetan Plateau, a region that is characterised by diverse but fragile ecosystems, including alpine wetlands, which are reported to have shrunk by 29% over the last several decades. This article explores the contradictory practices of Tibetan pastoralists regarding these alpine wetlands and examines how Tibetan pastoralists conceptualise and understand wetlands as well as how state policies, market forces, and religious norms work together to produce Tibetan herders' practices vis-à -vis their livestock and the wetlands. The analysis will first challenge the common notion that Tibetan Buddhism plays a decisive and consistent role in conservation and environmental protection, an idea that has been proposed by academic scholars and promoted by many non-governmental organisation practitioners. As an alternative to the attempt to measure indigenous people and their culture against the criteria set out by western conservation, I argue through this case study that Tibetan pastoralists' relationship with wetlands informs their negotiation with competing forces including state policies, market logics, global environment movements, religious resurgence, and traditional nomadic practices.

  16. Impacts of Climate Change and Anthropogenic Activities on the Ecological Restoration of Wetlands in the Arid Regions of China

    Directory of Open Access Journals (Sweden)

    Haibo Wang

    2016-03-01

    Full Text Available As an important part of the global ecosystem, wetlands and their dynamics greatly influence regional eco-environment systems. To understand the distributions, change processes and temporal-spatial characteristics of the wetlands of the inland river basin in an arid region (Heihe River Basin, HRB, this paper employed multi-source remote sensing data to facilitate multi-temporal monitoring of the HRB wetland using a wetland information extraction method. First, we performed monitoring of these wetlands for the years 2000, 2007, 2011 and 2014; then, we analyzed the variation characteristics of the spatial-temporal dynamics of the wetlands in the HRB over the last 15 years via the landscape dynamic change model and the transformation matrix. In addition, we studied the possible driving mechanisms of these changes. The research results showed that the total area of the HRB wetlands had decreased by 2959.13 hectares in the last 15 years (Since 2000, and the annual average loss was −1.09%. The dynamics characterizing the HRB wetlands generally presented a trend of slow increase after an initial decrease, which can be classified into three stages. From 2000 to 2007, the total wetland area rapidly decreased; from 2007 to 2011, the area slowly decreased; and from 2011 to 2014, the area gradually increased. The dynamic changing processes characterizing the wetland resources were ascribed to a combination of natural processes and human activities. The main driving mechanisms of wetland dynamic changes include climatic conditions, upper reach water inflows, population, water resources, cultivated area, and policy. The findings of this study can served as reference and support for the conservation and management of wetland resources in the HRB.

  17. Reef Fish Surveys for Fagatele Bay, American Samoa, 2007 (NODC Accession 0068717)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish surveys were conducted in November 2007 using visual census techniques at Fagatele Bay under the guidance of Dr. Alison Green, the Nature Conservancy. This data...

  18. Tropical Wetlands as Carbon Sinks

    Science.gov (United States)

    Jones, M. B.; Saunders, M.

    2007-12-01

    This presentation focuses on the tropical wetlands of sub-Saharan Africa. These are an understudied ecosystem in which large emergent grasses and sedges normally dominate and which have the potential to sequester significant amounts of carbon. Measurements of Net Primary Production of these wetlands show that they are some of the highest values recorded for any ecosystem. We have used eddy covariance to measure Net Ecosystem Exchange of pristine and disturbed wetlands and show that pristine systems can have sink strengths as strong as tropical forests while disturbed systems that have been reclaimed for agricultural purposes have a very much reduced carbon sink activity and may be net carbon sources. The management issues surrounding the use of these wetlands illustrate a direct conflict between the production of food crops for the local population and the maintenance of carbon sequestration as an ecosystem service.

  19. Land use effects on pesticides in sediments of prairie pothole wetlands in North and South Dakota

    Science.gov (United States)

    McMurry, Scott T.; Belden, Jason B.; Smith, Loren M.; Morrison, Shane A.; Daniel, Dale W.; Euliss, Betty R.; Euliss, Ned H. Jr.; Kensinger, Bart J.; Tangen, Brian

    2016-01-01

    Prairie potholes are the dominant wetland type in the intensively cultivated northern Great Plains of North America, and thus have the potential to receive pesticide runoff and drift. We examined the presence of pesticides in sediments of 151 wetlands split among the three dominant land use types, Conservation Reserve Program (CRP), cropland, and native prairie, in North and South Dakota in 2011. Herbicides (glyphosate and atrazine) and fungicides were detected regularly, with no insecticide detections. Glyphosate was the most detected pesticide, occurring in 61% of all wetlands, with atrazine in only 8% of wetlands. Pyraclostrobin was one of five fungicides detected, but the only one of significance, being detected in 31% of wetlands. Glyphosate was the only pesticide that differed by land use, with concentrations in cropland over four-times that in either native prairie or CRP, which were equal in concentration and frequency of detection. Despite examining several landscape variables, such as wetland proximity to specific crop types, watershed size, and others, land use was the best variable explaining pesticide concentrations in potholes. CRP ameliorated glyphosate in wetlands at concentrations comparable to native prairie and thereby provides another ecosystem service from this expansive program.

  20. Shorebird community variations indicative of a general perturbation in the Mont-Saint-Michel bay (France).

    Science.gov (United States)

    Eybert, Marie-Christine; Geslin, Thomas; Questiau, Sophie; Feunteun, Eric

    2003-08-01

    The Mont-Saint-Michel bay located on the East Atlantic Flyway is the first site in France for wintering shorebirds, with, on average, 53,000 individuals in January. Seven species represent 96% of that community: dunlin (Calidris alpina), knot (Calidris canutus), oystercatcher (Haematopus ostralegus), curlew (Numenius arquata), grey plover (Pluvialis squatarola), bar-tailed godwit (Limosa lapponica) and black-tailed godwit (Limosa limosa). The international bird census organised by Wetlands International in mid-January gave us the opportunity to study, for a 23 years period, population variations in the bay. Despite a quite good carrying capacity, we showed that the decreasing proportion of 4 species in the bay relative to the other French populations may indicate a general perturbation of the bay. We discuss the different hypotheses to explain that observation.

  1. Ecohydraulics and Estuarine Wetland Rehabilitation

    Science.gov (United States)

    Rodriguez, J. F.; Howe, A.; Saintilan, N.; Spencer, J.

    2004-12-01

    The hydraulics or water flow in wetlands is known to be a key factor influencing ecosystem development in estuarine wetland environments. The relationship is indirect, with the hydraulics of wetlands influencing a host of factors including soil salinity, waterlogging, sediment transport, sediment chemistry, vegetation dispersal and growth and nutrient availability and cycling. The relationship is also not one way, with the hydraulics of wetlands being influenced by plant and animal activity. Understanding these complex interactions is fundamental for the adequate management of estuarine wetlands. Listed as a Wetland of International Importance under the 1971 Ramsar Convention, the Hunter River estuary is regarded as the most significant site for migratory shorebirds in New South Wales, Australia. Over the past 20 years, the number of migratory shorebirds in the estuary has sharply declined from 8,000 to 4,000 approx. Alteration of bird habitat is believed to be one of the reasons for this alarming trend. In 2004 we started a three-year program to investigate the links between hydraulics, sediment, benthic invertebrates, vegetation and migratory shorebird habitat in the estuary. During the first year we have focused on a highly disturbed part of the Hunter estuary wetlands located on Ash Island. The area is one of the major roosting sites in the estuary and is characterized by a complex hydraulic regime due to a restricted tidal interchange with the Hunter River and the presence of infrastructure for the maintenance of power lines (i.e., roads, bridges, culverts). Salt marshes, mudflat and mangroves are the dominant vegetation types. The monitoring program includes measurements of water levels, salinity, discharge, velocity, turbulence, sediment transport and deposition, plant species and density, soil composition and benthic invertebrates coordinated with observations of bird habitat utilization on a number of locations throughout the wetland and for different flow

  2. Hydrocarbon removal with constructed wetlands

    OpenAIRE

    Eke, Paul Emeka

    2008-01-01

    Wetlands have long played a significant role as natural purification systems, and have been effectively used to treat domestic, agricultural and industrial wastewater. However, very little is known about the biochemical processes involved, and the use of constructed treatment wetlands in the removal of petroleum aromatic hydrocarbons from produced and/or processed water. Wastewaters from the oil industry contain aromatic hydrocarbons such as benzene, toluene, ethylbenzene and x...

  3. Humboldt Bay Orthoimages

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of 0.5-meter pixel resolution, four band orthoimages covering the Humboldt Bay area. An orthoimage is remotely sensed image data in which...

  4. Chesapeake Bay Tributary Strategies

    Science.gov (United States)

    Chesapeake Bay Tributary Strategies were developed by the seven watershed jurisdictions and outlined the river basin-specific implementation activities to reduce nutrient and sediment pollutant loads from point and nonpoint sources.

  5. Bathymetry in Jobos Bay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a 4x4 meter resolution bathymetric surface for Jobos Bay, Puerto Rico (in NAD83 UTM 19 North). The depth values are in meters referenced to the...

  6. Biscayne Bay Alongshore Epifauna

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Field studies to characterize the alongshore epifauna (shrimp, crabs, echinoderms, and small fishes) along the western shore of southern Biscayne Bay were started in...

  7. Hammond Bay Biological Station

    Data.gov (United States)

    Federal Laboratory Consortium — Hammond Bay Biological Station (HBBS), located near Millersburg, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). HBBS was established by...

  8. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach.

    Science.gov (United States)

    Rai, Prabhat Kumar

    2008-01-01

    This review addresses the global problem of heavymetal pollution originating from increased industrialization and urbanization and its amelioration by using wetland plants both in a microcosm as well as natural/field condition. Heavymetal contamination in aquatic ecosystems due to discharge of industrial effluents may pose a serious threat to human health. Alkaline precipitation, ion exchange columns, electrochemical removal, filtration, and membrane technologies are the currently available technologies for heavy metal removal. These conventional technologies are not economical and may produce adverse impacts on aquatic ecosystems. Phytoremediation of metals is a cost-effective "green" technology based on the use of specially selected metal-accumulating plants to remove toxic metals from soils and water. Wetland plants are important tools for heavy metal removal. The Ramsar convention, one of the earlier modern global conservation treaties, was adopted at Ramsar, Iran, in 1971 and became effective in 1975. This convention emphasized the wise use of wetlands and their resources. This review mentions salient features of wetland ecosystems, their vegetation component, and the pros and cons involved in heavy metal removal. Wetland plants are preferred over other bio-agents due to their low cost, frequent abundance in aquatic ecosystems, and easy handling. The extensive rhizosphere of wetland plants provides an enriched culture zone for the microbes involved in degradation. The wetland sediment zone provides reducing conditions that are conducive to the metal removal pathway. Constructed wetlands proved to be effective for the abatement of heavymetal pollution from acid mine drainage; landfill leachate; thermal power; and municipal, agricultural, refinery, and chlor-alkali effluent. the physicochemical properties of wetlands provide many positive attributes for remediating heavy metals. Typha, Phragmites, Eichhornia, Azolla, Lemna, and other aquatic macrophytes are some

  9. Habitat utilization by wetland birds of Munderikadavu, a proposed bird sanctuary in northern Kerala, India

    Directory of Open Access Journals (Sweden)

    R. Roshnath

    2015-10-01

    Full Text Available Munderikadavu is rich in avifaunal diversity. A total of 82 species of birds from 36 families belonging to 13 orders were recorded in the wetland including wetland dependant species. Lowland vegetation had the highest species richness (46 species followed by upland (41 species, aerial (38 species, emergent vegetation (22 species and paddy fields (21 species.  Open water had the lowest species richness. Upland vegetation had the highest species diversity (H′-3.19 followed by aerial (H′-2.52.  There was more species overlap between emergent and low land vegetations (Cm-0.7.  The threats in Munderikadavu wetland were dumping of waste and conversion of cultivation land into shrimp farming area. Thus land use changes need to be regulated in order to conserve the wetland and bird community.  

  10. Evidence for natural hybridization between native and introduced lineages of Phragmites australis in the Chesapeake Bay watershed.

    Science.gov (United States)

    Wu, Carrie A; Murray, Laura A; Heffernan, Kevin E

    2015-05-01

    The introduction of nonnative taxa into areas occupied by conspecifics can lead to local extinction of native taxa via habitat modification and competitive dominance, and be exacerbated by outbreeding depression or the formation of invasive hybrid lineages following intraspecific gene flow. The expansion of Eurasian Phragmites australis into tidal wetlands of North America has been accompanied by a dramatic decline of native P. australis, with few relic populations remaining along the Atlantic coastline of the United States, particularly in the Virginia portion of the Chesapeake Bay. We sampled populations from the York River and its two major tributaries to determine the pattern of Phragmites invasion and identify remnant native populations that warrant conservation. We used chloroplast DNA haplotypes and nuclear DNA microsatellite profiles to classify individuals as belonging to the native or introduced lineage. Although native Phragmites stands were identified in the brackish upstream reaches of the two York River tributaries, the majority of Phragmites stands surveyed contained the introduced lineage. We also identified a single putative hybrid plant, based on its microsatellite profile. This plant possessed the native cpDNA haplotype and was located in an otherwise native Phragmites stand that is adjacent to an isolated patch of introduced Phragmites. Although evidence of field hybridization between native and introduced lineages of Phragmites in North America is still relatively rare, the continued encroachment of the introduced lineage into native wetlands may increase the likelihood of future hybrid formation. Careful genetic monitoring to identify remnant native and potential hybrid Phragmites is essential for prioritizing ongoing management efforts. © 2015 Botanical Society of America, Inc.

  11. Effects of Pipeline Construction on Wetland Ecosystems: Russia-China Oil Pipeline Project (Mohe-Daqing Section)

    Energy Technology Data Exchange (ETDEWEB)

    Xiaofei Yu; Guoping Wang; Yuanchun Zou; Qiang Wang; Hongmei Zhao; Xianguo Lu (Key Lab of Wetland Ecology and Environment, Northeast Inst. of Geography and Agroecology, Changchun (China)), e-mail: wangguoping@neigae.ac.cn

    2010-07-15

    Although the multiple roles of wetland ecosystems and their value to humanity have been increasingly understood and documented in recent years, the efforts to conserve and restore wetlands are not in harmony with the press for high speed of economy growth. The degradation of wetlands is proceeding, especially in China. Russia- China Oil Pipe-line Project (Mohe-Daqing Section) has already begun in May 2009, and is ongoing. The pipeline runs through four riverine wetlands and two marshlands of Heilongjiang Province, Northeast China. Although the project has vital significance of mitigating the energy crisis as well as guaranteeing the energy security of China, it will bring a series of ecological and environmental problems, especially for wetland ecosystems

  12. Wetlands and ski resorts in the French Alps: main issues and innovative ideas for the preservation of wetlands in ski areas

    Science.gov (United States)

    Gaucherand, S.; Evette, A.; François, H.; Paccard, P.; Perretier, C.; Wlerick, L.

    2009-04-01

    This presentation is a synthesis of a symposium held last October in Cemagref, Grenoble with contributions from scientists as well as lift operators, NGO's, and administrations. In the context of global change, ski resorts must rethink their development models. The diversification of the touristic offer is encouraged and the specificity of the mountain territory is at the heart of a sustainable development. In this context, the preservation of interesting and fragile habitats such as wetlands is topical. Wetlands have many recognized functions: flooding reduction, water remediation, fertilization, biodiversity conservation… In mountain areas, wetlands are small and scattered. They are of special interest in particular for their role in biodiversity conservation and for their cultural and recreational benefits. However, in ski areas, wetlands can interact with the ski activity. Indeed, wetlands can speed up snow melting in spring and they often occupy ledges, which are strategic positions for the establishment of ski resort's facilities. The development of ski resorts can lead to the destruction or the deterioration of wetlands because of hydrologic interferences, fill in, pollution, etc. However, a few judicious steps can be taken to reduce or suppress these negative effects. In the Alps, geographical and administrative tools have been developed to help the decisions of ski-resort's administrators. Meetings between lift-operators, administrators of protected areas scientists and NGO's have also proved efficient when done at an early stage of a project, as shown by the example of the ski-resort "Les Saisies".

  13. Exposure and Figure Out of Climate Induced Alterations in the Wetlands of Banglades

    Science.gov (United States)

    Siddiquee, S. A.; Rahman, M. Z.

    2015-12-01

    Unique geographic location and geo-morphological conditions of Bangladesh have made the wetlands of this country one of the most vulnerable to climate change. Wetland plays a crucial role in maintaining the ecological balance of ecosystems and cultural figures and which occupy around 50% of the area. Drought, excessive temperature, mountain snowfields and glaciers melting, riverbank erosion, salinity intrusion, flashflood, storm surges, higher water temperatures, precipitation anomalies, coastal cyclones, seasonal anomalies and extremes are main threats to the wetland ecosystem. Enhanced UV-B radiation and increased summer precipitation will significantly increase dissolved organic carbon concentrations altering major biogeochemical cycles and also will result into the expansion of range for many invasive aquatic weeds. Generally, rising temperature will lower water quality through a fall in oxygen concentrations, release of phosphorus from sediments, increased thermal stability, and altered mixing patterns. As a result biodiversity is getting degraded, many species of flora and fauna are getting threatened, and wetland-based ecosystem is getting degenerated. At the same time, the living conditions of local people are deteriorating as livelihoods, socioeconomic institutions, and extensive cultural values as well. For conserving and managing wetlands technology, legislation, educational knowledge, action plan strategy and restoration practices are required. In order to address the human needs in the changing climate community-based adaptation approaches and wetland restoration, practices had been taken in almost every type of wetlands in Bangladesh. Therefore, Bangladesh now needs a comprehensive strategy and integrated system combining political, economic, social, technological approaches and institutional supports to address sustainable wetland restoration, conservation and the newly added crisis, climate change.

  14. Management of Urban Stormwater Runoff in the Chesapeake Bay Watershed

    Science.gov (United States)

    Hogan, Dianna M.

    2008-01-01

    Urban and suburban development is associated with elevated nutrients, sediment, and other pollutants in stormwater runoff, impacting the physical and environmental health of area streams and downstream water bodies such as the Chesapeake Bay. Stormwater management facilities, also known as Best Management Practices (BMPs), are increasingly being used in urban areas to replace functions, such as flood protection and water quality improvement, originally performed by wetlands and riparian areas. Scientists from the U.S. Geological Survey (USGS) have partnered with local, academic, and other Federal agency scientists to better understand the effectiveness of different stormwater management systems with respect to Chesapeake Bay health. Management of stormwater runoff is necessary in urban areas to address flooding and water quality concerns. Improving our understanding of what stormwater management actions may be best suited for different types of developed areas could help protect the environmental health of downstream water bodies that ultimately receive runoff from urban landscapes.

