WorldWideScience

Sample records for bay phytoplankton communities

  1. Spatial variation of phytoplankton community structure in Daya Bay, China.

    Science.gov (United States)

    Jiang, Zhao-Yu; Wang, You-Shao; Cheng, Hao; Zhang, Jian-Dong; Fei, Jiao

    2015-10-01

    Daya Bay is one of the largest and most important gulfs in the southern coast of China, in the northern part of the South China Sea. The phylogenetic diversity and spatial distribution of phytoplankton from the Daya Bay surface water and the relationship with the in situ water environment were investigated by the clone library of the large subunit of ribulose-1, 5-bisphosphate carboxylase (rbcL) gene. The dominant species of phytoplankton were diatoms and eustigmatophytes, which accounted for 81.9 % of all the clones of the rbcL genes. Prymnesiophytes were widely spread and wide varieties lived in Daya Bay, whereas the quantity was limited. The community structure of phytoplankton was shaped by pH and salinity and the concentration of silicate, phosphorus and nitrite. The phytoplankton biomass was significantly positively affected by phosphorus and nitrite but negatively by salinity and pH. Therefore, the phytoplankton distribution and biomass from Daya Bay were doubly affected by anthropic activities and natural factors.

  2. Effects of nutrients and zooplankton on the phytoplankton community structure in Marudu Bay

    Science.gov (United States)

    Tan, Kar Soon; Ransangan, Julian

    2017-07-01

    Current study was carried out to provide a better understanding on spatial and temporal variations in the phytoplankton community structure in Marudu Bay, an important nursery ground for fishery resources within the Tun Mustapha Marine Park and Coral Triangle Initiative, and their relationship with environmental variables. Samplings were conducted monthly from April 2014 to April 2015 in Marudu Bay, Malaysia. Water samples were collected for nutrients analysis, zooplankton and phytoplankton counting. Moreover, the in situ environmental parameters were also examined. The field study showed a total of forty seven phytoplankton genera, representative of 33 families were identified. The nutrient concentrations in Marudu Bay was low (mesotrophic) throughout the year, where the phytoplankton community was often dominated by Chaetoceros spp. and Bacteriastrum spp. In general, increase in nitrate concentration triggered the bloom of centric diatom, Chaetoceros spp. and Bacteriastrum spp. in Marudu Bay. However, the bloom of these phytoplankton taxa did not occur in the presence of high ammonia concentration. In addition, high abundance of zooplankton also a limiting factor of the phytoplankton blooms particularly at end of southwest monsoon. High silica concentration promoted the growth of pennate diatoms, Proboscia spp. and Thallassionema spp., but the depletion of silica quickly terminated the bloom. Interestingly, our study showed that Chaetoceros spp., tolerated silica depletion condition, but the average cell size of this taxon reduced significantly. In summary, the phytoplankton community structure in mesotrophic environment is more sensitive to the changes in zooplankton abundance, nutrient concentration and its ratio than that in nutrient rich environments. This study also recommends that bivalve farming at industrial scale is not recommended in Marudu Bay because it potentially depletes the primary productivity hence jeopardizing the availability of live food for

  3. Eutrophication influence on phytoplankton community composition in three bays on the eastern Adriatic coast

    Directory of Open Access Journals (Sweden)

    Mia Bužančić

    2016-10-01

    Full Text Available This study shows the influence of eutrophication pressure on the phytoplankton community structure, abundance and biodiversity in the investigated bays with different hydromorphological features. Šibenik Bay is a highly stratified estuary of the karstic river Krka; Kaštela Bay is a semi-enclosed coastal bay, which is influenced by the relatively small river Jadro; and Mali Ston Bay is located at the Neretva River estuary, the largest river on the eastern part of the Adriatic Sea. All of the areas are affected by urban pressure, which is reflected in the trophic status of the waters. The greatest anthropogenic influence was found in Kaštela Bay while the lowest influence was found in Mali Ston Bay. In this study, the highest biomass concentration and maximum abundance of phytoplankton were recorded at the stations under the strongest anthropogenic influence. Those stations show a dominance of abundance compared to the biomass and a dominance of opportunistic species, which is reflected in the lower biodiversity of phytoplankton community. Diatoms were the most represented group of the phytoplankton community in all three bays, followed by the dinoflagellates. Diatoms that were highlighted as significant for the difference between the bays were Skeletonema marinoi in Šibenik Bay, Leptocylindrus minimus in Kaštela Bay and the genus Chaetoceros spp. in Mali Ston Bay. Dinoflagellates were more abundant at the stations under the strongest anthropogenic influence, and most significant were Prorocentrum triestinum in Kaštela Bay and Gymnodinium spp. in Šibenik Bay and Mali Ston Bay.

  4. Phytoplankton Communities in Green Bay, Lake Michigan after Invasion by Dreissenid Mussels: Increased Dominance by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Bart T. De Stasio

    2014-11-01

    Full Text Available Biological invasions of aquatic systems disrupt ecological communities, and cause major changes in diversity and ecosystem function. The Laurentian Great Lakes of North America have been dramatically altered by such invasions, especially zebra (Dreissena polymorpha and quagga (D. rostriformis bugensis mussels. Responses to mussel invasions have included increased water clarity, and decreased chlorophyll and phytoplankton abundance. Although not all systems have responded similarly, in general, mussels have changed nutrient dynamics and physical habitat conditions. Therefore examination of different impacts can help us further understand mechanisms that underlie ecosystem responses to biological invasions. To aid our understanding of ecosystem impacts, we sampled established locations along a well-studied trophic gradient in Green Bay, Lake Michigan, after the 1993 zebra mussel invasion. A strong trophic gradient remained during the period sampled after the mussel invasion (2000–2012. However, mean summer chlorophyll increased and other measures of phytoplankton biomass (microscope and electronic cell counting did not change significantly. Multivariate analyses of phytoplankton community structure demonstrate a significant community shift after the invasion. Cyanobacteria increased in dominance, with Microcystis becoming the major summer taxon in lower Green Bay. Diatom diversity and abundance also increased and Chlorophyta became rare. Phytoplankton responses along the trophic gradient of Green Bay to zebra mussel invasion highlight the importance of mussel effects on nutrient dynamics and phytoplankton diversity and function.

  5. Physiological ecology of SRS Carolina bay phytoplankton communities: Effects of nutrient changes and CO2 sources

    International Nuclear Information System (INIS)

    Williams, J.B.

    1992-11-01

    Impacts of land-use activities on wetland ecosystems are important issues for environmental planners, conservation groups, and government agencies. The progress report of this project at DOE's Savannah River Site focused on two specific objectives: determination of the effects of nutrient enrichment (fertilizing during wetlands restoration) on phytoplankton communities and comparison of phytoplankton community dynamics during the current extended hydroperiod for Carolina Bays with patterns in previous drier years

  6. Distribution of phytoplankton community in relation to environmental parameters in cage culture area of Sepanggar Bay, Sabah, Malaysia

    Science.gov (United States)

    Sidik, Madihah Jaffar; Rashed-Un-Nabi, Md.; Azharul Hoque, Md.

    2008-11-01

    This paper covers spatial and temporal variation in phytoplankton communities and physico-chemical water properties in the cage culture area of Sepanggar Bay, Sabah, Malaysia based on field measurement conducted during July 2005 to January 2006 to study the spatial and temporal variation in phytoplankton communities and physico-chemical water properties of the bay. Phytoplankton samples and water parameters data were collected from five different stations located inside the bay during Southwest, Interseasonal and Northeast monsoons. Forty phytoplankton genera, representatives of 23 families, were found in the study area with a mean abundance of 1.55 ± 1.19 × 10 6 cells L -1. Most of these genera belong to diatoms (82.17%), Dinoflagellates (17.55%) and cyanobacteria (0.29%). Three genera were found to be dominant (>10%) in phytoplankton abundance and these were Coscinodiscus spp. (36.38%), Chaetoceros spp (17.65%) and Bacteriastrum spp. (10.98%). The most dominant genus was Coscinodiscus spp. which showed high abundance during all monsoons and stations (except Station 3). Among the seven environmental parameters tested in this study, water temperature, pH and suspended sediment concentration were found to be significantly different between monsoons. On the other hand, no significant differences were found between stations for the studied physico-chemical parameters. A clear differences in phytoplankton densities were observed between monsoons and stations with higher mean abundances during interseasonal monsoon (2.40 ± 1.37 × 10 6 cells L -1) and at station five (2.05 ± 0.74 × 10 6 cells L -1), respectively. Conversely, the diversity indices, both Shannon-Wiener (H) and Pielou (J), showed no significant difference throughout stations and monsoons (except (H) for monsoons). Analysis of similarity (ANOSIM) results demonstrated temporal differences in phytoplankton community structure with highly diverse phytoplankton assemblage. Through cluster analysis five

  7. Bivalve grazing can shape phytoplankton communities

    Science.gov (United States)

    Lucas, Lisa; Cloern, James E.; Thompson, Janet K.; Stacey, Mark T.; Koseff, Jeffrey K.

    2016-01-01

    The ability of bivalve filter feeders to limit phytoplankton biomass in shallow waters is well-documented, but the role of bivalves in shaping phytoplankton communities is not. The coupled effect of bivalve grazing at the sediment-water interface and sinking of phytoplankton cells to that bottom filtration zone could influence the relative biomass of sinking (diatoms) and non-sinking phytoplankton. Simulations with a pseudo-2D numerical model showed that benthic filter feeding can interact with sinking to alter diatom:non-diatom ratios. Cases with the smallest proportion of diatom biomass were those with the fastest sinking speeds and strongest bivalve grazing rates. Hydrodynamics modulated the coupled sinking-grazing influence on phytoplankton communities. For example, in simulations with persistent stratification, the non-sinking forms accumulated in the surface layer away from bottom grazers while the sinking forms dropped out of the surface layer toward bottom grazers. Tidal-scale stratification also influenced vertical gradients of the two groups in opposite ways. The model was applied to Suisun Bay, a low-salinity habitat of the San Francisco Bay system that was transformed by the introduction of the exotic clam Potamocorbula amurensis. Simulation results for this Bay were similar to (but more muted than) those for generic habitats, indicating that P. amurensis grazing could have caused a disproportionate loss of diatoms after its introduction. Our model simulations suggest bivalve grazing affects both phytoplankton biomass and community composition in shallow waters. We view these results as hypotheses to be tested with experiments and more complex modeling approaches.

  8. Drivers of phytoplankton dynamics in old Tampa Bay, FL (USA), a subestuary lagging in ecosystem recovery

    Science.gov (United States)

    Corcoran, Alina A.; Wolny, Jennifer; Leone, Erin; Ivey, James; Murasko, Susan

    2017-02-01

    In the past four decades, consistent and coordinated management actions led to the recovery of Tampa Bay, FL (USA) - an estuary that was declared dead in the 1970s. An exception to this success story is Old Tampa Bay, the northernmost subestuary of the system. Compared to the other bay segments, Old Tampa Bay is characterized by poorer water quality and spring and summer blooms of cyanobacteria, picoplankton, diatoms, and the saxitoxin-producing dinoflagellate Pyrodinium bahamense. Together, these blooms contribute to light attenuation and lagging recovery of seagrass beds. Yet, studies of phytoplankton dynamics within Old Tampa Bay have been limited - both in number and in their spatiotemporal resolution. In this study, we used field sampling and continuous monitoring to (1) characterize temporal and spatial variability in phytoplankton biomass and community composition and (2) identify key drivers of the different phytoplankton blooms in Old Tampa Bay. Overall, temporal variability in phytoplankton biomass (using chlorophyll a as a proxy) and community composition surpassed spatial variability of these parameters. We found a base community of small diatoms and flagellates, as well as certain dinoflagellates, that persisted year round in the system. Seasonally, freshwater runoff stimulated phytoplankton growth, specifically that of chlorophytes, cyanobacteria and other dinoflagellates - consistent with predictions based on ecological theory. On shorter time scales, salinity, visibility, and freshwater inflows were important predictors of phytoplankton biomass. With respect to P. bahamense, environmental drivers including salinity, temperature and dissolved nutrient concentrations explained ∼24% of the variability in cell abundance, indicating missing explanatory parameters in our study for this taxon, such as cyst density and location of cyst beds. Spatially, we found differences in community trajectories across north-south and west-east gradients, with the

  9. Toxic phytoplankton in San Francisco Bay

    Science.gov (United States)

    Rodgers, Kristine M.; Garrison, David L.; Cloern, James E.

    1996-01-01

    The Regional Monitoring Program (RMP) was conceived and designed to document the changing distribution and effects of trace substances in San Francisco Bay, with focus on toxic contaminants that have become enriched by human inputs. However, coastal ecosystems like San Francisco Bay also have potential sources of naturally-produced toxic substances that can disrupt food webs and, under extreme circumstances, become threats to public health. The most prevalent source of natural toxins is from blooms of algal species that can synthesize metabolites that are toxic to invertebrates or vertebrates. Although San Francisco Bay is nutrient-rich, it has so far apparently been immune from the epidemic of harmful algal blooms in the world’s nutrient-enriched coastal waters. This absence of acute harmful blooms does not imply that San Francisco Bay has unique features that preclude toxic blooms. No sampling program has been implemented to document the occurrence of toxin-producing algae in San Francisco Bay, so it is difficult to judge the likelihood of such events in the future. This issue is directly relevant to the goals of RMP because harmful species of phytoplankton have the potential to disrupt ecosystem processes that support animal populations, cause severe illness or death in humans, and confound the outcomes of toxicity bioassays such as those included in the RMP. Our purpose here is to utilize existing data on the phytoplankton community of San Francisco Bay to provide a provisional statement about the occurrence, distribution, and potential threats of harmful algae in this Estuary.

  10. Effect of acidification on an Arctic phytoplankton community from Disko Bay, West Greenland

    DEFF Research Database (Denmark)

    Thoisen, Christina; Riisgaard, Karen; Lundholm, Nina

    2015-01-01

    . Our findings show that coastal phytoplankton from Disko Bay is naturally exposed to pH fluctuations exceeding the experimental pH range used in most ocean acidification studies. We emphasize that studies on ocean acidification should include in situ pH before assumptions on the effect of acidification...... on marine organisms can be made. KEY WORDS: Ocean acidification · Coastal · Arctic phytoplankton · Growth rate · pH · CO2 · DIC......ABSTRACT: Long-term measurements (i.e. months) of in situ pH have not previously been reported from the Arctic; this study shows fluctuations between pH 7.5 and 8.3 during the spring bloom 2012 in a coastal area of Disko Bay, West Greenland. The effect of acidification on phytoplankton from...

  11. Phytoplankton community structure in local water types at a coastal site in north-western Bay of Bengal.

    Science.gov (United States)

    Baliarsingh, S K; Srichandan, Suchismita; Lotliker, Aneesh A; Sahu, K C; Srinivasa Kumar, T

    2016-07-01

    A comprehensive analysis on seasonal distribution of phytoplankton community structure and their interaction with environmental variables was carried out in two local water types (type 1  30 m isobath) at a coastal site in north-western Bay of Bengal. Phytoplankton community was represented by 211 taxa (146 marine, 37 fresh, 2 brackish, 20 marine-fresh, and 6 marine-brackish-fresh) belonging to seven major groups including 45 potential bloom forming and 22 potential toxin producing species. The seasonal variability depicted enrichment of phytoplankton during pre-monsoon in both water types. Total phytoplankton abundance pattern observed with inter-annual shift during monsoon and post-monsoon period at both water types. In both water types, diatom predominance was observed in terms of species richness and abundance comprising of centric (82 sp.) and pennate (58 sp.) forms. Pennate diatoms, Thalassiothrix longissima and Skeletonema costatum preponderated in both the water types. The diatom abundance was higher in type 1 in comparison to type 2. In general, SiO4 found to fuel growth of the dominant phytoplankton group, diatom in both the water types despite comparative lower concentration of other macronutrients in type 2.

  12. Size-dependent photoacclimation of the phytoplankton community in temperate shelf waters (southern Bay of Biscay)

    KAUST Repository

    Á lvarez, E; Moran, Xose Anxelu G.; Ló pez-Urrutia, Á ; Nogueira, E

    2015-01-01

    © Inter-Research 2016. Shelf waters of the Cantabrian Sea (southern Bay of Biscay) are productive ecosystems with a marked seasonality. We present the results from 1 yr of monthly monitoring of the phytoplankton community together with an intensive sampling carried out in 2 contrasting scenarios during the summer and autumn in a mid-shelf area. Stratification was apparent on the shelf in summer, while the water column was comparatively well mixed in autumn. The size structure of the photoautotrophic community, from pico-to micro-phytoplankton, was tightly coupled with the meteo-climatic and hydrographical conditions. Over the short term, variations in the size structure and chlorophyll content of phytoplankton cells were related to changes in the physico-chemical environment, through changes in the availability of nutrients and light. Uncoupling between the dynamics of carbon biomass and chlorophyll resulted in chlorophyll to carbon ratios dependent on body size. The slope of the size dependence of chlorophyll content increased with increasing irradiance, reflecting different photoacclimation plasticity from pico-to micro-phytoplankton. The results have important implications for the productivity and the fate of biogenic carbon in this region, since the size dependence of photosynthetic rates is directly related to the size scaling of chlorophyll content.

  13. Size-dependent photoacclimation of the phytoplankton community in temperate shelf waters (southern Bay of Biscay)

    KAUST Repository

    Álvarez, E

    2015-12-09

    © Inter-Research 2016. Shelf waters of the Cantabrian Sea (southern Bay of Biscay) are productive ecosystems with a marked seasonality. We present the results from 1 yr of monthly monitoring of the phytoplankton community together with an intensive sampling carried out in 2 contrasting scenarios during the summer and autumn in a mid-shelf area. Stratification was apparent on the shelf in summer, while the water column was comparatively well mixed in autumn. The size structure of the photoautotrophic community, from pico-to micro-phytoplankton, was tightly coupled with the meteo-climatic and hydrographical conditions. Over the short term, variations in the size structure and chlorophyll content of phytoplankton cells were related to changes in the physico-chemical environment, through changes in the availability of nutrients and light. Uncoupling between the dynamics of carbon biomass and chlorophyll resulted in chlorophyll to carbon ratios dependent on body size. The slope of the size dependence of chlorophyll content increased with increasing irradiance, reflecting different photoacclimation plasticity from pico-to micro-phytoplankton. The results have important implications for the productivity and the fate of biogenic carbon in this region, since the size dependence of photosynthetic rates is directly related to the size scaling of chlorophyll content.

  14. Spatial-temporal distribution of phytoplankton pigments in relation to nutrient status in Jiaozhou Bay, China

    Science.gov (United States)

    Yao, Peng; Yu, Zhigang; Deng, Chunmei; Liu, Shuxia; Zhen, Yu

    2010-10-01

    We conducted studies of phytoplankton and hydrological variables in a semi-enclosed bay in northern China to understand the spatial-temporal variability and relationship between these variables. Samples were collected during seven cruises in Jiaozhou Bay from November 2003 to October 2004, and were analyzed for temperature, nutrients and phytoplankton pigments. Pigments from eight possible phytoplankton classes (Diatoms, Dinoflagellates, Chlorophyceae, Prasinophyceae, Chrysophyceae, Haptophyceae, Cryptophyceae and Caynophyceae) were detected in surface water by high performance liquid chromatography (HPLC). Phytoplankton pigment and nutrient concentrations in Jiaozhou Bay were spatially and temporally variable, and most of them were highest in the northern and eastern parts of the sampling regions in spring (May) and summer (August), close to areas of shellfish culturing, river estuaries, dense population and high industrialization, reflecting human activities. Chlorophyll a was recorded in all samples, with an annual mean concentration of 1.892 μg L -1, and fucoxanthin was the most abundant accessory pigment, with a mean concentration of 0.791 μg L -1. The highest concentrations of chlorophyll a (15.299 μg L -1) and fucoxanthin (9.417 μg L -1) were observed in May 2004 at the station close to the Qingdao Xiaogang Ferry, indicating a spring bloom of Diatoms in this area. Although chlorophyll a and other biomarker pigments showed significant correlations, none of them showed strong correlations with temperature and nutrients, suggesting an apparent de-coupling between the pigments and these hydrological variables. The nutrient composition and phytoplankton community composition of Jiaozhou Bay have changed significantly in the past several decades, reflecting the increasing nutrient concentrations and decline of phytoplankton cell abundance. The unchanged total chlorophyll a levels indicated that smaller species have filled the niche vacated by the larger

  15. Iron released from ilmenite mineral sustains a phytoplankton community in microcosms

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, C.E.G.; Velip, D.; Mourya, B.S.; Shaikh, S.; Das, A.; LokaBharathi, P.A.

    Natural biotic communities from Kalbadevi Bay were monitored in microcosms (1-l glass flasks) to test the hypothesis that iron released from ilmenite through microbial action contributes to proliferation of phytoplankton. Microcosms containing...

  16. Towards an Understanding of the Interactions between Freshwater Inflows and Phytoplankton Communities in a Subtropical Estuary in the Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    Samuel Dorado

    Full Text Available Subtropical estuaries worldwide face increased pressure on their ecosystem health and services due to increasing human population growth and associated land use/land cover changes, expansion of ports, and climate change. We investigated freshwater inflows (river discharge and the physico-chemical characteristics of Galveston Bay (Texas, USA as mechanisms driving variability in phytoplankton biomass and community composition between February 2008 and December 2009. Results of multivariate analyses (hierarchical cluster analysis, PERMANOVA, Mantel test, and nMDS ordination coupled to environmental vector fitting revealed that temporal and spatial differences in phytoplankton community structure correlate to differences in hydrographic and water quality parameters. Spatially, phytoplankton biomass and community composition responded to nutrient loading from the San Jacinto River in the northwest region of the bay (consistent with nutrient limitation while hydraulic displacement (and perhaps other processes resulted in overall lower biomass in the Trinity River delta (northeast region. The influence of inflows on phytoplankton diminished along a north to south gradient in the bay. Temporally, temperature and variables associated with freshwater inflow (discharge volume, salinity, inorganic nitrogen and phosphorus concentrations were major influences on phytoplankton dynamics. Dissolved inorganic nitrogen: phosphorus (DIN:DIP ratios suggest that phytoplankton communities will be predominately nitrogen limited. Diatoms dominated during periods of moderate to high freshwater inflows in winter/spring and were more abundant in the upper bay while cyanobacteria dominated during summer/fall when inflow was low. Given the differential influences of freshwater inflow on the phytoplankton communities of Galveston Bay, alterations upstream (magnitude, timing, frequency will likely have a profound effect on downstream ecological processes and corresponding

  17. Phytoplankton growth, dissipation, and succession in estuarine environments. [Chesapeake Bay

    Energy Technology Data Exchange (ETDEWEB)

    Seliger, H H

    1976-01-01

    Two major advances in a study of phytoplankton ecology in the Chesapeake Bay are reported. The annual subsurface transport of a dinoflagellate species (Prorocentrum mariae labouriae) from the mouth of the bay a distance northward of 120 nautical miles to the region of the Bay Bridge was followed. Prorocentrum is a major seasonal dinoflagellate in the Chespeake Bay and annually has been reported to form mahogany tides, dense reddish-brown patches, in the northern bay beginning in late spring and continuing through the summer. Subsequent to this annual appearance the Prorocentrum spread southward and into the western tributary estuaries. The physiological behavioral characteristics of the Prorocentrum were correlated with the physical water movements in the bay. A phytoplankton cage technique for the measurement in situ of the growth rates of natural mixed populations is described. (CH)

  18. Physiological responses of coastal phytoplankton (Visakhapatnam, SW Bay of Bengal, India) to experimental copper addition.

    Science.gov (United States)

    Biswas, Haimanti; Bandyopadhyay, Debasmita

    2017-10-01

    Trace amount of copper (Cu) is essential for many physiological processes; however, it can be potentially toxic at elevated levels. The impact of variable Cu concentrations on a coastal phytoplankton community was investigated along a coastal transect in SW Bay of Bengal. A small increase in Cu supply enhanced the concentrations of particulate organic carbon, particulate organic nitrogen, biogenic silica, total pigment, phytoplankton cell and total bacterial count. At elevated Cu levels all these parameters were adversely affected. δ 13 C POM and δ 15 N POC reflected a visible signature of both beneficial and toxic impacts of Cu supply. Skeletonema costatum, the dominant diatom species, showed higher tolerance to increasing Cu levels relative to Chaetoceros sp. Cyanobacteria showed greater sensitivity to copper than diatoms. The magnitude of Cu toxicity on the phytoplankton communities was inversely related to the distance from the coast. Co-enrichment of iron alleviated Cu toxicity to phytoplankton. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Phytoplankton and nutrient dynamics in Winyah Bay, SC.

    Science.gov (United States)

    Boneillo, G. E.; Brooks, S. S.; Brown, S. L.; Woodford, K. M.; Wright, C. R.

    2016-02-01

    Winyah Bay is a coastal plain estuary located in South Carolina that has been classified for a moderate risk of Eutrophication by NOAA. Winyah Bay receives freshwater input from four rivers, the Waccamaw, Sampit, Black, and Pee Dee Rivers. The Waccamaw, Sampit and Black River are blackwater systems that discharge elevated amounts of colored dissolved organic matter. During the summer and fall of 2015, bioassay experiments were performed to simultaneously examine both light and nutrient (nitrogen & phosphate) limitation throughout Winyah Bay. Sampling stations near the mouth of the Waccamaw and Sampit Rivers showed that phytoplankton were light limited in the late summer instead of nutrient limited. These stations were located in the industrialized area of the bay and typically had the highest nutrient concentrations and highest turbidity, with Secchi depths typically less than 0.5 meters. Results indicated that phytoplankton may be nitrogen limited near the mouth of Winyah Bay, where nutrient concentrations and turbidity were observed to be lower than locations further upstream. There was also an observed dissolved oxygen and pH gradient during the summer of 2015. Dissolved oxygen levels less than 4.0 mg/L were routinely observed near the industrialized head of the estuary and corresponded with lower pH values.

  20. Variation of phytoplankton biomass and primary production in Daya Bay during spring and summer

    International Nuclear Information System (INIS)

    Song Xingyu; Huang Liangmin; Zhang Jianlin; Huang, Xiaoping; Zhang Junbin; Yin Jianqiang; Tan Yehui; Liu Sheng

    2004-01-01

    Environmental factors, phytoplankton biomass (Chl a) and primary production of two water areas in Daya Bay (Dapeng'ao Bay and Aotou Bay) were investigated during the transition period from spring to summer. Chl a ranged from 3.20 to 13.62 and 13.43 to 26.49 mg m -3 in Dapeng'ao Bay and Aotou Bay respectively, if data obtained during red tides are excluded. Primary production varied between 239.7 and 1001.4 mgC m -2 d -1 in Dapeng'ao Bay. The regional distribution of Chl a and primary production were mostly consistent from spring to summer in both bays. Seasonal transition characters have been found in Daya Bay from spring to summer, including high values of DO, nitrate and silicate. Size structures of phytoplankton and its primary production do not change very much from spring to summer, with micro-phytoplankton dominating and contributing about 50% of the whole. In Daya Bay, phytoplankton is limited by nitrogen in spring, and by phosphate in summer. Artificial impacts are evident from high temperature effluent from nuclear power stations, aquaculture and sewage. During the investigation, a red tide occurred in Aotou Bay, with a maximum Chl a of 103.23 mg m -3 at surface and primary production of 2721.9 mgC m -2 d -1 in the red tide center. Raised water temperature and nutrient supply from land-sources help to stimulate annual red tides

  1. Modeling investigation of the nutrient and phytoplankton variability in the Chesapeake Bay outflow plume

    Science.gov (United States)

    Jiang, Long; Xia, Meng

    2018-03-01

    The Chesapeake Bay outflow plume (CBOP) is the mixing zone between Chesapeake Bay and less eutrophic continental shelf waters. Variations in phytoplankton distribution in the CBOP are critical to the fish nursery habitat quality and ecosystem health; thus, an existing hydrodynamic-biogeochemical model for the bay and the adjacent coastal ocean was applied to understand the nutrient and phytoplankton variability in the plume and the dominant environmental drivers. The simulated nutrient and chlorophyll a distribution agreed well with field data and real-time satellite imagery. Based on the model calculation, the net dissolved inorganic nitrogen (DIN) and phosphorus (DIP) flux at the bay mouth was seaward and landward during 2003-2012, respectively. The CBOP was mostly nitrogen-limited because of the relatively low estuarine DIN export. The highest simulated phytoplankton biomass generally occurred in spring in the near field of the plume. Streamflow variations could regulate the estuarine residence time, and thus modulate nutrient export and phytoplankton biomass in the plume area; in comparison, changing nutrient loading with fixed streamflow had a less extensive impact, especially in the offshore and far-field regions. Correlation analyses and numerical experiments revealed that southerly winds on the shelf were effective in promoting the offshore plume expansion and phytoplankton accumulation. Climate change including precipitation and wind pattern shifts is likely to complicate the driving mechanisms of phytoplankton variability in the plume region.

  2. Phytoplankton distribution and their relationship to environmental variables in Sanya Bay, South China Sea

    Directory of Open Access Journals (Sweden)

    Yanying Zhang

    2010-11-01

    Full Text Available Phytoplankton quantification was conducted in Sanya Bay from January 2005 to February 2006. A submersible in situ spectrofluorometer, which permits the differentiation of four algal groups (green algae, diatoms and dinoflagellates, cryptophytes and cyanobacteria was used. Seasonal variation of total chlorophyll a concentration showed that high value appeared in summer and low concentration occurred in spring. Diatoms and dinoflagellates group was the predominant phytoplankton all year in the Bay. The stable stratification of phytoplankton vertical distribution came into being in July. During the stratification event, the total chlorophyll a concentration of deep layer was much higher than the surface; cyanobacteria and cryptophyta groups decreased and almost disappeared, however, the concentration of green algae and diatoms and dinoflagellates groups increased. In deep layer, the concentration of diatoms and dinoflagellates group increased sharply, which was about eight times more than that in the surface layer. The vertical profiles character of phytoplankton showed that from inshore stations to outer bay the stratification of phytoplankton vertical distribution gradually strengthened. Dissolved inorganic nutrient especially phosphate and inorganic nitrogen and cold-water upwelling were the main regulating factor for phytoplankton distribution.

  3. CO2 induced growth response in a diatom dominated phytoplankton community from SW Bay of Bengal coastal water

    Science.gov (United States)

    Biswas, Haimanti; Shaik, Aziz Ur Rahman; Bandyopadhyay, Debasmita; Chowdhury, Neha

    2017-11-01

    The ongoing increase in surface seawater CO2 level could potentially impact phytoplankton primary production in coastal waters; however, CO2 sensitivity studies on tropical coastal phytoplankton assemblages are rare. The present study investigated the interactive impacts of variable CO2 level, light and zinc (Zn) addition on the diatom dominated phytoplankton assemblages from the western coastal Bay of Bengal. Increased CO2 supply enhanced particulate organic matter (POC) production; a concomitant depletion in δ13CPOM values at elevated CO2 suggested increased CO2 diffusive influx inside the cell. Trace amount of Zn added under low CO2 level accelerated growth probably by accelerating Zn-Carbonic Anhydrase activity which helps in converting bicarbonate ion to CO2. Almost identical values of δ13CPOM in the low CO2 treated cells grown with and without Zn indicated a low discrimination between 13C and 12C probably due to bicarbonate uptake. These evidences collectively indicated the existence of the carbon concentration mechanisms (CCMs) at low CO2. A minimum growth rate was observed at low CO2 and light limited condition indicating light dependence of CCMs activity. Upon the increase of light and CO2 level, growth response was maximum. The cells grown in the low CO2 levels showed higher light stress (higher values of both diatoxanthin index and the ratio of photo-protective to light-harvesting pigments) that was alleviated by both increasing CO2 supply and Zn addition (probably by efficient light energy utilization in presence of adequate CO2). This is likely that the diatom dominated phytoplankton communities benefited from the increasing CO2 supply and thus may enhance primary production in response to any further increase in coastal water CO2 levels and can have large biogeochemical consequences in the study area.

  4. Tolerance of polar phytoplankton communities to metals

    International Nuclear Information System (INIS)

    Echeveste, P.; Tovar-Sánchez, A.; Agustí, S.

    2014-01-01

    Large amounts of pollutants reach polar regions, particularly the Arctic, impacting their communities. In this study we analyzed the toxic levels of Hg, Cd and Pb to natural phytoplankton communities of the Arctic and Southern Oceans, and compared their sensitivities with those observed on phytoplankton natural communities from temperate areas. Mercury was the most toxic metal for both Arctic and Antarctic communities, while both Cd and Pb were toxic only for the Antarctic phytoplankton. Total cell abundance of the populations forming the Arctic community increased under high Cd and Pb concentrations, probably due to a decrease of the grazing pressure or the increase of the most resistant species, although analysis of individual cells indicated that cell death was already induced at the highest levels. These results suggest that phytoplankton may have acquired adapting mechanisms to face high levels of Pb and Cd in the Arctic Ocean. Highlights: • First study analyzing the toxicity of Hg, Cd or Pb to natural polar phytoplankton. • Arctic Ocean communities highly resistant to Cd and Pb, but not to Hg. • Southern Ocean communities sensitive to Cd, Pb and Hg. • Both communities incorporated Pb at a similar level. • Arctic phytoplankton may have acquired adapting mechanisms against Cd and Pb. -- Polar phytoplankton communities are tolerant to Cd and Pb, specially the Arctic ones, suggesting the acquisition of adapting mechanisms to face metals' toxicity

  5. The role of phytoplankton in the modulation of dissolved and oyster cadmium concentrations in Deep Bay, British Columbia, Canada

    International Nuclear Information System (INIS)

    Cassis, David; Lekhi, Priyanka; Pearce, Christopher M.; Ebell, Nadene; Orians, Kristin; Maldonado, Maria T.

    2011-01-01

    We previously identified dissolved cadmium (Cd diss ) as the main source of this metal in cultured Pacific oysters, Crassostrea gigas, in Deep Bay, British Columbia, Canada (Lekhi et al., 2008). Total suspended particulate Cd (Cd part ) was not found to be a significant source of oyster Cd (Cd oys ), with Cd part > 20 μm negatively correlated with Cd oys concentration. High phytoplankton abundance in spring and summer was hypothesized to reduce Cd oys indirectly by drawing down Cd diss and increasing oyster growth. In the present study we expanded on these results by examining specifically how the phytoplankton community composition modulates both Cd diss and Cd oys concentrations in Deep Bay. Based on calculations of nutrients and Cd diss drawdown, phytoplankton accounted for approximately 90% of the overall summer reduction in Cd diss in the bay. Diatoms were the dominant phytoplankton group, being correlated negatively with Cd oys and positively with Cd part . This suggests that diatom growth mediates the transfer of Cd from the dissolved to the particulate phase, resulting in lower Cd oys . Spring blooms and sporadic harmful algal blooms may mediate a large flux of Cd part to the sediments. Thus, phytoplankton act as a sink, rather than a source, of Cd to oysters in Deep Bay and have a crucial role in the seasonality of Cd oys by reducing the concentration of Cd diss during the summer. Based on environmental variables, two descriptive models for annual Cd oys concentrations were developed using multiple linear regression. The first model (R 2 = 0.870) was created to explain the maximum variability in Cd oys concentrations throughout the year, while the second (R 2 = 0.806) was based on parameters that could be measured easily under farm conditions. Oyster age heavily affected both models, with the first model being secondarily affected by temperature and the second one being more sensitive to changes in salinity. - Highlights: → Phytoplankton and

  6. Triclosan alterations of estuarine phytoplankton community structure.

    Science.gov (United States)

    Pinckney, James L; Thompson, Laura; Hylton, Sarah

    2017-06-15

    Antimicrobial additives in pharmaceutical and personal care products are a major environmental concern due to their potential ecological impacts on aquatic ecosystems. Triclosan (TCS) has been used as an antiseptic, disinfectant, and preservative in various media. The sublethal and lethal effects of TCS on estuarine phytoplankton community composition were investigated using bioassays of natural phytoplankton communities to measure phytoplankton responses to different concentrations of TCS ranging from 1 to 200μgl -1 . The EC 50 (the concentration of an inhibitor where the growth is reduced by half) for phytoplankton groups (diatoms, chlorophytes, cryptophytes) examined in this ranged from 10.7 to 113.8μg TCS l -1 . Exposures resulted in major shifts in phytoplankton community composition at concentrations as low as 1.0μg TCS l -1 . This study demonstrates estuarine ecosystem sensitivity to TCS exposure and highlights potential alterations in phytoplankton community composition at what are typically environmental concentrations of TCS in urbanized estuaries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. PHYTOPLANKTON COMPOSITION AT THE FISH AND SHELLFISH FARM IN THE KALDONTA BAY (CRES ISLAND

    Directory of Open Access Journals (Sweden)

    Marija Tomec

    2004-12-01

    Full Text Available The Kaldonta Bay is situated at the south–western coast of the Cres island in the Lošinj channel, rather protected from larger influence of general sea water current. In the Bay there are installed 44 floating cages of 5 by 10 m dimensions. The cages are used for the culture of about 70 tons of sea water fish: gilthead sea bream (Sparus aurata, sea bass (Dicentrarchus labrax, sharp–snouted sparus (Diplodus puntazzo and dentex (Dentex dentex. Besides some physico–chemical parameters (sea water temperature, transparence and salinity, special attention has been paid to the qualitative composition of net phytoplankton. Investigations were performed in the period of May, September and December 2003 and February 2004 at five locations in the Kaldonta Bay (Figure 1 at the depths of 0.5 m, 5 m, 10 m and 1 m from the bottom. According to the physico–chemical parameters, sea water temperature was influenced by the temperature of the environment, and the transparence suggested to the oligotrophic situation in the investigated aquatorium. Qualitative composition of net phytoplankton comprised 161 microphytic species belonging to the systematic compartments of Cyanobacteria, Chrysophyta and Dinophyta (Table 1. The most numerous algal group were diatoms or Bacillarophyceae (98 species or 61%, with relative frequencies of species from 1 to 7. Taxonomic composition of diatoms showed Chaetoceros–Rhizosolenia (Proboscia to be the dominant community. Diatom species was the most abundant in late autumn period (beginning of December. The second most important comparatment were Dinophyta (55 species or 34.1%, with the dominant genera Ceratium and Protoperidinium. During the investigation, the representatives of Dinophyta did not show large variety of species in the water column. Relative frequency of the species was 1, rarely 2 and 3. Dinophyts were the most abundant in September. From Cyanobacteria (5 species or 3.1% only filamentous algae were determined

  8. Characterization of phytoplankton pigments and functional community structure in the Gulf of Mannar and the Palk Bay using HPLC–CHEMTAX analysis.

    Digital Repository Service at National Institute of Oceanography (India)

    Madhu, N.V.; Ullas, N.; Ashwini, R.; Meenu, P.; Rehitha, T.V.; Lallu, K.R.

    Phytoplankton marker pigments and their functional groups were identified for the first time in the Gulf of Mannar (GoM) and the Palk Bay (PB), located in the southeast coast of India using HPLC–CHEMTAX analytical techniques. The GoM generally...

  9. Seasonal and Inter-Annual Patterns of Phytoplankton Community Structure in Monterey Bay, CA Derived from AVIRIS Data During the 2013-2015 HyspIRI Airborne Campaign

    Science.gov (United States)

    Palacios, S. L.; Thompson, D. R.; Kudela, R. M.; Negrey, K.; Guild, L. S.; Gao, B. C.; Green, R. O.; Torres-Perez, J. L.

    2015-12-01

    There is a need in the ocean color community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand ocean biodiversity, to track energy flow through ecosystems, and to identify and monitor for harmful algal blooms. Imaging spectrometer measurements enable use of sophisticated spectroscopic algorithms for applications such as differentiating among coral species, evaluating iron stress of phytoplankton, and discriminating phytoplankton taxa. These advanced algorithms rely on the fine scale, subtle spectral shape of the atmospherically corrected remote sensing reflectance (Rrs) spectrum of the ocean surface. As a consequence, these algorithms are sensitive to inaccuracies in the retrieved Rrs spectrum that may be related to the presence of nearby clouds, inadequate sensor calibration, low sensor signal-to-noise ratio, glint correction, and atmospheric correction. For the HyspIRI Airborne Campaign, flight planning considered optimal weather conditions to avoid flights with significant cloud/fog cover. Although best suited for terrestrial targets, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has enough signal for some coastal chlorophyll algorithms and meets sufficient calibration requirements for most channels. However, the coastal marine environment has special atmospheric correction needs due to error that may be introduced by aerosols and terrestrially sourced atmospheric dust and riverine sediment plumes. For this HyspIRI campaign, careful attention has been given to the correction of AVIRIS imagery of the Monterey Bay to optimize ocean Rrs retrievals for use in estimating chlorophyll (OC3 algorithm) and phytoplankton functional type (PHYDOTax algorithm) data products. This new correction method has been applied to several image collection dates during two oceanographic seasons - upwelling and the warm, stratified oceanic period for 2013 and 2014. These two periods are dominated by either diatom blooms (occasionally

  10. The role of phytoplankton in the modulation of dissolved and oyster cadmium concentrations in Deep Bay, British Columbia, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Cassis, David, E-mail: dcassis@telus.net [Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3 (Canada); Lekhi, Priyanka [Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z3 (Canada); Pearce, Christopher M. [Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada V9T 6N7 (Canada); Ebell, Nadene [Ministry of Agriculture, Nanaimo, BC, Canada V9T 6J9 (Canada); Orians, Kristin [Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3 (Canada); Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z3 (Canada); Maldonado, Maria T. [Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3 (Canada)

    2011-09-15

    We previously identified dissolved cadmium (Cd{sub diss}) as the main source of this metal in cultured Pacific oysters, Crassostrea gigas, in Deep Bay, British Columbia, Canada (Lekhi et al., 2008). Total suspended particulate Cd (Cd{sub part}) was not found to be a significant source of oyster Cd (Cd{sub oys}), with Cd{sub part} > 20 {mu}m negatively correlated with Cd{sub oys} concentration. High phytoplankton abundance in spring and summer was hypothesized to reduce Cd{sub oys} indirectly by drawing down Cd{sub diss} and increasing oyster growth. In the present study we expanded on these results by examining specifically how the phytoplankton community composition modulates both Cd{sub diss} and Cd{sub oys} concentrations in Deep Bay. Based on calculations of nutrients and Cd{sub diss} drawdown, phytoplankton accounted for approximately 90% of the overall summer reduction in Cd{sub diss} in the bay. Diatoms were the dominant phytoplankton group, being correlated negatively with Cd{sub oys} and positively with Cd{sub part}. This suggests that diatom growth mediates the transfer of Cd from the dissolved to the particulate phase, resulting in lower Cd{sub oys}. Spring blooms and sporadic harmful algal blooms may mediate a large flux of Cd{sub part} to the sediments. Thus, phytoplankton act as a sink, rather than a source, of Cd to oysters in Deep Bay and have a crucial role in the seasonality of Cd{sub oys} by reducing the concentration of Cd{sub diss} during the summer. Based on environmental variables, two descriptive models for annual Cd{sub oys} concentrations were developed using multiple linear regression. The first model (R{sup 2} = 0.870) was created to explain the maximum variability in Cd{sub oys} concentrations throughout the year, while the second (R{sup 2} = 0.806) was based on parameters that could be measured easily under farm conditions. Oyster age heavily affected both models, with the first model being secondarily affected by temperature and the

  11. Net phytoplankton of the Admiralty Bay (King George Island, South Shetland Islands) in 1983

    OpenAIRE

    Ligowski, Ryszard

    1986-01-01

    Paper received 13 July 1985. Phytoplankton sampling from 13 stations situated in Admiralty Bay was carried out in March. April, May, October and November 1983. Wet settling volume of seston, its dry weight, number of cells under 1 m², and qualitative composition of phytoplankton were determined. It was found that amount of phytoplankton was decreasing in April and increasing again in November after the winter season. The share of benthic and periphyton species in the qualita...

  12. Monitoring natural phytoplankton communities

    DEFF Research Database (Denmark)

    Haraguchi, L.; Jakobsen, H. H.; Lundholm, Nina

    2017-01-01

    The phytoplankton community can vary within hours (physiology) to years (climatic and anthropogenic responses), and monitoring at different timescales is relevant for understanding community functioning and assessing changes. However, standard techniques used in monitoring programmes are time...

  13. Salinity-driven decadal changes in phytoplankton community in the NW Arabian Gulf of Kuwait.

    Science.gov (United States)

    Al-Said, Turki; Al-Ghunaim, Aws; Subba Rao, D V; Al-Yamani, Faiza; Al-Rifaie, Kholood; Al-Baz, Ali

    2017-06-01

    Evaluation of hydrological data obtained between 2000 and 2013 from a time series station in Kuwait Bay (station K6) and an offshore southern location (station 18) off Kuwait showed drastic increase in salinity by 6 units. We tested the hypothesis that increased salinity impacted phytoplankton community characteristics in these semiarid waters. The Arabian Gulf receives seasonal freshwater discharge in the north via Shatt Al-Arab estuary with a peak during March-July. A north to south gradient in the proportion of the freshwater exists between station A in the vicinity of Shatt Al-Arab estuary and station 18 in the southern offshore area. At station A, the proportion of freshwater was the highest (25.6-42.5%) in 1997 but decreased to 0.8-4.6% by 2012-2013. The prevailing hyperhaline conditions off Kuwait are attributed to decrease in the river flow. Phytoplankton data showed a decrease in the number of constituent taxa in the last one decade from 353 to 159 in the Kuwait Bay and from 164 to 156 in the offshore area. A shift in their biomass was caused by a decrease in diatom species from 243 to 92 in the coastal waters and from 108 to 83 in the offshore areas with a concomitant increase of smaller algae. Mutivariate agglomerative hierarchical cluster analysis, non-metric multi-dimensional scaling, and one-way analysis of similarity analyses on phytoplankton data at different taxonomic levels confirmed significant changes in their community organization on a decadal scale. These evidences support our hypothesis that the salinity-related environmental changes have resulted in a coincidental decrease in species diversity and significant changes in phytoplankton community between the years 2000-2002 and 2012-2013, off Kuwait. This in turn would affect the pelagic trophodynamics as evident from a drastic decrease in the catch landings of Tenulosa ilisha (Suboor), Carangoides sp. (Hamam), Otolithes ruber (Nowaiby), Parastromateus niger (Halwaya), and Epinephelus

  14. Cyanobacteria dominance influences resource use efficiency and community turnover in phytoplankton and zooplankton communities.

    Science.gov (United States)

    Filstrup, Christopher T; Hillebrand, Helmut; Heathcote, Adam J; Harpole, W Stanley; Downing, John A

    2014-04-01

    Freshwater biodiversity loss potentially disrupts ecosystem services related to water quality and may negatively impact ecosystem functioning and temporal community turnover. We analysed a data set containing phytoplankton and zooplankton community data from 131 lakes through 9 years in an agricultural region to test predictions that plankton communities with low biodiversity are less efficient in their use of limiting resources and display greater community turnover (measured as community dissimilarity). Phytoplankton resource use efficiency (RUE = biomass per unit resource) was negatively related to phytoplankton evenness (measured as Pielou's evenness), whereas zooplankton RUE was positively related to phytoplankton evenness. Phytoplankton and zooplankton RUE were high and low, respectively, when Cyanobacteria, especially Microcystis sp., dominated. Phytoplankton communities displayed slower community turnover rates when dominated by few genera. Our findings, which counter findings of many terrestrial studies, suggest that Cyanobacteria dominance may play important roles in ecosystem functioning and community turnover in nutrient-enriched lakes. © 2014 John Wiley & Sons Ltd/CNRS.

  15. Function assessment of coastal ecosystem based on phytoplankton community structure

    DEFF Research Database (Denmark)

    Haraguchi, Lumi

    2018-01-01

    on phytoplankton community structure; and 3) investigating the role of planktonic communities on the cycling of dissolved organic matter. Those objectives were addressed focusing the temperate mesohaline estuary of Roskilde Fjord (Denmark). Paper I, explores the use of Pulse-shape recording flow cytometry (PFCM...... as an energy reservoir, buffering changes in the nutrient supply. Finally, the results embedded in this thesis demonstrate the importance of integrating different time scales to understand functioning of phytoplankton communities. Phytoplankton dynamics should not be regarded just in light of inorganic......This Ph.D. project aimed to improve the knowledge on phytoplankton community structure and its influence in the carbon transfer and nutrient cycling in coastal waters, by: 1) assessing the importance of phytoplankton

  16. Monitoring natural phytoplankton communities

    DEFF Research Database (Denmark)

    Haraguchi, L.; Jakobsen, H. H.; Lundholm, Nina

    2017-01-01

    -consuming and/or expensive, limiting sampling frequency. The use of faster methods, such as flow cytometry, has become more frequent in phytoplankton studies, although comparisons between this technique and traditional ones are still scarce. This study aimed to assess if natural phytoplankton communities...... carbon biomass with PFCM, applying the same conversion factors as for microscopy. Biomasses obtained with PFCM, estimated from live cells, were higher than microscopy for natural samples. We conclude that PFCM results are comparable to classical techniques, yet the data from PFCM had poor taxonomic...

  17. Climate effects on phytoplankton floral composition in Chesapeake Bay

    Science.gov (United States)

    Harding, L. W.; Adolf, J. E.; Mallonee, M. E.; Miller, W. D.; Gallegos, C. L.; Perry, E. S.; Johnson, J. M.; Sellner, K. G.; Paerl, H. W.

    2015-09-01

    Long-term data on floral composition of phytoplankton are presented to document seasonal and inter-annual variability in Chesapeake Bay related to climate effects on hydrology. Source data consist of the abundances of major taxonomic groups of phytoplankton derived from algal photopigments (1995-2004) and cell counts (1985-2007). Algal photopigments were measured by high-performance liquid chromatography (HPLC) and analyzed using the software CHEMTAX to determine the proportions of chlorophyll-a (chl-a) in major taxonomic groups. Cell counts determined microscopically provided species identifications, enumeration, and dimensions used to obtain proportions of cell volume (CV), plasma volume (PV), and carbon (C) in the same taxonomic groups. We drew upon these two independent data sets to take advantage of the unique strengths of each method, using comparable quantitative measures to express floral composition for the main stem bay. Spatial and temporal variability of floral composition was quantified using data aggregated by season, year, and salinity zone. Both time-series were sufficiently long to encompass the drought-flood cycle with commensurate effects on inputs of freshwater and solutes. Diatoms emerged as the predominant taxonomic group, with significant contributions by dinoflagellates, cryptophytes, and cyanobacteria, depending on salinity zone and season. Our analyses revealed increased abundance of diatoms in wet years compared to long-term average (LTA) or dry years. Results are presented in the context of long-term nutrient over-enrichment of the bay, punctuated by inter-annual variability of freshwater flow that strongly affects nutrient loading, chl-a, and floral composition. Statistical analyses generated flow-adjusted diatom abundance and showed significant trends late in the time series, suggesting current and future decreases of nutrient inputs may lead to a reduction of the proportion of biomass comprised by diatoms in an increasingly diverse

  18. PHYTOPLANKTON ASSEMBLAGES AT FISH FARM IN MASLINOVA BAY (THE ISLAND OF BRAČ

    Directory of Open Access Journals (Sweden)

    Sanda Skejić

    2012-07-01

    Full Text Available The aim of this study was to establish phytoplankton composition at the sea bream (Sparus aurata and sea bass (Dicentrarchus labrax fish farm in the middle Adriatic Sea. The investigation was performed from September 2005 to September 2006 at a station located in Maslinova Bay at the island of Brač. Considering the whole research period, diatoms generally prevailed in terms of abundance while dinoflagellates were particularly abundant in June. Number of species of diatoms in comparison to dinoflagellates through the investigated period was similar. From 111 species of phytoplankton found, there were 55 species of Bacillariophyceae (diatoms, 47 species of Dinophyta (dinoflagellates, 5 species of Prymnesiophyceae, 3 Chrysophyceae and 1 Euglenophyta. Among the diatoms, the majority of species belonged to genus Chaetoceros. The most represented dinoflagellate genera were Oxytoxum and Gymnodinium. There were no considerable differences in phytoplankton composition with respect to different depths, but seasonal influence was significant. Biodiversity and abundance ranges of phytoplankton species indicated good water conditions and there were no evident alterations induced by the increased release of nutrients.

  19. Seasonal and Inter-Annual Patterns of Chlorophyll and Phytoplankton Community Structure in Monterey Bay, CA Derived from AVIRIS Data During the 2013-2015 HyspIRI Airborne Campaign

    Science.gov (United States)

    Palacios, S. L.; Thompson, D. R.; Kudela, R. M.; Negrey, K.; Guild, L. S.; Gao, B. C.; Green, R. O.; Torres-Perez, J. L.

    2016-02-01

    There is a need in the ocean color community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand ocean biodiversity, track energy flow through ecosystems, and identify and monitor for harmful algal blooms. Imaging spectrometer measurements enable the use of sophisticated spectroscopic algorithms for applications such as differentiating among coral species and discriminating phytoplankton taxa. These advanced algorithms rely on the fine scale, subtle spectral shape of the atmospherically corrected remote sensing reflectance (Rrs) spectrum of the ocean surface. Consequently, these algorithms are sensitive to inaccuracies in the retrieved Rrs spectrum that may be related to the presence of nearby clouds, inadequate sensor calibration, low sensor signal-to-noise ratio, glint correction, and atmospheric correction. For the HyspIRI Airborne Campaign, flight planning considered optimal weather conditions to avoid flights with significant cloud/fog cover. Although best suited for terrestrial targets, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has enough signal for some coastal chlorophyll algorithms and meets sufficient calibration requirements for most channels. The coastal marine environment has special atmospheric correction needs due to error introduced by aerosols and terrestrially sourced atmospheric dust and riverine sediment plumes. For this HyspIRI campaign, careful attention has been given to the correction of AVIRIS imagery of the Monterey Bay to optimize ocean Rrs retrievals to estimate chlorophyll (OC3) and phytoplankton functional type (PHYDOTax) data products. This new correction method has been applied to several image collection dates during two oceanographic seasons in 2013 and 2014. These two periods are dominated by either diatom blooms or red tides. Results to be presented include chlorophyll and phytoplankton community structure and in-water validation data for these dates during the two seasons.

  20. Community structure characteristics of phytoplankton in zhalong wetland, china

    International Nuclear Information System (INIS)

    Zhang, N.; Zang, S.S.

    2015-01-01

    In autumn 2010, the phytoplankton samples were collected in Zhalong Wetland. A total of 347 species belonging to 78 genera,6 phyla were identified, Chlorophyta and Bacillariophyta were dominated phytoplankton communities, including 143 species of Chlorophyta, 116 species of Bacillariophyta, 45 species of Cyanophyta, 39 species of Euglenophyta, 3 species of Pyrrophyta, 1 species of Chrysophyta. In the core area 66 genera, 222 species were identified, in the buffer area 63 genera, 210 species were identified, in the experiment area 63 genera, 167 species were identified. The dominant species in Zhalong Wetland included Cyclotella meneghiniana, Chlorella vulgaris, Trachelomonas volvocina, Nitzschia sp.. The average phytoplankton density was 12.13*10/sup 6/ in Zhalong Wetland, the phytoplankton density of Bacillariophyta was highest (32.82*10/sup 6/ ind L/sup -1/), and then Chlorophyta (23.73*10/sup 6/ ind L/sup -1/) and Cyanophyta (11.43*106 ind L-1), respectively. The results of cluster analysis showed that phytoplankton community structure could be divided into three types, and within-group similarities of phytoplankton community structure was not high, but inter-group non-similarity was high. Based on the species composition, phytoplankton density, phytoplankton pollution indicator, it suggested that Zhalong Wetland was mesotrophic state. (author)

  1. Evaluating the Addition of a Dinoflagellate Phytoplankton Functional Type Using Radiance Anomalies for Monterey Bay, CA

    Science.gov (United States)

    Houskeeper, H. F.; Kudela, R. M.

    2016-12-01

    Ocean color sensors have enabled daily, global monitoring of phytoplankton productivity in the world's oceans. However, to observe key structures such as food webs, or to identify regime shifts of dominant species, tools capable of distinguishing between phytoplankton functional types using satellite remote sensing reflectance are necessary. One such tool developed by Alvain et al. (2005), PHYSAT, successfully linked four phytoplankton functional types to chlorophyll-normalized remote sensing spectra, or radiance anomalies, in case-1 waters. Yet this tool was unable to characterize dinoflagellates because of their ubiquitous background presence in the open ocean. We employ a radiance anomaly technique based on PHYSAT to target phytoplankton functional types in Monterey Bay, a region where dinoflagellate populations are larger and more variable than in open ocean waters, and thus where they may be viable targets for satellite remote sensing characterization. We compare with an existing Santa Cruz Wharf photo-pigment time series spanning from 2006 to the present to regionally ground-truth the method's predictions, and we assess its accuracy in characterizing dinoflagellates, a phytoplankton group that impacts the region's fish stocks and water quality. For example, an increase in dinoflagellate abundance beginning in 2005 led to declines in commercially important fish stocks that persisted throughout the following year. Certain species of dinoflagellates in Monterey Bay are also responsible for some of the harmful algal bloom events that negatively impact the shellfish industry. Moving toward better tools to characterize phytoplankton blooms is important for understanding ecosystem shifts, as well as protecting human health in the surrounding areas.

  2. [Phytoplankton community in a recreational fishing lake, Brazil].

    Science.gov (United States)

    Matsuzaki, Mayla; Mucci, José Luiz Negrão; Rocha, Aristides Almeida

    2004-10-01

    The assessment of water quality and phytoplankton community in recreational environments allows to setting management programs aiming at preventing potential harm to human health. The purpose of the present study was to describe phytoplankton seasonal changes in a freshwater system and their relation to water quality. The recreational fishing lake is located in the southern area of the city of São Paulo, Brazil. Water samples were collected in three previously selected sites in the lake throughout a year and analyzed regarding floristic composition and physical and chemical parameters. The phytoplankton qualitative analysis revealed 91 taxa distributed among eight classes: Chlorophyceae, Cyanophyceae, Euglenophyceae, Zygnemaphyceae, Bacillariophyceae, Xantophyceae, Dinophyceae, and Chrysophyceae. Some physical and chemical parameters seemed to influence phytoplankton community behavior. Chlorophyceae development was favored by local conditions. Among the species of cyanobacteria identified, Microcystis paniformis, Cylindrospermopsis raciborskii, and Anabaena species were the most important due to their ability to produce toxins, posing a high risk to public health. Some physical and chemical parameters had an impact on the structure of phytoplankton community. The presence of Microcystis paniformis, Cylindrospermopsis raciborskii and Anabaena species indicates toxic potential and likelihood of public health problems unless there is constant monitoring. Further studies are recommended to prevent hazardous effects to the environment and public health.

  3. Phytoplankton from Tvaeren, a Bay of the Baltic, 1961-1963

    Energy Technology Data Exchange (ETDEWEB)

    Willen, Torbjoern [Inst. of Limnology, Univ of Uppsala, Uppsala (Sweden)

    1968-09-15

    The investigation of the qualitative and quantitative composition of the phytoplankton in Tvaeren (Locality 7), a bay of the Baltic, was carried out during the period April 1961 to October 1963. Comprehensive data exist concerning physical and chemical conditions; some of them are included in this paper. A low number of species occur in brackish water; most of them belong to the groups Diatomeae and Peridineae. The total volumes of phytoplankton are low and show peaks only in spring, with some genera, Sceletonema, Thalassiosira and Gonyaulax, predominating. The vertical and seasonal distribution of different groups is discussed. With the exception of the periods of circulation the total volumes showed a marked decrease from c. 25 m and deeper. At 50-70 m the occurrence of some Peridineae often caused a marked increase in total volumes. A comparison with corresponding values from another locality, situated at Bergoe south of Locality 7 in Tvaeren, did not show any great difference.

  4. Phytoplankton from Tvaeren, a Bay of the Baltic, 1961-1963

    International Nuclear Information System (INIS)

    Willen, Torbjoern

    1968-09-01

    The investigation of the qualitative and quantitative composition of the phytoplankton in Tvaeren (Locality 7), a bay of the Baltic, was carried out during the period April 1961 to October 1963. Comprehensive data exist concerning physical and chemical conditions; some of them are included in this paper. A low number of species occur in brackish water; most of them belong to the groups Diatomeae and Peridineae. The total volumes of phytoplankton are low and show peaks only in spring, with some genera, Sceletonema, Thalassiosira and Gonyaulax, predominating. The vertical and seasonal distribution of different groups is discussed. With the exception of the periods of circulation the total volumes showed a marked decrease from c. 25 m and deeper. At 50-70 m the occurrence of some Peridineae often caused a marked increase in total volumes. A comparison with corresponding values from another locality, situated at Bergoe south of Locality 7 in Tvaeren, did not show any great difference

  5. Spatial variations of DMS, DMSP and phytoplankton in the Bay of Bengal during the summer monsoon 2001.

    Science.gov (United States)

    Shenoy, D M; Paul, Jane T; Gauns, Mangesh; Ramaiah, N; Kumar, M Dileep

    2006-08-01

    Data on the distribution of dimethylsulphide (DMS) and dimethylsulphoniopropionate (DMSP) in relation to phytoplankton abundance in different oceanic environments is important to understand the biogeochemistry of DMS, which plays an important role in the radiation balance of the earth. During the summer monsoon of 2001 measurements were made for DMS and DMSPt (total DMSP) together with related biological parameters in the Bay of Bengal. Both DMS and DMSPt were restricted to the upper 40 m of the water column. Diatoms accounted for more than 95% of the phytoplankton and were the major contributors to the DMS and DMSPt pool. The mean concentration of DMS in the upper 40 m was observed to be around 1.8+/-1.9 nM in the study area, while DMSPt concentrations varied between 0.7 nM and 40.2 nM with a mean of 10.4+/-8.2 nM. The observed lower DMSPt in the northern Bay in spite of higher mean primary productivity, chlorophyll a and phytoplankton cell counts seemed to result from grazing. Though salinity divides the Bay into different biogeochemical provinces there is no relation between salinity and DMS or DMSPt. On the other hand DMS was linearly related to chlorophyll a:phaeopigments ratio. The results suggest the need for deeper insight into the role of diatoms in the biogeochemical cycling of DMS.

  6. Developing a Phytoplankton Biotic Index as an Indicator of Freshwater Inflow within a Subtropical Estuary

    Science.gov (United States)

    Steichen, J. L.; Quigg, A.; Lucchese, A.; Preischel, H.

    2016-02-01

    Freshwater inflows drive the water and sediment quality in coastal bays and estuaries influencing the ecosystem and health of the biological community. Phytoplankton accessory pigments (used as a proxy for major taxonomic groups) have been utilized to develop a biotic index of physical, chemical and biotic disturbances in Chesapeake Bay (USA) and other estuarine systems. In this study we have used the Chesapeake Bay - Phytoplankton Index of Biotic Integrity model as a guide in developing an index for Galveston Bay, TX (USA) as an indicator of sufficient freshwater inflow to a subtropical estuary. Multivariate statistical analyses were run using PRIMER-E+PERMANOVA to determine the correlations between phytoplankton accessory pigment concentrations and a suite of abiotic factors associated with freshwater inflow (salinity, DIN, PO4, secchi). Phytoplankton pigment concentrations and water quality parameters were collected across Galveston Bay on a monthly basis from 2008-2013. In the upper region of the bay nearest the river source Dinophyceae, Cryptophyceae (winter (Dec-Feb)) and Chlorophyceae (winter and spring (Mar-May)) were significantly correlated to freshwater inflow and nutrient concentrations PO4 (p<0.05). Increased concentrations of Bacillariophyceae and Cyanophyceae (summer (Jun-Aug)) were significantly correlated to lower concentrations of DIN (p<0.05). Near the mouth of the estuary there was a significant correlation between the increase in Bacillariophyceae, Cyanophyceae, Cryptophyceae and Dinophyceae with decreasing PO4 (p<0.05). Within the dynamic system of Galveston Bay we are working to apply a Phytoplankton Index of Biotic Integrity as a means of monitoring the biological health of this ecologically and economically important estuarine ecosystem.

  7. Lack of seasonality in phytoplankton standing stock (chlorophyll a) and production in the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Madhu, N.V.; Jyothibabu, R.; Maheswaran, P.A.; Gerson, V.J.; Gopalakrishnan, T.C.; Nair, K.K.C.

    The investigations in the western Bay of Bengal (BoB) during summer, winter and spring intermonsoon periods evidenced lack of pronounced seasonal variation in phytoplankton standing stock (chlorophyll a) and primary production. The supply...