  15. Vocal patterns of adult females and juveniles Caiman yacare (Crocodilia: Alligatoridae in Brazilian Pantanal wetland

    Directory of Open Access Journals (Sweden)

    Fernando L. Sicuro

    2013-09-01

    Full Text Available The Paraguayan caiman (Caiman yacare is the main Caimaninae species occurring in the Brazilian Pantanal Wetland. Despite the relative availability of works focused on biology and conservation of the Paraguayan caiman, almost nothing is known about its vocal structure and behavior. We recorded aggressive calls of adult caiman females guarding nests and, afterwards, the distress calls of the new born juvenile caimans in seasonally flooded areas of the Nhecolândia (Southern Pantanal. The results of both observations and sonographic analyses diverged from studies with other crocodilian species. Aggressive vocalization of adult females of the Paraguayan caiman was longer and more complex than the same vocalization of larger Alligatoridae species. Vocalizations of the young caimans presented interspecific differences with other crocodilian offsprings. Moreover, we found statistically significant intraspecific variation in the distress call structure among different pods, even separated by few kilometers. Differences in distress call structure were tested by Canonical Discriminant Analysis (CDA. We obtained the squared Mahalanobis distances between the acoustic multivariate spaces of each pod provided by the CDA and compared with the geographic distance between the bays of origin of each pod through Mantel Test. The geographic distance by itself did not explain the differences found in the structure of the vocalization of young caimans from different pods. The adult females of Paraguayan caiman positively responded to playbacks of calls from juvenile caimans from pods of other regions, as well as to rough imitations of distress call. Since the adult caimans showed protective responses to quite heterogeneous vocalizations of distress by juveniles, we hypothesized that the variation in the distress call pattern may be associated to a low specificity in sound recognition by adult caimans.

  16. Vocal patterns of adult females and juveniles Caiman yacare (Crocodilia: Alligatoridae) in Brazilian Pantanal wetland.

    Science.gov (United States)

    Sicuro, Fernando L; Iack-Ximenes, Gilson E; Wogel, Henrique; Bilate, Marcos

    2013-09-01

    The Paraguayan caiman (Caiman yacare) is the main Caimaninae species occurring in the Brazilian Pantanal Wetland. Despite the relative availability of works focused on biology and conservation of the Paraguayan caiman, almost nothing is known about its vocal structure and behavior. We recorded aggressive calls of adult caiman females guarding nests and, afterwards, the distress calls of the new born juvenile caimans in seasonally flooded areas of the Nhecolândia (Southern Pantanal). The results of both observations and sonographic analyses diverged from studies with other crocodilian species. Aggressive vocalization of adult females of the Paraguayan caiman was longer and more complex than the same vocalization of larger Alligatoridae species. Vocalizations of the young caimans presented interspecific differences with other crocodilian offsprings. Moreover, we found statistically significant intraspecific variation in the distress call structure among different pods, even separated by few kilometers. Differences in distress call structure were tested by Canonical Discriminant Analysis (CDA). We obtained the squared Mahalanobis distances between the acoustic multivariate spaces of each pod provided by the CDA and compared with the geographic distance between the bays of origin of each pod through Mantel Test. The geographic distance by itself did not explain the differences found in the structure of the vocalization of young caimans from different pods. The adult females of Paraguayan caiman positively responded to playbacks of calls from juvenile caimans from pods of other regions, as well as to rough imitations of distress call. Since the adult caimans showed protective responses to quite heterogeneous vocalizations of distress by juveniles, we hypothesized that the variation in the distress call pattern may be associated to a low specificity in sound recognition by adult caimans.

  17. Evaluation of wetland implementation strategies on phosphorus reduction at a watershed scale

    Science.gov (United States)

    Abouali, Mohammad; Nejadhashemi, A. Pouyan; Daneshvar, Fariborz; Adhikari, Umesh; Herman, Matthew R.; Calappi, Timothy J.; Rohn, Bridget G.

    2017-09-01

    Excessive nutrient use in agricultural practices is a major cause of water quality degradation around the world, which results in eutrophication of the freshwater systems. Among the nutrients, phosphorus enrichment has recently drawn considerable attention due to major environmental issues such as Lake Erie and Chesapeake Bay eutrophication. One approach for mitigating the impacts of excessive nutrients on water resources is the implementation of wetlands. However, proper site selection for wetland implementation is the key for effective water quality management at the watershed scale, which is the goal of this study. In this regard, three conventional and two pseudo-random targeting methods were considered. A watershed model called the Soil and Water Assessment Tool (SWAT) was coupled with another model called System for Urban Stormwater Treatment and Analysis IntegratioN (SUSTAIN) to simulate the impacts of wetland implementation scenarios in the Saginaw River watershed, located in Michigan. The inter-group similarities of the targeting strategies were investigated and it was shown that the level of similarity increases as the target area increases (0.54-0.86). In general, the conventional targeting method based on phosphorus load generated per unit area at the subwatershed scale had the highest average reduction among all the scenarios (44.46 t/year). However, when considering the total area of implemented wetlands, the conventional method based on long-term impacts of wetland implementation showed the highest amount of phosphorus reduction (36.44 t/year).

  18. Modelling Holocene carbon accumulation and methane emissions of boreal wetlands – an Earth system model approach

    Directory of Open Access Journals (Sweden)

    R. J. Schuldt

    2013-03-01

    Full Text Available Since the Last Glacial Maximum, boreal wetlands have accumulated substantial amounts of peat, estimated at 180–621 Pg of carbon. Wetlands have significantly affected the atmospheric greenhouse gas composition in the past and will play a significant role in future changes of atmospheric CO2 and CH4 concentrations. In order to investigate those changes with an Earth system model, biogeochemical processes in boreal wetlands need to be accounted for. Thus, a model of peat accumulation and decay was developed and included in the land surface model JSBACH of the Max Planck Institute Earth System Model (MPI-ESM. Here we present the evaluation of model results from 6000 yr BP to the pre-industrial period. Over this period of time, 240 Pg of peat carbon accumulated in the model in the areas north of 40° N. Simulated peat accumulation rates agree well with those reported for boreal wetlands. The model simulates CH4 emissions of 49.3 Tg CH4 yr−1 for 6000 yr BP and 51.5 Tg CH4 yr−1 for pre-industrial times. This is within the range of estimates in the literature, which range from 32 to 112 Tg CH4 yr−1 for boreal wetlands. The modelled methane emission for the West Siberian Lowlands and Hudson Bay Lowlands agree well with observations. The rising trend of methane emissions over the last 6000 yr is in agreement with measurements of Antarctic and Greenland ice cores.

  19. Single-beam bathymetry data collected in 2015 from Grand Bay, Alabama-Mississippi

    Science.gov (United States)

    DeWitt, Nancy T.; Stalk, Chelsea A.; Smith, Christopher G.; Locker, Stanley D.; Fredericks, Jake J.; McCloskey, Terrence A.; Wheaton, Cathryn J.

    2017-12-01

    As part of the Sea-level and Storm Impacts on Estuarine Environments and Shorelines (SSIEES) project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a single-beam bathymetry survey within the estuarine, open-bay, and tidal creek environments of Grand Bay, Alabama-Mississippi, from May to June 2015. The goal of the SSIEES project is to assess the physical controls of sediment and material exchange between wetlands and estuarine environments along the northern Gulf of Mexico, specifically Grand Bay, Alabama-Mississippi; Vermilion Bay, Louisiana; and, along the east coast, within Chincoteague Bay, Virginia-Maryland. The data described in this report provide baseline bathymetric information for future research investigating wetland-marsh evolution, sediment transport, erosion, recent and long-term geomorphic change, and can also support the modeling of changes in response to restoration and storm impacts. The survey area encompasses more than 40 square kilometers of Grand Bay’s waters.

  20. Thresholds of sea-level rise rate and sea-level rise acceleration rate in a vulnerable coastal wetland.

    Science.gov (United States)

    Wu, Wei; Biber, Patrick; Bethel, Matthew

    2017-12-01

    Feedbacks among inundation, sediment trapping, and vegetation productivity help maintain coastal wetlands facing sea-level rise (SLR). However, when the SLR rate exceeds a threshold, coastal wetlands can collapse. Understanding the threshold helps address key challenges in ecology-nonlinear response of ecosystems to environmental change, promotes communication between ecologists and resource managers, and facilitates decision-making in climate change policies. We studied the threshold of SLR rate and developed a new threshold of SLR acceleration rate on sustainability of coastal wetlands as SLR is likely to accelerate due to enhanced anthropogenic forces. Deriving these two thresholds depends on the temporal scale, the interaction of SLR with other environmental factors, and landscape metrics, which have not been fully accounted for before this study. We chose a representative marine-dominated estuary in the northern Gulf of Mexico, Grand Bay in Mississippi, to test the concept of SLR thresholds. We developed a mechanistic model to simulate wetland change and then derived the SLR thresholds for Grand Bay. The model results show that the threshold of SLR rate in Grand Bay is 11.9 mm/year for 2050, and it drops to 8.4 mm/year for 2100 using total wetland area as a landscape metric. The corresponding SLR acceleration rate thresholds are 3.02 × 10 -4  m/year 2 and 9.62 × 10 -5  m/year 2 for 2050 and 2100, respectively. The newly developed SLR acceleration rate threshold can help quantify the temporal lag before the rapid decline in wetland area becomes evident after the SLR rate threshold is exceeded, and cumulative SLR a wetland can adapt to under the SLR acceleration scenarios. Based on the thresholds, SLR that will adversely impact the coastal wetlands in Grand Bay by 2100 will fall within the likely range of SLR under a high warming scenario (RCP8.5), highlighting the need to avoid RCP8.5 to preserve these marshes.

  1. Wetland Hydrology | Science Inventory | US EPA

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefits and types, and explains the role and importance of hydrology on wetland functioning. The chapter continues with the description of wetland hydrologic terms and related estimation and modeling techniques. The chapter provides a quick but valuable information regarding hydraulics of surface and subsurface flow, groundwater seepage/discharge, and modeling groundwater/surface water interactions in wetlands. Because of the aggregated effects of the wetlands at larger scales and their ecosystem services, wetland hydrology at the watershed scale is also discussed in which we elaborate on the proficiencies of some of the well-known watershed models in modeling wetland hydrology. This chapter can serve as a useful reference for eco-hydrologists, wetland researchers and decision makers as well as watershed hydrology modelers. In this chapter, the importance of hydrology for wetlands and their functional role are discussed. Wetland hydrologic terms and the major components of water budget in wetlands and how they can be estimated/modeled are also presented. Although this chapter does not provide a comprehensive coverage of wetland hydrology, it provides a quick understanding of the basic co

  2. Mapping wetland loss and restoration potential in Flanders (Belgium: an ecosystem service perspective

    Directory of Open Access Journals (Sweden)

    Kris Decleer

    2016-12-01

    Full Text Available With the case of Flanders (northern part of Belgium we present an integrated approach to calculate accurate losses of wetlands, potentials for restoration, and their ecosystem services supplies and illustrate how these insights can be used to evaluate and support policy making. Flanders lost about 75% of its wetland habitats in the past 50-60 years, with currently only 68,000 ha remaining, often in a more or less degraded state. For five different wetland categories (excluding open waters we calculated that restoration of lost wetland is still possible for an additional total area of about 147,000 ha, assuming that, with time and appropriate measures and techniques, the necessary biophysical and ecological conditions can more or less be restored or created. Wetland restoration opportunities were mapped according to an open and forested landscape scenario. Despite the fact that for 49,000 ha wetland restoration is justifiable by the actual presence of an appropriate spatial planning and/or protection status, the official Flemish nature policy only foresees 7,400 to 10,600 ha of additional wetland (open waters excluded by 2050. The benefits of a more ambitious wetland restoration action program are underpinned by an explorative and quantified analysis of ecosystem service supply for each of the two scenarios, showing that the strongly increased supply of several important regulating and cultural ecosystem services might outweigh the decrease of food production, especially if extensive farming on temporary wet soils remains possible. Finally, we discuss the challenges of wetland restoration policies for biodiversity conservation and climate change.

  3. User-Friendly Predictive Modeling of Greenhouse Gas (GHG) Fluxes and Carbon Storage in Tidal Wetlands

    Science.gov (United States)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2015-12-01

    We developed user-friendly empirical models to predict instantaneous fluxes of CO2 and CH4 from coastal wetlands based on a small set of dominant hydro-climatic and environmental drivers (e.g., photosynthetically active radiation, soil temperature, water depth, and soil salinity). The dominant predictor variables were systematically identified by applying a robust data-analytics framework on a wide range of possible environmental variables driving wetland greenhouse gas (GHG) fluxes. The method comprised of a multi-layered data-analytics framework, including Pearson correlation analysis, explanatory principal component and factor analyses, and partial least squares regression modeling. The identified dominant predictors were finally utilized to develop power-law based non-linear regression models to predict CO2 and CH4 fluxes under different climatic, land use (nitrogen gradient), tidal hydrology and salinity conditions. Four different tidal wetlands of Waquoit Bay, MA were considered as the case study sites to identify the dominant drivers and evaluate model performance. The study sites were dominated by native Spartina Alterniflora and characterized by frequent flooding and high saline conditions. The model estimated the potential net ecosystem carbon balance (NECB) both in gC/m2 and metric tonC/hectare by up-scaling the instantaneous predicted fluxes to the growing season and accounting for the lateral C flux exchanges between the wetlands and estuary. The entire model was presented in a single Excel spreadsheet as a user-friendly ecological engineering tool. The model can aid the development of appropriate GHG offset protocols for setting monitoring plans for tidal wetland restoration and maintenance projects. The model can also be used to estimate wetland GHG fluxes and potential carbon storage under various IPCC climate change and sea level rise scenarios; facilitating an appropriate management of carbon stocks in tidal wetlands and their incorporation into a

  4. 75 FR 11837 - Chesapeake Bay Watershed Initiative

    Science.gov (United States)

    2010-03-12

    ... DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Chesapeake Bay Watershed Initiative AGENCY...: Notice of availability of program funds for the Chesapeake Bay Watershed Initiative. SUMMARY: The... through the Chesapeake Bay Watershed Initiative for agricultural producers in the Chesapeake Bay watershed...

  5. Wetland Program Development Grants (WPDGs) Case Studies

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Wetland Grant Database (WGD) houses grant data for Wetland Program Development Grants (created by EPA in 1990 under the Clean Water Act Section 104(b)(3)...

  6. Designated Wetlands and Setback Distances in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This GIS layer depicts wetlands designated for protection in the state of Iowa. Designated wetland is defined in Iowa Code subsection 459.102(21) as follows: 21....

  7. Industry and forest wetlands: Cooperative research initiatives

    International Nuclear Information System (INIS)

    Shepard, J.P.; Lucier, A.A.; Haines, L.W.

    1993-01-01

    In 1989 the forest products industry responded to a challenge of the National Wetlands Policy Forum to initiate a cooperative research program on forest wetlands management organized through the National Council of the Paper Industry for Air and Stream Improvement (NCASI). The objective is to determine how forest landowners can manage wetlands for timber production while protecting other wetland functions such as flood storage, water purification, and food chain/wildlife habitat support. Studies supported by the NCASI in 9 states are summarized. Technical support on wetland regulatory issues to member companies is part of the research program. Since guidelines for recognizing wetlands for regulatory proposed have changed frequently, the NCASI has recommend an explicit link between wetland delineation and a classification system that considers difference among wetland types in vegetation, soils, hydrology, appearance, landscape position, and other factors. 16 refs

  8. Aquatic macrophyte diversity of the Pantanal wetland and upper basin

    Directory of Open Access Journals (Sweden)

    VJ. Pott

    Full Text Available This is a short review of the state of the art concerning diversity of aquatic macrophytes and the main aquatic vegetation types in the Brazilian Pantanal wetland and upper watershed. There are ca. 280 species of aquatic macrophytes on the Pantanal floodplain, with scarce endemism. On the upper watershed, Cerrado wetlands (veredas and limestone springs have a distinct flora from the Pantanal, with twice the species richness. As a representative case of aquatic habitats influenced by river flood, some primary data are presented for the Pantanal Matogrossense National Park and associated Acurizal Preserve, analysing the floristic similarity among aquatic vegetation types. We comment on problems of conservation and observe that Panicum elephantipes Nees is one of the few natives to compete with the invasive Urochloa arrecta (Hack. ex T. Durand & Schinz Morrone & Zuloaga.

  9. Aquatic macrophyte diversity of the Pantanal wetland and upper basin.

    Science.gov (United States)

    Pott, V J; Pott, A; Lima, L C P; Moreira, S N; Oliveira, A K M

    2011-04-01

    This is a short review of the state of the art concerning diversity of aquatic macrophytes and the main aquatic vegetation types in the Brazilian Pantanal wetland and upper watershed. There are ca. 280 species of aquatic macrophytes on the Pantanal floodplain, with scarce endemism. On the upper watershed, Cerrado wetlands (veredas) and limestone springs have a distinct flora from the Pantanal, with twice the species richness. As a representative case of aquatic habitats influenced by river flood, some primary data are presented for the Pantanal Matogrossense National Park and associated Acurizal Preserve, analysing the floristic similarity among aquatic vegetation types. We comment on problems of conservation and observe that Panicum elephantipes Nees is one of the few natives to compete with the invasive Urochloa arrecta (Hack. ex T. Durand & Schinz) Morrone & Zuloaga.

  10. Wetland Assessment Using Unmanned Aerial Vehicle (uav) Photogrammetry

    Science.gov (United States)

    Boon, M. A.; Greenfield, R.; Tesfamichael, S.

    2016-06-01

    The use of Unmanned Arial Vehicle (UAV) photogrammetry is a valuable tool to enhance our understanding of wetlands. Accurate planning derived from this technological advancement allows for more effective management and conservation of wetland areas. This paper presents results of a study that aimed at investigating the use of UAV photogrammetry as a tool to enhance the assessment of wetland ecosystems. The UAV images were collected during a single flight within 2½ hours over a 100 ha area at the Kameelzynkraal farm, Gauteng Province, South Africa. An AKS Y-6 MKII multi-rotor UAV and a digital camera on a motion compensated gimbal mount were utilised for the survey. Twenty ground control points (GCPs) were surveyed using a Trimble GPS to achieve geometrical precision and georeferencing accuracy. Structure-from-Motion (SfM) computer vision techniques were used to derive ultra-high resolution point clouds, orthophotos and 3D models from the multi-view photos. The geometric accuracy of the data based on the 20 GCP's were 0.018 m for the overall, 0.0025 m for the vertical root mean squared error (RMSE) and an over all root mean square reprojection error of 0.18 pixel. The UAV products were then edited and subsequently analysed, interpreted and key attributes extracted using a selection of tools/ software applications to enhance the wetland assessment. The results exceeded our expectations and provided a valuable and accurate enhancement to the wetland delineation, classification and health assessment which even with detailed field studies would have been difficult to achieve.

  11. WETLAND ASSESSMENT USING UNMANNED AERIAL VEHICLE (UAV PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    M. A. Boon

    2016-06-01

    Full Text Available The use of Unmanned Arial Vehicle (UAV photogrammetry is a valuable tool to enhance our understanding of wetlands. Accurate planning derived from this technological advancement allows for more effective management and conservation of wetland areas. This paper presents results of a study that aimed at investigating the use of UAV photogrammetry as a tool to enhance the assessment of wetland ecosystems. The UAV images were collected during a single flight within 2½ hours over a 100 ha area at the Kameelzynkraal farm, Gauteng Province, South Africa. An AKS Y-6 MKII multi-rotor UAV and a digital camera on a motion compensated gimbal mount were utilised for the survey. Twenty ground control points (GCPs were surveyed using a Trimble GPS to achieve geometrical precision and georeferencing accuracy. Structure-from-Motion (SfM computer vision techniques were used to derive ultra-high resolution point clouds, orthophotos and 3D models from the multi-view photos. The geometric accuracy of the data based on the 20 GCP’s were 0.018 m for the overall, 0.0025 m for the vertical root mean squared error (RMSE and an over all root mean square reprojection error of 0.18 pixel. The UAV products were then edited and subsequently analysed, interpreted and key attributes extracted using a selection of tools/ software applications to enhance the wetland assessment. The results exceeded our expectations and provided a valuable and accurate enhancement to the wetland delineation, classification and health assessment which even with detailed field studies would have been difficult to achieve.

  12. The use of remote sensing to quantify wetland loss in the Choke Mountain range, Upper Blue Nile basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    E. Teferi

    2010-12-01

    Full Text Available Wetlands provide multiple ecosystem services such as storing and regulating water flows and water quality, providing unique habitats to flora and fauna, and regulating micro-climatic conditions. Conversion of wetlands for agricultural use is a widespread practice in Ethiopia, particularly in the southwestern part where wetlands cover large areas. Although there are many studies on land cover and land use changes in this region, comprehensive studies on wetlands are still missing. Hence, extent and rate of wetland loss at regional scales is unknown. The objective of this paper is to quantify wetland dynamics and estimate wetland loss in the Choke Mountain range (area covering 17 443 km2 in the Upper Blue Nile basin, a key headwater region of the river Nile. Therefore, satellite remote sensing imagery of the period 1986–2005 were considered. To create images of surface reflectance that are radiometrically consistent, a combination of cross-calibration and atmospheric correction (Vogelman-DOS3 methods was used. A hybrid supervised/unsupervised classification approach was used to classify the images. Overall accuracies of 94.1% and 93.5% and Kappa Coefficients of 0.908 and 0.913 for the 1986 and 2005 imageries, respectively were obtained. The results showed that 607 km2 of seasonal wetland with low moisture and 22.4 km2 of open water are lost in the study area during the period 1986 to 2005. The current situation in the wetlands of Choke Mountain is characterized by further degradation which calls for wetland conservation and rehabilitation efforts through incorporating wetlands into watershed management plans.

  13. The use of remote sensing to quantify wetland loss in the Choke Mountain range, Upper Blue Nile basin, Ethiopia

    Science.gov (United States)

    Teferi, E.; Uhlenbrook, S.; Bewket, W.; Wenninger, J.; Simane, B.

    2010-12-01

    Wetlands provide multiple ecosystem services such as storing and regulating water flows and water quality, providing unique habitats to flora and fauna, and regulating micro-climatic conditions. Conversion of wetlands for agricultural use is a widespread practice in Ethiopia, particularly in the southwestern part where wetlands cover large areas. Although there are many studies on land cover and land use changes in this region, comprehensive studies on wetlands are still missing. Hence, extent and rate of wetland loss at regional scales is unknown. The objective of this paper is to quantify wetland dynamics and estimate wetland loss in the Choke Mountain range (area covering 17 443 km2) in the Upper Blue Nile basin, a key headwater region of the river Nile. Therefore, satellite remote sensing imagery of the period 1986-2005 were considered. To create images of surface reflectance that are radiometrically consistent, a combination of cross-calibration and atmospheric correction (Vogelman-DOS3) methods was used. A hybrid supervised/unsupervised classification approach was used to classify the images. Overall accuracies of 94.1% and 93.5% and Kappa Coefficients of 0.908 and 0.913 for the 1986 and 2005 imageries, respectively were obtained. The results showed that 607 km2 of seasonal wetland with low moisture and 22.4 km2 of open water are lost in the study area during the period 1986 to 2005. The current situation in the wetlands of Choke Mountain is characterized by further degradation which calls for wetland conservation and rehabilitation efforts through incorporating wetlands into watershed management plans.

  14. Elemental composition of native wetland plants in constructed mesocosm treatment wetlands.

    Science.gov (United States)

    Collins, Beverly S; Sharitz, Rebecca R; Coughlin, Daniel P

    2005-05-01

    Plants that accumulate a small percentage of metals in constructed treatment wetlands can contribute to remediation of acidic, metal contaminated runoff waters from coal mines or processing areas. We examined root and shoot concentrations of elements in four perennial wetland species over two seasons in mesocosm wetland systems designed to remediate water from a coal pile runoff basin. Deep wetlands in each system contained Myriophyllum aquaticum and Nymphaea odorata; shallow wetlands contained Juncus effusus and Pontederia cordata. Shoot elemental concentrations differed between plants of deep and shallow wetlands, with higher Zn, Al, and Fe concentrations in plants in shallow wetlands and higher Na, Mn, and P concentrations in plants in deep wetlands. Root and shoot concentrations of most elements differed between species in each wetland type. Over two seasons, these four common wetland plants did help remediate acidic, metal-contaminated runoff from a coal storage pile.

  15. Integrating science and resource management in Tampa Bay, Florida

    Science.gov (United States)

    Yates, Kimberly K.; Greening, Holly; Morrison, Gerold

    2011-01-01

    research and its integration into resource management has not been prepared for Tampa Bay since the mid-1980s. The need for an up-to-date synthesis of Tampa Bay science and management has resulted in the production of this document. The U.S. Geological Survey recently completed a 5-year Tampa Bay Integrated Science Study, and the Tampa Bay Estuary Program updated the Comprehensive Conservation and Management Plan for Tampa Bay in 2006. These efforts build upon results of the many research and management studies and programs summarized here.

  16. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States

    Science.gov (United States)

    Zhu, Jie; Sun, Ge; Li, Wenhong; Zhang, Yu; Miao, Guofang; Noormets, Asko; McNulty, Steve G.; King, John S.; Kumar, Mukesh; Wang, Xuan

    2017-12-01

    The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, groundwater recharge, and wildlife habitat. However, these wetland ecosystems are dependent on local climate and hydrology, and are therefore at risk due to climate and land use change. This study develops site-specific empirical hydrologic models for five forested wetlands with different characteristics by analyzing long-term observed meteorological and hydrological data. These wetlands represent typical cypress ponds/swamps, Carolina bays, pine flatwoods, drained pocosins, and natural bottomland hardwood ecosystems. The validated empirical models are then applied at each wetland to predict future water table changes using climate projections from 20 general circulation models (GCMs) participating in Coupled Model Inter-comparison Project 5 (CMIP5) under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios. We show that combined future changes in precipitation and potential evapotranspiration would significantly alter wetland hydrology including groundwater dynamics by the end of the 21st century. Compared to the historical period, all five wetlands are predicted to become drier over time. The mean water table depth is predicted to drop by 4 to 22 cm in response to the decrease in water availability (i.e., precipitation minus potential evapotranspiration) by the year 2100. Among the five examined wetlands, the depressional wetland in hot and humid Florida appears to be most vulnerable to future climate change. This study provides quantitative information on the potential magnitude of wetland hydrological response to future climate change in typical forested wetlands in the southeastern US.

  17. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States

    Directory of Open Access Journals (Sweden)

    J. Zhu

    2017-12-01

    Full Text Available The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, groundwater recharge, and wildlife habitat. However, these wetland ecosystems are dependent on local climate and hydrology, and are therefore at risk due to climate and land use change. This study develops site-specific empirical hydrologic models for five forested wetlands with different characteristics by analyzing long-term observed meteorological and hydrological data. These wetlands represent typical cypress ponds/swamps, Carolina bays, pine flatwoods, drained pocosins, and natural bottomland hardwood ecosystems. The validated empirical models are then applied at each wetland to predict future water table changes using climate projections from 20 general circulation models (GCMs participating in Coupled Model Inter-comparison Project 5 (CMIP5 under the Representative Concentration Pathways (RCPs 4.5 and 8.5 scenarios. We show that combined future changes in precipitation and potential evapotranspiration would significantly alter wetland hydrology including groundwater dynamics by the end of the 21st century. Compared to the historical period, all five wetlands are predicted to become drier over time. The mean water table depth is predicted to drop by 4 to 22 cm in response to the decrease in water availability (i.e., precipitation minus potential evapotranspiration by the year 2100. Among the five examined wetlands, the depressional wetland in hot and humid Florida appears to be most vulnerable to future climate change. This study provides quantitative information on the potential magnitude of wetland hydrological response to future climate change in typical forested wetlands in the southeastern US.

  18. Modelling biodiversity and land use: urban growth, agriculture and nature in a wetland area

    NARCIS (Netherlands)

    Eppink, F.V.; van den Bergh, J.C.J.M.; Rietveld, P.

    2004-01-01

    Wherever human land use is located near sensitive natural areas, such as wetlands, it has significant impacts on biodiversity in those areas. Both species richness and species composition are affected. As biodiversity is lost, conservation efforts increase and act as a constraint on land use

  19. Effect of the Urbanization of Wetlands on Microclimate: A Case Study of Xixi Wetland, Hangzhou, China

    OpenAIRE

    Wei Zhang; Yubi Zhu; Jingang Jiang

    2016-01-01

    Urbanization affects the microclimate and forms a unique urban climate environment. To deepen the understanding on the microclimate regulation function of an urban wetland, this study analyzed the influence of a suburb wetland’s urbanization process on the local climate through contrast observations of the protected wetland area and the former wetland area in Xixi wetland. Results show that the urbanization of suburb wetlands has an impact on the local microclimate and decreases human comfort...

  20. Chesapeake Bay Program Grant Guidance

    Science.gov (United States)

    Grant Guidance and appendices for the Chesapeake Bay Program that describes how the U.S. Environmental Protection Agency’s (EPA) Region 3’s Chesapeake Bay Program Office (CBPO) administers grant and cooperative agreement funds.

  1. A description of the wetlands research programme

    CSIR Research Space (South Africa)

    Walmsley, RD

    1988-01-01

    Full Text Available This report presents a rationale to the development of a multi-disciplinary South African wetland research programme. A definition of what is meant by the term wetland is given along with a general description of what types of wetland occur in South...

  2. Hydrology of a natural hardwood forested wetland

    Science.gov (United States)

    George M. Chescheir; Devendra M. Amatya; R. Wayne Skaggs

    2008-01-01

    This paper documents the hydrology of a natural forested wetland near Plymouth, NC, USA. The research site was located on one of the few remaining, undrained non-riverine, palustrine forested hardwood wetlands on the lower coastal plain of North Carolina. A 137 ha watershed within the 350ha wetland was selected for intensive field study. Water balance components...

  3. Description of the Wetlands Research Programme

    CSIR Research Space (South Africa)

    Walmsley, RD

    1988-01-01

    Full Text Available This report presents a rationale to the development of a multidisciplinary South African Wetland Research Programme. A definition of what is meant by the term wetland is given along with a general description of what types of wetland occur in South...

  4. Mapping wetland characteristics for sustainable development in ...

    African Journals Online (AJOL)

    Wetland ecosystems are under threat from agriculture and urbanisation, affecting water supply and quality in urban areas like the City of Harare. With the need to protect wetlands that remain, the spatial extent of the Highlands, Borrowdale West, Mukuvisi and National Sports wetlands was established. LANDSAT and SPOT ...

  5. 40 CFR 258.12 - Wetlands.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Wetlands. 258.12 Section 258.12... SOLID WASTE LANDFILLS Location Restrictions § 258.12 Wetlands. (a) New MSWLF units and lateral expansions shall not be located in wetlands, unless the owner or operator can make the following...

  6. North Dakota Wetlands Discovery Guide. Photocopy Booklet.

    Science.gov (United States)

    Dietz, Nancy J., Ed.; And Others

    This booklet contains games and activities that can be photocopied for classroom use. Activities include Wetland Terminology, Putting on the Map, Erosional Forces, Water in...Water out, Who Lives Here?, Wetlands in Disguise, Dichotomous Plant Game, Algae Survey, Conducting an Algal Survey, Water Quality Indicators Guide, Farming Wetlands, Wetlands…

  7. 40 CFR 257.9 - Wetlands.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Wetlands. 257.9 Section 257.9... Location Restrictions § 257.9 Wetlands. (a) Owners or operators of new units and lateral expansions shall not locate such units in wetlands, unless the owner or operator can make the following demonstrations...

  8. Chesapeake Bay under stress

    Science.gov (United States)

    According to extensive data obtained over its 13,000 km of shoreline, the Chesapeake Bay has been suffering a major, indeed unprecedented, reduction in submerged vegetation. Chesapeake Bay is alone in experiencing decline in submerged vegetation. Other estuary systems on the east coast of the United States are not so affected. These alarming results were obtained by the synthesis of the findings of numerous individual groups in addition to large consortium projects on the Chesapeake done over the past decade. R. J. Orth and R. A. Moore of the Virginia Institute of Marine Science pointed to the problem of the severe decline of submerged grasses on the Bay and along its tributaries. In a recent report, Orth and Moore note: “The decline, which began in the 1960's and accelerated in the 1970's, has affected all species in all areas. Many major river systems are now totally devoid of any rooted vegetation” (Science, 222, 51-53, 1983).

  9. Optical Characterization and Bioavailability of Dissolved Organic Matter of Leaf Leachates from Restored and Forested Delmarva Bay Catchments

    Science.gov (United States)

    Reed, E.; Armstrong, A.

    2016-12-01

    The optical properties and lability of fresh leaf and litter leachates obtained from Delmarva wetlands were analyzed to gain a further understanding of the carbon inputs and outputs of that wetland system. Carbon entering the wetland system may be digested by microbes and then given off as either carbon dioxide or methane, both of which enter the atmosphere as greenhouse gases. Delmarva Bays are often considered geographically isolated and only have surface water present in certain times of year. The vegetation around the wetlands are assumed to be a major input of the dissolved organic matter (DOM) in the wetland surface water. An understanding of the sources and lability of wetland water DOM can lead to further insight into the connections between vegetation, wetland management, and carbon cycling. Two paired wetland sites were sampled in this study, each included a forested catchment and a prior-converted agricultural wetland that had undergone hydrological ecosystem restoration. Leaf samples of Liquidambar styraciflua, Acer rubrum, Nyssa sylvatica, Polygonum, and Typha were taken directly from the living plant or from surrounding ground as litter. Spectral properties of the leachates were determined from fluorescence and absorbance, including PARAFAC components, fluorescence index (FI), humification index (HI), and the specific ultraviolet absorbance (SUVA). Leachates were also incubated with microbes taken from Tuckahoe Creek, a stream to which all sampled sites eventually drain, to determine the bioavailability of the carbon. There were measurable differences found between samples obtained from leaves and litter, as well as a difference between the herbaceous and tree samples. The results obtained from this study can help create more accurate models of how carbon cycles through these wetlands, both in forested and restored environments.

  10. Local and regional scale exchanges of dissolved organic carbon (DOC) between tidal wetlands and their adjacent coastal waters

    Science.gov (United States)

    Osburn, C. L.; Joshi, I.; Lebrasse, M. C.; Oviedo-Vargas, D.; Bianchi, T. S.; Bohnenstiehl, D. R.; D'Sa, E. J.; He, R.; Ko, D.; Arellano, A.; Ward, N. D.

    2017-12-01

    The contribution of blue carbon from tidal wetlands to the coastal ocean in the form of dissolved organic carbon (DOC) represents a terrestrial-aquatic linkage of increasing importance. DOC flux results will be presented from local (tidal creek) and regional (bays) scale studies in which various combinations of field observations, ocean-color satellite observations, and the outputs of high-resolution hydrodynamic models were used to estimate DOC export. The first project was located in Bald Head Creek, a tributary to the Cape Fear River estuary in eastern North Carolina (NC). DOC fluxes were computed using a bathymetric data collected via unmanned surface vehicle (USV) and a numerical hydrodynamic model (SCHISM) based on the relationships between colored dissolved organic matter (CDOM) absorption, DOC concentration, and salinity taken from field observations. Model predictions estimated an annual net export of DOC at 54 g C m-2 yr-1 from the tidal creek to the adjacent estuary. Carbon stable isotope (δ13C) values were used to estimate the contribution of wetland carbon to this export. In the second project, DOC fluxes from the Apalachicola Bay, FL, Barataria Bay, LA, were based on the development of algorithms between DOC and CDOM absorption derived from the VIIRS ocean color sensor. The Navy Coastal Ocean Model (NCOM) was used to compute salt flux estimates from each bay to the Louisiana-Texas shelf. The relationship between salinity and CDOM was used to estimate net annual DOC exports of 8.35 x 106 g C m-2 y-1 (Apalachicola Bay) and 7.14 x 106 g C m-2 yr-1 (Barataria Bay). These values approximate 13% and 9% of the annual loads of DOC from the Mississippi River to the Gulf of Mexico, respectively. CDOM and lignin were used in a mixing model to estimate wetland-derived DOC were 2% for Apalachicola Bay and 13% for Barataria Bay, the latter having one of the highest rates of relative sea level rise in North America. Results from our project demonstrated the utility

  11. A Mechanistically Informed User-Friendly Model to Predict Greenhouse Gas (GHG) Fluxes and Carbon Storage from Coastal Wetlands

    Science.gov (United States)

    Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2015-12-01

    We present a user-friendly modeling tool on MS Excel to predict the greenhouse gas (GHG) fluxes and estimate potential carbon sequestration from the coastal wetlands. The dominant controls of wetland GHG fluxes and their relative mechanistic linkages with various hydro-climatic, sea level, biogeochemical and ecological drivers were first determined by employing a systematic data-analytics method, including Pearson correlation matrix, principal component and factor analyses, and exploratory partial least squares regressions. The mechanistic knowledge and understanding was then utilized to develop parsimonious non-linear (power-law) models to predict wetland carbon dioxide (CO2) and methane (CH4) fluxes based on a sub-set of climatic, hydrologic and environmental drivers such as the photosynthetically active radiation, soil temperature, water depth, and soil salinity. The models were tested with field data for multiple sites and seasons (2012-13) collected from the Waquoit Bay, MA. The model estimated the annual wetland carbon storage by up-scaling the instantaneous predicted fluxes to an extended growing season (e.g., May-October) and by accounting for the net annual lateral carbon fluxes between the wetlands and estuary. The Excel Spreadsheet model is a simple ecological engineering tool for coastal carbon management and their incorporation into a potential carbon market under a changing climate, sea level and environment. Specifically, the model can help to determine appropriate GHG offset protocols and monitoring plans for projects that focus on tidal wetland restoration and maintenance.

  12. Ecological characterization of the lower Everglades, Florida Bay, and the Florida Keys

    Energy Technology Data Exchange (ETDEWEB)

    Schomer, N.S.; Drew, R.D.

    1982-09-01

    A conceptual model of the study area identifies four major ecological zones: (1) terrestrial and freshwater wetlands, (2) estuarine and saltwater wetlands, (3) Florida Bay and mangrove islands, and (4) the Florida Keys. These zones are delineated by differences in basic physical-chemical background factors which in turn promote characteristic ecological communities. The terrestrial and freshwater wetlands support pinelands, sawgrass marshes, wet prairies, sloughs and occasional tree islands. The estuarine and saltwater wetlands support mangrove forests, salt marshes and oscillating salinity systems. Florida Bay exhibits oscillating meso- to hypersaline waters over grassbeds on marine lime mud sediments surrounding deeper lake areas. The exposed tips of the mud banks frequently support mangrove or salt prairie vegetation. The Florida Keys support almost all of the above communities to some small degree but are characterized by extensive offshore coral reefs. The productivity of these communities with regard to fish and wildlife reflects (1) the diversity and type of habitats available to species that are potentially capable of exploiting them, (2) the degree of alteration of these habitats by man and natural forces, and (3) historical, biogeographic and random factors that restrict organisms to specific environments or prohibit them from exploiting a potential habitat.

  13. Sediment accumulation in prairie wetlands under a changing climate: The relative roles of landscape and precipitation

    Science.gov (United States)

    Skagen, Susan K.; Burris, Lucy E.; Granfors, Diane A.