  8. PRIMARILY RESULTS OF PHYTOPLANKTON DNA AND VARIATION TO ENVIRONMENTAL FACTORS IN DURRES`S BAY COASTAL WATERS (ALBANIA

    Directory of Open Access Journals (Sweden)

    Laura Gjyli

    2013-10-01

    Full Text Available After isolation of phytoplankton DNA in coastal waters of Durres Bay, Albania, quantification and analysis of quality were investigated with spectrophotometric analysis. Analysis of UV absorption by the nucleotides provides a simple and accurate estimation of the concentration of nucleic acids in a sample. This method is however limited by the quantity of DNA and the purity of the preparation. Also biotic environment factors as Chlorophyll a and abiotic environment factors as temperature, salinity, pH, dissolved oxygen, turbidity, nitrate, phosphate were investigated to assess DNA quantities in different environment conditions. The Chlorophyll a was studied also to access the level of trophy. The sample stations were: Golem Beach (GB, Channel of Plepa (ChP, Hekurudha Beach (HB, Ex-Fuel Quay in Marine Durres Harbour (EFQ, Water Channel of Durres City (WChDC and Currila Beach (CB. Samples are taken in one meter depth from the water surface. Water samples were collected monthly from April to October 2011. The most abundant stations with phytoplankton DNA are Channel of Plepa and Water Channel of Durres City. This confirms that there are spills of fresh waters, sewage or agricultural water spills, often discharge in coastal waters. Referring Mutliple Regression Analysis and single regression analysis, the association between phytoplankton DNA and environment factors was strong (R2 = 0.75. Basing in single correlation and statistically significance (p-value ≤ 0.05, the enviroment factors that correlated to phytoplankton DNA were pH, salinity and phosphate; explaining thus the variation of total phytoplankton in Durres Bay coastal waters.

  9. Top-down control of phytoplankton by oysters in Chesapeake Bay, USA: Comment on Pomeroy et al. (2006)

    Science.gov (United States)

    Pomeroy et al. (2006) proposed that temporal and spatial mismatches between eastern oyster filtration and phytoplankton abundance will preclude restored stocks of eastern oysters from reducing the severity of hypoxia in the deep channel of central Chesapeake Bay. We refute this c...

  10. Succession and fate of the spring diatom bloom in Disko Bay, western Greenland

    DEFF Research Database (Denmark)

    Dünweber, Michael; Swalethorp, Rasmus; Kjellerup, Sanne

    2010-01-01

    Phytoplankton and copepod succession was investigated in Disko Bay, western Greenland from February to July 2008. The spring phytoplankton bloom developed immediately after the breakup of sea ice and reached a peak concentration of 24 mg chl a m–3 2 wk later. The bloom was analyzed during 3 phases...... from the initiation of the bloom but only had a small grazing impact on the phytoplankton. Consequently, there was a close coupling between the spring phytoplankton bloom and sedimentation of particulate organic carbon (POC). Out of 1836 ± 180 mg C m–2 d–1 leaving the upper 50 m, 60% was phytoplankton...... and fate of the phytoplankton spring bloom was controlled by nitrogen limitation and subsequent sedimentation, while grazing-mediated flux by the Calanus-dominated copepod community played a minor role in the termination of the spring bloom of Disko Bay....

  11. Bacterial and protist community changes during a phytoplankton bloom

    KAUST Repository

    Pearman, John K.

    2015-10-01

    The present study aims to characterize the change in the composition and structure of the bacterial and microzooplankton planktonic communities in relation to the phytoplankton community composition during a bloom. High-throughput amplicon sequencing of regions of the 16S and 18S rRNA gene was undertaken on samples collected during a 20 day (d) mesocosm experiment incorporating two different nutrient addition treatments [Nitrate and Phosphate (NPc) and Nitrate, Phosphate and Silicate (NPSc)] as well as a control. This approach allowed us to discriminate the changes in species composition across a broad range of phylogenetic groups using a common taxonomic level. Diatoms dominated the bloom in the NPSc treatment while dinoflagellates were the dominant phytoplankton in the control and NPc treatment. Network correlations highlighted significant interactions between OTUs within each treatment including changes in the composition of Paraphysomonas OTUs when the dominant Chaetoceros OTU switched. The microzooplankton community composition responded to changes in the phytoplankton composition while the prokaryotic community responded more to changes in ammonia concentration.

  12. Application of the Hyperspectral Imager for the Coastal Ocean to Phytoplankton Ecology Studies in Monterey Bay, CA, USA

    Directory of Open Access Journals (Sweden)

    John P. Ryan

    2014-01-01

    Full Text Available As a demonstrator for technologies for the next generation of ocean color sensors, the Hyperspectral Imager for the Coastal Ocean (HICO provides enhanced spatial and spectral resolution that is required to understand optically complex aquatic environments. In this study we apply HICO, along with satellite remote sensing and in situ observations, to studies of phytoplankton ecology in a dynamic coastal upwelling environment—Monterey Bay, CA, USA. From a spring 2011 study, we examine HICO-detected spatial patterns in phytoplankton optical properties along an environmental gradient defined by upwelling flow patterns and along a temporal gradient of upwelling intensification. From a fall 2011 study, we use HICO’s enhanced spatial and spectral resolution to distinguish a small-scale “red tide” bloom, and we examine bloom expansion and its supporting processes using other remote sensing and in situ data. From a spectacular HICO image of the Monterey Bay region acquired during fall of 2012, we present a suite of algorithm results for characterization of phytoplankton, and we examine the strengths, limitations, and distinctions of each algorithm in the context of the enhanced spatial and spectral resolution.

  13. Pigment signatures of phytoplankton communities in the Beaufort Sea

    Science.gov (United States)

    Coupel, P.; Matsuoka, A.; Ruiz-Pino, D.; Gosselin, M.; Marie, D.; Tremblay, J.-É.; Babin, M.

    2015-02-01

    Phytoplankton are expected to respond to recent environmental changes of the Arctic Ocean. In terms of bottom-up control, modifying the phytoplankton distribution will ultimately affect the entire food web and carbon export. However, detecting and quantifying changes in phytoplankton communities in the Arctic Ocean remains difficult because of the lack of data and the inconsistent identification methods used. Based on pigment and microscopy data sampled in the Beaufort Sea during summer 2009, we optimized the chemotaxonomic tool CHEMTAX (CHEMical TAXonomy) for the assessment of phytoplankton community composition in an Arctic setting. The geographical distribution of the main phytoplankton groups was determined with clustering methods. Four phytoplankton assemblages were determined and related to bathymetry, nutrients and light availability. Surface waters across the whole survey region were dominated by prasinophytes and chlorophytes, whereas the subsurface chlorophyll maximum was dominated by the centric diatoms Chaetoceros socialis on the shelf and by two populations of nanoflagellates in the deep basin. Microscopic counts showed a high contribution of the heterotrophic dinoflagellates Gymnodinium and Gyrodinium spp. to total carbon biomass, suggesting high grazing activity at this time of the year. However, CHEMTAX was unable to detect these dinoflagellates because they lack peridinin. In heterotrophic dinoflagellates, the inclusion of the pigments of their prey potentially leads to incorrect group assignments and some misinterpretation of CHEMTAX. Thanks to the high reproducibility of pigment analysis, our results can serve as a baseline to assess change and spatial or temporal variability in several phytoplankton populations that are not affected by these misinterpretations.

  14. Seasonal changes in the communities of photosynthetic picoeukaryotes in Ofunato Bay as revealed by shotgun metagenomic sequencing

    KAUST Repository

    Rashid, Jonaira; Kobiyama, Atsushi; Reza, Md. Shaheed; Yamada, Yuichiro; Ikeda, Yuri; Ikeda, Daisuke; Mizusawa, Nanami; Ikeo, Kazuho; Sato, Shigeru; Ogata, Takehiko; Kudo, Toshiaki; Kaga, Shinnosuke; Watanabe, Shiho; Naiki, Kimiaki; Kaga, Yoshimasa; Mineta, Katsuhiko; Bajic, Vladimir B.; Gojobori, Takashi; Watabe, Shugo

    2018-01-01

    Small photosynthetic eukaryotes play important roles in oceanic food webs in coastal regions. We investigated seasonal changes in the communities of photosynthetic picoeukaryotes (PPEs) of the class Mamiellophyceae, including the genera Bathycoccus, Micromonas and Ostreococcus, in Ofunato Bay, which is located in northeastern Japan and faces the Pacific Ocean. The abundances of PPEs were assessed over a period of one year in 2015 at three sampling stations, KSt. 1 (innermost bay area), KSt. 2 (middle bay area) and KSt. 3 (bay entrance area) at depths of 1 m (KSt. 1, KSt. 2 and KSt. 3), 8 m (KSt. 1) or 10 m (KSt. 2 and KSt. 3) by employing MiSeq shotgun metagenomic sequencing. The total abundances of Bathycoccus, Ostreococcus and Micromonas were in the ranges of 42–49%, 35–49% and 13–17%, respectively. Considering all assayed sampling stations and depths, seasonal changes revealed high abundances of PPEs during the winter and summer and low abundances during late winter to early spring and late summer to early autumn. Bathycoccus was most abundant in the winter, and Ostreococcus showed a high abundance during the summer. Another genus, Micromonas, was relatively low in abundance throughout the study period. Taken together with previously suggested blooming periods of phytoplankton, as revealed by chlorophyll a concentrations in Ofunato Bay during spring and late autumn, these results for PPEs suggest that greater phytoplankton blooming has a negative influence on the seasonal occurrences of PPEs in the bay.

  15. Seasonal changes in the communities of photosynthetic picoeukaryotes in Ofunato Bay as revealed by shotgun metagenomic sequencing

    KAUST Repository

    Rashid, Jonaira

    2018-04-30

    Small photosynthetic eukaryotes play important roles in oceanic food webs in coastal regions. We investigated seasonal changes in the communities of photosynthetic picoeukaryotes (PPEs) of the class Mamiellophyceae, including the genera Bathycoccus, Micromonas and Ostreococcus, in Ofunato Bay, which is located in northeastern Japan and faces the Pacific Ocean. The abundances of PPEs were assessed over a period of one year in 2015 at three sampling stations, KSt. 1 (innermost bay area), KSt. 2 (middle bay area) and KSt. 3 (bay entrance area) at depths of 1 m (KSt. 1, KSt. 2 and KSt. 3), 8 m (KSt. 1) or 10 m (KSt. 2 and KSt. 3) by employing MiSeq shotgun metagenomic sequencing. The total abundances of Bathycoccus, Ostreococcus and Micromonas were in the ranges of 42–49%, 35–49% and 13–17%, respectively. Considering all assayed sampling stations and depths, seasonal changes revealed high abundances of PPEs during the winter and summer and low abundances during late winter to early spring and late summer to early autumn. Bathycoccus was most abundant in the winter, and Ostreococcus showed a high abundance during the summer. Another genus, Micromonas, was relatively low in abundance throughout the study period. Taken together with previously suggested blooming periods of phytoplankton, as revealed by chlorophyll a concentrations in Ofunato Bay during spring and late autumn, these results for PPEs suggest that greater phytoplankton blooming has a negative influence on the seasonal occurrences of PPEs in the bay.

  16. A glimpse into the future composition of marine phytoplankton communities

    Directory of Open Access Journals (Sweden)

    Esteban eAcevedo-Trejos

    2014-07-01

    Full Text Available It is expected that climate change will have significant impacts on ecosystems. Most model projections agree that the ocean will experience stronger stratification and less nutrient supply from deep waters. These changes will likely affect marine phytoplankton communities and will thus impact on the higher trophic levels of the oceanic food web. The potential consequences of future climate change on marine microbial communities can be investigated and predicted only with the help of mathematical models. Here we present the application of a model that describes aggregate properties of marine phytoplankton communities and captures the effects of a changing environment on their composition and adaptive capacity. Specifically, the model describes the phytoplankton community in terms of total biomass, mean cell size, and functional diversity. The model is applied to two contrasting regions of the Atlantic Ocean (tropical and temperate and is tested under two emission scenarios: SRES A2 or ``business as usual'' and SRES B1 or ``local utopia''. We find that all three macroecological properties will decline during the next century in both regions, although this effect will be more pronounced in the temperate region. Being consistent with previous model predictions, our results show that a simple trait-based modelling framework represents a valuable tool for investigating how phytoplankton communities may reorganize under a changing climate.

  17. Review of suspended sediment in lower South Bay relevant to light attenuation and phytoplankton blooms

    Science.gov (United States)

    Schoellhamer, David H.; Shellenbarger, Gregory; Downing-Kunz, Maureen; Manning, Andrew J.

    2016-01-01

    Lower South Bay (LSB), a shallow subembayment of San Francisco Bay (SFB), is situated south of the Dumbarton Bridge, and is surrounded by, and interconnected with, a network of sloughs, marshes, and former salt ponds undergoing restoration (Figure ES.1). LSB receives 120 million gallons per day of treated wastewater effluent from three publicly owned treatment works (POTWs) that service San Jose and the densely populated surrounding region. During the dry season, when flows from creeks and streams are at their minimum, POTW effluent comprises the majority of freshwater flow to Lower South Bay. Although LSB has a large tidal prism, it experiences limited net exchange with the surrounding Bay, because much of the water that leaves on ebb tides returns during the subsequent flood tides. The limited exchange leads to distinctly different biogeochemical conditions in LSB compared to other SFB subembayments, including LSB having the highest nutrient concentrations and highest phytoplankton biomass.

  18. Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean

    Science.gov (United States)

    Acevedo-Trejos, Esteban; Brandt, Gunnar; Bruggeman, Jorn; Merico, Agostino

    2015-01-01

    The factors regulating phytoplankton community composition play a crucial role in structuring aquatic food webs. However, consensus is still lacking about the mechanisms underlying the observed biogeographical differences in cell size composition of phytoplankton communities. Here we use a trait-based model to disentangle these mechanisms in two contrasting regions of the Atlantic Ocean. In our model, the phytoplankton community can self-assemble based on a trade-off emerging from relationships between cell size and (1) nutrient uptake, (2) zooplankton grazing, and (3) phytoplankton sinking. Grazing ‘pushes’ the community towards larger cell sizes, whereas nutrient uptake and sinking ‘pull’ the community towards smaller cell sizes. We find that the stable environmental conditions of the tropics strongly balance these forces leading to persistently small cell sizes and reduced size diversity. In contrast, the seasonality of the temperate region causes the community to regularly reorganize via shifts in species composition and to exhibit, on average, bigger cell sizes and higher size diversity than in the tropics. Our results raise the importance of environmental variability as a key structuring mechanism of plankton communities in the ocean and call for a reassessment of the current understanding of phytoplankton diversity patterns across latitudinal gradients. PMID:25747280

  19. The 1987–1989 Phytoplankton Bloom in Kaneohe Bay

    Directory of Open Access Journals (Sweden)

    Edward Laws

    2018-06-01

    Full Text Available A remarkable bloom of phytoplankton occurred in the southeast sector (SE of Kaneohe Bay from 1987 through 1989. During the bloom, concentrations of chlorophyll a at the former site of the Kaneohe municipal wastewater treatment plant outfall averaged a little more than 2 mg m–3 for a period of 40 months. The increase of chl a was accompanied by a roughly twofold increase in the percentage of chl a accounted for by cells retained on a 35-micron filter, a drawdown of silicate concentrations from roughly 10 μM to 3–4 μM, an increase of nitrate concentrations from roughly 0.5 to more than 3 μM, and an increase of phosphate concentrations from roughly 0.2 to 0.5 μM. Extraordinarily heavy rains on 31 December 1987 led to flooding and land runoff that briefly raised chl a concentrations in the bay to as high as 17 mg m–3, but the bloom in question developed more than one year before the 1987 New Year’s Eve flood. It was not caused by unusually heavy rainfall: the average rainfall during 1987–1989 was only 10% above the long-term average. Instead, the bloom appears to have been caused by a leak in the sanitary sewer line that was previously used to discharge secondary treated sewage into Kaneohe Bay. Ultimately, leaks in the sanitary sewer lines maintained by the City and County of Honolulu led to legal action and a consent decree that required upgrading and the renovation of the wastewater collection system.

  20. Latitudinal variation of phytoplankton communities in the western Arctic Ocean

    Science.gov (United States)

    Min Joo, Hyoung; Lee, Sang H.; Won Jung, Seung; Dahms, Hans-Uwe; Hwan Lee, Jin

    2012-12-01

    Recent studies have shown that photosynthetic eukaryotes are an active and often dominant component of Arctic phytoplankton assemblages. In order to explore this notion at a large scale, samples were collected to investigate the community structure and biovolume of phytoplankton along a transect in the western Arctic Ocean. The transect included 37 stations at the surface and subsurface chlorophyll a maximum (SCM) depths in the Bering Sea, Chukchi Sea, and Canadian Basin from July 19 to September 5, 2008. Phytoplankton (>2 μm) were identified and counted. A cluster analysis of abundance and biovolume data revealed different assemblages over the shelf, slope, and basin regions. Phytoplankton communities were composed of 71 taxa representing Dinophyceae, Cryptophyceae, Bacillariophyceae, Chrysophyceae, Dictyochophyceae, Prasinophyceae, and Prymnesiophyceae. The most abundant species were of pico- to nano-size at the surface and SCM depths at most stations. Nano- and pico-sized phytoplankton appeared to be dominant in the Bering Sea, whereas diatoms and nano-sized plankton provided the majority of taxon diversity in the Bering Strait and in the Chukchi Sea. From the western Bering Sea to the Bering Strait, the abundance, biovolume, and species diversity of phytoplankton provided a marked latitudinal gradient towards the central Arctic. Although pico- and nano-sized phytoplankton contributed most to cell abundance, their chlorophyll a contents and biovolumes were less than those of the larger micro-sized taxa. Micro-sized phytoplankton contributed most to the biovolume in the largely ice-free waters of the western Arctic Ocean during summer 2008.

  1. Small scale temporal variability in the phytoplankton of Independencia Bay, Pisco, Perú

    Directory of Open Access Journals (Sweden)

    Noemí Ochoa

    2013-06-01

    Full Text Available Temporal variations at small scale of the coastal marine phytoplankton assemblages were studied. Water samples were collected at a fixed station in Bahia Independencia (Pisco-Peru. The sampling took place in the morning (08:00 h. and afternoon (15:00 h over a period of 29 days (March 28 to April 25, 1988. Surface temperatures also were taken, fluctuating from 15,4 °C to 17,2 °C. Diatoms were the principal component of the phytoplankton community and were more related with the total of phytoplankton. Other groups as Dinoflagellates, Coccolitophorids, Silicoflagellates and small flagellates were present but were less important. Skeletonema costatum was the dominant specie during the first nine days of sampling, after that it was substituted by Thalassionema nitzschioides, which remained as dominant until the end of the study. Small variation in species composition but large fluctuations in density of phytoplankton were recorded over a period of few hours. Small increments in temperature influenced in the phytoplankton assemblages.

  2. Phytoplankton Diversity Effects on Community Biomass and Stability along Nutrient Gradients in a Eutrophic Lake

    Directory of Open Access Journals (Sweden)

    Wang Tian

    2017-01-01

    Full Text Available The relationship between biodiversity and ecosystem functioning is a central issue in ecology, but how this relationship is affected by nutrient stress is still unknown. In this study, we analyzed the phytoplankton diversity effects on community biomass and stability along nutrient gradients in an artificial eutrophic lake. Four nutrient gradients, varying from slightly eutrophic to highly eutrophic states, were designed by adjusting the amount of polluted water that flowed into the lake. Mean phytoplankton biomass, species richness, and Shannon diversity index all showed significant differences among the four nutrient gradients. Phytoplankton community biomass was correlated with diversity (both species richness and Shannon diversity index, varying from positive to negative along the nutrient gradients. The influence of phytoplankton species richness on resource use efficiency (RUE also changed from positive to negative along the nutrient gradients. However, the influence of phytoplankton Shannon diversity on RUE was not significant. Both phytoplankton species richness and Shannon diversity had a negative influence on community turnover (measured as community dissimilarity, i.e., a positive diversity–stability relationship. Furthermore, phytoplankton spatial stability decreased along the nutrient gradients in the lake. With increasing nutrient concentrations, the variability (standard deviation of phytoplankton community biomass increased more rapidly than the average total biomass. Results in this study will be helpful in understanding the phytoplankton diversity effects on ecosystem functioning and how these effects are influenced by nutrient conditions in aquatic ecosystems.

  3. Neutron activation analysis and scanning electron microscopy of phytoplankton in the coastal zone of the Crimea (Black sea)

    International Nuclear Information System (INIS)

    Nekhoroshkov, P.S.; Kravtsova, A.V.; Frontas'eva, M.V.; Tokarev, Yu.N.

    2014-01-01

    For the first time the concentrations of 45 elements in the coastal phytoplankton communities used as bioindicator of inorganic contamination of the Black Sea coastal area near Sevastopol, Ukraine, were determined by means of neutron activation analysis and scanning electron microscopy with energy dispersive spectrometer. Phytoplankton samples were collected by total tows of the plankton net with 35 μm pore size at 3 stations situated in polluted and relatively pristine water areas of the Sevastopol coastal zone during autumn period of the phytoplankton active growth. The concentration of Mg, Al, Sc, Ti, V, Mn, As, Rb, Ba, Th and Fe, Cr increases exponentially from relatively pristine station to more polluted station and 10 and 3 times greater, respectively, in the phytoplankton of the Sevastopol Bay. The rare-earth elements have relatively the same concentration values of about 1 μg/g and tend to accumulate in the phytoplankton from the polluted station in the Sevastopol Bay. The obtained results are in good agreement with the elemental concentration data in the oceanic plankton, plankton communities from the White Sea and the Black Sea. Using energy-dispersive X-ray spectrometry the mineral particles of unknown origin and impurities of copper (0.42% by weight) in the phytoplankton at the polluted station and zinc (0.57% by weight) at the relatively pristine station were determined

  4. Host-Specificity and Dynamics in Bacterial Communities Associated with Bloom-Forming Freshwater Phytoplankton

    Science.gov (United States)

    Bagatini, Inessa Lacativa; Eiler, Alexander; Bertilsson, Stefan; Klaveness, Dag; Tessarolli, Letícia Piton; Vieira, Armando Augusto Henriques

    2014-01-01

    Many freshwater phytoplankton species have the potential to form transient nuisance blooms that affect water quality and other aquatic biota. Heterotrophic bacteria can influence such blooms via nutrient regeneration but also via antagonism and other biotic interactions. We studied the composition of bacterial communities associated with three bloom-forming freshwater phytoplankton species, the diatom Aulacoseira granulata and the cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii. Experimental cultures incubated with and without lake bacteria were sampled in three different growth phases and bacterial community composition was assessed by 454-Pyrosequencing of 16S rRNA gene amplicons. Betaproteobacteria were dominant in all cultures inoculated with lake bacteria, but decreased during the experiment. In contrast, Alphaproteobacteria, which made up the second most abundant class of bacteria, increased overall during the course of the experiment. Other bacterial classes responded in contrasting ways to the experimental incubations causing significantly different bacterial communities to develop in response to host phytoplankton species, growth phase and between attached and free-living fractions. Differences in bacterial community composition between cyanobacteria and diatom cultures were greater than between the two cyanobacteria. Despite the significance, major differences between phytoplankton cultures were in the proportion of the OTUs rather than in the absence or presence of specific taxa. Different phytoplankton species favoring different bacterial communities may have important consequences for the fate of organic matter in systems where these bloom forming species occur. The dynamics and development of transient blooms may also be affected as bacterial communities seem to influence phytoplankton species growth in contrasting ways. PMID:24465807

  5. Hydrodynamic control of phytoplankton loss to the benthos in an estuarine environment

    Science.gov (United States)

    Jones, Nicole L.; Thompson, Janet K.; Arrigo, Kevin R.; Monismith, Stephen G.

    2009-01-01

    Field experiments were undertaken to measure the influence of hydrodynamics on the removal of phytoplankton by benthic grazers in Suisun Slough, North San Francisco Bay. Chlorophyll a concentration boundary layers were found over beds inhabited by the active suspension feeders Corbula amurensis and Corophium alienense and the passive suspension feeders Marenzellaria viridis and Laonome sp. Benthic losses of phytoplankton were estimated via both the control volume and the vertical flux approach, in which chlorophyll a concentration was used as a proxy for phytoplankton biomass. The rate of phytoplankton loss to the bed was positively correlated to the bed shear stress. The maximum rate of phytoplankton loss to the bed was five times larger than estimated by laboratory-derived pumping rates for the active suspension feeders. Reasons for this discrepancy are explored including a physical mechanism whereby phytoplankton is entrained in a near-bed fluff layer where aggregation is mediated by the presence of mucus produced by the infaunal community.

  6. Seasonal Variations in the Structure of Phytoplankton Communities near Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, S.-K.; Choi, H.-C.; Moon, H.-T.

    2015-01-01

    To investigate effects of thermal discharge effluent from nuclear power plants on the surrounding marine environment, especially on the phytoplankton community, environmental data gained by seasonal survey around Hanbit and Hanul nuclear power plants during the periods of 11 years from 1999 to 2009 were analysed. The data used were from environmental survey and assessment around Hanbit and Hanul nuclear power plants of Korea during the period of 11 years from 1999 to 2009. The purposes of this study are (1) to evaluate the effect of operation of nuclear power plants on phytoplankton community, (2) to find out whether the thermal discharge affected negatively phytoplankton community, and (3) to evaluate the difference of thermal discharge influence on phytoplankton community between West and East coastal area, Korea. Through this study, (1) quantitative evaluation of the effect of thermal discharge effluent on marine ecology, especially on abundance and biomass of phytoplankton were performed, (2) found that depending on the season, the effect of thermal discharge effluent from nuclear power plant on the marine environment is not always negative (i.e. warm water may increase or prevent decline of abundance in seasons with low temperature such as winter in Hanbit area), and (3) found that same thermal discharge effluent rate to different marine environments, such as west and east coast of Korea, does not result in same effect on the marine ecosystem. (author)

  7. Effects of nutrients, temperature and their interactions on spring phytoplankton community succession in Lake Taihu, China.

    Directory of Open Access Journals (Sweden)

    Jianming Deng

    Full Text Available We examined the potential effects of environmental variables, and their interaction, on phytoplankton community succession in spring using long-term data from 1992 to 2012 in Lake Taihu, China. Laboratory experiments were additionally performed to test the sensitivity of the phytoplankton community to nutrient concentrations and temperature. A phytoplankton community structure analysis from 1992 to 2012 showed that Cryptomonas (Cryptophyta was the dominant genus in spring during the early 1990s. Dominance then shifted to Ulothrix (Chlorophyta in 1996 and 1997. However, Cryptomonas again dominated in 1999, 2000, and 2002, with Ulothrix regaining dominance from 2003 to 2006. The bloom-forming cyanobacterial genus Microcystis dominated in 1995, 2001 and 2007-2012. The results of ordinations indicated that the nutrient concentration (as indicated by the trophic state index was the most important factor affecting phytoplankton community succession during the past two decades. In the laboratory experiments, shifts in dominance among phytoplankton taxa occurred in all nutrient addition treatments. Results of both long term monitoring and experiment indicated that nutrients exert a stronger control than water temperature on phytoplankton communities during spring. Interactive effect of nutrients and water temperature was the next principal factor. Overall, phytoplankton community composition was mediated by nutrients concentrations, but this effect was strongly enhanced by elevated water temperatures.

  8. Connecting pigment composition and dissolved trace elements to phytoplankton population in the southern Benguela Upwelling zone (St. Helena Bay)

    Science.gov (United States)

    Das, Supriyo Kumar; Routh, Joyanto; Roychoudhury, Alakendra N.; Veldhuis, Marcel J. W.; Ismail, Hassan E.

    2017-12-01

    Rich in upwelled nutrients, the Southern Benguela is one of the most productive ecosystems in the world ocean. However, despite its ecological significance the role of trace elements influencing phytoplankton population in the Southern Benguela Upwelling System (SBUS) has not been thoroughly investigated. Here, we report pigment composition, macronutrients (nitrate, phosphate and silicate) and concentrations of dissolved Cd, Co, Fe and Zn during late austral summer and winter seasons in 2004 to understand the relationship between the selected trace elements and phytoplankton biomass in St. Helena Bay (SHB), which falls within the southern boundary of the SBUS. Chlorophyll a concentrations indicate higher phytoplankton biomass associated with high primary production during late summer in SHB where high diatom population is inferred from the presence of fucoxanthin. Diminished phytoplankton biomass and a shift from diatoms to dinoflagellates as the dominant phytoplankton taxa are indicated by diagnostic pigments during late winter. Dissolved trace elements (Cd, Co and Zn) and macronutrients play a significant role in phytoplankton biomass, and their distribution is affected by biological uptake and export of trace elements. Continuous uptake of Zn by diatoms may cause an onset of Zn depletion leading to a period of extended diatom proliferation during late summer. Furthermore, the transition from diatom to dinoflagellate dominated phytoplankton population is most likely facilitated by depletion of trace elements (Cd and Co) in the water column.

  9. Phytoplankton community as bioindicator of fertility in belawan river

    Science.gov (United States)

    Sari Yeanny, Mayang

    2018-03-01

    Belawan River is an important river for the Medan residents and its surroundings. It serves as the main raw material for the local drinking water company, as well as domestic, industrial, hotel and tourism. Many human activities had led to the declining condition of water in the river throughout the year. One way to approach the concept of bioindicator is by knowing Abundance, Relative Abundance, Frequency of Attendance, equitability, dominance, and diversity of the phytoplankton itself. Results indicated that the phytoplankton community was from 3 different classes: Chlorophyceae, Bacillariophyceae, and Cyanophyceae. Phytoplankton individual abundance was around 2612 to 17755 ind / L. The diversity index was around 2.15 to 2.58, which is considered to have low to moderate diversity with high pollution level. Equitability Index was approaching 0, with relatively high domination from Sphaeroplea and Asterionella. The water quality that influences the diversity of phytoplankton as bioindicator was dissolved oxygen.

  10. Export of a Winter Shelf Phytoplankton Bloom at the Shelf Margin of Long Bay (South Atlantic Bight, USA)

    Science.gov (United States)

    Nelson, J.; Seim, H.; Edwards, C. R.; Lockhart, S.; Moore, T.; Robertson, C. Y.; Amft, J.

    2016-02-01

    A winter 2012 field study off Long Bay (seaward of Myrtle Beach, South Carolina) investigated exchange processes along the shelf margin. Topics addressed included mechanisms of nutrient input (upper slope to outer shelf), phytoplankton blooms and community characteristics (mid-to-outer shelf), and possible export of shelf bloom material (transport to and across the shelf break to the upper slope). Observations utilized three moorings (mid-shelf, shelf break, upper slope), two gliders and ship operations (repeat cruises with profiling, water sampling and towed body surveys) along with satellite SST and ocean color imagery and near-by NOAA buoy records. Here we focus on the late January to early February period, when a mid-shelf bloom of Phaeocystis globosa (which forms large gelatinous colonies) was transported to the shelf break. The presence of Phaeocystis colonies resulted in strong spiking in chlorophyll (chl) fluorescence profiles. A partitioning approach was adapted to estimate chl in colonies (spikes) and small forms (baseline signal) and to account for an apparent difference in measured in vivo fluorescence per unit chl (lower in colonies). Up to 40-50% of chl in the bloom (surface to bottom on the mid-shelf) was estimated to be in the colonies. In late January, there a pronounced seaward slumping of relatively dense mid-shelf water along the bottom under warmer surface water derived from the inshore edge of a broad jet of Gulf Stream water flowing southwestward along the upper slope. We describe the evolution of this event and the conditions which set up this mechanism for episodic near-bed transport of fresh bloom material produced on the shelf to the upper slope off Long Bay. Down-slope transport may have been enhanced in this case by the high phytoplankton biomass in gelatinous colonies, which appeared to be settling in the water column on the shelf prior to the transport event.

  11. Phytoplankton community and limnology of Chatla floodplain wetland of Barak valley, Assam, North-East India

    Directory of Open Access Journals (Sweden)

    Sultana Laskar H.

    2013-09-01

    Full Text Available Phytoplankton diversity was investigated over a period of two years (2006 to 2008 in Chatla floodplain wetland in Barak valley, Assam, North-East India. Site 1 and site 2 are two inlets and site 3 is a lentic system associated with vegetation cover of Calamus tenuis and Baringtonia acutangula. The floodplain has a unique hydrology because of the presence of different types of habitats (inlets, fisheries, beels and outlets which maintains a network among the floodplains, rivers and streams. Phytoplankton community composition, density and diversity were studied in relation to environmental variables. All the variables were estimated by following standard methods. Phytoplankton was collected by plankton net and quantitative estimation was made by using Sedgwick Rafter counting cell. Phytoplankton community comprised 53 taxa represented by Chlorophyceae (31, Cyanophyceae (11, Bacillariophyceae (7, Euglenophyceae (1 and Dinophyceae (3. Phytoplankton taxa was dominated by Volvox sp., Nostoc sp., Eunotia sp., Navicula sp., Euglena spp. and density was found highest in site 3 and lowest in site 1. Shannon diversity index (H′ for phytoplankton community varied between 2.4 to 2.65 indicating fairly high species diversity. The varying magnitude of correlationship among environmental variables and phytoplankton species density as shown by Canonical correspondence analysis (CCA indicated that some of the environmental variables (water temperature, transparency, rainfall, nitrate and ammonia are the driving factors for governing the phytoplankton species assemblages in Chatla floodplain wetland. Fluctuation of phytoplankton density and community composition in different habitats indicated various niche apportionment as well as anthropogenic influences.

  12. Physicochemical conditions in affecting the distribution of spring phytoplankton community

    Science.gov (United States)

    Wei, Yuqiu; Liu, Haijiao; Zhang, Xiaodong; Xue, Bing; Munir, Sonia; Sun, Jun

    2017-11-01

    To better understand the physicochemical conditions in affecting regional distribution of phytoplankton community, one research cruise was carried out in the Bohai Sea and Yellow Sea during 3rd and 23th May, 2010. The phytoplankton community, including Bacillariophyta (105 taxa), Pyrrophyta (54 taxa), Chrysophyta (1 taxon) and Chlorophyta (2 taxa), had been identified and clearly described from six ecological provinces. And, the six ecological provinces were partitioned based on the top twenty dominant species related with notable physicochemical parameters. In general, the regional distributions of phytoplankton ecological provinces were predominantly influenced by the physicochemical properties induced by the variable water masses and circulations. The predominant diatoms in most of water samples showed well adaptability in turbulent and eutrophic conditions. However, several species of dinoflagellates e.g., Protoperidinium conicum, Protoperidinium triestinum, Protoperidinium sp. and Gymnodinium lohmanni preferred warmer, saltier and nutrient-poor environment. Moreover, the dinoflagellates with high frequency in the Yellow Sea might be transported from the Yellow Sea Warm Current. The horizontal distribution of phytoplankton was depicted by diatoms and controlled by phosphate concentration, while the vertical distribution was mainly supported by light and nutrients availability in the subsurface and bottom layers, respectively.

  13. Assessing Pigment-Based Phytoplankton Community Distributions in the Red Sea

    KAUST Repository

    Kheireddine, Malika

    2017-05-10

    Pigment-based phytoplankton community composition and primary production were investigated for the first time in the Red Sea in February-April 2015 to demonstrate how the strong south to north environmental gradients determine phytoplankton community structure in Red Sea offshore regions (along the central axis). Taxonomic pigments were used as size group markers of pico, nano-, and microphytoplankton. Phytoplankton primary production rates associated with the three phytoplankton groups (pico-, nano-, and microphytoplankton) were estimated using a bio-optical model. Pico- (Synechococcus and Prochlorococcus sp.) and Nanophytoplankton (Prymnesiophytes and Pelagophytes) were the dominant size groups and contributed to 49 and 38%, respectively, of the phytoplankton biomass. Microphytoplankton (diatoms) contributed to 13% of the phytoplankton biomass within the productive layer (1.5 Zeu). Sub-basin and mesoscale structures (cyclonic eddy and mixing) were exceptions to this general trend. In the southern Red Sea, diatoms and picophytoplankton contributed to 27 and 31% of the phytoplankton biomass, respectively. This result induced higher primary production rates (430 ± 50 mgC m−2 d−1) in this region (opposed to CRS and NRS). The cyclonic eddy contained the highest microphytoplankton proportion (45% of TChla) and the lowest picophytoplankton contribution (17% of TChla) while adjacent areas were dominated by pico- and nano-phytoplankton. We estimated that the cyclonic eddy is an area of enhanced primary production, which is up to twice those of the central part of the basin. During the mixing of the water column in the extreme north of the basin, we observed the highest TChla integrated (40 mg m−2) and total primary production rate (640 mgC m−2 d−1) associated with the highest nanophytoplankton contribution (57% of TChla). Microphytoplankton were a major contributor to total primary production (54%) in the cyclonic eddy. The contribution of picophytoplankton

  14. Assessing Pigment-Based Phytoplankton Community Distributions in the Red Sea

    KAUST Repository

    Kheireddine, Malika; Ouhssain, Mustapha; Claustre, Hervé ; Uitz, Julia; Gentili, Bernard; Jones, Burton

    2017-01-01

    Pigment-based phytoplankton community composition and primary production were investigated for the first time in the Red Sea in February-April 2015 to demonstrate how the strong south to north environmental gradients determine phytoplankton community structure in Red Sea offshore regions (along the central axis). Taxonomic pigments were used as size group markers of pico, nano-, and microphytoplankton. Phytoplankton primary production rates associated with the three phytoplankton groups (pico-, nano-, and microphytoplankton) were estimated using a bio-optical model. Pico- (Synechococcus and Prochlorococcus sp.) and Nanophytoplankton (Prymnesiophytes and Pelagophytes) were the dominant size groups and contributed to 49 and 38%, respectively, of the phytoplankton biomass. Microphytoplankton (diatoms) contributed to 13% of the phytoplankton biomass within the productive layer (1.5 Zeu). Sub-basin and mesoscale structures (cyclonic eddy and mixing) were exceptions to this general trend. In the southern Red Sea, diatoms and picophytoplankton contributed to 27 and 31% of the phytoplankton biomass, respectively. This result induced higher primary production rates (430 ± 50 mgC m−2 d−1) in this region (opposed to CRS and NRS). The cyclonic eddy contained the highest microphytoplankton proportion (45% of TChla) and the lowest picophytoplankton contribution (17% of TChla) while adjacent areas were dominated by pico- and nano-phytoplankton. We estimated that the cyclonic eddy is an area of enhanced primary production, which is up to twice those of the central part of the basin. During the mixing of the water column in the extreme north of the basin, we observed the highest TChla integrated (40 mg m−2) and total primary production rate (640 mgC m−2 d−1) associated with the highest nanophytoplankton contribution (57% of TChla). Microphytoplankton were a major contributor to total primary production (54%) in the cyclonic eddy. The contribution of picophytoplankton

  15. Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity

    Science.gov (United States)

    Deppeler, Stacy; Petrou, Katherina; Schulz, Kai G.; Westwood, Karen; Pearce, Imojen; McKinlay, John; Davidson, Andrew

    2018-01-01

    High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm) to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a) and particulate organic matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C), causing significant reductions in gross primary production (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments ≥ 953 µatm (days 3-5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial productivity (csBP14C) was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative effects on the Antarctic food web and the

  16. Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity

    Directory of Open Access Journals (Sweden)

    S. Deppeler

    2018-01-01

    Full Text Available High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a and particulate organic matter (POM in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels  ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C, causing significant reductions in gross primary production (GPP14C, Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments  ≥ 953 µatm (days 3–5, yet gross bacterial production (GBP14C remained unchanged and cell-specific bacterial productivity (csBP14C was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative

  17. Recognition of key regions for restoration of phytoplankton communities in the Huai River basin, China

    Science.gov (United States)

    Zhao, Changsen; Liu, Changming; Xia, Jun; Zhang, Yongyong; Yu, Qiang; Eamus, Derek

    2012-02-01

    SummaryHealthy phytoplankton communities are the basis of healthy water ecosystems, and form the foundation of many freshwater food webs. Globally many freshwater ecosystems are degraded because of intensive human activities, so water ecosystem restoration is a burning issue worldwide. Selection of key regions for phytoplankton-related restoration is crucial for an effective aquatic eco-restoration. This paper presents a practical method for identification of key regions for phytoplankton-related restoration, using random forests (RFs) method to cluster sites based on dominance, biodiversity, water chemistry and ecological niche. We sampled phytoplankton for species richness and relative abundance and water quality in the Huai River basin (HRB), China to determine the phytoplankton communities' composition and structure and characterize of their ecological niches. A wider mean niche breadth of a species usually leads to a greater overlap with the niche of other species. Using these data and water quality indices, we identified the key regions for phytoplankton-related river restoration activities. Results indicate that our method for recognition of key regions is effective and practical and its application to the HRB identified the Northern Plain area as the key region for restoration. This area is severely polluted and contributes significantly to the HRB phytoplankton communities. Phytoplankton in this region is highly adaptable to environmental change and therefore will be relatively unharmed by environmental instability induced by restoration measures. During restoration, indices of water temperature, total phosphorus and chemical oxygen demand can be altered with little negative influence on phytoplankton communities, but measures that increase ammonia-nitrogen concentration would be highly detrimental. These results will provide valuable information for policy makers and stakeholders in water ecosystem restoration and sustainable basin management in the HRB.

  18. Variation of phytoplankton community structure from the Pearl River estuary to South China Sea.

    Science.gov (United States)

    Jiang, Zhao-Yu; Wang, You-Shao; Cheng, Hao; Sun, Cui-Ci; Wu, Mei-Lin

    2015-10-01

    The Pearl River is located in the northern part of South China Sea. The environment of the Pearl River estuary (PRE) is significantly impacted by nutrients from anthropogenic activities. Along the anthropogenic pollution gradient from the PRE to South China Sea, the phylogenetic diversity and biomass of phytoplankton was examined in relation to physic-chemical variables. The richness of rbcL gene was higher in the open sea than the estuary, while the concentration of chlorophyll a (Chl a) was higher in the estuary than in the open sea. The cluster analysis of the sequences data resulted in seven phytoplankton community types and the dominant species of phytoplankton changed from Cryptophytes and Diatoms to Prymnesiophytes and Diatoms along the gradient. The community structure of phytoplankton was shaped by nutrients and salinity. The phytoplankton biomass was significantly positively affected by phosphorus, nitrite and ammonium (P < 0.01) but negatively by salinity (P < 0.05); the phytoplankton diversity was highly positively affected by salinity (P < 0.05) but negatively by silicate and nitrate (P < 0.01; P < 0.05, respectively). Anthropogenic activities played a critical role in the phytoplankton distribution and biomass of the study area. Further research is necessary to reveal the influence mechanism of environmental factors on the phytoplankton.

  19. Assessing the role of benthic filter feeders on phytoplankton production in a shellfish farming site: Mont Saint Michel Bay, France

    Science.gov (United States)

    Cugier, Philippe; Struski, Caroline; Blanchard, Michel; Mazurié, Joseph; Pouvreau, Stéphane; Olivier, Frédéric; Trigui, Jihane R.; Thiébaut, Eric

    2010-07-01

    The macrobenthic community of Mont Saint Michel Bay (English Channel, France) is mainly dominated by filter feeders, including cultivated species (oysters and mussels). An ecological model of the bay was developed, coupling a 2D hydro-sedimentary model and two biological models for primary production and filter-feeder filtration. The filter-feeder model includes three cultivated species ( Mytilus edulis, Crassostrea gigas and Ostrea edulis), one invasive species ( Crepidula fornicata) and eight wild native species ( Abra alba, Cerastoderma edule, Glycymeris glycymeris, Lanice conchilega, Macoma balthica, Paphia rhomboides, Sabellaria alveolata, andSpisula ovalis). For cultivated and invasive species, the production of biodeposits was computed to assess their role in restimulating primary production. Chlorophyll a concentrations appeared to be strongly controlled by the filter feeders. When the pressure of each benthic compartment on phytoplankton was estimated separately wild species and the invasive slipper limpet C.fornicata were shown to be key elements in the control of primary production. Conversely, the role of cultivated species, particularly oysters, was weaker. Feedback due to the mineralization of biodeposits also appears to be crucial to fully evaluate the role of filter feeders in primary production.

  20. Fluctuations of Phytoplankton Community in the Coastal Waters of Caspian Sea in 2006

    OpenAIRE

    Siamak Bagheri; Mashhor Mansor; Marzieh Makaremi; Jalil Sabkara; W. O.W. Maznah; Alireza Mirzajani; Seyed H. Khodaparast; Hossein Negarestan; Azemat Ghandi; Akbar Khalilpour

    2011-01-01

    Problem statement: The Caspian Sea ecosystem has been suffered with many problems since 1980s. Aanthropogenic pollution from heavy metals, hydrocarbons, pesticides, changes in the quantity of nutrient inputs by rivers, are significant threats to biodiversity and biological resources such as plankton structure in the Caspian Sea. According to the significant of phytoplankton community in marine system. The state of the fluctuations of phytoplankton communities of the southwestern Caspian Sea w...

  1. Contrasting Patterns of Phytoplankton Assemblages in Two Coastal Ecosystems in Relation to Environmental Factors (Corsica, NW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Marie Garrido

    2014-04-01

    Full Text Available Corsica Island is a sub-basin of the Northwestern Mediterranean Sea, with hydrological features typical of both oligotrophic systems and eutrophic coastal zones. Phytoplankton assemblages in two coastal ecosystems of Corsica (the deep Bay of Calvi and the shallow littoral of Bastia show contrasting patterns over a one-year cycle. In order to determine what drives these variations, seasonal changes in littoral phytoplankton are considered together with environmental parameters. Our methodology combined a survey of the physico-chemical structure of the subsurface water with a characterization of the phytoplankton community structure. Sampling provided a detailed record of the seasonal changes and successions that occur in these two areas. Results showed that the two sampled stations presented different phytoplankton abundance and distribution patterns, notably during the winter–spring bloom period. Successions in pico-, nano-, and microphytoplankton communities appeared mainly driven by differences in the ability to acquire nutrients, and in community-specific growth rates. Phytoplankton structure and dynamics are discussed in relation to available data on the Northwestern Mediterranean Sea. These results confirm that integrated monitoring of coastal areas is a requisite for gaining a proper understanding of marine ecosystems.

  2. The community composition and production of phytoplankton in fish pens of Cape Bolinao, Pangasinan: a field study

    International Nuclear Information System (INIS)

    Yap, Leni G.; Azanza, Rhodora V.; Talaue-McManus, Liana

    2004-01-01

    From 1995 up to the present, fish pens proliferated in the municipal waters of Bolinao, northern Philippines. Since then, fish kills and phytoplankton blooms have been recurrent. Have fishpens altered the phytoplankton community composition and production of these waters? The phytoplankton community in Cape Bolinao, Lingayen Gulf is typical of a tropical coastal area where diatoms alternate with dinoflagellates during the dry and wet seasons. In the nutrient-rich fish pens, phytoplankton in this study showed a lower diatom/dinoflagellate ratio and unusually high phytoplankton counts of 10 4 cells/l and even as high as 10 5 cells/l. Correlations between physico-chemical parameters, phytoplankton production and community composition were made in 2001. This paper tried to explain the occurrence of a Cylindrotheca closterium bloom (10 5 cells/l), during the dry season of the same year and a Prorocentrum minimum bloom (4.7 x 10 5 cells/l), which accompanied a massive fish kill during January 2002

  3. Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities

    Directory of Open Access Journals (Sweden)

    E. Litchman

    2006-01-01

    Full Text Available Phytoplankton community composition profoundly affects patterns of nutrient cycling and the dynamics of marine food webs; therefore predicting present and future phytoplankton community structure is crucial to understand how ocean ecosystems respond to physical forcing and nutrient limitations. We develop a mechanistic model of phytoplankton communities that includes multiple taxonomic groups (diatoms, coccolithophores and prasinophytes, nutrients (nitrate, ammonium, phosphate, silicate and iron, light, and a generalist zooplankton grazer. Each taxonomic group was parameterized based on an extensive literature survey. We test the model at two contrasting sites in the modern ocean, the North Atlantic (North Atlantic Bloom Experiment, NABE and subarctic North Pacific (ocean station Papa, OSP. The model successfully predicts general patterns of community composition and succession at both sites: In the North Atlantic, the model predicts a spring diatom bloom, followed by coccolithophore and prasinophyte blooms later in the season. In the North Pacific, the model reproduces the low chlorophyll community dominated by prasinophytes and coccolithophores, with low total biomass variability and high nutrient concentrations throughout the year. Sensitivity analysis revealed that the identity of the most sensitive parameters and the range of acceptable parameters differed between the two sites. We then use the model to predict community reorganization under different global change scenarios: a later onset and extended duration of stratification, with shallower mixed layer depths due to increased greenhouse gas concentrations; increase in deep water nitrogen; decrease in deep water phosphorus and increase or decrease in iron concentration. To estimate uncertainty in our predictions, we used a Monte Carlo sampling of the parameter space where future scenarios were run using parameter combinations that produced acceptable modern day outcomes and the

  4. Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco Bay, California

    Science.gov (United States)

    Cloern, James E.

    1996-05-01

    Phytoplankton blooms are prominent features of biological variability in shallow coastal ecosystems such as estuaries, lagoons, bays, and tidal rivers. Long-term observation and research in San Francisco Bay illustrates some patterns of phytoplankton spatial and temporal variability and the underlying mechanisms of this variability. Blooms are events of rapid production and accumulation of phytoplankton biomass that are usually responses to changing physical forcings originating in the coastal ocean (e.g., tides), the atmosphere (wind), or on the land surface (precipitation and river runoff). These physical forcings have different timescales of variability, so algal blooms can be short-term episodic events, recurrent seasonal phenomena, or rare events associated with exceptional climatic or hydrologic conditions. The biogeochemical role of phytoplankton primary production is to transform and incorporate reactive inorganic elements into organic forms, and these transformations are rapid and lead to measurable geochemical change during blooms. Examples include the depletion of inorganic nutrients (N, P, Si), supersaturation of oxygen and removal of carbon dioxide, shifts in the isotopic composition of reactive elements (C, N), production of climatically active trace gases (methyl bromide, dimethylsulfide), changes in the chemical form and toxicity of trace metals (As, Cd, Ni, Zn), changes in the biochemical composition and reactivity of the suspended particulate matter, and synthesis of organic matter required for the reproduction and growth of heterotrophs, including bacteria, zooplankton, and benthic consumer animals. Some classes of phytoplankton play special roles in the cycling of elements or synthesis of specific organic molecules, but we have only rudimentary understanding of the forces that select for and promote blooms of these species. Mounting evidence suggests that the natural cycles of bloom variability are being altered on a global scale by human

  5. Temperature affects the size-structure of phytoplankton communities in the ocean

    KAUST Repository

    López-Urrutia, Ángel

    2015-03-05

    The strong inverse correlation between resource availability and temperature in the ocean poses a challenge to determine the relative effect of these two variables on the size-structure of natural phytoplankton communities. Maranon et al (2012) compiled a dataset of concurrent temperature and resource level proxies that they claim disentangled the effect of temperature from that of resource supply. They concluded that the hypothesis that temperature per se plays a direct role in controlling phytoplankton size structure should be rejected. But our reanalysis of their data reaches a very different conclusion and suggests that they failed to separate the effects of temperature from the effects of resources. Although we obviously concur with Maranon et al (2012) in the long-known predominance of small phytoplankton cells under oligotrophic conditions, from our point of view this should not deter us from considering temperature as an important explanatory variable at a global scale since we show that, for the vast oligotrophic areas of the world\\'s oceans where chlorophyll concentrations are below <1 g L-1 temperature explains a high proportion of the variability in the size distribution of phytoplankton communities, a variability that can not be explained on the basis of the resource level proxies advocated by Maranon et al. (2012).

  6. Variations in phytoplankton community in a monsoon-influenced tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Anil, A.C.

    . The break period in monsoon altered the phytoplankton community leading to mixed species bloom of large-sized diatoms and harmful dinoflagellates (Gymnodinium catenatum and Cochlodinium polykrikoides) under high-saline, nutrient-poor, non...

  7. Photophysiological and light absorption properties of phytoplankton communities in the river-dominated margin of the northern Gulf of Mexico

    Science.gov (United States)

    Chakraborty, Sumit; Lohrenz, Steven E.; Gundersen, Kjell

    2017-06-01

    Spatial and temporal variability in photophysiological properties of phytoplankton were examined in relationship to phytoplankton community composition in the river-dominated continental margin of the northern Gulf of Mexico (NGOM). Observations made during five research cruises in the NGOM included phytoplankton photosynthetic and optical properties and associated environmental conditions and phytoplankton community structure. Distinct patterns of spatial and temporal variability in photophysiological parameters were found for waters dominated by different phytoplankton groups. Photophysiological properties for locations associated with dominance by a particular group of phytoplankton showed evidence of photoacclimation as reflected by differences in light absorption and pigment characteristics in relationship to different light environments. The maximum rate of photosynthesis normalized to chlorophyll (PmaxB) was significantly higher for communities dominated (>60% biomass) by cyanobacteria + prochlorophyte (cyano + prochl). The initial slope of the photosynthesis-irradiance (P-E) curve normalized to chlorophyll (αB) was not clearly related to phytoplankton community structure and no significant differences were found in PmaxB and αB between different geographic regions. In contrast, maximum quantum yield of carbon fixation in photosynthesis (Φcmax) differed significantly between regions and was higher for diatom-dominated communities. Multiple linear regression models, specific for the different phytoplankton communities, using a combination of environmental and bio-optical proxies as predictor variables showed considerable promise for estimation of the photophysiological parameters on a regional scale. Such an approach may be utilized to develop size class-specific or phytoplankton group-specific primary productivity models for the NGOM.Plain Language SummaryThis study examined the relationships between phytoplankton community composition and associated

  8. [Effects of large bio-manipulation fish pen on community structure of crustacean zooplankton in Meiliang Bay of Taihu Lake].

    Science.gov (United States)

    Ke, Zhi-Xin; Xie, Ping; Guo, Long-Gen; Xu, Jun; Zhou, Qiong

    2012-08-01

    In 2005, a large bio-manipulation pen with the stock of silver carp and bighead carp was built to control the cyanobacterial bloom in Meiliang Bay of Taihu Lake. This paper investigated the seasonal variation of the community structure of crustacean zooplankton and the water quality within and outside the pen. There were no significant differences in the environmental parameters and phytoplankton biomass within and outside the pen. The species composition and seasonal dynamics of crustacean zooplankton within and outside the pen were similar, but the biomass of crustacean zooplankton was greatly suppressed by silver carp and bighead carp. The total crustacean zooplankton biomass and cladocerans biomass were significantly lower in the pen (P < 0.05). In general, silver carp and bighead carp exerted more pressure on cladoceran species than on copepod species. A distinct seasonal succession of crustacean zooplankton was observed in the Bay. Many crustacean species were only dominated in given seasons. Large-sized crustacean (mainly Daphnia sp. and Cyclops vicnus) dominated in winter and spring, while small-sized species (mainly Bosmina sp., Ceriodaphnia cornuta, and Limnoithona sinensis) dominated in summer and autumn. Canonical correspondence analysis showed that water transparency, temperature, and phytoplankton biomass were the most important factors affecting the seasonal succession of the crustacean.

  9. Decoding size distribution patterns in marine and transitional water phytoplankton: from community to species level.

    Directory of Open Access Journals (Sweden)

    Leonilde Roselli

    Full Text Available Understanding the mechanisms of phytoplankton community assembly is a fundamental issue of aquatic ecology. Here, we use field data from transitional (e.g. coastal lagoons and coastal water environments to decode patterns of phytoplankton size distribution into organization and adaptive mechanisms. Transitional waters are characterized by higher resource availability and shallower well-mixed water column than coastal marine environments. Differences in physico-chemical regime between the two environments have been hypothesized to exert contrasting selective pressures on phytoplankton cell morphology (size and shape. We tested the hypothesis focusing on resource availability (nutrients and light and mixed layer depth as ecological axes that define ecological niches of phytoplankton. We report fundamental differences in size distributions of marine and freshwater diatoms, with transitional water phytoplankton significantly smaller and with higher surface to volume ratio than marine species. Here, we hypothesize that mixing condition affecting size-dependent sinking may drive phytoplankton size and shape distributions. The interplay between shallow mixed layer depth and frequent and complete mixing of transitional waters may likely increase the competitive advantage of small phytoplankton limiting large cell fitness. The nutrient regime appears to explain the size distribution within both marine and transitional water environments, while it seem does not explain the pattern observed across the two environments. In addition, difference in light availability across the two environments appear do not explain the occurrence of asymmetric size distribution at each hierarchical level. We hypothesize that such competitive equilibria and adaptive strategies in resource exploitation may drive by organism's behavior which exploring patch resources in transitional and marine phytoplankton communities.

  10. Modeling phytoplankton community in reservoirs. A comparison between taxonomic and functional groups-based models.

    Science.gov (United States)

    Di Maggio, Jimena; Fernández, Carolina; Parodi, Elisa R; Diaz, M Soledad; Estrada, Vanina

    2016-01-01

    In this paper we address the formulation of two mechanistic water quality models that differ in the way the phytoplankton community is described. We carry out parameter estimation subject to differential-algebraic constraints and validation for each model and comparison between models performance. The first approach aggregates phytoplankton species based on their phylogenetic characteristics (Taxonomic group model) and the second one, on their morpho-functional properties following Reynolds' classification (Functional group model). The latter approach takes into account tolerance and sensitivity to environmental conditions. The constrained parameter estimation problems are formulated within an equation oriented framework, with a maximum likelihood objective function. The study site is Paso de las Piedras Reservoir (Argentina), which supplies water for consumption for 450,000 population. Numerical results show that phytoplankton morpho-functional groups more closely represent each species growth requirements within the group. Each model performance is quantitatively assessed by three diagnostic measures. Parameter estimation results for seasonal dynamics of the phytoplankton community and main biogeochemical variables for a one-year time horizon are presented and compared for both models, showing the functional group model enhanced performance. Finally, we explore increasing nutrient loading scenarios and predict their effect on phytoplankton dynamics throughout a one-year time horizon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities.

    Science.gov (United States)

    Barton, Andrew D; Irwin, Andrew J; Finkel, Zoe V; Stock, Charles A

    2016-03-15

    Anthropogenic climate change has shifted the biogeography and phenology of many terrestrial and marine species. Marine phytoplankton communities appear sensitive to climate change, yet understanding of how individual species may respond to anthropogenic climate change remains limited. Here, using historical environmental and phytoplankton observations, we characterize the realized ecological niches for 87 North Atlantic diatom and dinoflagellate taxa and project changes in species biogeography between mean historical (1951-2000) and future (2051-2100) ocean conditions. We find that the central positions of the core range of 74% of taxa shift poleward at a median rate of 12.9 km per decade (km⋅dec(-1)), and 90% of taxa shift eastward at a median rate of 42.7 km⋅dec(-1) The poleward shift is faster than previously reported for marine taxa, and the predominance of longitudinal shifts is driven by dynamic changes in multiple environmental drivers, rather than a strictly poleward, temperature-driven redistribution of ocean habitats. A century of climate change significantly shuffles community composition by a basin-wide median value of 16%, compared with seasonal variations of 46%. The North Atlantic phytoplankton community appears poised for marked shift and shuffle, which may have broad effects on food webs and biogeochemical cycles.

  12. Development of phytoplankton communities: Implications of nutrient injections on phytoplankton composition, pH and ecosystem production

    DEFF Research Database (Denmark)

    Jakobsen, Hans; Blanda, Elisa; Stæhr, Peter Anton

    2015-01-01

    The development of a marine phytoplankton community was studied in a series of mesocosm tanks exposed to different levels of nutrient inputs. Key ecosystem variables such as phytoplankton species development, ecosystem net production (NEP), pH and bacteria production were measured. The overall aim...... was to mimic the consequences of extreme weather events by applying nutrients in either repeated (pulse treatment) versus a single inputs (full treatment). Regardless of treatment type, pH increased steadily, until nutrients became exhausted. During the experiment, potentially nuisance dinoflagellates...... developed and became dominant whereas diatoms became rare as compared to the parallel controls. At pH > 9, a shift from the presence of the potential nuisance Alexandrium pseudogonyaulax towards high pH tolerant Prorocentrum species was observed. Diatoms disappeared when A. pseudogonyaulax became dominant...

  13. Aragonite saturation state in a tropical coastal embayment dominated by phytoplankton blooms (Guanabara Bay - Brazil).

    Science.gov (United States)

    Cotovicz, Luiz C; Knoppers, Bastiaan A; Brandini, Nilva; Poirier, Dominique; Costa Santos, Suzan J; Abril, Gwenaël

    2018-04-01

    The dynamics of the aragonite saturation state (Ω arag ) were investigated in the eutrophic coastal waters of Guanabara Bay (RJ-Brazil). Large phytoplankton blooms stimulated by a high nutrient enrichment promoted the production of organic matter with strong uptake of dissolved inorganic carbon (DIC) in surface waters, lowering the concentrations of dissolved carbon dioxide (CO 2aq ), and increasing the pH, Ω arag and carbonate ion (CO 3 2- ), especially during summer. The increase of Ω arag related to biological activity was also evident comparing the negative relationship between the Ω arag and the apparent utilization of oxygen (AOU), with a very close behavior between the slopes of the linear regression and the Redfield ratio. The lowest values of Ω arag were found at low-buffered waters in regions that receive direct discharges from domestic effluents and polluted rivers, with episodic evidences of corrosive waters (Ω arag <1). This study showed that the eutrophication controlled the variations of Ω arag in Guanabara Bay. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Species- and community-level responses combine to drive phenology of lake phytoplankton

    Science.gov (United States)

    Walters, Annika; Sagrario, María de los Ángeles González; Schindler, Daniel E.

    2013-01-01

    Global change is leading to shifts in the seasonal timing of growth and maturation for primary producers. Remote sensing is increasingly used to measure the timing of primary production in both aquatic and terrestrial ecosystems, but there is often a poor correlation between these results and direct observations of life-history responses of individual species. One explanation may be that in addition to phenological shifts, global change is also causing shifts in community composition among species with different seasonal timing of growth and maturation. We quantified how shifts in species phenology and in community composition translated into phenological change in a diverse phytoplankton community from 1962-2000. During this time the aggregate community spring-summer phytoplankton peak has shifted 63 days earlier. The mean taxon shift was only 3 days earlier and shifts in taxa phenology explained only 40% of the observed community phenological shift. The remaining community shift was attributed to dominant early season taxa increasing in abundance while a dominant late season taxon decreased in abundance. In diverse producer communities experiencing multiple stressors, changes in species composition must be considered to fully understand and predict shifts in the seasonal timing of primary production.

  15. Phytoplankton community and limnochemistry of Piburger See (Tyrol, Austria 28 years after lake restoration

    Directory of Open Access Journals (Sweden)

    Hansjörg THIES

    2002-02-01

    Full Text Available Phytoplankton community and limnochemistry of Piburger See, a small soft-water, meromictic lake situated at 913 m a.s.l. in a crystalline area of the Central Eastern Alps of Tyrol (Austria, were investigated 28 years after the beginning of lake restoration. Although long-term data of the lake show a declining trend in total phosphorus concentrations and phytoplankton biovolume, the response of Piburger See to the restoration measures carried out in 1970 was delayed by about 20 years. At present the lake is approaching its former oligotrophic level. The most evident difference between the past and present phytoplankton species composition of Piburger See is the actual absence of the Cyanophycean Oscillatoria limosa C. A. Agardh, which markedly increased during the first two decades after the lake restoration (1970-1987. The phytoplankton biovolume recorded in 1998 was lower than in the 1970s and 1980s, while seasonal patterns were similar to those recorded before and later on in the lake restoration. The lowest annual phytoplankton biovolume in 1998 occurred in early winter, while the absolute maximum was observed in metalimnetic water layers in late spring. In 1998 the intra-annual patterns of phytoplankton biovolume and chlorophyll-a compare well. Phytoplankton succession started in early 1998 under ice with coccal green algae followed by flagellated Chrysophyceae during spring. The mid-summer phytoplankton community was dominated by centric Bacillariophyceae, which were later replaced by coccal Cyanophyceae. During autumn, Dinophyceae and Chrysophyceae prevailed. Epilimnetic dominance of centric diatoms during mid summer appears to be a new feature, which in 1998 was related to a strong depletion of dissolved silica and nitrate. Long-term water chemistry and phytoplankton data were checked against local weather data in order to explain the delay in the re-oligotrophication process of Piburger See. However, no clear relationship could be

  16. [Phytoplankton's community structure and its relationships with environmental factors in the rivers of Tongling City, Anhui Province of East China in winter].

    Science.gov (United States)

    Wang, Li; Wei, Wei; Zhou, Ping; Li, Yang; Sun, Qing-Ye

    2013-01-01

    Tongling is one of the main non-ferrous metal mining areas in China, and the biodiversity in the river ecosystem of this area is seriously affected by heavy metals as a result of mining activities. In the winter in 2010, an investigation was conducted on the community structure of phytoplankton and its relationships with environmental factors in the main sections of the rivers in Tongling. A total of 203 phytoplankton species were identified, belonging to 96 genera and 8 phyla. The community structure of the phytoplankton differed obviously in different river sections, but the communities were all dominated by Bacillariophyta, Chlorophyta and Cyanophyta. The phytoplankton abundance ranged from 9.1 x 10(3) to 6.5 x 10(7) cells x L(-1), and the quantity of the phytoplankton in the river sections directly carried with mining waste water was significantly low. The Shannon index of the phytoplankton community at different sampling sites ranged from 0 to 3.45, with a significant discrepancy in different river sections. There existed significant correlations between the density and group number of phytoplankton and the COD(Cr) and cadmium, copper and zinc concentrations in the rivers, and the concentrations of river total nitrogen, NH4(+)-N, NO3(-)-N, and copper, COD(Cr) and pH were the main environmental variables affecting the phytoplankton' s community structure and its spatial distribution. Although the nutritional status of the river waters had greater effects on the community structure of phytoplankton, the effects of the heavy metals there from mining enterprises could not be neglected.

  17. Feasibility of green mussel, Perna viridis farming in Marudu Bay, Malaysia

    Directory of Open Access Journals (Sweden)

    Tan Kar Soon

    2016-11-01

    Full Text Available Bivalve aquaculture is an important source of affordable animal protein for coastal community. The success and sustainability of this industry is highly influenced by the suitability of the environment in which it is carried out. Present study was carried out to evaluate the feasibility of green mussel (Perna viridis farming in Marudu Bay. The site suitability for green mussel farming was evaluated based on biophysical parameters and food availability. The in situ environmental parameters, phytoplankton abundance and composition were collected from 10 sampling stations on monthly interval from May 2014 to April 2015. The results showed that the environmental parameters and food availability in most of the sampling stations were suitable for green mussel. However, the presence of phytoplankton taxa (Chaetoceraceae which are unfavorable by green mussel in most of the stations located at the bay pocket make those areas less recommended for green mussel farming. In contrast, stations located on the mouth of the bay exhibited high site suitability rating points and hence are highly recommended for cultivation of green mussel.

  18. Analysis of phytoplankton distribution and community structure in the German Bight with respect to the different size classes

    Science.gov (United States)

    Wollschläger, Jochen; Wiltshire, Karen Helen; Petersen, Wilhelm; Metfies, Katja

    2015-05-01

    Investigation of phytoplankton biodiversity, ecology, and biogeography is crucial for understanding marine ecosystems. Research is often carried out on the basis of microscopic observations, but due to the limitations of this approach regarding detection and identification of picophytoplankton (0.2-2 μm) and nanophytoplankton (2-20 μm), these investigations are mainly focused on the microphytoplankton (20-200 μm). In the last decades, various methods based on optical and molecular biological approaches have evolved which enable a more rapid and convenient analysis of phytoplankton samples and a more detailed assessment of small phytoplankton. In this study, a selection of these methods (in situ fluorescence, flow cytometry, genetic fingerprinting, and DNA microarray) was placed in complement to light microscopy and HPLC-based pigment analysis to investigate both biomass distribution and community structure of phytoplankton. As far as possible, the size classes were analyzed separately. Investigations were carried out on six cruises in the German Bight in 2010 and 2011 to analyze both spatial and seasonal variability. Microphytoplankton was identified as the major contributor to biomass in all seasons, followed by the nanophytoplankton. Generally, biomass distribution was patchy, but the overall contribution of small phytoplankton was higher in offshore areas and also in areas exhibiting higher turbidity. Regarding temporal development of the community, differences between the small phytoplankton community and the microphytoplankton were found. The latter exhibited a seasonal pattern regarding number of taxa present, alpha- and beta-diversity, and community structure, while for the nano- and especially the picophytoplankton, a general shift in the community between both years was observable without seasonality. Although the reason for this shift remains unclear, the results imply a different response of large and small phytoplankton to environmental influences.

  19. Phytoplankton community of Reis lake in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    ISE G. SILVA

    2013-06-01

    Full Text Available Reis Lake is located in the municipality of Caracaraí, state of Roraima (Brazil and is subject to fluctuations in water level. The aim of this study was to analyze the structure of the phytoplankton community on the nictemeral and seasonal scales and determined the influence of limnological variables. Sampling was performed in the rainy season (June/2006 and dry season (November/2006, considering two nictemeral cycles. The phytoplankton community was assessed with regard to composition and density, abiotic variables were analyzed simultaneously. The lake had low concentrations of oxygen, clinograde profile and water stratified during the day and homogenous at night, with low concentrations of nutrients and waters ranging from slightly acidic to alkaline. The phytoplankton was represented by 43 taxa, 35 species in the dry season and 29 species in the rainy season. Low densities of phytoplankton occurred in both nictemeral cycles, with accentuated vertical gradient. The highest densities were recorded in the dry season. Reis Lake exhibits characteristics that classify it as a polymythic and oligotrophic environment. The variability in the data was more important seasonally than on the nictemeral scale, supporting the hypothesis of the influence of the hydrological cycle on the dynamics of phytoplankton communities in floodplain lakes.O lago dos Reis está localizado no município de Caracaraí, no estado de Roraima (Brasil e está sujeito a flutuações no nível da água. O objetivo do estudo foi analisar a estrutura da comunidade fitoplanctônica nas escalas nictemeral e sazonal e determinar a influência de variáveis limnológicas nesta comunidade. As amostragens foram realizadas nos periodos chuvoso e seco, considerando dois ciclos nictemeral. A comunidade fitoplanctônica foi avaliada no que diz respeito à composição e densidade, simultaneamente, variáveis abióticas foram analisadas. O lago apresentou baixas concentrações de oxig

  20. Phytoplankton-Associated Bacterial Community Composition and Succession during Toxic Diatom Bloom and Non-Bloom Events.

    Science.gov (United States)

    Sison-Mangus, Marilou P; Jiang, Sunny; Kudela, Raphael M; Mehic, Sanjin

    2016-01-01

    Pseudo-nitzschia blooms often occur in coastal and open ocean environments, sometimes leading to the production of the neurotoxin domoic acid that can cause severe negative impacts to higher trophic levels. Increasing evidence suggests a close relationship between phytoplankton bloom and bacterial assemblages, however, the microbial composition and succession during a bloom process is unknown. Here, we investigate the bacterial assemblages before, during and after toxic and non-toxic Pseudo-nitzschia blooms to determine the patterns of bacterial succession in a natural bloom setting. Opportunistic sampling of bacterial community profiles were determined weekly at Santa Cruz Municipal Wharf by 454 pyrosequencing and analyzed together with domoic acid levels, phytoplankton community and biomass, nutrients and temperature. We asked if the bacterial communities are similar between bloom and non-bloom events and if domoic acid or the presence of toxic algal species acts as a driving force that can significantly structure phytoplankton-associated bacterial communities. We found that bacterial diversity generally increases when Pseudo-nitzschia numbers decline. Furthermore, bacterial diversity is higher when the low-DA producing P. fraudulenta dominates the algal bloom while bacterial diversity is lower when high-DA producing P. australis dominates the algal bloom, suggesting that the presence of algal toxin can structure bacterial community. We also found bloom-related succession patterns among associated bacterial groups; Gamma-proteobacteria, were dominant during low toxic P. fraudulenta blooms comprising mostly of Vibrio spp., which increased in relative abundance (6-65%) as the bloom progresses. On the other hand, Firmicutes bacteria comprising mostly of Planococcus spp. (12-86%) dominate during high toxic P. australis blooms, with the bacterial assemblage showing the same bloom-related successional patterns in three independent bloom events. Other environmental

  1. Phytoplankton-associated bacterial community composition and succession during toxic diatom bloom and non-bloom events

    Directory of Open Access Journals (Sweden)

    Marilou P. Sison-Mangus

    2016-09-01

    Full Text Available Pseudo-nitzschia blooms often occur in coastal and open ocean environments, sometimes leading to the production of the neurotoxin domoic acid that can cause severe negative impacts to higher trophic levels. Increasing evidence suggests a close relationship between phytoplankton bloom and bacterial assemblages, however, the microbial composition and succession during a bloom process is unknown. Here, we investigate the bacterial assemblages before, during and after toxic and non-toxic Pseudo-nitzschia blooms to determine the patterns of bacterial succession in a natural bloom setting. Opportunistic sampling of bacterial community profiles were determined weekly at Santa Cruz Municipal Wharf by 454 pyrosequencing and analyzed together with domoic acid levels, phytoplankton community and biomass, nutrients and temperature. We asked if the bacterial communities are similar between bloom and non-bloom events and if domoic acid or the presence of toxic algal species acts as a driving force that can significantly structure phytoplankton-associated bacterial communities. We found that bacterial diversity generally increases when Pseudo-nitzschia numbers decline. Furthermore, bacterial diversity is higher when the low-DA producing P. fraudulenta dominates the algal bloom while bacterial diversity is lower when high-DA producing P. australis dominates the algal bloom, suggesting that the presence of algal toxin can structure bacterial community. We also found bloom-related succession patterns among associated bacterial groups; Gamma-proteobacteria, were dominant during low toxic P. fraudulenta blooms comprising mostly of Vibrio spp., which increased in relative abundance (6%-65% as the bloom progresses. On the other hand, Firmicutes bacteria comprising mostly of Planococcus spp. (12%- 86% dominate during high toxic P. australis blooms, with the bacterial assemblage showing the same bloom-related successional patterns in 3 independent bloom events. Other

  2. Identification of Phytoplankton Blooms under the Index of Inherent Optical Properties (IOP Index in Optically Complex Waters

    Directory of Open Access Journals (Sweden)

    Jesús A. Aguilar-Maldonado

    2018-01-01

    Full Text Available Phytoplankton blooms are sporadic events in time and are isolated in space. This complex phenomenon is produced by a variety of both natural and anthropogenic causes. Early detection of this phenomenon, as well as the classification of a water body under conditions of bloom or non-bloom, remains an unresolved problem. This research proposes the use of Inherent Optical Properties (IOPs in optically complex waters to detect the bloom or non-bloom state of the phytoplankton community. An IOP index is calculated from the absorption coefficients of the colored dissolved organic matter (CDOM, the phytoplankton (phy and the detritus (d, using the wavelength (λ 443 nm. The effectiveness of this index is tested in five bloom events in different places and with different characteristics from Mexican seas: 1. Dzilam (Caribbean Sea, Atlantic Ocean, a diatom bloom (Rhizosolenia hebetata; 2. Holbox (Caribbean Sea, Atlantic Ocean, a mixed bloom of dinoflagellates (Scrippsiella sp. and diatoms (Chaetoceros sp.; 3. Campeche Bay in the Gulf of Mexico (Atlantic Ocean, a bloom of dinoflagellates (Karenia brevis; 4. Upper Gulf of California (UGC (Pacific Ocean, a diatom bloom (Coscinodiscus and Pseudo-nitzschia and 5. Todos Santos Bay, Ensenada (Pacific Ocean, a dinoflagellate bloom (Lingulodinium polyedrum. The diversity of sites show that the IOP index is a suitable method to determine the phytoplankton bloom conditions.

  3. Sustaining diversity in trait-based models of phytoplankton communities

    Directory of Open Access Journals (Sweden)

    Agostino eMerico

    2014-10-01

    Full Text Available It is well-established that when equilibrium is attained for two species competing for the same limiting resource in a stable, uniform environment, one species will eliminate the other due to competitive exclusion. While competitive exclusion is observed in laboratory experiments and ecological models, the phenomenon seems less common in nature, where static equilibrium is prevented by the fluctuating physical environment and by other factors that constantly change species abundances and the nature of competitive interactions. Trait-based models of phytoplankton communities appear to be useful tools for describing the evolution of large assemblages of species with aggregate group properties such as total biomass, mean trait, and trait variance, the latter representing the functional diversity of the community. Such an approach, however, is limited by the tendency of the trait variance to unrealistically decline to zero over time. This tendency to lose diversity, and therefore adaptive capacity, is typically solved by fixing the variance or by considering exogenous processes such as immigration. Exogenous processes, however, cannot explain the maintenance of adaptive capacity often observed in the closed environment of chemostat experiments. Here we present a new method to sustain diversity in adaptive trait-based models of phytoplankton communities based on a mechanism of trait diffusion through subsequent generations. Our modeling approach can therefore account for endogenous processes such as rapid evolution or transgenerational trait plasticity.

  4. Phytoplankton community and environmental correlates in a coastal upwelling zone along western Taiwan Strait

    Science.gov (United States)

    Wang, Yu; Kang, Jian-hua; Ye, You-yin; Lin, Geng-ming; Yang, Qing-liang; Lin, Mao

    2016-02-01

    Upwelling system in western Taiwan Strait is important for facilitating the fishery production. This study investigated hydro-chemical properties, phytoplankton biomass, phytoplankton species composition, three-dimensional (horizontal, vertical and transect) distribution of phytoplankton abundance, as well as phytoplankton annual variation and the correlation of phytoplankton community with the upwelling of underlying current and nutrients according to samples of Fujian-Guangdong coastal upwelling zone in western Taiwan Strait from August 27 to September 8, 2009. The results manifest that the nutrient-rich cold and high salinity current on the continental shelf of South China Sea upwells to the Fujian-Guangdong coastal waters through Taiwan Bank and the surging strength to surface is weak while strong at 30-m layer. The thermohaline center of coastal upwelling shifts to the east of Dongshan Island and expanded to offshore waters in comparison with previous records. A total of 137 phytoplankton species belonging to 59 genera in 4 phyla are identified excluding the unidentified species. Diatom is the first major group and followed by dinoflagellate. Cyanobacteria mainly composed by three Trichodesmium species account for a certain proportions, while Chrysophyta are only found in offshore waters. The dominant species include Thalassionema nitzschioides, Pseudo-nitzschia pungens, Thalassionema frauenfeldii, Pseudo-nitzschia delicatissima, Rhizosolenia styliformis, Chaetoceros curvisetus, Diplopsalis lenticula and Trichodesmium thiebautii. Phytoplankton community mainly consists of eurythermal and eurytopic species, followed by warm-water species, tropic high-salinity species and oceanic eurythermic species in order. Phytoplankton abundance ranges from 1.00 × 102 ind./L ~ 437.22 × 102 ind./L with an average of 47.36 × 102 ind./L. For vertical distribution, maximum abundance is found at 30 m-depth and the surface comes second. Besides, the abundance below 30 m

  5. Phytoplankton and nutrients studies in Magu bay, Speke gulf, Lake ...

    African Journals Online (AJOL)

    Phytoplankton were generally dominated by the cyanobacteria Microcystis and Anabaena species though the diatoms Nitzschia and Melosira species were more abundant in some sampling ... Phytoplankton production was possibly light limited in areas with simultaneously high nutrient concentrations and high turbidity.

  6. Studies on variations in phytoplankton community structure at three locations near MAPS

    International Nuclear Information System (INIS)

    Sahu, Gouri; Satpathy, K.K.; Patnaik, Shilpa; Selvanaygam, M.

    2008-01-01

    Studies on the spatial and seasonal variation in phytoplankton community structure was carried out in the coastal waters of Kalpakkam in the vicinity of Madras Atomic Power Station (MAPS). Seawater samples were collected from intake, forebay and outfall of MAPS cooling water system for phytoplankton enumeration. A decrease in population density was noticed from coastal water to outfall water (coastal water, 1.5 x 10 6 cells l -1 ; forebay, 9.5 x 10 5 cells l -1 and outfall, 8.6 x 10 5 cells l -1 ). A total of 235 phytoplankton species were recorded during the study period. Asterionellopsis glacialis emerged as the most dominant species throughout the study period contributing 2.9 - 49.3 %, 1.6 - 44% and 2.7 - 46 % of the total cell counts of coastal water, forebay and outfall respectively. A visible dominance of pennate diatoms over the centric population was observed. The increase in pennate to centric ratio in the order of coastal water < forebay < outfall with respect to species composition indicated an increase in the benthic forms of phytoplankton from intake to outfall. Furthermore, as compared to the earlier findings, the present results showed a distinct reduction in numerical abundance of phytoplankton with an elevation of species composition. (author)

  7. Occurrence of marine algal toxins in oyster and phytoplankton samples in Daya Bay, South China Sea.

    Science.gov (United States)

    Jiang, Tao; Liu, Lei; Li, Yang; Zhang, Jing; Tan, Zhijun; Wu, Haiyan; Jiang, Tianjiu; Lu, Songhui

    2017-09-01

    The occurrence and seasonal variations of marine algal toxins in phytoplankton and oyster samples in Daya Bay (DYB), South China Sea were investigated. Two Dinophysis species, namely, D. caudata and D. acuminata complex, were identified as Okadaic acid (OA)/pectenotoxin (PTX) related species. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis demonstrated that 2.04-14.47 pg PTX2 per cell was the predominant toxin in single-cell isolates of D. caudata. D. acuminata was not subjected to toxin analysis. The occurrence of OAs in phytoplankton concentrates of net-haul sample coincided with the presence of D. accuminata complex, suggesting that this species is most likely an OA producer in this sea area. OA, dinophysistoxins-1 (DTX1), PTX2, PTX2sa, gymnodimine (GYM), homoyessotoxin (homoYTX), and domoic acid (DA) demonstrated positive results in net haul samples. To our best knowledge, this paper is the first to report the detection of GYM, DA, and homoYTX in phytoplankton samples in Chinese coastal waters. Among the algal toxins, GYM demonstrated the highest frequency of positive detections in phytoplankton concentrates (13/17). Five compounds of algal toxins, including OA, DTX1, PTX2, PTX2sa, and GYM, were detected in oyster samples. DA and homoYTX were not detected in oysters despite of positive detections for both in the phytoplankton concentrates. However, neither the presence nor absence of DA in oysters can be determined because extraction conditions with 100% methanol used to isolate toxins from oysters (recommended by the EU-Harmonised Standard Operating Procedure, 2015) would likely be unsuitable for this water-soluble toxin. In addition, transformation of DA during the digestion process of oysters may also be involved in the negative detections of this toxin. GYM exhibited the highest frequency of positive results in oysters (14/17). OAs were only detected in the hydrolyzed oyster samples. The detection rates of PTX and PTX2sa in

  8. Correction: Ryan, J., et al. Application of the Hyperspectral Imager for the Coastal Ocean to Phytoplankton Ecology Studies in Monterey Bay, CA, USA. Remote Sens. 2014, 6, 1007–1025

    Directory of Open Access Journals (Sweden)

    Marcos J. Montes

    2015-10-01

    Full Text Available Studies of phytoplankton ecology in Monterey Bay, CA, USA, using the Hyperspectral Imager for the Coastal Ocean (HICO and other satellite remote sensing and in-situ observations, were presented in [1]. [...

  9. Phytoplankton Biogeography and Community Stability in the Ocean

    Science.gov (United States)

    Cermeño, Pedro; de Vargas, Colomban; Abrantes, Fátima; Falkowski, Paul G.

    2010-01-01

    Background Despite enormous environmental variability linked to glacial/interglacial climates of the Pleistocene, we have recently shown that marine diatom communities evolved slowly through gradual changes over the past 1.5 million years. Identifying the causes of this ecological stability is key for understanding the mechanisms that control the tempo and mode of community evolution. Methodology/Principal Findings If community assembly were controlled by local environmental selection rather than dispersal, environmental perturbations would change community composition, yet, this could revert once environmental conditions returned to previous-like states. We analyzed phytoplankton community composition across >104 km latitudinal transects in the Atlantic Ocean and show that local environmental selection of broadly dispersed species primarily controls community structure. Consistent with these results, three independent fossil records of marine diatoms over the past 250,000 years show cycles of community departure and recovery tightly synchronized with the temporal variations in Earth's climate. Conclusions/Significance Changes in habitat conditions dramatically alter community structure, yet, we conclude that the high dispersal of marine planktonic microbes erases the legacy of past environmental conditions, thereby decreasing the tempo of community evolution. PMID:20368810

  10. Effect of intensive epilimnetic withdrawal on phytoplankton community in a (subtropical deep reservoir

    Directory of Open Access Journals (Sweden)

    Man Zhang

    2013-10-01

    Full Text Available Withdrawal is an important process in reservoir hydrodynamics, removing phytoplankton with flushed water. Zooplankton,the grazers of phytoplankton, having longer generation times, are even more susceptible than phytoplankton to flushing loss. Therefore phytoplankton are affected not only by abiotic conditions linked to hydrodynamics but also by zooplankton due to weakened grazing pressure. During the Asian Games (November 12-27, 2010 in Guangzhou, China, two intensive epilimnetic withdrawals were conducted in Liuxihe, a deep canyon-shaped reservoir. To examine the influence of the intensive epilimnetic withdrawals on the phytoplankton community, a seven-week field observation and a hydrodynamic simulation were carried out. The observation was divided in two stages: stage 1 represented partial surface vertical mixing period, and stage 2 represented intensive epilimnetic withdrawal period. It was found that phytoplankton abundance and biomass declined with water temperature and partial surface vertical mixing in stage 1. However, the intensive epilimnetic withdrawal reversed this decreasing trend and increased phytoplankton biomass and abundance in stage 2. Phytoplankton showed a higher rate of composition change in stage 2. A numerical model (DYRESM-CAEDYM simulated scenarios with and without epilimnetic withdrawal to test their effects on abiotic factors (water temperature, suspended sediment and soluble reactive phosphorus for phytoplankton. The results showed no obvious difference in the abiotic factors between the two scenarios during stage 2. We therefore suggested that the abiotic factors in the water column were probably driven by a seasonal pattern, not by epilimnetic withdrawal. It is likely that the intensive epilimnetic withdrawal could remove large crustaceans. The reduced grazing pressure probably explained the increase of phytoplankton biomass and abundance after the withdrawal. Thus, we suggest that reservoir operation should pay

  11. Phytoplankton community indicators of changes associated with dredging in the Tagus estuary (Portugal)

    International Nuclear Information System (INIS)

    Cabrita, Maria Teresa

    2014-01-01

    This work reports changes in suspended particulate matter, turbidity, dissolved Cr, Ni, Cu, Cd, Hg and Pb concentrations, and phytoplankton biomass and composition during a 5-month period dredging operation, in a trace element contaminated area of the Tagus estuary (Portugal). Phytoplankton biomass, diatom:other groups ratio, benthic:pelagic diatom ratio, Margalef's, Simpson's diversity, Shannon–Wiever's, and Warwick and Clarke's taxonomic diversity and distinctness indices, and individual taxa were investigated as indicators of dredging induced changes. Significant rise in sediment resuspension and trace element mobilisation caused by dredging influenced the community structure but not the overall biomass. Benthic diatom displacement into the water column maintained species diversity, and therefore, none of the indices highlighted community changes. Contrastingly, diatom:other groups ratio and benthic:pelagic diatom ratio were reliable indicators for the assessment of dredging induced changes. A shift in composition towards species less susceptible to trace elements was observed, disclosing some individual taxa as potential indicators. - Highlights: • Phytoplankton community indicators of dredging induced changes were investigated. • Increased resuspension and trace element mobilisation changed community structure. • Diversity indices unsuitable to detect changes because species richness was maintained. • Diatom:other groups and benthic:pelagic diatom ratios were efficient indicators. • Individual taxa may be potential indicators but require site-specific validation. - Diatom:other groups ratio, benthic:pelagic diatom ratio and individual taxa were identified as efficient indicators for the assessment of water quality changes associated with dredging

  12. Phytoplankton Community Structure in 2011-2013 Compared to the Extratropical Warming Event of 2014-2015

    Science.gov (United States)

    Du, X.; Peterson, W. T.

    2018-02-01

    Coastal waters of the Northern California Current experienced "normal" ocean conditions in 2011-2012, weak upwelling in 2013-2014, then suddenly warmed in September 2014. The response of phytoplankton community structure to contrasting ocean conditions was determined from samples collected off Newport, Oregon. Cluster analysis identified three prominent phytoplankton community types: one that occurred during the upwelling season characterized by the highest abundance and diversity of diatoms, a preupwelling/relaxation community characterized by lower abundance, lowest diversity of diatoms and dinoflagellates, and another one associated with the warm anomalies from September 2014 through 2015 with reduced diatom abundance and diversity but the highest dinoflagellate diversity. The changes of diatom and dinoflagellate community were correlated with local factors (silicate, silicate: nitrate ratios, temperature, and salinity), and with the Pacific Decadal Oscillation.

  13. Phytoplankton community structure in relation to vertical stratification along a north-south gradient in the Northeast Atlantic Ocean

    NARCIS (Netherlands)

    Mojica, Kristina D. A.; van de Poll, Willem H.; Keheo, Michael; Huisman, Jef; Timmermans, Klaas R.; Buma, Anita G. J.; van der Woerd, Hans J.; Hahn-Woernle, L.; Dijkstra, H.A.; Brussaard, Corina P D

    Climate change is affecting the hydrodynamics of the world’s oceans. How these changes will influence the productivity, distribution and abundance of phytoplankton communities is an urgent research question. Here we provide a unique high-resolution mesoscale description of the phytoplankton

  14. Phytoplankton community structure in relation to vertical stratification along a north-south gradient in the Northeast Atlantic Ocean

    NARCIS (Netherlands)

    Mojica, Kristina; van de Poll, Willem; Kehoe, Michael; Huisman, Jef; Timmermans, Klaas; Buma, Anita; van der Woerd, Hans J; Hahn-Woernle, Lisa; Dijkstra, Henk A; Brussaard, Corina

    2015-01-01

    Climate change is affecting the hydrodynamics of the world’s oceans. How these changes will influence the productivity, distribution and abundance of phytoplankton communities is an urgent research question. Here we provide a unique high-resolution mesoscale description of the phytoplankton

  15. Phytoplankton community structure in relation to vertical stratification along a north-south gradient in the Northeast Atlantic Ocean

    NARCIS (Netherlands)

    Mojica, K.D.A.; van de Poll, W.H.; Kehoe, M.J.; Huisman, J.; Timmermans, K.R.; Buma, A.G.J.; van der Woerd, H.J.; Hahn-Woernle, L.; Dijkstra, H.A.; Brussaard, C.P.D.

    2015-01-01

    Climate change is affecting the hydrodynamics of the world's oceans. How these changes will influence the productivity, distribution and abundance of phytoplankton communities is an urgent research question. Here we provide a unique high-resolution mesoscale description of the phytoplankton

  16. Effects of low concentrations of glyphosate-based herbicide factor 540® on an agricultural stream freshwater phytoplankton community.

    Science.gov (United States)

    Smedbol, Élise; Gomes, Marcelo Pedrosa; Paquet, Serge; Labrecque, Michel; Lepage, Laurent; Lucotte, Marc; Juneau, Philippe

    2018-02-01

    Residual glyphosate from glyphosate based herbicides (GBH) are ubiquitously detected in streams draining agricultural fields, and may affect phytoplankton communities present in these ecosystems. Here, the effects of the exposure (96 h) of a phytoplankton community collected in an agricultural stream to various glyphosate concentrations (1, 5, 10, 50, 100, 500 and 1000 μg l -1 ) of Factor 540 ® GBH were investigated. The lowest GBH concentration of 1 μg l -1 reduced chlorophyll a and carotenoid contents. Low glyphosate concentrations, such as 5 and 10 μg l -1 , promoted changes in the community's structure and reduced the diversity of the main algal species. At glyphosate concentrations ranging from 50 to 1000 μg l -1 , the phytoplankton community's composition was modified and new main species appeared. The highest glyphosate concentrations (500 and 1000 μg l -1 ) affected the shikimate content, the lipid peroxidation and the activity of antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase). These results indicate that GBH can modify structural and functional properties of freshwater phytoplankton communities living in streams located in agricultural areas at glyphosate concentrations much inferior to the 800 μg l -1 threshold set by the Canadian guidelines for the protection of aquatic life. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  17. Multicellular Features of Phytoplankton

    Directory of Open Access Journals (Sweden)

    Adi Abada

    2018-04-01

    Full Text Available Microscopic marine phytoplankton drift freely in the ocean, harvesting sunlight through photosynthesis. These unicellular microorganisms account for half of the primary productivity on Earth and play pivotal roles in the biogeochemistry of our planet (Field et al., 1998. The major groups of microalgae that comprise the phytoplankton community are coccolithophores, diatoms and dinoflagellates. In present oceans, phytoplankton individuals and populations are forced to rapidly adjust, as key chemical and physical parameters defining marine habitats are changing globally. Here we propose that microalgal populations often display the characteristics of a multicellular-like community rather than a random collection of individuals. Evolution of multicellularity entails a continuum of events starting from single cells that go through aggregation or clonal divisions (Brunet and King, 2017. Phytoplankton may be an intermediate state between single cells and aggregates of physically attached cells that communicate and co-operate; perhaps an evolutionary snapshot toward multicellularity. In this opinion article, we journey through several studies conducted in two key phytoplankton groups, coccolithophores and diatoms, to demonstrate how observations in these studies could be interpreted in a multicellular context.

  18. Effects of iron stress on chromatic adaptation by natural phytoplankton communities in the Southern Ocean

    NARCIS (Netherlands)

    van Leeuwe, M.A.; Timmermans, K.R.; Witte, H.J.; Kraay, G.W.; Veldhuis, M.J.W.; de Baar, H.J.W.

    1998-01-01

    Effects of iron stress on chromatic adaptation were studied in natural phytoplankton communities collected in the Pacific region of the Southern Ocean. Iron enrichment experiments (48 to 72 h) were performed, incubating plankton communities under white, green and blue light respectively, with and

  19. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community

    NARCIS (Netherlands)

    Burson, A.; Stomp, M.; Greenwell, E.; Grosse, J.; Huisman, J.

    2018-01-01

    A key challenge in ecology is to understand how nutrients and light affect the biodiversity and community structure of phytoplankton and plant communities. According to resource competition models, ratios of limiting nutrients are major determinants of species composition. At high nutrient levels,

  20. Temperature-Correlated Changes in Phytoplankton Community Structure Are Restricted to Polar Waters.

    Science.gov (United States)

    Ward, Ben A

    2015-01-01

    Globally distributed observations of size-fractionated chlorophyll a and temperature were used to incorporate temperature dependence into an existing semi-empirical model of phytoplankton community size structure. The additional temperature-dependent term significantly increased the model's ability to both reproduce and predict observations of chlorophyll a size-fractionation at temperatures below 2°C. The most notable improvements were in the smallest (picoplankton) size-class, for which overall model fit was more than doubled, and predictive skill was increased by approximately 40%. The model was subsequently applied to generate global maps for three phytoplankton size classes, on the basis of satellite-derived estimates of surface chlorophyll a and sea surface temperature. Polar waters were associated with marked decline in the chlorophyll a biomass of the smallest cells, relative to lower latitude waters of equivalent total chlorophyll a. In the same regions a complementary increase was seen in the chlorophyll a biomass of larger size classes. These findings suggest that a warming and stratifying ocean will see a poleward expansion of the habitat range of the smallest phytoplankton, with the possible displacement of some larger groups that currently dominate. There was no evidence of a strong temperature dependence in tropical or sub-tropical regions, suggesting that future direct temperature effects on community structure at lower latitudes may be small.

  1. Zooplankton excretion metabolites stimulate Southern Ocean phytoplankton growth

    KAUST Repository

    Coello-Camba, A.; Llabré s, M.; Duarte, Carlos M.; Agusti, Susana

    2017-01-01

    Warming over Antarctica is leading to changes in the zooplankton communities inhabiting the Southern Ocean. It has been observed that zooplankton not only regulates phytoplankton through grazing, but also through the recycling of nutrients that are essential for phytoplankton growth. In this way, the effects of warming on zooplankton populations will change the amount or proportion at which recycled nutrients are restored. To estimate how the recycled nutrients released by zooplankton populations, dominated by krill (Euphausia superba), amphipods or copepods, affect the phytoplankton uptake and communities, we performed four incubation experiments: two close to the Antarctic Peninsula and two at the Southern Atlantic Ocean. Our results showed a stimulating effect of the addition of metabolites on ammonia removal rates and on the net growth of phytoplankton communities, with different responses amongst the different phytoplankton groups. According to our results, phytoplankton net growth and community composition may be altered if this relevant source of nutrients is lost due to projected changes in the abundance or distribution of these zooplankton populations.

  2. Zooplankton excretion metabolites stimulate Southern Ocean phytoplankton growth

    KAUST Repository

    Coello-Camba, A.

    2017-04-24

    Warming over Antarctica is leading to changes in the zooplankton communities inhabiting the Southern Ocean. It has been observed that zooplankton not only regulates phytoplankton through grazing, but also through the recycling of nutrients that are essential for phytoplankton growth. In this way, the effects of warming on zooplankton populations will change the amount or proportion at which recycled nutrients are restored. To estimate how the recycled nutrients released by zooplankton populations, dominated by krill (Euphausia superba), amphipods or copepods, affect the phytoplankton uptake and communities, we performed four incubation experiments: two close to the Antarctic Peninsula and two at the Southern Atlantic Ocean. Our results showed a stimulating effect of the addition of metabolites on ammonia removal rates and on the net growth of phytoplankton communities, with different responses amongst the different phytoplankton groups. According to our results, phytoplankton net growth and community composition may be altered if this relevant source of nutrients is lost due to projected changes in the abundance or distribution of these zooplankton populations.

  3. Relating coccolithophore calcification rates to phytoplankton community dynamics: Regional differences and implications for carbon export

    Science.gov (United States)

    Poulton, Alex J.; Adey, Tim R.; Balch, William M.; Holligan, Patrick M.

    2007-03-01

    Recent measurements of surface coccolithophore calcification from the Atlantic Ocean (50°N-50°S) are compared to similar measurements from other oceanic settings. By combining the different data sets of surface measurements, we examine general and regional patterns of calcification relative to organic carbon production (photosynthesis) and other characteristics of the phytoplankton community. Generally, surface calcification and photosynthesis are positively correlated, although the strength of the relationship differs between biogeochemical provinces. Relationships between surface calcification, chlorophyll- a and calcite concentrations are also statistically significant, although again there is considerable regional variability. Such variability appears unrelated to phytoplankton community composition or hydrographic conditions, and may instead reflect variations in coccolithophore physiology. The contribution of inorganic carbon fixation (calcification) to total carbon fixation (calcification plus photosynthesis) is ˜1-10%, and we estimate a similar contribution from coccolithophores to total organic carbon fixation. However, these contributions vary between biogeochemical provinces, and occasionally coccolithophores may account for >20% of total carbon fixation in unproductive central subtropical gyres. Combining surface calcification and photosynthetic rates with standing stocks of calcite, particulate organic carbon, and estimated phytoplankton carbon allows us to examine the fates of these three carbon pools. The relative turnover times vary between different biogeochemical provinces, with no clear relationship to the overall productivity or phytoplankton community structure found in each province. Rather, interaction between coccolithophore physiology (coccolith production and detachment rates), species diversity (cell size), and food web dynamics (grazer ecology) may control the composition and turnover times of calcite particles in the upper ocean.

  4. Taxonomic profiles in metagenomic analyses of free-living microbial communities in the Ofunato Bay

    KAUST Repository

    Reza, Md. Shaheed; Kobiyama, Atsushi; Yamada, Yuichiro; Ikeda, Yuri; Ikeda, Daisuke; Mizusawa, Nanami; Ikeo, Kazuho; Sato, Shigeru; Ogata, Takehiko; Jimbo, Mitsuru; Kudo, Toshiaki; Kaga, Shinnosuke; Watanabe, Shiho; Naiki, Kimiaki; Kaga, Yoshimasa; Mineta, Katsuhiko; Bajic, Vladimir B.; Gojobori, Takashi; Watabe, Shugo

    2018-01-01

    The Ofunato Bay in Iwate Prefecture, Japan is a deep coastal bay located at the center of the Sanriku Rias coast and considered an economically and environmentally important asset. Here, we describe the first whole genome sequencing (WGS) study on the microbial community of the bay, where surface water samples were collected from three stations along its length to cover the entire bay; we preliminarily sequenced a 0.2 μm filter fraction among sequentially size-fractionated samples of 20.0, 5.0, 0.8 and 0.2 μm filters, targeting the free-living fraction only. From the 0.27–0.34 Gb WGS library, 0.9 × 106–1.2 × 106 reads from three sampling stations revealed 29 bacterial phyla (~80% of assigned reads), 3 archaeal phyla (~4%) and 59 eukaryotic phyla (~15%). Microbial diversity obtained from the WGS approach was compared with 16S rRNA gene results by mining WGS metagenomes, and we found similar estimates. The most frequently recovered bacterial sequences were Proteobacteria, predominantly comprised of 18.0–19.6% Planktomarina (Family Rhodobacteraceae) and 13.7–17.5% Candidatus Pelagibacter (Family Pelagibacterales). Other dominant bacterial genera, including Polaribacter (3.5–6.1%), Flavobacterium (1.8–2.6%), Sphingobacterium (1.4–1.6%) and Cellulophaga (1.4–2.0%), were members of Bacteroidetes and likely associated with the degradation and turnover of organic matter. The Marine Group I Archaea Nitrosopumilus was also detected. Remarkably, eukaryotic green alga Bathycoccus, Ostreococcus and Micromonas accounted for 8.8–15.2%, 3.6–4.9% and 2.1–3.1% of total read counts, respectively, highlighting their potential roles in the phytoplankton bloom after winter mixing.

  5. Taxonomic profiles in metagenomic analyses of free-living microbial communities in the Ofunato Bay

    KAUST Repository

    Reza, Md. Shaheed

    2018-04-27

    The Ofunato Bay in Iwate Prefecture, Japan is a deep coastal bay located at the center of the Sanriku Rias coast and considered an economically and environmentally important asset. Here, we describe the first whole genome sequencing (WGS) study on the microbial community of the bay, where surface water samples were collected from three stations along its length to cover the entire bay; we preliminarily sequenced a 0.2 μm filter fraction among sequentially size-fractionated samples of 20.0, 5.0, 0.8 and 0.2 μm filters, targeting the free-living fraction only. From the 0.27–0.34 Gb WGS library, 0.9 × 106–1.2 × 106 reads from three sampling stations revealed 29 bacterial phyla (~80% of assigned reads), 3 archaeal phyla (~4%) and 59 eukaryotic phyla (~15%). Microbial diversity obtained from the WGS approach was compared with 16S rRNA gene results by mining WGS metagenomes, and we found similar estimates. The most frequently recovered bacterial sequences were Proteobacteria, predominantly comprised of 18.0–19.6% Planktomarina (Family Rhodobacteraceae) and 13.7–17.5% Candidatus Pelagibacter (Family Pelagibacterales). Other dominant bacterial genera, including Polaribacter (3.5–6.1%), Flavobacterium (1.8–2.6%), Sphingobacterium (1.4–1.6%) and Cellulophaga (1.4–2.0%), were members of Bacteroidetes and likely associated with the degradation and turnover of organic matter. The Marine Group I Archaea Nitrosopumilus was also detected. Remarkably, eukaryotic green alga Bathycoccus, Ostreococcus and Micromonas accounted for 8.8–15.2%, 3.6–4.9% and 2.1–3.1% of total read counts, respectively, highlighting their potential roles in the phytoplankton bloom after winter mixing.

  6. The Community Structure of Phytoplankton in Seagrass Ecosystem and its Relationship with Environmental Characterstics

    Directory of Open Access Journals (Sweden)

    Gede Iwan Setiabudi

    2016-12-01

    Full Text Available The aimed of this study was to determine  the plankton communities and its relationship with the chemical and physical condition in seagrass ecosystem at Pegametan Bay. The composition and abundance of plankton were observed in the sea water underneath the surface and were identified based on the guideline of Illustration of the Marine Plankton of Japan. The water quality was measured in situ using WQC HI 9829. The water sample was measured using closed reflux spectrometry for COD, TOC analyzer for DOC and APHA 2102 (4500 method for Nt and Pt. There are 27 species of plankton identified, which can be classified into three groups. Diatom group consists of 18 species with a 74.56% abundance. The non-litoral group consists of 6 species with a 23.35% abundance. Moreover, dinoflagellate group consist of 3 species with a 2.09% abundance. An abundance of plankton greater than 104 cell.L-1 was found in diatome group (Nitzschia sp., Thalassiosira sp., Chaetoceros sp., Flagillaria sp., Thalassiothrix sp., and Melosira sp. and non-litoral group (Oscillatoria sp. and Spirogyra sp.. The abundance of those species indicated the algae bloom phenomenon. Dinophysis sp. was also identified, which was harmful algal blooms.How to CiteSetiabudi, G. I., Bengen, D. G., Effendi, H., & Radjasa, O. K. (2016. The Community Structure of Phytoplankton in Seagrass Ecosystem and its Relationship with Environmental Characterstics. Biosaintifika: Journal of Biology & Biology Education, 8(3, 257-269.

  7. Effects of uranium mine effluents (Caldas, Southeastern Brazil) on the aquatic biota: preliminary study on the phytoplankton community

    International Nuclear Information System (INIS)

    Roque, Claudio Vitor; Nascimento, Marcos Roberto L.; Ronqui, Leilane B.; Campos, Michelle B.; Ferrari, Carla R.; Rodgher, Suzelei; Azevedo, Heliana de; Oliveira, Maria Jose Dellamano de

    2009-01-01

    The present study assessed the composition of the phytoplankton community and the physicochemical variables in an area located within the ore treatment unit - Brazilian Nuclear Industries, in Caldas and also in 'Antas' dam, which is under the influence of the treatment unit. Water samples were taken from three sites; one located within the treatment unit (site CM), which receives non-treated effluents generated during the mining process; and the other sites are located in 'Antas' dam (sites Cab and 41). We determined the values of dissolved oxygen, pH, chlorophyll a, hardness, thorium, uranium, sulfate and total organic nitrogen in water samples, and identified the phytoplankton community in October 2008 and January 2009. Water samples from the site CM exhibited lower pH medium values (3.9) than from the site 41 (6.9). The highest medium value of chlorophyll a was detected in water samples at site CM (5 μg L -1 ), whereas the lowest value was recorded at site 41 (0.47 μg L -1 ). Higher medium values of sulfate were detected in water samples from site CM (1743 mg L -1 ) compared to site Cab (110.11 mg L -1 ). We identified six classes in the phytoplankton community at site CM and eight classes at sites Cab and 41. Total average density of phytoplankton were 444 ind mL -1 , 316 ind mL -1 and 303 ind mL -1 at points Cab, 41 and CM, respectively. The results obtained show that the environmental conditions at site CM are not favorable to the maintenance of a high density in the phytoplankton community. (author)

  8. Effects of ocean acidification on primary production in a coastal North Sea phytoplankton community.

    Directory of Open Access Journals (Sweden)

    Tim Eberlein

    Full Text Available We studied the effect of ocean acidification (OA on a coastal North Sea plankton community in a long-term mesocosm CO2-enrichment experiment (BIOACID II long-term mesocosm study. From March to July 2013, 10 mesocosms of 19 m length with a volume of 47.5 to 55.9 m3 were deployed in the Gullmar Fjord, Sweden. CO2 concentrations were enriched in five mesocosms to reach average CO2 partial pressures (pCO2 of 760 μatm. The remaining five mesocosms were used as control at ambient pCO2 of 380 μatm. Our paper is part of a PLOS collection on this long-term mesocosm experiment. Here, we here tested the effect of OA on total primary production (PPT by performing 14C-based bottle incubations for 24 h. Furthermore, photoacclimation was assessed by conducting 14C-based photosynthesis-irradiance response (P/I curves. Changes in chlorophyll a concentrations over time were reflected in the development of PPT, and showed higher phytoplankton biomass build-up under OA. We observed two subsequent phytoplankton blooms in all mesocosms, with peaks in PPT around day 33 and day 56. OA had no significant effect on PPT, except for a marginal increase during the second phytoplankton bloom when inorganic nutrients were already depleted. Maximum light use efficiencies and light saturation indices calculated from the P/I curves changed simultaneously in all mesocosms, and suggest that OA did not alter phytoplankton photoacclimation. Despite large variability in time-integrated productivity estimates among replicates, our overall results indicate that coastal phytoplankton communities can be affected by OA at certain times of the seasonal succession with potential consequences for ecosystem functioning.

  9. Phytoplankton variability and community structure in relation to hydrographic features in the NE Aegean frontal area (NE Mediterranean Sea)

    Science.gov (United States)

    Lagaria, A.; Mandalakis, M.; Mara, P.; Frangoulis, C.; Karatsolis, B.-Th.; Pitta, P.; Triantaphyllou, M.; Tsiola, A.; Psarra, S.

    2017-10-01

    The structure of phytoplankton community in the salinity-stratified Northeastern Aegean frontal area adjacent to the Dardanelles Straits was investigated on a seasonal basis (autumn, spring and summer) and in relation to circulating water masses: the modified Black Sea Water (BSW) and the Levantine Water (LW). By employing High Performance Liquid Chromatography (HPLC) for the analysis of phytoplankton pigments in conjunction with conventional cell counting methodologies (i.e. inverted light microscopy, flow cytometry) and primary production measurements, a comprehensive qualitative and quantitative characterization of phytoplankton community composition and its activity was conducted. Chlorophyll-a normalized production and estimated growth rates presented the highest values within the 'fresh' BSW mass during summer, though generally growth rates were low (production. Large cell organisms, and in particular diatoms, were closely associated with the surface BSW masses outflowing from the Straits. Our results showed that all phytoplankton size components were significant over time and space suggesting a rather multivorous food web functioning of the system.

  10. Ecotoxicology of bromoacetic acid on estuarine phytoplankton

    International Nuclear Information System (INIS)

    Gordon, Ana R.; Richardson, Tammi L.; Pinckney, James L.

    2015-01-01

    Bromoacetic acid is formed when effluent containing chlorine residuals react with humics in natural waters containing bromide. The objective of this research was to quantify the effects of bromoacetic acid on estuarine phytoplankton as a proxy for ecosystem productivity. Bioassays were used to measure the EC 50 for growth in cultured species and natural marine communities. Growth inhibition was estimated by changes in chlorophyll a concentrations measured by fluorometry and HPLC. The EC 50 s for cultured Thalassiosira pseudonana were 194 mg L −1 , 240 mg L −1 for Dunaliella tertiolecta and 209 mg L −1 for Rhodomonas salina. Natural phytoplankton communities were more sensitive to contamination with an EC 50 of 80 mg L −1 . Discriminant analysis suggested that bromoacetic acid additions cause an alteration of phytoplankton community structure with implications for higher trophic levels. A two-fold EC 50 decrease in mixed natural phytoplankton populations affirms the importance of field confirmation for establishing water quality criteria. - Highlights: • Bromoacetic acid exposure resulted in lethal impacts to estuarine phytoplankton. • Cultured phytoplankton were less sensitive to bromoacetic acid than natural communities. • Lab results should be confirmed with field experiments whenever possible. - The toxicology of haloacetic acids has been studied in freshwater ecosystems, and urbanization of the coastal zone is making effects in marine ecosystems equally relevant.

  11. Impacts of Environmental Variables on a Phytoplankton Community: A Case Study of the Tributaries of a Subtropical River, Southern China

    Directory of Open Access Journals (Sweden)

    Zhaojiang Hou

    2018-02-01

    Full Text Available The phytoplankton community in the river is closely related to the location of the river and the impact of human activities. To summarize the patterns of phytoplankton community changes in rivers and to analyze the reasons for these patterns and differences, we sampled the three tributaries of the Dongjiang River at different latitudes in the dry and rainy season for three years. The results showed that the three rivers were mesotrophic, lightly eutrophic and moderately eutrophic respectively. From the south to the north, the water temperature and nutrition showed an increasing trend. In two different seasons, the differences in the water temperature and dissolved oxygen were clear. In the dry season, results of the multidimensional scaling (MDS analysis indicated that the phytoplankton community structures in the Li River and Qiuxiang River were similar. Regardless of the number of species, the cell abundance or the dominance index, Bacillariophyta were found to be dominant. Chlorophyta was dominant in the Danshui River. In the rainy season, Bacillariophyta, Bacillariophyta-Chlorophyta and Chlorophyta-Cyanophyta became the dominant types in the Li River, Qiuxiang River and Danshui River, respectively. These different patterns in phytoplankton community variation were affected by both the water quality and temperature.

  12. Phytoplankton pigment patterns and community composition in the northern South China Sea during winter

    Science.gov (United States)

    Zhai, Hongchang; Ning, Xiuren; Tang, Xuexi; Hao, Qiang; Le, Fengfeng; Qiao, Jing

    2011-03-01

    Phytoplankton pigment patterns and community composition were investigated in the northern South China Sea using high-performance liquid chromatography and the CHEMTAX software from February 11 to 23, 2009. We recognized four different vertical distribution patterns of pigments: chlorophyll a (Chi a)-like type, divinyl chlorophyll a (DV Chi a) type, even distribution type, and surface type. The average value of ratios of accessory photo-protective pigments (APP) to accessory photo-synthetic pigments was 0.89±0.63 in the upper 50 m and 0.16±0.06 below 50 m depth. With increasing depth, APP decreased and photo-synthetically active radiation was attenuated. There was an obvious succession in the phytoplankton community from inshore to the open sea. Diatoms were dominant in the inshore region, while pelagophytes, Prochlorococcus, cyanobacteria and prymnesiophytes were dominant in the open sea. The vertical distribution of phytoplankton also differed greatly from inshore to the open sea. In the coastal and shelf region, diatoms were important components in the whole water column. Cyanobacteria also had a high abundance at the Subsurface Chlorophyll a Maxima (SCM) in the shelf region. In the slope and open sea, Prochlorococcus and cyanobacteria were important groups above the SCM, while pelagophytes dominated below the SCM.

  13. Dynamics of phytoplankton communities during late summer around the tip of the Antarctic Peninsula

    Science.gov (United States)

    Mendes, Carlos Rafael Borges; de Souza, Márcio Silva; Garcia, Virginia Maria Tavano; Leal, Miguel Costa; Brotas, Vanda; Garcia, Carlos Alberto Eiras

    The composition and distribution of phytoplankton assemblages around the tip of the Antarctic Peninsula were studied during two summer cruises (February/March 2008 and 2009). Water samples were collected for HPLC/CHEMTAX pigment and microscopic analysis. A great spatial variability in chlorophyll a (Chl a) was observed in the study area: highest levels in the vicinity of the James Ross Island (exceeding 7 mg m-3 in 2009), intermediate values (0.5 to 2 mg m-3) in the Bransfield Strait, and low concentrations in the Weddell Sea and Drake Passage (below 0.5 mg m-3). Phytoplankton assemblages were generally dominated by diatoms, especially at coastal stations with high Chl a concentration, where diatom contribution was above 90% of total Chl a. Nanoflagellates, such as cryptophytes and/or Phaeocystis antarctica, replaced diatoms in open-ocean areas (e.g., Weddell Sea). Many species of peridinin-lacking autotrophic dinoflagellates (e.g., Gymnodinium spp.) were also important to total Chl a biomass at well-stratified stations of Bransfield Strait. Generally, water column structure was the most important environmental factor determining phytoplankton communities' biomass and distribution. The HPLC pigment data also allowed the assessment of different physiological responses of phytoplankton to ambient light variation. The present study provides new insights about the dynamics of phytoplankton in an undersampled region of the Southern Ocean highly susceptible to global climate change.

  14. Composition of phytoplankton in the Bransfield Strait and Elephant Island during austral summer of 1999

    Directory of Open Access Journals (Sweden)

    Sonia Sánchez

    2014-06-01

    Full Text Available The authors inform about the composition and distribution of phytoplanktonic community between the first 75 m of depth in Bransfield Strait y around the Elephant island, during the ANTAR X expedition in the 1999 Austral Summer (22nd–29th January 1999. The higher cellular concentration (500 cel/mL was given by the autotrophic nanoplankton, with a high density mainly on the bay stations and down the first 25 m of depth. Among the most representative species we have Leucocryptos marina, Phaeocystis antarctica, the Monadas and the pennate diatoms.

  15. A multiomics approach to study the microbiome response to phytoplankton blooms.

    Science.gov (United States)

    Song, Liyan

    2017-06-01

    Phytoplankton blooms are predictable features of marine and freshwater habitats. Despite a good knowledge base of the environmental factors controlling blooms, complex interactions between the bacterial and archaeal communities and phytoplankton bloom taxa are only now emerging. Here, the current research on bacterial community's structural and functional response to phytoplankton blooms is reviewed and discussed and further research is proposed. More attention should be paid on structure and function of autotrophic bacteria and archaea during phytoplankton blooms. A multiomics integration approach is needed to investigate bacterial and archaeal communities' diversity, metabolic diversity, and biogeochemical functions of microbial interactions during phytoplankton blooms.

  16. 75 FR 42608 - Safety Zone; Lyme Community Days, Chaumont Bay, NY

    Science.gov (United States)

    2010-07-22

    ...-AA00 Safety Zone; Lyme Community Days, Chaumont Bay, NY AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone for Lyme Community Days Fireworks on Chaumont Bay, Lyme, New York. All vessels are prohibited from transiting the zone except as...

  17. Effect of Chemical and Physical Properties of River Water in Shatt Al-Hilla on Phytoplankton Communities

    Directory of Open Access Journals (Sweden)

    Fikrat M. Hassan

    2008-01-01

    Full Text Available This paper aims to study the chemical and physical properties in the ecological system of Shatt Al-Hilla in Babylon Governorate in Iraq and its effect on phytoplankton population. In this context, several limnological parameters were evaluated during the period from December 2003 through November 2004 from four sampling stations sited along Shatt Al-Hilla. The physical parameters included: temperature, turbidity and electrical conductivity. The chemical parameters included: pH, alkalinity dissolved oxygen, total hardness and the concentrations of nitrite, nitrate, phosphate and sulphate. A total of 154 species were recorded. Ninety-seven species of the total belong to Bacillariophyceae, 37 species belong to Chlorophyceae, 13 species to Cyanophyceae, 5 species to Chrysophyceae, and 2 species to Euglenophyceae. Bimodal variation of phytoplankton was observed. Five genus of phytoplankton were the highest number of species ( Nitzschia, Navicula, Gomphonema, Cymbella and Scendesmus. Some species was occurred continuously during study period such as, Cyclotella ocellata, Cyclotella meneghiniana, Aulacoseria distans, and Gomphonema abbreviatum. The phytoplankton communities at all sampling sites showed a clear seasonal variation in phytoplankton cell number. However, no significant correlation between total cell number of phytoplankton and nutrient concentration was observed. The study was revealed the city sewage discharge, agriculture and urban run-off were affecting the water quality of Shatt Al-Hilla.

  18. Silicate:nitrate ratios of upwelled waters control the phytoplankton community sustained by mesoscale eddies in sub-tropical North Atlantic and Pacific

    Directory of Open Access Journals (Sweden)

    T. S. Bibby

    2011-03-01

    Full Text Available Mesoscale eddies in sub-tropical gyres physically perturb the water column and can introduce macronutrients to the euphotic zone, stimulating a biological response in which phytoplankton communities can become dominated by large phytoplankton. Mesoscale eddies may therefore be important in driving export in oligotrophic regions of the modern ocean. However, the character and magnitude of the biological response sustained by eddies is variable. Here we present data from mesoscale eddies in the Sargasso Sea (Atlantic and the waters off Hawai'i (Pacific, alongside mesoscale events that affected the Bermuda Atlantic Time-Series Study (BATS over the past decade. From this analysis, we suggest that the phytoplankton community structure sustained by mesoscale eddies is predetermined by the relative abundance of silicate over nitrate (Si* in the upwelled waters. We present data that demonstrate that mode-water eddies (MWE in the Sargasso Sea upwell locally formed waters with relatively high Si* to the euphotic zone, and that cyclonic eddies in the Sargasso Sea introduce waters with relatively low Si*, a signature that originated in the iron-limited Southern Ocean. We propose that this phenomenon can explain the observed dominance of the phytoplankton community by large-diatom species in MWE and by small prokaryotic phytoplankton in cyclonic features. In contrast to the Atlantic, North Pacific Intermediate Water (NPIW with high Si* may influence the cyclonic eddies in waters off Hawai'i, which also appear capable of sustaining diatom populations. These observations suggest that the structure of phytoplankton communities sustained by eddies may be related to the chemical composition of the upwelled waters in addition to the physical nature of the eddy.

  19. Modeling the Effects of Trait Diversity on Short-term Adaptive Capacity and Long-term Productivity of Phytoplankton Communities

    Science.gov (United States)

    Smith, S. L.; Vallina, S. M.; Merico, A.

    2016-02-01

    We examine Biodiversity and Ecosystem Function (BEF) in a model phytoplankton community, using two recently developed mechanisms for sustaining diversity. The Trait Diffusion (TD) formulation represents the maintenance of diversity via endogenous mechanisms, such as inter-generational trait plasticity and rapid evolution. The 'Kill-the-Winner' (KTW) formulation for grazing sustains prey biodiversity via the exogenous mechanism of active prey switching. We implement both TD and KTW in a continuous trait-distribution model using simplified size-scalings to define a gleaner-opportunist trade-off for a phytoplankton community. By simulating semi-continuous culture experiments with periodic external dilutions, we test the dynamic response of the phytoplankton community to different scenarios of pulsed nutrient supply. We quantify the short-term Adaptive Capacity (AC) of the community by the specific growth rate averaged over the first 3 days of perturbations, and the Long-term Productivity (LP) by its average over the entire 120 day period of perturbations. When either the frequency or intensity of pulses is low, both AC and LP tend to decrease with diversity (and vice versa). Trait diversity has more impact on AC, particularly for pulses of high frequency or intensity, for which it tends to increase gradually at first, then steeply, and then to saturate with increasing diversity. For pulses of moderate intensity and frequency, increasing trait diversity from low to moderate levels leads to a trade-off between enhancing AC while slightly decreasing LP. Ultimately, we find that sustaining diversity increases the speed at which the phytoplankton community changes its composition in terms of size and hence nutrient acquisition traits, which may have implications for the transfer of productivity through the foodweb.

  20. Potential climate change impacts on a tropical estuary: Hilo Bay, Hawaii

    Science.gov (United States)

    Adolf, J.; LaPinta, J.; Marusek, J.; Pascoe, K.; Pugh, A.

    2016-02-01

    Hilo Bay is a tropical estuarine ecosystem on the northeast (windward) coast of Hawai`i Island that is potentially vulnerable to climate change effects mediated through elevated water temperatures and/or changing rainfall patterns that impact river and groundwater fluxes. Here, we document trends in water temperature, river flow and phytoplankton dynamics in Hilo Bay. Hilo Bay is fed by two major rivers, Wailuku and Honoli`i, both of which have shown long term declines in output over their 85 and 38 year monitoring periods (USGS), respectively. Time series of groundwater inputs to Hilo Bay do not exist, but the average estimated rate rivals that of average river inputs. Daily average Hilo Bay water temperatures have increased at a rate of 0.35 degrees C per year (p Hilo Bay water quality buoy began in 2010, with the warmest temperatures on record recorded Sept 2015. Salinity did not show a trend over this same time period. Phytoplankton showed a pronounced seasonal cycle in Hilo Bay with a long term average of 3.7 mg m-3 and dominance by diatoms that exploit the co-availability of silica and nitrate in this environment. On shorter time scales of days to Hilo Bay salinity, temperature and phytoplankton biomass. Coincidental atmospheric warming, SST warming in the adjacent North Pacific ocean, and declining river flows will likely work together to result in elevated SST in Hilo Bay if observed trends continue. The El Nino event that started this year is expected to exacerbate this warming through reduce river flow and warmer regional SST.

  1. Water quality status and phytoplankton composition in Soetendalvlei ...

    African Journals Online (AJOL)

    Three wetlands on the Agulhas Plain, for which no limnological information was available, were investigated in order to provide baseline data on their present water quality and phytoplankton community structure. Physicochemical variables were assessed and phytoplankton biomass and community analyses were ...

  2. Environmental controls on phytoplankton community composition in the Thames plume, U.K.

    Science.gov (United States)

    Weston, Keith; Greenwood, Naomi; Fernand, Liam; Pearce, David J.; Sivyer, David B.

    2008-11-01

    The aim of this study was to investigate controls on the phytoplankton community composition and biogeochemistry of the estuarine plume zone of the River Thames, U.K. using an instrumented moored buoy for in situ measurements and preserved sample collection, and laboratory-based measurements from samples collected at the same site. Instrumentation on the moored buoy enabled high frequency measurements of a suite of environmental variables including in situ chlorophyll, water-column integrated irradiance, macronutrients throughout an annual cycle for 2001 e.g. nitrate and silicate, and phytoplankton biomass and species composition. The Thames plume region acts as a conduit for fluvial nutrients into the wider southern North Sea with typical winter concentrations of 45 μM nitrate, 17 μM silicate and 2 μM phosphate measured. The spring bloom resulted from water-column integrated irradiance increasing above 60 W h m - 2 d - 1 and was initially dominated by a diatom bloom mainly composed of Nitzschia sp. and Odontella sinesis. The spring bloom then switched after ˜ 30 days to become dominated by the flagellate Phaeocystis reaching a maximum chlorophyll concentration of 37.8 μg L - 1 . During the spring bloom there were high numbers of the heterotrophic dinoflagellates Gyrodinium spirale and Katodinium glaucum that potentially grazed the phytoplankton bloom. This diatom-flagellate switch was predicted to be due to a combination of further increasing water-column integrated irradiance > 100 W h m - 2 d - 1 and/or silicate reaching potentially limiting concentrations (nutrient and phytoplankton processing and transport to the southern North Sea. The use of a combination of moorings and ship-based sampling was essential in understanding the factors influencing nutrient transport, phytoplankton biomass and species composition in this shelf sea plume region.

  3. Phytoplankton size structure in the southern Bay of Bengal modified by the Summer Monsoon Current and associated eddies: Implications on the vertical biogenic flux..

    Digital Repository Service at National Institute of Oceanography (India)

    Jyothibabu, R; Vinayachandran, P. N.; Madhu, N.V.; Robin, R; Karman, C.; Jagadeesan, L.; Anjusha, A.

    . Mar. Syst., vol.143; 2015; 98–119 Phytoplankton Size Structure in the Southern Bay of Bengal Modified by the Summer Monsoon Current and Associated Eddies: Implications on the Vertical Biogenic Flux R. Jyothibabu1*, P. N. Vinayachandran2, N. V.... Madhu1, R.S. Robin3, C. Karnan1, L. Jagadeesan1, A. Anjusha1 1CSIR – National Institute of Oceanography, Regional Centre, Kochi, India 2Centre for Atmospheric and Ocean Sciences, Indian Institute of Science, Bangalore, India 3Integrated Coastal...

  4. Spatial-temporal changes in phytoplankton biomass and primary ...

    African Journals Online (AJOL)

    Spatial-temporal variations in phytoplankton primary production (PP) and biomass (B) were studied for a period of about one year, from July 1999 to July 2000. In addition, changes in corresponding environmental variables were examined. Sampling took place at two stations in Chwaka Bay, one located in mangrove areas, ...

  5. Interannual Variation in Phytoplankton Concentration and Community in the Pacific Ocean

    Science.gov (United States)

    Rousseaux, C. S.; Gregg, W. W.

    2011-01-01

    Climate events such as El Nino have been shown to have an effect on the biology of our ocean. Because of the lack of data, we still have very little knowledge about the spatial and temporal effect these climate events may have on biological marine systems. In this study, we used the NASA Ocean Biogeochemical Model (NOBM) to assess the interannual variability in phytoplankton community in the Pacific Ocean between 1998 and 2005. In the North Central and Equatorial Pacific Ocean, changes in the Multivariate El Nino Index were associated with changes in phytoplankton composition. The model identified an increase in diatoms of approx.33 % in the equatorial Pacific in 1999 during a La Nina event. This increase in diatoms coincided with a decrease of approx.11 % in cyanobacteria concentration. The inverse relationship between cyanobacteria and diatoms concentration was significant (pphytoplankton groups known to lead to contrasting food chain at a spatial and temporal resolution unachievable when relying solely on in-situ observations.

  6. Distribution of Cd, Pb and Cu between dissolved fraction, inorganic particulate and phytoplankton in seawater of Terra Nova Bay (Ross Sea, Antarctica) during austral summer 2011-12.