    2016-01-01

    Sediment accumulation threatens the viability and hydrologic functioning of many naturally formed depressional wetlands across the interior regions of North America. These wetlands provide many ecosystem services and vital habitats for diverse plant and animal communities. Climate change may further impact sediment accumulation rates in the context of current land use patterns. We estimated sediment accretion in wetlands within a region renowned for its large populations of breeding waterfowl and migrant shorebirds and examined the relative roles of precipitation and land use context in the sedimentation process. We modeled rates of sediment accumulation from 1971 through 2100 using the Revised Universal Soil Loss Equation (RUSLE) with a sediment delivery ratio and the Unit Stream Power Erosion Deposition model (USPED). These models predicted that by 2100, 21–33 % of wetlands filled completely with sediment and 27–46 % filled by half with sediments; estimates are consistent with measured sediment accumulation rates in the region reported by empirical studies. Sediment accumulation rates were strongly influenced by size of the catchment, greater coverage of tilled landscape within the catchment, and steeper slopes. Conservation efforts that incorporate the relative risk of infilling of wetlands with sediments, thus emphasizing areas of high topographic relief and large watersheds, may benefit wetland-dependent biota.

  14. Analysis on vegetation changes of Maqu alpine wetlands in the Yellow River source region

    Science.gov (United States)

    Chu, Lin; Huang, Chong; Liu, Gaohuan; Liu, Qingsheng; Zhao, Jun

    2014-11-01

    The Maqu alpine wetlands have irreplaceable function in maintaining ecological balance and conserving biodiversity to the upriver regions of the Yellow River. In last 30 years, Global warming causes significant changes in vegetation. However, the Maqu alpine wetland is undergoing a degradation caused by warming and drying climate. Aim of this study is to investigate the vegetation changes for a better understanding the consequence of climate variations to the wetland degradation. Based on the Landsat TM images of 2000 and 2010, the landscape pattern changes were analyzed by classification statistics, dynamic transfer matrix and landscape pattern indices. Based on the MOD11A2 and MOD13A2 data from 2000 to 2010, NDVI and land surface temperature (LST) dataset were extracted. NDVI time-series data processed with S-G filtering method was used to find temporal and spatial variation characteristics, and linear trend was analyzed by ordinary least squares regression method. NDVI and LST were used to construct Ts-NDVI feature space, and then TVDI was obtained to explore changes of soil moisture. Relationship between climate variations and wetland degradation were found by ordinary least squares regression method. Results indicated that both wetland area and landscape heterogeneity decreased. Annual NDVI presented fluctuated decreasing trend and there was strong spatial heterogeneity in patterns of NDVI change. Annual TVDI proved to have an increasing trend which showed the drought gradually intensified. "Warming and drought" climate appear to be critical factors contributing to wetland degradation. Precipitation has a stronger correlation rather than temperature.

  15. Model estimation of land-use effects on water levels of northern Prairie wetlands

    Science.gov (United States)

    Voldseth, R.A.; Johnson, W.C.; Gilmanov, T.; Guntenspergen, G.R.; Millett, B.V.

    2007-01-01

    Wetlands of the Prairie Pothole Region exist in a matrix of grassland dominated by intensive pastoral and cultivation agriculture. Recent conservation management has emphasized the conversion of cultivated farmland and degraded pastures to intact grassland to improve upland nesting habitat. The consequences of changes in land-use cover that alter watershed processes have not been evaluated relative to their effect on the water budgets and vegetation dynamics of associated wetlands. We simulated the effect of upland agricultural practices on the water budget and vegetation of a semipermanent prairie wetland by modifying a previously published mathematical model (WETSIM). Watershed cover/land-use practices were categorized as unmanaged grassland (native grass, smooth brome), managed grassland (moderately heavily grazed, prescribed burned), cultivated crops (row crop, small grain), and alfalfa hayland. Model simulations showed that differing rates of evapotranspiration and runoff associated with different upland plant-cover categories in the surrounding catchment produced differences in wetland water budgets and linked ecological dynamics. Wetland water levels were highest and vegetation the most dynamic under the managed-grassland simulations, while water levels were the lowest and vegetation the least dynamic under the unmanaged-grassland simulations. The modeling results suggest that unmanaged grassland, often planted for waterfowl nesting, may produce the least favorable wetland conditions for birds, especially in drier regions of the Prairie Pothole Region. These results stand as hypotheses that urgently need to be verified with empirical data.

  16. A Budyko approach to assessing catchment deforestation impacts on the water yield to global wetlands

    Science.gov (United States)

    Larsen, Joshua; Woodward, Craig; Shulmeister, James

    2015-04-01

    Reduced evapotranspiration (ET) through the conversion of forest to grass and the resultant increase in streamflow water yields are well established, however the consequences for the water balance of standing bodies of water within catchments have received comparatively less attention. Evaluating these impacts at the annual time scale, and across the globe is difficult to parametrise using conventional water balance models, however the relative simplicity of the Budyko hypothesis enables such a first order analysis. One widely used Budyko approach allows ET to be differentiated according to a single parameter, and existing data suggests ET can be reduced by ~1/3 following the conversion from forest to grass across a wide range of precipitation inputs. Using global databases of wetlands, aridity index, and current vs original forest cover, we find the water available to wetlands can increase by up to 15% of precipitation in relatively humid climates where complete deforestation has occurred. This is significant since it may convert previously ephemeral systems to permanent wetlands, or create entirely new wetlands. Moreover, a conservative estimate based on our datasets suggests 9-12% of global wetlands are significantly affected by this change in hydrology due to deforestation. Human impact studies in lake and wetland systems rarely test for changes in hydrology, and thus this effect is largely unrecognised. The latitudinal structure of these impacts, sensitivity to degree of deforestation, and sensitivity to the assumption of the 1/3 ET reduction are also explored.

  17. Wetland hydrology indicators of Maluti Mountains wetlands in Lesotho

    African Journals Online (AJOL)

    Hydric soil morphological features are generally accepted to be reliable indicators of wetland hydrology. The relationship between soil water saturation and soil morphological indices is evaluated in this study from bi-weekly water level data taken over a period of two years. The hydrological behaviour of the Bokong ...

  18. Conserved variable analysis of the marine boundary layer and air ...

    Indian Academy of Sciences (India)

    The present study is based on the observed features of the MBL (Marine Boundary Layer) during the Bay of Bengal and Monsoon Experiment (BOBMEX) - Pilot phase. Conserved Variable Analysis (CVA) of the conserved variables such as potential temperature, virtual potential temperature, equivalent potential temperature ...

  19. Conserved variable analysis of the marine boundary layer and air

    Indian Academy of Sciences (India)

    The present study is based on the observed features of the MBL (Marine Boundary Layer) during the Bay of Bengal and Monsoon Experiment (BOBMEX) - Pilot phase. Conserved Variable Analysis (CVA) of the conserved variables such as potential temperature, virtual potential temperature, equivalent potential temperature ...

  20. Design and Implement a System of Wastewater Treatment Based on Wetlands

    Directory of Open Access Journals (Sweden)

    Martha L. Dominínguez-Patiño

    2012-04-01

    Full Text Available The wetlands are considered as a natural passive cleaning of waste water. Is a process characterizes by its simplicity of operation, low or zero-energy consumption and low waste production. These consist of shallow ponds planted with plants. The processes of decontamination are performed simultaneously by its physical, chemical and biological properties. The objectives of this work are design and implement a system of artificial wetlands as an alternative method for treating waste water produced from the Faculty of Chemistry Science and Engineering that allow to reduce the costs of operation, knowing the degree of water pollution to determine how efficient the wetland and, finally improve the health and environmental conditions of the irrigation water. So the first step was to know the degree of water pollution and quantity to determine the wetland process variables. The second step was to determine the kind of plants that allow reducing the water contaminants. The Manning formula was applied to evaluate the free flow and Darcy’s equation for the surface flow by wetlands. A micro-scale prototype was design and built based on buckets. The absorption capacity of several plants (Bacopa monnieri, Nephrolepis exaltata,Tradescantia zebrine was determined. Also we use a natural filter consisting of Tezontle (first layer, sand (second layer, gravel (third layer, sand (fourth layer, Tezontle (fifth layer, gravel (sixth layer, sand (seventh layer and, organic substrate (eighth layer. A wetland decreases more than 60% the cost compared to a water purification plant as everything is based biodegradable materials and not using any energy or sophisticated equipment to water filtration. Wetlands not only help to purify the water, but also help the conservation of flora and fauna that is dependent on wet conditions, as only biodegradable materials are used there is no pollution to the ground, helping the conservation of the environment. Today we are

  1. Composition and Dynamics of Migratory and Resident Avian Population in Wintering Wetlands from Northern India

    Directory of Open Access Journals (Sweden)

    Kaushalendra Kumar JHA

    2015-03-01

    Full Text Available Twelve wetlands occurring in four different ecozones in Uttar Pradesh (UP, India, were selected for studying the winter composition and dynamics of avian populations. Wetland information was collected from office records of the UP Forest department. Bird populations were estimated by transect method and block-in-flock-in-sector method for woodland and aquatic birds, respectively. Across the twelve selected wetlands a total of 486,182 individuals belonging to 161 species of birds on 15,592 ha were recorded during the winter of 2010-11. The data were analyzed to assess the relationship between wetland characteristics and avian populations. Aquatic vegetation, surrounding vegetation, water availability and climate were found as important factors related to avian populations. January was found to be the peak of bird assemblage, while winter times before and after January were the waxing and waning period, respectively. Species richness and species diversity of aquatic birds varied between 18-58 and 1.90-3.20, respectively, and of all bird species between 23-109, and 1.73-3.81, respectively. The density of aquatic birds ranged between 17-384 ha-1. The most common migratory birds in wetlands were Northern Pintail, Common Teal and Greylag Goose. Common resident birds included Asian Openbill, Darter, Little Egret, Common Coot, Little Cormorant, Grey Heron, Purple Heron, Indian Pond Heron, Common Moorhen, Purple Swamphen, Cattle Egret, Indian Sarus Crane and White-throated Kingfisher. For improved conservation of aquatic avian fauna, management prescriptions are suggested for wetlands under current management which could also be extended to other wetlands, whereas conservation of avian fauna to be the emphasis.

  2. Conservation Value

    OpenAIRE

    Tisdell, Clement A.

    2010-01-01

    This paper outlines the significance of the concept of conservation value and discusses ways in which it is determined paying attention to views stemming from utilitarian ethics and from deontological ethics. The importance of user costs in relation to economic decisions about the conservation and use of natural resources is emphasised. Particular attention is given to competing views about the importance of conserving natural resources in order to achieve economic sustainability. This then l...

  3. Investigation of wind and water level for the Giacomini Wetland Restoration Project, Point Reyes National Seashore

    Science.gov (United States)

    Dingler, John R.; Anima, Roberto J.

    2007-01-01

    Point Reyes National Seashore (PRNS), comprising unique elements of geological, biological, and historical interest, is located on the central California coast approximately 60 km northwest of San Francisco. The National Seashore contains nearly 130 km of exposed and protected shorelines, spectacular coastal cliffs and headlands, lagoons, open grasslands, bushy hillsides, and forested ridges. Approximately 30 km of the shoreline are coastal-dune habitat that supports 11 federally listed species, including the threatened western snowy plover and the endangered plants Tidestrom's lupine (Lupinus tidestromii) and beach layia (Layia carnosa). The San Andreas Fault, a right-lateral strike-slip fault, trends northwest along the northeastern side of the park. Tomales Bay, which is straight, long, narrow, and shallow, runs along the northeastern boundary of PRNS. The Bay, which fills the northwestern end of a rift valley at the intersection of the San Andreas Fault with the coastline, is approximately 20 km long, 2 km wide, and 6 m deep with mountainous terrain to the southwest and rolling hills to the northeast. Tomales Bay is one of the cleanest estuaries on the West Coast. In winter, approximately 17,000 to 20,000 shorebirds inhabit Tomales Bay and Bodega Bay, which lies directly to the north. At the head of Tomales Bay, the Giacomini Ranch comprises 563 acres of pastureland currently being used for grazing dairy cattle. After more than 50 years of operation as a dairy, the National Park Service acquired the Giacomini property with the intention to restore most of it and the nearby Olema Marsh to tidal wetland. Restoration will add approximately 4% to the existing coastal wetlands in California. The project will return the headwaters of Tomales Bay and two major stream intersections to an intertidal marsh environment, enhancing habitat for both wildlife and fish populations and contributing to the long-term health of Tomales Bay. Prior to the establishment of the ranch

  4. A Review of Wetland Remote Sensing.

    Science.gov (United States)

    Guo, Meng; Li, Jing; Sheng, Chunlei; Xu, Jiawei; Wu, Li

    2017-04-05

    Wetlands are some of the most important ecosystems on Earth. They play a key role in alleviating floods and filtering polluted water and also provide habitats for many plants and animals. Wetlands also interact with climate change. Over the past 50 years, wetlands have been polluted and declined dramatically as land cover has changed in some regions. Remote sensing has been the most useful tool to acquire spatial and temporal information about wetlands. In this paper, seven types of sensors were reviewed: aerial photos coarse-resolution, medium-resolution, high-resolution, hyperspectral imagery, radar, and Light Detection and Ranging (LiDAR) data. This study also discusses the advantage of each sensor for wetland research. Wetland research themes reviewed in this paper include wetland classification, habitat or biodiversity, biomass estimation, plant leaf chemistry, water quality, mangrove forest, and sea level rise. This study also gives an overview of the methods used in wetland research such as supervised and unsupervised classification and decision tree and object-based classification. Finally, this paper provides some advice on future wetland remote sensing. To our knowledge, this paper is the most comprehensive and detailed review of wetland remote sensing and it will be a good reference for wetland researchers.

  5. Lake Superior Coastal Wetland Fish Assemblages and ...

    Science.gov (United States)

    The role of the coastal margin and the watershed context in defining the ecology of even very large lakes is increasingly being recognized and examined. Coastal wetlands are both important contributors to the biodiversity and productivity of large lakes and important mediators of the lake-basin connection. We explored wetland-watershed connections and their relationship to wetland function and condition using data collected from 37 Lake Superior wetlands spanning a substantial geographic and geomorphic gradient. While none of these wetlands are particularly disturbed, there were nevertheless clear relationships between watershed landuse and wetland habitat and biota, and these varied consistently across wetland type categories that reflected the strength of connection to the watershed. For example, water clarity and vegetation structure complexity declined with decreasing percent natural land cover, and these effects were strongest in riverine wetlands (having generally large watersheds and tributary-dominated hydrology) and weakest in lagoon wetlands (having generally small watersheds and lake-dominate hydrology). Fish abundance and species richness both increased with decreasing percent natural land cover while species diversity decreased, and again the effect was strongest in riverine wetlands. Lagoonal wetlands, which lack any substantial tributary, consistently harbored the fewest species of fish and a composition different from the more watershed-lin

  6. Richards Bay effluent pipeline

    CSIR Research Space (South Africa)

    Lord, DA

    1986-07-01

    Full Text Available ..................................... 26 BACKGROUND Historical The town of Richards Bay is situated on the east coast of South Africa, approximately 160 km north-east of Durban, and was named after Sir Frederick William Richards. Although the area was already known...

  7. Ecosystem evaluation (1989-2012) of Ramsar wetland Deepor Beel using satellite-derived indices.

    Science.gov (United States)

    Mozumder, Chitrini; Tripathi, N K; Tipdecho, Taravudh

    2014-11-01

    The unprecedented urban growth especially in developing countries has laid immense pressure on wetlands, finally threatening their existence altogether. A long-term monitoring of wetland ecosystems is the basis of planning conservation measures for a sustainable development. Deepor Beel, a Ramsar wetland and major storm water basin of the River Brahmaputra in the northeastern region of India, needs particular attention due to its constant degradation over the past decades. A rule-based classification algorithm was developed using Landsat (2011)-derived indices, namely Normalised Difference Water Index (NDWI), Modified Normalised Difference Water Index (MNDWI), Normalised Difference Pond Index (NDPI), Normalised Difference Vegetation Index (NDVI) and field data as ancillary information. Field data, ALOS AVNIR and Google Earth images were used for accuracy assessment. A fuzzy accuracy assessment of the classified data sets showed an overall accuracy of 82 % for MAX criteria and 90 % for RIGHT criteria. The rules were used to classify major wetland cover types during low water season (January) in 1989, 2001 and 2012. The statistical analysis of the classified wetland showed heavy manifestation in aquatic vegetation and other features indicating severe eutrophication over the past 23 years. This degradation was closely related to major contributing anthropogenic factors, such as a railway line construction, growing croplands, waste disposal and illegal human settlements in the wetland catchment. In addition, the landscape development index (LDI) indicated a rapid increase in the impact of the surrounding land use on the wetland from 1989 to 2012. The techniques and results from this study may prove useful for top-down landscape analyses of this and other freshwater wetlands.

  8. Detection and characterizacion of Colombian wetlands using Alos Palsar and MODIS imagery

    Science.gov (United States)

    Estupinan-Suarez, L. M.; Florez-Ayala, C.; Quinones, M. J.; Pacheco, A. M.; Santos, A. C.

    2015-04-01

    Wetlands regulate the flow of water and play a key role in risk management of extreme flooding and drought. In Colombia, wetland conservation has been a priority for the government. However, there is an information gap neither an inventory nor a national baseline map exists. In this paper, we present a method that combines a wetlands thematic map with remote sensing derived data, and hydrometeorological stations data in order to characterize the Colombian wetlands. Following the adopted definition of wetlands, available spatial data on land forms, soils and vegetation was integrated in order to characterize spatially the occurrence of wetlands. This data was then complemented with remote sensing derived data from active and passive sensors. A flood frequency map derived from dense time series analysis of the ALOS PALSAR FBD /FBS data (2007-2010) at 50m resolution was used to analyse the recurrence of flooding. In this map, flooding under the canopy and open water classes could be mapped due to the capabilities of the L-band radar. In addition, MODIS NDVI profiles (2007-2012) were used to characterize temporally water mirrors and vegetation, founding different patterns at basin levels. Moreover, the Colombian main basins were analysed and typified based on hydroperiods, highlighting different hydrological regimes within each basin. The combination of thematic maps, SAR data, optical imagery and hydrological data provided information on the spatial and temporal dynamics of wetlands at regional scales. Our results provide the first validated baseline wetland map for Colombia, this way providing valuable information for ecosystem management.

  9. Nevada Test Site Wetlands Assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. J. Hansen

    1997-05-01

    This report identifies 16 Nevada Test Site (NTS) natural water sources that may be classified by the U.S. Army Corps of Engineers (USACE) as jurisdictional wetlands and identifies eight water sources that may be classified as waters of the United States. These water sources are rare, localized habitats on the NTS that are important to regional wildlife and to isolated populations of water tolerant plants and aquatic organisms. No field investigations on the NTS have been conducted in the past to identify those natural water sources which would be protected as rare habitats and which may fall under regulatory authority of the Clean Water Act (CWA) of 1997. This report identifies and summarizes previous studies of NTS natural water sources, and identifies the current DOE management practices related to the protection of NTS wetlands. This report also presents management goals specific for NTS wetlands that incorporate the intent of existing wetlands legislation, the principles of ecosystem management, and the interests of regional land managers and other stakeholders.

  10. A Hydrogeomorphic Classification for Wetlands

    Science.gov (United States)

    1993-08-01

    factors like fire, herbivory , frost, and other variables were necessary to further characterize specific wetlands and their vegeta- tion (Figure 5c). During...Heinselman, M. L. (1970). "Landscape evolution , peatland types, and the environment in the Lake Agassiz Peatlands Natural Area, Minnesota," Ecological

  11. Magellanic Wetlands : More than Moor

    Czech Academy of Sciences Publication Activity Database

    Filipová, L.; Hédl, Radim; Dančák, M.