    Science.gov (United States)

    Illuminati, S; Annibaldi, A; Romagnoli, T; Libani, G; Antonucci, M; Scarponi, G; Totti, C; Truzzi, C

    2017-10-01

    During the austral summer 2011-2012, the metal quotas of Cd, Pb and Cu in the phytoplankton of Terra Nova Bay (TNB, Antarctica) were measured for the first time. Evolution of all the three metal distributions between dissolved and particulate fractions during the season was also evaluated. Metal concentrations were mainly affected by the dynamic of the pack ice melting and phytoplankton activity. In mid-December when TNB area was covered by a thick pack ice layer and phytoplankton activity was very low, all the three metals were present mainly in their dissolved species. When the pack ice started to melt and the water column characteristics became ideal (i.e. moderate stratification, ice free area), the phytoplankton bloom occurred. Cd showed a nutrient-type behaviour with dissolved and particulate fractions mainly influenced by phytoplankton activity. Cd quota showed a mean value of 0.12 ± 0.07 nmol L -1 (30-100% of the total particulate). Also Cu showed a nutrient-type behaviour, with its quota in phytoplankton varying between 0.08 and 2.1 nmol L -1 (20-100% of the total particulate). Pb features the typical distribution of a scavenged element with very low algal content (0.03 ± 0.02 nmol L -1 , representing 20-50% of the total particulate). The vertical distribution of this element was influenced by several factors (e.g. pack ice melting, atmospheric inputs), the phytoplankton activity affecting Pb behaviour only partially. Metal:C ratios provide valuable information on the biological requirements for Cd, Pb and Cu, leading us to better understand their biogeochemical cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Enhanced crude oil biodegradative potential of natural phytoplankton-associated hydrocarbonoclastic bacteria.

    Science.gov (United States)

    Thompson, Haydn; Angelova, Angelina; Bowler, Bernard; Jones, Martin; Gutierrez, Tony

    2017-07-01

    Phytoplankton have been shown to harbour a diversity of hydrocarbonoclastic bacteria (HCB), yet it is not understood how these phytoplankton-associated HCB would respond in the event of an oil spill at sea. Here, we assess the diversity and dynamics of the bacterial community associated with a natural population of marine phytoplankton under oil spill-simulated conditions, and compare it to that of the free-living (non phytoplankton-associated) bacterial community. While the crude oil severely impacted the phytoplankton population and was likely conducive to marine oil snow formation, analysis of the MiSeq-derived 16S rRNA data revealed dramatic and differential shifts in the oil-amended communities that included blooms of recognized HCB (e.g., Thalassospira, Cycloclasticus), including putative novel phyla, as well as other groups with previously unqualified oil-degrading potential (Olleya, Winogradskyella, and members of the inconspicuous BD7-3 phylum). Notably, the oil biodegradation potential of the phytoplankton-associated community exceeded that of the free-living community, and it showed a preference to degrade substituted and non-substituted polycyclic aromatic hydrocarbons. Our study provides evidence of compartmentalization of hydrocarbon-degrading capacity in the marine water column, wherein HCB associated with phytoplankton are better tuned to degrading crude oil hydrocarbons than that by the community of planktonic free-living bacteria. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. A consistent structure of phytoplankton communities across the warm-cold regions of the water mass on a meridional transect in the East/Japan Sea

    Science.gov (United States)

    Kwak, Jung Hyun; Han, Eunah; Lee, Sang Heon; Park, Hyun Je; Kim, Kyung-Ryul; Kang, Chang-Keun

    2017-09-01

    Three cruises were undertaken along a meridional transect in the East/Japan Sea (EJS) in spring (May 2007), summer (July 2009), and fall (October 2012) to determine the geographic variations in phytoplankton biomass and community composition. This study revealed a gradient of surface temperature and a fluctuation of hydrographic conditions along the transect. Although a subpolar front (SPF) formed between the warm- and cold-water masses (37-40°N), no significant differences in phytoplankton biomass and community composition were detected between the southern and northern parts of the EJS. These results disprove our initial hypothesis that different water masses may contain differently structured phytoplankton communities. In the present study, isothermal layers (≤ 12 °C) fluctuated over a depth of 50 m in both warm- and cold-water masses, depending on the SPF. In contrast, the nitracline (i.e. 2.5 μM nitrate isopleth) depth was recorded within a limited range of 20-40 m in spring, 30-50 m in summer, and 40-60 m in fall. The chlorophyll a concentrations at the subsurface chlorophyll maxima (SCM) were significantly higher in spring and summer (356 ± 233 and 270 ± 182 ng L-1, respectively) than in fall (117 ± 89 ng L-1). The relative contributions of individual phytoplankton groups to the depth-integrated chlorophyll a concentration conformed to the composition of the phytoplankton community in the SCM layer, showing a dominance of diatoms (58 ± 19% in spring, 48 ± 11% in summer, and 30 ± 20% in fall). Canonical correspondence analysis revealed that the geographic structures of phytoplankton communities were strongly associated with the vertical structures of water temperature and nutrient concentration in the water column rather than with horizontal gradients of hydrographic conditions. Finally, our findings suggest that water column stability and light-nutrient availability in the euphotic zone play a key role in determining geographical consistency of

  9. Dynamics of phytoplankton community structure in the South China Sea in response to the East Asian aerosol input

    Science.gov (United States)

    Guo, C.; Yu, J.; Ho, T.-Y.; Wang, L.; Song, S.; Kong, L.; Liu, H.

    2012-04-01

    Recent studies have demonstrated atmospheric deposition as an important source of bioreactive compounds to the ocean. The South China Sea (SCS), where aerosol loading is among the highest in the world, however, is poorly studied, particularly on the in situ response of phytoplankton community structures to atmospheric deposition. By conducting a series of microcosm bioassays at different hydrographical locations and simulating different aerosol event scales, we observed both positive and negative responses to the input of East Asian (EA) aerosol with high nitrogen (N) and trace metal contents, in terms of biomass, composition and physiological characteristics of phytoplankton communities. High levels of aerosol loading relieved phytoplankton nitrogen and trace metal limitations in SCS, and thus increased total phytoplankton biomass, enhanced their physiological indicators (e.g. photosynthetic efficiency) and shifted phytoplankton assemblages from being dominated by picoplankton to microphytoplanton, especially diatoms. However, under low levels of aerosol loading, the composition shift and biomass accumulation were not apparent, suggesting that the stimulation effects might be counterbalanced by enhanced grazing mortality indicated by increased abundance of protist grazers. Trace metal toxicity of the aerosols might also be the reason for the reduction of picocyanobacteria when amended with high EA aerosols. The magnitude and duration of the deposition event, as well as the hydrographical and trophic conditions of receiving waters are also important factors when predicting the influence of an aerosol deposition event. Our results demonstrated different responses of phytoplankton and microbial food web dynamics to different scales of atmospheric input events in SCS and highlighted the need for achieving an accurate comprehension of atmospheric nutrient on the biogeochemical cycles of the oceans.

  10. The predictability of a lake phytoplankton community, over time-scales of hours to years

    DEFF Research Database (Denmark)

    Thomas, Mridul K.; Fontana, Simone; Reyes, Marta

    2018-01-01

    monitoring data (biological, physical and chemical) to assess the predictability of phytoplankton cell density in one lake across an unprecedented range of time-scales. Communities were highly predictable over hours to months: model R2 decreased from 0.89 at 4 hours to 0.74 at 1 month, and in a long......Forecasting changes to ecological communities is one of the central challenges in ecology. However, nonlinear dependencies, biotic interactions and data limitations have limited our ability to assess how predictable communities are. Here, we used a machine learning approach and environmental...

  11. Ecotoxicology of bromoacetic acid on estuarine phytoplankton.

    Science.gov (United States)

    Gordon, Ana R; Richardson, Tammi L; Pinckney, James L

    2015-11-01

    Bromoacetic acid is formed when effluent containing chlorine residuals react with humics in natural waters containing bromide. The objective of this research was to quantify the effects of bromoacetic acid on estuarine phytoplankton as a proxy for ecosystem productivity. Bioassays were used to measure the EC50 for growth in cultured species and natural marine communities. Growth inhibition was estimated by changes in chlorophyll a concentrations measured by fluorometry and HPLC. The EC50s for cultured Thalassiosira pseudonana were 194 mg L(-1), 240 mg L(-1) for Dunaliella tertiolecta and 209 mg L(-1) for Rhodomonas salina. Natural phytoplankton communities were more sensitive to contamination with an EC50 of 80 mg L(-1). Discriminant analysis suggested that bromoacetic acid additions cause an alteration of phytoplankton community structure with implications for higher trophic levels. A two-fold EC50 decrease in mixed natural phytoplankton populations affirms the importance of field confirmation for establishing water quality criteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Climate Variability and Phytoplankton in the Pacific Ocean

    Science.gov (United States)

    Rousseaux, Cecile

    2012-01-01

    The effect of climate variability on phytoplankton communities was assessed for the tropical and sub-tropical Pacific Ocean between 1998 and 2005 using an established biogeochemical assimilation model. The phytoplankton communities exhibited wide range of responses to climate variability, from radical shifts in the Equatorial Pacific, to changes of only a couple of phytoplankton groups in the North Central Pacific, to no significant changes in the South Pacific. In the Equatorial Pacific, climate variability dominated the variability of phytoplankton. Here, nitrate, chlorophyll and all but one of the 4 phytoplankton types (diatoms, cyanobacteria and coccolithophores) were strongly correlated (pphytoplankton groups (chlorophytes and coccolithophores). Ocean biology in the South Pacific was not significantly correlated with MEI. During La Nina events, diatoms increased and expanded westward along the cold tongue (correlation with MEI, r=-0.81), while cyanobacteria concentrations decreased significantly (r=0.78). El Nino produced the reverse pattern, with cyanobacteria populations increasing while diatoms plummeted. The diverse response of phytoplankton in the different major basins of the Pacific suggests the different roles climate variability can play in ocean biology.

  13. Shallow water processes govern system-wide phytoplankton bloom dynamics: A modeling study

    Science.gov (United States)

    Lucas, L.V.; Koseff, Jeffrey R.; Monismith, Stephen G.; Thompson, J.K.

    2009-01-01

    A pseudo-two-dimensional numerical model of estuarine phytoplankton growth and consumption, vertical turbulent mixing, and idealized cross-estuary transport was developed and applied to South San Francisco Bay. This estuary has two bathymetrically distinct habitat types (deep channel, shallow shoal) and associated differences in local net rates of phytoplankton growth and consumption, as well as differences in the water column's tendency to stratify. Because many physical and biological time scales relevant to algal population dynamics decrease with decreasing depth, process rates can be especially fast in the shallow water. We used the model to explore the potential significance of hydrodynamic connectivity between a channel and shoal and whether lateral transport can allow physical or biological processes (e.g. stratification, benthic grazing, light attenuation) in one sub-region to control phytoplankton biomass and bloom development in the adjacent sub-region. Model results for South San Francisco Bay suggest that lateral transport from a productive shoal can result in phytoplankton biomass accumulation in an adjacent deep, unproductive channel. The model further suggests that turbidity and benthic grazing in the shoal can control the occurrence of a bloom system-wide; whereas, turbidity, benthic grazing, and vertical density stratification in the channel are likely to only control local bloom occurrence or modify system-wide bloom magnitude. Measurements from a related field program are generally consistent with model-derived conclusions. ?? 2008 Elsevier B.V.

  14. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom.

    Science.gov (United States)

    Needham, David M; Fuhrman, Jed A

    2016-02-29

    Marine phytoplankton perform approximately half of global carbon fixation, with their blooms contributing disproportionately to carbon sequestration(1), and most phytoplankton production is ultimately consumed by heterotrophic prokaryotes(2). Therefore, phytoplankton and heterotrophic community dynamics are important in modelling carbon cycling and the impacts of global change(3). In a typical bloom, diatoms dominate initially, transitioning over several weeks to smaller and motile phytoplankton(4). Here, we show unexpected, rapid community variation from daily rRNA analysis of phytoplankton and prokaryotic community members following a bloom off southern California. Analysis of phytoplankton chloroplast 16S rRNA demonstrated ten different dominant phytoplankton over 18 days alone, including four taxa with animal toxin-producing strains. The dominant diatoms, flagellates and picophytoplankton varied dramatically in carbon export potential. Dominant prokaryotes also varied rapidly. Euryarchaea briefly became the most abundant organism, peaking over a few days to account for about 40% of prokaryotes. Phytoplankton and prokaryotic communities correlated better with each other than with environmental parameters. Extending beyond the traditional view of blooms being controlled primarily by physics and inorganic nutrients, these dynamics imply highly heterogeneous, continually changing conditions over time and/or space and suggest that interactions among microorganisms are critical in controlling plankton diversity, dynamics and fates.

  15. Seasonal effects of the low-grade heat on a phytoplankton community

    International Nuclear Information System (INIS)

    McMahon, J.W.; Docherty, A.E.

    1980-06-01

    Field studies, carried out over the period 1976 March to December, examined the effects of heat-enriched cooling waters on a natural phytoplankton community. Algal concentrations, composition, species succession and carbon fixation rates were determined twice-weekly in heated and unheated (control) polyethylene enclosures located in a northern oligotrophic lake. Results were compared with data collected from the open lake. Of 31 species quantitatively studied, eleven dominant species were examined in detail. A marked response to heat enrichment by the phytoplankton occurred in the spring and was attributed to a single species of Bacillariophyceae - Synedra ulna. Species composition and seasonal succession patterns were similar in the experimental column, the control column and the lake. The relationship between production biomass quotients (P/B) and water temperature in the lake and experimental enclosure is discussed. It is suggested that thermal enrichment might be used beneficially in cold waters for enhancing biomass production of unicellular aquatic organisms. This increased availability of food, in conjuction with increased water temperatures, might then accelerate productivity of filter-feeding zooplankton and other herbivores. (auth)

  16. [Ecological characteristics of phytoplankton in Suining tributary under bio-remediation].

    Science.gov (United States)

    Liu, Dongyan; Zhao, Jianfu; Zhang, Yalei; Ma, Limin

    2005-04-01

    Based on the analyses of phytoplankton community in the treated and untreated reaches of Suining tributary of Suzhou River, this paper studied the effects of bio-remediation on phytoplankton. As the result of the remediation, the density and Chl-a content of phytoplankton in treated reach were greatly declined, while the species number and Shannon-Wiener diversity index ascended obviously. The percentage of Chlorophyta and Baeillariophyta ascended, and some species indicating medium-and oligo-pollution were found. All of these illustrated that bio-remediation engineering might significantly benefit to the improvement of phytoplankton community structure and water quality.

  17. The plankton community on Sukkertop and Fylla Banks off West Greenland during a spring bloom and post-bloom period: Hydrography, phytoplankton and protozooplankton

    DEFF Research Database (Denmark)

    Poulsen, Louise K.; Reuss, N.

    2002-01-01

    The plankton community structure was investigated on Sukkertop and Fylla Banks off West Greenland during the spring bloom in May 2000 and the post-bloom period in June 1999. In May a small change in density, clearly illustrated by the profile of potential energy, was sufficient to support a spring...... the phytoplankton community. Heterotrophic biomass was low (5 +/- 1 mg C m(-3)) and an important part was comprised by heterotrophic nanoflagellates (24 +/- 1%). Protozooplankters (heterotrophic dinoflagellates and ciliates) were important grazers of the phytoplankton community in the post-bloom period (estimated...

  18. Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community

    Energy Technology Data Exchange (ETDEWEB)

    Kushman, Chris [Inter-Tribal Council of Michigan, Inc., Sault Ste. Marie, MI (United States). Environmental Services Division

    2014-03-01

    In 2011 the Inter-Tribal Council of Michigan, Inc. was awarded an Energy Efficiency Development and Deployment in Indian Country grant from the U.S. Department of Energy’s Tribal Energy Program. This grant aimed to study select Bay Mills Indian Community community/government buildings to determine what is required to reduce each building’s energy consumption by 30%. The Bay Mills Indian Community (BMIC) buildings with the largest expected energy use were selected for this study and included the Bay Mills Ellen Marshall Health Center building, Bay Mills Indian Community Administration Building, Bay Mills Community College main campus, Bay Mills Charter School and the Waishkey Community Center buildings. These five sites are the largest energy consuming Community buildings and comprised the study area of this project titled “Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community”. The end objective of this study, plan and the Tribe is to reduce the energy consumption at the Community’s most energy intensive buildings that will, in turn, reduce emissions at the source of energy production, reduce energy expenditures, create long lasting energy conscious practices and positively affect the quality of the natural environment. This project’s feasibility study and resulting plan is intended to act as a guide to the Community’s first step towards planned energy management within its buildings/facilities. It aims to reduce energy consumption by 30% or greater within the subject facilities with an emphasis on energy conservation and efficiency. The energy audits and related power consumption analyses conducted for this study revealed numerous significant energy conservation and efficiency opportunities for all of the subject sites/buildings. In addition, many of the energy conservation measures require no cost and serve to help balance other measures requiring capital investment. Reoccurring deficiencies relating to heating

  19. Response of phytoplankton and enhanced biogeochemical activity to an episodic typhoon event in the coastal waters of Japan

    Science.gov (United States)

    Tsuchiya, Kenji; Kuwahara, Victor S.; Yoshiki, Tomoko M.; Nakajima, Ryota; Shimode, Shinji; Kikuchi, Tomohiko; Toda, Tatsuki

    2017-07-01

    Daily field surveys were conducted at a coastal-shelf station in Sagami Bay, Japan after the passage of typhoon Malou in 2010 to evaluate the after-effect of a typhoon passage on the physical-chemical environment, phytoplankton bloom formation and microbial processes within and below the euphotic layer. The passage of Malou induced an abrupt decrease in salinity and increased loading of nutrients to the euphotic layer. Dinoflagellates dominated the phytoplankton community at the surface, whereas diatoms dominated below the surface just after the passage of Malou. Four days later, the dominant dinoflagellate taxa at the surface changed from Protoperidinium spp. to Prorocentrum spp. and Ceratium spp., indicating a dinoflagellate community succession from heterotrophic to autotrophic functional groups. Five days after passage, the dominant phytoplankton taxa shifted from dinoflagellates to diatom groups of Chaetoceros spp. and Cerataulina spp. throughout the water column. Below the euphotic layer, there were increases in diatom frustules, mainly composed of Chaetoceros spp. and Cerataulina spp., bacterial abundance and NH4+ concentrations. Diatom carbon biomass contributed to approximately half of particulate organic carbon (POC) below the euphotic layer, suggesting a significant contribution of diatoms to POC sinking flux after the passage of a typhoon. Bacterial abundance was positively correlated to both phaeopigment concentrations (p affect biogeochemical activities within and below the euphotic layer in temperate coastal waters.

  20. Phytoplankton communities and acclimation in a cyclonic eddy in the southwest Indian Ocean

    Science.gov (United States)

    Barlow, R.; Lamont, T.; Gibberd, M.-J.; Airs, R.; Jacobs, L.; Britz, K.

    2017-06-01

    A study of phytoplankton in a cyclonic eddy was undertaken in the Mozambique Basin between Madagascar and southern Africa during austral winter. CHEMTAX analysis of pigment data indicated that the community comprised mainly haptophytes and diatoms, with Prochlorococcus, prasinophytes and pelagophytes also being prominent to the east and west of the eddy. There was little difference in community structure, chlorophyll-specific absorption [a*ph(440)] and pigment:TChla ratios between the surface and the sub-surface chlorophyll maximum (SCM), reflecting acclimation to fluctuating light conditions in a well mixed upper layer. Values for a*ph(440) were low for diatom dominance, high where prokaryote proportion was high, and intermediate for flagellate dominated communities. Chlorophyll c and fucoxanthin:TChla ratios were elevated over most of the eddy, while 19‧-hexanoyloxyfucoxanthin ratios increased in the eastern and western sectors. In a community comprising mainly flagellates and Prochlorococcus to the west of the eddy, there was high a*ph(440) at the surface and elevated ratios for divinyl chlorophyll a, chlorophyll b and 19‧-hexanoyloxyfucoxanthin at the SCM. An increase in diadinoxanthin:TChla ratios and a decline in the quantum efficiency of photochemistry in PSII under high light conditions, indicated some photoprotection and photoinhibition at the surface even in a well mixed environment. Diadinoxanthin was the main photoprotective carotenoid within the eddy, while zeaxanthin was the dominant photoprotective pigment outside the eddy. The results of this study will be useful inputs into appropriate remote sensing models for estimating primary production and the size class distribution of phytoplankton in eddies in the southwest Indian Ocean.

  1. Long-term seasonal nutrient limiting patterns at Meiliang Bay in a large, shallow and subtropical Lake Taihu, China

    Directory of Open Access Journals (Sweden)

    Rui Ye

    2015-04-01

    Full Text Available Lake Taihu has undergone severe eutrophication in the past three decades, and harmful cyanobacteria blooms occur nearly every year in Meiliang Bay at the north end of the lake. To elucidate the potential relationship between seasonal nutrient limitation and phytoplankton proliferation, a 20-year (1991-2012 time series of nutrient limitation in Meiliang Bay was analyzed for deviations between trophic state index (TSI parameters. Results showed that patterns of nutrient limitation in Meiliang Bay were distinctly seasonal, where phytoplankton growth was generally phosphorus (P-limited in winter and spring, but nitrogen (N-limited mainly occurred in summer and fall. This general pattern, however, shifted into N limitation across the four seasons during the mid-1990s because a rapid increase in industrialization led to a significant rise in the input of N and P from inflowing tributaries. The initial patterns were restored by environmental regulation in the end of 1990s, including the Zero Actions plan. Using routine monitoring data, a generalised additive model (GAM with time and deviations between trophic state indexes for nitrogen and phosphorus (TSIN-TSIP as explanatory variables was used to explore which nutrient was responsible for limitation of phytoplankton chlorophyll-a (Chl-a in different seasons. Surprisingly, the model revealed a weak N limitation (TSIN-TSIP = -10 corresponded to peak values of Chl-a in summer-autumn season, which is probably because the phytoplankton community is co-limited by N & P during the period. The shift of nutrition limitation during winter-spring would partially explain high values of Chl-a throughout 1996. This study suggests that seasonal patterns of nutrient limitation must be considered to develop effective management measures to control cyanobacterial blooms.

  2. Nutrient regimes and their effect on distribution of phytoplankton in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Paul, J.T.; Ramaiah, N.; Sardessai, S.

    of Plankton Research 27, 545– 556. Smayda, T.J., 1980. Phytoplankton species succession. In: Morris, I. (Ed.), The Physiological Ecology of Phytoplankton. University of California Press, Berkeley, pp. 493–570. Sournia, A., 1970. Les cyanophycees dans le...

  3. Phytoplankton community: indicator of water quality in the Armando Ribeiro Gonçalves Reservoir and Pataxó Channel, Rio Grande do Norte, Brazil

    Directory of Open Access Journals (Sweden)

    NT. Chellappa

    Full Text Available The current study analysed spatial-temporal modifications of the phytoplankton community and water quality, during dry and wet seasons. The phytoplankton community was studied in three areas: Armando Ribeiro Gonçalves Reservoir (ARG, which is an important public use reservoir in RN, Pataxó Channel (PC-before water treatment, Itajá, RN, and after the water treatment (WTP. Water samples from the reservoir were collected during both dry (January, February and November, 2006 and wet seasons (March to June, 2006. Quali-quantitative analyses of phytoplankton were carried out. Results indicated a qualitative similarity of the phytoplankton community in the three areas. However, significant differences were registered in these areas in relation to species relative abundance, with dominance of potentially toxic cyanobacteria, such as Planktothrix agardhii Gomont (dry season and Microcystis aeruginosa Kutz (wet season. Ecological indexes obtained higher values before water treatment. Nevertheless, densities of cyanobacteria (organisms/mL gradually reduced in the waters of the reservoir and of the Pataxó Channel before and after water treatment. After the treatment, density values of cyanobacteria were adequate for human consumption, according to the values established by the Health Ministry.

  4. Phytoplankton Distribution in Relation to Environmental Drivers on the North West European Shelf Sea.

    Science.gov (United States)

    Siemering, Beatrix; Bresnan, Eileen; Painter, Stuart C; Daniels, Chris J; Inall, Mark; Davidson, Keith

    2016-01-01

    The edge of the North West European Shelf (NWES) is characterised by a steep continental slope and a northward flowing slope current. These topographic/hydrographic features separate oceanic water and shelf water masses hence potentially separate phytoplankton communities. The slope current may facilitate the advective transport of phytoplankton, with mixing at the shelf edge supporting nutrient supply and therefore phytoplankton production. On the west Scottish shelf in particular, little is known about the phytoplankton communities in and around the shelf break and adjacent waters. Hence, to improve our understanding of environmental drivers of phytoplankton communities, biological and environmental data were collected on seven cross-shelf transects across the Malin and Hebridean Shelves during autumn 2014. Density profiles indicated that shelf break and oceanic stations had a 100 m deep mixed surface layer while stations on the shelf were generally well mixed. Analysis of similarity and multidimensional scaling of phytoplankton counts revealed that phytoplankton communities on the shelf were significantly different to those found at the shelf break and at oceanic stations. Shelf stations were dominated by dinoflagellates, with diatoms contributing a maximum of 37% of cells. Shelf break and oceanic stations were also dinoflagellate dominated but displayed a lower species diversity. Significant difference between shelf and shelf break stations suggested that the continental slope limited cross shelf phytoplankton exchange. Northern and southern phytoplankton communities on the shelf were approximately 15% dissimilar while there was no latitudinal gradient for stations along the slope current, suggesting this current provided south to north connectivity. Fitting environmental data to phytoplankton ordination showed a significant relationship between phytoplankton community dissimilarities and nutrient concentrations and light availability on the shelf compared to

  5. Influence of the Phytoplankton Community Structure on the Spring and Annual Primary Production in the Northwestern Mediterranean Sea

    Science.gov (United States)

    Mayot, Nicolas; D'Ortenzio, Fabrizio; Uitz, Julia; Gentili, Bernard; Ras, Joséphine; Vellucci, Vincenzo; Golbol, Melek; Antoine, David; Claustre, Hervé

    2017-12-01

    Satellite ocean color observations revealed that unusually deep convection events in 2005, 2006, 2010, and 2013 led to an increased phytoplankton biomass during the spring bloom over a large area of the northwestern Mediterranean Sea (NWM). Here we investigate the effects of these events on the seasonal phytoplankton community structure, we quantify their influence on primary production, and we discuss the potential biogeochemical impact. For this purpose, we compiled in situ phytoplankton pigment data from five ship surveys performed in the NWM and from monthly cruises at a fixed station in the Ligurian Sea. We derived primary production rates from a light photosynthesis model applied to these in situ data. Our results confirm that the maximum phytoplankton biomass during the spring bloom is larger in years associated with intense deep convection events (+51%). During these enhanced spring blooms, the contribution of diatoms to total phytoplankton biomass increased (+33%), as well as the primary production rate (+115%). The occurrence of a highly productive bloom is also related to an increase in the phytoplankton bloom area (+155%) and in the relative contribution of diatoms to primary production (+63%). Therefore, assuming that deep convection in the NWM could be significantly weakened by future climate changes, substantial decreases in the spring production of organic carbon and of its export to deep waters can be expected.

  6. Discriminating Phytoplankton Functional Types (PFTs) in the Coastal Ocean Using the Inversion Algorithm Phydotax and Airborne Imaging Spectrometer Data

    Science.gov (United States)

    Palacios, Sherry L.; Schafer, Chris; Broughton, Jennifer; Guild, Liane S.; Kudela, Raphael M.

    2013-01-01

    There is a need in the Biological Oceanography community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand energy flow through ecosystems, to track the fate of carbon in the ocean, and to detect and monitor-for harmful algal blooms (HABs). The ocean color community has responded to this demand with the development of phytoplankton functional type (PFT) discrimination algorithms. These PFT algorithms fall into one of three categories depending on the science application: size-based, biogeochemical function, and taxonomy. The new PFT algorithm Phytoplankton Detection with Optics (PHYDOTax) is an inversion algorithm that discriminates taxon-specific biomass to differentiate among six taxa found in the California Current System: diatoms, dinoflagellates, haptophytes, chlorophytes, cryptophytes, and cyanophytes. PHYDOTax was developed and validated in Monterey Bay, CA for the high resolution imaging spectrometer, Spectroscopic Aerial Mapping System with On-board Navigation (SAMSON - 3.5 nm resolution). PHYDOTax exploits the high spectral resolution of an imaging spectrometer and the improved spatial resolution that airborne data provides for coastal areas. The objective of this study was to apply PHYDOTax to a relatively lower resolution imaging spectrometer to test the algorithm's sensitivity to atmospheric correction, to evaluate capability with other sensors, and to determine if down-sampling spectral resolution would degrade its ability to discriminate among phytoplankton taxa. This study is a part of the larger Hyperspectral Infrared Imager (HyspIRI) airborne simulation campaign which is collecting Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery aboard NASA's ER-2 aircraft during three seasons in each of two years over terrestrial and marine targets in California. Our aquatic component seeks to develop and test algorithms to retrieve water quality properties (e.g. HABs and river plumes) in both marine and in

  7. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community.

    Science.gov (United States)

    Burson, Amanda; Stomp, Maayke; Greenwell, Emma; Grosse, Julia; Huisman, Jef

    2018-05-01

    A key challenge in ecology is to understand how nutrients and light affect the biodiversity and community structure of phytoplankton and plant communities. According to resource competition models, ratios of limiting nutrients are major determinants of species composition. At high nutrient levels, however, species interactions may shift to competition for light, which might make nutrient ratios less relevant. The "nutrient-load hypothesis" merges these two perspectives, by extending the classic model of competition for two nutrients to include competition for light. Here, we test five key predictions of the nutrient-load hypothesis using multispecies competition experiments. A marine phytoplankton community sampled from the North Sea was inoculated in laboratory chemostats provided with different nitrogen (N) and phosphorus (P) loads to induce either single resource limitation or co-limitation of N, P, and light. Four of the five predictions were validated by the experiments. In particular, different resource limitations favored the dominance of different species. Increasing nutrient loads caused changes in phytoplankton species composition, even if the N:P ratio of the nutrient loads remained constant, by shifting the species interactions from competition for nutrients to competition for light. In all treatments, small species became dominant whereas larger species were competitively excluded, supporting the common view that small cell size provides a competitive advantage under resource-limited conditions. Contrary to expectation, all treatments led to coexistence of diatoms, cyanobacteria and green algae, resulting in a higher diversity of species than predicted by theory. Because the coexisting species comprised three phyla with different photosynthetic pigments, we speculate that niche differentiation in the light spectrum might play a role. Our results show that mechanistic resource competition models that integrate nutrient-based and light-based approaches

  8. Preliminary evidences of CCM operation and its down regulation in relation to increasing CO2 levels in natural phytoplankton assemblages from the coastal waters of Bay of Bengal

    Science.gov (United States)

    Biswas, Haimanti; Rahman Shaik, Aziz Ur; Bandyopadhyay, Debasmita

    2014-05-01

    Bay of Bengal (BoB), a low productive part of the North Indian Ocean, often possesses low CO2 levels in its surface water and diatoms dominate the phytoplankton communities. Virtually no studies are available from this area reporting how this diatom dominated phytoplankton community would respond any increase in dissolved CO2 levels either naturally or anthopogenically. In most of the marine phytoplankton, the inefficiency of the sole carbon fixing enzyme Rubisco necessitates the need of concentrating dissolved inorganic carbon (DIC) (mostly as HCO3) inside the cell in excess of the ambient water concentrations in order to maintain high rate of photosynthesis under low CO2 levels through an energy consuming carbon concentration mechanisms (CCMs). The ubiquitous enzyme carbonic anhydrase (CA) plays a vital role in CCMs by converting HCO3- to CO2 and usually utilizes the trace metal zinc (Zn) as a cofactor. However, it is evident in many marine phytoplankton species that with increasing external CO2 levels, CCMs can be down-regulated leading to energetic savings which can be reallocated to growth; although exceptions occur. Hence, in order to predict their responses to the projected changes, it is imperative to understand their carbon metabolism patterns. We have conducted a series of incubation experiments in microcosms with natural phytoplankton communities from the coastal waters of BoB under different CO2 levels. Our results revealed that the rate of net photosynthetic oxygen evolution and biomass build-up increased in response to increasing CO2 levels. The depletion in δ13CPOM values were more in the high CO2 treatments relative to the low CO2 treated cells (control), indicating that dissolved CO2 uptake was higher when CO2 levels were increased. When additional Zn was added to the low CO2 treated cells, net photosynthetic oxygen evolution rate was increased significantly than that of the untreated control. It is likely that upon the supply of Zn under low CO2

  9. Composition and temporal patterns of larval fish communities in Chesapeake and Delaware Bays

    Directory of Open Access Journals (Sweden)

    Filipe Ribeiro

    2015-11-01

    Full Text Available Comparing larval fish assemblages in different estuaries provides insights about the coastal distribution of larval populations, larval transport, and adult spawning locations (Ribeiro et al. 2015. We simultaneously compared the larval fish assemblages entering two Middle Atlantic Bight (MAB estuaries (Delaware Bay and Chesapeake Bay, USA through weekly sampling from 2007 to 2009. In total, 43 taxa (32 families and 36 taxa (24 families were collected in Delaware and Chesapeake Bays, respectively. Mean taxonomic diversity, mean richness, and evenness were generally lower in Delaware Bay. Communities of both bays were dominated by Anchoa spp., Gobiosoma spp., Micropogonias undulatus, and Brevoortia tyrannus; Paralichthys spp. was more abundant in Delaware Bay and Microgobius thalassinus was more abundant in Chesapeake Bay. Inter-annual variation in the larval fish communities was low at both sites, with a relatively consistent composition across years, but strong seasonal (intra-annual variation in species composition occurred in both bays. Two groups were identified in Chesapeake Bay: a ‘winter’ group dominated by shelf-spawned species (e.g. M. undulatus and a ‘summer’ group comprising obligate estuarine species and coastal species (e.g. Gobiosoma spp. and Cynoscion regalis, respectively. In Delaware Bay, 4 groups were identified: a ‘summer’ group of mainly obligate estuarine fishes (e.g. Menidia sp. being replaced by a ‘fall’ group (e.g. Ctenogobius boleosoma and Gobionellus oceanicus; ‘winter’ and ‘spring’ groups were dominated by shelf-spawned (e.g. M. undulatus and Paralichthys spp. and obligate estuarine species (e.g. Leiostomus xanthurus and Pseudopleuronectes americanus, respectively. This study demonstrates that inexpensive and simultaneous sampling in different estuaries provides important insights into the variability in community structure of fish assemblages at large spatial scales.

  10. Phytoplankton distribution in three thermally distinct reactor cooling reservoirs

    International Nuclear Information System (INIS)

    Wilde, E.W.

    1983-01-01

    Phytoplankton community structure was studied in relation to physicochemical characteristics of three South Carolina reservoirs in close proximity and of similar age and bottom type. Thermal alteration, resulting from the input of cooling water from a nuclear reactor, was substantially different in each reservoir. This provided an opportunity to compare water temperature effects separated from season. Water temperature (when examined independently in statistical models) appeared to be less important than other environmental variables in determining phytoplankton community structure. Pond C, a reservoir receiving intensely heated effluent (> 20 0 C ΔT), displayed low species diversity (Shannon-Weaver H 0 C in summer. Par Pond, having a maximum ΔT of 5 0 C, displayed no temperature-induced alteration of phytoplankton community structure

  11. PHYTOPLANKTON OF CASPIAN

    Directory of Open Access Journals (Sweden)

    Aysha Sharapatinovna Gasanova

    2015-01-01

    Full Text Available Aim. The composition of the species of the phytoplankton in the Russian sector of the Caspian Sea in conditions of transgression, anthropogenic and chemical contamination has been studied.Location.The Russian sector of the Caspian SeaMethods. The phytoplankton samples were collected at the depths of 8 – 50m by the use of the Nansen bathometer and subsequently were fixed in 4% formalin. The office processing was carried out in a box of Nozhotta type, which has the volume of 0.1 ml and the triplicate surface, under the light microscope of Biolam P15. The system of domestic diamotologists was used during the classification of Bacillariaphyta, as for the classification of Dinophyta, the Dodge scheme was applied. Cyanophyta algae were classified according to the system of A.A. Elenkina with the amendments adopted by A.I. Proshkin-Lavrenko and V.V. Makarova. The classification of the Chlorophyta division has been done according to the Smith system.Results, main conclusions. Presented the taxonomic structure and the lists of species of the phytoplankton community in the sea coastal shallow waters Russian sector of the Caspian Sea have been presented. A high floristic diversity and domination of small cell forms are characteristics of the modern structure of the coastal shoal waters of the Dagestan part of the Caspian Sea. The auttaclimatizant of 1934, Pseudosolenia calcaravis, has not been discovered in the plankton of the researched water area. The phytoplankton community has been represented by 58 species of six groups: Cyanophyta, Bacillariaphyta, Dinophyta, Euglenophyta, Chlorophyta and the small flagellate. Bacillariaphyta were the basis of both the taxonomic diversity and the biomass. Cyanophita prevailed in number.

  12. Latitudinal phytoplankton distribution and the neutral theory of biodiversity

    KAUST Repository

    Chust, Guillem

    2012-11-16

    Recent studies have suggested that global diatom distributions are not limited by dispersal, in the case of both extant species and fossil species, but rather that environmental filtering explains their spatial patterns. Hubbell\\'s neutral theory of biodiversity provides a framework in which to test these alternatives. Our aim is to test whether the structure of marine phytoplankton (diatoms, dinoflagellates and coccolithophores) assemblages across the Atlantic agrees with neutral theory predictions. We asked: (1) whether intersite variance in phytoplankton diversity is explained predominantly by dispersal limitation or by environmental conditions; and (2) whether species abundance distributions are consistent with those expected by the neutral model. Location: Meridional transect of the Atlantic (50° N-50° S). Methods: We estimated the relative contributions of environmental factors and geographic distance to phytoplankton composition using similarity matrices, Mantel tests and variation partitioning of the species composition based upon canonical ordination methods. We compared the species abundance distribution of phytoplankton with the neutral model using Etienne\\'s maximum-likelihood inference method. Results: Phytoplankton communities are slightly more determined by niche segregation (24%), than by dispersal limitation and ecological drift (17%). In 60% of communities, the assumption of neutrality in species\\' abundance distributions could not be rejected. In tropical zones, where oceanic gyres enclose large stable water masses, most communities showed low species immigration rates; in contrast, we infer that communities in temperate areas, out of oligotrophic gyres, have higher rates of species immigration. Conclusions: Phytoplankton community structure is consistent with partial niche assembly and partial dispersal and drift assembly (neutral processes). The role of dispersal limitation is almost as important as habitat filtering, a fact that has been

  13. Mangrove root communities in Jobos Bay

    International Nuclear Information System (INIS)

    Yoshioka, P.M.

    1975-01-01

    Based on the presence and absence of species, at least two major types of mangrove root communities exist in Jobos Bay. One community, occurring mainly along the Aguirre Ship Channel, is composed of species characteristic of coastal waters. Another occurring in Jobos Bay and in mangrove channels in the vinicity of Mar Negro Lagoon is characterized by embayment species. Water mass is the best single parameter which correlates with the different communities. In general, subtidal species are more susceptible to elevated temperatures than intertidal species and consequently will be the first affected. Because most of the predators and competitors are subtidal, the predation and competition which limit populations may be cut back. The effect will first be seen in increased populations of barnacles, because they are severely limited by predation and competition but are physiologically quite tolerant. The intertidal species should flourish (on a relative basis) and their vertical distributions should be extended downward. These effects are only primary. Many species which would do best in thermally altered situations are colonizing or fugitive species. It is unknown whether such an assemblage could persist with continued recruitment and growth of new individuals. The dominance of these colonizing or fugitive species may be only temporary, however, because blue-green algae are tolerant of elevated temperatures and have a negative effect on barnacle recruitment and growth. Consequently, blue-green algae may eventually dominate thermally affected mangrove roots

  14. Spatio-temporal interdependence of bacteria and phytoplankton during a Baltic Sea spring bloom

    Directory of Open Access Journals (Sweden)

    Carina eBunse

    2016-04-01

    Full Text Available In temperate systems, phytoplankton spring blooms deplete inorganic nutrients and are major sources of organic matter for the microbial loop. In response to phytoplankton exudates and environmental factors, heterotrophic microbial communities are highly dynamic and change their abundance and composition both on spatial and temporal scales. Yet, most of our understanding about these processes comes from laboratory model organism studies, mesocosm experiments or single temporal transects. Spatial-temporal studies examining interactions of phytoplankton blooms and bacterioplankton community composition and function, though being highly informative, are scarce. In this study, pelagic microbial community dynamics (bacteria and phytoplankton and environmental variables were monitored during a spring bloom across the Baltic Proper (two cruises between North Germany to Gulf of Finland. To test to what extent bacterioplankton community composition relates to the spring bloom, we used next generation amplicon sequencing of the 16S rRNA gene, phytoplankton diversity analysis based on microscopy counts and population genotyping of the dominating diatom Skeletonema marinoi. Several phytoplankton bloom related and environmental variables were identified to influence bacterial community composition. Members of Bacteroidetes and Alphaproteobacteria dominated the bacterial community composition but the bacterial groups showed no apparent correlation with direct bloom related variables. The less abundant bacterial phyla Actinobacteria, Planctomycetes, and Verrucomicrobia, on the other hand, were strongly associated with phytoplankton biomass, diatom:dinoflagellate ratio and colored dissolved organic matter (cDOM. Many bacterial operational taxonomic units (OTUs showed high niche specificities. For example, particular Bacteroidetes OTUs were associated with two distinct genetic clusters of S. marinoi. Our study revealed the complexity of interactions of bacterial

  15. Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2 flux

    DEFF Research Database (Denmark)

    Hilligsøe, Karen Marie; Richardson, Katherine; Bendtsen, Jørgen

    2011-01-01

    Data collected at open water stations (depth>400m) in all major ocean basins in 2006–2008 are used to examine the relationship between the size structure of the phytoplankton community (determined by size fractionated chlorophyll filtration), temperature and inorganic nutrient availability...

  16. The Impossible Sustainability of the Bay of Brest? Fifty Years of Ecosystem Changes, Interdisciplinary Knowledge Construction and Key Questions at the Science-Policy-Community Interface

    Directory of Open Access Journals (Sweden)

    Olivier Ragueneau

    2018-04-01

    Full Text Available In this contribution, the study of the Bay of Brest ecosystem changes over the past 50 years is used to explore the construction of interdisciplinary knowledge and raise key questions that now need to be tackled at the science-policy-communities interface. The Bay of Brest is subject to a combination of several aspects of global change, including excessive nutrient inputs from watersheds and the proliferation of invasive species. These perturbations strongly interact, affecting positively or negatively the ecosystem functioning, with important impacts on human activities. We first relate a cascade of events over these five decades, linking farming activities, nitrogen, and silicon biogeochemical cycles, hydrodynamics of the Bay, the proliferation of an exotic benthic suspension feeder, the development of the Great scallop fisheries and the high biodiversity in maerl beds. The cascade leads to today's situation where toxic phytoplankton blooms become recurrent in the Bay, preventing the fishery of the great scallop and forcing the fishermen community to switch pray and alter the maerl habitat and the benthic biodiversity it hosts, despite the many scientific alerts and the protection of this habitat. In the second section, we relate the construction of the interdisciplinary knowledge without which scientists would never have been able to describe these changes in the Bay. Interdisciplinarity construction is described, first among natural sciences (NS and then, between natural sciences and human and social sciences (HSS. We finally ask key questions at the science-policy interface regarding this unsustainable trend of the Bay: How is this possible, despite decades of joint work between scientists and fishermen? Is adaptive co-management a sufficient condition for a sustainable management of an ecosystem? How do the different groups (i.e., farmers, fishermen, scientists, environmentalists, with their diverse interests, take charge of this situation

  17. Response of phytoplankton assemblages isolated for short periods ...

    African Journals Online (AJOL)

    The response of phytoplankton assemblages isolated in enclosures for short periods of time was examined in hyper-eutrophic Lake Chivero (Harare, Zimbabwe), to determine the factors that influenced the structure of the phytoplankton community, after noticing a marked decline in the dominance of Microcystis aeruginosa ...

  18. Mercury speciation in plankton from the Cabo Frio Bay, SE--Brazil.

    Science.gov (United States)

    Silva-Filho, Emmanoel V; Kütter, Vinicius T; Figueiredo, Thiago S; Tessier, Emmanuel; Rezende, Carlos E; Teixeira, Daniel C; Silva, Carlos A; Donard, Olivier F X

    2014-12-01

    Mercury (Hg) is considered a global pollutant, and the scientific community has shown great concern about its toxicity as it may affect the biota of entire systems, through bioaccumulation and bioamplification processes of its organic form, methylmercury (MeHg), along food web. However, few research studies deal with bioaccumulation of Hg from marine primary producers and the first-order consumers. So, this study aims to determine Hg distribution and concentration levels in phytoplankton and zooplankton in the Cabo Frio Bay, Brazil, a site influenced by coastal upwelling. The results from Hg speciation analyses show that inorganic mercury Hg(II) was the predominant specie in plankton from this bay. The annual Hg species distribution in plankton shown mean concentration of 2.00 ± 1.28 ng Hg(II) g(-1) and 0.15 ± 0.08 ng MeHg g(-1) wet weight (phytoplankton) and 2.5 ± 2.03 ng Hg(II) g(-1) and 0.25 ± 0.09 ng MeHg g(-1) wet weight (zooplankton). Therefore, upwelling zones should be considered in the Hg biogeochemical cycle models as a process that enhances Hg(II) bioaccumulation in plankton, raising its bioavailability and shelf deposition.

  19. Light Absorption by Suspended Particles in the Red Sea: Effect of Phytoplankton Community Size Structure and Pigment Composition

    Science.gov (United States)

    Kheireddine, Malika; Ouhssain, Mustapha; Organelli, Emanuele; Bricaud, Annick; Jones, Burton H.

    2018-02-01

    The light absorption properties of phytoplankton (aph(λ)) and nonalgal particles (anap(λ)) associated with phytoplankton pigments were analyzed across the Red Sea, in the upper 200 m depth, between October 2014 and August 2016. The contribution by nonalgal particles to the total particulate light absorption (aph(λ) + anap(λ)) was highly variable (23 ± 17% at 440 nm) and no relationship between anap(440) and chlorophyll a concentration, [TChl a], was observed. Phytoplankton-specific phytoplankton absorption coefficients at 440 and 676 nm for a given [TChl a], aph*(440), and aph∗(676) were slightly higher than those derived from average relationships for open ocean waters within the surface layer as well as along the water column. Variations in the concentration of photosynthetic and photoprotective pigments were noticeable by changes in phytoplankton community size structure as well as in aph∗(λ). This study revealed that a higher proportion of picophytoplankton and an increase in photoprotective pigments (mainly driven by zeaxanthin) tended to be responsible for the higher aph∗(λ) values found in the Red Sea as compared to other oligotrophic regions with similar [TChl a]. Understanding this variability across the Red Sea may help improve the accuracy of biogeochemical parameters, such as [TChl a], derived from in situ measurements and ocean color remote sensing at a regional scale.

  20. Light Absorption by Suspended Particles in the Red Sea: Effect of Phytoplankton Community Size Structure and Pigment Composition

    KAUST Repository

    Kheireddine, Malika

    2018-01-10

    The light absorption properties of phytoplankton (aph(λ)) and non-algal particles (anap(λ)) associated with phytoplankton pigments were analyzed across the Red Sea, in the upper 200 m depth, between October 2014 and August 2016. The contribution by non-algal particles to the total particulate light absorption (aph(λ)+ anap(λ)) was highly variable (23 ± 17% at 440 nm) and no relationship between anap(440) and chlorophyll a concentration, [TChl a], was observed. Phytoplankton specific phytoplankton absorption coefficients at 440 and 676 nm for a given [TChl a], aph*(440) and aph*(676), were slightly higher than those derived from average relationships for open ocean waters within the surface layer as well as along the water column. Variations in the concentration of photosynthetic and photoprotective pigments were noticeable by changes in phytoplankton community size structure as well as in aph*(λ). This study revealed that a higher proportion of picophytoplankton and an increase in photoprotective pigments (mainly driven by zeaxanthin) tended to be responsible for the higher aph*(λ) values found in the Red Sea as compared to other oligotrophic regions with similar [TChl a]. Understanding this variability across the Red Sea may help improve the accuracy of biogeochemical parameters, such as [TChl a], derived from in situ measurements and ocean color remote sensing at a regional scale.

  1. Light Absorption by Suspended Particles in the Red Sea: Effect of Phytoplankton Community Size Structure and Pigment Composition

    KAUST Repository

    Kheireddine, Malika; Ouhssain, Mustapha; Organelli, Emanuele; Bricaud, Annick; Jones, Burton

    2018-01-01

    The light absorption properties of phytoplankton (aph(λ)) and non-algal particles (anap(λ)) associated with phytoplankton pigments were analyzed across the Red Sea, in the upper 200 m depth, between October 2014 and August 2016. The contribution by non-algal particles to the total particulate light absorption (aph(λ)+ anap(λ)) was highly variable (23 ± 17% at 440 nm) and no relationship between anap(440) and chlorophyll a concentration, [TChl a], was observed. Phytoplankton specific phytoplankton absorption coefficients at 440 and 676 nm for a given [TChl a], aph*(440) and aph*(676), were slightly higher than those derived from average relationships for open ocean waters within the surface layer as well as along the water column. Variations in the concentration of photosynthetic and photoprotective pigments were noticeable by changes in phytoplankton community size structure as well as in aph*(λ). This study revealed that a higher proportion of picophytoplankton and an increase in photoprotective pigments (mainly driven by zeaxanthin) tended to be responsible for the higher aph*(λ) values found in the Red Sea as compared to other oligotrophic regions with similar [TChl a]. Understanding this variability across the Red Sea may help improve the accuracy of biogeochemical parameters, such as [TChl a], derived from in situ measurements and ocean color remote sensing at a regional scale.

  2. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids

    Science.gov (United States)

    Galloway, Aaron W. E.; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  3. Winter severity determines functional trait composition of phytoplankton in seasonally ice-covered lakes.

    Science.gov (United States)

    Özkundakci, Deniz; Gsell, Alena S; Hintze, Thomas; Täuscher, Helgard; Adrian, Rita

    2016-01-01

    How climate change will affect the community dynamics and functionality of lake ecosystems during winter is still little understood. This is also true for phytoplankton in seasonally ice-covered temperate lakes which are particularly vulnerable to the presence or absence of ice. We examined changes in pelagic phytoplankton winter community structure in a north temperate lake (Müggelsee, Germany), covering 18 winters between 1995 and 2013. We tested how phytoplankton taxa composition varied along a winter-severity gradient and to what extent winter severity shaped the functional trait composition of overwintering phytoplankton communities using multivariate statistical analyses and a functional trait-based approach. We hypothesized that overwintering phytoplankton communities are dominated by taxa with trait combinations corresponding to the prevailing winter water column conditions, using ice thickness measurements as a winter-severity indicator. Winter severity had little effect on univariate diversity indicators (taxon richness and evenness), but a strong relationship was found between the phytoplankton community structure and winter severity when taxon trait identity was taken into account. Species responses to winter severity were mediated by the key functional traits: motility, nutritional mode, and the ability to form resting stages. Accordingly, one or the other of two functional groups dominated the phytoplankton biomass during mild winters (i.e., thin or no ice cover; phototrophic taxa) or severe winters (i.e., thick ice cover; exclusively motile taxa). Based on predicted milder winters for temperate regions and a reduction in ice-cover durations, phytoplankton communities during winter can be expected to comprise taxa that have a relative advantage when the water column is well mixed (i.e., need not be motile) and light is less limiting (i.e., need not be mixotrophic). A potential implication of this result is that winter severity promotes different

  4. Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean

    Science.gov (United States)

    Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.

    2015-10-01

    In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms has led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted into phytoplankton biomass (i.e., chlorophyll a concentration) and size-based community composition (i.e., microphytoplankton, nanophytoplankton and picophytoplankton), using a method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over 5 decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from the surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available on open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition: http://doi.pangaea.de/10.1594/PANGAEA.844485

  5. Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light

    Directory of Open Access Journals (Sweden)

    I. Marinov

    2010-12-01

    Full Text Available The response of ocean phytoplankton community structure to climate change depends, among other factors, upon species competition for nutrients and light, as well as the increase in surface ocean temperature. We propose an analytical framework linking changes in nutrients, temperature and light with changes in phytoplankton growth rates, and we assess our theoretical considerations against model projections (1980–2100 from a global Earth System model. Our proposed "critical nutrient hypothesis" stipulates the existence of a critical nutrient threshold below (above which a nutrient change will affect small phytoplankton biomass more (less than diatom biomass, i.e. the phytoplankton with lower half-saturation coefficient K are influenced more strongly in low nutrient environments. This nutrient threshold broadly corresponds to 45° S and 45° N, poleward of which high vertical mixing and inefficient biology maintain higher surface nutrient concentrations and equatorward of which reduced vertical mixing and more efficient biology maintain lower surface nutrients. In the 45° S–45° N low nutrient region, decreases in limiting nutrients – associated with increased stratification under climate change – are predicted analytically to decrease more strongly the specific growth of small phytoplankton than the growth of diatoms. In high latitudes, the impact of nutrient decrease on phytoplankton biomass is more significant for diatoms than small phytoplankton, and contributes to diatom declines in the northern marginal sea ice and subpolar biomes. In the context of our model, climate driven increases in surface temperature and changes in light are predicted to have a stronger impact on small phytoplankton than on diatom biomass in all ocean domains. Our analytical predictions explain reasonably well the shifts in community structure under a modeled climate-warming scenario. Climate driven changes in nutrients, temperature and light have

  6. Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site

    KAUST Repository

    Gasol, Josep M.; Cardelú s, Clara; Moran, Xose Anxelu G.; Balagué , Vanessa; Forn, Irene; Marrasé , Cè lia; Massana, Ramon; Pedró s-Alió , Carlos; Sala, M. Montserrat; Simó , Rafel; Vaqué , Dolors; Estrada, Marta

    2016-01-01

    We carried out monthly photosynthesis-irradiance (P-E) experiments with the 14C-method for 12 years (2003–2014) to determine the photosynthetic parameters and primary production of surface phytoplankton in the Blanes Bay Microbial Observatory, a

  7. Studies on Antarctic phytoplankton

    Digital Repository Service at National Institute of Oceanography (India)

    Pant, A.

    Ice-edge data from a single polynya station at 70 degrees S 11 degrees E over a 2-month period is assessed in relation to previously published work in similar environments. The phytoplankton community seems to be composed of 2 quite different...

  8. Macrofouling community structure in Kanayama Bay, Kii Peninsula (Japan)

    Digital Repository Service at National Institute of Oceanography (India)

    Raveendran, T.V.; Harada, E.

    An investigation on the macrofouling community in Kanayama Bay, Kill Peninsula, Japan was undertaken from June 1994 to May 1995 by exposing fiber reinforced plastic (FRP) panels at subsurface and bottom (2.2 m) depths. The composition and abundance...

  9. The Sociolinguistic Situation of the Manila Bay Chabacano-Speaking Communities 

    DEFF Research Database (Denmark)

    Sippola, Eeva; Lesho, Marivic

    2013-01-01

    This study is an assessment of the vitality of the Manila Bay Chabacano varieties spoken in Cavite City and Ternate, Philippines. These Spanish-lexified creoles have often been described as endangered, but until now there has been no systematic description of how stable the varieties are. The eva......This study is an assessment of the vitality of the Manila Bay Chabacano varieties spoken in Cavite City and Ternate, Philippines. These Spanish-lexified creoles have often been described as endangered, but until now there has been no systematic description of how stable the varieties are....... The evaluation of the vitality of Manila Bay Chabacano is made based on participant observation and interviews conducted in both communities over the past nine years, using the UNESCO (2003) framework. Comparison between the two varieties shows that the proportional size of the speech community, degree...... generation, but the community is more organized in its language preservation efforts. This study sheds light on two creole varieties in need of further documentation and sociolinguistic description, as well as the status of minority languages in the Philippines. It also offers a critical assessment...

  10. Phytoplankton and bacterial community structures and their interaction during red-tide phenomena

    Science.gov (United States)

    Ismail, Mona Mohamed; Ibrahim, Hassan Abd Allah

    2017-09-01

    Phytoplankton and bacteria diversity were studied before, during and after red tide phenomena during spring season 2015 in the Eastern Harbour (E.H.) of Alexandria, Egypt. Fifty five species of phytoplankton were identified and represented different distinct classes "Bacillariophyceae; Dinophyceae, Chlorophyceae, Cyanophyceae and Eugelenophyceae". Also, Diatom formed the most dominant group. The average number of the phytoplankton density varied from 4.8 × 104 to 1.1 × 106 cell l-1 during the study period and Skeletonema costatum was the agent causing the red tide. The existence percentages of bacteria ranged from 2.6 to 17.9% on all media tested. The bacterial isolates on the nutrient agar medium represented the highest existence with a total percentage of 43.6%, followed by MSA medium (25.7%), while the lowest percentage was for the AA medium at 7.8%. However, twelve isolates were selected as representative for bacterial community during study interval. Based on the morphological, biochemical, physiological and enzymatic characteristics, the bacterial strains were described. Depending on the 16S rDNA gene sequence, three common antagonists were aligned as: Vibrio toranzoniae strain Vb 10.8, Ruegeria pelagia strain NBRC 102038 and Psychrobacter adeliensis strain DSM 15333. The interaction between these bacteria and S. costatum was studied. The growth of S. costatum was significantly lower whenever each bacterium was present as compared to axenic culture. More specifically, 30% (v/v) of the all tested bacteria showed the strongest algicidal activities, as all S. costatum cells were killed after two days. 10% of R. pelagia and P. adeliensis also showed significant algicidal activities within six days.

  11. 76 FR 41515 - Proclaiming Certain Lands, Community College Campus, as an Addition to the Bay Mills Indian...

    Science.gov (United States)

    2011-07-14

    ... Campus, as an Addition to the Bay Mills Indian Community of Michigan AGENCY: Bureau of Indian Affairs... Mills Indian Community of Michigan. FOR FURTHER INFORMATION CONTACT: Ben Burshia, Bureau of Indian... and part of the Bay Mills Indian Community of Michigan for the exclusive use of Indians on that...

  12. Seasonal changes in temperature and nutrient control of photosynthesis, respiration and growth of natural phytoplankton communities

    DEFF Research Database (Denmark)

    Stæhr, P. A.; Sand-Jensen, K.

    2006-01-01

    cultures in seasons of low ambient nutrient availability. 3. Temperature stimulation of growth and metabolism was higher at low than high ambient temperature showing that long-term temperature acclimation of the phytoplankton community before the experiments was of great importance for the measured rates...... +2, +4 and +6 °C for 2 weeks with and without addition of extra inorganic nutrients. 2. Rates of photosynthesis, respiration and growth generally increased with temperature, but this effect was strongly enhanced by high nutrient availability, and therefore was most evident for nutrient amended......1. To investigate the influence of elevated temperatures and nutrients on photosynthesis, respiration and growth of natural phytoplankton assemblages, water was collected from a eutrophic lake in spring, summer, autumn, winter and the following spring and exposed to ambient temperature and ambient...

  13. 76 FR 41515 - Proclaiming Certain Lands, Maier Property, as an Addition to the Bay Mills Indian Community of...

    Science.gov (United States)

    2011-07-14

    ... an Addition to the Bay Mills Indian Community of Michigan AGENCY: Bureau of Indian Affairs, Interior... Secretary-- Indian Affairs proclaimed approximately 40 acres, more or less, to be added to the Bay Mills... and part of the Bay Mills Indian Community of Michigan for the exclusive use of Indians on that...

  14. The Importance of Phytoplankton Biomolecule Availability for Secondary Production

    Directory of Open Access Journals (Sweden)

    Elina T. Peltomaa

    2017-10-01

    Full Text Available The growth and reproduction of animals is affected by their access to resources. In aquatic ecosystems, the availability of essential biomolecules for filter-feeding zooplankton depends greatly on phytoplankton. Here, we analyzed the biochemical composition, i.e., the fatty acid, sterol and amino acid profiles and concentrations as well as protein, carbon, nitrogen, and phosphorus content of 17 phytoplankton monocultures representing the seven most abundant phytoplankton classes in boreal and sub-arctic lakes. To examine how the differences in the biochemical composition between phytoplankton classes affect their nutritional quality for consumers, we assessed the performance of Daphnia, on these diets. Furthermore, we defined the most important biomolecules regulating the somatic growth and reproduction of Daphnia, expecting that higher concentrations of certain biomolecules are needed for reproduction than for growth. Finally, we combined these results with phytoplankton field data from over 900 boreal and sub-arctic lakes in order to estimate whether the somatic growth of Daphnia is sterol-limited when the natural phytoplankton communities are cyanobacteria-dominated. Our analysis shows that Daphnia grows best with phytoplankton rich in sterols, ω-3 fatty acids, protein, and amino acids. Their reproduction follows food sterol and ω-3 concentration as well as C:P-ratio being two times higher in Daphnia feeding on cryptophytes than any other diet. Interestingly, we found that a high dietary ω-6 fatty acid concentration decreases both somatic growth and reproduction of Daphnia. When combined with phytoplankton community composition field data, our results indicate that zooplankton is constantly limited by sterols in lakes dominated by cyanobacteria (≥40% of total phytoplankton biomass, and that the absence of cryptophytes can severely hinder zooplankton production in nature.

  15. Phytoplankton and the Macondo oil spill: A comparison of the 2010 phytoplankton assemblage to baseline conditions on the Louisiana shelf.

    Science.gov (United States)

    Parsons, M L; Morrison, W; Rabalais, N N; Turner, R E; Tyre, K N

    2015-12-01

    The Macondo oil spill was likely the largest oil spill to ever occur in United States territorial waters. We report herein our findings comparing the available baseline phytoplankton data from coastal waters west of the Mississippi River, and samples collected monthly from the same sampling stations, during and after the oil spill (May-October, 2010). Our results indicate that overall, the phytoplankton abundance was 85% lower in 2010 versus the baseline, and that the species composition of the phytoplankton community moved towards diatoms and cyanobacteria and away from ciliates and phytoflagellates. The results of this study reaffirm the view that phytoplankton responses will vary by the seasonal timing of the oil spill and the specific composition of the spilled oil. The trophic impacts of the purported lower abundance of phytoplankton in 2010 coupled with the observed assemblage shift remain unknown. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Primary production in the Bay of Bengal during August 1977

    Digital Repository Service at National Institute of Oceanography (India)

    Devassy, V.P.; Bhattathiri, P.M.A.; Radhakrishna, K.

    Primary production, chlorophyll @ia@@, phaeophytin, phytoplankton and particulate organic carbon (POC) were studied at 14 stations in the Bay of Bengal during August 1977. Column primary production, chlorophyll @ia@@, and phaeopigments varied from 0...

  17. Effect of Phytoplankton Richness on Phytoplankton Biomass Is Weak Where the Distribution of Herbivores is Patchy.

    Science.gov (United States)

    Weis, Jerome J

    2016-01-01

    Positive effects of competitor species richness on competitor productivity can be more pronounced at a scale that includes heterogeneity in 'bottom-up' environmental factors, such as the supply of limiting nutrients. The effect of species richness is not well understood in landscapes where variation in 'top-down' factors, such as the abundance of predators or herbivores, has a strong influence competitor communities. I asked how phytoplankton species richness directly influenced standing phytoplankton biomass in replicate microcosm regions where one patch had a population of herbivores (Daphnia pulicaria) and one patch did not have herbivores. The effect of phytoplankton richness on standing phytoplankton biomass was positive but weak and not statistically significant at this regional scale. Among no-Daphnia patches, there was a significant positive effect of phytoplankton richness that resulted from positive selection effects for two dominant and productive species in polycultures. Among with-Daphnia patches there was not a significant effect of phytoplankton richness. The same two species dominated species-rich polycultures in no- and with-Daphnia patches but both species were relatively vulnerable to consumption by Daphnia. Consistent with previous studies, this experiment shows a measurable positive influence of primary producer richness on biomass when herbivores were absent. It also shows that given the patchy distribution of herbivores at a regional scale, a regional positive effect was not detected.

  18. Bloom dynamics of the genus Pseudo-nitzschia (Bacillariophyceae in two coastal bays (NW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Sonia Quijano-Scheggia

    2008-09-01

    Full Text Available The spatial and temporal variations in the composition of Pseudo-nitzschia during bloom events from August 2005 to February 2006 were characterised in two bays of the NW Mediterranean Sea (Alfacs and Fangar Bay by means of scanning electron microscopy (SEM. The study provides detailed records of the Pseudo-nitzschia community at the species level and describes its relationship with both the surrounding environmental conditions and biotic factors such as the accompanying phytoplankton community. The size distributions of several species of Pseudo-nitzschia were monitored during the bloom events. These measurements may serve as indicators of the physiological status of the cells. The species observed in the two bays were Pseudo-nitzschia calliantha, P. delicatissima, P. fraudulenta, P. multistriata, and P. pungens. In Alfacs Bay, a mixed species bloom of P. calliantha and P. delicatissima began in late August 2005 and lasted 11 weeks. In Fangar Bay, the Pseudo-nitzschia bloom was limited to the period from early August to late September 2005 and comprised P. calliantha and P. delicatissima. Commonly, the proliferation of Pseudo-nitzschia was mono-specific or was accompanied by other diatoms. Two objectively defined groups were identified by the statistical analysis in Alfacs bay; the first was made up only of winter samples and the second of summer and autumn samples. The first group was defined by a high concentration of NO3¯ and low concentrations of NH4+, conditions associated with a high abundance of P. delicatissima and a low abundance of P. calliantha. The second group expressed the opposite characteristics. A succession of different blooming species of Pseudo-nitzschia lasting months in Alfacs Bay is described.