    2013-01-01

    Roč. 48, č. 2 (2013), s. 163-188 ISSN 1211-9520 R&D Projects: GA ČR GA206/08/0389 Institutional support: RVO:67985939 Keywords : wetland * vegetation * environment Subject RIV: EF - Botanics Impact factor: 1.612, year: 2013

  12. Sources of atmospheric methane from coastal marine wetlands

    International Nuclear Information System (INIS)

    Harriss, R.C.; Sebacher, D.I.; Bartlett, K.B.; Bartlett, D.S.

    1982-01-01

    Biological methanogenesis in wetlands is believed to be one of the major sources of global tropospheric methane. The present paper reports measurements of methane distribution in the soils, sediments, water and vegetation of coastal marine wetlands. Measurements, carried out in the salt marshes Bay Tree Creek in Virginia and Panacea in northwest Florida, reveal methane concentrations in soils and sediments to vary with depth below the surface and with soil temperature. The fluxes of methane from marsh soils to the atmosphere at the soil-air interface are estimated to range from -0.00067 g CH 4 /sq m per day (methane sink) to 0.024 g CH 4 /sq m per day, with an average value of 0.0066 g CH 4 /sq m per day. Data also demonstrate the important role of tidal waters percolating through marsh soils in removing methane from the soils and releasing it to the atmosphere. The information obtained, together with previous studies, provides a framework for the design of a program based on in situ and remote sensing measurements to study the global methane cycle

  13. Vegetation survey of Four Mile Creek wetlands. [Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C.

    1990-11-01

    A survey of forested wetlands along upper Four Mile Creek was conducted. The region from Road 3 to the creek headwaters was sampled to evaluate the composition of woody and herbaceons plant communities. All sites were found to fall into either the Nyssa sylvatica (Black Gum) -- Persea borbonia (Red Bay) or Nyssa sylvatica -- Acer rubrum (Red Maple) types. These community types are generally species-rich and diverse. Previous studies (Greenwood et al., 1990; Mackey, 1988) demonstrated contaminant stress in areas downslope from the F- and H-Area seepage basins. In the present study there were some indications of contaminant stress. In the wetland near H-Area, shrub basal area, ground cover stratum species richness, and diversity were low. In the area surrounding the F-Area tree kill zone, ground cover stratum cover and shrub basal area were low and ground cover stratum species richness was low. The moderately stressed site at F-Area also showed reduced overstory richness and diversity and reduced ground cover stratum richness. These results could, however, be due to the very high basal area of overstory trees in both stressed F-Area sites that would reduce light availability to understory plants. No threatened or endangered plant species were found in the areas sampled. 40 refs., 4 figs., 8 tabs.

  14. Researchers seek to reduce nitrogen and phosphorus pollution of Chesapeake Bay

    OpenAIRE

    Greiner, Lori A.

    2005-01-01

    Virginia Tech researchers in the Department of Dairy Science in the College of Agriculture and Life Sciences have been awarded an $882,910 Conservation Innovation Grant (CIG) from the U.S. Department of Agriculture's Natural Resource Conservation Service (NRCS) to assist dairy farmers in reducing pollution in the Chesapeake Bay Watershed.

  15. Analysis of complex wetland ecological system: Effect of harvesting

    Directory of Open Access Journals (Sweden)

    Nilesh Kumar Thakur

    2017-12-01

    Full Text Available In this paper, we have studied interaction among diffusive phytoplankton, zooplankton and fish population with Beddington-DeAngelis type functional response for the zooplankton and Holling type III for fish. The stability analysis of the model system with diffusion and without diffusion has been analyzed. The conditions for Maximum sustainable yield and Optimal harvesting policy for non-spatial model have been discussed. Our study may be helpful to improve and manage ecosystem services provided by wetlands on an agricultural landscapes include fisheries, water conservation, climate change and many more.

  16. The spatial distribution of soil organic carbon in tidal wetland soils of the continental United States.

    Science.gov (United States)

    Hinson, Audra L; Feagin, Rusty A; Eriksson, Marian; Najjar, Raymond G; Herrmann, Maria; Bianchi, Thomas S; Kemp, Michael; Hutchings, Jack A; Crooks, Steve; Boutton, Thomas

    2017-12-01

    Tidal wetlands contain large reservoirs of carbon in their soils and can sequester carbon dioxide (CO 2 ) at a greater rate per unit area than nearly any other ecosystem. The spatial distribution of this carbon influences climate and wetland policy. To assist with international accords such as the Paris Climate Agreement, national-level assessments such as the United States (U.S.) National Greenhouse Gas Inventory, and regional, state, local, and project-level evaluation of CO 2 sequestration credits, we developed a geodatabase (CoBluCarb) and high-resolution maps of soil organic carbon (SOC) distribution by linking National Wetlands Inventory data with the U.S. Soil Survey Geographic Database. For over 600,000 wetlands, the total carbon stock and organic carbon density was calculated at 5-cm vertical resolution from 0 to 300 cm of depth. Across the continental United States, there are 1,153-1,359 Tg of SOC in the upper 0-100 cm of soils across a total of 24 945.9 km 2 of tidal wetland area, twice as much carbon as the most recent national estimate. Approximately 75% of this carbon was found in estuarine emergent wetlands with freshwater tidal wetlands holding about 19%. The greatest pool of SOC was found within the Atchafalaya/Vermilion Bay complex in Louisiana, containing about 10% of the U.S. total. The average density across all tidal wetlands was 0.071 g cm -3 across 0-15 cm, 0.055 g cm -3 across 0-100 cm, and 0.040 g cm -3 at the 100 cm depth. There is inherent variability between and within individual wetlands; however, we conclude that it is possible to use standardized values at a range of 0-100 cm of the soil profile, to provide first-order quantification and to evaluate future changes in carbon stocks in response to environmental perturbations. This Tier 2-oriented carbon stock assessment provides a scientific method that can be copied by other nations in support of international requirements. © 2017 John Wiley & Sons Ltd.

  17. Meteorological and hydrographic data collected from Middle Bay Lighthouse Station in Mobile Bay, Alabama, Gulf of Mexico from 2014-01-01 to 2014-12-31 (NCEI Accession 0141138)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dauphin Island Sea Lab and the Mobile Bay National Estuary Program have partnered with the Alabama Department of Conservation and Mobile County to provide real-time...

  18. Vegetation Impact and Recovery from Oil-Induced Stress on Three Ecologically Distinct Wetland Sites in the Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Kristen Shapiro

    2016-05-01

    Full Text Available April 20, 2010 marked the start of the British Petroleum Deepwater Horizon oil spill, the largest marine oil spill in US history, which contaminated coastal wetland ecosystems across the northern Gulf of Mexico. We used hyperspectral data from 2010 and 2011 to compare the impact of oil contamination and recovery of coastal wetland vegetation across three ecologically diverse sites: Barataria Bay (saltmarsh, East Bird’s Foot (intermediate/freshwater marsh, and Chandeleur Islands (mangrove-cordgrass barrier islands. Oil impact was measured by comparing wetland pixels along oiled and oil-free shorelines using various spectral indices. We show that the Chandeleur Islands were the most vulnerable to oiling, Barataria Bay had a small but widespread and significant impact, and East Bird’s Foot had negligible impact. A year later, the Chandeleur Islands showed the strongest signs of recovery, Barataria Bay had a moderate recovery, and East Bird’s Foot had only a slight increase in vegetation. Our results indicate that the recovery was at least partially related to the magnitude of the impact such that greater recovery occurred at sites that had greater impact.

  19. Development of the reed bed in Matsalu wetland, Estonia: responses to neotectonic land uplift, sea level changes and human influences

    Directory of Open Access Journals (Sweden)

    Mats Meriste

    2015-05-01

    Full Text Available We studied reed bed development in Matsalu wetland and the Kasari River delta, Estonia, since the late 18th century using historical schemes, topographical maps and aerial photographs. Our aim was to understand the mechanisms controlling reed distribution in Matsalu wetland, the largest coastal wetland of the eastern Baltic Sea occupying an area of about 25 km2. Natural development of the reed bed in Matsalu Bay and the Kasari delta is mainly controlled by shoreline displacement due to post-glacial neotectonic land uplift. The dredging of the Kasari delta in the 1920s–1930s caused a rapid seaward migration of reed bed communities due to the dispersal of fragmented rhizomes on the shallow sea bottom and along the canal banks reaching Matsalu Bay, while the landward parts of the former wetland were occupied by meadow communities. The expansion of the reed bed started in between the 1951s and 1970s and a maximum extent of 27 km2 was gained by the late 1970s at the peak of eutrophication. In the last decades the reed bed development has been influenced by sea level rise and increased intensity of cyclonic activity in the Baltic Sea, which has caused the deterioration of the reed bed that was weakened by eutrophication due to nutrient inflow from agricultural landscapes mainly in the 1960s–1980s.

  20. Sustainable development in the Hudson Bay/James Bay bioregion

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    An overview is presented of projects planned for the James Bay/Hudson Bay region, and the expected environmental impacts of these projects. The watershed of James Bay and Hudson Bay covers well over one third of Canada, from southern Alberta to central Ontario to Baffin Island, as well as parts of north Dakota and Minnesota in the U.S.A. Hydroelectric power developments that change the timing and rate of flow of fresh water may cause changes in the nature and duration of ice cover, habitats of marine mammals, fish and migratory birds, currents into and out of Hudson Bay/James Bay, seasonal and annual loads of sediments and nutrients to marine ecosystems, and anadromous fish populations. Hydroelectric projects are proposed for the region by Quebec, Ontario and Manitoba. In January 1992, the Canadian Arctic Resources Committee (CARC), the Environmental Committee of Sanikuluaq, and the Rawson Academy of Arctic Science will launch the Hudson Bay/James Bay Bioregion Program, an independent initiative to apply an ecosystem approach to the region. Two main objectives are to provide a comprehensive assessment of the cumulative impacts of human activities on the marine and freshwater ecosystems of the Hudson Bay/James Bay bioregion, and to foster sustainable development by examining and proposing cooperative processes for decision making among governments, developers, aboriginal peoples and other stakeholders. 1 fig

  1. Restoring coastal wetlands that were ditched for mosquito control: a preliminary assessment of hydro-leveling as a restoration technique

    Science.gov (United States)

    Smith, Thomas J.; Tiling, Ginger; Leasure, Pamela S.

    2007-01-01

    The wetlands surrounding Tampa Bay, Florida were extensively ditched for mosquito control in the 1950s. Spoil from ditch construction was placed adjacent to the wetlands ditches creating mound-like features (spoil-mounds). These mounds represent a loss of 14% of the wetland area in Tampa Bay. Spoil mounds interfere with tidal flow and are locations for non-native plants to colonize (e.g., Schinus terebinthifolius). Removal of the spoil mounds to eliminate exotic plants, restore native vegetation, and re-establish natural hydrology is a restoration priority for environmental managers. Hydro-leveling, a new technique, was tested in a mangrove forest restoration project in 2004. Hydro-leveling uses a high pressure stream of water to wash sediment from the spoil mound into the adjacent wetland and ditch. To assess the effectiveness of this technique, we conducted vegetation surveys in areas that were hydro-leveled and in non-hydro-leveled areas 3 years post-project. Adult Schinus were reduced but not eliminated from hydro-leveled mounds. Schinus seedlings however were absent from hydro-leveled sites. Colonization by native species was sparse. Mangrove seedlings were essentially absent (≈2 m−2) from the centers of hydro-leveled mounds and were in low density on their edges (17 m−2) in comparison to surrounding mangrove forests (105 m−2). Hydro-leveling resulted in mortality of mangroves adjacent to the mounds being leveled. This was probably caused by burial of pneumatophores during the hydro-leveling process. For hydro-leveling to be a useful and successful restoration technique several requirements must be met. Spoil mounds must be lowered to the level of the surrounding wetlands. Spoil must be distributed further into the adjacent wetland to prevent burial of nearby native vegetation. Finally, native species may need to be planted on hydro-leveled areas to speed up the re-vegetation process.

  2. China's natural wetlands: past problems, current status, and future challenges

    Science.gov (United States)

    Shuqing An; Harbin Li; Baohua Guan; Changfang Zhou; Zhongsheng Wang; Zifa Deng; Yingbiao Zhi; Yuhong Liu; Chi Xu; Shubo Fang; Jinhui Jiang; Hongli Li

    2007-01-01

    Natural wetlands, occupying 3.8% of China's land and providing 54.9% of ecosystem services, are unevenly distributed among eight wetland regions. Natural wetlands in China suffered great loss and degradation (e.g., 23.0% freshwater swamps, 51.2% coastal wetlands) because of the wetland reclamation during China's long history of civilization, and the...

  3. Persistent organic pollutants in wetlands of the Mekong Basin

    Science.gov (United States)

    Triet, Tran; Barzen, Jeb Anthony; Choowaew, Sansanee; Engels, Jon Michael; Ni, Duong Van; Mai, Nguyen Anh; Inkhavilay, Khamla; Soben, Kim; Sethik, Rath; Gomotean, Bhuvadol; Thuyen, Le Xuan; Kyi, Aung; Du, Nguyen Huy; Nordheim, Richard; Lam, Ho Si Tung; Moore, Dorn M.; Wilson, Scott

    2013-01-01

    In this study, the presence and concentration of persistent organic pollutants (POP) were assessed in surface sediments collected from a wide variety of wetlands located throughout the Mekong Basin in Myanmar, Lao People’s Democratic Republic (PDR), Thailand, Cambodia, and Vietnam. Of the 39 POPs tested in 531 sediment samples, dichlorodiphenyltrichloroethane (DDT) and its metabolites endosulfan, hexachlorobenzene (HCB), and endrin were most commonly detected. Even though DDT was banned in the 1990s, some use of DDT may still be occurring in the Mekong Basin. The amount of metabolites for DDT—dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD)—found, however, suggests that use of DDT is on the decline throughout the region. HCB and endrin were found distributed broadly throughout the Mekong Basin but not in high amounts. The concentration and distribution of endosulfan and its metabolites represent a serious problem requiring further study and management action. While the total loading of POPs in wetland sediments of the Mekong Basin was generally low, hotspot sites occurred where concentrations exceeded established ecological risk thresholds. For example, wetlands of the open, dry dipterocarp forest of northern Cambodia and Vietnam as well as wetlands in the Mekong Delta of Vietnam contained high concentrations of some POPs. High concentrations of POPs were detected in some wetlands important for biodiversity conservation. Hotspots identified in wetlands such as the Tonle Sap not only had concentrations of DDT and DDE that exceeded Canadian and U.S. benchmarks, but fauna sampled in the area also showed high degrees of bioaccumulation of the same substances. Further and more extensive attention to monitoring POP presence in water birds, fish, and other aquatic organisms is warranted because of the bioaccumulation of these chemicals at higher levels in the food chain. This study represents a collaboration of eight universities from

  4. Working group report on wetlands and wildlife

    International Nuclear Information System (INIS)

    Teels, B.

    1991-01-01

    The results and conclusions of a working group held to discuss the state of knowledge and knowledge gaps concerning climatic change impacts on wetlands and wildlife are presented. Prairie pothole wetlands are extremely productive and produce ca 50% of all ducks in North America. The most productive, and most vulnerable to climate change, are small potholes, often less than one acre in area. Changes in water regimes and land use will have more impact on wildlife than changes in temperature. There are gaps in knowledge relating to: boreal wetlands and their wildlife, and response to climate; wetland inventories that include the smallest wetlands; coordinated schemes for monitoring status and trends of wetlands and wildlife; and understanding of ecological relationships within wetlands and their wildlife communities. Recommendations include: coordinate and enhance existing databases to provide an integrated monitoring system; establish research programs to increase understanding of ecological relationships within wetland ecosystems; evaluate programs and policies that affect wetlands; and promote heightened public awareness of general values of wetlands

  5. Changes in carbon stock associated with post-settlement wetland conversion in Southern Ontario, Canada, and implications for Holocene carbon dynamics

    Science.gov (United States)

    Byun, E.; Finkelstein, S. A.; Cowling, S. A.; Badiou, P.

    2017-12-01

    Organic matter accumulation often exceeds total respiration in wetlands, which makes them a sink in the global carbon cycle. Efforts are ongoing to inventory global wetland carbon stocks, but there remain non-negligible uncertainties for the present day as well as for the Holocene. Recent work compiling regional data for global-scale estimations is likely to be conservative as there are still poorly evaluated sites. In temperate regions, wetland conversion for other land uses has been so prevalent that accurate estimates of the extent of natural wetlands prior to disturbance have been difficult to achieve. Most studies of long-term peat carbon accumulation address boreal/subarctic bogs and fens, and more recently, tropical peat swamps. Temperate swamps and marshes are often categorized as non-peat forming wetlands and have not been explicitly considered in Holocene carbon storage. This study aims to reassess wetlands in southern Ontario as an example of an underestimated organic carbon stock. By combining two wetland maps, one for pre-settlement (before 1850 AD) extent and the other for current land cover, pre-settlement wetland cover was reconstructed and assigned to one of five wetland classes (bog, fen, tree/shrub swamp, and marsh). Carbon density for each wetland class was obtained from a peatland inventory for southeastern Ontario, including peat core data from swamp and marsh sites. Potential organic carbon stock in each wetland class was quantified by the product of the extent and the carbon density, resulting in an estimate of 3.3 PgC for pre-settlement wetlands in the study area, and 1.3 PgC stored in present-day wetlands. The difference gives 2 PgC loss for the past 150 years, but this represents a maximum potential as 56-81% of the original wetlands were converted to croplands that will retain some carbon. This study highlights the importance of temperate wetlands not included in syntheses of global peatland carbon over the Holocene. Southern Ontario is

  6. Complex influences of low-head dams and artificial wetlands on fishes in a Colorado River tributary system

    Science.gov (United States)

    Beatty, R.J.; Rahel, F.J.; Hubert, W.A.

    2009-01-01

    Low-head dams in arid regions restrict fish movement and create novel habitats that have complex effects on fish assemblages. The influence of low-head dams and artificial wetlands on fishes in Muddy Creek, a tributary of the Colorado River system in the USA was examined. Upstream, fish assemblages were dominated by native species including two species of conservation concern, bluehead sucker, Catostomus discobolus Cope, and roundtail chub, Gila robusta Baird and Girard. The artificial wetlands contained almost exclusively non-native fathead minnow, Pimephales promelas Rafinesque, and white sucker, Catostomus commersonii (Lacep??de). Downstream, fish assemblages were dominated by non-native species. Upstream spawning migrations by non-native white suckers were blocked by dams associated with the wetlands. However, the wetlands do not provide habitat for native fishes and likely inhibit fish movement. The wetlands appear to be a source habitat for non-native fishes and a sink habitat for native fishes. Two non-native species, sand shiner, Notropis stramineus (Cope), and redside shiner, Richardsonius balteatus (Richardson), were present only downstream of the wetlands, suggesting a beneficial role of the wetlands in preventing upstream colonisation by non-native fishes. ?? 2009 Blackwell Publishing Ltd.

  7. Valuing the Recreational Benefits of Wetland Adaptation to Climate Change: A Trade-off Between Species' Abundance and Diversity

    Science.gov (United States)

    Faccioli, Michela; Riera Font, Antoni; Torres Figuerola, Catalina M.