  19. Impact of salinity and pH on phytoplankton communities in a tropical freshwater system: An investigation with pigment analysis by HPLC

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Acharyya, T.; Babu, P.V.R.; Bandyopadhyay, D.

    towards the fluctuating pH. These findings are environmentally relevant to understand the likely impact of salt water intrusion and pH variation on phytoplankton communities in a tropical freshwater system....

  20. Winds and the distribution of nearshore phytoplankton in a stratified lake.

    Science.gov (United States)

    Cyr, Hélène

    2017-10-01

    The distribution of phytoplankton in lakes is notoriously patchy and dynamic, but wind-driven currents and algal buoyancy/motility are thought to determine where algae accumulate. In this study, nearshore phytoplankton were sampled from different parts of a lake basin twice a day for 4-5 consecutive days, in the spring and in late summer, to test whether short-term changes in phytoplankton biomass and community composition can be predicted from wind-driven currents. On windy days, phytoplankton biomass was higher at downwind than at upwind nearshore sites, and the magnitude of this difference increased linearly with increasing wind speed. However, contrary to the generally assumed downwind phytoplankton aggregations, these differences were mostly due to upwelling activity and the dilution of phytoplankton at upwind nearshore sites. The distribution of individual taxa was also related to wind speed, but only during late stratification (except for cryptophytes), and these relationships were consistent with the buoyancy and motility of each group. On windy days, large diatoms and cyanobacteria concentrated upwind, neutrally buoyant taxa (green algae, small diatoms) were homogeneously distributed, and motile taxa (cryptophytes, chrysophytes, dinoflagellates) concentrated downwind. Predictable differences in the biomass and composition of phytoplankton communities could affect the efficiency of trophic transfers in nearshore areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Saldanha Bay, South Africa II: estimating bay productivity | Pitcher ...

    African Journals Online (AJOL)

    Autotrophic communities, where organic matter is produced in excess of respiratory demand, were confined on average to the upper 5.8 m of the water column, and often excluded the bulk of the phytoplankton community, where light limitation is considered to lead to heterotrophic community metabolism. Estimates of ...

  2. Status of macrobenthic community of Manifa-Tanajib Bay System of Saudi Arabia based on a once-off sampling event

    KAUST Repository

    Joydas, Thadickal Viswanathan

    2011-06-01

    Shallow water bays located in the western Arabian Gulf experience harsh environmental conditions. Some of these bays, including Manifa-Tanajib Bay System (MTBS), were also exposed to the 1991 oil pollution event. This study investigates the status of the macrobenthos in MTBS during 2006. This bay system is characterized by very shallow inner bays with elevated salinity and temperature compared to the rest of the bay area. As a result mainly of the hyper salinity, the inner bay communities are distinct from the outer bay communities. Overall, fairly high species richness with several rare species was observed. High Shannon-Wiener diversity values and ABC plots indicated the healthy status of the polychaete communities, while BOPA index indicated slightly polluted status in 20% of the stations. The oil sensitive amphipods were not completely re-colonized in 20% of the stations, even after 15. years of recovery from the 1991 oil spill. © 2011 Elsevier Ltd.

  3. Effect evaluation of uranium mining effluents on the density and composition of the phytoplankton community

    International Nuclear Information System (INIS)

    Roque, Claudio V.; Azevedo, Heliana de; Bruschi, Armando L.; Ferrari, Carla R.; Ronqui, Leilane B.; Campos, Michelle B.; Nascimento, Marcos Roberto L.; Rodgher, Suzelei

    2011-01-01

    Located in the region of the Pocos de Caldas Plateau, the Osamu Utsumi mine is the first uranium extraction and production mine to have its deposits explored in Brazil and it is situated on the premises of the Brazilian Nuclear Industries Ore Treatment Unit (UTM/INB). Within the UTM/INB installations, water samplings were carried out every three months (from October 2008 to July 2009) in three points (P1, P2 and P3): P1 (pit mine), P2 (Tailings Management Facility/TMF) and P3 (environment). The objective of the current study was to evaluate density and composition of the phytoplankton community, as well as chemical characteristics of water samples from UTM/INB effluents, which present different pH levels (ranging from acidic to alkaline). In the current study, values of pH, total nitrogen, total phosphorus, silicate, sulfate (SO 4 -2 ), fluoride, uranium, thorium and chlorophyll a were determined, as well as composition and density of the phytoplankton community. After comparing the three sampling points, it was verified that Cyanophyceae presented greater tolerance to chemical conditions of the water such as elevated concentrations of sulfate, fluoride, uranium and thorium, as well as pH variations, since this class was detected in all studied environments. (author)

  4. The trophic position of the alien crab Rhithropanopeus harrisii (crustacea decapoda panopeidae) in the Taman Bay, Sea of Azov community

    Science.gov (United States)

    Zalota, A. K.; Kolyuchkina, G. A.; Tiunov, A. V.; Biriukova, S. V.; Spiridonov, V. A.

    2017-03-01

    This work concerns the trophic web positioning of the alien crab Rhithropanopeus harrisii and other common marine invertebrate species and fishes in the benthic ecosystem of the shallows of Taman Bay, Sea of Azov. The base of the trophic web in this system is composed of phytoplankton, macrophytes (algae and marine grasses), and reeds that use atmospheric carbon for photosynthesis. Analysis of the isotopic composition of nitrogen and carbon has shown that although marine grasses are dominating primary producers in the shallows of the bay, primary consumers (such as Cerastoderma glaucum, Porifera gen. sp., Gammarus aequicauda, Deshayesorchestia deshayesii and Idotea balthica) only partially use this organic source; instead, they use a combination of different sources of primary production. It has been shown that the food source of the alien crab is primarily of animal origin. In Taman Bay, R. harrisii is on the same trophic level as other carnivores/scavengers: benthic fishes Syngnathus nigrolineatus, Gobius spp. and native crab Pilumnus hirtellus and shrimp Palaemon adspersus.

  5. Ecosystem under pressure: ballast water discharge into Galveston Bay, Texas (USA) from 2005 to 2010.

    Science.gov (United States)

    Steichen, Jamie L; Windham, Rachel; Brinkmeyer, Robin; Quigg, Antonietta

    2012-04-01

    Ballast water exchange processes facilitate the dispersal and unnatural geographic expansion of phytoplankton, including harmful algal bloom species. From 2005 to 2010, over 45,000 vessels (≈ 8000 annually) travelled across Galveston Bay (Texas, USA) to the deep-water ports of Houston (10th largest in the world), Texas City and Galveston. These vessels (primarily tankers and bulkers) discharged ≈ 1.2 × 10(8) metrictons of ballast water; equivalent to ≈ 3.4% of the total volume of the Bay. Over half of the ballast water discharged had a coastwise origin, 96% being from US waters. Galveston Bay has fewer non-indigenous species but receives a higher volume of ballast water discharge, relative to the highly invaded Chesapeake and San Francisco Bays. Given the magnitude of shipping traffic, the role of Galveston Bay, both as a recipient and donor region of non-indigenous phytoplankton species is discussed here in terms of the invasibility risk to this system by way of ballast water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Distribution of phytoplankton along an environmental gradient off Kakinada, East Coast of India.

    Digital Repository Service at National Institute of Oceanography (India)

    Ayajuddin, M.; Pandiyarajan, R.S.; Ansari, Z.A.

    (1991) 23-35 3 Buzzi F. Phytoplankton assemblages in two sub-basin of Lake Como. J. Limnol., 61 (2002) 117-128 4 Rey P A, Taylor J C, Lass A, Hensburg L & Vosloo A. Determining the possible application value of diatoms as indicators of general... in the western Bay of Bengal during the northeast monsoon, J. Geophys. Res. 101 (1996) 14011–14025. 15 Naqvi S W A, DeSouza S N & Reddy C V G. Relationship between nutrients and dissolved oxygen with special reference to water masses in western Bay of Bengal...

  7. Effects of Nutrient Dynamics, Light and Temperature on the Patchiness of Phytoplankton and Primary Production in the Estuarine and Coastal Zones of Liaodong Bay, China: A Typical Case Study

    Science.gov (United States)

    Pei, S.; Laws, E. A.; Ye, S.

    2017-12-01

    Fluvial inputs of nutrients and efficient nutrient recycling mechanisms make estuarine and coastal zones highly productive bodies of water. For the same reasons, they are susceptible to eutrophication problems. In China, eutrophication problems along coasts are becoming serious because of discharges of domestic sewage and industrial wastewater and runoff of agricultural fertilizer. Addressing these problems requires an informed assessment of the factors that controlling algal production. Our study aims at determining the factors that controlling patchiness of phytoplankton and primary production in Liaodong Bay, China that receives large inputs of nutrients from human activities in its watershed, and examining the variation patterns of phytoplankton photosynthesis under both stressors of climate change and human activities. Results of our field study suggest that nutrient concentrations were above growth-rate-saturating concentrations throughout Liaodong bay, with the possible exception of phosphate at some stations. This assessment was consistent with the results of nutrient enrichment experiments and the values of light-saturated photosynthetic rates and areal photosynthetic rates. Two large patches of high biomass and production with dimensions on the order of 10 km reflect the effects of water temperature and variation of light penetration restricted by water turbidity. To examine the effects of irradiance and temperature on light-saturated photosynthetic rates normalized to chlorophyll a concentrations (Popt), light-conditioned Popt values were modeled as a function of the temperature with a satisfactory fit to our field data (R2 = 0.60, p = 0.003). In this model, light-conditioned Popt values increased with temperatures from 22°C to roughly 25°C but declined precipitously at higher temperatures. The relatively high Popt values and low ratios of light absorbed to photosynthesis at coastal stations suggest the highly efficient usage of absorbed light by

  8. Assessing triclosan-induced ecological and trans-generational effects in natural phytoplankton communities: a trait-based field method.

    Science.gov (United States)

    Pomati, Francesco; Nizzetto, Luca

    2013-07-01

    We exposed replicated phytoplankton communities confined in semi-permeable membrane-based mesocosms to 0, 0.1, 1 and 10 μg L(-1) triclosan (TCS) and placed them back in their original environment to investigate the occurrence of trans-generational responses at individual, population and community levels. TCS diffused out of mesocosms with a half-life of less than 8 h, so that only the parental generation was directly stressed. At the beginning of the experiment and after 7 days (approximately 2 generations) we analysed responses in the phytoplankton using scanning flow-cytometry. We acquired information on several individually expressed phenotypic traits, such as size, biovolume, pigment fluorescence and packaging, for thousands of individuals per replicated population and derived population and community aggregated traits. We found significant changes in community functioning (increased productivity in terms of biovolume and total fluorescence), with maximal effects at 1 μg L(-1) TCS. We detected significant and dose-dependent responses on population traits, such as changes in abundance for several populations, increased average size and fluorescence of cells, and strong changes in within-population trait mean and variance (suggesting micro-evolutionary effects). We applied the Price equation approach to partition community effects (changes in biovolume or fluorescence) in their physiological and ecological components, and quantified the residual component (including also evolutionary responses). Our results suggested that evolutionary or inheritable phenotypic plasticity responses may represent a significant component of the total observed change following exposure and over relatively small temporal scales.

  9. Strategy of Developing Tomini Bay for Economic Growth of Coastal Community in Central Sulawesi

    Directory of Open Access Journals (Sweden)

    Muzakir Muzakir

    2016-06-01

    Full Text Available This research aims to analyze the potential and the strategy of developing Tomini Bay to improve the economic growth of the coastal community in Central Sulawesi. The research is located in four regencies in Central Sulawesi. The method uses the descriptive analysis using SWOT analysis. The research result shows that the potential of fisheries resources in Poso Regency, Parigi Moutong Regency, Tojo Una-Una Regency, and Banggai Regency can support the development of Tomini Bay region based on fisheries in order to accelerate the economic growth of coastal communities in Central Sulawesi. The potential fishery resources that can support the development of Tomini Bay area are the potential of fisheries, marine and coastal infrastructure, social economy and geographic conditions in four regencies. The strategies are building the marketing network for fishery products both the catching and cultivation, improving the fishery human resouce capacity, controlling the fishery product quality, and increasing the social awareness to maintain the ecosystem sustainability. To optimize the utilization of Tomini Bay, it is suggested to improve the involvement of the regional government, the central government, and also the private sector and the whole community.

  10. Identification of ecological thresholds from variations in phytoplankton communities among lakes: contribution to the definition of environmental standards.

    Science.gov (United States)

    Roubeix, Vincent; Danis, Pierre-Alain; Feret, Thibaut; Baudoin, Jean-Marc

    2016-04-01

    In aquatic ecosystems, the identification of ecological thresholds may be useful for managers as it can help to diagnose ecosystem health and to identify key levers to enable the success of preservation and restoration measures. A recent statistical method, gradient forest, based on random forests, was used to detect thresholds of phytoplankton community change in lakes along different environmental gradients. It performs exploratory analyses of multivariate biological and environmental data to estimate the location and importance of community thresholds along gradients. The method was applied to a data set of 224 French lakes which were characterized by 29 environmental variables and the mean abundances of 196 phytoplankton species. Results showed the high importance of geographic variables for the prediction of species abundances at the scale of the study. A second analysis was performed on a subset of lakes defined by geographic thresholds and presenting a higher biological homogeneity. Community thresholds were identified for the most important physico-chemical variables including water transparency, total phosphorus, ammonia, nitrates, and dissolved organic carbon. Gradient forest appeared as a powerful method at a first exploratory step, to detect ecological thresholds at large spatial scale. The thresholds that were identified here must be reinforced by the separate analysis of other aquatic communities and may be used then to set protective environmental standards after consideration of natural variability among lakes.

  11. Phytoplankton community characteristics of the icebound season ...

    African Journals Online (AJOL)

    The taxonomic structure and spatial variability of phytoplankton abundance in the icebound season was obtained from the Zhalong Wetland. A total of 109 taxa were identified in all samples, 92 taxa occurring in at least two samples or the percentages over 1% in at least one sample were utilized in further study. The algal ...

  12. Community-based observations on sustainable development in southern Hudson Bay

    International Nuclear Information System (INIS)

    Arragutainaq, L.; Fleming, B.

    1991-01-01

    Inuit residents of the Belcher Islands in Hudson Bay practice sustainable development over a wide region, and are heavily dependent on fish and wildlife for food. Large-scale hydroelectric developments on rivers emptying into Hudson Bay and James Bay threaten both the environment and the traditional economy and culture of those residents. The main focus of concern is the James Bay hydroelectric project, part 1 of which (La Grande) is now operational. In addition, hydroelectric projects in Manitoba and Ontario may also affect the region. The residents feel that the subdivision of each project into components, each subject to a separate environmental review and assessment, works in favor of the project proponents and does not address the issues of interest to those affected by the project. Neither does such a review process address questions related to the cumulative development of many projects over a long term. The Belcher Islands are remote from the territorial and national governments, neither of which seem to be giving the James Bay developments as much attention as seems necessary. The island community has identified its primary ecological concerns on part 2 of the James Bay project and presented them at a public hearing. These concerns include the long-term impacts of the project on the marine environment and the kinds of compensation, if any, for such impacts. 7 refs., 2 figs

  13. The Effect of ENSO on Phytoplankton Composition in the Pacific Ocean

    Science.gov (United States)

    Rousseaux, Cecile

    2012-01-01

    The effect of climate variability on phytoplankton communities was assessed for the tropical and sub-tropical Pacific Ocean between 1998 and 2005 using an established biogeochemical assimilation model. The phytoplankton communities exhibited wide range of responses to climate variability, from radical shifts in the Equatorial Pacific, to changes of only a couple of phytoplankton groups in the North Central Pacific, to no significant changes in the South Pacific. In the Equatorial Pacific, climate variability dominated the variability of phytoplankton. Here, nitrate, chlorophyll and all but one of the 4 phytoplankton types (diatoms, cyanobacteria and coccolithophores) were strongly correlated (p less than 0.01) with the Multivariate El Nino Southern Oscillation Index (MEI). In the North Central Pacific, MEI and chlorophyll were significantly (pphytoplankton groups (chlorophytes and coccolithophores). Ocean biology in the South Pacific was not significantly correlated with MEI. During La Ni a events, diatoms increased and expanded westward along the cold tongue (correlation with MEI, r=-0.81), while cyanobacteria concentrations decreased significantly (r=0.78). El Nino produced the reverse pattern, with cyanobacteria populations increasing while diatoms plummeted. The diverse response of phytoplankton in the different major basins of the Pacific suggests the different roles climate variability can play in ocean biology.

  14. Using photopigment biomarkers to quantify sub-lethal effects of petroleum pollution on natural phytoplankton assemblages

    International Nuclear Information System (INIS)

    Swistak, J.; Pinckney, J.; Piehler, M.; Paerl, H.

    1995-01-01

    Although much work has been undertaken to determine the toxicity of petroleum pollutants to phytoplankton, most studies have used pure cultures to monitor growth of selected phytoplankton species. Fewer have considered the net effect on entire microalgal communities. Using high performance liquid chromatography (HPLC) to characterize diagnostic microalgal pigments, the authors were able to simultaneously assess sub-lethal pollutant effects on entire communities as well as on individual phytoplankton functional groups. Incubations of natural water samples with diesel fuel, an important contributor to coastal petroleum pollution, revealed significant changes in photopigments and relative abundance of taxonomic groups at sub-lethal concentrations. Differential rates of change of indicator pigment concentrations suggest a range of sensitivity among phytoplankton groups. In preliminary experiments, cyanobacteria exhibited the greatest overall tolerance to the diesel fuel concentrations tested, while cryptomonads displayed the most sensitivity. The authors are currently evaluating the responses of seasonal phytoplankton populations from 3 sites exposed to varied levels of petroleum pollution. HPLC will be used to characterize phytoplankton populations and to determine if the most abundant groups are also the most tolerant of diesel fuel. Preliminary experiments indicate that diesel fuel pollution may modify the structure and function of phytoplankton communities and subsequently alter the trophodynamics of impacted systems

  15. Five Years of Experimental Warming Increases the Biodiversity and Productivity of Phytoplankton

    Science.gov (United States)

    Yvon-Durocher, Gabriel; Allen, Andrew P.; Cellamare, Maria; Dossena, Matteo; Gaston, Kevin J.; Leitao, Maria; Montoya, José M.; Reuman, Daniel C.; Woodward, Guy; Trimmer, Mark

    2015-01-01

    Phytoplankton are key components of aquatic ecosystems, fixing CO2 from the atmosphere through photosynthesis and supporting secondary production, yet relatively little is known about how future global warming might alter their biodiversity and associated ecosystem functioning. Here, we explore how the structure, function, and biodiversity of a planktonic metacommunity was altered after five years of experimental warming. Our outdoor mesocosm experiment was open to natural dispersal from the regional species pool, allowing us to explore the effects of experimental warming in the context of metacommunity dynamics. Warming of 4°C led to a 67% increase in the species richness of the phytoplankton, more evenly-distributed abundance, and higher rates of gross primary productivity. Warming elevated productivity indirectly, by increasing the biodiversity and biomass of the local phytoplankton communities. Warming also systematically shifted the taxonomic and functional trait composition of the phytoplankton, favoring large, colonial, inedible phytoplankton taxa, suggesting stronger top-down control, mediated by zooplankton grazing played an important role. Overall, our findings suggest that temperature can modulate species coexistence, and through such mechanisms, global warming could, in some cases, increase the species richness and productivity of phytoplankton communities. PMID:26680314

  16. Influence of river influx on phytoplankton community during fall inter–monsoon in the coastal waters off Kakinada, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sooria, P.M.; Reny, P.D.; Jagadeesan, L.; Nair, M.

    of phytoplankton species abundance showed two well separated clusters (similarity less than or equal to 10%) for 2006 and 2007. It reveals the variation in community structure between the two periods of observation. Multidimensional scaling of species abundance...

  17. Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): Iron biogeochemistry

    NARCIS (Netherlands)

    Gerringa, L.J.A.; Alderkamp, A.C.; Laan, P.; Thuróczy, C.E.; de Baar, H.J.W.; Mills, M.M.; van Dijken, G.L.; van Haren, H.; Arrigo, K.R.

    2012-01-01

    Dissolved iron (DFe) and total dissolvable Fe (TDFe) were measured in January-February 2009 in Pine Island Bay, as well as in the Pine Island and Amundsen polynyas (Amundsen Sea, Southern Ocean). Iron (Fe) has been shown to be a limiting nutrient for phytoplankton growth, even in the productive

  18. Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean) : Iron biogeochemistry

    NARCIS (Netherlands)

    Gerringa, Loes J. A.; Alderkamp, Anne-Carlijn; Laan, Patrick; Thuroczy, Charles-Edouard; De Baar, Hein J. W.; Mills, Matthew M.; van Dijken, Gert L.; van Haren, Hans; Arrigo, Kevin R.

    2012-01-01

    Dissolved iron (DFe) and total dissolvable Fe (TDFe) were measured in January-February 2009 in Pine Island Bay, as well as in the Pine Island and Amundsen polynyas (Amundsen Sea, Southern Ocean). Iron (Fe) has been shown to be a limiting nutrient for phytoplankton growth, even in the productive

  19. Metagenomic evidence for reciprocal particle exchange between the mainstem estuary and lateral bay sediments of the lower Columbia River

    Directory of Open Access Journals (Sweden)

    Mariya W Smith

    2015-10-01

    Full Text Available Lateral bays of the lower Columbia River estuary are areas of enhanced water retention that influence net ecosystem metabolism through activities of their diverse microbial communities. Metagenomic characterization of sediment microbiota from three disparate sites in two brackish lateral bays (Baker and Youngs produced approximately 100 Gbp of DNA sequence data analyzed subsequently for predicted SSU rRNA and peptide-coding genes. The metagenomes were dominated by Bacteria. A large component of Eukaryota was present in Youngs Bay samples, i.e. the inner bay sediment was enriched with the invasive New Zealand mudsnail, Potamopyrgus antipodarum, known for high ammonia production. The metagenome was also highly enriched with an archaeal ammonia oxidizer closely related to Nitrosoarchaeum limnia. Combined analysis of sequences and continuous, high-resolution time series of biogeochemical data from fixed and mobile platforms revealed the importance of large-scale reciprocal particle exchanges between the mainstem estuarine water column and lateral bay sediments. Deposition of marine diatom particles in sediments near Youngs Bay mouth was associated with a dramatic enrichment of Bacteroidetes (58% of total Bacteria and corresponding genes involved in phytoplankton polysaccharide degradation. The Baker Bay sediment metagenome contained abundant Archaea, including diverse methanogens, as well as functional genes for methylotrophy and taxonomic markers for syntrophic bacteria, suggesting that active methane cycling occurs at this location. Our previous work showed enrichments of similar anaerobic taxa in particulate matter of the mainstem estuarine water column. In total, our results identify the lateral bays as both sources and sinks of biogenic particles significantly impacting microbial community composition and biogeochemical activities in the estuary.

  20. Soil Microbial Community Structure Evolution along Halophyte Succession in Bohai Bay Wetland

    Directory of Open Access Journals (Sweden)

    Mingyang Cong

    2014-01-01

    Full Text Available It is urgent to recover Bohai Bay costal wetland ecosystem because of covering a large area of severe saline-alkali soil. To explore the relationship between halophyte herbaceous succession and microbial community structure, we chose four local communities which played an important role in improving soil microenvironment. We performed phospholipid fatty acid analysis, measured soil parameters, and evaluated shifts of microbial community structure. Results showed that microbial community structure changed significantly along succession and bacteria community was dominant. Total phospholipid fatty acid content increased in different successional stages but decreased with depth, with similar variations in bacterial and fungal biomass. Soil organic carbon and especially total nitrogen were positively correlated with microbial biomass. Colonization of pioneering salt-tolerant plants Suaeda glauca in saline-alkali bare land changed total soil microorganism content and composition. These results showed that belowground processes were strongly related with aboveground halophyte succession. Fungal/bacterial ratio, Gram-negative/Gram-positive bacteria ratio, total microbial biomass, and fungi and bacteria content could indicate the degree of succession stages in Bohai Bay wetland ecosystem. And also these findings demonstrated that microbial community biomass and composition evolved along with vegetation succession environmental variables.

  1. Interactive effect of temperature and CO2 increase in Arctic phytoplankton

    Directory of Open Access Journals (Sweden)

    Alexandra eCoello-Camba

    2014-10-01

    Full Text Available An experiment was performed in order to analyze the effects of the increase in water temperature and CO2 partial pressure expected for the end of this century in a present phytoplankton community inhabiting the Arctic Ocean. We analyzed both factors acting independently and together, to test possible interactions between them. The arctic planktonic community was incubated under 6 different treatments combining three experimental temperatures (1 ºC, 6 ºC and 10 ºC with two different CO2 levels of 380 ppm or 1000 ppm, at the UNIS installations in Longyearbyen (Svalbard, in summer 2010. Under warmer temperatures, a decrease in chlorophyll a concentration, biovolume and primary production was found, together with a shift in community structure towards a dominance of smaller cells (nano-sized. Effects of increased pCO2 were more modest, and although interactions were weak, our results suggest antagonistic interactive effects amongst increased temperature and CO2 levels, as elevated CO2 compensated partially the decrease in phytoplankton biomass induced by temperature in some groups. Interactions between the two stressors were generally weak, but elevated CO2 was observed to lead to a stepper decline in primary production with warming. Our results also suggest that future increases in water temperature and pCO2 would lead to a decrease in the community chl a concentration and biomass in the Arctic phytoplankton communities examined, leading to communities dominated by smaller nano-phytoplankton groups, with important consequences for the flow of carbon and food web dynamics.

  2. Extensive Chaetoceros curvisetus bloom in relation to water quality in Port Blair Bay, Andaman Islands.

    Science.gov (United States)

    Begum, Mehmuna; Sahu, Biraja Kumar; Das, Apurba Kumar; Vinithkumar, Nambali Valsalan; Kirubagaran, Ramalingam

    2015-05-01

    Blooming of diatom species Chaetoceros curvisetus (Cleve, 1889) was observed in Junglighat Bay and Haddo Harbour of Port Blair Bay of Andaman and Nicobar Islands during June 2010. Physico-chemical parameters, nutrient concentrations and phytoplankton composition data collected from five stations during 2010 were classified as bloom area (BA) and non-bloom area (NBA) and compared. Elevated values of dissolved oxygen were recorded in the BA, and it significantly varied (p NBA. Among the nutrient parameters studied, nitrate concentration indicated significant variation in BA and NBA (p NBA, indicating its utilization. In Junglighat Bay, the C. curvisetus species constituted 93.4 and 69.2% composition of total phytoplankton population during day 1 and day 2, respectively. The bloom forming stations separated out from the non-bloom forming station in non-parametric multidimensional scaling (nMDS) ordinations; cluster analysis powered by SIMPROF test also grouped the stations as BA and NBA.

  3. Realized niches explain spatial gradients in seasonal abundance of phytoplankton groups in the South China Sea

    Science.gov (United States)

    Xiao, Wupeng; Wang, Lei; Laws, Edward; Xie, Yuyuan; Chen, Jixin; Liu, Xin; Chen, Bingzhang; Huang, Bangqin

    2018-03-01

    A basic albeit elusive goal of ocean science is to predict the structure of biological communities from the multitude of environmental conditions they experience. Estimates of the realized niche-based traits (realized traits) of phytoplankton species or functional groups in temperate seas have shown that response traits can help reveal the mechanisms responsible for structuring phytoplankton communities, but such approaches have not been tested in tropical and subtropical marginal seas. Here, we used decadal-scale studies of pigment-based phytoplankton groups and environmental conditions in the South China Sea to test whether realized traits could explain the biogeographic patterns of phytoplankton variability. We estimated the mean and breadth of the phytoplankton realized niches based on responses of the group-specific phytoplankton composition to key environmental factors, and we showed that variations of major phytoplankton groups in this system can be explained by different adaptive trade-offs to constraints imposed by temperature, irradiance, and nutrient concentrations. Differences in the patterns of trade-offs clearly separated the dominant groups from one another and generated four sets of realized traits that mirrored the observed biogeographic distribution patterns. The phytoplankton realized niches and their associated traits that we characterized in the present study could help to predict responses of phytoplankton to changes in environmental conditions in the South China Sea and could be incorporated into global biogeochemical models to anticipate shifts in community structure under future climate scenarios.

  4. Phytoplankton growth, dissipation, and succession in estuarine environments. Renewal proposal and annual summary report, August 1, 1977--July 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Seliger, H H

    1978-01-01

    The directions of the research program in understanding the dynamics of the natural phytoplankton populations of the Chesapeake Bay, the methodology, the statistical analysis, and the description of the system are parallel to the requirements for environmental impact studies. Results are reported for the following studies: development of instrumentation and the synoptic isopleth methodology for relating the dynamic distributions of natural phytoplankton populations to water circulation patterns; phytoplankton cage experiments for assessment of nutrient dynamics; sub-lethal concentrations and effects of polycyclic aromatic hydrocarbons; and studies on concentration and time kinetics of induction of liver aryl hydrocarbon hydroxylase system in Fundulus heteroclitus by benzopyrene and 3-methyl cholanthrene. (HLW)

  5. Interactive Effect of UVR and Phosphorus on the Coastal Phytoplankton Community of the Western Mediterranean Sea: Unravelling Eco-Physiological Mechanisms.

    Directory of Open Access Journals (Sweden)

    Presentación Carrillo

    Full Text Available Some of the most important effects of global change on coastal marine systems include increasing nutrient inputs and higher levels of ultraviolet radiation (UVR, 280-400 nm, which could affect primary producers, a key trophic link to the functioning of marine food webs. However, interactive effects of both factors on the phytoplankton community have not been assessed for the Mediterranean Sea. An in situ factorial experiment, with two levels of ultraviolet solar radiation (UVR+PAR vs. PAR and nutrients (control vs. P-enriched, was performed to evaluate single and UVR×P effects on metabolic, enzymatic, stoichiometric and structural phytoplanktonic variables. While most phytoplankton variables were not affected by UVR, dissolved phosphatase (APAEX and algal P content increased in the presence of UVR, which was interpreted as an acclimation mechanism of algae to oligotrophic marine waters. Synergistic UVR×P interactive effects were positive on photosynthetic variables (i.e., maximal electron transport rate, ETRmax, but negative on primary production and phytoplankton biomass because the pulse of P unmasked the inhibitory effect of UVR. This unmasking effect might be related to greater photodamage caused by an excess of electron flux after a P pulse (higher ETRmax without an efficient release of carbon as the mechanism to dissipate the reducing power of photosynthetic electron transport.

  6. Human-induced river runoff overlapping natural climate variability over the last 150 years: Palynological evidence (Bay of Brest, NW France)

    Science.gov (United States)

    Lambert, Clément; Penaud, Aurélie; Vidal, Muriel; Klouch, Khadidja; Gregoire, Gwendoline; Ehrhold, Axel; Eynaud, Frédérique; Schmidt, Sabine; Ragueneau, Olivier; Siano, Raffaele

    2018-01-01

    For the first time a very high resolution palynological study (mean resolution of 1 to 5 years) was carried out over the last 150 years in a French estuarine environment (Bay of Brest; NW France), allowing direct comparison between the evolution of landscapes, surface water, and human practices on Bay of Brest watersheds, through continental (especially pollen grains) and marine (phytoplanktonic microalgae: cysts of dinoflagellates or dinocysts) microfossils. Thanks to the small size of the watersheds and the close proximity of the depositional environment to the mainland, the Bay of Brest represents an ideal case study for palynological investigations. Palynological data were then compared to published palaeo-genetic analyses conducted on the same core and to various available instrumental data, allowing us to better characterize past environmental variability since the second half of the 19th century in Western Brittany. We provide evidence of some clues of recent eutrophication and/or pollution that affected phytoplankton communities and which appears linked with increased runoff (higher precipitations, higher percentages of riparian forest pollen, decline of salt marsh-type indicators, and higher values of the XRF Ti/Ca signal), mainly explained by the evolution of agricultural practices since 1945 superimposed on the warming climate trend. We assume that the significant relay observed between dinocyst taxa: Lingulodinium machaerophorum and Spiniferites bentorii around 1965 then followed by Spiniferites membranaceus after 1985, attests to a strong and recent eutrophication of Bay of Brest surface waters induced by high river runoff combined with abnormally elevated air temperatures, especially obvious in the data from 1990. The structure of the dinocyst community has thus been deeply altered, accompanied by an unprecedented increase of Alexandrium minutum toxic form at the same period, as confirmed by the genetic quantification. Despite this recent major

  7. Seasonal variation of absorption by particles and colored dissolved organic matter (CDOM) in Funka Bay, southwestern Hokkaido, Japan

    Science.gov (United States)

    Sasaki, Hiroaki; Miyamura, Tsuyoshi; Saitoh, Sei-ichi; Ishizaka, Joji

    2005-08-01

    Between November 2000 and October 2001, the seasonal variation in absorption by particles (phytoplankton and detritus) and colored dissolved organic matter (CDOM) was measured in Funka Bay (a subarctic coastal region of Japan). In autumn-winter, chlorophyll a concentration (Chl a) near the euphotic zone remained very low (summer and low during the spring bloom. This is because the package effect was greater during the spring bloom due to the presence of large diatoms, while small phytoplankton dominated during summer. Absorption at 440 nm by CDOM was higher than that of phytoplankton and detritus, except during the spring bloom, and the relative contribution of CDOM absorption to the total absorption coefficient was >50%. CDOM and detritus absorption did not increase with increasing Chl a, but it showed a time lag between the spring bloom. It is suggested that phytoplankton degradation started after the spring bloom; detritus absorption increased and, then, CDOM absorption increased. River runoff was not a significant influence in Funka Bay, therefore, CDOM production may be mainly related to microbial activity.

  8. An Improved DNA Extraction Method for Efficient and Quantitative Recovery of Phytoplankton Diversity in Natural Assemblages.

    Directory of Open Access Journals (Sweden)

    Jian Yuan

    Full Text Available Marine phytoplankton are highly diverse with different species possessing different cell coverings, posing challenges for thoroughly breaking the cells in DNA extraction yet preserving DNA integrity. While quantitative molecular techniques have been increasingly used in phytoplankton research, an effective and simple method broadly applicable to different lineages and natural assemblages is still lacking. In this study, we developed a bead-beating protocol based on our previous experience and tested it against 9 species of phytoplankton representing different lineages and different cell covering rigidities. We found the bead-beating method enhanced the final yield of DNA (highest as 2 folds in comparison with the non-bead-beating method, while also preserving the DNA integrity. When our method was applied to a field sample collected at a subtropical bay located in Xiamen, China, the resultant ITS clone library revealed a highly diverse assemblage of phytoplankton and other micro-eukaryotes, including Archaea, Amoebozoa, Chlorophyta, Ciliphora, Bacillariophyta, Dinophyta, Fungi, Metazoa, etc. The appearance of thecate dinoflagellates, thin-walled phytoplankton and "naked" unicellular organisms indicates that our method could obtain the intact DNA of organisms with different cell coverings. All the results demonstrate that our method is useful for DNA extraction of phytoplankton and environmental surveys of their diversity and abundance.

  9. Bacterial community transcription patterns during a marine phytoplankton bloom.

    Science.gov (United States)

    Rinta-Kanto, Johanna M; Sun, Shulei; Sharma, Shalabh; Kiene, Ronald P; Moran, Mary Ann

    2012-01-01

    Bacterioplankton consume a large proportion of photosynthetically fixed carbon in the ocean and control its biogeochemical fate. We used an experimental metatranscriptomics approach to compare bacterial activities that route energy and nutrients during a phytoplankton bloom compared with non-bloom conditions. mRNAs were sequenced from duplicate bloom and control microcosms 1 day after a phytoplankton biomass peak, and transcript copies per litre of seawater were calculated using an internal mRNA standard. Transcriptome analysis revealed a potential novel mechanism for enhanced efficiency during carbon-limited growth, mediated through membrane-bound pyrophosphatases [V-type H(+)-translocating; hppA]; bloom bacterioplankton participated less in this metabolic energy scavenging than non-bloom bacterioplankton, with possible implications for differences in growth yields on organic substrates. Bloom bacterioplankton transcribed more copies of genes predicted to increase cell surface adhesiveness, mediated by changes in bacterial signalling molecules related to biofilm formation and motility; these may be important in microbial aggregate formation. Bloom bacterioplankton also transcribed more copies of genes for organic acid utilization, suggesting an increased importance of this compound class in the bioreactive organic matter released during phytoplankton blooms. Transcription patterns were surprisingly faithful within a taxon regardless of treatment, suggesting that phylogeny broadly predicts the ecological roles of bacterial groups across 'boom' and 'bust' environmental backgrounds. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Why large cells dominate estuarine phytoplankton

    Science.gov (United States)

    Cloern, James E.

    2018-01-01

    Surveys across the world oceans have shown that phytoplankton biomass and production are dominated by small cells (picoplankton) where nutrient concentrations are low, but large cells (microplankton) dominate when nutrient-rich deep water is mixed to the surface. I analyzed phytoplankton size structure in samples collected over 25 yr in San Francisco Bay, a nutrient-rich estuary. Biomass was dominated by large cells because their biomass selectively grew during blooms. Large-cell dominance appears to be a characteristic of ecosystems at the land–sea interface, and these places may therefore function as analogs to oceanic upwelling systems. Simulations with a size-structured NPZ model showed that runs of positive net growth rate persisted long enough for biomass of large, but not small, cells to accumulate. Model experiments showed that small cells would dominate in the absence of grazing, at lower nutrient concentrations, and at elevated (+5°C) temperatures. Underlying these results are two fundamental scaling laws: (1) large cells are grazed more slowly than small cells, and (2) grazing rate increases with temperature faster than growth rate. The model experiments suggest testable hypotheses about phytoplankton size structure at the land–sea interface: (1) anthropogenic nutrient enrichment increases cell size; (2) this response varies with temperature and only occurs at mid-high latitudes; (3) large-cell blooms can only develop when temperature is below a critical value, around 15°C; (4) cell size diminishes along temperature gradients from high to low latitudes; and (5) large-cell blooms will diminish or disappear where planetary warming increases temperature beyond their critical threshold.

  11. Structure and composition of the phytoplanktonic community in TRanca Grande Lagoo (Junín, Perú

    Directory of Open Access Journals (Sweden)

    Mauro Mariano-Astocóndor

    2014-06-01

    Full Text Available The Tranca Grande lagoon is one of the systems where the truchiculture is realized, a productive activity which supports the lake since 1995. It is located in the Paramo floor or Tropical Montano in the Department of Junin, Province of Jauja to 4320 m of altitude (11º43’57?S and (75º13’18? W. The structure and composition of the superficial phytoplanktonic community was studied from monthly samples collected from January to December on 1996 in relation to 21 physical-chemical variables of water. The community showed 51 species belonging to Bacillariophyta, Chlorophyta, Cyanophyta, Euglenophyta, Chrysophyta and Pyrrophyta. The highest average values of density were from Gloeocystis gigas and Ulothrix sp. On the rainy months, the rain fall had a considerable influence on the dilution and sedimentation of the macronutrients responsible for the conductivity, alkalinity, hardness, calcium and magnesium which decrease their values, and likewise the values of the diversity and density decrease. In the period of low-water mark, the characteristics mentioned about rainy period appear on the inverse way. The quantity of species and their density on the phytoplankton were found with the Multiple Regression Analysis. a Species = 7,32+10,59 (The clearness of water - 0,1614 (hardness of calcium + 4,90 (nitrates. b Density = -1,00 + 4397,18 (pH - 223,6 (total alkalinity - 1,4 (phosphates

  12. Cell size dependence of additive versus synergetic effects of UV radiation and PAHs on oceanic phytoplankton

    International Nuclear Information System (INIS)

    Echeveste, Pedro; Agusti, Susana; Dachs, Jordi

    2011-01-01

    Polycyclic Aromatic Hydrocarbons' (PAHs) toxicity is enhanced by the presence of ultraviolet radiation (UVR), which levels have arisen due to the thinning of the ozone layer. In this study, PAHs' phototoxicity for natural marine phytoplankton was tested. Different concentrations of a mixture of 16 PAHs were added to natural phytoplankton communities from the Mediterranean Sea, Atlantic, Arctic and Southern Oceans and exposed to natural sunlight received in situ, including treatments where the UVR bands were removed. PAHs' toxicity was observed for all the phytoplankton groups studied in all the waters and treatments tested, but only for the pico-sized group a synergetic effect of the mixture and UVR was observed (p = 0.009). When comparing phototoxicity in phytoplankton from oligotrophic and eutrophic waters, synergy was only observed at the oligotrophic communities (p = 0.02) where pico-sized phytoplankton dominated. The degree of sensitivity was related to the trophic degree, decreasing as Chlorophyll a concentration increased. - Highlights: → The smallest picocyanobacteria were the most sensitive to PAHs and UVR. → PAHs-UVR synergism for the picophytoplankton and the oligotrophic communities. → PAHs-UVR additivity for the nanophytoplankton and the eutrophic communities. → An irradiance threshold is suggested to determine the joint action of UVR and PAHs. - Cell size and UVR levels determine additive/synergetic effects of PAHs and UVR to oceanic phytoplankton.

  13. Variability in the phytoplankton community of Kavaratti reef ecosystem (northern Indian Ocean) during peak and waning periods of El Niño 2016.

    Science.gov (United States)

    Karati, Kusum Komal; Vineetha, G; Madhu, N V; Anil, P; Dayana, M; Shihab, B K; Muhsin, A I; Riyas, C; Raveendran, T V

    2017-11-29

    El Niño, an interannual climate event characterized by elevated oceanic temperature, is a prime threat for coral reef ecosystems worldwide, owing to their thermal threshold sensitivity. Phytoplankton plays a crucial role in the sustenance of reef trophodynamics. The cell size of the phytoplankton forms the "master morphological trait" with implications for growth, resource acquisition, and adaptability to nutrients. In the context of a strong El Niño prediction for 2015-2016, the present study was undertaken to evaluate the variations in the size-structured phytoplankton of Kavaratti reef waters, a major coral atoll along the southeast coast of India. The present study witnessed a remarkable change in the physicochemical environment of the reef water and massive coral bleaching with the progression of El Niño 2015-2016 from its peak to waning phase. The fluctuations observed in sea surface temperature, pH, and nutrient concentration of the reef water with the El Niño progression resulted in a remarkable shift in phytoplankton size structure, abundance, and community composition of the reef waters. Though low nutrient concentration of the waning phase resulted in lower phytoplankton biomass and abundance, the diazotroph Trichodesmium erythraeum predominated the reef waters, owing to its capability of the atmospheric nitrogen fixation and dissolved organic phosphate utilization.

  14. Influence of the Yellow Sea Warm Current on phytoplankton community in the central Yellow Sea

    Science.gov (United States)

    Liu, Xin; Chiang, Kuo-Ping; Liu, Su-Mei; Wei, Hao; Zhao, Yuan; Huang, Bang-Qin

    2015-12-01

    In early spring, a hydrological front emerges in the central Yellow Sea, resulting from the intrusion of the high temperature and salinity Yellow Sea Warm Current (YSWC). The present study, applying phytoplankton pigments and flow cytometry measurements in March of 2007 and 2009, focuses on the biogeochemical effects of the YSWC. The nutrients fronts were coincident with the hydrological front, and a positive linear relationship between nitrate and salinity was found in the frontal area. This contrast with the common situation of coastal waters where high salinity values usually correlate with poor nutrients. We suggested nutrient concentrations of the YSWC waters might have been enhanced by mixing with the local nutrient-rich waters when it invaded the Yellow Sea from the north of the Changjiang estuary. In addition, our results indicate that the relative abundance of diatoms ranged from 26% to 90%, showing a higher value in the YSCC than in YSWC waters. Similar distributions were found between diatoms and dinoflagellates, however the cyanobacteria and prasinophytes showed an opposite distribution pattern. Good correlations were found between the pigments and flow cytometry observations on the picophytoplankton groups. Prasinophytes might be the major contributor to pico-eukaryotes in the central Yellow Sea as similar distributional patterns and significant correlations between them. It seems that the front separates the YSWC from the coastal water, and different phytoplankton groups are transported in these water masses and follow their movement. These results imply that the YSWC plays important roles in the distribution of nutrients, phytoplankton biomass and also in the community structure of the central Yellow Sea.

  15. Fish and phytoplankton exhibit contrasting temporal species abundance patterns in a dynamic north temperate lake.

    Directory of Open Access Journals (Sweden)

    Gretchen J A Hansen

    Full Text Available Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of "core" (common occurrence and high abundance and "occasional" (rare occurrence and low abundance species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions.

  16. Fish and Phytoplankton Exhibit Contrasting Temporal Species Abundance Patterns in a Dynamic North Temperate Lake

    Science.gov (United States)

    Hansen, Gretchen J. A.; Carey, Cayelan C.

    2015-01-01

    Temporal patterns of species abundance, although less well-studied than spatial patterns, provide valuable insight to the processes governing community assembly. We compared temporal abundance distributions of two communities, phytoplankton and fish, in a north temperate lake. We used both 17 years of observed relative abundance data as well as resampled data from Monte Carlo simulations to account for the possible effects of non-detection of rare species. Similar to what has been found in other communities, phytoplankton and fish species that appeared more frequently were generally more abundant than rare species. However, neither community exhibited two distinct groups of “core” (common occurrence and high abundance) and “occasional” (rare occurrence and low abundance) species. Both observed and resampled data show that the phytoplankton community was dominated by occasional species appearing in only one year that exhibited large variation in their abundances, while the fish community was dominated by core species occurring in all 17 years at high abundances. We hypothesize that the life-history traits that enable phytoplankton to persist in highly dynamic environments may result in communities dominated by occasional species capable of reaching high abundances when conditions allow. Conversely, longer turnover times and broad environmental tolerances of fish may result in communities dominated by core species structured primarily by competitive interactions. PMID:25651399

  17. Phytoplankton community responses to acidification of Lake 223, Experimental Lakes Area, Northwestern Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, D.L.; Kasian, S.E.

    1986-10-01

    From 1976 to 1983 the pH of Lake 223 was artificially lowered by additions of H/sub 2/SO/sub 4/. From an initial level of 6.7, the pH was lowered at a rate of 0.5 pH units a year until it reached 5.0 and was held there for 3 yr. The decrease in pH caused major changes in the epilimnetic phytoplankton community in this lake. Biomass increased as pH decreased. Chlorophyte (Chlorella) abundance increased as pH decreased from 6.1 to 5.6 while Cyanophytes (Merismopedia and Chroococcus) and dinoflagellates (Gymnodinium and Peridinium) dominated once pH decreased below 5.6. Community diversities decreased because of these species shifts and a decrease in the number of species. The amount of edible biomass increased as the pH decreased from 6.7 to 5.6, then declined as pH decreased to 5.0. 25 refs.

  18. Increasing phytoplankton-available phosphorus and inhibition of macrophyte on phytoplankton bloom.

    Science.gov (United States)

    Dai, Yanran; Wu, Juan; Ma, Xiaohang; Zhong, Fei; Cui, Naxin; Cheng, Shuiping

    2017-02-01

    We assembled mesocosms to address the coherent mechanisms that an increasing phosphorus (P) concentration in water columns coupled with the phytoplankton bloom and identify the performance gap of regulating phytoplankton growth between two macrophyte species, Ceratophyllum demersum L. and Vallisneria spiralis L. Intense alkaline phosphatase activities (APA) were observed in the unplanted control, with their predominant part, phytoplankton APA (accounting for up to 44.7% of the total APA), and another large share, bacterial APA. These correspond with the large average concentration of total phosphorus (TP), total dissolved phosphorus (TDP) and soluble reactive (SRP) as well as high phytoplankton density in the water column. The consistency among P concentrations, phytoplankton density and APA, together with the positive impact of phytoplankton density on total APA revealed by the structural equation modelling (SEM), indicates that facilitated APA levels in water is an essential strategy for phytoplankton to enhance the available P. Furthermore, a positive interaction between phytoplankton APA and bacteria APA was detected, suggesting a potential collaboration between phytoplankton and bacteria to boost available P content in the water column. Both macrophyte species had a prominent performance on regulating phytoplankton proliferation. The phytoplankton density and quantum yield in C. demersum systems were all significantly lower (33.8% and 24.0%) than those in V. spiralis systems. Additionally, a greater decoupling effect of C. demersum on the relationship between P, APA, phytoplankton density, bacteria dynamic and quantum yield was revealed by SEM. These results imply that the preferred tactic of different species could lead to the performance gap. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Phytoplankton distribution in three thermally different but edaphically similar reactor cooling reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E W

    1982-01-01

    Phytoplankton community structure and the physicochemical characteristics of three reactor cooling reservoirs in close proximity and of similar age and bottom type were studied during 1978. The three reservoirs differed in thermal alteration resulting from reactor cooling water as follows: (1) considerable heating with lake-wide temperatures >30/sup 0/C, even in winter; (2) a maximal 5/sup 0/C increase occurring in only one of three major arms of the reservoir; and (3) no thermal effluent received during the study period. Considerable spatial and temporal differences in water quality and phytoplankton community structure were observed; however, water temperature independent of other environmental factors (e.g., light and nutrients) was found to be a relatively unimportant variable for explaining phytoplankton periodicity.

  20. Phytoplankton distribution in three thermally different but edaphically similar reactor cooling reservoirs

    International Nuclear Information System (INIS)

    Wilde, E.W.

    1982-01-01

    Phytoplankton community structure and the physicochemical characteristics of three reactor cooling reservoirs in close proximity and of similar age and bottom type were studied during 1978. The three reservoirs differed in thermal alteration resulting from reactor cooling water as follows: (1) considerable heating with lake-wide temperatures >30 0 C, even in winter; (2) a maximal 5 0 C increase occurring in only one of three major arms of the reservoir; and (3) no thermal effluent received during the study period. Considerable spatial and temporal differences in water quality and phytoplankton community structure were observed; however, water temperature independent of other environmental factors (e.g., light and nutrients) was found to be a relatively unimportant variable for explaining phytoplankton periodicity

  1. Unravel the submesoscale dynamics of the phytoplanktonic community in the NW Mediterranean Sea by in situ observations: the 2015 OSCAHR cruise

    Science.gov (United States)

    Marrec, Pierre; Doglioli, Andrea M.; Grégori, Gérald; Della Penna, Alice; Wagener, Thibaut; Rougier, Gille; Bhairy, Nagib; Dugenne, Mathilde; Lahbib, Soumaya; Thyssen, Melilotus

    2017-04-01

    Submesoscale phenomena have been recently recognized as a key factor in physical-biological-biogeochemical interactions, even if it remains unclear how these processes affect the global state of the ocean. Significant large-scale impacts of submesoscale structures on primary production and influence on the phytoplankton community structure and diversity have also been reported. In the past decade submesoscale dynamics have been predominately studied through the analysis of numerical simulations. Observing the coupled physical and biogeochemical variability at this scale remains challenging due to the ephemeral nature of submesoscale structures. The in-situ study of such structures necessitates multidisciplinary approaches involving in situ observations, remote sensing and modeling. Last progresses in biogeochemical sensor development and advanced methodology including Lagrangian real-time adaptative strategies represent outstanding opportunities. The OSCAHR (Observing Submesoscale Coupling At High Resolution) campaign has been conducted thanks to a multidisciplinary approach in order to improve the understanding of submesoscale processes. An ephemeral submesoscale structure was first identified in the Ligurian Sea in fall 2015 using both satellite and numerical modeling data before the campaign. Afterwards, advanced observing systems for the physical, biological and biogeochemical characterization of the sea surface layer at a high spatial and temporal frequency were deployed during a 10-days cruise. A MVP (Moving Vessel Profiler) was used to obtain high resolution CTD profiles associated to a new pumping system with 1-m vertical resolution. Moreover, along the ship track, in addition to the standard measurements of seawater surface samples (Chl-a, nutrients, O2, SST, SSS …), we deployed an automated flow cytometer for near real-time characterization of phytoplankton functional groups (from micro-phytoplankton down to cyanobacteria). The observed submesoscale

  2. Phytoplankton growth and microzooplankton grazing in the subtropical Northeast Atlantic.

    Directory of Open Access Journals (Sweden)

    Carlos Cáceres

    Full Text Available Dilution experiments were performed to estimate phytoplankton growth and microzooplankton grazing rates during two Lagrangian surveys in inner and eastern locations of the Eastern North Atlantic Subtropical Gyre province (NAST-E. Our design included two phytoplankton size fractions (0.2-5 µm and >5 µm and five depths, allowing us to characterize differences in growth and grazing rates between size fractions and depths, as well as to estimate vertically integrated measurements. Phytoplankton growth rates were high (0.11-1.60 d(-1, especially in the case of the large fraction. Grazing rates were also high (0.15-1.29 d(-1, suggesting high turnover rates within the phytoplankton community. The integrated balances between phytoplankton growth and grazing losses were close to zero, although deviations were detected at several depths. Also, O2 supersaturation was observed up to 110 m depth during both Lagrangian surveys. These results add up to increased evidence indicating an autotrophic metabolic balance in oceanic subtropical gyres.

  3. Phytoplankton Growth and Microzooplankton Grazing in the Subtropical Northeast Atlantic

    Science.gov (United States)

    Cáceres, Carlos; Taboada, Fernando González; Höfer, Juan; Anadón, Ricardo

    2013-01-01

    Dilution experiments were performed to estimate phytoplankton growth and microzooplankton grazing rates during two Lagrangian surveys in inner and eastern locations of the Eastern North Atlantic Subtropical Gyre province (NAST-E). Our design included two phytoplankton size fractions (0.2–5 µm and >5 µm) and five depths, allowing us to characterize differences in growth and grazing rates between size fractions and depths, as well as to estimate vertically integrated measurements. Phytoplankton growth rates were high (0.11–1.60 d−1), especially in the case of the large fraction. Grazing rates were also high (0.15–1.29 d−1), suggesting high turnover rates within the phytoplankton community. The integrated balances between phytoplankton growth and grazing losses were close to zero, although deviations were detected at several depths. Also, O2 supersaturation was observed up to 110 m depth during both Lagrangian surveys. These results add up to increased evidence indicating an autotrophic metabolic balance in oceanic subtropical gyres. PMID:23935946

  4. Investigation of the biota of Burgas Bay, Black Sea

    Directory of Open Access Journals (Sweden)

    D. Klisarova

    2016-06-01

    Full Text Available Abstract. Burgas Bay is the largest one on the Bulgarian Black Sea coast. Industrial plants along the coast as well as ports for liquid and solid cargoes create conditions of anthropogenic pressure on hydrobionts in that area. Macrozoobenthos and phytoplankton samples were collected under a specific scheme in connection with the construction of the Burgas-Alexandroupolis oil pipeline, at stations located around the designated places for unloading tankers. During the study period (2009 – 2010, 88 phytoplankton species distributed in 13 classes were identified and over 50 species of benthic species distributed in four main groups: Polychaeta, Mollusca, Crustacea and the mixed group Diversa

  5. Dynamics of late spring and summer phytoplankton communities on Georges Bank, with emphasis on diatoms, Alexandrium spp., and other dinoflagellates

    Science.gov (United States)

    Gettings, Rachel M.; Townsend, David W.; Thomas, Maura A.; Karp-Boss, Lee

    2014-05-01

    We analyzed the distribution, abundance, and succession patterns of major phytoplankton taxa on Georges Bank in relation to hydrography, nutrients, and size-fractionated chlorophyll concentrations (>20 μm; Gymnodinium spp., and Prorocentrum spp., had become more abundant. Patches of regenerated silicate during the June-July period appeared to support a post-spring-bloom diatom community on the central crest of the Bank (total diatom cell densities >180,000 cellsl-1) of Leptocylindrus spp., Dactyliosolen spp., and Guinardia flaccida. Multivariate statistical analyses of phytoplankton taxa and station locations revealed distinct assemblages of diatom and dinoflagellate taxa on the Bank throughout the late spring and summer. Results are interpreted in the ecological context of earlier-reported laboratory culture experiments on the competitive interactions between Alexandrium fundyense and diatoms.

  6. Hydrobiological aspects of Paraibuna and Paraitinga dams. Sao Paulo, with emphasis on phytoplankton community

    International Nuclear Information System (INIS)

    Matos, Janara de Camargo

    2010-01-01

    The inland waters are less on the Earth's surface and are extremely important for the survival of living things, why the concern for quality increases daily. The dams Paraibuna and Paraitinga, located in Paraibuna city, state of Sao Paulo, totaling 224 km 2 of extension of water surface, with the current function of generating electricity. In order to analyze the water quality of these dams, this paper presents a diagnostic physical, chemical, and biological, which was used in the phytoplankton community and calculation of quality indexes. Four samples were taken at nine sampling points distributed along the dams. The physical and chemical analysis of water showed low concentrations of nutrients such as nitrate (mean 0,42 ± 0,23 mg.L -1 and phosphate ( -1 ). Most metals and trace elements analyzed were within the limit established by federal law. The element phosphorus (mean 0,0293 ± 0,0153 mg.L -1 ) is presented above the values established by CONAMA Resolution 357/05 (0,020 mg.L -1 ) on all sampling points in the month of May, but this fact did not seem to influence the phytoplankton amount. High levels of dissolved oxygen and transparency, low levels of turbidity, conductivity and dissolved solids, pH close to neutrality, together with high diversity and low dominance of phytoplankton, with a predominance of green algae, showed that the dams still retain features of aquatic environment preserved, which suffer little influence of anthropogenic factors. However, the presence, even at low densities, of cyanobacteria and the existence of plantations and livestock activities in the borders of these dams deserve special attention in terms of their correct management to not become harmful factors to the quality of those waters. (author)

  7. Iron from melting glaciers fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): Phytoplankton characteristics and productivity

    NARCIS (Netherlands)

    Alderkamp, A.C.; Mills, M.M.; van Dijken, G.L.; Laan, P.; Thuróczy, C.-E.; Gerringa, L.J.A.; de Baar, H.J.W.; Payne, C.D.; Visser, R.J.W.; Buma, A.G.J.; Arrigo, K.R.

    2012-01-01

    The phytoplankton community composition and productivity in waters of the Amundsen Sea and surrounding sea ice zone were characterized with respect to iron (Fe) input from melting glaciers. High Fe input from glaciers such as the Pine Island Glacier, and the Dotson and Crosson ice shelves resulted

  8. Impact of oil shale mine water discharges on phytoplankton community of Purtse catchment rivers

    International Nuclear Information System (INIS)

    Raetsep, A.; Rull, E.; Liblik, V.

    2002-01-01

    The multivariate relationship between phytoplankton abundance and different factors both natural and generated by oil shale mining in the Purtse catchment rivers (Purtse, Kohtla, and Ojamaa) in Augusts 1996-2000 was studied. Impact of oil shale mine water discharges, causing the input of sulfates and chlorides into the rivers, on phytoplankton abundance in river water was characterized by significant negative linear correlation. The amount of annual precipitation influenced positively the characteristics of phytoplankton abundance in river water. The complex of linear regression formulas was derived for characterising phytoplankton abundance in the lower course of the Purtse River using meteorological, hydrological and hydrogeological as well as geochemical data of water circulation. Closing the Sompa, Tammiku and Kohtla mines in 2000-2001 decreased essentially anthropogenic stress on ecological condition of the Purtse catchment rivers. (author)

  9. Ecological assessment of the macrophytes and phytoplankton in El-Rayah Al-Behery, River Nile, Egypt

    Directory of Open Access Journals (Sweden)

    Amany M. Haroon

    2017-09-01

    Full Text Available The present study aimed to assess the effect of ecological factors on distribution and species composition of macrophytes and phytoplankton communities at El-Rayah Al-Behery. Changes in the quantitative and qualitative composition of the macrophytes and phytoplankton communities were detected in relation to season and sampling site. A total of eleven macrophytes and 100 phytoplankton species were identified. Among the macrophytes, the emergent species Echinochloa stagnina was the most dominant and widely distributed. Phytoplankton community is fairly diverse, related to 7 classes, which contains 3 main classes: Bacillariophyceae (28 taxa, Chlorophyceae (33 taxa and Cyanophyceae (23 taxa. According to statistical analysis, occurrence of most macrophytes species were reversely affected by DO, COD, BOD and PO4; and closely correlated with NO2, NO3, Temp. and pH values. However, nitrogen and phosphorus are considered as limiting factors for bacillariohyceae growth (r = 0.7. Both temperature and pH have a positive effect on the growth of chlorophyceae (r = 0.9 and 0.8, respectively; while dissolved oxygen is an important parameter that affects on the growth of cyanphyceae (r = 0.8. In addition, existence of Myriophyllium spicatum was associated with increasing of bacillariohyceae and total phytoplankton density (r = 0.7. However, the presence of Polygonum tomentosum was intensely related with chlorophyceae (r = 0.9 and Potamogeton nodosus and Polygonum tomentosum were positively correlated with cyanphyceae. In conclusion, the investigated area was characterized by different taxonomic composition of macrophytes and phytoplankton communities, which varied as a result of changing in water physiochemical characteristics as well as the interaction between different species. Keywords: Ecological assessment, Phytoplankton, Macrophytes

  10. Icecolors '93: Beginnings of an antarctic phytoplankton and bacterial DNA library from southern ocean natural communities exposed to ultraviolet-B

    International Nuclear Information System (INIS)

    Jovine, R.V.M.; Prezelin, B.

    1994-01-01

    Springtime ozone depletion and the resultant increase in ultraviolet-B (UV-B) radiation [280-320 nanometers (nm)] have deleterious effects on primary productivity. To assess damage to cellular components other than the photosynthetic apparatus, we isolated total community DNA from samples in the field before, during, and after the 1993 springtime depletion in stratospheric ozone. The effort was motivated by the concern that the ozone-dependent increases in UV-B radiation may increase DNA damage within primary producers. This increase in damage could result in changes of species composition as well as hereditary changes within species that can influence the competitiveness of these organisms in their natural community. Previous studies have focused on DNA damage in isolated cultures of antarctic phytoplankton that were irradiated with UV-B under lab conditions. These studies clearly indicate variable species sensitivities to the increase in UV-B flux. These studies, however, did not resolve the question of whether such damage occurred in field samples collected from actively mixing, polyphyletic phytoplankton communities. Potential species composition changes and the resultant changes in the trophic dynamics cannot be interpreted in terms of DNA damage unless this damage can be documented in samples isolated under these dynamic natural conditions. 7 refs., 2 figs

  11. Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean

    KAUST Repository

    Coello-Camba, Alexandra

    2017-06-02

    Polar areas are experiencing the steepest warming rates on Earth, a trend expected to continue in the future. In these habitats, phytoplankton communities constitute the basis of the food web and their thermal tolerance may dictate how warming affects these delicate environments. Here, we compiled available data on thermal responses of phytoplankton growth in polar waters. We assembled 53 growth-vs.-temperature curves (25 from the Arctic, 28 from the Southern oceans), indicating the limited information available for these ecosystems. Half of the data from Arctic phytoplankton came from natural communities where low ambient concentrations could limit growth rates. Phytoplankton from polar waters grew faster under small temperature increases until reaching an optimum (TOPT), and slowed when temperatures increased beyond this value. This left-skewed curves were characterized by higher activation energies (Ea) for phytoplankton growth above than below the TOPT. Combining these thermal responses we obtained a community TOPT of 6.5°C (±0.2) and 5.2°C (±0.1) for Arctic and Southern Ocean phytoplankton communities, respectively. These threshold temperatures were already exceeded at 70°N during the first half of August 2013, evidenced by sea surface temperatures (SSTs, satellite data, http://www.ncdc.noaa.gov). We forecasted SSTs for the end of the twenty-first century by assuming an overall 3°C increase, equivalent to a low emission scenario. Our forecasts show that SSTs at 70°N are expected to exceed TOPT during summer by 2100, and during the first half of August at 75°N. While recent Arctic spring temperatures average 0.5°C and −0.7°C at 70°N and 75°N, respectively, they could increase to 2.8°C at 70°N and 2.2°C at 75°N as we approach 2100. Such temperature increases could lead to intense phytoplankton blooms, shortened by fast nutrient consumption. As SSTs increase, thermal thresholds for phytoplankton growth would be eventually exceeded during bloom

  12. Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean

    Directory of Open Access Journals (Sweden)

    Alexandra Coello-Camba

    2017-06-01

    Full Text Available Polar areas are experiencing the steepest warming rates on Earth, a trend expected to continue in the future. In these habitats, phytoplankton communities constitute the basis of the food web and their thermal tolerance may dictate how warming affects these delicate environments. Here, we compiled available data on thermal responses of phytoplankton growth in polar waters. We assembled 53 growth-vs.-temperature curves (25 from the Arctic, 28 from the Southern oceans, indicating the limited information available for these ecosystems. Half of the data from Arctic phytoplankton came from natural communities where low ambient concentrations could limit growth rates. Phytoplankton from polar waters grew faster under small temperature increases until reaching an optimum (TOPT, and slowed when temperatures increased beyond this value. This left-skewed curves were characterized by higher activation energies (Ea for phytoplankton growth above than below the TOPT. Combining these thermal responses we obtained a community TOPT of 6.5°C (±0.2 and 5.2°C (±0.1 for Arctic and Southern Ocean phytoplankton communities, respectively. These threshold temperatures were already exceeded at 70°N during the first half of August 2013, evidenced by sea surface temperatures (SSTs, satellite data, http://www.ncdc.noaa.gov. We forecasted SSTs for the end of the twenty-first century by assuming an overall 3°C increase, equivalent to a low emission scenario. Our forecasts show that SSTs at 70°N are expected to exceed TOPT during summer by 2100, and during the first half of August at 75°N. While recent Arctic spring temperatures average 0.5°C and −0.7°C at 70°N and 75°N, respectively, they could increase to 2.8°C at 70°N and 2.2°C at 75°N as we approach 2100. Such temperature increases could lead to intense phytoplankton blooms, shortened by fast nutrient consumption. As SSTs increase, thermal thresholds for phytoplankton growth would be eventually exceeded

  13. Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean

    KAUST Repository

    Coello-Camba, Alexandra; Agusti, Susana

    2017-01-01

    Polar areas are experiencing the steepest warming rates on Earth, a trend expected to continue in the future. In these habitats, phytoplankton communities constitute the basis of the food web and their thermal tolerance may dictate how warming affects these delicate environments. Here, we compiled available data on thermal responses of phytoplankton growth in polar waters. We assembled 53 growth-vs.-temperature curves (25 from the Arctic, 28 from the Southern oceans), indicating the limited information available for these ecosystems. Half of the data from Arctic phytoplankton came from natural communities where low ambient concentrations could limit growth rates. Phytoplankton from polar waters grew faster under small temperature increases until reaching an optimum (TOPT), and slowed when temperatures increased beyond this value. This left-skewed curves were characterized by higher activation energies (Ea) for phytoplankton growth above than below the TOPT. Combining these thermal responses we obtained a community TOPT of 6.5°C (±0.2) and 5.2°C (±0.1) for Arctic and Southern Ocean phytoplankton communities, respectively. These threshold temperatures were already exceeded at 70°N during the first half of August 2013, evidenced by sea surface temperatures (SSTs, satellite data, http://www.ncdc.noaa.gov). We forecasted SSTs for the end of the twenty-first century by assuming an overall 3°C increase, equivalent to a low emission scenario. Our forecasts show that SSTs at 70°N are expected to exceed TOPT during summer by 2100, and during the first half of August at 75°N. While recent Arctic spring temperatures average 0.5°C and −0.7°C at 70°N and 75°N, respectively, they could increase to 2.8°C at 70°N and 2.2°C at 75°N as we approach 2100. Such temperature increases could lead to intense phytoplankton blooms, shortened by fast nutrient consumption. As SSTs increase, thermal thresholds for phytoplankton growth would be eventually exceeded during bloom

  14. The relationship between phytoplankton distribution and water column characteristics in North West European shelf sea waters.

    Science.gov (United States)

    Fehling, Johanna; Davidson, Keith; Bolch, Christopher J S; Brand, Tim D; Narayanaswamy, Bhavani E

    2012-01-01

    Phytoplankton underpin the marine food web in shelf seas, with some species having properties that are harmful to human health and coastal aquaculture. Pressures such as climate change and anthropogenic nutrient input are hypothesized to influence phytoplankton community composition and distribution. Yet the primary environmental drivers in shelf seas are poorly understood. To begin to address this in North Western European waters, the phytoplankton community composition was assessed in light of measured physical and chemical drivers during the "Ellett Line" cruise of autumn 2001 across the Scottish Continental shelf and into adjacent open Atlantic waters. Spatial variability existed in both phytoplankton and environmental conditions, with clear differences not only between on and off shelf stations but also between different on shelf locations. Temperature/salinity plots demonstrated different water masses existed in the region. In turn, principal component analysis (PCA), of the measured environmental conditions (temperature, salinity, water density and inorganic nutrient concentrations) clearly discriminated between shelf and oceanic stations on the basis of DIN:DSi ratio that was correlated with both salinity and temperature. Discrimination between shelf stations was also related to this ratio, but also the concentration of DIN and DSi. The phytoplankton community was diatom dominated, with multidimensional scaling (MDS) demonstrating spatial variability in its composition. Redundancy analysis (RDA) was used to investigate the link between environment and the phytoplankton community. This demonstrated a significant relationship between community composition and water mass as indexed by salinity (whole community), and both salinity and DIN:DSi (diatoms alone). Diatoms of the Pseudo-nitzschia seriata group occurred at densities potentially harmful to shellfish aquaculture, with the potential for toxicity being elevated by the likelihood of DSi limitation of

  15. The relationship between phytoplankton distribution and water column characteristics in North West European shelf sea waters.

    Directory of Open Access Journals (Sweden)

    Johanna Fehling

    Full Text Available Phytoplankton underpin the marine food web in shelf seas, with some species having properties that are harmful to human health and coastal aquaculture. Pressures such as climate change and anthropogenic nutrient input are hypothesized to influence phytoplankton community composition and distribution. Yet the primary environmental drivers in shelf seas are poorly understood. To begin to address this in North Western European waters, the phytoplankton community composition was assessed in light of measured physical and chemical drivers during the "Ellett Line" cruise of autumn 2001 across the Scottish Continental shelf and into adjacent open Atlantic waters. Spatial variability existed in both phytoplankton and environmental conditions, with clear differences not only between on and off shelf stations but also between different on shelf locations. Temperature/salinity plots demonstrated different water masses existed in the region. In turn, principal component analysis (PCA, of the measured environmental conditions (temperature, salinity, water density and inorganic nutrient concentrations clearly discriminated between shelf and oceanic stations on the basis of DIN:DSi ratio that was correlated with both salinity and temperature. Discrimination between shelf stations was also related to this ratio, but also the concentration of DIN and DSi. The phytoplankton community was diatom dominated, with multidimensional scaling (MDS demonstrating spatial variability in its composition. Redundancy analysis (RDA was used to investigate the link between environment and the phytoplankton community. This demonstrated a significant relationship between community composition and water mass as indexed by salinity (whole community, and both salinity and DIN:DSi (diatoms alone. Diatoms of the Pseudo-nitzschia seriata group occurred at densities potentially harmful to shellfish aquaculture, with the potential for toxicity being elevated by the likelihood of DSi

  16. Effects of energy related activities on the plankton of the Chesapeake Bay. Section I. Work in progress. Progress report, 1 August 1975--31 July 1976

    International Nuclear Information System (INIS)

    Taft, J.L.

    1976-01-01

    Progress is reported on the following research projects: release of dissolved organic carbon by phytoplankton; plankton respiration and nutrient regeneration; bacterial utilization of labeled compounds; effects of heat and chlorine on natural assemblages of Chesapeake Bay phytoplankton; and nutrient flux between sediment and water

  17. FlowCam: Quantification and Classification of Phytoplankton by Imaging Flow Cytometry.

    Science.gov (United States)

    Poulton, Nicole J

    2016-01-01

    The ability to enumerate, classify, and determine biomass of phytoplankton from environmental samples is essential for determining ecosystem function and their role in the aquatic community and microbial food web. Traditional micro-phytoplankton quantification methods using microscopic techniques require preservation and are slow, tedious and very laborious. The availability of more automated imaging microscopy platforms has revolutionized the way particles and cells are detected within their natural environment. The ability to examine cells unaltered and without preservation is key to providing more accurate cell concentration estimates and overall phytoplankton biomass. The FlowCam(®) is an imaging cytometry tool that was originally developed for use in aquatic sciences and provides a more rapid and unbiased method for enumerating and classifying phytoplankton within diverse aquatic environments.

  18. Spatio-temporal patterns and predictions of phytoplankton assemblages in a subtropical river delta system

    DEFF Research Database (Denmark)

    Wang, Chao; Li, Xinhui; Wang, Xiangxiu

    2016-01-01

    Spatial and seasonal sampling within a subtropical river delta system, the Pearl River Delta (China), provided data to determine seasonal phytoplankton patterns and develop prediction models. The high nutrient levels and frequent water exchanges resulted in a phytoplankton community with greatest...

  19. Macroecological patterns in the distribution of marine phytoplankton

    DEFF Research Database (Denmark)

    Mousing, Erik Askov

    stratification limiting the flux of nutrients from the deep ocean). This affect has important implications for the global carbon cycle and should be included in future climate models. In manuscript II, changes in the mean cyst size of dinoflagellates are investigated in relation to temperature changes during...... production, biochemical cycling and have a direct impact on the global carbon cycle through the biological pump. Understanding the processes controlling phytoplankton primary production and community composition at the global scale and how these interact with climate change are, therefore, imperative...... to in situ abiotic conditions (primarily temperature, salinity, mixed layer dynamics and ambient nutrient concentrations) in order to elucidate the primary bottom-up processes that control phytoplankton communities. In order to do this, I investigate and present several data sets that have been assembled...

  20. Effect of stocking biomass on solids, phytoplankton communities, common off-flavors, and production parameters in a channel catfish biofloc technology production system

    Science.gov (United States)

    The effect of initial channel catfish (Ictalurus punctatus, Rafinesque, 1818) fingerling biomass (1.4, 1.8, or 2.3 kg m-3) on phytoplankton communities, common off-flavors, and stocker catfish production parameters was evaluated in biofloc technology production tanks. Stocker catfish size (145.5 – 1...

  1. Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types

    Directory of Open Access Journals (Sweden)

    M. Noguchi-Aita

    2011-02-01

    Full Text Available Error-quantified, synoptic-scale relationships between chlorophyll-a (Chl-a and phytoplankton pigment groups at the sea surface are presented. A total of ten pigment groups were considered to represent three Phytoplankton Size Classes (PSCs, micro-, nano- and picoplankton and seven Phytoplankton Functional Types (PFTs, i.e. diatoms, dinoflagellates, green algae, prymnesiophytes (haptophytes, pico-eukaryotes, prokaryotes and Prochlorococcus sp.. The observed relationships between Chl-a and PSCs/PFTs were well-defined at the global scale to show that a community shift of phytoplankton at the basin and global scales is reflected by a change in Chl-a of the total community. Thus, Chl-a of the total community can be used as an index of not only phytoplankton biomass but also of their community structure. Within these relationships, we also found non-monotonic variations with Chl-a for certain pico-sized phytoplankton (pico-eukaryotes, Prokaryotes and Prochlorococcus sp. and nano-sized phytoplankton (Green algae, prymnesiophytes. The relationships were quantified with a least-square fitting approach in order to enable an estimation of the PFTs from Chl-a where PFTs are expressed as a percentage of the total Chl-a. The estimated uncertainty of the relationships depends on both PFT and Chl-a concentration. Maximum uncertainty of 31.8% was found for diatoms at Chl-a = 0.49 mg m−3. However, the mean uncertainty of the relationships over all PFTs was 5.9% over the entire Chl-a range observed in situ (0.02 < Chl-a < 4.26 mg m−3. The relationships were applied to SeaWiFS satellite Chl-a data from 1998 to 2009 to show the global climatological fields of the surface distribution of PFTs. Results show that microplankton are present in the mid and high latitudes, constituting only ~10.9% of the entire phytoplankton community in the mean field for 1998–2009, in which diatoms explain ~7.5%. Nanoplankton are ubiquitous throughout the global surface oceans

  2. Changes in phytoplankton composition in response to tides, wind-induced mixing conditions, and freshwater outflows in an urbanised estuarine complex.

    Science.gov (United States)

    Moser, G A O; Ciotti, A M; Giannini, M F C; Tonini, R T; Harari, J

    2012-02-01

    Recent reports have shown an increase in potentially harmful phytoplankton in Santos bay (Southeastern Brazilian Coast), located in a highly urbanised estuarine complex. Prediction of blooms is, thus, essential but the phytoplankton community structure in very dynamic regions is difficult to determine. In the present work, we discriminate bloom forming microphytoplankton dominance and their relationship to physical and meteorological variables to look for patterns observed in different tides and seasons. Comparing 8 distinct situations, we found five scenarios of dominance that could be related to winds, tides and rainfall: i) Surfers, diatoms occurring during high surf zone energies; ii) Sinkers, represented by larger celled diatoms during spring tide, after periods of high precipitation rates; iii) Opportunistic mixers, composed of chain forming diatoms with small or elongate cells occurring during neap tides; iv) Local mixers, microplanktonic diatoms and dinoflagellates which occurred throughout the 298 sampling stations; and v) Mixotrophic dinoflagellates, after intense estuarine discharges. Results suggest alterations in the temporal patterns for some bloom-forming species, while others appeared in abundances above safe limits for public health. This approach can also illustrate possible impacts of changes in freshwater discharge in highly urbanised estuaries.

  3. Trace metal associations in the water column of South San Francisco Bay, California

    Science.gov (United States)

    Kuwabara, J.S.; Chang, Cecily C.Y.; Cloern, J.E.; Fries, T.L.; Davis, J.A.; Luoma, S.N.

    1989-01-01

    Spatial distributions of copper (Cu), zinc (Zn) and cadmium (Cd) were followed along a longitudinal gradient of dissolved organic carbon (DOC) in South San Francisco Bay (herein referred to as the South Bay). Dissolved Cu, Zn and Cd concentrations ranged from 24 to 66 nM, from 20 to 107 nM and from 1??2 to 4??7 nM, respectively, in samples collected on five dates beginning with the spring phytoplankton bloom and continuing through summer,1985. Dissolved Cu and Zn concentrations varied indirectly with salinity and directly with DOC concentration which ranged from 2??1 to 4??1 mg l-1. Available thermodynamic data strongly support the hypothesis that Cu speciation may be dominated by association with dissolved organic matter. Analogous control of Zn speciation by organic complexation was, however, not indicated in our computations. Computed free ion activity estimates for Cu, Zn and Cd were of the order of 10-10, 10-8 and 10-10 M, respectively. The availability of these metals may be among the factors regulating the growth of certain phytoplankton species within this region of the estuary. In contrast to dissolved Cu, dissolved Cd was directly related to the concentration of suspended particulate matter, suggesting a source of dissolved Cd coincident with elevated particle concentrations in the South Bay (e.g. runoff and solute desorption). Consistent with work in other estuaries, partitioning of all three trace metals onto suspended particulates was negatively correlated with salinity and positively correlated with increases in particulate organic carbon associated with the phytoplankton bloom. These results for the South Bay indicate that sorption processes influence dissolved concentrations of these trace metals, the degree of this influence varies among metals, and processes controlling metal distribution in this estuary appear to be more element-specific than spatially- or temporally-specific. ?? 1989.

  4. Saldanha Bay, South Africa I: the use of ocean colour remote ...

    African Journals Online (AJOL)

    The efficacy of ocean colour remote sensing in assessing the variability of phytoplankton biomass within Saldanha Bay is examined. Satellite estimates of chlorophyll a (Chl a) were obtained using the maximum peak-height (MPH) algorithm on full-resolution (300 m) data from the Medium Resolution Imaging Spectrometer ...

  5. Seasonal and inter-annual variability of the phytoplankton communities in an upwelling area of the Alborán Sea (SW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Jesús M. Mercado

    2005-12-01

    Full Text Available Temporal variability (seasonal and inter-annual in the assembly of phytoplankton communities from the northern Alborán Sea was investigated. For this purpose, the taxonomic composition of the micro- and nano-phytoplankton communities at three fixed stations was determined every three months from 1994 to 2002. A total of 357 different taxa were identified. Most of them (about 54% were diatom species belonging to 57 genera. Dinoflagellates and coccolitophorids accounted for 118 and 30 taxa respectively. Two time periods could be differentiated with respect to the cell abundance. Thus, the mean abundance from 1994 to 1999 was 338 cell ml-1 and it dropped to about 60 cell ml-1 during the period 2000-2002. Diatoms and un-identified small flagellates dominated the communities during this first period, although a significant increase in the abundance of coccolitophorids occurred after 1997. Pseudo-nitzschia, Leptocylindrus and Chaetoceros were the dominant genera. In contrast, the coccolitophorids Emiliania huxleyi and Gephyrocapsa spp. quantitatively dominated the communities from 2000 to 2002. These shifts in the community assembly were assessed by performing a sample-oriented stepwise discriminant analysis (SDA. The analysis separated the samples into three year-groups, with great inter-annual variability. In contrast, the SDA did not find any seasonal sucessional pattern. In spite of this result, chlorophyll a and cell abundance tended to be higher in the spring period, which has been described for the whole Alborán basin. The nutrient concentrations in the 75 m upper seawater layer had inter-annual fluctuations. Thus, NO3-+NO2-, PO4-3 and Si(OH4 concentrations decreased significantly in 1997-1998. Additionally, lower Si(OH4 concentrations and Si:P molar ratios were obtained in 2000. These results suggest that the inter-annual shifts in the phytoplankton taxonomic composition were due to alterations in the nutrient regime. In this paper we

  6. Reversal in the relationship between species richness and turnover in a phytoplankton community.

    Science.gov (United States)

    Matthews, Blake; Pomati, Francesco

    2012-11-01

    Negative relationships between species richness and the rate of compositional turnover are common, suggesting that diverse communities have greater stability than depauperate ones; however, the mechanistic basis for this pattern is still widely debated. Species richness and turnover can covary either because they are mechanistically linked or because they share common environmental drivers. Few empirical studies have combined long-term changes in community composition with multiple drivers of environmental change, and so little is known about how the underlying mechanisms of species coexistence interact with changes in the mean and variability of environmental conditions. Here, we use a 33 year long time series (1976-2008) of phytoplankton community composition from Lake Zurich, to examine how environmental variation influences the relationship between richness and annual turnover. We find that the relationship between richness and annual turnover reverses midway through the time series (1992-1993), leading to a hump-shaped relationship between species richness and annual turnover. Using structural equation modeling we show that annual turnover and diversity are independently associated with different drivers of environmental change. Furthermore, we find that the observed annual sequences of community assembly give rise to rates of species accumulation that are more heterogeneous through time than expected by chance, likely owing to a high proportion of species showing significant autocorrelation and to strong positive covariation in the occurrences of species.

  7. Response of the phytoplankton community to water quality in a local alpine glacial lake of Xinjiang Tianchi, China: potential drivers and management implications.

    Science.gov (United States)

    Lu, Xiaotian; Song, Shuai; Lu, Yonglong; Wang, Tieyu; Liu, Zhaoyang; Li, Qifeng; Zhang, Meng; Suriyanarayanan, Sarvajayakesavalu; Jenkins, Alan

    2017-10-18

    Eutrophication has become one of the most serious threats to aquatic ecosystems in the world. With the combined drivers of climate change and human activities, eutrophication has expanded from warm shallow lakes to cold-water lakes in relatively high latitude regions and has raised greater concerns over lake aquatic ecosystem health. A two-year field study was carried out to investigate water quality, phytoplankton characteristics and eutrophication status in a typical alpine glacial lake of Tianchi, a scenic area and an important drinking water source in the Xinjiang Autonomous Region of China, in 2014 and 2015. Clear seasonal and annual variations of nutrients and organic pollutants were found especially during rainy seasons. For the phytoplankton community, Bacillariophyta held the dominant position in terms of both species and biomass throughout the year, suggesting the dominant characteristics of diatoms in the phytoplankton structure in such a high-altitude cold-water lake. This was quite different from plain and warm lakes troubled with cyanobacterial blooming. Moreover, the dominant abundance of Cyclotella sp. in Tianchi might suggest regional warming caused by climate change, which might have profound effects on the local ecosystems and hydrological cycle. Based on water quality parameters, a comprehensive trophic level index TLI (Σ) was calculated to estimate the current status of eutrophication, and the results inferred emerging eutrophication in Tianchi. Results from Canonical Correspondence Analysis (CCA) and correlation analysis of phytoplankton genera and physico-chemical variables of water indicated that abiotic factors significantly influenced the phytoplankton community and its succession in Tianchi Lake. These abiotic factors could explain 77.82% of the total variance, and ammonium was identified as the most discriminant variable, which could explain 41% of the total variance followed by TP (29%). An estimation of annual nutrient loadings to

  8. Prokaryotic community composition involved production of nitrogen in sediments of Mejillones Bay

    International Nuclear Information System (INIS)

    Moraga, Ruben; Galan, Alexander; Rosello-Mora, Ramon; Araya, Ruben; Valdes, Jorge

    2014-01-01

    Conventional denitrification and anaerobic ammonium oxidation (anammox) contributes to nitrogen loss in oxygen-deficient systems, thereby influencing many aspects of ecosystem function and global biogeochemistry. Mejillones Bay, northern Chile, presents ideal conditions to study nitrogen removal processes, because it is inserted in a coastal upwelling system, its sediments have anoxia and hypoxia conditions and under the influence of the Oxygen Minimum Zone (OMZ), unknown processes that occur there and what are the microbial communities responsible for their removal. Microbial communities associated with coastal sediments of Mejillones Bay were studied by denaturing gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH), by incubation experiments with 15 N isotope tracers were studied nitrogen loss processes operating in these sediments. DGGE analysis showed high bacterial diversity, certain redundant phylotypes and differences in community structure given by the depth; this reflects the microbial community adaptations to environmental conditions. A large fraction (up to 70%) of DAPI-stained cells hybridized with the bacterial probes. Nearly 52-90% of the cell could be further identified to know phyla. Members of the Cytophaga-Flavobacterium cluster were most abundant in the sediments (13-26%), followed by Proteobacteria. Isotopic tracer experiments for the sediments studied indicated that nitrogen loss processes that predominated were performed by denitrifying communities (43.31-111.20 μMd -1 ) was not possible to detect anammox in the area and not anammox bacteria were detected

  9. Environmental gradients regulate the spatio-temporal variability of phytoplankton assemblages in the Can Gio Mangrove Biosphere Reserve, Vietnam

    Science.gov (United States)

    Pham, Thanh-Luu

    2017-12-01

    This paper covers spatial and temporal variation in phytoplankton communities and physico-chemical variables in the Can Gio Mangrove Biosphere Reserve (CGMBR), Vietnam, based on field measurement conducted monthly at nine stations during February 2009 to January 2010. Species diversity, richness and phytoplankton abundance were calculated. Canonical Correspondence Analysis (CCA) was used to investigate the relationship between environmental factors and phytoplankton community. A total of 126 species were recorded with a clear dominance of Bacillariophyceae, which formed about 76.4% of the total phytoplankton counts with an annual average of 44.900 cells/L. Other algal classes like Dinophyceae, Cyanophyceae and Chrysophyceae sustained low counts, forming collectively about 14% of the total abundance of phytoplankton. Although Chaetoceros and Coscinodiscus were the most dominant genera, Schroederella and Skeletonema showed high abundance during the studied period. Among the nine environmental parameters tested in this study, salinity, nitrate and ammonium were found to be significantly different between two seasons. On the other hand, no significant difference was found between stations for the studied variables. Results of CCA indicated that phytoplankton assemblage in the CGMBR was influenced by salinity, nitrate and phosphate concentration. This is the first study simultaneously investigating the phytoplankton communities and their environment in this area and it is essential in order to set up the baseline of future studies.

  10. Constraining the variability of optical properties in the Santa Barbara Channel, CA: A phytoplankton story

    Science.gov (United States)

    Barron, Rebecca Katherine

    The research presented in this dissertation evaluates the direct relationships of phytoplankton community composition and inherent optical properties (IOP); that is, the absorption and scattering of light in the ocean. Phytoplankton community composition affect IOPs in both direct and indirect ways, thus creating challenges for optical measurements of biological and biogeochemical properties in aquatic systems. Studies were performed in the Santa Barbara Channel (SBC), CA where an array of optical and biogeochemical measurements were made. Phytoplankton community structure was characterized by an empirical orthogonal functional analysis (EOF) using phytoplankton accessory pigments. The results showed that phytoplankton community significantly correlated to all IOPs, e.g. phytoplankton specific absorption, detrital absorption, CDOM absorption and particle backscattering coefficients. Furthermore, the EOF analysis was unique in splitting the microphytoplankton size class into separate diatom and dinoflagellate regimes allowing for assessment optical property differences within the same size class, a technique previously not systematically achievable. The phytoplankton functional group dinoflagellates were particularly influential to IOPs in surprising ways. Dinoflagellates showed higher backscattering efficiencies than would be predicted based on Mie theory, and significantly influenced CDOM absorption via direct association with dissolved mycosproine-like amino acid absorption (MAA) peaks in CDOM spectra. A new index was developed in this work to quantify MAA absorption peaks in CDOM spectra, and was named the MAA Index. Prior to this research dissolved MAA absorption in natural waters was never quantified, and CDOM data containing these peaks were often disregarded and discarded from analysis. CDOM dynamics in the SBC were assessed for a 15-year study period, and this work shows that significantly large MAA Index values, e.g. MAA Index > 1, were present in

  11. Remarkable invasion of San Francisco Bay (California, USA), by the Asian clam Potamocorbula amurensis. I. Introduction and dispersal

    Science.gov (United States)

    Carlton, James T.; Thompson, Janet K.; Schemel, Laurence E.; Nichols, Frederic H.

    1990-01-01

    The euryhaline bivalve mollusc Potamocorbula amurensis (family Corbulidae), a native of China, Japan, and Korea, has recently appeared and become very abundant in San Francisco Bay. This clam appears to have been introduced as veliger larvae in the seawater ballast of cargo vessels. It was first collected in northern San Francisco Bay in late 1986. P, amurensis then spread throughout the estuary within 2 yr and reached densities at some sites exceeding 10 000 m-2 It lives primarily in the subtidal on all substrates (mud, sand, peat, and clay) and is found in the full range of bay salinities (estuary ecosystem. These could include changes in (1) trophic dynamics (through competition with other suspension-feeding and deposit-feeding infauna; changes in benthic community energy flow; availability of a new and abundant prey item for birds, fish, and crabs; and reduction - as a result of its filter feeding - of phytoplankton standmg stock) and (2) benthic dynamics (through inhibition and/or enhancement of infauna due to substrate destabilization; alteration of suspended sediment load of near-bottom water; and change of sediment surface redox balance). The early detection of the appearance and spread of P. amurensis in San Francisco Bay makes this one of the best documented invasions of any estuary in the world.

  12. Studies on Anthropogenic Impact on Water Quality in Hilo (Hawaii) Bay and Mapping the Study Stations Using Geospatial Technologies

    Science.gov (United States)

    Cartier, A. J.; Williams, M. S.; Adolf, J.; Sriharan, S.

    2015-12-01

    Hilo Bay has uncharacteristically brown waters compared to other waters found in Hawai'i. The majority of the freshwater entering Hilo Bay is from storm and surface water runoff. The anthropogenic impact on water quality at Hilo Bay is due to sediment entrance, cesspools (Bacteria), and invasive species (Albizia). This poster presentation will focus on the water quality and phytoplankton collected on a weekly basis at a buoy positioned one meter from the shore of Hilo Bay, preserving the phytoplankton intact, concentrating and dehydrating the sample with ethanol, and viewing the phytoplankton with a scanning electron microscope (Hitachi S-3400NII). The GPS (Global Positioning System) points were collected at the sampling stations. Three transects on three separate dates were performed in Hilo Bay with salinity, percent dissolved oxygen, turbidity, secchi depth, temperature, and chlorophyll fluorescence data collected at each sampling station. A consistent trend observed in all transects was as distance from the river increased turbidity decreased and salinity increased. The GPS data on June 30, 2015 showed a major correlation between stations and their distance from shore. There is a decrease in the turbidity but not the temperature for these stations. The GPS points collected on July 7, 2015 at thirteen stations starting with station one being at the shore to the water, showed that the salinity concentration fluctuate noticeably at the first 6 stations. As we proceed further away from the shore, the salinity concentration increases from stations seven through thirteen. The water temperature shows little variation throughout the thirteen stations. The turbidity level was high at the shore and shows a noticeable drop at station thirteen.

  13. Noctiluca and copepods grazing on the phytoplankton community in a nutrient-enriched coastal environment along the southwest coast of India.

    Science.gov (United States)

    Arunpandi, N; Jyothibabu, R; Jagadeesan, L; Gireeshkumar, T R; Karnan, C; Naqvi, S W A

    2017-07-01

    The relative grazing impact of Noctiluca scintillans (hereafter referred only Noctiluca) and copepods (Acrocalanus gracilis, Paracalanus parvus, Acartia danae and Oithona similis) on the phytoplankton community in an upwelling-mudbank environment along the southwest coast India is presented here. This study was carried out during the Pre-Southwest Monsoon (April-May) to the Late Southwest Monsoon (August) period in 2014. During the sampling period, large hydrographical transformation was evident in the study area (off Alappuzha, Southwest coast of India); warmer Pre-Southwest Monsoon water column condition got transformed into cooler and nitrate-rich hypoxic waters during the Southwest Monsoon (June-August) due to intense coastal upwelling. Copepods were present in the study area throughout the sampling period with a noticeable increase in their abundance during the Southwest Monsoon. On the other hand, the first appearance of Noctiluca in the sampling location was during the Early Southwest Monsoon (mid-June) and thereafter their abundance increased towards the Peak Southwest Monsoon. The grazing experiments carried out as per the food removal method showed noticeable differences in the feeding preferences of Noctiluca and copepods, especially on the different size fractions of phytoplankton. Noctiluca showed the highest positive electivity for the phytoplankton micro-fraction (av. 0.49 ± 0.04), followed by nano-fraction (av. 0.17 ± 0.04) and a negative electivity for the pico-fraction (av. -0.66 ± 0.06). In total ingestion of Noctiluca, micro-fraction contribution (83.7%) was significantly higher compared to the nano- (15.7%) and pico-fractions (0.58%). On the other hand, copepods showed the highest positive electivity for the phytoplankton nano-fraction (av. 0.38 ± 0.04) followed by micro- (av. -0.17 ± 0.05) and pico-fractions (av. -0.35 ± 0.05). Similarly, in total ingestion of copepods, nano-fraction (69.7%) was the highest followed by micro

  14. The fine sand Abra alba community of the Bay of Morlaix twenty years after the Amoco Cadiz oil spill

    International Nuclear Information System (INIS)

    Dauvin, J.-C.

    1998-01-01

    The fine sand Abra alba community from the Bay of Morlaix (western English Channel) was strongly affected by the Amoco Cadiz oil spill of April 1978. The long term changes in the community (1977-1996) show that reconstitution of this community is slow (over 10 yr). A progressive recolonization by amphipod Ampelisca populations constituting the dominant species is observed. The results show that it is necessary to survey the affected communities for a long period of time (> 10 yr) after an event to identify the real ecological impact of an oil spill. The abiotic and biotic factor existing in the Bay of Morlaix are favorable to the establishment and the persistence of stable dominant Ampelisca populations in time. The 'climax' concept seems to be applicable to this type of stable environment. The soft-bottom Abra alba community of the Bay of Morlaix may only support a maximal carrying capacity of approximately 10-11 g m -2 (mean annual biomass in decalcified dry weight). The deficit of production during 11 annual cycles may have affected the fish biomass feeding on this community. (author)

  15. The fine sand Abra alba community of the Bay of Morlaix twenty years after the Amoco Cadiz oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Dauvin, J.-C. [CNRS-UPRES-A Elico, Wimereux (France). Station Marine de Wimereux

    1998-09-01

    The fine sand Abra alba community from the Bay of Morlaix (western English Channel) was strongly affected by the Amoco Cadiz oil spill of April 1978. The long term changes in the community (1977-1996) show that reconstitution of this community is slow (over 10 yr). A progressive recolonization by amphipod Ampelisca populations constituting the dominant species is observed. The results show that it is necessary to survey the affected communities for a long period of time (> 10 yr) after an event to identify the real ecological impact of an oil spill. The abiotic and biotic factor existing in the Bay of Morlaix are favorable to the establishment and the persistence of stable dominant Ampelisca populations in time. The `climax` concept seems to be applicable to this type of stable environment. The soft-bottom Abra alba community of the Bay of Morlaix may only support a maximal carrying capacity of approximately 10-11 g m{sup -2} (mean annual biomass in decalcified dry weight). The deficit of production during 11 annual cycles may have affected the fish biomass feeding on this community. (author)

  16. Phytoplankton abundance, dominance and coexistence in an eutrophic reservoir in the state of Pernambuco, Northeast Brazil.

    Science.gov (United States)

    Lira, Giulliari A S T; Araújo, Elcida L; Bittencourt-Oliveira, Maria Do Carmo; Moura, Ariadne N

    2011-12-01

    The present study reports the phytoplankton abundance, dominance and co-existence relationships in the eutrophic Carpina reservoir, Pernambuco, Brazil. Sampling was carried out at six different depths bimonthly at a single reservoir spanning two climatic periods: dry season (January, September, and November 2006) and rainy season (March, May, and July 2006). Density, abundance, dominance, specific diversity and equitability of the community were determined, along with chlorophyll a, and physical and chemical variables of the environment. Eight species were considered abundant, and their densities corresponded to more than 90% of the total phytoplankton community quantified. Cyanobacteria represented more than 80% of this density. Cylindrospermopsis raciborskii was the only dominant taxon in the dry season, and was co-dominant in the rainy season. C. raciborskii, Planktothrix agardhii and Geitlerinema amphibium had the greatest densities and lowest vertical variation coefficients. The statistical analysis indicated relationships with vertical and seasonal variations in the phytoplankton community and the following variables: total dissolved solids, water temperature, electrical conductivity and pH. The changes in the environmental variables were discrete and regulated by the establishment of precipitation however, they were able to promote vertical and seasonal instability in the structure of the phytoplankton community.

  17. Diversity of Phytoplankton of a sub-tropical reservoir of Mizoram, northeast India

    Directory of Open Access Journals (Sweden)

    Bhushan Kumar Sharma

    2016-12-01

    Full Text Available Phytoplankton of Khawiva reservoir of Mizoram, northeast India (NEI revealed a total of 55 species; nearly concurrent mean monthly richness and high community similarities (vide Sørensen index during two years affirmed homogeneity in its species composition. Phytoplankton comprised dominant component (61.1±14.3% of net plankton and recorded wider density variations. Chlorophyta influenced phytoplankton abundance with quantitative importance of Staurastrum spp. >Xanthidium spp. >Cosmarium spp. in particular. Bacillariophyta formed subdominant group; Cryptophyta and Cyanophyta showed limited importance; and Euglenophyta and Dinophyta recorded poor densities. Phytoplankton is characterized by moderate species diversity, high evenness and low dominance but with wide variations. Richness, abundance and species diversity followed no definite patterns of monthly variations during two years. Insignificant influence of individual abiotic factors on phytoplankton assemblages coupled with low cumulative influence of fifteen abiotic parameters (vide CCA yielded little insight on overall role of abiotic parameters.

  18. Phytoplankton abundance in relation to the quality of the coastal water – Arabian Gulf, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mostafa Abdel Mohsen El Gammal

    2017-12-01

    Full Text Available Phytoplankton abundance in relation to some physicochemical characters of the costal water of Arabian Gulf (Saudi Arabia was studied for one year. The sampling program included 15 locations in Dammam, Saihat, Al-Qatif, Al-Awamia and Safwa. Water samples were analyzed monthly for these parameters; temperature, pH, salinity, dissolved oxygen, nitrite, nitrate, ammonia, carbon dioxide, total chloride, reactive orthophosphate and total phosphorus and alkalinity, also phytoplankton communities were identified and Chlorophyll a was estimated. The results showed that, the high phytoplankton density attaining the maximum (190.3 × 104/m3 during May and June, and the minimum (10.4 × 104/m3 during November and December. Forty Five species belonging to 5 phytoplankton groups were recorded. Bacillariophyceae was the first dominant group forming 48% of the total phytoplankton communities (23 species. The dominant species of Bacillariophyceae were Pleurosigma strigosum, Pleurosigma elongatum, Lyrella clavata, Rhizosolenia shrubsolei, Cylindrotheca closterium, Nitzschia panduriform, Nitzschia longissimia, Amphora sp and Stephanopyxis. Dinophyceae was the second dominant group and formed 31% of the total phytoplankton communities (10 species; the dominant species were Ceratium fusus, Heterosigma sp, Ceratium furca, Prorocentrum triestium, Protoperidinium sp, Gyrodinium spirale, Noctiluca scintillans and Scrippsiella trochoidea. Cyanophyceae formed 13% (5 species where Nostoc sp, Oscillatoria and Merismopedia sp were the dominant species. Chlorophyceae had 8% (6 species; Scendesmus sp., Chlorella sp., Chlamydomonas sp., Dunaliella salina and Nannochloropsis sp were the dominant species. The Euglinophyceae was rare only one species (Euglina sp. The relationship was positive between the phytoplankton, chlorophyll a and carbon dioxide while negative amongst dissolved oxygen and total nitrogen. This research indicated that the relation between water quality

  19. Spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton.

    Science.gov (United States)

    Chakraborty, Subhendu; Tiwari, P K; Misra, A K; Chattopadhyay, J

    2015-06-01

    The production of toxins by some species of phytoplankton is known to have several economic, ecological, and human health impacts. However, the role of toxins on the spatial distribution of phytoplankton is not well understood. In the present study, the spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton is investigated. We analyze the linear stability of the system and obtain the condition for Turing instability. In the presence of toxic effect, we find that the distribution of nutrient and phytoplankton becomes inhomogeneous in space and results in different patterns, like stripes, spots, and the mixture of them depending on the toxicity level. We also observe that the distribution of nutrient and phytoplankton shows spatiotemporal oscillation for certain toxicity level. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.

    Science.gov (United States)

    Lin, Senjie; Litaker, Richard Wayne; Sunda, William G

    2016-02-01

    Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes). © 2015 Phycological Society of America.

  1. In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon

    International Nuclear Information System (INIS)

    Furnas, Miles; Mitchell, Alan; Skuza, Michele; Brodie, Jon

    2005-01-01

    Our view of how water quality effects ecosystems of the Great Barrier Reef (GBR) is largely framed by observed or expected responses of large benthic organisms (corals, algae, seagrasses) to enhanced levels of dissolved nutrients, sediments and other pollutants in reef waters. In the case of nutrients, however, benthic organisms and communities are largely responding to materials which have cycled through and been transformed by pelagic communities dominated by micro-algae (phytoplankton), protozoa, flagellates and bacteria. Because GBR waters are characterised by high ambient light intensities and water temperatures, inputs of nutrients from both internal and external sources are rapidly taken up and converted to organic matter in inter-reefal waters. Phytoplankton growth, pelagic grazing and remineralisation rates are very rapid. Dominant phytoplankton species in GBR waters have in situ growth rates which range from ∼1 to several doublings per day. To a first approximation, phytoplankton communities and their constituent nutrient content turn over on a daily basis. Relative abundances of dissolved nutrient species strongly indicate N limitation of new biomass formation. Direct ( 15 N) and indirect ( 14 C) estimates of N demand by phytoplankton indicate dissolved inorganic N pools have turnover times on the order of hours to days. Turnover times for inorganic phosphorus in the water column range from hours to weeks. Because of the rapid assimilation of nutrients by plankton communities, biological responses in benthic communities to changed water quality are more likely driven (at several ecological levels) by organic matter derived from pelagic primary production than by dissolved nutrient stocks alone

  2. Cross-Shore Environmental Gradients in the Western Mediterranean Coast and Their Influence on Nearshore Phytoplankton Communities

    Directory of Open Access Journals (Sweden)

    Gotzon Basterretxea

    2018-04-01

    Full Text Available During summer, when oligotrophic conditions prevail offshore in the Mediterranean Sea, enhanced phytoplankton stripes are often observed in nearshore waters. In this study, we examine the cross-shore hydrographic variability and the associated microbial plankton communities in this zone. Detailed cross-shore underway sampling at 47 coastal sites spread along the Balearic and Catalan coasts revealed the widespread existence of narrow bands of warm and decreased salinity water beholding high phytoplankton biomass (up to 50-fold vs. offshore chlorophyll. Most intense physical and biological anomalies along these transects were generally constrained to the first hundred meters from the shoreline (i.e., a transition zone starting at ~400 m. We use Principal Component Analysis (PCA and k-means cluster analysis to categorize temperature, salinity and chlorophyll (T, S and Chl in three main types of cross-shore trends. Prevalence of exponential-shaped Chl trends was observed particularly in areas with shoreward directed winds (B1-type. The other two trends (B2 and B3 presented variations off the coast produced by alongshore structures like river plumes, city outfalls and other features. Exponential-shaped cross-shore chlorophyll distribution (B1-type accumulated 90% of the total transect Chl variation in the first 367 ± 190 m from the shoreline, whereas this distance was variable in the other profile types. Repeated daily sampling at one site with this transect typology revealed that wind forcing variations produced fast response on cross-shore T and S properties. Chl was less sensitive to changes at this time-scale. Phytoplankton communities exhibited site-dependent responses to the nearshore environment. Pico- and nanoplankton assemblages, typically dominating coastal assemblages during summer in the Mediterranean Sea, showed lower cross-shore variation. Conversely, larger response to nearshore conditions was observed in microplankton populations

  3. EVALUATION OF TROPHIC STATUS OF AGRAKHAN BAY (THE NORTH CASPIAN SEA AS A PART OF ECOLOGICAL MONITORING OF SPECIALLY PROTECTED AREAS

    Directory of Open Access Journals (Sweden)

    A. A. Gadzhiev

    2013-01-01

    Full Text Available Abstract. Aim. Hydrochemical composition of waters of Agrakhan Bay (the North Caspian Sea, degree of pollution, structure and quantitative characteristics of phytoplankton, zooplankton and zoobenthos is given in the paper. Evaluation of a trophic status of the bay and seasonal trophodynamics are given as a result of study.Material and methods. The study is based on original materials from expeditions of 2012 (Autumn and 2013 (Spring and Summer in Agrakhan Bay. The complex materials are collected on stations with distance 3.5 km. Totally was made 16 marine stations, where samples of water, phytoplankton, zooplankton and benthos were taken.Results. Agrakhan Bay is eutrophic by level of dissolved oxygen and its BOD. However, the oxygen deficiency is not observed. concentration of oxygen is high almost in all seasons, that has a beneficial effect on hydrobionts. Seasonal dynamics indicates that Agrakhansky bay is oligotrophic within a year, but its trophic status increases to mesotrophic and even to hypertrophic in some periods. The northern part ща the bay is eutrophic. Difference in trophic levels of different parts of the bay is the result of significant differences in depth and area of water surface.Conclusions. Anthropogenic impact on Agrakhan Bay increases its trophic status. Seasonal trophic level of Agrakhan Gulf except natural processes depends on the "purity" of the Terek River sediments, which are the main source of biogenic elements. Typically, the absolute concentration of biogenic elements in Agrakhan Bay increases with the increase of eutrophication.

  4. A database of marine phytoplankton abundance, biomass and species composition in Australian waters

    Science.gov (United States)

    Davies, Claire H.; Coughlan, Alex; Hallegraeff, Gustaaf; Ajani, Penelope; Armbrecht, Linda; Atkins, Natalia; Bonham, Prudence; Brett, Steve; Brinkman, Richard; Burford, Michele; Clementson, Lesley; Coad, Peter; Coman, Frank; Davies, Diana; Dela-Cruz, Jocelyn; Devlin, Michelle; Edgar, Steven; Eriksen, Ruth; Furnas, Miles; Hassler, Christel; Hill, David; Holmes, Michael; Ingleton, Tim; Jameson, Ian; Leterme, Sophie C.; Lønborg, Christian; McLaughlin, James; McEnnulty, Felicity; McKinnon, A. David; Miller, Margaret; Murray, Shauna; Nayar, Sasi; Patten, Renee; Pritchard, Tim; Proctor, Roger; Purcell-Meyerink, Diane; Raes, Eric; Rissik, David; Ruszczyk, Jason; Slotwinski, Anita; Swadling, Kerrie M.; Tattersall, Katherine; Thompson, Peter; Thomson, Paul; Tonks, Mark; Trull, Thomas W.; Uribe-Palomino, Julian; Waite, Anya M.; Yauwenas, Rouna; Zammit, Anthony; Richardson, Anthony J.

    2016-06-01

    There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels.

  5. Colored dissolved organic matter in Tampa Bay, Florida

    Science.gov (United States)

    Chen, Z.; Hu, C.; Conmy, R.N.; Muller-Karger, F.; Swarzenski, P.

    2007-01-01

    Absorption and fluorescence of colored dissolved organic matter (CDOM) and concentrations of dissolved organic carbon (DOC), chlorophyll and total suspended solids in Tampa Bay and its adjacent rivers were examined in June and October of 2004. Except in Old Tampa Bay (OTB), the spatial distribution of CDOM showed a conservative relationship with salinity in June, 2004 (aCDOM(400) = − 0.19 × salinity + 6.78, R2 = 0.98, n = 17, salinity range = 1.1–32.5) with little variations in absorption spectral slope and fluorescence efficiency. This indicates that CDOM distribution was dominated by mixing. In October, 2004, CDOM distribution was nonconservative with an average absorption coefficient (aCDOM(400), ∼ 7.76 m-1) about seven times higher than that in June (∼ 1.11 m-1). The nonconservative behavior was caused largely by CDOM removal at intermediate salinities (e.g., aCDOM(400) removal > 15% at salinity ∼ 13.0), which likely resulted from photobleaching due to stronger stratification. The spatial and seasonal distributions of CDOM in Tampa Bay showed that the two largest rivers, the Alafia River (AR) and Hillsborough River (HR) were dominant CDOM sources to most of the bay. In OTB, however, CDOM showed distinctive differences: lower absorption coefficient, higher absorption spectral slopes, and lower ratios of CDOM absorption to DOC and higher fluorescence efficiency. These differences may have stemmed from (1) changes in CDOM composition by more intensive photobleaching due to the longer residence time of water mass in OTB; (2) other sources of CDOM than the HR/AR inputs, such as local creeks, streams, groundwater, and/or bottom re-suspension. Average CDOM absorption in Tampa Bay at 443 nm, aCDOM(443), was about five times higher in June and about ten times higher in October than phytoplankton pigment absorption, aph(443), indicating that blue light attenuation in the water column was dominated by CDOM rather than by phytoplankton absorption throughout the

  6. Longtime variation of phytoplankton in the South China Sea from the perspective of carbon fixation

    Science.gov (United States)

    Li, Teng; Bai, Yan; Chen, Xiaoyan; Zhu, Qiankun; Gong, Fang; Wang, Difeng

    2017-10-01

    The ocean is a huge carbon pool in the earth, and about half of the anthropogenic emissions of carbon dioxide are absorbed by the ocean each year. By converting inorganic carbon into organic carbon, the photosynthesis process of phytoplankton affords an important way for carbon sequestration in the ocean. According to previous researches, primary production (NPP) and the structure of phytoplankton community are important in regulate the efficiency of biological carbon pump. This study examined the spatiotemporal variability of satellite remote sensing derived chlorophyll a concentration (Chla), phytoplankton carbon biomass (Carbon), composition ratio of micro-, nano- and pico- phytoplankton, NPP and integrated particulate organic carbon (IPOC) during 1998-2007 in the South China Sea (SCS). Micro-, nano-phytoplankton and NPP showed similar seasonal variation with highest values in winter (January) (especially in the western ocean of Luzon Strait) and lowest values in summer (July) in SCS. Chla, phytoplankton carbon biomass, and IPOC showed different seasonal trends with one peak values occurred in winter and lowest in spring. Two sampling areas (A, N:17-21°, E:117.5-120° and B, N:12.5-15°, E:112-119°) in SCS were selected based on spatial distribution of the standard deviation of research parameters mentioned above. Compared to Chla, phytoplankton carbon biomass, NPP and IPOC, the interannual changes of phytoplankton community structure were remarkable in the two areas. The fraction of micro- and nano- phytoplankton in SCS tend to rise when La Nina events occur. Our results contribute to an understanding of the response of phytoplankton to climate change in the marginal sea. To quantify the efficiency of biological carbon pump in this area, more attention should be paid to the development of remote sensing algorithms of export NPP (or POC export flux) as well as the regulate mechanism of export NPP.

  7. Global patterns of phytoplankton dynamics in coastal ecosystems

    Science.gov (United States)

    Paerl, H.; Yin, Kedong; Cloern, J.

    2011-01-01

    Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations" (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled "Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.".

  8. Basin-scale seasonal changes in marine free-living bacterioplankton community in the Ofunato Bay

    KAUST Repository

    Reza, Md. Shaheed

    2018-04-26

    The Ofunato Bay in the northeastern Pacific Ocean area of Japan possesses the highest biodiversity of marine organisms in the world and has attracted much attention due to its economic and environmental importance. We report here a shotgun metagenomic analysis of the year-round variation in free-living bacterioplankton collected across the entire length of the bay. Phylogenetic differences among spring, summer, autumn and winter bacterioplankton suggested that members of Proteobacteria tended to decrease at high water temperatures and increase at low temperatures. It was revealed that Candidatus Pelagibacter varied seasonally, reaching as much as 60% of all sequences at the genus level in the surface waters during winter. This increase was more evident in the deeper waters, where they reached up to 75%. The relative abundance of Planktomarina also rose during winter and fell during summer. A significant component of the winter bacterioplankton community was Archaea (mainly represented by Nitrosopumilus), as their relative abundance was very low during spring and summer but high during winter. In contrast, Actinobacteria and Cyanobacteria appeared to be higher in abundance during high-temperature periods. It was also revealed that Bacteroidetes constituted a significant component of the summer bacterioplankton community, being the second largest bacterial phylum detected in the Ofunato Bay. Its members, notably Polaribacter and Flavobacterium, were found to be high in abundance during spring and summer, particularly in the surface waters. Principal component analysis and hierarchal clustering analyses showed that the bacterial communities in the Ofunato Bay changed seasonally, likely caused by the levels of organic matter, which would be deeply mixed with surface runoff in the winter.

  9. Phytoplankton chytridiomycosis: fungal parasites of phytoplankton and their imprints on the food web dynamics

    Directory of Open Access Journals (Sweden)

    Télesphore eSIME - NGANDO

    2012-10-01

    Full Text Available Parasitism is one of the earlier and common ecological interactions in the nature, occurring in almost all environments. Microbial parasites typically are characterized by their small size, short generation time, and high rates of reproduction, with simple life cycle occurring generally within a single host. They are diverse and ubiquitous in aquatic ecosystems, comprising viruses, prokaryotes and eukaryotes. Recently, environmental 18S-rDNA surveys of microbial eukaryotes have unveiled major infecting agents in pelagic systems, consisting primarily of the fungal order of Chytridiales (chytrids. Chytrids are considered the earlier branch of the Eumycetes and produce motile, flagellated zoospores, characterized by a small size (2-6 µm and a single, posterior flagellum. The existence of these dispersal propagules includes chytrids within the so-called group of zoosporic fungi, which are particularly adapted to the plankton lifestyle where they infect a wide variety of hosts, including fishes, eggs, zooplankton, algae, and other aquatic fungi but primarily freshwater phytoplankton. Related ecological implications are huge because chytrids can killed their hosts, release substrates for microbial processes, and provide nutrient-rich particles as zoospores and short fragments of filamentous inedible hosts for the grazer food chain. Furthermore, based on the observation that phytoplankton chytridiomycosis preferentially impacts the larger size species, blooms of such species (e.g. filamentous cyanobacteria may not totally represent trophic bottlenecks. Besides, chytrid epidemics represent an important driving factor in phytoplankton seasonal successions. In this review, I summarize the knowledge on the diversity, community structure, quantitative importance, and functional roles of fungal chytrids, primarily those who are parasites of phytoplankton, and infer the ecological implications and potentials for the food web dynamics and properties.

  10. The role of ciliates within the microbial food web in the eutrophicated part of Kaštela Bay (Middle Adriatic Sea

    Directory of Open Access Journals (Sweden)

    Natalia Bojanic

    2006-09-01

    Full Text Available Interactions among phytoplankton, bacterioplankton, heterotrophic nanoflagellates (HNF, ciliated protozoa and copepod nauplii were studied in the eutrophicated part of Kas?tela Bay from May 1998 to November 1999. Special emphasis was placed on relationships between size categories of nonloricate ciliates (NLC and other microbial food web components. Biomasses of phytoplankton and bacteria were primarily influenced by abiotic parameters. Temperature indirectly controlled variation in HNF biomass through the changes in biomass of bacteria and the smaller phytoplankton fraction. Besides HNF, bacterial biomass was affected by the NLC

  11. Phytoplankton response to winter warming modified by large-bodied zooplankton: an experimental microcosm study

    Directory of Open Access Journals (Sweden)

    Hu He

    2015-03-01

    Full Text Available While several field investigations have demonstrated significant effects of cool season (winter or spring warming on phytoplankton development, the role played by large-bodied zooplankton grazers for the responses of phytoplankton to winter warming is ambiguous. We conducted an outdoor experiment to compare the effect of winter warming (heating by 3°C in combination with presence and absence of Daphnia grazing (D. similis on phytoplankton standing crops and community structure under eutrophic conditions. When Daphnia were absent, warming was associated with significant increases in phytoplankton biomass and cyanobacterial dominance. In contrast, when Daphnia were present, warming effects on phytoplankton dynamics were offset by warming-enhanced grazing, resulting in no significant change in biomass or taxonomic dominance. These results emphasize that large-bodied zooplankton like Daphnia spp. may play an important role in modulating the interactions between climate warming and phytoplankton dynamics in nutrient rich lake ecosystems.

  12. Evaluation of potential relationships between benthic community structure and toxic metals in Laizhou Bay.

    Science.gov (United States)

    Wu, Bin; Song, Jinming; Li, Xuegang

    2014-10-15

    The objective of the present study was to examine the relationships between benthic community structure and toxic metals using bivariate/multivariate techniques at 17 sediment locations in Laizhou Bay, North China. Sediment chemical data were evaluated against geochemical background values and sediment quality guidelines, which identified Cu and As as contaminants of concern with a moderate potential for adverse effects. Benthic community data were subjected to non-metric multidimensional scaling, which generated four groups of stations. Spearman rank correlation was then employed to explore the relationships between the major axes of heavy metals and benthic community structure. However, weak and insignificant correlations were found between these axes, indicating that contaminants of concern may not be the primary explanatory factors. Polychaeta were abundant in southern Laizhou Bay, serving as a warning regarding the health status of the ecosystem. Integrated sediment quality assessment showed sediments from northern central locations were impaired, displaying less diverse benthos and higher metal contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A biological effects monitoring survey of Cardigan Bay using flatfish histopathology, cellular biomarkers and sediment bioassays: findings of the Prince Madog Prize 2003.

    Science.gov (United States)

    Lyons, Brett P; Stentiford, Grant D; Bignell, John; Goodsir, Freya; Sivyer, David B; Devlin, Michelle J; Lowe, Dave; Beesley, Amanda; Pascoe, Christine K; Moore, Mike N; Garnacho, Eva

    2006-07-01

    Cardigan Bay on the western coast of the UK is considered a pristine location with much of its coastal and marine habitats protected under various national and EC Directives. Despite this, populations of the flatfish dab (Limanda limanda) captured from Cardigan Bay display elevated levels of liver tumours relative to the background prevalence of the disease. This study describes the findings of a research cruise that took place during November 2003 to assess the prevalence of tumours in dab from selected sites in and around Cardigan Bay. In addition, potential causative mechanisms were investigated via measurement of a range of end points (including composition and abundance of benthic and phytoplankton communities, sediment toxicity and cellular biomarkers of genotoxicity) from sediment, water and biota samples. Fish captured from South Cardigan Bay displayed a relatively higher prevalence of liver tumours compared to those captured from Red Wharf Bay. Hepatocellular adenoma (8% and 2%, respectively) and hepatocellular foci of cell alteration (18% and 6%, respectively) were most prevalent in South Cardigan Bay. Analysis of the sediment failed to distinguish any differences in toxicity between the two sampling sites. However, DNA strand breaks in red blood cells of dab were significantly higher (p < 0.05) in fish collected from Red Warf Bay compared with those sampled at Cardigan Bay. The alignment of biological effects measures via such integrated cruise programs are discussed. This work was partly funded under the auspices of the 2003 Prince Madog Prize.

  14. UVR-induced photoinhibition of summer marine phytoplankton communities from Patagonia

    NARCIS (Netherlands)

    Villafane, Virginia E.; Janknegt, Paul J.; de Graaff, Marco; Visser, Ronald J. W.; de Poll, Willem H. van; Buma, Anita G. J.; Helbling, E. Walter

    During austral summer 2006, experiments were carried out to evaluate the effects of ultraviolet radiation (UVR, 280-400 nm) on carbon fixation of natural phytoplankton assemblages from Patagonia (Argentina). Surface water samples were collected (ca. 100 m offshore) at mid morning using an

  15. Emergence of Algal Blooms: The Effects of Short-Term Variability in Water Quality on Phytoplankton Abundance, Diversity, and Community Composition in a Tidal Estuary

    Directory of Open Access Journals (Sweden)

    Todd A. Egerton

    2014-01-01

    Full Text Available Algal blooms are dynamic phenomena, often attributed to environmental parameters that vary on short timescales (e.g., hours to days. Phytoplankton monitoring programs are largely designed to examine long-term trends and interannual variability. In order to better understand and evaluate the relationships between water quality variables and the genesis of algal blooms, daily samples were collected over a 34 day period in the eutrophic Lafayette River, a tidal tributary within Chesapeake Bay’s estuarine complex, during spring 2006. During this period two distinct algal blooms occurred; the first was a cryptomonad bloom and this was followed by a bloom of the mixotrophic dinoflagellate, Gymnodinium instriatum. Chlorophyll a, nutrient concentrations, and physical and chemical parameters were measured daily along with phytoplankton abundance and community composition. While 65 phytoplankton species from eight major taxonomic groups were identified in samples and total micro- and nano-phytoplankton cell densities ranged from 5.8 × 106 to 7.8 × 107 cells L−1, during blooms, cryptomonads and G. instriatum were 91.6% and 99.0%, respectively, of the total phytoplankton biomass during blooms. The cryptomonad bloom developed following a period of rainfall and concomitant increases in inorganic nitrogen concentrations. Nitrate, nitrite and ammonium concentrations 0 to 5 days prior were positively lag-correlated with cryptomonad abundance. In contrast, the G. insriatum bloom developed during periods of low dissolved nitrogen concentrations and their abundance was negatively correlated with inorganic nitrogen concentrations.

  16. Nitrogen cycling in Sandusky Bay, Lake Erie: oscillations between strong and weak export and implications for harmful algal blooms

    Science.gov (United States)

    Salk, Kateri R.; Bullerjahn, George S.; McKay, Robert Michael L.; Chaffin, Justin D.; Ostrom, Nathaniel E.

    2018-05-01

    Recent global water quality crises point to an urgent need for greater understanding of cyanobacterial harmful algal blooms (cHABs) and their drivers. Nearshore areas of Lake Erie such as Sandusky Bay may become seasonally limited by nitrogen (N) and are characterized by distinct cHAB compositions (i.e., Planktothrix over Microcystis). This study investigated phytoplankton N uptake pathways, determined drivers of N depletion, and characterized the N budget in Sandusky Bay. Nitrate (NO3-) and ammonium (NH4+) uptake, N fixation, and N removal processes were quantified by stable isotopic approaches. Dissimilatory N reduction was a relatively modest N sink, with denitrification, anammox, and N2O production accounting for 84, 14, and 2 % of sediment N removal, respectively. Phytoplankton assimilation was the dominant N uptake mechanism, and NO3- uptake rates were higher than NH4+ uptake rates. Riverine N loading was sometimes insufficient to meet assimilatory and dissimilatory demands, but N fixation alleviated this deficit. N fixation made up 23.7-85.4 % of total phytoplankton N acquisition and indirectly supports Planktothrix blooms. However, N fixation rates were surprisingly uncorrelated with NO3- or NH4+ concentrations. Owing to temporal separation in sources and sinks of N to Lake Erie, Sandusky Bay oscillates between a conduit and a filter of downstream N loading to Lake Erie, delivering extensively recycled forms of N during periods of low export. Drowned river mouths such as Sandusky Bay are mediators of downstream N loading, but climate-change-induced increases in precipitation and N loading will likely intensify N export from these systems.

  17. The fine sand Abra alba community of the Bay of Morlaix twenty years after the Amoco Cadiz oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Dauvin, J.-C. [CNRS-UPRES-A Elico, Wimereux (France). Station Marine de Wimereux

    1998-09-01

    The fine sand Abra alba community from the Bay of Morlaix (western English Channel) was strongly affected by the Amoco Cadiz oil spill of April 1978. The long term changes in the community (1977-1996) show that reconstitution of this community is slow (over 10 yr). A progressive recolonization by amphipod Ampelisca populations constituting the dominant species is observed. The results show that it is necessary to survey the affected communities for a long period of time (> 10 yr) after an event to identify the real ecological impact of an oil spill. The abiotic and biotic factor existing in the Bay of Morlaix are favorable to the establishment and the persistence of stable dominant Ampelisca populations in time. The 'climax' concept seems to be applicable to this type of stable environment. The soft-bottom Abra alba community of the Bay of Morlaix may only support a maximal carrying capacity ofapproximately 10-11 g m{sup -2} (mean annual biomass in decalcified dry weight). The deficit of production during 11 annual cycles may have affected the fish biomass feeding on this community. (author)

  18. Influence of environmental settings on the prevalence of Trichodesmium spp. in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Hegde, S.; Anil, A.C.; Patil, J.S.; Mitbavkar, S.; Venkat, K.; Gopalakrishna, V.V.

    ) Influence of physical pro- cesses and freshwater discharge on the seasonality of phytoplankton regime in the Bay of Bengal. Cont Shelf Res 20:313–330 Gordon AL (2001) Interocean exchange. In: Sidler G, Church J, Gould J (eds) Ocean circulation and climate...: acanil@nio.org Influence of environmental settings on the prevalence of Trichodesmium spp. in the Bay of Bengal Sahana Hegde, Arga Chandrashekar Anil*, Jagadish S. Patil, Smita Mitbavkar, Venkat Krishnamurthy, Vissa V. Gopalakrishna National Institute...

  19. Phytoplankton assemblage and environmental variables in Ogun ...

    African Journals Online (AJOL)

    It was carried out between February and July, 2014, in three distinct zones in Ogun State coastal estuary: brush park (Zone I), open water (Zone II) and wetland (Zone III). Data collected were subjected to community structure analysis using trophic state index, species richness and diversity indices. A total of 42 phytoplankton ...

  20. Gradient Analysis and Classification of Carolina Bay Vegetation: A Framework for Bay Wetlands Conservation and Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Diane De Steven,Ph.D.; Maureen Tone,PhD.

    1997-10-01

    This report address four project objectives: (1) Gradient model of Carolina bay vegetation on the SRS--The authors use ordination analyses to identify environmental and landscape factors that are correlated with vegetation composition. Significant factors can provide a framework for site-based conservation of existing diversity, and they may also be useful site predictors for potential vegetation in bay restorations. (2) Regional analysis of Carolina bay vegetation diversity--They expand the ordination analyses to assess the degree to which SRS bays encompass the range of vegetation diversity found in the regional landscape of South Carolina's western Upper Coastal Plain. Such comparisons can indicate floristic status relative to regional potentials and identify missing species or community elements that might be re-introduced or restored. (3) Classification of vegetation communities in Upper Coastal Plain bays--They use cluster analysis to identify plant community-types at the regional scale, and explore how this classification may be functional with respect to significant environmental and landscape factors. An environmentally-based classification at the whole-bay level can provide a system of templates for managing bays as individual units and for restoring bays to desired plant communities. (4) Qualitative model for bay vegetation dynamics--They analyze present-day vegetation in relation to historic land uses and disturbances. The distinctive history of SRS bays provides the possibility of assessing pathways of post-disturbance succession. They attempt to develop a coarse-scale model of vegetation shifts in response to changing site factors; such qualitative models can provide a basis for suggesting management interventions that may be needed to maintain desired vegetation in protected or restored bays.