    2015-03-01

    Climate change will further exacerbate wetland deterioration, especially in the Mediterranean region. On the one side, it will accelerate the decline in the populations and species of plants and animals, this resulting in an impoverishment of biological abundance. On the other one, it will also promote biotic homogenization, resulting in a loss of species' diversity. In this context, different climate change adaptation policies can be designed: those oriented to recovering species' abundance and those aimed at restoring species' diversity. Based on the awareness that knowledge about visitors' preferences is crucial to better inform policy makers and secure wetlands' public use and conservation, this paper assesses the recreational benefits of different adaptation options through a choice experiment study carried out in S'Albufera wetland (Mallorca). Results show that visitors display positive preferences for an increase in both species' abundance and diversity, although they assign a higher value to the latter, thus suggesting a higher social acceptability of policies pursuing wetlands' differentiation. This finding acquires special relevance not only for adaptation management in wetlands but also for tourism planning, as most visitors to S'Albufera are tourists. Thus, given the growing competition to attract visitors and the increasing demand for high environmental quality and unique experiences, promoting wetlands' differentiation could be a good strategy to gain competitive advantage over other wetland areas and tourism destinations.

  8. 7 CFR 1410.22 - CRP conservation plan.

    Science.gov (United States)

    2010-01-01

    ... productive capability of the soil, improve water quality, protect wildlife or wetlands, protect a public well... plans and revisions of such plans shall be subject to the approval of CCC. (f) Mid-cover management... 7 Agriculture 10 2010-01-01 2010-01-01 false CRP conservation plan. 1410.22 Section 1410.22...

  9. The Impact of Human Activities on Biodiversity Conservation in a ...

    African Journals Online (AJOL)

    USER

    Jan – Jun 2006) www.wajae.org. Volume 9 (Jan – Jun 2006). Page 1 of 14. Paper 18 of 18. The Impact of Human Activities on Biodiversity Conservation in a. Coastal Wetland in Ghana. A. M. Wuver1 and D. K. Attuquayefio2*. 1 Achimota School ...

  10. Reshaping conservation

    DEFF Research Database (Denmark)

    Funder, Mikkel; Danielsen, Finn; Ngaga, Yonika

    2013-01-01

    members strengthen the monitoring practices to their advantage, and to some extent move them beyond the reach of government agencies and conservation and development practitioners. This has led to outcomes that are of greater social and strategic value to communities than the original 'planned' benefits......, although the monitoring scheme has also to some extent become dominated by local 'conservation elites' who negotiate the terrain between the state and other community members. Our findings suggest that we need to move beyond simplistic assumptions of community strategies and incentives in participatory...... conservation and allow for more adaptive and politically explicit governance spaces in protected area management....

  11. The relevance of the Mediterranean Region to colonial waterbird conservation

    Science.gov (United States)

    Erwin, R.M.; Crivelli, Alain J.; Hafner, Heinz; Fasola, Mauro; Erwin, R. Michael; McCrimmon, Donald A.=

    1996-01-01

    The Mediterranean Sea is the largest partially enclosed sea in the world and provides habitat to more than 100 species of waterbirds from the Palearctic-North African-Middle Eastern regions. Even though the Mediterranean suffers from pollution, has little tidal influence, and is oligotrophic, more than half of the western Palearctic populations of numerous waterfowl species winter in the region. Thirty-three species of colonial waterbirds breed along the 46,000 km Mediterranean coastline with nine species considered threatened or endangered, mostly because of wetland loss and degradation. The long history of human activity and scientific investigations in the region has taught some valuable lessons. In the area of colonial waterbird biology and conservation, we have learned important lessons about the value of long-term monitoring and research on selected populations. From marking studies of Greater Flamingos (Phoenicopterus ruber roseus) and Little Egrets (Egretta garzetta) results have been used to derive useful information about metapopulation dynamics. Involvement of both African and European biologists allowed year-round Studies of these species that yielded valuable spin-offs for training in avian and wetland conservation. We have also learned the value of man-made wetlands as feeding and nesting sites for some colonial waterbirds. Careful evaluations of the habitat quality of different types of wetlands are required, as in contaminant levels such as lead shot and pesticides. Wetland conservationists have also learned from some instructive mistakes. Dam construction and agricultural incentive programs sponsored by the European Community, the World Bank, and others from the past have largely ignored impacts on wetlands and wildlife. In some areas, economic ventures such as aquaculture operations and salt mining have not involved waterbird habitat needs in their planning. Research and conservation needs include: (1) establishing regional monitoring programs and

  12. Introduction to the Wetland Book 1: Wetland structure and function, management, and nethods

    Science.gov (United States)

    Davidson, Nick C.; Middleton, Beth A.; McInnes, Robert J.; Everard, Mark; Irvine, Kenneth; Van Dam, Anne A.; Finlayson, C. Max; Finlayson, C. Max; Everard, Mark; Irvine, Kenneth; McInnes, Robert J.; Middleton, Beth A.; Van Dam, Anne A.; Davidson, Nick C.

    2016-01-01

    The Wetland Book 1 is designed as a ‘first port-of-call’ reference work for information on the structure and functions of wetlands, current approaches to wetland management, and methods for researching and understanding wetlands. Contributions by experts summarize key concepts, orient the reader to the major issues, and support further research on such issues by individuals and multidisciplinary teams. The Wetland Book 1 is organized in three parts - Wetland structure and function; Wetland management; and Wetland methods - each of which is divided into a number of thematic Sections. Each Section starts with one or more overview chapters, supported by chapters providing further information and case studies on different aspects of the theme.

  13. A temporal and ecological analysis of the Huntington Beach Wetlands through an unmanned aerial system remote sensing perspective

    Science.gov (United States)

    Rafiq, Talha

    Wetland monitoring and preservation efforts have the potential to be enhanced with advanced remote sensing acquisition and digital image analysis approaches. Progress in the development and utilization of Unmanned Aerial Systems (UAS) and Unmanned Aerial Vehicles (UAV) as remote sensing platforms has offered significant spatial and temporal advantages over traditional aerial and orbital remote sensing platforms. Photogrammetric approaches to generate high spatial resolution orthophotos of UAV acquired imagery along with the UAV's low-cost and temporally flexible characteristics are explored. A comparative analysis of different spectral based land cover maps derived from imagery captured using UAV, satellite, and airplane platforms provide an assessment of the Huntington Beach Wetlands. This research presents a UAS remote sensing methodology encompassing data collection, image processing, and analysis in constructing spectral based land cover maps to augment the efforts of the Huntington Beach Wetlands Conservancy by assessing ecological and temporal changes at the Huntington Beach Wetlands.

  14. Water Conservation and Water Storage

    Science.gov (United States)

    Narayanan, M.

    2014-12-01

    Water storage can be a viable part of the solution to water conservation. This means that we should include reservoirs. Regardless, one should evaluate all aspects of water conservation principles. Recent drought in California indicates that there is an urgent need to re-visit the techniques used to maintain the water supply-chain mechanism in the entire state. We all recognize the fact that fish and wildlife depend on the streams, rivers and wetlands for survival. It is a well-known fact that there is an immediate need to provide solid protection to all these resources. Laws and regulations should help meet the needs of natural systems. Farmers may be forced to drilling wells deeper than ever. But, they will be eventually depleting groundwater reserves. Needless to say that birds, fish and wildlife cannot access these groundwater table. California is talking a lot about conservation. Unfortunately, the conservation efforts have not established a strong visible hold. The Environmental Protection Agency has a plan called E2PLAN (Narayanan, 2012). It is EPA's plan for achieving energy and environmental performance, leadership, accountability, and carbon neutrality. In June 2011, the EPA published a comprehensive, multi-year planning document called Strategic Sustainability Performance Plan. The author has previously reported these in detail at the 2012 AGU fall meeting. References: Ziegler, Jay (15 JUNE 2014). The Conversation: Water conservation efforts aren't taking hold, but there are encouraging signs. THE SACRAMENTO BEE. California. Narayanan, Mysore. (2012). The Importance of Water Conservation in the 21st Century. 72nd AGU International Conference. Eos Transactions: American Geophysical Union, Vol. 92, No. 56, Fall Meeting Supplement, 2012. H31I - 1255.http://www.sacbee.com/2014/06/15/6479862/jay-ziegler-water-conservation.html#storylink=cpy

  15. Mapping an invasive plant, Phragmites australis, in coastal wetlands using the EO-1 Hyperion hyperspectral sensor

    Science.gov (United States)

    Pengra, Bruce; Johnston, C.A.; Loveland, Thomas R.

    2007-01-01

    Mapping tools are needed to document the location and extent of Phragmites australis, a tall grass that invades coastal marshes throughout North America, displacing native plant species and degrading wetland habitat. Mapping Phragmites is particularly challenging in the freshwater Great Lakes coastal wetlands due to dynamic lake levels and vegetation diversity. We tested the applicability of Hyperion hyperspectral satellite imagery for mapping Phragmites in wetlands of the west coast of Green Bay in Wisconsin, U.S.A. A reference spectrum created using Hyperion data from several pure Phragmites stands within the image was used with a Spectral Correlation Mapper (SCM) algorithm to create a raster map with values ranging from 0 to 1, where 0 represented the greatest similarity between the reference spectrum and the image spectrum and 1 the least similarity. The final two-class thematic classification predicted monodominant Phragmites covering 3.4% of the study area. Most of this was concentrated in long linear features parallel to the Green Bay shoreline, particularly in areas that had been under water only six years earlier when lake levels were 66??cm higher. An error matrix using spring 2005 field validation points (n = 129) showed good overall accuracy-81.4%. The small size and linear arrangement of Phragmites stands was less than optimal relative to the sensor resolution, and Hyperion's 30??m resolution captured few if any pure pixels. Contemporary Phragmites maps prepared with Hyperion imagery would provide wetland managers with a tool that they currently lack, which could aid attempts to stem the spread of this invasive species. ?? 2006 Elsevier Inc. All rights reserved.

  16. EnviroAtlas - Potential Wetland Areas - Contiguous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EnviroAtlas Potential Wetland Areas (PWA) dataset shows potential wetland areas at 30-meter resolution. Beginning two centuries ago, many wetlands were turned...

  17. Hunting or habitat? Drivers of waterbird abundance and community structure in agricultural wetlands of southern India.

    Science.gov (United States)

    Ramachandran, Ramesh; Kumar, Ajith; Gopi Sundar, Kolla S; Bhalla, Ravinder Singh

    2017-09-01

    The relative impacts of hunting and habitat on waterbird community were studied in agricultural wetlands of southern India. We surveyed wetlands to document waterbird community, and interviewed hunters to document hunting intensity, targeted species, and the motivations for hunting. Our results show that hunting leads to drastic declines in waterbird diversity and numbers, and skew the community towards smaller species. Hunting intensity, water spread, and vegetation cover were the three most important determinants of waterbird abundance and community structure. Species richness, density of piscivorous species, and medium-sized species (31-65 cm) were most affected by hunting. Out of 53 species recorded, 47 were hunted, with a preference for larger birds. Although illegal, hunting has increased in recent years and is driven by market demand. This challenges the widely held belief that waterbird hunting in India is a low intensity, subsistence activity, and undermines the importance of agricultural wetlands in waterbird conservation.

  18. Developing new-generation machinery for vegetation management on protected wetlands in Poland

    Directory of Open Access Journals (Sweden)

    A.P. Dubowski

    2014-08-01

    Full Text Available Many protected wetlands and (especially fen peatlands in Poland require vegetation management to restore and maintain them as breeding areas for endangered bird species. The current practice of harvesting, baling and transporting grasses, reeds and other vegetation using tracked snow groomers and wheeled farm tractors can conflict with the nature conservation goals for these sites through disturbance of the ground surface and accidents leading to spillage of oil. To address these problems, the Industrial Institute of Agricultural Engineering (PIMR is developing new-generation agricultural machinery that will also be applicable in formal paludiculture. This article describes an innovative method for towing large bales of harvested biomass across wetlands that minimises ground pressure using any vehicle, and the development of amphibian tracked (ATV and hovercraft vehicles for biomass harvesting operations in wetlands.

  19. The fate of estrogenic hormones in an engineered treatment wetland with dense macrophytes

    Science.gov (United States)

    Gray, J.L.; Sedlak, D.L.

    2005-01-01

    Recently, the estrogenic hormones 17??-estradiol (E2) and 17??-ethinyl estradiol (EE2) have been detected in municipal wastewater effluent and surface waters at concentrations sufficient to cause feminization of male fish. To evaluate the fate of steroid hormones in an engineered treatment wetland, lithium chloride, E2, and EE 2 were added to a treatment wetland test cell. Comparison of hormone and tracer data indicated that 36% of the E2 and 41% of the EE 2 were removed during the cell's 84-h hydraulic retention time (HRT). The observed attenuation was most likely the result of sorption to hydrophobic surfaces in the wetland coupled with biotransformation. Sorption was indicated by the retardation of the hormones relative to the conservative tracer. Biotransformation was indicated by elevated concentrations of the E2 metabolite, estrone. It may be possible to improve the removal efficiency by increasing the HRT or the density of plant materials.

  20. Landform design for a fen wetland on a tailings sand deposit in northern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, G.T.; Papini, A.G.; Scordo, E.B. [BGC Engineering Inc., Vancouver, BC (Canada); Wytrykush, C. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    2010-07-01

    This paper discussed one of the first fens to be established in a post-mining area of the Athabasca oil sands region. The entire watershed is specifically designed to support a wetland, and it will be constructed on a soft tailings deposit. A fen is a peat-accumulating wetland with a water table that is at, or close to, the surface consisting of mineral-saturated water coming from either groundwater or surface water. In order to monitor and adjust the fen design for field conditions, a full hydrological site investigation was launched together with parallel research programs involving the creation of a conservative landform design with controls over surface water and groundwater seepage inputs. Controlling the salinity of fen waters from tailings consolidation and seepage over time is a critical component to fen design. There are a limited number of documented examples of large-scale constructed fen wetlands.

  1. Evaluating the potential effects of hurricanes on long-term sediment accumulation in two micro-tidal sub-estuaries: Barnegat Bay and Little Egg Harbor, New Jersey, U.S.A.

    Science.gov (United States)

    Marot, Marci E.; Smith, Christopher G.; Ellis, Alisha M.; Wheaton, Cathryn J.

    2016-06-23

    Barnegat Bay, located along the eastern shore of New Jersey, was significantly impacted by Hurricane Sandy in October 2012. Scientists from the U.S. Geological Survey (USGS) developed a multidisciplinary study of sediment transport and hydrodynamics to understand the mechanisms that govern estuarine and wetland responses to storm forcing. This report details the physical and chemical characteristics of surficial and downcore sediments from two areas within the bay. Eleven sites were sampled in both the central portion of the bay near Barnegat Inlet and in the southern portion of the bay in Little Egg Harbor. Laboratory analyses include Be-7, Pb-210, bulk density, porosity, x-radiographs, and grain-size distribution. These data will serve as a critical baseline dataset for understanding the current sedimentological regime and can be applied to future storms for understanding estuarine and wetland evolution.

  2. Mosquitoes as a Part of Wetland Biodiversity

    OpenAIRE

    Schäfer, Martina

    2004-01-01

    Wetlands contain both aquatic and terrestrial environments which generates high biodiversity. However, they are commonly associated with mosquitoes (Diptera: Culicidae), and mosquitoes are usually regarded as negative by humans because they can cause nuisance and transmit diseases. This thesis aimed to clarify the association between mosquitoes and wetlands and to achieve a more balanced view of biodiversity in wetlands by including mosquito diversity. Studies on adult mosquito diversity and ...

  3. Treatment of wastewater with the constructed wetland

    International Nuclear Information System (INIS)

    Fernandez, R.; Olivares, S.

    2003-01-01

    Constructed wetland is an environmental sound, actual and economic solution for the treatment of wastewater. The use of these constructed wetlands increased in the last few years, principally in developed countries. However there is not much information about the performance of these biological systems in tropical and subtropical climates. In these review the state of art of these technology is given, and also the advantage of the use of the constructed wetland for the wastewater treatment in our country

  4. Effect of the Urbanization of Wetlands on Microclimate: A Case Study of Xixi Wetland, Hangzhou, China

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2016-09-01

    Full Text Available Urbanization affects the microclimate and forms a unique urban climate environment. To deepen the understanding on the microclimate regulation function of an urban wetland, this study analyzed the influence of a suburb wetland’s urbanization process on the local climate through contrast observations of the protected wetland area and the former wetland area in Xixi wetland. Results show that the urbanization of suburb wetlands has an impact on the local microclimate and decreases human comfort, and that wetlands can effectively regulate the microclimate. The fragmentation of urban wetlands caused by urban sprawl decreases their microclimate regulation function, a decrease that is particularly evident in summer. Additionally, wetlands stabilize the microclimate in all seasons. For every land cover type in wetlands, vegetation has a better stabilizing effect on temperature, whereas a water body has a better stabilizing effect on wind speed and humidity. Meteorological conditions also affect the microclimate regulation function of wetlands. Temperature, humidity, atmospheric pressure, and wind speed influence the cooling function of urban wetlands, while solar radiation modifies the humidifying function of urban wetlands.

  5. Characteristic community structure of Florida's subtropical wetlands: the Florida wetland condition index

    Science.gov (United States)

    Depending upon the classification scheme applied, there are between 10 and 45 different wetland types in Florida. Land use and land cover change has a marked effect on wetland condition, and different wetland types are affected differentially depending on many abiotic and biotic ...

  6. Slowing the rate of loss of mineral wetlands on human dominated landscapes - Diversification of farmers markets to include carbon (Invited)

    Science.gov (United States)

    Creed, I. F.; Badiou, P.; Lobb, D.

    2013-12-01

    Canada is the fourth-largest exporter of agriculture and agri-food products in the world (exports valued at 28B), but instability of agriculture markets can make it difficult for farmers to cope with variability, and new mechanisms are needed for farmers to achieve economic stability. Capitalizing on carbon markets will help farmers achieve environmentally sustainable economic performance. In order to have a viable carbon market, governments and industries need to know what the carbon capital is and what potential there is for growth, and farmers need financial incentives that will not only allow them to conserve existing wetlands but that will also enable them to restore wetlands while making a living. In southern Ontario, farmers' needs to maximize the return on investment on marginal lands have resulted in loss of 70-90% of wetlands, making this region one of the most threatened region in terms of wetland degradation and loss in Canada. Our project establishes the role that mineral wetlands have in the net carbon balance by contributing insight into the potential benefits to carbon management provided by wetland restoration efforts in these highly degraded landscapes. The goal was to establish the magnitude of carbon offsets that could be achieved through wetland conservation (securing existing carbon stocks) and restoration (creating new carbon stocks). The experimental design was to focus on (1) small (0.2-2.0 ha) and (2) isolated (no inflow or outflow) mineral wetlands with the greatest restoration potential that included (3) a range of restoration ages (drained (0 yr), 3 yr, 6 yr, 12 yr, 20 yr, 35 yr, intact marshes) to capture potential changes in rates of carbon sequestration with restoration age of wetland. From each wetland, wetland soil carbon pools samples were collected at four positions: centre of wetland (open-water); emergent vegetation zone; wet meadow zone where flooding often occurs (i.e., high water mark); and upland where flooding rarely

  7. Field Report : Anna Plains and Roebuck Bay Benthic Invertebrate Mapping 2016

    NARCIS (Netherlands)

    Piersma, Theunis; Pearson, Grant B.; Lavaleye, Marc S. S.; Hickey, Robert; Rogers, Danny; Holthuijsen, Sander; Estrella, Sora-Marin; de Goeij, Petra; Findlay, Naomi; Storey, Andrew W.

    2016-01-01

    This project has been funded by the Department of Parks and Wildlife partnership with BHP Billiton “Eighty Mile Beach and Walyarta Conservation Program”, with in-kind support from NIOZ and Wetland Research & Management This report was produced at the Broome Bird Observatory in late October 2016.

  8. Artificial wetlands - yes or no?

    Czech Academy of Sciences Publication Activity Database

    Horák, Václav; Lusk, Stanislav; Halačka, Karel; Lusková, Věra

    2004-01-01

    Roč. 4, č. 2 (2004), s. 119-127 ISSN 1642-3593. [International Symposium on the Ecology of Fluvial Fishes /9./. Lodz, 23.06.2003-26.06.2003] R&D Projects: GA AV ČR IBS6093007; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6093917 Keywords : floodplain * artificial wetlands * fish communities Subject RIV: EH - Ecology, Behaviour

  9. BCDC Bay Trail Alignment 2009

    Data.gov (United States)

    California Natural Resource Agency — The Bay Trail provides easily accessible recreational opportunities for outdoor enthusiasts, including hikers, joggers, bicyclists and skaters. It also offers a...

  10. BCDC Bay Trail Alignment 2009

    Data.gov (United States)

    California Department of Resources — The Bay Trail provides easily accessible recreational opportunities for outdoor enthusiasts, including hikers, joggers, bicyclists and skaters. It also offers a...

  11. Interactions Between Wetlands and Tidal Inlets

    National Research Council Canada - National Science Library

    Sanchez, Alejandro

    2008-01-01

    This Coastal and Hydraulics Engineering Technical Note (CHETN) presents numerical simulations investigating how the loss of wetlands in estuaries modifies tidal processes in inlet navigation channels...

  12. The challenges of remote monitoring of wetlands

    Science.gov (United States)

    Gallant, Alisa L.

    2015-01-01

    Wetlands are highly productive and support a wide variety of ecosystem goods and services. Various forms of global change impose compelling needs for timely and reliable information on the status of wetlands worldwide, but several characteristics of wetlands make them challenging to monitor remotely: they lack a single, unifying land-cover feature; they tend to be highly dynamic and their energy signatures are constantly changing; and steep environmental gradients in and around wetlands produce narrow ecotones that often are below the resolving capacity of remote sensors. These challenges and needs set the context for a special issue focused on wetland remote sensing. Contributed papers responded to one of three overarching questions aimed at improving remote, large-area monitoring of wetlands: (1) What approaches and data products are being developed specifically to support regional to global long-term monitoring of wetland landscapes? (2) What are the promising new technologies and sensor/multisensor approaches for more accurate and consistent detection of wetlands? (3) Are there studies that demonstrate how remote long-term monitoring of wetland landscapes can reveal changes that correspond with changes in land cover and land use and/or changes in climate?

  13. Predicting coastal flooding and wetland loss

    Science.gov (United States)

    Doyle, Thomas W.

    1997-01-01

    The southeastern coastal region encompasses vast areas of wetland habitat important to wildlife and other economically valuable natural resources. Located on the interface between sea and land, these wetland habitats are affected by both sea-level rise and hurricanes, and possibly by hydroperiod associated with regional climatic shifts. Increased sea level is expected to accompany global warming because of higher sea temperatures and ice melt. To help determine the effects of sea-level rise on these wetlands, USGS scientists created computer models of coastal flooding and wetland loss.

  14. Artificial wetland for wastewater treatment

    International Nuclear Information System (INIS)

    Arias I, Carlos A; Brix, Hans

    2003-01-01

    The development of constructed wetland technology for wastewater treatment has gone a long way and from an experimental and unknown empirical method, which was capable of handling wastewater a sound technology was developed. Thanks to research, and the work of many public and private companies that have gather valuable operation information, constructed wetland technology has evolved to be a relievable, versatile and effective way to treat wastewater, run off, handle sludge and even improve environmental quality and provide recreation sites, while maintaining low operation and maintenance costs, and at the same time, producing water of quality that can meet stringent regulations, while being and environmental friendly solution to treat waste-waters. Constructed wetlands can be established in many different ways and its characteristics can differ greatly, according to the user needs, the geographic site and even the climatic conditions of the area. The following article deals with the general characteristics of the technology and the physical and chemical phenomena that govern the pollution reduction with in the different available systems

  15. Mosaic boreal landscapes with open and forested wetlands

    International Nuclear Information System (INIS)

    Sjoeberg, K.; Ericson, L.

    1997-01-01

    We review patterns and processes important for biodiversity in the Fennoscandian boreal forest, describe man's past and present impact and outline a strategy for conservation. The boreal landscape was earlier characterized by a mosaic of open and forested wetlands and forests. Drainage and felling operation have largely changed that pattern. Several organisms depend upon the landscape mosaic. Natural ecotones between mire and forest provide food resources predictable in space and time contrasting to unpredictable edges in the silvicultured landscape. The mosaic is also a prerequisite for organisms dependent on non-substitutable resources in the landscape. The importance of swamp forests has increased as they function as refugia for earlier more widespread old-growth species. Programmes for maintaining biodiversity in the boreal landscape should include the following points. First, the natural mosaic with open and forested wetlands must be maintained. Second, swamp forests must receive a general protection as they often constitute the only old-growth patches in the landscape. Third, we need to restore earlier disturbance regimes. Present strategy plans for conservation are insufficient, as they imply that a too large proportion of boreal organisms will not be able to survive outside protected areas. Instead, we need to focus more on how to preserve organisms in the man-influenced landscape. As a first step we need to understand how organisms are distributed in landscapes at various spatial scales. We need studies in landscapes where the original mosaic has faced various degrees of fragmentation. (au) 124 refs

  16. Wakasa Bay Weather Forecast Maps, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The AMSR-E Wakasa Bay Field Campaign was conducted over Wakasa Bay, Japan. The Wakasa Bay Field Campaign includes joint research observations, such as precipitation...

  17. Reprint of Ecological health status of the Lagos wetland ecosystems: Implications for coastal risk reduction

    Science.gov (United States)

    Agboola, Julius I.; Ndimele, Prince E.; Odunuga, Shakirudeen; Akanni, Adeniran; Kosemani, Bosede; Ahove, Michael A.

    2016-12-01

    Lagos, a major urban agglomeration in the world is characterized by wetlands and basin for upstream rivers such as Ogun, Oshun and Yewa Rivers. Ongoing environmental pressures exerted by large-scale land reclamation for residential quarters, refuse and sewage dumping, and other uses, however, are suspected to have had a substantial impact on ecological health of the Lagos wetland ecosystems over the last few decades. To determine the impact of these pressures, we examined spatial changes in three wetlands areas- Badore/Langbasa (BL), Festac/Iba/Ijegun (FI) and Ologe/Otto-Awori (OO) through field sample collection and analyses of surface water, sediments, air-water interface gas fluxes and vegetations. Surface water conductivity, total suspended solids (TSS), alkalinity, chloride, biological oxygen demand (BOD), nitrate, phosphate and heavy metals (Zn, Cu, Fe, Na, Mn, Pb, Cd, K and Ni) exhibited relative spatial stability while other water quality parameters varied significantly (P < 0.05) across the wetland areas. Also, dissolved inorganic carbon (DIC) contributed to most of the total dissolved solids (TDS) since only DIC correlated significantly with TDS (r = 0.889; P = 0.05, n = 12) and TS (r = 0.891; P = 0.05, n = 12), suggesting a strong capacity for carbon sequestration and carbon sink across the wetland areas. None of the encountered vegetation species are in the vulnerable category of the International Union for Conservation of Nature (IUCN). There are indications of steady rise in greenhouse gas levels in Lagos since air CO2 value at BL have reached global threshold of 400 ppm with OO and FI closely approaching. We conclude that the Lagos wetland ecosystems, especially OO and FI still have some semblance of natural habitat. However, further destruction and unwise use of the resources could cause damage to physical, chemical, geological and biological processes in nature, which could result to grave socio-economic and cultural consequences to the local

  18. Ecological health status of the Lagos wetland ecosystems: Implications for coastal risk reduction

    Science.gov (United States)

    Agboola, Julius I.; Ndimele, Prince E.; Odunuga, Shakirudeen; Akanni, Adeniran; Kosemani, Bosede; Ahove, Michael A.

    2016-12-01

    Lagos, a major urban agglomeration in the world is characterized by wetlands and basin for upstream rivers such as Ogun, Oshun and Yewa Rivers. Ongoing environmental pressures exerted by large-scale land reclamation for residential quarters, refuse and sewage dumping, and other uses, however, are suspected to have had a substantial impact on ecological health of the Lagos wetland ecosystems over the last few decades. To determine the impact of these pressures, we examined spatial changes in three wetlands areas- Badore/Langbasa (BL), Festac/Iba/Ijegun (FI) and Ologe/Otto-Awori (OO) through field sample collection and analyses of surface water, sediments, air-water interface gas fluxes and vegetations. Surface water conductivity, total suspended solids (TSS), alkalinity, chloride, biological oxygen demand (BOD), nitrate, phosphate and heavy metals (Zn, Cu, Fe, Na, Mn, Pb, Cd, K and Ni) exhibited relative spatial stability while other water quality parameters varied significantly (P < 0.05) across the wetland areas. Also, dissolved inorganic carbon (DIC) contributed to most of the total dissolved solids (TDS) since only DIC correlated significantly with TDS (r = 0.889; P = 0.05, n = 12) and TS (r = 0.891; P = 0.05, n = 12), suggesting a strong capacity for carbon sequestration and carbon sink across the wetland areas. None of the encountered vegetation species are in the vulnerable category of the International Union for Conservation of Nature (IUCN). There are indications of steady rise in greenhouse gas levels in Lagos since air CO2 value at BL have reached global threshold of 400 ppm with OO and FI closely approaching. We conclude that the Lagos wetland ecosystems, especially OO and FI still have some semblance of natural habitat. However, further destruction and unwise use of the resources could cause damage to physical, chemical, geological and biological processes in nature, which could result to grave socio-economic and cultural consequences to the local

  19. Preparing for Sea-level Rise: Conflicts and Opportunities in Coastal Wetlands Coexisting with Infrastructure

    Science.gov (United States)

    Rodriguez, J. F.; Saco, P. M.; Sandi, S. G.; Saintilan, N.; Riccardi, G.

    2017-12-01

    Even though on a large scale the sustainability and resilience of coastal wetlands to sea-level rise depends on the slope of the landscape and a balance between the rates of soil accretion and the sea-level rise, local man-made flow disturbances can have comparable effects. Coastal infrastructure controlling flow in the wetlands can pose an additional constraint on the adaptive capacity of these ecosystems, but can also present opportunities for targeted flow management to increase their resilience. Coastal wetlands in SE Australia are heavily managed and typically present infrastructure including flow control devices. How these flow control structures are operated respond to different ecological conservation objectives (i.e. bird, frog or fish habitat) that can sometimes be mutually exclusive. For example, promoting mangrove establishment to enhance fish habitat results in saltmarsh decline thus affecting bird habitat. Moreover, sea-level rise will change hydraulic conditions in wetlands and may result in some flow control structures and strategies becoming obsolete or even counterproductive. In order to address these problems and in support of future management of flows in coastal wetlands, we have developed a predictive tool for long-term wetland evolution that incorporates the effects of infrastructure and other perturbations to the tidal flow within the wetland (i.e. vegetation resistance) and determines how these flow conditions affect vegetation establishment and survival. We use the model to support management and analyse different scenarios of sea-level rise and flow control measures aimed at preserving bird habitat. Our results show that sea-level rise affects the efficiency of management measures and in some cases may completely override their effect. It also shows the potential of targeted flow management to compensate for the effects of sea-level rise.

  20. Plant diversity and biomass of Marudu bay mangroves in Malaysia

    International Nuclear Information System (INIS)

    Hanum, F.; Kudus, K.A.; Saari, N.S

    2012-01-01

    The mangroves of Marudu Bay in the state of Sabah is situated at the tip of Borneo Island, and at the southern limit of the Coral Triangle whose waters hold the highest diversity of corals, fish, molluscks, crustaceans and marine plant species in the world. The ecosystem shows a deterioration due to unsustainable fishing, pollution and encroachment, and these are impacting the Marudu Bay coastal communities economically. Fishing is the major economic activity here. Realising the importance of conserving the mangroves to uplift the socio-economic livelihood of the coastal community, a resource inventory of the mangroves and its productivity study were carried out. A total of 16 plant species in 12 genera and 9 families were identified. It was also found that 0.7 ha is capable of capturing all the species in the mangrove forest. The mangrove forests of Marudu Bay are dominated by Rhizopora apiculata and R. mucronata. The highest Importance Value index (IVI) was given by Rhizophora mucronata. Total Above Ground Biomass (TAGB) for 1-ha of mangrove forest in Marudu Bay was estimated to be 98.4 t/ha. It was found in other parallel studies that the mangroves of Marudu Bay are productive ecosystems that provide valuable habitats, nurseries and spawning grounds for various commercially important species of fish and invertebrates such as shrimp besides many species of wildlife. The mangroves at Marudu Bay are not only aesthetically attractive but provide opportunities for ecotourism activities that can be undertaken by the local community inhabiting the area to uplift their meagre income, These activities include mangrove cruising, recreational fishing, educational tourism and mangrove honey production, amongst others. This way, the degradation of the mangrove in Marudu Bay can be halted and reversed. (author)

  1. Water quality in South San Francisco Bay, California: current condition and potential issues for the South Bay Salt Pond Restoration Project.

    Science.gov (United States)

    Grenier, J Letitia; Davis, Jay A

    2010-01-01

    The SBSPRP is an extensive tidal wetland restoration project that is underway at the margin of South San Francisco Bay, California. The Project, which aims to restore former salt ponds to tidal marsh and manage other ponds for water bird support, is taking place in the context of a highly urbanized watershed and an Estuary already impacted by chemical contaminants. There is an intimate relationship between water quality in the watershed, the Bay, and the transitional wetland areas where the Project is located. The Project seeks to restore habitat for endangered and endemic species and to provide recreational opportunities for people. Therefore, water quality and bioaccumulation of contaminants in fish and wildlife is an important concern for the success of the Project. Mercury, PCBs, and PBDEs are the persistent contaminants of greatest concern in the region. All of these contaminants are present at elevated concentrations both in the abiotic environment and in wildlife. Dioxins, pyrethroids, PAHs, and selenium are also problematic. Organochlorine insecticides have historically impacted the Bay, and they remain above thresholds for concern in a small proportion of samples. Emerging contaminants, such as PFCs and non-PBDE flame retardants, are also an important water quality issue. Beyond chemical pollutants, other concerns for water quality in South San Francisco Bay exist, and include biological constituents, especially invasive species, and chemical attributes, such as dissolved oxygen and salinity. Future changes, both from within the Project and from the Bay and watershed, are likely to influence water quality in the region. Project actions to restore wetlands could worsen, improve, or not affect the already impaired water quality in South Bay. Accelerated erosion of buried sediment as a consequence of Project restoration actions is a potentially serious regional threat to South Bay water and sediment quality. Furthermore, the planned restoration of salt ponds

  2. Prediction CH4 Emissions from the Wetlands in the Sanjiang Plain of Northeastern China in the 21st Century.

    Directory of Open Access Journals (Sweden)

    Tingting Li

    Full Text Available The Sanjiang Plain has been experienced significant wetland loss due to expanded agricultural activities, and will be potentially restored by the China National Wetland Conservation Action Plan (NWCP in future. The objective of this study is to evaluate the impact of future climate warming and wetland restoration on wetland CH4 emissions in northeast China. We used an atmosphere-vegetation interaction model (AVIM2 to drive a modified biogeophysical model (CH4MODwetland, and projected CH4 flux variations from the Sanjiang Plain wetlands under different Representative Concentration Pathway scenarios throughout the 21st century. Model validation showed that the regressions between the observed and simulated CH4 fluxes by the modified model produced an R2 of 0.49 with a slope of 0.87 (p<0.001, n = 237. According to the AVIM2 simulation, the net primary productivity of the Sanjiang Plain wetlands will increase by 38.2 g m-2 yr-1, 116.6 g m-2 yr-1 and 250.4 g m-2 yr-1 under RCP 2.6, RCP 4.5 and RCP 8.5, respectively, by the end of this century. For RCP 2.6, 4.5 and 8.5 scenarios, the CH4 fluxes will increase by 5.7 g m-2 yr-1, 57.5 g m-2 yr-1 and 112.2 g m-2 yr-1. Combined with the wetland restoration, the regional emissions will increase by 0.18‒1.52 Tg. The CH4 emissions will be stimulated by climate change and wetland restoration. Regional wetland restoration planning should be directed against different climate scenarios in order to suppress methane emissions.

  3. Genetic Evidence for Contrasting Wetland and Savannah Habitat Specializations in Different Populations of Lions (Panthera leo).

    Science.gov (United States)

    Moore, Andy E; Cotterill, Fenton P D Woody; Winterbach, Christiaan W; Winterbach, Hanlie E K; Antunes, Agostinho; O'Brien, Stephen J

    2016-03-01

    South-central Africa is characterized by an archipelago of wetlands, which has evolved in time and space since at least the Miocene, providing refugia for animal species during Pleistocene arid episodes. Their importance for biodiversity in the region is reflected in the evolution of a variety of specialist mammal and bird species, adapted to exploit these wetland habitats. Populations of lions (Panthera leo) across south-central and east Africa have contrasting signatures of mitochondrial DNA haplotypes and biparental nuclear DNA in wetland and savannah habitats, respectively, pointing to the evolution of distinct habitat preferences. This explains the absence of genetic admixture of populations from the Kalahari savannah of southwest Botswana and the Okavango wetland of northern Botswana, despite separation by only 500 km. We postulate that ancestral lions were wetland specialists and that the savannah lions evolved from populations that were isolated during arid Pleistocene episodes. Expansion of grasslands and the resultant increase in herbivore populations during mesic Pleistocene climatic episodes provided the stimulus for the rapid population expansion and diversification of the highly successful savannah lion specialists. Our model has important implications for lion conservation. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Thatcher Bay, Washington, Nearshore Restoration Assessment

    Science.gov (United States)

    Breems, Joel; Wyllie-Echeverria, Sandy; Grossman, Eric E.; Elliott, Joel

    2009-01-01

    The San Juan Archipelago, located at the confluence of the Puget Sound, the Straits of Juan de Fuca in Washington State, and the Straits of Georgia, British Columbia, Canada, provides essential nearshore habitat for diverse salmonid, forage fish, and bird populations. With 408 miles of coastline, the San Juan Islands provide a significant portion of the available nearshore habitat for the greater Puget Sound and are an essential part of the regional efforts to restore Puget Sound (Puget Sound Shared Strategy 2005). The nearshore areas of the San Juan Islands provide a critical link between the terrestrial and marine environments. For this reason the focus on restoration and conservation of nearshore habitat in the San Juan Islands is of paramount importance. Wood-waste was a common by-product of historical lumber-milling operations. To date, relatively little attention has been given to the impact of historical lumber-milling operations in the San Juan Archipelago. Thatcher Bay, on Blakely Island, located near the east edge of the archipelago, is presented here as a case study on the restoration potential for a wood-waste contaminated nearshore area. Case study components include (1) a brief discussion of the history of milling operations. (2) an estimate of the location and amount of the current distribution of wood-waste at the site, (3) a preliminary examination of the impacts of wood-waste on benthic flora and fauna at the site, and (4) the presentation of several restoration alternatives for the site. The history of milling activity in Thatcher Bay began in 1879 with the construction of a mill in the southeastern part of the bay. Milling activity continued for more than 60 years, until the mill closed in 1942. Currently, the primary evidence of the historical milling operations is the presence of approximately 5,000 yd3 of wood-waste contaminated sediments. The distribution and thickness of residual wood-waste at the site was determined by using sediment

  5. Integrating ecosystem services in terrestrial conservation planning.

    Science.gov (United States)

    Yuan, Mei-Hua; Lo, Shang-Lien; Yang, Chih-Kai

    2017-05-01

    The purpose of this study is to estimate the benefits of ecosystem services for prioritization of land use conservation and to highlight the importance of ecosystem services by comparison between ecosystem service value and green GDP accounting. Based on land use pattern and benefit transfer method, this research estimated value of ecosystem services in Taiwan. Scientific information of land use and land cover change is accessed through multi-year satellite imagery moderate resolution imaging spectroradiometer (MODIS), and geographic information system (GIS) technology. Combined with benefit transfer method, this research estimated the ecosystem service valuation of forest, grassland, cropland, wetland, water, and urban for the period of 2000 to 2015 in Taiwan. It is found that forest made the greatest contribution and the significant increasing area of wetland has huge potential benefit for environmental conservation in Taiwan. We recommend placing maintaining wetland ecosystem in Taiwan with higher priority. This research also compared ecosystem service value with natural capital consumption which would essentially facilitate policy makers to understand the relationship between benefits gained from natural capital and the loss from human-made capital.