  1. Lipid and DNA biomarker analyses of Narragansett Bay Sediments: Evaluating the UK'37 proxy in an Estuarine Environment

    Science.gov (United States)

    George, S. E.; Herbert, T.; Amaral-Zettler, L. A.; Richter, N.

    2017-12-01

    Long chain polyunsaturated alkenone (LCA) lipid biomarkers produced by haptophyte phytoplankton species within the Order Isochrysidales (Phylum Haptophyta) have proven exceptionally useful in paleotemperature studies by means of the Uk'37 and Uk37 indices. Two closely-related Group III haptophytes, Emiliania huxleyi and Gephyrocapsa oceanica are the primary alkenone synthesizers in the modern ocean, while freshwater systems host the distinct Group I phylotype, sometimes called the Greenland phylotype, in reference to the location of its original discovery. Group I haptophytes produce large quantities of the distinct C37:4 ketone, which acts as a chemical `fingerprint' in sediments. The utility of alkenones as a paleotemperature proxy in estuarine environments has remained largely untested, representing an under-utilized opportunity to construct high-resolution paleotemperature records from environments at the intersection of fluvial and marine systems. This uncertainty is due, in part, to the presence of multiple haptophyte groups in estuaries, resulting in a mixed alkenone signature. To determine the community composition of alkenone-producing haptophytes within Narragansett Bay, four geographically separated cores from within the Bay were analyzed for alkenones as well as haptophyte rRNA biomarker gene presence. Haptophyte rRNA genes (small and large subunit) were recovered from surface and near-subsurface samples, and in conjunction with alkenone profiles, reveal recent haptophyte community structure and alkenone production regimes throughout the Bay. A surprising result is the recovery of rRNA biomarker genes with a 100% match to the open-ocean alkenone producer E. huxleyi in locations away from large fresh water inputs to the Bay. Results of these analyses elucidate the effect of salinity and nutrient dynamics on alkenone-producing haptophyte communities and enhance applicability of long chain polyunsaturated alkenones as lipid biomarkers in estuarine

  2. Effects of Nitrogen Availability and Form on Phytoplankton Growth in a Eutrophied Estuary (Neuse River Estuary, NC, USA).

    Science.gov (United States)

    Cira, Emily K; Paerl, Hans W; Wetz, Michael S

    2016-01-01

    Nitrogen availability and form are important controls on estuarine phytoplankton growth. This study experimentally determined the influence of urea and nitrate additions on phytoplankton growth throughout the growing season (March 2012, June 2011, August 2011) in a temperate, eutrophied estuary (Neuse River Estuary, North Carolina, USA). Photopigments (chlorophyll a and diagnostic photopigments: peridinin, fucoxanthin, alloxanthin, zeaxanthin, chlorophyll b) and microscopy-based cell counts were used as indicators of phytoplankton growth. In March, the phytoplankton community was dominated by Gyrodinium instriatum and only fucoxanthin-based growth rates were stimulated by nitrogen addition. The limited response to nitrogen suggests other factors may control phytoplankton growth and community composition in early spring. In June, inorganic nitrogen concentrations were low and stimulatory effects of both nitrogen forms were observed for chlorophyll a- and diagnostic photopigment-based growth rates. In contrast, cell counts showed that only cryptophyte and dinoflagellate (Heterocapsa rotundata) growth were stimulated. Responses of other photopigments may have been due to an increase in pigment per cell or growth of plankton too small to be counted with the microscopic methods used. Despite high nitrate concentrations in August, growth rates were elevated in response to urea and/or nitrate addition for all photopigments except peridinin. However, this response was not observed in cell counts, again suggesting that pigment-based growth responses may not always be indicative of a true community and/or taxa-specific growth response. This highlights the need to employ targeted microscopy-based cell enumeration concurrent with pigment-based technology to facilitate a more complete understanding of phytoplankton dynamics in estuarine systems. These results are consistent with previous studies showing the seasonal importance of nitrogen availability in estuaries, and also

  3. Quantifying contributions to light attenuation in estuaries and coastal embayments: Application to Narragansett Bay, Rhode Island

    Science.gov (United States)

    In Narragansett Bay, light attenuation by total suspended sediments (TSS), colored dissolved organic matter (CDOM), and phytoplankton chlorophyll-a (chl-a) pigment is 129, 97, and 70%, respectively, of that by pure seawater. Spatial distribution of light attenuation indicates hig...

  4. Factors structuring the phytoplankton community in the upwelling site off El Loa River in northern Chile

    Science.gov (United States)

    Herrera, Liliana; Escribano, Ruben

    2006-06-01

    Understanding processes affecting the structure of the autotrophic community in marine ecosystems is relevant because species-dependent characters may affect productivity and carbon fluxes of the ocean. In this work, we studied the influence of oceanographic variability on phytoplankton species composition at a coastal upwelling site off northern Chile. Four seasonal cruises carried out during 2003 off El Loa River (21°S) showed that upwelling occurs year-round supporting a large number of diatoms, dinoflagellates, naked nanoflagellates, and silicoflagellates. The analysis of species composition showed that changes in the structure of the autotrophic community are expressed both in abundance and in differences in species assemblages. These changes occurred not only over the seasonal scale but also over the spatial pattern of distribution, and they correlated well to temporal variability of upwelling and spatial variation of upwelling conditions over the cross-shelf axis. A K-means clustering and principal component analyses showed that species assemblages can be represented by few dominant species strongly coupled to alternate upwelling vs. non-upwelling conditions. Both conditions are well defined, and mostly explained by changes in depth of the upper boundary of the oxygen minimum zone (OMZ) (a prominent feature in northern Chile), surface temperature and water column stratification. Abundance of dominant phytoplankton species were strongly correlated to both OMZ depth and water column stratification. Processes through which OMZ depth might influence species abundance and composition are unknown, although they may relate to changes in redox conditions which affect the nutrient field. Another explanation may relate to changes in grazing pressure derived from the effect of low oxygen water on zooplankton vertical distribution.

  5. Seasonality in the Mesozooplankton Community of Delaware Bay, USA

    Science.gov (United States)

    Wickline, A.; Cohen, J.

    2016-02-01

    Zooplankton communities in temperate estuaries undergo seasonal shifts in abundance and species composition, though the physical/biological mechanisms behind these shifts vary among systems. Delaware Bay is a well-mixed estuary on the mid-Atlantic coast with predictable seasonal variation in environmental conditions and circulation. To understand factors influencing mesozooplankton community dynamics in this system, we conducted seasonal sampling at 16 stations over the estuary's salinity range in 2014-2015. Sampling paralleled the last similar investigation into Delaware Bay zooplankton, conducted in the early 1950s. Biomass, measured as dry weight and totaled for all stations, was low in late summer and high in spring and fall. Bio-volume, measured either as displacement volume or calculated from ZooScan processing to exclude detritus, also showed a similar pattern. Across seasons, the mesozooplankton community was dominated by copepods, representing over 60% of the relative abundance at each station. Acartia tonsa was the dominant calanoid species in summer and fall, with abundances up to 7,353 ind. m-3, which is similar to the 1950s. In spring, Centropages hamatus and C. typicus were dominant at densities up to 2,550 ind. m-3 throughout the estuary, which is an increase from the 1950s. Environmental data suggest the seasonal shift in dominance from neritic Centropages to estuarine Acartia could be driven by increased stratification of the estuary during periods of high river discharge in spring, creating a two-layer system with a bottom advection current fed by the coastal ocean, bringing coastal species into the estuary. As river discharge decreases, the advection current is reduced, creating a well-mixed estuary and allowing Acartia to dominante. As river discharge is ultimately determined by precipitation, which is predicted to increase during winter with climate change in this region, the phenology of mesozooplankton species dynamics could shift as well.

  6. Phytoplankton and Climate

    Science.gov (United States)

    Moisan, John R.

    2009-01-01

    Ocean phytoplankton supply about half of the oxygen that humans utilize to sustain life. In this lecture, we will explore how phytoplankton plays a critical role in modulating the Earth's climate. These tiny organisms are the base of the Ocean's food web. They can modulate the rate at which solar heat is absorbed by the ocean, either through direct absorption or through production of highly scattering cellular coverings. They take up and help sequester carbon dioxide, a key greenhouse gas that modulated the Earth's climate. They are the source of cloud nucleation gases that are key to cloud formation/processes. They are also able to modify the nutrient budgets of the ocean through active uptake of inert atmospheric nitrogen. Climate variations have a pronounced impact on phytoplankton dynamics. Long term variations in the climate have been studied through geological interpretations on its influence on phytoplankton populations. The presentation will focus on presenting the numerous linkages that have been observed between climate and phytoplankton and further discuss how present climate change scenarios are likely to impact phytoplankton populations as well as present findings from several studies that have tried to understand how the climate might react to the feedbacks from these numerous climate-phytop|ankton linkages.

  7. Spatial and temporal patterns of phytoplankton composition in Burullus Lagoon, Southern Mediterranean Coast, Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed Zein Alabedin Nassar

    2014-01-01

    Full Text Available Burullus Lagoon is a shallow, turbid, and nutrient replete system, suffering from high level of aquatic plants, expansion in fish farming and agricultural drainage discharges. Phytoplankton was evaluated based on four years monitoring seasonally from summer 2009 to spring 2013 at 12 stations representing the eastern, central and western basins of the lagoon. Over the 4-year study period, a total of 283 taxa from 96 genera and eight classes were recorded. The lagoon showed a pronounced algal periodicity. Phytoplankton community was generally dominated by Chlorophyceae, Bacillariophyceae and Cyanobacteria. The western basin had the lowest mean salinity values and highest phytoplankton abundance, in which, blooms of Chlorophyceae, Bacillariophyceae and Cyanobacteria were common. The eastern basin had lowest phytoplankton density and chlorophytes were dominant followed by Bacillariophyceae and/or Cyanobacteria. Euglenophyceae strongly appeared in the eastern basin especially at the second station, which is located in front of El Burullus Drain. The central basin is subjecting to high loading of phosphorus and nitrogen from agricultural drains and had a prevalence of chlorophyte blooms which constituted more than 50% of the total abundance. This study has provided substantial evidence that the phytoplankton abundance and community are governed by the environmental conditions which vary each year, so does the phytoplankton seasonal succession. Generally, about 25-50% reduction was recorded in the phytoplankton densities between 2009 and 2013 and a dramatic decrease in the abundance of many nuisance and eutrophic species was evident. No sign of eutrophication was observed, and recession of Cyanobacteria blooming suggests a major improvement in the water quality of Burullus Lagoon.

  8. Effects of a surfacing effluent plume on a coastal phytoplankton community

    KAUST Repository

    Reifel, Kristen M.

    2013-06-01

    Urban runoff and effluent discharge from heavily populated coastal areas can negatively impact water quality, beneficial uses, and coastal ecosystems. The planned release of treated wastewater (i.e. effluent) from the City of Los Angeles Hyperion Wastewater Treatment Plant, located in Playa del Rey, California, provided an opportunity to study the effects of an effluent discharge plume from its initial release until it could no longer be detected in the coastal ocean. Non-metric multi-dimensional scaling analysis of phytoplankton community structure revealed distinct community groups based on salinity, temperature, and CDOM concentration. Three dinoflagellates (Lingulodinium polyedrum, Cochlodinium sp., Akashiwo sanguinea) were dominant (together >50% abundance) prior to the diversion. Cochlodinium sp. became dominant (65-90% abundance) within newly surfaced wastewater, and A. sanguinea became dominant or co-dominant as the effluent plume aged and mixed with ambient coastal water. Localized blooms of Cochlodinium sp. and A. sanguinea (chlorophyll a up to 100mgm-3 and densities between 100 and 2000cellsmL-1) occurred 4-7 days after the diversion within the effluent plume. Although both Cochlodinium sp. and A. sanguinea have been occasionally reported from California waters, blooms of these species have only recently been observed along the California coast. Our work supports the hypothesis that effluent and urban runoff discharge can stimulate certain dinoflagellate blooms. All three dinoflagellates have similar ecophysiological characteristics; however, small differences in morphology, nutrient preferences, and environmental requirements may explain the shift in dinoflagellate composition. © 2013 Elsevier Ltd.

  9. The Relationship between Phytoplankton Evenness and Copepod Abundance in Lake Nansihu, China

    Directory of Open Access Journals (Sweden)

    Wang Tian

    2016-08-01

    Full Text Available The relationship between biodiversity and ecosystem functioning is a central issue in ecology. Previous studies have shown that producer diversity can impact the consumer community via predator-prey interactions. However, direct observations of this relationship remain rare, in particular for aquatic ecosystems. In this research, the relationship between phytoplankton diversity (species richness and evenness and the abundance of copepods was analyzed in Lake Nansihu, a meso-eutrophic lake in China. The results showed that copepods abundance was significantly decreased with increasing phytoplankton evenness throughout the year. However, both species richness and phytoplankton biomass showed no significant relationship with the abundance of copepods. Canonical correspondence analysis revealed that phytoplankton evenness was negatively correlated with Thermocyclops kawamurai, Cyclops vicinus, Eucyclops serrulatus, Mesocyclops leuckarti, Sinocalanus tenellus, Sinocalanus dorrii, Copepods nauplius, but positively correlated with many Cyanophyta species (Chroococcus minutus, Dactylococcopsis acicularis, Microcystis incerta, Merismopedia tenuissima, Merismopedia sinica and Lyngbya limnetica. Based on our results, phytoplankton evenness was a better predictor of copepods abundance in meso-eutrophic lakes. These results provide new insights into the relationship between diversity and ecosystem functioning in aquatic ecosystems.

  10. Novel analyses of long-term data provide a scientific basis for chlorophyll-a thresholds in San Francisco Bay

    Science.gov (United States)

    Sutula, Martha; Kudela, Raphael; Hagy, James D.; Harding, Lawrence W.; Senn, David; Cloern, James E.; Bricker, Suzanne; Berg, Gry Mine; Beck, Marcus

    2017-10-01

    San Francisco Bay (SFB), USA, is highly enriched in nitrogen and phosphorus, but has been resistant to the classic symptoms of eutrophication associated with over-production of phytoplankton. Observations in recent years suggest that this resistance may be weakening, shown by: significant increases of chlorophyll-a (chl-a) and decreases of dissolved oxygen (DO), common occurrences of phytoplankton taxa that can form Harmful Algal Blooms (HAB), and algal toxins in water and mussels reaching levels of concern. As a result, managers now ask: what levels of chl-a in SFB constitute tipping points of phytoplankton biomass beyond which water quality will become degraded, requiring significant nutrient reductions to avoid impairments? We analyzed data for DO, phytoplankton species composition, chl-a, and algal toxins to derive quantitative relationships between three indicators (HAB abundance, toxin concentrations, DO) and chl-a. Quantile regressions relating HAB abundance and DO to chl-a were significant, indicating SFB is at increased risk of adverse HAB and low DO levels if chl-a continues to increase. Conditional probability analysis (CPA) showed chl-a of 13 mg m-3 as a "protective" threshold below which probabilities for exceeding alert levels for HAB abundance and toxins were reduced. This threshold was similar to chl-a of 13-16 mg m-3 that would meet a SFB-wide 80% saturation Water Quality Criterion (WQC) for DO. Higher "at risk" chl-a thresholds from 25 to 40 mg m-3 corresponded to 0.5 probability of exceeding alert levels for HAB abundance, and for DO below a WQC of 5.0 mg L-1 designated for lower South Bay (LSB) and South Bay (SB). We submit these thresholds as a basis to assess eutrophication status of SFB and to inform nutrient management actions. This approach is transferrable to other estuaries to derive chl-a thresholds protective against eutrophication.

  11. Structure and spatial patterns of macrobenthic community in Tai Lake, a large shallow lake, China

    Science.gov (United States)

    Di Li,; Erickson, Richard A.; Song Tang,; Xuwen Li,; Niu, Zhichun; Xia Wang,; Hongling Liu,; Hongxia Yu,

    2016-01-01

    Tai Lake (Chinese: Taihu), the third-largest freshwater lake in China, suffers from harmful cyanobacteria blooms that are caused by economic development and population growth near the lake. Several studies have focused on phytoplankton in Tai Lake after a drinking water crisis in 2007; however, these studies primarily focused on microcystin bioaccumulation and toxicity to individual species without examining the effects of microcystin on macrobenthic community diversity. In this study, we conducted a survey of the lake to examine the effects of microcystine and other pollutants on marcobenthic community diversity. A totally of forty-nine species of macroinvertebrates were found in Tai Lake. Limnodrilus hoffmeisteri and Corbicula fluminea were the most abundant species. Cluster-analysis and one-way analysis of similarity (ANOSIM) identified three significantly different macrobenthic communities among the sample sites. More specifically, sites in the eastern bays, where aquatic macrophytes were abundant, had the highest diversity of macrobenthic communities, which were dominated by Bellamya aeruginosa, Bellamya purificata, L. hoffmeisteri, and Alocinma longicornis. Sites in Zhushan Bay contained relatively diverse communities, mainly composed of L. hoffmeisteri, C. fluminea, L. claparederanus, R. sinicus, and Cythura sp. Sites in the western region, Meiliang Bay and Wuli Bay had the lowest diversity, mainly composed ofL. hoffmeisteri, C. fluminea, Branchiura sowerbyi, and Rhyacodrilus sinicus. In addition, the relationships between macrobenthic metrics (Shannon–Wiener, Margalef, and Pielou) and environmental variables showed that community structure and spatial patterns of macrobenthos in Tai Lake were significantly influenced by chemical oxygen demand (CODCr), biochemical oxygen demand (BOD5), lead (Pb), and microcystin-LR (L for leucine and R for arginine). Our findings provide critical information that could help managers and policymakers

  12. Fish community responses to submerged aquatic vegetation in Maumee Bay, Western Lake Erie

    Science.gov (United States)

    Miller, Jacob; Kocovsky, Patrick; Wiegmann, Daniel; Miner, Jeffery G.

    2018-01-01

    Submerged aquatic vegetation (SAV) in clearwater systems simultaneously provides habitat for invertebrate prey and acts as refugia for small fishes. Many fishes in Lake Erie rely on shallow, heavily vegetated bays as spawning grounds and the loss or absence of which is known to reduce recruitment in other systems. The Maumee River and Maumee Bay, which once had abundant macrophyte beds, have experienced a decline of SAV and an increase in suspended solids (turbidity) over the last century due to numerous causes. To compare fish communities in open‐water (turbid) and in SAV (clearer water) habitats in this region, which is designated by the U.S. Environmental Protection Agency as an Area of Concern, and to indicate community changes that could occur with expansion of SAV habitat, we sampled a 300‐ha sector of northern Maumee Bay that contained both habitats. Using towed neuston nets through patches of each habitat, we determined that areas of SAV contained more species and a different species complex (based on the Jaccard index and the wetland fish index), than did the open‐water habitat (averaging 8.6 versus 5 species per net trawl). The SAV habitat was dominated by centrarchids, namely Largemouth Bass Micropterus salmoides, Bluegill Lepomis macrochirus, and Black Crappie Pomoxis nigromaculatus. Open‐water habitat was dominated by Spottail Shiner Notropis hudsonius, Gizzard Shad Dorosoma cepedianum, and White Perch Morone americana, an invasive species. These results indicate that restoration efforts aimed at decreasing turbidity and increasing the distribution of SAV could cause substantive shifts in the fish community and address important metrics for assessing the beneficial use impairments in this Area of Concern.

  13. Salt Marsh development studies at Waquoit Bay, Massachusetts: Influence of geomorphology on long-term plant community structure

    Science.gov (United States)

    Orson, Richard A.; Howes, Brian L.

    1992-11-01

    Stochastic events relating to beach formation and inlet dynamics have been the major factors influencing the development of the Waquoit Bay tidal marshes. This results from the physical structure of the Waquoit Bay system where tidal exchange is limited to one or two small inlets and is in contrast to marsh development in nearby Barnstable Marsh where direct unrestricted exchange with Cape Cod Bay has smoothed the effects of stochastic events on vegetation development. We contend that vegetation development in salt marshes where connections to adjacent waters are restricted will be dominated by abiotic factors (e.g. storms, sedimentation rates, etc.) while those marshes directly linked to open bodies of water and where alterations to hydrodynamic factors are gradual, autecological processes (e.g. interspecific competition) will dominate long-term plant community development. The results from the five marsh systems within the Waquoit Bay complex suggest that once a vegetation change occurs the new community tended to persist for long periods of time (100's-1000's years). Stability of the 'new' community appeared to depend upon the stability of the physical structure of the system and/or time between perturbations necessary to allow the slower autecological processes to have a discernable effect. In order for the plant community to persist as long as observed, the vegetation must also be exerting an influence on the processes of development. Increased production of roots and rhizomes and growth characteristics (density of culms) are some of the factors which help to maintain long-term species dominance. It is clear from this investigation that the structure of the plant community at any one point in time is dependent upon numerous factors including historical developmental influences. To properly assess changes to the present plant community or determine recent rates of accretion, historic developmental trends must be considered. The factors that have influenced the

  14. Biogeochemical provinces in the global ocean based on phytoplankton growth limitation

    Science.gov (United States)

    Hashioka, T.; Hirata, T.; Aita, M. N.; Chiba, S.

    2016-02-01

    The biogeochemical province is one of the useful concepts for the comprehensive understanding of regional differences of the marine ecosystem. Various biogeochemical provinces for lower-trophic level ecosystem have been proposed using a similarity-based classification of seasonal variations of chl-a concentration typified by Longhurst 1995 and 2006. Such categorizations well capture the regional differences of seasonality as "total phytoplankton". However, background biogeochemical mechanism to characterize the province boundary is not clear. Namely, the dominant phytoplankton group is different among regions and seasons, and their physiological characteristics are significantly different among groups. Recently some pieces of new biogeochemical information are available. One is an estimation of phytoplankton community structure from satellite observation, and it makes clear the key phytoplankton type in each region. Another is an estimation of limitation factors for phytoplankton growth (e.g., nutrients, temperature, light) in each region from modeling studies. In this study, we propose new biogeochemical provinces as a combination between the dominance of phytoplankton (i.e., diatoms, nano-, pico-phytoplankton or coexistence of two/three types) and their growth limitation factors (particularly we focused on nutrient limitation; N, P, Si or Fe). In this combination, we classified the global ocean into 23 biogeochemical provinces. The result suggests that even if the same type of phytoplankton dominates, the background mechanism could be different among regions. On the contrary, even if the regions geographically separate, the background mechanism could be similar among regions. This is important to understand that region/boundary does respond to environmental change. This biogeochemical province is useful for identification of key areas for future observation.

  15. The Effects of Climate Variability on Phytoplankton Composition in the Equatorial Pacific Ocean using a Model and a Satellite-Derived Approach

    Science.gov (United States)

    Rousseaux, C. S.; Gregg, W. W.

    2012-01-01

    Compared the interannual variation in diatoms, cyanobacteria, coccolithophores and chlorophytes from the NASA Ocean Biogeochemical Model with those derived from satellite data (Hirata et al. 2011) between 1998 and 2006 in the Equatorial Pacific. Using NOBM, La Ni a events were characterized by an increase in diatoms (correlation with MEI, r=-0.81, Pphytoplankton community in response to climate variability. However, satellite-derived phytoplankton groups were all negatively correlated with climate variability (r ranged from -0.39 for diatoms to -0.64 for coccolithophores, Pphytoplankton groups except diatoms than NOBM. However, the different responses of phytoplankton to intense interannual events in the Equatorial Pacific raises questions about the representation of phytoplankton dynamics in models and algorithms: is a phytoplankton community shift as in the model or an across-the-board change in abundances of all phytoplankton as in the satellite-derived approach.

  16. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles

    DEFF Research Database (Denmark)

    Le Quéré, Corinne; Buitenhuis, Erik T.; Moriarty, Róisín

    2016-01-01

    zooplankton community, despite iron limitation of phytoplankton community growth rates. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean....

  17. Temporal and spatial variability of phytoplankton pigment concentrations in the Indian Ocean, derived from the CZCS time series images

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available A total of 93 monthly global composite remotely sensed ocean color images from the Coastal Zone Color Scanner (CZCS on board the Nimbus-7 satellite were extracted for the Indian Ocean region (35ºN–55ºS; 30–120ºE to examine the seasonal variations in phytoplankton pigment concentrations, resulting from large-scale changes in physical oceanographic processes. The CZCS data sets were analyzed with the PC-SEAPAK software, and revealed large phytoplankton blooms in the northwest Arabian Sea and off the Somali coast. The blooms were triggered by wind-driven upwelling during the southwest monsoonal months of August and September. In the northern Arabian Sea, phytoplankton blooms, detected from January to March, appeared to be associated with nutrient enhancement resulting from winter convective mixing. In the Bay of Bengal, higher pigment concentrations were confined to the coastal regions but varied only marginally between seasons both in the coastal and offshore regions. Phytoplankton pigment concentrations were consistently low in the open Indian Ocean. Analysis of pigment concentrations extracted from the monthly-accumulated images revealed that the Arabian Sea sustained a greater biomass of phytoplankton compared with any other region of the Indian Ocean. Overall, the coastal regions of the Indian Ocean are richer in phytoplankton pigment than the open Indian Ocean. The number of images in individual areas was highly variable throughout the region due to varying cloud cover.

  18. Phytoplankton Abundance and Distribution of Fish Earthen Ponds in ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-15

    Dec 15, 2017 ... ... to determine the effect of some physicochemical parameters on the community structure of three on- research ... The spatial distribution of ... important for growth and density of phytoplankton on ... response to changes in the surrounding environment ... Lagos, Nigeria were concentrated on the taxonomic.

  19. Copepod grazing and their impact on phytoplankton standing stock and production in a tropical coastal water during the different seasons.

    Science.gov (United States)

    Jagadeesan, L; Jyothibabu, R; Arunpandi, N; Parthasarathi, S

    2017-03-01

    The grazing rate of copepods on the total and size-fractionated phytoplankton biomass in a coastal environment (off Kochi, southwest coast of India) were measured during pre-monsoon (PRM), peak southwest monsoon (PKSWM), late southwest monsoon (LSWM) and post-southwest monsoon (PSWM). The phytoplankton standing stock (chlorophyll a-Chl. a) and growth rate (GR) were less during the PRM (Chl. a 0.58 mg m -3 ; GR 0.23 ± 0.02) and PSWM (Chl. a 0.89 mg m -3 ; GR 0.30 ± 0.05) compared to PKSWM (Chl. a 6.67 mg m -3 ; GR 0.43 ± 0.02) and LSWM (Chl. a 4.09 mg m -3 ; GR 0.40 ± 0.04). The microplankton contribution to the total Chl. a was significant during the PKSWM (41.83%) and LSWM (45.72%). Copepod density was lesser during the PRM (1354 No m -3 ) and PSWM (1606 No m -3 ) than during PKSWM and LSWM (4571 and 3432 No m -3 , respectively). Seasonal changes in phytoplankton biomass, phytoplankton size structure, and copepod community were closely related to the hydrographical transformations in the study domain. Dominant calanoid copepods in the study region ingested 8.4 to 14.2% of their daily ration from phytoplankton during the PRM and PSWM, which increased to >50% during the PKSWM and LSWM. The cyclopoid Oithona similis was abundant during the PKSWM, ingesting only 21% of their daily ration from phytoplankton. Temporal variation in the phytoplankton biomass and copepod species composition caused differences in community level top-down control. The copepod community ingestion on phytoplankton was high during the LSWM (18,583 μg C m -3 d -1 ), followed by PKSWM (9050 μg C m -3 d -1 ), PSWM (1813 μg C m -3 d -1 ), and PRM (946 μg C m -3 d -1 ). During the low Chl. a period (PRM and PSWM), dominant calanoid copepods showed a positive selectivity for the micro- and nano-phytoplankton size fractions, whereas during the high Chl. a period (PKSWM and LSWM), they showed a positive selection for nano-phytoplankton fractions. Irrespective

  20. Estuarine water quality and plankton community responses in the Pensacola Bay Estuary

    Science.gov (United States)

    Phytoplankton serve a centrally important role in estuaries forming the base of the food web. Thus factors that affect phytoplankton production and species composition cascades to higher trophic levels, ultimately affecting secondary production. Given their sensitivity to myriad ...

  1. Disentangling physical and biological drivers of phytoplankton dynamics in a coastal system.

    Science.gov (United States)

    Cianelli, Daniela; D'Alelio, Domenico; Uttieri, Marco; Sarno, Diana; Zingone, Adriana; Zambianchi, Enrico; d'Alcalà, Maurizio Ribera

    2017-11-20

    This proof-of-concept study integrates the surface currents measured by high-frequency coastal radars with plankton time-series data collected at a fixed sampling point from the Mediterranean Sea (MareChiara Long Term Ecological Research site in the Gulf of Naples) to characterize the spatial origin of phytoplankton assemblages and to scrutinize the processes ruling their dynamics. The phytoplankton community generally originated from the coastal waters whereby species succession was mainly regulated by biological factors (life-cycle processes, species-specific physiological performances and inter-specific interactions). Physical factors, e.g. the alternation between coastal and offshore waters and the horizontal mixing, were also important drivers of phytoplankton dynamics promoting diversity maintenance by i) advecting species from offshore and ii) diluting the resident coastal community so as to dampen resource stripping by dominant species and thereby increase the numerical importance of rarer species. Our observations highlight the resilience of coastal communities, which may favour their persistence over time and the prevalence of successional events over small time and space scales. Although coastal systems may act differently from one another, our findings provide a conceptual framework to address physical-biological interactions occurring in coastal basins, which can be generalised to other areas.

  2. Phytoplankton diversity in the East China Sea and Yellow Sea measured by PCR-DGGE and its relationships with environmental factors

    Science.gov (United States)

    Sun, Jing; Yu, Zhigang; Gao, Yahui; Zhou, Qianqian; Zhen, Yu; Chen, Hongtao; Zhao, Liyuan; Yao, Qingzhen; Mi, Tiezhu

    2010-03-01

    Relationships between phytoplankton community composition and environmental variables in the East China Sea (ECS) and Yellow Sea (YS) were investigated using geochemical and molecular microbiology methods. The diversity of phytoplankton was characterized using cultivation-independent PCR-based denaturing gradient gel electrophoresis (DGGE). Groups resulting from unweighted pair-group method with arithmetic averages clustering of the DGGE profiles showed good consistency with the eco-environmental characteristics of the sea area they belonged to. Additionally, the clustering results based on DGGE fingerprinting and those based on morphological compositions were practically identical. The relationship of phytoplankton diversity to environmental factors was statistically analyzed. Temperature, dissolved inorganic nitrogen (DIN), and silicate-Si were found significantly related to the phytoplankton community composition. Canonical correspondence analysis (CCA) was performed to reveal the relationship between community composition and these three environmental factors. Generally, values of the ECS are clearly separated from those of the YS in the CCA biplot, due to mainly the effect of temperature and DIN.

  3. Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean

    International Nuclear Information System (INIS)

    Mitchell, B.G.; Brody, E.A.; Holm-Hansen, O.; McClain, C.; Bishop, J.

    1991-01-01

    The Antarctic Circumpolar Current (ACC) is unique in that it has continually high concentrations of major plant nutrients but low phytoplankton biomass. This enigmatic phenomenon is the focus of significant speculation that trace nutrients, including Fe, may limit phytoplankton crop size. Global climatologies indicate that the ACC is a region with low surface temperatures, weak density stratification, little summertime surface solar irradiance, and strong wind stress. These physical phenomena act to limit growth rates of the phytoplankton community. Using a photo-physiological description of phytoplankton growth in a simple one-dimensional ecosystem model forced by observations or climatologies of mixing depth and surface irradiance, the authors make an evaluation of the potential for massive, nutrient-exhausting, phytoplankton blooms forming in the ACC. The ACC has persistent mixed layers in excess of 50 m. Literature values and model optimization indicate that the minimal aggregate specific loss rate and typical physical conditions of stratification and surface irradiance, the model predicts that phytoplankton in the ACC would not utilize >10% of the available macronutrients. Without a mechanism for increasing the strength of stratification, the authors predict that massive Fe additions to the Southern Ocean would fail to significantly mitigate the atmospheric CO 2 derived from fossil fuel

  4. Does temperature structure phytoplankton community composition in the Ross Sea, Antarctica?

    Science.gov (United States)

    The Ross Sea polynya experiences one of the largest phytoplankton blooms in the Southern Ocean. Energy flow potential within the Ross Sea food web is primarily set by diatoms and prymnesiophytes, the latter dominated by Phaeocystis antarctica. We investigated physical, chemical,...

  5. The East Bay Center for the Performing Arts: A Model for Community-Based Multicultural Arts Education

    Science.gov (United States)

    Engdahl, Eric

    2012-01-01

    This article highlights the East Bay Center for the Performing Arts in Richmond, California, which is one successful model of a community-based arts education organization whose central mission is to provide these deep art-rich experiences for students from low socio-economic status (SES) communities, who in this instance are predominately African…

  6. Biophysical modelling of phytoplankton communities from first principles using two-layered spheres: Equivalent Algal Populations (EAP) model.

    Science.gov (United States)

    Robertson Lain, L; Bernard, S; Evers-King, H

    2014-07-14

    There is a pressing need for improved bio-optical models of high biomass waters as eutrophication of coastal and inland waters becomes an increasing problem. Seasonal boom conditions in the Southern Benguela and persistent harmful algal production in various inland waters in Southern Africa present valuable opportunities for the development of such modelling capabilities. The phytoplankton-dominated signal of these waters additionally addresses an increased interest in Phytoplankton Functional Type (PFT) analysis. To these ends, an initial validation of a new model of Equivalent Algal Populations (EAP) is presented here. This paper makes a first order comparison of two prominent phytoplankton Inherent Optical Property (IOP) models with the EAP model, which places emphasis on explicit bio-physical modelling of the phytoplankton population as a holistic determinant of inherent optical properties. This emphasis is shown to have an impact on the ability to retrieve the detailed phytoplankton spectral scattering information necessary for PFT applications and to successfully simulate reflectance across wide ranges of physical environments, biomass, and assemblage characteristics.

  7. Effects of Nitrogen Availability and Form on Phytoplankton Growth in a Eutrophied Estuary (Neuse River Estuary, NC, USA)

    Science.gov (United States)

    Paerl, Hans W.; Wetz, Michael S.

    2016-01-01

    Nitrogen availability and form are important controls on estuarine phytoplankton growth. This study experimentally determined the influence of urea and nitrate additions on phytoplankton growth throughout the growing season (March 2012, June 2011, August 2011) in a temperate, eutrophied estuary (Neuse River Estuary, North Carolina, USA). Photopigments (chlorophyll a and diagnostic photopigments: peridinin, fucoxanthin, alloxanthin, zeaxanthin, chlorophyll b) and microscopy-based cell counts were used as indicators of phytoplankton growth. In March, the phytoplankton community was dominated by Gyrodinium instriatum and only fucoxanthin-based growth rates were stimulated by nitrogen addition. The limited response to nitrogen suggests other factors may control phytoplankton growth and community composition in early spring. In June, inorganic nitrogen concentrations were low and stimulatory effects of both nitrogen forms were observed for chlorophyll a- and diagnostic photopigment-based growth rates. In contrast, cell counts showed that only cryptophyte and dinoflagellate (Heterocapsa rotundata) growth were stimulated. Responses of other photopigments may have been due to an increase in pigment per cell or growth of plankton too small to be counted with the microscopic methods used. Despite high nitrate concentrations in August, growth rates were elevated in response to urea and/or nitrate addition for all photopigments except peridinin. However, this response was not observed in cell counts, again suggesting that pigment-based growth responses may not always be indicative of a true community and/or taxa-specific growth response. This highlights the need to employ targeted microscopy-based cell enumeration concurrent with pigment-based technology to facilitate a more complete understanding of phytoplankton dynamics in estuarine systems. These results are consistent with previous studies showing the seasonal importance of nitrogen availability in estuaries, and also

  8. Seasonal variations of phytoplankton dynamics in Nunatsiavut fjords (Labrador, Canada) and their relationships with environmental conditions

    Science.gov (United States)

    Simo-Matchim, Armelle-Galine; Gosselin, Michel; Blais, Marjolaine; Gratton, Yves; Tremblay, Jean-Éric

    2016-04-01

    We assessed phytoplankton dynamics and its environmental control in four Labrador fjords (Nachvak, Saglek, Okak, and Anaktalak) during summer, early fall and late fall. Primary production and chlorophyll a (chl a) biomass were measured at seven optical depths, including the depth of subsurface chl a maximum (SCM). Phytoplankton abundance, size structure and taxonomy were determined at the SCM. Principal component analysis and non-metric multidimensional scaling were used to analyze relationships between production, biomass and community composition in relation to environmental variables. We observed a marked seasonal variability, with significant differences in phytoplankton structure and function between summer and fall. Surprisingly, primary production and chl a biomass were not significantly different from one fjord to another. The highest values of primary production (1730 mg C m- 2 day- 1) and chl a biomass (96 mg chl a m- 2) were measured during the summer bloom, and those high values indicate that Labrador fjords are highly productive ecosystems. The summer community showed relatively high abundance of nanophytoplankton (2-20 μm) while the fall community was characterized by low primary production and chl a biomass as well as relatively high abundance of picophytoplankton (< 2 μm). The low value of carbon potentially exported out of the euphotic zone throughout the study (≤ 31% of total primary production) suggests that phytoplankton production was mainly grazed by microzooplankton rather than being exported to greater depths. We observed a mixed assemblage of diatoms and flagellates in summer, whereas the fall community was largely dominated by flagellates. Seasonal variations in phytoplankton dynamics were mainly controlled by the strength of the vertical stratification and by the large differences in day length due to the northerly location of Labrador fjords. This study documents for the very first time phytoplankton structure and function in

  9. Time series monitoring of water quality and microalgal diversity in a tropical bay under intense anthropogenic interference (SW coast of the Bay of Bengal, India)

    Energy Technology Data Exchange (ETDEWEB)

    Shaik, Aziz ur Rahman [CSIR — National Institute of Oceanography, Regional Centre, 176 Lawson' s Bay Colony, Visakhapatnam, AP 530017 (India); Biswas, Haimanti, E-mail: haimanti.biswas@nio.org [CSIR — National Institute of Oceanography, Regional Centre, 176 Lawson' s Bay Colony, Visakhapatnam, AP 530017 (India); Reddy, N.P.C.; Srinivasa Rao, V. [CSIR — National Institute of Oceanography, Regional Centre, 176 Lawson' s Bay Colony, Visakhapatnam, AP 530017 (India); Bharathi, M.D. [Present address: ICMAM Project Directorate, 2nd Floor, NIOT Campus, Velacherry-Tambaram Main Road, Pallikkaranai, Chennai 600100 (India); Subbaiah, Ch.V. [CSIR — National Institute of Oceanography, Regional Centre, 176 Lawson' s Bay Colony, Visakhapatnam, AP 530017 (India)

    2015-11-15

    In recent decades, material fluxes to coastal waters from various land based anthropogenic activities have significantly been enhanced around the globe which can considerably impact the coastal water quality and ecosystem health. Hence, there is a critical need to understand the links between anthropogenic activities in watersheds and its health. Kakinada Bay is situated at the SW part of the Bay of Bengal, near to the second largest mangrove cover in India with several fertilizer industries along its bank and could be highly vulnerable to different types of pollutants. However, virtually, no data is available so far reporting its physicochemical status and microalgal diversity at this bay. In order to fill this gap, we conducted three time series observations at a fixed station during January, December and June 2012, at this bay measuring more than 15 physical, chemical and biological parameters in every 3 h over a period of 36 h in both surface (0 m) and subsurface (4.5 m) waters. Our results clearly depict a strong seasonality between three sampling months; however, any abnormal values of nutrients, biological oxygen demand or dissolved oxygen level was not observed. A Skeletonema costatum bloom was observed in December which was probably influenced by low saline, high turbid and high Si input through the river discharge. Otherwise, smaller diatoms like Thalassiosira decipiens, Thalassiothrix frauenfeldii, and Thalassionema nitzschioides dominated the bay. It is likely that the material loading can be high at the point sources due to intense anthropogenic activities, however, gets diluted with biological, chemical and physical processes in the offshore waters. - Highlights: • No signature of enormous nutrient loading was observed over the diel cycle • Dissolved oxygen and BOD concentrations did not show any exceptional trend • Diatoms dominated more than 90% of the total phytoplankton communities • A Skeletonema Costatum (a centric diatom) bloom was

  10. Time series monitoring of water quality and microalgal diversity in a tropical bay under intense anthropogenic interference (SW coast of the Bay of Bengal, India)

    International Nuclear Information System (INIS)

    Shaik, Aziz ur Rahman; Biswas, Haimanti; Reddy, N.P.C.; Srinivasa Rao, V.; Bharathi, M.D.; Subbaiah, Ch.V.

    2015-01-01

    In recent decades, material fluxes to coastal waters from various land based anthropogenic activities have significantly been enhanced around the globe which can considerably impact the coastal water quality and ecosystem health. Hence, there is a critical need to understand the links between anthropogenic activities in watersheds and its health. Kakinada Bay is situated at the SW part of the Bay of Bengal, near to the second largest mangrove cover in India with several fertilizer industries along its bank and could be highly vulnerable to different types of pollutants. However, virtually, no data is available so far reporting its physicochemical status and microalgal diversity at this bay. In order to fill this gap, we conducted three time series observations at a fixed station during January, December and June 2012, at this bay measuring more than 15 physical, chemical and biological parameters in every 3 h over a period of 36 h in both surface (0 m) and subsurface (4.5 m) waters. Our results clearly depict a strong seasonality between three sampling months; however, any abnormal values of nutrients, biological oxygen demand or dissolved oxygen level was not observed. A Skeletonema costatum bloom was observed in December which was probably influenced by low saline, high turbid and high Si input through the river discharge. Otherwise, smaller diatoms like Thalassiosira decipiens, Thalassiothrix frauenfeldii, and Thalassionema nitzschioides dominated the bay. It is likely that the material loading can be high at the point sources due to intense anthropogenic activities, however, gets diluted with biological, chemical and physical processes in the offshore waters. - Highlights: • No signature of enormous nutrient loading was observed over the diel cycle • Dissolved oxygen and BOD concentrations did not show any exceptional trend • Diatoms dominated more than 90% of the total phytoplankton communities • A Skeletonema Costatum (a centric diatom) bloom was

  11. [Phytoplankton and zooplankton of the industrial reservoir R-9 (Lake Karachay)].

    Science.gov (United States)

    Priakhin, E A; Triapitsina, G A; Atamaniuk, N I; Osipov, D I; Stukalov, P M; Ivanov, I A; Popova, I Ia; Akleev, A V

    2012-01-01

    Planktonic communities of the Reservoir-9 (Lake Karachay, storage reservoir of liquid medium-level radioactive waste of the Mayak Production Association) are exposed to the severe radioactive forcing (in 2010 the total beta-activity of the water was 1.8 x 10(7) Bq/L, total alpha-activity was 1.1 x 10(4) Bq/L), aswell as to the chemical contamination (level of nitrates in water 4.1 g/L). The calculated values of the absorbed dose rate were 130 Gy/day for phytoplankton and 4.0 Gy/day for zooplankton. Extremely low species diversity, the overwhelming dominance of one species (phytoplankton is close to a monoculture of ubiquitous cyanobacteria Geitlerinema amphibium, zooplankton--to a monoculture of rotifers Hexarthrafennica), wide fluctuations in numbers of algae, a low number of zooplankton were the most substantial characteristics of the plankton communities in Lake Karachay. So, plankton communities status is a sign of environmental retrogress in this ecosystem.

  12. Effects of Water Diversion from Yangtze River to Lake Taihu on the Phytoplankton Habitat of the Wangyu River Channel

    Directory of Open Access Journals (Sweden)

    Jiangyu Dai

    2018-06-01

    Full Text Available To reveal the effects of water diversion from the Yangtze River to Lake Taihu on the phytoplankton habitat of the main water transfer channel of the Wangyu River, we investigated the water’s physicochemical parameters and phytoplankton communities during the water diversion and non-diversion periods over the winters between 2014–2016, respectively. During the water diversion periods in the winter of 2014 and 2015, the nutrients and organic pollutant contents of the Wangyu River channel were significantly lower than those during the non-diversion period in 2016. Moreover, the phytoplankton diversities and relative proportions of Bacillariophyta during the diversion periods evidently increased during the water diversion periods in winter. The increase in the water turbidity content, the decrease in the contents of the permanganate index, and the total phosphorus explained only 21.4% of the variations in the phytoplankton communities between the diversion and non-diversion periods in winter, which revealed significant contributions of the allochthonous species from the Yangtze River and tributaries of the Wangyu River to phytoplankton communities in the Wangyu River. The increasing gradient in the contents of nutrients and organic pollutants from the Yangtze River to Lake Taihu indicated the potential allochthonous pollutant inputs along with the Wangyu River. Further controlling the pollutants from the tributaries of the Wangyu River is critical in order to improve the phytoplankton habitats in river channels and Lake Taihu.

  13. Evaluation of freeze fixation as a phytoplankton preservation method for microautoradiography

    International Nuclear Information System (INIS)

    Paerl, H.W.

    1984-01-01

    Quantitative microautoradiography of marine and freshwater phytoplankton has been hampered by the fact that chemical techniques used to maintain structural integrity cause leakage of isotopically labeled cell constituents. Chemography, poor preservation of structural integrity, and leakage of cell constituents can all be avoided by quick-freezing filtered samples in liquid N 2 and then freeze-drying them before autoradiographic preparation. Leakage of fixed 14 C and 33 P and preservation of cell shapes and sizes by these preservation techniques are evaluated in diverse marine and freshwater phytoplankton communities

  14. Mapping of trophic states based on nutrients concentration and phytoplankton abundance in Jatibarang Reservoir

    Science.gov (United States)

    Rudiyanti, Siti; Anggoro, Sutrisno; Rahman, Arif

    2018-02-01

    Jatibarang Reservoir is one of the Indonesian Reservoirs, which used for human activities such as tourism and agriculture. These activities will provide input of organic matter and nutrients into the water. These materials will impact water quality and eutrophication process. Eutrophication is the water enrichment by nutrients, especially nitrogen and phosphorus which can promote the growth of phytoplankton. Some indicators of eutrophication are increasing nutrients, trophic states, and change of phytoplankton composition. The relationship between water quality and phytoplankton community can be used as an indicator of trophic states in Jatibarang Reservoir. The aim of this study was to analyze the effect of nutrients concentration and phytoplankton abundance to the trophic states and mapping trophic states based on nutrients concentration and phytoplankton in Jatibarang Reservoir. This study was conducted in June and July 2017 at 9 stations around Jatibarang Reservoir. The results showed that average concentration of nitrate, phosphate, and chlorophyll-a in Jatibarang Reservoir was 0.69 mg/L, 0.27 mg/L, and 1.66 mg/m3, respectively. The phytoplankton abundance ranged 16-62,200 cells/L, consists of 21 genera of four classes, i.e. Chlorophyceae, Cyanophyceae, Bacillariophyceae, and Dinophyceae. Cyanophyceae was a dominant phytoplankton group based on the composition of abundance (>80%). High nutrient concentrations and phytoplankton dominated by Anabaena (Cyanophyceae) which indicated that the waters in Jatibarang Reservoir were eutrophic.

  15. Urban Greening Bay Area

    Science.gov (United States)

    Information about the San Francisco Bay Water Quality Project (SFBWQP) Urban Greening Bay Area, a large-scale effort to re-envision urban landscapes to include green infrastructure (GI) making communities more livable and reducing stormwater runoff.

  16. Novel Analyses of Long-Term Data Provide a Scientific Basis for Chlorophyll-a Thresholds in San Francisco Bay

    Science.gov (United States)

    San Francisco Bay (SFB), USA, is highly enriched in nitrogen and phosphorus, but has been resistant to the classic symptoms of eutrophication associated with over-production of phytoplankton. Observations in recent years suggest that this resistance may be weakening, shown by: si...

  17. Environmental flow assessments in estuaries related to preference of phytoplankton

    Science.gov (United States)

    Yang, Z. F.; Sun, T.; Zhao, R.

    2014-01-01

    We developed an approach to assess environmental flows in estuaries related to preference of phytoplankton considering the complex relationship between hydrological modification and biomass in ecosystems. As a first step, a relationship was established between biomass requirements for organisms of primary and higher nutritional levels based on the principle of nutritional energy flow of ecosystem. Then, diagnostic pigments were employed to represent phytoplankton community biomass, which indicated competition between two groups of phytoplankton in the biochemistry process. Considering empirical relationships between diagnostic pigments and critical environmental factors, responses of biomass to river discharges were established based on a convection-diffusion model by simulating distributions of critical environmental factors under action of river discharges and tide currents. Consequently, environmental flows could be recommended for different requirements of fish biomass. In the case study in the Yellow River estuary, May and October were identified as critical months for fish reproduction and growth during dry years. Artificial hydrological regulation strategies should carefully consider the temporal variations of natural flow regime, especially for a high-amplitude flood pulse, which may cause negative effects on phytoplankton groups and higher organism biomass.

  18. Macroalgae fouling community as quality element for the evaluation of the ecological status in Vela Luka Bay, Croatia

    Directory of Open Access Journals (Sweden)

    Gorana Jelic Mrcelic

    2012-10-01

    Full Text Available One year qualitative and quantitative study of communities of three major taxonomic groups has been carried out at test panles placed in the upper infarlittoral zone of coastal area of Vela Luka Bay, Croatia. A list of 44 taxa was recorded. Chaetomorpha sp., Ulva sp., Fosliella farinosa, Sphacelaria cirrosa, Polysiphonia scopulorum were the most frequent dominant taxa. Among 27 algal taxa with noticeable presence only three were classified as ESG (Ecological State Groups I. Low diversity and species richness together with massive presence of the green algae (as Ulva sp. and negligible presence of ESG I taxa, may lead to erroneous conclusion that Vela Luka Bay is eutrophicated area. Low values of biomass and R/P (Rhodophyceae by Phaeophyceae ratio Index together with dominance of Phaeophyta also support conclusion that there is no negative impact of nutrient enrichment on macrophyta fouling community in Vela Luka Bay.

  19. Organic Matter Remineralization Predominates Phosphorus Cycling in the Mid-Bay Sediments in the Chesapeake Bay

    Energy Technology Data Exchange (ETDEWEB)

    Sunendra, Joshi R.; Kukkadapu, Ravi K.; Burdige, David J.; Bowden, Mark E.; Sparks, Donald L.; Jaisi, Deb P.

    2015-05-19

    The Chesapeake Bay, the largest and most productive estuary in the US, suffers from varying degrees of water quality issues fueled by both point and non–point source nutrient sources. Restoration of the bay is complicated by the multitude of nutrient sources, their variable inputs and hydrological conditions, and complex interacting factors including climate forcing. These complexities not only restrict formulation of effective restoration plans but also open up debates on accountability issues with nutrient loading. A detailed understanding of sediment phosphorus (P) dynamics enables one to identify the exchange of dissolved constituents across the sediment- water interface and aid to better constrain mechanisms and processes controlling the coupling between the sediments and the overlying waters. Here we used phosphate oxygen isotope ratios (δ18Op) in concert with sediment chemistry, XRD, and Mössbauer spectroscopy on the sediment retrieved from an organic rich, sulfidic site in the meso-haline portion of the mid-bay to identify sources and pathway of sedimentary P cycling and to infer potential feedback effect on bottom water hypoxia and surface water eutrophication. Isotope data indicate that the regeneration of inorganic P from organic matter degradation (remineralization) is the predominant, if not sole, pathway for authigenic P precipitation in the mid-bay sediments. We interpret that the excess inorganic P generated by remineralization should have overwhelmed any bottom-water and/or pore-water P derived from other sources or biogeochemical processes and exceeded saturation with respect to authigenic P precipitation. It is the first research that identifies the predominance of remineralization pathway against remobilization (coupled Fe-P cycling) pathway in the Chesapeake Bay. Therefore, these results are expected to have significant implications for the current understanding of P cycling and benthic-pelagic coupling in the bay, particularly on the

  20. Cell volumes of marine phytoplankton from globally distributed coastal data sets

    Digital Repository Service at National Institute of Oceanography (India)

    Harrison, P.J; Zingone, A.; Mickelson, M.J; Lehtinen, S.; Ramaiah, N.; Kraberg, A.C; Sun, J; McQuatters-Gollop, A.; Jakobsen, H.H.

    volumes are the single largest source of uncertainty in community phytoplankton carbon estimates and greatly exceeds the uncertainty associated with the different volume to carbon estimates. Small diatoms have 10 times more carbon density than large...

  1. Suitability of phytosterols alongside fatty acids as chemotaxonomic biomarkers for phytoplankton

    Directory of Open Access Journals (Sweden)

    Sami Johan Taipale

    2016-03-01

    Full Text Available e composition and abundance of phytoplankton is important factor defining ecological status of marine and freshwater ecosystems. Chemotaxonomic markers (e.g., pigments and fatty acids are needed for monitoring changes in phytoplankton community and to know nutritional quality of seston for herbivorous zooplankton. Here we investigated the suitability of sterols along with fatty acids as chemotaxonomic markers by analyzing sterol and fatty acid composition of 10 different phytoplankton classes including altogether 37 strains isolated from freshwater lakes and by using multivariate statistics. We were able to detect totally 47 fatty acids and 29 sterols in our phytoplankton samples, which both differed statistically significantly between phytoplankton classes. Due to the high variation of fatty acid composition among cyanobacteria, taxonomical differentiation increased, when cyanobacteria were excluded from statistical analysis. Sterol composition was more heterogeneous within class than fatty acids and did not improve separation of phytoplankton classes when used alongside with fatty acids. However, we conclude that sterols can provide additional information on the abundance of specific genera within a class which can be generated by using fatty acids. For example, whereas high 16 ω-3 PUFAs (polyunsaturated fatty acid indicates the presence of Chlorophyceae, simultaneous high amount of ergosterol could specify the presence of Chlamydomonas spp. (Chlorophyceae. Additionally, we found specific 4α-methyl sterols for distinct Dinophyceae genus, suggesting that 4α-methyl sterols can potentially separate freshwater dinoflagellates from each other.

  2. Suitability of Phytosterols Alongside Fatty Acids as Chemotaxonomic Biomarkers for Phytoplankton.

    Science.gov (United States)

    Taipale, Sami J; Hiltunen, Minna; Vuorio, Kristiina; Peltomaa, Elina

    2016-01-01

    The composition and abundance of phytoplankton is an important factor defining ecological status of marine and freshwater ecosystems. Chemotaxonomic markers (e.g., pigments and fatty acids) are needed for monitoring changes in a phytoplankton community and to know the nutritional quality of seston for herbivorous zooplankton. Here we investigated the suitability of sterols along with fatty acids as chemotaxonomic markers using multivariate statistics, by analyzing the sterol and fatty acid composition of 10 different phytoplankton classes including altogether 37 strains isolated from freshwater lakes. We were able to detect a total of 47 fatty acids and 29 sterols in our phytoplankton samples, which both differed statistically significantly between phytoplankton classes. Due to the high variation of fatty acid composition among Cyanophyceae, taxonomical differentiation increased when Cyanophyceae were excluded from statistical analysis. Sterol composition was more heterogeneous within class than fatty acids and did not improve separation of phytoplankton classes when used alongside fatty acids. However, we conclude that sterols can provide additional information on the abundance of specific genera within a class which can be generated by using fatty acids. For example, whereas high C16 ω-3 PUFA (polyunsaturated fatty acid) indicates the presence of Chlorophyceae, a simultaneous high amount of ergosterol could specify the presence of Chlamydomonas spp. (Chlorophyceae). Additionally, we found specific 4α-methyl sterols for distinct Dinophyceae genera, suggesting that 4α-methyl sterols can potentially separate freshwater dinoflagellates from each other.

  3. Retrieval of phytoplankton cell size from chlorophyll a specific absorption and scattering spectra of phytoplankton.

    Science.gov (United States)

    Zhou, Wen; Wang, Guifen; Li, Cai; Xu, Zhantang; Cao, Wenxi; Shen, Fang

    2017-10-20

    Phytoplankton cell size is an important property that affects diverse ecological and biogeochemical processes, and analysis of the absorption and scattering spectra of phytoplankton can provide important information about phytoplankton size. In this study, an inversion method for extracting quantitative phytoplankton cell size data from these spectra was developed. This inversion method requires two inputs: chlorophyll a specific absorption and scattering spectra of phytoplankton. The average equivalent-volume spherical diameter (ESD v ) was calculated as the single size approximation for the log-normal particle size distribution (PSD) of the algal suspension. The performance of this method for retrieving cell size was assessed using the datasets from cultures of 12 phytoplankton species. The estimations of a(λ) and b(λ) for the phytoplankton population using ESD v had mean error values of 5.8%-6.9% and 7.0%-10.6%, respectively, compared to the a(λ) and b(λ) for the phytoplankton populations using the log-normal PSD. The estimated values of C i ESD v were in good agreement with the measurements, with r 2 =0.88 and relative root mean square error (NRMSE)=25.3%, and relatively good performances were also found for the retrieval of ESD v with r 2 =0.78 and NRMSE=23.9%.

  4. Use of dissolved inorganic carbon isotopes to track photosynthesis, respiration, and nitrification along a 56 mile transect in the Sacramento River and San Francisco Bay

    Science.gov (United States)

    Silva, S. R.; Kendall, C.; Peek, S.; Young, M. B.

    2013-12-01

    A decline in phytoplankton stocks in the San Francisco Bay and Delta is thought to contribute to the pelagic organism decline observed over the past two decades. One factor controlling phytoplankton growth rate is the availability of nutrients. Although there is an excess of nutrients in the Bay and Delta, the type and relative abundance of nutrients is critical to phytoplankton growth. To evaluate the response of phytoplankton to nutrient sources and to better understand phytoplankton dynamics downstream, we tested the hypothesis that the δ13C values of dissolved inorganic carbon (DIC) along with conventional water chemistry analyses will record events such as increased nitrification (related to the Sacramento River Wastewater Treatment Plant ammonium input) and algal blooms, and reflect the balance between photosynthesis and bacterial respiration. Multiple parameters affect [DIC] and its δ13C, including DIC sources, pH, and biological processes. Consumption of CO2 by phytoplankton during photosynthesis and by autotrophic bacteria during nitrification both result in increases in δ13C-DIC. However, photosynthesis and nitrification have very different relationships to chlorophyll and nutrient concentrations. The balance between heterotrophic bacterial respiration and photosynthesis should be reflected in trends in DIC, nutrient, and chlorophyll concentration, and δ13C-DIC. The δ13C of DIC should also be reflected in the δ13C of phytoplankton with approximately a 20 per mil fractionation. Significant deviation in the fractionation factor may indicate local variations in growth rate, nutrient availability, or speciation. Combined, these parameters should provide a gauge of the relative importance of the above mentioned processes. To test this hypothesis, we collected 19 water samples per cruise between July 2012 and July 2013 along a 56 mile transect between Rio Vista on the Sacramento River and San Francisco Bay near Angel Island during 8 cruises on the USGS RV

  5. Coincident patterns of waste water suspended solids reduction, water transparency increase and chlorophyll decline in Narragansett Bay.

    Science.gov (United States)

    Borkman, David G; Smayda, Theodore J

    2016-06-15

    Dramatic changes occurred in Narragansett Bay during the 1980s: water clarity increased, while phytoplankton abundance and chlorophyll concentration decreased. We examine how changes in total suspended solids (TSS) loading from wastewater treatment plants may have influenced this decline in phytoplankton chlorophyll. TSS loading, light and phytoplankton observations were compiled and a light- and temperature-dependent Skeletonema-based phytoplankton growth model was applied to evaluate chlorophyll supported by TSS nitrogen during 1983-1995. TSS loading declined 75% from ~0.60×10(6)kgmonth(-1) to ~0.15×10(6)kgmonth(-1) during 1983-1995. Model results indicate that nitrogen reduction related to TSS reduction was minor and explained a small fraction (~15%) of the long-term chlorophyll decline. The decline in NBay TSS loading appears to have increased water clarity and in situ irradiance and contributed to the long-term chlorophyll decline by inducing a physiological response of a ~20% reduction in chlorophyll per cell. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Ocean acidification impacts bacteria-phytoplankton coupling at low-nutrient conditions

    Science.gov (United States)

    Hornick, Thomas; Bach, Lennart T.; Crawfurd, Katharine J.; Spilling, Kristian; Achterberg, Eric P.; Woodhouse, Jason N.; Schulz, Kai G.; Brussaard, Corina P. D.; Riebesell, Ulf; Grossart, Hans-Peter

    2017-01-01

    The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm ( ˜ 55 m3) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO2) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO2-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO2 treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO2 as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO2 impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of

  7. Spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Tiwari, P. K.; Misra, A. K.

    2015-01-01

    The production of toxins by some species of phytoplankton is known to have several economic, ecological, and human health impacts. However, the role of toxins on the spatial distribution of phytoplankton is not well understood. In the present study, the spatial dynamics of a nutrient-phytoplankto...... patterns, like stripes, spots, and the mixture of them depending on the toxicity level. We also observe that the distribution of nutrient and phytoplankton shows spatiotemporal oscillation for certain toxicity level. (C) 2015 Elsevier Inc. All rights reserved....

  8. Seasonality in Abundance, Biomass and Production of the Phytoplankton of Welala and Shesher Wetlands, Lake Tana Sub-Basin (Ethiopia)

    NARCIS (Netherlands)

    Wondmagegne, K.; Wondie, A.; Mingist, M.; Vijverberg, J.

    2012-01-01

    The species composition and production of the phytoplankton community of the Shesher and Welala floodplain Wetlands, on the eastern side of Lake Tana, were studied during four seasons from July 2009 to May 2010. We investigated the spatial and temporal dynamics of phytoplankton, densities, biomass,

  9. Regime shift from phytoplankton to macrophyte dominance in a large river: Top-down versus bottom-up effects

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, Carles, E-mail: carles.ibanez@irta.cat [IRTA Aquatic Ecosystems, Carretera Poble Nou, Km 5.5, 43540 St. Carles de la Rapita, Catalonia (Spain); Alcaraz, Carles; Caiola, Nuno; Rovira, Albert; Trobajo, Rosa [IRTA Aquatic Ecosystems, Carretera Poble Nou, Km 5.5, 43540 St. Carles de la Rapita, Catalonia (Spain); Alonso, Miguel [United Research Services S.L., Urgell 143, 08036 Barcelona, Catalonia (Spain); Duran, Concha [Confederacion Hidrografica del Ebro, Sagasta 24-26, 50071 Zaragoza, Aragon (Spain); Jimenez, Pere J. [Grup Natura Freixe, Major 56, 43750 Flix, Catalonia (Spain); Munne, Antoni [Agencia Catalana de l' Aigua, Provenca 204-208, 08036 Barcelona, Catalonia (Spain); Prat, Narcis [Departament d' Ecologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona Catalonia (Spain)

    2012-02-01

    The lower Ebro River (Catalonia, Spain) has recently undergone a regime shift from a phytoplankton-dominated to a macrophyte-dominated system. This shift is well known in shallow lakes but apparently it has never been documented in rivers. Two initial hypotheses to explain the collapse of the phytoplankton were considered: a) the diminution of nutrients (bottom-up); b) the filtering effect due to the colonization of the zebra mussel (top-down). Data on water quality, hydrology and biological communities (phytoplankton, macrophytes and zebra mussel) was obtained both from existing data sets and new surveys. Results clearly indicate that the decrease in phosphorus is the main cause of a dramatic decrease in chlorophyll and large increase in water transparency, triggering the subsequent colonization of macrophytes in the river bed. A Generalized Linear Model analysis showed that the decrease in dissolved phosphorus had a relative importance 14 times higher than the increase in zebra mussel density to explain the variation of total chlorophyll. We suggest that the described changes in the lower Ebro River can be considered a novel ecosystem shift. This shift is triggering remarkable changes in the biological communities beyond the decrease of phytoplankton and the proliferation of macrophytes, such as massive colonization of Simulidae (black fly) and other changes in the benthic invertebrate communities that are currently investigated. - Highlights: Black-Right-Pointing-Pointer We show a regime shift in a large river from phytoplankton to macrophyte dominance. Black-Right-Pointing-Pointer Two main hypotheses are considered: nutrient decrease and zebra mussel grazing. Black-Right-Pointing-Pointer Phosphorus depletion is found to be the main cause of the phytoplankton decline. Black-Right-Pointing-Pointer We conclude that oligotrophication triggered the colonization of macrophytes. Black-Right-Pointing-Pointer This new regime shift in a river is similar to that described

  10. Regime shift from phytoplankton to macrophyte dominance in a large river: Top-down versus bottom-up effects

    International Nuclear Information System (INIS)

    Ibáñez, Carles; Alcaraz, Carles; Caiola, Nuno; Rovira, Albert; Trobajo, Rosa; Alonso, Miguel; Duran, Concha; Jiménez, Pere J.; Munné, Antoni; Prat, Narcís

    2012-01-01

    The lower Ebro River (Catalonia, Spain) has recently undergone a regime shift from a phytoplankton-dominated to a macrophyte-dominated system. This shift is well known in shallow lakes but apparently it has never been documented in rivers. Two initial hypotheses to explain the collapse of the phytoplankton were considered: a) the diminution of nutrients (bottom-up); b) the filtering effect due to the colonization of the zebra mussel (top-down). Data on water quality, hydrology and biological communities (phytoplankton, macrophytes and zebra mussel) was obtained both from existing data sets and new surveys. Results clearly indicate that the decrease in phosphorus is the main cause of a dramatic decrease in chlorophyll and large increase in water transparency, triggering the subsequent colonization of macrophytes in the river bed. A Generalized Linear Model analysis showed that the decrease in dissolved phosphorus had a relative importance 14 times higher than the increase in zebra mussel density to explain the variation of total chlorophyll. We suggest that the described changes in the lower Ebro River can be considered a novel ecosystem shift. This shift is triggering remarkable changes in the biological communities beyond the decrease of phytoplankton and the proliferation of macrophytes, such as massive colonization of Simulidae (black fly) and other changes in the benthic invertebrate communities that are currently investigated. - Highlights: ► We show a regime shift in a large river from phytoplankton to macrophyte dominance. ► Two main hypotheses are considered: nutrient decrease and zebra mussel grazing. ► Phosphorus depletion is found to be the main cause of the phytoplankton decline. ► We conclude that oligotrophication triggered the colonization of macrophytes. ► This new regime shift in a river is similar to that described in shallow lakes.