  6. Developing a Model using High School Students for Restoring, Monitoring and Conducting Research in Fresh Water Wetlands

    Science.gov (United States)

    Blueford, J. R.

    2010-12-01

    Tule Ponds at Tyson Lagoon in eastern San Francisco Bay is one of the largest sag ponds created by the Hayward Fault that has not been destroyed by urbanization. In the 1990’s Alameda County Flood Control and Water Conservation District designed a constructed wetland to naturally filter stormwater before it entered Tyson Lagoon on its way to the San Francisco Bay. The Math Science Nucleus, a non profit organization, manages the facility that incorporates high school students through community service, service learning, and research. Students do a variety of tasks from landscaping to scientific monitoring. Through contracts and grants, we create different levels of competency that the students can participate. Engineers and scientists from the two agencies involved, create tasks that are needed to be complete for successful restoration. Every year the students work on different components of restoration. A group of select student interns (usually juniors and seniors) collects and records the data during the year. Some of these students are part of a paid internship to insure their regular attendance. Every year the students compile and discuss with scientists from the Math Science Nucleus what the data set might mean and how problems can be improved. The data collected helps determine other longer term projects. This presentation will go over the journey of the last 10 years to this very successful program and will outline the steps necessary to maintain a restoration project. It will also outline the different groups that do larger projects (scouts) and liaisons with schools that allow teachers to assign projects at our facility. The validity of the data obtained by students and how we standardize our data collection from soil analysis, water chemistry, monitoring faults, and biological observations will be discussed. This joint agency model of cooperation to provide high school students with a real research opportunity has benefits that allow the program to

  7. Wise use of wetlands: current state of protection and utilization of Chinese wetlands and recommendations for improvement.

    Science.gov (United States)

    Wang, Yanxia; Yao, Yong; Ju, Meiting

    2008-06-01

    Wetland protection and utilization sometimes appear to be in conflict, but promoting the wise use of wetlands can solve this problem. All countries face the challenge of sustainable development of wetlands to a greater or lesser extent, but the problem is especially urgent in developing countries, such as China, that want to accelerate their economic development without excessive environmental cost. Chinese wetlands contribute greatly to economic development, but improper use of these natural resources has endangered their existence. It is thus necessary to provide scientific guidance to managers and users of wetlands. In this paper, we analyze the present status of Chinese wetland protection and utilization, and discuss problems in six categories: a lack of public awareness of the need for wetland protection; insufficient funding for wetland protection and management; an imperfect legal system to protect wetlands; insufficient wetland research; lack of coordination among agencies and unclear responsibilities; and undeveloped technologies related to wetland use and protection. The wise use of Chinese wetlands will require improvements in four main areas: increased wetland utilization research, scientific management of wetland utilization, improved laws and regulations to protect wetlands, and wider dissemination of wetland knowledge. Based on these categories, we propose a framework for the optimization of wetland use by industry to provide guidance for China and other countries that cannot sacrifice economic benefits to protect their wetlands.

  8. Role of wetland organic matters as photosensitizer for degradation of micropollutants and metabolites

    International Nuclear Information System (INIS)

    Lee, Eunkyung; Shon, Ho Kyong; Cho, Jaeweon

    2014-01-01

    Highlights: • Photodegradation of PPCPs was investigated in various NOM enriched solutions. • Direct and indirect photolysis experiments were conducted upon UV irradiation. • PPCPs showed different levels of photodegradation rates depending on their photoreactivity. • Allochthonous NOM inhibited the photolysis of target PPCPs. • Wetland NOM enhanced photodegradation of some conservative PPCPs. - Abstract: Overall photodegradation of pharmaceuticals, personal care products (PPCPs) and pharmaceutical metabolites were investigated in order to evaluate their photochemical fate in aquatic environments in various natural organic matter (NOM) enriched solutions. Tested PPCPs exhibited different rates of loss during direct and indirect photolysis. Here, only ultraviolet (UV) light source was used for direct photolysis and UV together with 3 DOM * for indirect photolysis. Diclofenac and sulfamethoxazole were susceptible to photodegradation, whereas carbamazepine, caffeine, paraxanthine and tri(2-chloroethyl) phosphate (TCEP) showed low levels of photodegradation rate, reflecting their conservative photoreactivity. During indirect photodegradation, in contrast to the hydrophilic autochthonous NOM, allochthonous NOM with relatively high molecular weight (MW), specific ultraviolet absorbance (SUVA) and hydrophobicity (e.g., Suwannee River humic acid (SRHA)) revealed to significantly inhibit the photolysis of target micropollutants. The presence of Typha wetland NOM enhanced the indirect photolysis of well-known conservative micopollutants (carbamazepine and paraxanthine). And atenolol, carbamazepine, glimepiride, and N-acetyl-sulfamethoxazole were found to be sensitive to the triplet excited state of dissolved organic matter ( 3 DOM * ) with Typha wetland NOM under deoxygenated condition. This suggests that photolysis in constructed wetlands connected to the wastewater treatment plant can enhance the degradation of some anthropogenic micropollutants by the

  9. Role of wetland organic matters as photosensitizer for degradation of micropollutants and metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunkyung [Department of Civil and Environmental Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Shon, Ho Kyong [School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), PO Box 123, Broadway, Sydney 2007, NSW (Australia); Cho, Jaeweon, E-mail: chojw@yonsei.ac.kr [Department of Civil and Environmental Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2014-07-15

    Highlights: • Photodegradation of PPCPs was investigated in various NOM enriched solutions. • Direct and indirect photolysis experiments were conducted upon UV irradiation. • PPCPs showed different levels of photodegradation rates depending on their photoreactivity. • Allochthonous NOM inhibited the photolysis of target PPCPs. • Wetland NOM enhanced photodegradation of some conservative PPCPs. - Abstract: Overall photodegradation of pharmaceuticals, personal care products (PPCPs) and pharmaceutical metabolites were investigated in order to evaluate their photochemical fate in aquatic environments in various natural organic matter (NOM) enriched solutions. Tested PPCPs exhibited different rates of loss during direct and indirect photolysis. Here, only ultraviolet (UV) light source was used for direct photolysis and UV together with {sup 3}DOM{sup *}for indirect photolysis. Diclofenac and sulfamethoxazole were susceptible to photodegradation, whereas carbamazepine, caffeine, paraxanthine and tri(2-chloroethyl) phosphate (TCEP) showed low levels of photodegradation rate, reflecting their conservative photoreactivity. During indirect photodegradation, in contrast to the hydrophilic autochthonous NOM, allochthonous NOM with relatively high molecular weight (MW), specific ultraviolet absorbance (SUVA) and hydrophobicity (e.g., Suwannee River humic acid (SRHA)) revealed to significantly inhibit the photolysis of target micropollutants. The presence of Typha wetland NOM enhanced the indirect photolysis of well-known conservative micopollutants (carbamazepine and paraxanthine). And atenolol, carbamazepine, glimepiride, and N-acetyl-sulfamethoxazole were found to be sensitive to the triplet excited state of dissolved organic matter ({sup 3}DOM{sup *}) with Typha wetland NOM under deoxygenated condition. This suggests that photolysis in constructed wetlands connected to the wastewater treatment plant can enhance the degradation of some anthropogenic micropollutants

  10. Conservation endocrinology

    Science.gov (United States)

    McCormick, Stephen; Romero, L. Michael

    2017-01-01

    Endocrinologists can make significant contributions to conservation biology by helping to understand the mechanisms by which organisms cope with changing environments. Field endocrine techniques have advanced rapidly in recent years and can provide substantial information on the growth, stress, and reproductive status of individual animals, thereby providing insight into current and future responses of populations to changes in the environment. Environmental stressors and reproductive status can be detected nonlethally by measuring a number of endocrine-related endpoints, including steroids in plasma, living and nonliving tissue, urine, and feces. Information on the environmental or endocrine requirements of individual species for normal growth, development, and reproduction will provide critical information for species and ecosystem conservation. For many taxa, basic information on endocrinology is lacking, and advances in conservation endocrinology will require approaches that are both “basic” and “applied” and include integration of laboratory and field approaches.

  11. Wetland and microhabitat use by nesting four-toed salamanders in Maine

    Science.gov (United States)

    Chalmers, R.J.; Loftin, C.S.

    2006-01-01

    Little is known of Four-Toed Salamander (Hemidactylium scutatum) habitat use, despite the species' extensive range and elevated conservation status. We investigated species-habitat relationships that predict H. scutatum nesting presence in Maine at wetland and microhabitat scales by comparing microhabitats with and without nests. We created logistic regression models, selected models with AIC, and evaluated models with reserve data. Wetlands with nests were best predicted by shoreline microhabitat of Sphagnum spp., wood substrate, water flow, blue-joint reed grass (Calamagrostis canadensis), meadowsweet (Spiraea alba), steeplebush (Spiraea tomentosa), sensitive fern (Onoclea sensibilis), and absence of sheep laurel (Kalmia angustifolia) or deciduous forest canopy. Within occupied wetlands, shoreline microhabitat where nests occurred was best distinguished from available, unoccupied shoreline microhabitat by steeper shore, greater near-shore and basin water depth, deeper nesting vegetation, presence of moss spp. and winterberry (Ilex verticillata), and a negative association with S. alba, leatherleaf (Chamaedaphne calyculata), and K. angustifolia. These models of wetland and microhabitat use by H. scutatum may assist ecologists and managers in detecting and conserving this species. Copyright 2006 Society for the Study of Amphibians and Reptiles.

  12. A Review of the Relative Merits of Conserving, Using, or Draining Papyrus Swamps

    Science.gov (United States)

    Maclean, Ilya M. D.; Boar, Rosalind R.; Lugo, Charles

    2011-02-01

    Wetlands are a vital resource, particularly in Africa where livelihoods are closely linked to natural capital. In recent years, extensive drainage has occurred to make way for agriculture. To gain insight into whether drainage is justified, we review the value of African wetlands dominated by Cyperus papyrus in relation to use, conservation and conversion. Evidence suggests that the value derived from low-intensity, multifunctional wetland use far exceeds the value derived from swamp reclamation and generally exceeds that of conservation. At a local level, the main driver of wetland misuse appear to be a breakdown in collaborative management regimes and the main constraint on wetland use, the value of labor and selling-times. Local drivers are linked to regional factors such as the lack of coordinated wetland policies and difficulties in ensuring that legislation is absorbed by all sectors of society. We highlight opportunities for ensuring more effective collaborative management and legislation communication, which capitalize on existing governance structures. In contrast to predictions by Hardin's Tragedy of the Commons model, we argue that effective wetland management is best achieved by preventing privatization and promoting common property management regimes. We also argue that poverty and income inequity are more important drivers of unsustainable resource use than environmental managers commonly acknowledge.

  13. Wetland Changes and Their Responses to Climate Change in the “Three-River Headwaters” Region of China since the 1990s

    Directory of Open Access Journals (Sweden)

    Laga Tong

    2014-04-01

    Full Text Available The wetland ecosystem in the “Three-River Headwaters” (TRH region plays an irreplaceable role in water source conservation, run-off adjustment and biodiversity maintenance. In recent years, assessment of wetland resources affected by climate changes has aroused enormous attention, since it can further protect wetland resources and provide a scientific basis for decision makers. In this study, wetland changes and its response to climate changes in the TRH region from the early 1990s to 2012 were analyzed by remote sensing (RS image interpretation and climate change trend analysis. The results showed that wetlands occupied 6.3% of the total land area in 2012, and swamps, streams & rivers and lakes were the dominant wetland types in the TRH region. Since the early 1990s, wetlands have undergone great changes, and total wetland area increased by 260.57 km2 (1.17%. Lakes, reservoir & ponds took on continuous increasing trend, but swamps, streams & rivers had a continuous decreasing trend. On the other hand, the wetland area in the Yangtze River basin showed an overall increasing trend, while in the Yellow River and Langcang River basins, it decreased in general. The climate turned from Warm-Dry to Warm-Wet. The average temperature and precipitation increased by 0.91 °C and 101.99 mm, respectively, from 1990 to 2012, and the average humidity index (HI increased by 0.06 and showing an upward trend and a shifting of the dividing line towards the northwest in both the areas of semi-humid and semi-arid zone. The correlation analysis of wetland changes with meteorological factors from 1990 to 2012 indicated that the regional humidity differences and the interannual variation trend, caused by the change of precipitation and evaporation, was the main driving factor for the dynamic variation of wetland change in the TRH region. In the general, the increase of HI in the THR region since the 1990s, especially in the western TRH region, contributed to

  14. East African wetland-catchment data base for sustainable wetland management

    Directory of Open Access Journals (Sweden)

    C. Leemhuis

    2016-10-01

    Full Text Available Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  15. Wetland types and wetland maps differ in ability to predict dissolved organic carbon concentrations in streams.

    Science.gov (United States)

    Johnston, Carol A; Shmagin, Boris A; Frost, Paul C; Cherrier, Christine; Larson, James H; Lamberti, Gary A; Bridgham, Scott D

    2008-10-15

    Three categories of digital wetland maps widely available in the United States were used to develop models relating wetlands to DOC: (1) wetlands mapped by the U.S. National Wetlands Inventory (NWI) (2) wetland vegetation cover mapped by the U.S. National Land Cover Dataset (NLCD), and (3) maps of hydric soils. Data extracted from these maps for 27 headwater catchments of the Ontonagon River in northern Michigan, USA were used with DOC concentrations measured in catchment streams to develop stepwise multiple regressions based on wetland area and type. The catchments of the 27 tributaries ranged in area from 2 to 66 km(2) and wetlands constituted 10 to 53% of their area. Although all three databases provided regressions that were highly significant (pWetland-stream relationships were strongest during September 2002, but were significant for nine out of ten dates sampled during subsequent seasons. The individual wetland type most highly correlated (r>0.62) with stream DOC concentrations was conifer peatland, represented on the NWI maps as Palustrine Needle-leaved Forest, the NLCD maps as woody wetland, and the soil maps as organic soils. For the NWI dataset, DOC was negatively correlated with area of palustrine emergent wetlands (i.e., sedge meadows and graminoid fens) and bog shrubs, inferring that these wetland types may be sinks for DOC. Because of the different effects of wetland vegetation types on DOC, a GIS data source such as the NWI which depicts those wetland types is superior for predicting landscape contributions to stream DOC concentrations.

  16. Trophic structure and avian communities across a salinity gradient in evaporation ponds of the San Francisco Bay estuary

    Science.gov (United States)

    Takekawa, John Y.; Miles, A.K.; Schoellhamer, D.H.; Athearn, N.D.; Saiki, M.K.; Duffy, W.D.; Kleinschmidt, S.; Shellenbarger, G.G.; Jannusch, C.A.

    2006-01-01

    Commercial salt evaporation ponds comprise a large proportion of baylands adjacent to the San Francisco Bay, a highly urbanized estuary. In the past two centuries, more than 79% of the historic tidal wetlands in this estuary have been lost. Resource management agencies have acquired more than 10 000 ha of commercial salt ponds with plans to undertake one of the largest wetland restoration projects in North America. However, these plans have created debate about the ecological importance of salt ponds for migratory bird communities in western North America. Salt ponds are unique mesohaline (5–18 g l−1) to hyperhaline (> 40 g l−1) wetlands, but little is known of their ecological structure or value. Thus, we studied decommissioned salt ponds in the North Bay of the San Francisco Bay estuary from January 1999 through November 2001. We measured water quality parameters (salinity, DO, pH, temperature), nutrient concentrations, primary productivity, zooplankton, macroinvertebrates, fish, and birds across a range of salinities from 24 to 264 g l−1. Our studies documented how unique limnological characteristics of salt ponds were related to nutrient levels, primary productivity rates, invertebrate biomass and taxa richness, prey fish, and avian predator numbers. Salt ponds were shown to have unique trophic and physical attributes that supported large numbers of migratory birds. Therefore, managers should carefully weigh the benefits of increasing habitat for native tidal marsh species with the costs of losing these unique hypersaline systems.

  17. Ecohydrological characterization of the Nyando wetland, Lake ...

    African Journals Online (AJOL)

    ihe

    the Spearman's rank test for linear trends, Pettit test and Standard Normal Homogeneity test (SNHT) for change point analysis, and split-record .... intimate relationship between shoreline wetland ecology, socio-economics and ... define the physiography of the wetland, which rises from 1134 m at the lake shoreline to 1145 m ...

  18. Carbon Cycling in Wetland Forest Soils

    Science.gov (United States)

    Carl C. Trettin; Martin F. Jurgensen

    2003-01-01

    Wetlands comprise a small proportion (i.e., 2 to 3%) of earth's terrestrial surface, yet they contain a significant proportion of the terrestrial carbon (C) pool. Soils comprise the largest terrestrial C pool (ca. 1550 Pg C in upper 100 cm; Eswaran et al., 1993; Batjes, 1996), and wetlands contain the single largest component, with estimates ranging between 18...

  19. 76 FR 777 - National Wetland Plant List

    Science.gov (United States)

    2011-01-06

    ... from List 96 that were assigned a new species name (these include misapplication of genus, spelling..., whichever is more recent. Wetlands are identified using the three-factor approach. Because the species being... requests for changes to wetland ratings will be evaluated using scientific approaches using limited but...

  20. Stochastic modeling of wetland-groundwater systems

    Science.gov (United States)

    Bertassello, Leonardo Enrico; Rao, P. Suresh C.; Park, Jeryang; Jawitz, James W.; Botter, Gianluca

    2018-02-01

    Modeling and data analyses were used in this study to examine the temporal hydrological variability in geographically isolated wetlands (GIWs), as influenced by hydrologic connectivity to shallow groundwater, wetland bathymetry, and subject to stochastic hydro-climatic forcing. We examined the general case of GIWs coupled to shallow groundwater through exfiltration or infiltration across wetland bottom. We also examined limiting case with the wetland stage as the local expression of the shallow groundwater. We derive analytical expressions for the steady-state probability density functions (pdfs) for wetland water storage and stage using few, scaled, physically-based parameters. In addition, we analyze the hydrologic crossing time properties of wetland stage, and the dependence of the mean hydroperiod on climatic and wetland morphologic attributes. Our analyses show that it is crucial to account for shallow groundwater connectivity to fully understand the hydrologic dynamics in wetlands. The application of the model to two different case studies in Florida, jointly with a detailed sensitivity analysis, allowed us to identify the main drivers of hydrologic dynamics in GIWs under different climate and morphologic conditions.