  11. Biological effect on removal of Th-234, Po-210 and Pb-210 from surface water in Funka Bay, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, N; Takeda, Y; Tsunogai, S [Hokkaido Univ., Hakodate (Japan). Dept. of Chemistry

    1983-10-01

    Vertical and temporal variations in the radioactivities of Th-234, Pb-210 and Po-210 were measured at a station in Funka Bay from April 1979 to February 1980. The inventory of Th-234 showed a minimum in early spring, when a spring bloom of phytoplankton was observed, then a steady increase to a maximum value in late summer, just before open sea water invaded the bay and a secondary phytoplankton bloom started. The inventories of Pb-210 and Po-210 also showed minima in early spring. These results suggest that the removal of these nuclides from sea water is accelerated by biological activity. The concentration of Th-234 decreased with depth, but those of Po-210 and Pb-210 were higher in the bottom water in August 1979 when the bay water was strongly stratified. This may be due to the supply of Pb-210 and Po-210 from the bottom. However, if the supply of these nuclides is expected in sediment particles, the concentrations of these nuclides in suspended matter were not sufficient to explain their increments in the bottom water. Residence times of Th, Pb and Po were estimated.

  12. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    Science.gov (United States)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  13. Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes

    International Nuclear Information System (INIS)

    Catherine, Arnaud; Selma, Maloufi; Mouillot, David; Troussellier, Marc; Bernard, Cécile

    2016-01-01

    Local species richness (SR) is a key characteristic affecting ecosystem functioning. Yet, the mechanisms regulating phytoplankton diversity in freshwater ecosystems are not fully understood, especially in peri-urban environments where anthropogenic pressures strongly impact the quality of aquatic ecosystems. To address this issue, we sampled the phytoplankton communities of 50 lakes in the Paris area (France) characterized by a large gradient of physico-chemical and catchment-scale characteristics. We used large phytoplankton datasets to describe phytoplankton diversity patterns and applied a machine-learning algorithm to test the degree to which species richness patterns are potentially controlled by environmental factors. Selected environmental factors were studied at two scales: the lake-scale (e.g. nutrients concentrations, water temperature, lake depth) and the catchment-scale (e.g. catchment, landscape and climate variables). Then, we used a variance partitioning approach to evaluate the interaction between lake-scale and catchment-scale variables in explaining local species richness. Finally, we analysed the residuals of predictive models to identify potential vectors of improvement of phytoplankton species richness predictive models. Lake-scale and catchment-scale drivers provided similar predictive accuracy of local species richness (R"2 = 0.458 and 0.424, respectively). Both models suggested that seasonal temperature variations and nutrient supply strongly modulate local species richness. Integrating lake- and catchment-scale predictors in a single predictive model did not provide increased predictive accuracy; therefore suggesting that the catchment-scale model probably explains observed species richness variations through the impact of catchment-scale variables on in-lake water quality characteristics. Models based on catchment characteristics, which include simple and easy to obtain variables, provide a meaningful way of predicting phytoplankton

  14. Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes

    Energy Technology Data Exchange (ETDEWEB)

    Catherine, Arnaud, E-mail: arnocat@mnhn.fr [UMR7245 MCAM MNHN-CNRS, Muséum National d' Histoire Naturelle, CC 39, 12 rue Buffon, F-75231 Paris, Cedex 05 (France); Selma, Maloufi, E-mail: maloufi@mnhn.fr [UMR7245 MCAM MNHN-CNRS, Muséum National d' Histoire Naturelle, CC 39, 12 rue Buffon, F-75231 Paris, Cedex 05 (France); Mouillot, David, E-mail: david.mouillot@univ-montp2.fr [UMR 9190 MARBEC UM2-CNRS-IRD-UM1-IFREMER, CC 93, Place Eugène Bataillon, Université de Montpellier 2, F-34095 Montpellier (France); Troussellier, Marc, E-mail: troussel@univ-montp2.fr [UMR 9190 MARBEC UM2-CNRS-IRD-UM1-IFREMER, CC 93, Place Eugène Bataillon, Université de Montpellier 2, F-34095 Montpellier (France); Bernard, Cécile, E-mail: cbernard@mnhn.fr [UMR7245 MCAM MNHN-CNRS, Muséum National d' Histoire Naturelle, CC 39, 12 rue Buffon, F-75231 Paris, Cedex 05 (France)

    2016-07-15

    Local species richness (SR) is a key characteristic affecting ecosystem functioning. Yet, the mechanisms regulating phytoplankton diversity in freshwater ecosystems are not fully understood, especially in peri-urban environments where anthropogenic pressures strongly impact the quality of aquatic ecosystems. To address this issue, we sampled the phytoplankton communities of 50 lakes in the Paris area (France) characterized by a large gradient of physico-chemical and catchment-scale characteristics. We used large phytoplankton datasets to describe phytoplankton diversity patterns and applied a machine-learning algorithm to test the degree to which species richness patterns are potentially controlled by environmental factors. Selected environmental factors were studied at two scales: the lake-scale (e.g. nutrients concentrations, water temperature, lake depth) and the catchment-scale (e.g. catchment, landscape and climate variables). Then, we used a variance partitioning approach to evaluate the interaction between lake-scale and catchment-scale variables in explaining local species richness. Finally, we analysed the residuals of predictive models to identify potential vectors of improvement of phytoplankton species richness predictive models. Lake-scale and catchment-scale drivers provided similar predictive accuracy of local species richness (R{sup 2} = 0.458 and 0.424, respectively). Both models suggested that seasonal temperature variations and nutrient supply strongly modulate local species richness. Integrating lake- and catchment-scale predictors in a single predictive model did not provide increased predictive accuracy; therefore suggesting that the catchment-scale model probably explains observed species richness variations through the impact of catchment-scale variables on in-lake water quality characteristics. Models based on catchment characteristics, which include simple and easy to obtain variables, provide a meaningful way of predicting phytoplankton

  15. Diel responses of phytoplankton of an Amazon floodplain lake at the two main hydrological phases

    Directory of Open Access Journals (Sweden)

    Kathrin Nere Passarinho

    2013-12-01

    Full Text Available AIM: This study examines the short-term changes of phytoplankton in an oxbow lake on the floodplain of the Acre River, Amazonia, Brazil. METHODS: Samples were taken with a Van Dorn bottle, at three depths (surface, middle and bottom, in two periods (low waters and high waters, for seven consecutive days in two schedules, night and morning. RESULTS: Phytoplankton was represented by 198 taxa and the Class Euglenophyceae, with 62 taxa, was the best-represented group in both periods. There were abrupt changes in the community during the high waters (potamophase. During this period, in conditions of partial atelomixis, we recorded higher values of phytoplankton biovolume and dominance of Gonyostomum semen (Ehr. Dies. (Raphidophyceae. CONCLUSIONS: In the low waters (limnophase, conditions in the lake were more stable, the diversity and rate of change in the community were lower, and the frequent periods of stratification and mixing were responsible for the dominance of Geitlerinema sp. (Cyanobacteria.

  16. Synergistic effects of pCO2 and iron availability on nutrient consumption ratio of the Bering Sea phytoplankton community

    Directory of Open Access Journals (Sweden)

    K. Sugie

    2013-10-01

    Full Text Available Little is known concerning the effect of CO2 on phytoplankton ecophysiological processes under nutrient and trace element-limited conditions, because most CO2 manipulation experiments have been conducted under elements-replete conditions. To investigate the effects of CO2 and iron availability on phytoplankton ecophysiology, we conducted an experiment in September 2009 using a phytoplankton community in the iron limited, high-nutrient, low-chlorophyll (HNLC region of the Bering Sea basin . Carbonate chemistry was controlled by the bubbling of the several levels of CO2 concentration (180, 380, 600, and 1000 ppm controlled air, and two iron conditions were established, one with and one without the addition of inorganic iron. We demonstrated that in the iron-limited control conditions, the specific growth rate and the maximum photochemical quantum efficiency (Fv/Fm of photosystem (PS II decreased with increasing CO2 levels, suggesting a further decrease in iron bioavailability under the high-CO2 conditions. In addition, biogenic silica to particulate nitrogen and biogenic silica to particulate organic carbon ratios increased from 2.65 to 3.75 and 0.39 to 0.50, respectively, with an increase in the CO2 level in the iron-limited controls. By contrast, the specific growth rate, Fv/Fm values and elemental compositions in the iron-added treatments did not change in response to the CO2 variations, indicating that the addition of iron canceled out the effect of the modulation of iron bioavailability due to the change in carbonate chemistry. Our results suggest that high-CO2 conditions can alter the biogeochemical cycling of nutrients through decreasing iron bioavailability in the iron-limited HNLC regions in the future.

  17. HPLC/DAD Intercomparison on Phytoplankton Pigments (HIP-1, HIP-2, HIP-3 and HIP-4)

    OpenAIRE

    CANUTI Elisabetta; RAS Josephine; GRUNG Merete; ROTTGERS Rudiger; COSTA GOELA Priscilla; ARTUSO Florinda; CATALDI Dario

    2016-01-01

    From 2009 to 2015, in the context of the MERIS (Medium Resolution Imaging Spectrometer) validation activities, the JRC Marine Optical Laboratory organised four HPLC Intercomparison exercises for Phytoplankton Pigment measurements (HIP-1, HIP-2, HIP-3 and HIP-4), involving seven European accredited and reference laboratories. The objectives of these intercomparison exercises were: creating a reference community at European level for phytoplankton pigment analysis capable of supporting satel...

  18. Copepod grazing and their impact on phytoplankton standing stock and production in a tropical coastal water during the different seasons

    Digital Repository Service at National Institute of Oceanography (India)

    Jagadeesan, L.; Jyothibabu, R.; Arunpandi, N.; Parthasarathi, S.

    during the PRM (1354 No m-3) and PSWM (1606 No m-3) than during PKSWM and LSWM (4571 and 3432 No m-3, respectively). Seasonal changes in phytoplankton biomass, phytoplankton size structure, and copepod community were...

  19. Sea Soup: Phytoplankton.

    Science.gov (United States)

    Cerullo, Mary M.

    This guide, designed for students in grades 3-7, answers intriguing questions about phytoplankton, tiny drifters that have shaped our world. Invisible to the naked eye, phytoplankton are the source of our atmosphere, our climate, our ocean food chain, much of our oil supply, and more. They're also food for zooplankton. Photomicroscopy serves up…

  20. Comunidade fitoplanctônica de um pesqueiro na cidade de São Paulo Phytoplankton community in a recreational fishing lake, Brazil

    Directory of Open Access Journals (Sweden)

    Mayla Matsuzaki

    2004-10-01

    Full Text Available OBJETIVO: A avaliação da qualidade da água e da comunidade fitoplanctônica em ambientes destinados à recreação permite estabelecer formas de manejo desses sistemas, evitando possíveis problemas à saúde humana. Assim, realizou-se estudo com objetivo de analisar a variação sazonal do fitoplâncton de um sistema lacustre natural, e sua relação com a qualidade da água. MÉTODOS: O lago estudado faz parte de um pesqueiro localizado na zona sul da cidade de São Paulo. Foram realizadas quatro coletas no período de um ano, em três pontos de amostragem. As amostras foram analisadas quanto à composição florística e às variáveis físicas e químicas da água. RESULTADOS: A análise qualitativa do fitoplâncton revelou o total de 91 táxons distribuídos em oito classes: Chlorophyceae (52%, Cyanophyceae (16%, Euglenophyceae (12%, Zygnemaphyceae (10%, Bacillariophyceae (5%, Xantophyceae (3%, Dinophyceae (1% e Chrysophyceae (1%. Alguns dos parâmetros físicos e químicos parecem ter influenciado o comportamento do fitoplâncton; a classe Chlorophyceae foi a mais favorecida pelas condições ambientais. Dentre as espécies de cianofíceas identificadas, destacaram-se Microcystis paniformis, Cylindrospermopsis raciborskii e espécies de Anabaena, que apresentaram maior importância do ponto de vista sanitário devido à produção de toxinas. CONCLUSÕES: Algumas variáveis físicas e químicas da água interferiram na estrutura da comunidade fitoplanctônica. A presença de Microcystis paniformis, Cylindrospermopsis raciborskii e espécies de Anabaena indicam o potencial tóxico e os possíveis problemas que podem ocorrer à saúde pública, caso esse ambiente não seja continuamente monitorado. Estudos adicionais são recomendados, com a finalidade de se evitar efeitos deletérios ao ambiente e à saúde da população.OBJECTIVE: The assessment of water quality and phytoplankton community in recreational environments allows to setting

  1. Assessing spatial and temporal variability of phytoplankton communities' composition in the Iroise Sea ecosystem (Brittany, France): A 3D modeling approach. Part 1: Biophysical control over plankton functional types succession and distribution

    Science.gov (United States)

    Cadier, Mathilde; Gorgues, Thomas; Sourisseau, Marc; Edwards, Christopher A.; Aumont, Olivier; Marié, Louis; Memery, Laurent

    2017-01-01

    Understanding the dynamic interplay between physical, biogeochemical and biological processes represents a key challenge in oceanography, particularly in shelf seas where complex hydrodynamics are likely to drive nutrient distribution and niche partitioning of phytoplankton communities. The Iroise Sea includes a tidal front called the 'Ushant Front' that undergoes a pronounced seasonal cycle, with a marked signal during the summer. These characteristics as well as relatively good observational sampling make it a region of choice to study processes impacting phytoplankton dynamics. This innovative modeling study employs a phytoplankton-diversity model, coupled to a regional circulation model to explore mechanisms that alter biogeography of phytoplankton in this highly dynamic environment. Phytoplankton assemblages are mainly influenced by the depth of the mixed layer on a seasonal time scale. Indeed, solar incident irradiance is a limiting resource for phototrophic growth and small phytoplankton cells are advantaged over larger cells. This phenomenon is particularly relevant when vertical mixing is intense, such as during winter and early spring. Relaxation of wind-induced mixing in April causes an improvement of irradiance experienced by cells across the whole study area. This leads, in late spring, to a competitive advantage of larger functional groups such as diatoms as long as the nutrient supply is sufficient. This dominance of large, fast-growing autotrophic cells is also maintained during summer in the productive tidally-mixed shelf waters. In the oligotrophic surface layer of the western part of the Iroise Sea, small cells coexist in a greater proportion with large, nutrient limited cells. The productive Ushant tidal front's region (1800 mgC·m- 2·d- 1 between August and September) is also characterized by a high degree of coexistence between three functional groups (diatoms, micro/nano-flagellates and small eukaryotes/cyanobacteria). Consistent with

  2. Biodiversity effects on resource use efficiency and community turnover of plankton in Lake Nansihu, China.

    Science.gov (United States)

    Tian, Wang; Zhang, Huayong; Zhang, Jian; Zhao, Lei; Miao, Mingsheng; Huang, Hai

    2017-04-01

    The relationship between biodiversity and ecosystem functioning is a central issue in ecology, especially in aquatic ecosystems due to the ecophysiological characteristics of plankton. Recently, ecologists have obtained conflicting conclusions while analyzing the influence of species diversity on plankton resource use efficiency (RUE) and community turnover. In this study, both phytoplankton and zooplankton communities were investigated seasonally from 2011 to 2013 in Lake Nansihu, a meso-eutrophic and recovering lake in China. The effects of phytoplankton diversity on RUE of phytoplankton (RUE PP ), zooplankton (RUE ZP ), and community turnover were analyzed. Results showed that both phytoplankton species richness and evenness were positively correlated with RUE PP . RUE ZP had a negative relationship with phytoplankton species richness, but a weak unimodal relationship with phytoplankton evenness. Cyanobacteria community had the opposite influence on RUE PP and RUE ZP . Thus, cyanobacteria dominance will benefit RUE PP in eutrophic lakes, but the growth and reproduction of zooplankton are greatly limited. The strong negative relationship between total phosphorus and RUE ZP confirmed these results. Phytoplankton community turnover tended to decrease with increasing phytoplankton evenness, which was consistent with most previous studies. The correlation coefficient between phytoplankton species richness and community turnover was negative, but not significant (p > 0.05). Therefore, phytoplankton community turnover was more sensitive to the variation of evenness than species richness. These results will be helpful in understanding the effects of species diversity on ecosystem functioning in aquatic ecosystems.

  3. Ecology of selected marine communities in Glacier Bay: Zooplankton, forage fish, seabirds and marine mammals

    Science.gov (United States)

    Robards, Martin D.; Drew, Gary S.; Piatt, John F.; Anson, Jennifer Marie; Abookire, Alisa A.; Bodkin, James L.; Hooge, Philip N.; Speckman, Suzann G.

    2003-01-01

    We studied oceanography (including primary production), secondary production, small schooling fish (SSF), and marine bird and mammal predators in Glacier Bay during 1999 and 2000. Results from these field efforts were combined with a review of current literature relating to the Glacier Bay environment. Since the conceptual model developed by Hale and Wright (1979) ‘changes and cycles’ continue to be the underlying theme of the Glacier Bay ecosystem. We found marked seasonality in many of the parameters that we investigated over the two years of research, and here we provide a comprehensive description of the distribution and relative abundance of a wide array of marine biota. Glacier Bay is a tidally mixed estuary that leads into basins, which stratify in summer, with the upper arms behaving as traditional estuaries. The Bay is characterized by renewal and mixing events throughout the year, and markedly higher primary production than in many neighboring southeast Alaska fjords (Hooge and Hooge, 2002). Zooplankton diversity and abundance within the upper 50 meters of the water column in Glacier Bay is similar to communities seen throughout the Gulf of Alaska. Zooplankton in the lower regions of Glacier Bay peak in abundance in late May or early June, as observed at Auke Bay and in the Gulf of Alaska. The key distinction between the lower Bay and other estuaries in the Gulf of Alaska is that a second smaller peak in densities occurs in August. The upper Bay behaved uniformly in temporal trends, peaking in July. Densities had begun to decline in August, but were still more than twice those observed in that region in May. The highest density of zooplankton observed was 17,870 organisms/m3 in Tarr Inlet during July. Trends in zooplankton community abundance and diversity within the lower Bay were distinct from upper-Glacier Bay trends. Whereas the lower Bay is strongly influenced by Gulf of Alaska processes, local processes are the strongest influence in the upper-Bay

  4. Harmful Algal Blooms in the Mississippi Sound and Mobile Bay: Using MODIS Aqua and In Situ Data for HABs in the Northern Gulf of Mexico

    National Research Council Canada - National Science Library

    Holiday, Dan; Carter, Gregory; Gould, Richard W; MacIntyre, Hugh

    2007-01-01

    .... Phytoplankton populations and in situ water quality were monitored at 3 to 6 week intervals at 17 locations in Mobile Bay and the Mississippi Sound beginning in July 2005 and continuing thru June...

  5. Seasonal Changes in Mycosporine-Like Amino Acid Production Rate with Respect to Natural Phytoplankton Species Composition

    Directory of Open Access Journals (Sweden)

    Sun-Yong Ha

    2015-11-01

    Full Text Available After in situ incubation at the site for a year, phytoplanktons in surface water were exposed to natural light in temperate lakes (every month; thereafter, the net production rate of photoprotective compounds (mycosporine-like amino acids, MAAs was calculated using 13C labeled tracer. This is the first report describing seasonal variation in the net production rate of individual MAAs in temperate lakes using a compound-specific stable isotope method. In the mid-latitude region of the Korean Peninsula, UV radiation (UVR usually peaks from July to August. In Lake Paldang and Lake Cheongpyeong, diatoms dominated among the phytoplankton throughout the year. The relative abundance of Cyanophyceae (Anabaena spiroides reached over 80% during July in Lake Cheongpyeong. Changes in phytoplankton abundance indicate that the phytoplankton community structure is influenced by seasonal changes in the net production rate and concentration of MAAs. Notably, particulate organic matter (POM showed a remarkable change based on the UV intensity occurring during that period; this was because of the fact that cyanobacteria that are highly sensitive to UV irradiance dominated the community. POM cultured in Lake Paldang had the greatest shinorine (SH production rate during October, i.e., 83.83 ± 10.47 fgC·L−1·h−1. The dominance of diatoms indicated that they had a long-term response to UVR. Evaluation of POM cultured in Lake Cheongpyeong revealed that there was an increase in the net MAA production in July (when UVR reached the maximum; a substantial amount of SH, i.e., 17.62 ± 18.34 fgC·L−1·h−1, was recorded during this period. Our results demonstrate that both the net production rate as well as the concentration of MAAs related to photoinduction depended on the phytoplankton community structure. In addition, seasonal changes in UVR also influenced the quantity and production of MAAs in phytoplanktons (especially Cyanophyceae.

  6. The influence of environmental variables on spatial and temporal phytoplankton dissimilarity in a large shallow subtropical lake (Lake Mangueira, southern Brazil

    Directory of Open Access Journals (Sweden)

    Luciane Oliveira Crossetti

    2014-06-01

    Full Text Available AIM: The uneven distribution of organisms in aquatic ecosystems is generally attributed to environmental heterogeneity in both space and time, reflecting the occurrence of appropriate environmental conditions and the availability of resources to biological communities. The aim of this study was to understand how the dissimilarity of the phytoplankton community in a large subtropical shallow lake is related to environmental dissimilarities. METHODS: Biotic and environmental data were gathered at 19 sites along the 90-km length of Lake Mangueira. Sampling was carried out quarterly during 2010 and 2011, totaling 152 sampling units. The relationship between phytoplankton dissimilarity and the dissimilarity of environmental variables was assessed by the BioEnv analysis. MAJOR RESULTS: There is a significant relationship between phytoplankton dissimilarity and environmental dissimilarity. The model that best explained the dissimilarity of phytoplankton among the sampling units included pH, turbidity and nitrate. CONCLUSIONS: The dissimilarity of phytoplankton was related to the dissimilarity, which were directly associated to the variability of conditions and resources in space and time in Lake Mangueira.

  7. PHYTOPLANKTON COMPOSITION IN FISH FARMS ALONG THE EASTERN ADRIATIC COAST

    Directory of Open Access Journals (Sweden)

    Marija Tomec

    2006-10-01

    Full Text Available Investigations of net phytoplankton composition were performed at three fish farms situated at the northern, middle and southern part of the eastern Adriatic Sea coast, respectively. In the northern part investigations were conducted in the Limski kanal, in the middle part at the Ugljan island and in the southern part in the place Drače on the Pelješac peninsula (Figure 1. At all three localities fish culture included mostly two species: gilthead sea bream (Sparus aurata and sea bass (Dicentrarchus labrax. Beside some physico–chemical parameters (sea water temperature, salinity special attention was placed on the examination of qualitative net phytoplankton composition, which was conducted in the period of May and November 2004 and May and October 2005. Samples were collected at the depths of 0. 5 and 4 meters. According to the physico–chemical parameters, sea water temperature was influenced by the temperature of the environment. Qualitative net phytoplankton composition consisted of 153 microphytic species belonging to the systematic compartments of Cyanobacteria, Chrysophyta and Dinophyta (Table 1. The most numerous algal group were diatoms or Bacillarophyceae (84 species or 55% with relative frequencies of species from 1 to 7. Taxonomic composition of diatoms showed the community Chaetoceros–Rhizosolenia (Proboscia as the dominant one. The second numerically most dominant compartment were Dinophyta (62 species or 401% with dominant the species of the genera Ceratium and Protoperidinium. Relative frequencies of species was ranging from 1 to 7 (mass presence of specimens in the water column. From Cyanobacteria (4 species or 3%, only filamentous algae were determined, with individual presence in net phytoplankton composition. Qualitative net phytoplankton composition suggests the similarity of species composition in the water column at all investigated fish farms. From the obtained characteristics of net phytoplankton composition

  8. Phytoplankton across Tropical and Subtropical Regions of the Atlantic, Indian and Pacific Oceans.

    Science.gov (United States)

    Estrada, Marta; Delgado, Maximino; Blasco, Dolors; Latasa, Mikel; Cabello, Ana María; Benítez-Barrios, Verónica; Fraile-Nuez, Eugenio; Mozetič, Patricija; Vidal, Montserrat

    2016-01-01

    We examine the large-scale distribution patterns of the nano- and microphytoplankton collected from 145 oceanic stations, at 3 m depth, the 20% light level and the depth of the subsurface chlorophyll maximum, during the Malaspina-2010 Expedition (December 2010-July 2011), which covered 15 biogeographical provinces across the Atlantic, Indian and Pacific oceans, between 35°N and 40°S. In general, the water column was stratified, the surface layers were nutrient-poor and the nano- and microplankton (hereafter phytoplankton, for simplicity, although it included also heterotrophic protists) community was dominated by dinoflagellates, other flagellates and coccolithophores, while the contribution of diatoms was only important in zones with shallow nutriclines such as the equatorial upwelling regions. We applied a principal component analysis to the correlation matrix among the abundances (after logarithmic transform) of the 76 most frequent taxa to synthesize the information contained in the phytoplankton data set. The main trends of variability identified consisted of: 1) A contrast between the community composition of the upper and the lower parts of the euphotic zone, expressed respectively by positive or negative scores of the first principal component, which was positively correlated with taxa such as the dinoflagellates Oxytoxum minutum and Scrippsiella spp., and the coccolithophores Discosphaera tubifera and Syracosphaera pulchra (HOL and HET), and negatively correlated with taxa like Ophiaster hydroideus (coccolithophore) and several diatoms, 2) a general abundance gradient between phytoplankton-rich regions with high abundances of dinoflagellate, coccolithophore and ciliate taxa, and phytoplankton-poor regions (second principal component), 3) differences in dominant phytoplankton and ciliate taxa among the Atlantic, the Indian and the Pacific oceans (third principal component) and 4) the occurrence of a diatom-dominated assemblage (the fourth principal

  9. Phytoplankton across Tropical and Subtropical Regions of the Atlantic, Indian and Pacific Oceans

    Science.gov (United States)

    Estrada, Marta; Delgado, Maximino; Blasco, Dolors; Latasa, Mikel; Cabello, Ana María; Benítez-Barrios, Verónica; Fraile-Nuez, Eugenio; Mozetič, Patricija; Vidal, Montserrat

    2016-01-01

    We examine the large-scale distribution patterns of the nano- and microphytoplankton collected from 145 oceanic stations, at 3 m depth, the 20% light level and the depth of the subsurface chlorophyll maximum, during the Malaspina-2010 Expedition (December 2010-July 2011), which covered 15 biogeographical provinces across the Atlantic, Indian and Pacific oceans, between 35°N and 40°S. In general, the water column was stratified, the surface layers were nutrient-poor and the nano- and microplankton (hereafter phytoplankton, for simplicity, although it included also heterotrophic protists) community was dominated by dinoflagellates, other flagellates and coccolithophores, while the contribution of diatoms was only important in zones with shallow nutriclines such as the equatorial upwelling regions. We applied a principal component analysis to the correlation matrix among the abundances (after logarithmic transform) of the 76 most frequent taxa to synthesize the information contained in the phytoplankton data set. The main trends of variability identified consisted of: 1) A contrast between the community composition of the upper and the lower parts of the euphotic zone, expressed respectively by positive or negative scores of the first principal component, which was positively correlated with taxa such as the dinoflagellates Oxytoxum minutum and Scrippsiella spp., and the coccolithophores Discosphaera tubifera and Syracosphaera pulchra (HOL and HET), and negatively correlated with taxa like Ophiaster hydroideus (coccolithophore) and several diatoms, 2) a general abundance gradient between phytoplankton-rich regions with high abundances of dinoflagellate, coccolithophore and ciliate taxa, and phytoplankton-poor regions (second principal component), 3) differences in dominant phytoplankton and ciliate taxa among the Atlantic, the Indian and the Pacific oceans (third principal component) and 4) the occurrence of a diatom-dominated assemblage (the fourth principal

  10. The phytoplankton of Great Bitter Lake, Egypt, including the impacts ...

    African Journals Online (AJOL)

    The phytoplankton community comprised mostly diatoms and blue-green algae, although dinoflagellates and green algae were important at times. Local effects of effluent from a drain coming from the city of Ismailia were evident, although the effect of tourist hotels at Palma Beach was not detectable. The discharge of ...

  11. Rapid bacterial mineralization of organic carbon produced during a phytoplankton bloom induced by natural iron fertilization in the Southern Ocean

    Science.gov (United States)

    Obernosterer, Ingrid; Christaki, Urania; Lefèvre, Dominique; Catala, Philippe; Van Wambeke, France; Lebaron, Philippe

    2008-03-01

    The response of heterotrophic bacteria ( Bacteria and Archaea) to the spring phytoplankton bloom that occurs annually above the Kerguelen Plateau (Southern Ocean) due to natural iron fertilization was investigated during the KErguelen Ocean and Plateau compared Study (KEOPS) cruise in January-February 2005. In surface waters (upper 100 m) in the core of the phytoplankton bloom, heterotrophic bacteria were, on an average, 3-fold more abundant and revealed rates of production ([ 3H] leucine incorporation) and respiration (bacterial metabolic activities were attributable to high-nucleic-acid-containing cells that dominated (≈80% of total cell abundance) the heterotrophic bacterial community associated with the phytoplankton bloom. Bacterial growth efficiencies varied between 14% and 20% inside the bloom and were bacterial activity, due to the stimulation by phytoplankton-derived dissolved organic matter. Within the Kerguelen bloom, bacterial carbon demand accounted for roughly 45% of gross community production. These results indicate that heterotrophic bacteria processed a significant portion of primary production, with most of it being rapidly respired.

  12. Spatial and temporal variation of phytoplankton in a tropical eutrophic river.

    Science.gov (United States)

    Santana, L M; Moraes, M E B; Silva, D M L; Ferragut, C

    2016-04-19

    This study aims to evaluate the environmental factors determining of the changes in phytoplankton structure in spatial (upper, middle and lower course) and seasonal (dry and rainy period) scales in a eutrophic river (Almada River, northeastern Brazil). In the study period, total accumulated rainfall was below of the historic average, resulting in flow reduction, mainly in rainy period. High orthophosphate concentration was found at the sampling sites. Phytoplankton chlorophyll a increased from upstream to downstream. Geitlerinema splendidum (S1) and Chlamydomonas sp. (X2) were the most abundant species in the upper course and several species of diatoms (D), Euglenophyceae (W1, W2) and Chlorophyceae (X1) in the middle and lower course. The functional groups were found to be characteristic of lotic ecosystem, shallow, with low light availability, rich in organic matter and eutrophic environments. We conclude that phytoplankton community structure was sensitive to change of the river flow and nutrient availability in spatial and seasonal scale in a tropical river.

  13. Spatial and temporal variation of phytoplankton in a tropical eutrophic river

    Directory of Open Access Journals (Sweden)

    L. M. Santana

    Full Text Available Abstract This study aims to evaluate the environmental factors determining of the changes in phytoplankton structure in spatial (upper, middle and lower course and seasonal (dry and rainy period scales in a eutrophic river (Almada River, northeastern Brazil. In the study period, total accumulated rainfall was below of the historic average, resulting in flow reduction, mainly in rainy period. High orthophosphate concentration was found at the sampling sites. Phytoplankton chlorophyll a increased from upstream to downstream. Geitlerinema splendidum (S1 and Chlamydomonas sp. (X2 were the most abundant species in the upper course and several species of diatoms (D, Euglenophyceae (W1, W2 and Chlorophyceae (X1 in the middle and lower course. The functional groups were found to be characteristic of lotic ecosystem, shallow, with low light availability, rich in organic matter and eutrophic environments. We conclude that phytoplankton community structure was sensitive to change of the river flow and nutrient availability in spatial and seasonal scale in a tropical river.

  14. Formation of Chromophoric Dissolved Organic Matter by Bacterial Degradation of Phytoplankton-Derived Aggregates

    Directory of Open Access Journals (Sweden)

    Joanna D. Kinsey

    2018-01-01

    Full Text Available Organic matter produced and released by phytoplankton during growth is processed by heterotrophic bacterial communities that transform dissolved organic matter into biomass and recycle inorganic nutrients, fueling microbial food web interactions. Bacterial transformation of phytoplankton-derived organic matter also plays a poorly known role in the formation of chromophoric dissolved organic matter (CDOM which is ubiquitous in the ocean. Despite the importance of organic matter cycling, growth of phytoplankton and activities of heterotrophic bacterial communities are rarely measured in concert. To investigate CDOM formation mediated by microbial processing of phytoplankton-derived aggregates, we conducted growth experiments with non-axenic monocultures of three diatoms (Skeletonema grethae, Leptocylindrus hargravesii, Coscinodiscus sp. and one haptophyte (Phaeocystis globosa. Phytoplankton biomass, carbon concentrations, CDOM and base-extracted particulate organic matter (BEPOM fluorescence, along with bacterial abundance and hydrolytic enzyme activities (α-glucosidase, β-glucosidase, leucine-aminopeptidase were measured during exponential growth and stationary phase (~3–6 weeks and following 6 weeks of degradation. Incubations were performed in rotating glass bottles to keep cells suspended, promoting cell coagulation and, thus, formation of macroscopic aggregates (marine snow, more similar to surface ocean processes. Maximum carbon concentrations, enzyme activities, and BEPOM fluorescence occurred during stationary phase. Net DOC concentrations (0.19–0.46 mg C L−1 increased on the same order as open ocean concentrations. CDOM fluorescence was dominated by protein-like signals that increased throughout growth and degradation becoming increasingly humic-like, implying the production of more complex molecules from planktonic-precursors mediated by microbial processing. Our experimental results suggest that at least a portion of open

  15. Are Seagrass effective Sentinels of Ecosystem Health in Port Phillip Bay, Australia?

    Science.gov (United States)

    Lee, R. S.; Cook, P. L. M.; Jenkins, G.; Nayar, S.; Hirst, A.; Keough, M. J.; Smith, T.; Ferguson, A.; Gay, J.; Longmore, A. R.; Macreadie, P.; Sherman, C.; Ross, J.; York, P.

    2016-02-01

    Seagrasses are an important part of many coastal systems, but are also under threat in many areas, as a result of a wide range of human activities, including habitat loss and changes to water quality. Due to these sensitivities seagrass are often selected as sentinels of change for coastal marine ecosystems, but could these sensitivities be too complex and varied to provide a clear or reliable measure of change? A recent three year study focused on the resilience of Zostera seagrasses in Port Phillip Bay, Southern Australia, where these ecosystem "engineers", have a dramatic influence on biodiversity and ecosystem function. This large temperate embayment experiences extreme climatic variability, significant loading from urbanized catchments and inflows from the largest sewage treatment facility in Australia, making it a challenging case study for assessing seagrass as a suitable ecosystem metric. Studies on the influence of nutrients, light and sediments using modelling, chemical analyses and field experiments assessed characteristics of Zostera habitat within the bay. Nutrients could be obtained directly in dissolved form from the water column, or sediment, or as atmospheric nitrogen fixed by bacteria associated with the root/rhizome system. Isotopic nutrients were traced to a variety of sources including river inflows, sewage discharges, groundwater, the open ocean, the atmosphere and indirectly via phytoplankton and detritus. Broad-scale seagrass coverage is often depth limited by light, however for regions of significant wave exposure deeper beds existed adjacent to less favorable shallows. Ephemeral beds in more exposed regions showed the greatest potential for responding to change. For these beds, resilience was dependent on bed architecture, connectivity to indirect nutrient sources, and genetic interactions with seagrass communities around the bay. While observed changes in seagrass cover may be a symptomatic trigger of ecosystem health, much as high blood

  16. Climate warming and interannual variability of phytoplankton phenology in the Northern Red Sea

    KAUST Repository

    Gittings, John

    2016-12-01

    In agreement with global patterns of climate change and increasing temperatures in the tropical oceans, the Northern Red Sea (NRS) has been warming over the last few decades. Using 18 years of remotely-sensed chlorophyll-a data (Chl-a, an index of phytoplankton biomass), we investigate the potential impacts of climate warming on phytoplankton abundance and phenology in the Northern Red Sea by exploring the mechanistic links with the regional physical environment. The results of the analysis reveal that, in accordance with other tropical ecosystems, phytoplankton biomass in the NRS will decrease in response to warmer climate scenarios. This is attributed to lower heat fluxes (heat loss to the atmosphere) during the bloom period, and enhanced vertical stratification, which prevents vertical mixing of nutrients into the euphotic layer. In addition, we show that during warmer conditions (when heat fluxes are weakened), the winter bloom initiates significantly later (by up to 10 weeks) and its duration is considerably reduced. The biological implications of alterations to phytoplankton phenology may include increased larval mortality of pelagic species, reduced recruitment, fisheries impacts and changes to community structure.

  17. Phytoplankton diversity and their succession in water bodies of the Lednice park during 2002 season

    Directory of Open Access Journals (Sweden)

    Zohreh Ramezanpoor

    2004-01-01

    Full Text Available Phytoplankton communities of three water bodies in the Lednice park were studied from 22nd April till 1st October 2002. These water bodies are the Zámecký pond, Růžový pond and the Dyje River, which is water source of both ponds.Phytoplankton samples were taken every two weeks between 8 - 9 am. Collected phytoplankton samples were preserved with 4% formalin solution and Lugol solution (JJK and transported to the laboratory. They were determined and counted using inverted microscope. Water temperature, pH and dissolved oxygen were measured in the field using digital portable instruments. Total of 317 phytoplankton species were determined in this study.Heavy algal bloom was observed in the Zámecký pond in mid-summer coinciding with increase in water temperature. Fish diseases and partial mortality occurred during the period of algal bloom and unpleasant smell was dominant feature. A light algal bloom was also observed in the Růžový pond and the Dyje River nearly by the end of summer.The main algae species responsible for blue-green algae bloom were Anabaena flos-aquae, Microcystis aeruginosa, M. ichtyoblabe, M. flos-aquae and M. wesenbergii. Dissolved oxygen values varied between 3.4 - 19.5 mg l-1, pH ranged from 7.6 - 9.7. Secchi depth varied from 0- 65 cm in the Zámecký pond, 15-45 cm in the Růžový pond and 35-65 cm in the Dyje River. Concentration of total phosphate, nitrate and chlorophyll-a in the Dyje River before drainage into the Zámecký and Růžový pond verified heavy nutrient load (Total-P = 0.3, NO3- = 12 mg.l-1 of the river. Although the Dyje River is main water source for both ponds, presence of relatively different phytoplankton communities in these two ponds suggest that probably different nutrient sources might be responsible for differences in phytoplankton communities and eutrophication patterns in the Zámecký pond as compared to the Růžový pond.

  18. Role of phytoplankton in maintaining endemicity and seasonality of cholera in Bangladesh.

    Science.gov (United States)

    Islam, M Sirajul; Islam, M Shafiqul; Mahmud, Zahid H; Cairncross, Sandy; Clemens, John D; Collins, Andrew E

    2015-09-01

    In Bangladesh, cholera is endemic and maintains a regular seasonal pattern. The role of phytoplankton in maintaining endemicity and seasonality of cholera was monitored in Matlab, Bangladesh. Phytoplankton and water samples were collected from two ponds bi-weekly for 1 year. The association of Vibrio cholerae O1 with phytoplankton was studied by culture and direct fluorescent antibody techniques. The bio-physicochemical parameters of water were measured and data for cases of cholera were collected from the records of Matlab hospital. The correlation of cholera cases with levels of phytoplankton, V. cholerae and bio-physicochemical parameters of water was carried out using Pearson's correlation coefficients. V. cholerae O1 survived for 48 days in association with Anabaena variabilis in a culturable state, but survived for a year in a viable but non-culturable (VBNC) state. V. cholerae survived for 12 and 32 days in a culturable state in control water (without algae) and water with algae, respectively. There was a significant correlation between changing levels of cholera cases in the community and the blue green algae and total phytoplankton in the aquatic environment. A significant correlation was also found between the cholera cases and chlorophyll-a and VBNC V. cholerae O1 in the aquatic environment. This study demonstrated the role of phytoplankton in maintaining endemicity and seasonality of cholera in Bangladesh. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. DISTRIBUTIONAND DIVERSITY OF MACRO ALGAE COMMUNITIES IN THE AMBON BAY

    Directory of Open Access Journals (Sweden)

    Christina Litaay

    2014-11-01

    Full Text Available Water conditions affected by natural and anthropogenic parameters such as sedimentation and solid waste disposal can influence the growth and distribution of macro algae. Sustainable management efforts can reduce damage on the Gulf coast of Ambon due to human activities and land clearing. This study was conducted in October 2008 using the transect method with 3 replicates in five locations i.e., Tantui, Air Salobar, Hative Besar, Halong, and Lateri. The interior and exterior waters of Ambon Bay contained different habitat conditions due to  sedimentation processes. The purpose of this study was to determine the distribution and diversity of macro algae communities in the Ambon Bay. The results found 21 species of macro- algae consisting of 10 species of Rhodhophyceae, 6 species of Chlorophyceae, and 5 species of Phaeophyceae. The highest density value of seaweed in Tantui was 389.0 g/m² of Chlorophyceae of Halimeda genus. In Air Salobar and Halong, the highest density value was Rhodophyceae of Gracilaria genus of 172.0 g/m² and 155.0 g/m², respectively. For the other genus in the Tantui and Lateri regions were dominated by Ulva at 92.10 gr/m2 and Padina of 20.0 gr/m2, respectively. The highest dominance of macro algae in the Hative Besar was found Chlorophyceae of Halimeda genus of 2.93 %, in the Air Salobar of Phaeophyceae of Turbinaria genus of 1.43 %. The difference values in density and the dominance of macro algae indicated an influence of habitat and environment due to seasons, sediment, and solid waste disposal to the diversity of macro algae. Keywords: Diversity, macro algae, Ambon Bay.

  20. Rivers affect the biovolume and functional traits of phytoplankton in floodplain lakes

    Directory of Open Access Journals (Sweden)

    Alfonso Pineda

    2017-12-01

    Full Text Available Abstract Aim: We analyzed the temporal distribution (dry and rainy periods of phytoplankton functional groups (biovolume from lakes connected to dammed (S1 - Paraná River and non-dammed rivers (S2 - Baia River and S3 - Ivinhema River in the upper Paraná River floodplain, Brazil. We also determined the drivers of the phytoplankton community assemblage. Methods Phytoplankton and environmental variables samplings were performed quarterly in dry (2000 and 2001 and rainy (2010 and 2011 periods. We classified the phytoplankton species into seven morphological based functional groups (MBFG. We used analysis of variance to test differences in total phytoplankton biovolume and MBFGs biovolume between lakes and climatic periods. We also used redundancy analysis to determine the MBFGs-environment relation. Results The lake related to the dammed river (S1 presented the lowest species richness. The total phytoplankton biovolume presented differences among the lakes, but we did not register temporal differences associated with water level variation. The lake related to the non-dammed and semi-lentic river (S2 presented the highest biovolume, while S1 (related to the dammed river and S3 (related to the non-dammed river exhibited the lowest ones. Filamentous organisms (MBFG III were associated with poor nutrient conditions and diatoms (MBFG VI were favored in high water mixing sites. The flagellate groups MBFG II and MBFG V were related to deeper water and lower column mixing conditions, respectively. Conclusions Our results suggest that phytoplankton species with different functional traits drive the primary productivity in the dry and rainy periods. Hence, we highlight the importance of maintaining high functional diversity in lakes to ensure primary productivity. Therefore, we stress the importance of protecting the natural environment such as floodplain lakes because of its contribution to the regional biodiversity and the flow of energy.

  1. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate.

    Directory of Open Access Journals (Sweden)

    Cong Wang

    phytoplankton community structure.

  2. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate

    Science.gov (United States)

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  3. Is the future blue-green or brown? The effects of extreme events on phytoplankton dynamics in a semi-arid man-made lake

    NARCIS (Netherlands)

    Meideiros, L.D.C.; Mattos, A.; Lurling, M.F.L.L.W.; Becker, V.

    2015-01-01

    In arid and semi-arid regions, a hydrological regime characterized by an annual cycle of drought and rainy seasons changes the volume and retention time of reservoirs. Such changes affect the limnological characteristics and lead to changes on phytoplankton community. Phytoplankton seasonal

  4. Mesozooplankton production, grazing and respiration in the Bay of Bengal: Implications for net heterotrophy

    Science.gov (United States)

    Fernandes, Veronica; Ramaiah, N.

    2016-03-01

    Mesozooplankton samples were collected from the mixed layer along a central (along 88°E) and a western transect in the Bay of Bengal during four seasons covered between 2001 and 2006 in order to investigate spatio-temporal variability in their biomass. At these stations, grazing and respiration rates were measured from live zooplankton hauled in from the surface during December 2005. Akin to the mesozooplankton "paradox" in the central and eastern Arabian Sea, biomass in the mixed layer was more or less invariant in the central and western Bay of Bengal, even as the chl a showed marginal temporal variation. By empirical equation, the mesozooplankton production rate calculated to be 70-246 mg C m- 2 d- 1 is on par with the Arabian Sea. Contrary to the conventional belief, mesozooplankton grazing impact was up to 83% on primary production (PP). Low PP coupled with very high zooplankton production (70% of PP) along with abundant bacterial production (50% of the PP; Ramaiah et al., 2009) is likely to render the Bay of Bengal net heterotrophic, especially during the spring intermonsoon. Greater estimates of fecal pellet-carbon egestion by mesozooplankton compared to the average particulate organic carbon flux in sediment traps, implies that much of the matter is recycled by heterotrophic communities in the mixed layer facilitating nutrient regeneration for phytoplankton growth. We also calculated that over a third of the primary production is channelized for basin-wide zooplankton respiration that accounts for 52 Mt C annually. In the current scenario of global warming, if low (primary) productive warm pools like the Bay of Bengal continue to be net heterotrophic, negative implications like enhanced emission of CO2 to the atmosphere, increased particulate flux to the deeper waters and greater utilization of dissolved oxygen resulting in expansion of the existing oxygen minimum zone are imminent.

  5. Long-term changes of the phytoplankton community and biomass in the subtropical shallow Patos Lagoon Estuary, Brazil

    Science.gov (United States)

    Haraguchi, Lumi; Carstensen, Jacob; Abreu, Paulo Cesar; Odebrecht, Clarisse

    2015-09-01

    Seasonal and interannual changes (1993-2012) of water temperature and transparency, river discharge, salinity, water quality properties, chlorophyll a (chl-a) and the carbon biomass of the main taxonomical phytoplankton groups were evaluated at a shallow station (∼2 m) in the subtropical Patos Lagoon Estuary (PLE), Brazil. Large variations in salinity (0-35), due to a complex balance between Patos Lagoon outflow and oceanic inflows, affected significantly other water quality variables and phytoplankton dynamics, masking seasonal and interannual variability. Therefore, salinity effect was filtered out by means of a Generalized Additive Model (GAM). River discharge and salinity had a significant negative relation, with river discharge being highest and salinity lowest during July to October. Diatoms comprised the dominant phytoplankton group, contributing substantially to the seasonal cycle of chl-a showing higher values in austral spring/summer (September to April) and lowest in autumn/winter (May to August). PLE is a nutrient-rich estuary and the phytoplankton seasonal cycle was largely driven by light availability, with few exceptions in winter. Most variables exhibited large interannual variability. When varying salinity effect was accounted for, chl-a concentration and diatom biomass showed less irregularity over time, and significant increasing trends emerged for dinoflagellates and cyanobacteria. Long-term changes in phytoplankton and water quality were strongly related to variations in salinity, largely driven by freshwater discharge influenced by climatic variability, most pronounced for ENSO events. However, the significant increasing trend of the N:P ratio indicates that important environmental changes related to anthropogenic effects are undergoing, in addition to the hydrology in the PLE.

  6. Mangrove bird community of Paranaguá Bay - Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Luiz Augusto Macedo Mestre

    2007-01-01

    Full Text Available This study describes the mangrove bird community of Paranaguá Bay in Paraná - South Brazil. Seasonal surveys were conducted during September 1997 to September 1998 at three sites in Paranaguá Bay. Frequencies and abundances of birds were registered in 200m transects and one hour point counts. A total of 81 bird species were observed in the three sampling sites. Most of the bird species in Paranaguá mangroves are fruits, seeds and arthropods consumers, and predators of flying insects. The most frequent and abundant species were Egretta caerulea, Ceryle torquata, Chloroceryle amazona, Pitangus sulphuratus, Turdus amaurochalinus and Parula pitiayumi. The bird community of these three sites is composed mainly by forest bird species. The mangroves of Paranaguá Bay shelter one of the richest avifauna of Brazilian mangroves. Differences between sampling sites could be related to the proximity of the Paranaguá city and human impacts in the areas. Only in the most disturbed site were observed Passer domesticus and large flocks of Coragyps atratus. This study contributed to the knowledge of mangrove communities, and could be an important basis to fluvial-marine conservation plans in Paraná- Brazil.Este estudo teve como objetivos caracterizar a comunidade de aves de manguezais na baía de Paranaguá e comparar descritivamente a comunidade das três áreas amostradas, diferentes em relação à proximidade de centros urbanos. Foram amostradas sazonalmente, entre setembro de 1997 a setembro 1998, três áreas de manguezais a diferentes distâncias da cidade e do porto de Paranaguá. A avifauna foi registrada em transectos de 200m no interior dos manguezais e em observações de 1 hora em pontos fixos. Foram determinadas freqüência, abundancia relativa e densidade de espécies em cada área. Foram observadas 81 espécies de aves nas três áreas de manguezais. As guildas mais significativas foram das espécies consumidoras de frutos, sementes e artr

  7. Impacts of James Bay project on Cree communities

    International Nuclear Information System (INIS)

    Senecal, P.; Egre, D.

    1993-01-01

    The LaGrande hydroelectric project in northwest Quebec, originally begun in 1972, was blocked by the Cree Indians and a negotiated settlement was reached in 1975 to continue it in exchange for compensation, land rights, and other matters. The James Bay and Northern Quebec Agreement contained provisions regulating the use of land and aimed at preserving the traditional Cree way of life. Other complementary agreements were signed in the 1980s. The impact of river-system modifications on wildlife harvesting and the effect of access roads on Cree communities are discussed. Flooding of hunting lands affected some traplines, and the low productivity of shore habitats and the high levels of mercury in some fish have greatly limited use of the LaGrande reservoirs for other purposes. Stream navigation at some communities was made more difficult because of changed river flows. The impact of the roads has been more positive, since the roads have facilitated trade and reduced local prices of many goods, and made wildlife harvesting easier and more evenly distributed. An income security program for hunters, fishers, and trappers has helped preserve a traditional lifestyle. A sharp increase in salary income, indicating consolidation of the employment market in the region, is the most significant economic impact of the LaGrande project agreement. 6 refs

  8. Simulated ocean acidification reveals winners and losers in coastal phytoplankton.

    Directory of Open Access Journals (Sweden)

    Lennart T Bach

    Full Text Available The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA. OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3 for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm in five of them while the other five served as controls (380 μatm. We found: (1 Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2 Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms while others (e.g. Synechococcus were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3 Picoeukaryotic phytoplankton (0.2-2 μm showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.

  9. Simulated ocean acidification reveals winners and losers in coastal phytoplankton.

    Science.gov (United States)

    Bach, Lennart T; Alvarez-Fernandez, Santiago; Hornick, Thomas; Stuhr, Annegret; Riebesell, Ulf

    2017-01-01

    The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2-2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean.

  10. Simulated ocean acidification reveals winners and losers in coastal phytoplankton

    Science.gov (United States)

    Alvarez-Fernandez, Santiago; Hornick, Thomas; Stuhr, Annegret; Riebesell, Ulf

    2017-01-01

    The oceans absorb ~25% of the annual anthropogenic CO2 emissions. This causes a shift in the marine carbonate chemistry termed ocean acidification (OA). OA is expected to influence metabolic processes in phytoplankton species but it is unclear how the combination of individual physiological changes alters the structure of entire phytoplankton communities. To investigate this, we deployed ten pelagic mesocosms (volume ~50 m3) for 113 days at the west coast of Sweden and simulated OA (pCO2 = 760 μatm) in five of them while the other five served as controls (380 μatm). We found: (1) Bulk chlorophyll a concentration and 10 out of 16 investigated phytoplankton groups were significantly and mostly positively affected by elevated CO2 concentrations. However, CO2 effects on abundance or biomass were generally subtle and present only during certain succession stages. (2) Some of the CO2-affected phytoplankton groups seemed to respond directly to altered carbonate chemistry (e.g. diatoms) while others (e.g. Synechococcus) were more likely to be indirectly affected through CO2 sensitive competitors or grazers. (3) Picoeukaryotic phytoplankton (0.2–2 μm) showed the clearest and relatively strong positive CO2 responses during several succession stages. We attribute this not only to a CO2 fertilization of their photosynthetic apparatus but also to an increased nutrient competitiveness under acidified (i.e. low pH) conditions. The stimulating influence of high CO2/low pH on picoeukaryote abundance observed in this experiment is strikingly consistent with results from previous studies, suggesting that picoeukaryotes are among the winners in a future ocean. PMID:29190760

  11. Phytoplankton biovolume is independent from the slope of the size spectrum in the oligotrophic atlantic ocean

    KAUST Repository

    Moreno-Ostos, Enrique

    2015-08-06

    Modelling the size-abundance spectrum of phytoplankton has proven to be a very useful tool for the analysis of physical-biological coupling and the vertical flux of carbon in oceanic ecosystems at different scales. A frequent observation relates high phytoplankton biovolume in productive regions with flatter spectrum slope and the opposite in oligotrophic ecosystems. Rather than this, the relationship between high biovolume phytoplankton assemblages and flatter size-abundance spectra does not correspond with measurements of the phytoplankton community in the Atlantic Ocean open waters. As part of the Malaspina Circunnavegation Expedition, sixty seven sampling stations within the Atlantic Ocean covering six oceanographic provinces, at different seasons, produced a complete set of phytoplankton size-spectra whose slope and biovolume did not show any obvious interrelation. In these oligotrophic sites, small (procaryotes) and medium-size (nanoplankton) cells are responsible for the most part of biovolume, and their response to environmental conditions does not apply to changes in the size-abundance spectrum slope as expected in richer, large-cell dominated ecosystems.

  12. Microbial biogeography of San Francisco Bay sediments

    Science.gov (United States)

    Lee, J. A.; Francis, C. A.

    2014-12-01

    The largest estuary on the west coast of North America, San Francisco Bay is an ecosystem of enormous biodiversity, and also enormous human impact. The benthos has experienced dredging, occupation by invasive species, and over a century of sediment input as a result of hydraulic mining. Although the Bay's great cultural and ecological importance has inspired numerous surveys of the benthic macrofauna, to date there has been almost no investigation of the microbial communities on the Bay floor. An understanding of those microbial communities would contribute significantly to our understanding of both the biogeochemical processes (which are driven by the microbiota) and the physical processes (which contribute to microbial distributions) in the Bay. Here, we present the first broad survey of bacterial and archaeal taxa in the sediments of the San Francisco Bay. We conducted 16S rRNA community sequencing of bacteria and archaea in sediment samples taken bimonthly for one year, from five sites spanning the salinity gradient between Suisun and Central Bay, in order to capture the effect of both spatial and temporal environmental variation on microbial diversity. From the same samples we also conducted deep sequencing of a nitrogen-cycling functional gene, nirS, allowing an assessment of evolutionary diversity at a much finer taxonomic scale within an important and widespread functional group of bacteria. We paired these sequencing projects with extensive geochemical metadata as well as information about macrofaunal distribution. Our data reveal a diversity of distinct biogeographical patterns among different taxa: clades ubiquitous across sites; clades that respond to measurable environmental drivers; and clades that show geographical site-specificity. These community datasets allow us to test the hypothesis that salinity is a major driver of both overall microbial community structure and community structure of the denitrifying bacteria specifically; and to assess

  13. Responses of upland herpetofauna to the restoration of Carolina Bays and thinning of forested Bay Margins.

    Energy Technology Data Exchange (ETDEWEB)

    Ledvina, Joseph A.

    2008-05-01

    Research on the effects of wetland restoration on reptiles and amphibians is becoming more common, but almost all of these studies have observed the colonization of recently disturbed habitats that were completely dry at the time of restoration. In a similar manner, investigations herpetofaunal responses to forest management have focused on clearcuts, and less intensive stand manipulations are not as well studied. To evaluate community and population responses of reptiles and amphibians to hydrology restoration and canopy removal in the interior of previously degraded Carolina bays, I monitored herpetofauna in the uplands adjacent to six historically degraded Carolina bays at the Savannah River Site (SRS) in South Carolina for four years after restoration. To evaluate the effects of forest thinning on upland herpetofauna, forests were thinned in the margins of three of these bays. I used repeated measures ANOVA to compare species richness and diversity and the abundance of selected species and guilds between these bays and with those at three reference bays that were not historically drained and three control bays that remained degraded. I also used Non-metric Multidimensional Scaling (NMDS) to look for community-level patterns based treatments.

  14. Phytoplankton community structure in relation to hydrographic features along a coast-to-offshore transect on the SW Atlantic Continental Shelf

    Science.gov (United States)

    Islabão, C. A.; Mendes, C. R. B.; Detoni, A. M. S.; Odebrecht, C.

    2017-12-01

    phytoplankton communities and distribution on the shelf and in coastal waters off Southern Brazil in summer. Picoplankton cells (Prochlorococcus and Synechococcus), recorded for the first time in the region under study, were predominant in the nutrient-poor and well-lit surface layers along the transect, indicating the importance of their low sedimentation rates (small size) and photo-adaptive strategies to survive on the upper layers of the water column.

  15. Influence of Vitamin B Auxotrophy on Nitrogen Metabolism in Eukaryotic Phytoplankton

    Directory of Open Access Journals (Sweden)

    Erin M Bertrand

    2012-10-01

    Full Text Available While nitrogen availability is known to limit primary production in large parts of the ocean, vitamin starvation amongst eukaryotic phytoplankton is becoming increasingly recognized as an oceanographically relevant phenomenon. Cobalamin (B12 and thiamine (B1 auxotrophy are widespread throughout eukaryotic phytoplankton, with over 50% of cultured isolates requiring B12 and 20% requiring B1. The frequency of vitamin auxotrophy in harmful algal bloom species is even higher. Instances of colimitation between nitrogen and B vitamins have been observed in marine environments, and interactions between these nutrients have been shown to impact phytoplankton species composition. This review evaluates the potential for interactive effects of nitrogen and vitamin B12 and B1 starvation in eukaryotic phytoplankton. B12 plays essential roles in amino acid and one-carbon metabolism, while B1 is important for primary carbohydrate and amino acid metabolism and likely useful as an anti-oxidant. Here we will focus on three potential metabolic interconnections between vitamin, nitrogen and sulfur metabolism that may have ramifications for the role of vitamin and nitrogen scarcities in driving ocean productivity and species composition. These include: (1 B12, B1, and N starvation impacts on osmolyte and antioxidant production, (2 B12 and B1 starvation impacts on polyamine biosynthesis, and (3 influence of B12 and B1 starvation on the diatom urea cycle and amino acid recycling through impacts on the citric acid cycle. We evaluate evidence for these interconnections and identify oceanographic contexts in which each may impact rates of primary production and phytoplankton community composition. Major implications include that B12 and B1 deprivation may impair the ability of phytoplankton to recover from nitrogen starvation and that changes in vitamin and nitrogen availability may synergistically impact harmful algal bloom formation.

  16. Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm study

    Directory of Open Access Journals (Sweden)

    R. Thyrhaug

    2008-07-01

    Full Text Available The predicted rise in anthropogenic CO2 emissions will increase CO2 concentrations and decrease seawater pH in the upper ocean. Recent studies have revealed effects of pCO2 induced changes in seawater chemistry on a variety of marine life forms, in particular calcifying organisms. To test whether the predicted increase in pCO2 will directly or indirectly (via changes in phytoplankton dynamics affect abundance, activities, and community composition of heterotrophic bacteria during phytoplankton bloom development, we have aerated mesocosms with CO2 to obtain triplicates with three different partial pressures of CO2 (pCO2: 350 μatm (1×CO2, 700 μatm (2×CO2 and 1050 μatm (3×CO2. The development of a phytoplankton bloom was initiated by the addition of nitrate and phosphate. In accordance to an elevated carbon to nitrogen drawdown at increasing pCO2, bacterial production (BPP of free-living and attached bacteria as well as cell-specific BPP (csBPP of attached bacteria were related to the C:N ratio of suspended matter. These relationships significantly differed among treatments. However, bacterial abundance and activities were not statistically different among treatments. Solely community structure of free-living bacteria changed with pCO2 whereas that of attached bacteria seemed to be independent of pCO2 but tightly coupled to phytoplankton bloom development. Our findings imply that changes in pCO2, although reflected by changes in community structure of free-living bacteria, do not directly affect bacterial activity. Furthermore, bacterial activity and dynamics of heterotrophic bacteria, especially of attached bacteria, were tightly correlated to phytoplankton development and, hence, may also potentially depend on changes in pCO2.

  17. Soccer science and the Bayes community: exploring the cognitive implications of modern scientific communication.

    Science.gov (United States)

    Shrager, Jeff; Billman, Dorrit; Convertino, Gregorio; Massar, J P; Pirolli, Peter

    2010-01-01

    Science is a form of distributed analysis involving both individual work that produces new knowledge and collaborative work to exchange information with the larger community. There are many particular ways in which individual and community can interact in science, and it is difficult to assess how efficient these are, and what the best way might be to support them. This paper reports on a series of experiments in this area and a prototype implementation using a research platform called CACHE. CACHE both supports experimentation with different structures of interaction between individual and community cognition and serves as a prototype for computational support for those structures. We particularly focus on CACHE-BC, the Bayes community version of CACHE, within which the community can break up analytical tasks into "mind-sized" units and use provenance tracking to keep track of the relationship between these units. Copyright © 2009 Cognitive Science Society, Inc.

  18. Trophic structure of the fouling community in Odessa Bay (Black Sea

    Directory of Open Access Journals (Sweden)

    A. Y. Varigin

    2016-06-01

    Full Text Available The trophic structure of the coastal fouling community of Odessa Bay (Black Sea, which was composed of 10 species of macrophytes, 57 invertebrate species and 4 species of fish, was determined. The basic trophic relationship between organisms composing the community is shown. A minimization of interspecific trophic competition within the community is noted. The main sources of food material entering the fouling community were determined. We show that a significant proportion of food in the form of detritus, dissolved organic matter and small planktonic organisms enters the community from the water column. Filtration and pumping activity of sestonophage-organisms, particularly mussels, helps to attract food material to the community. Primary producers of the community are macrophytes and microphytes, which develop on account of their photosynthetic activity and ensure the provision of food to herbivores. The trophic group of detritophages consumes different fractions of the detritus which accumulates in the byssus threads of bivalve molluscs. In this context, mussel druses act as sediment traps, collecting detritus. Numerous polyphages, which are essentially omnivores and do not usually lack food material, were noted in the community. A small group of carnivorous invertebrates, whose representatives actively attack small animals, was identified. The abundance of these species in the community was about 1%, and their biomass less than 0.6%. Fish living in macrophyte weeds are the consumers in the community. We determined that the highest relative abundance (over 36% in the fouling community was reached by sestonophages and polyphages. We found that the undisputed leader in the relative biomass (over 97% in the fouling community ofOdessaBaywas the sestonophages (mainly composed of mussels. We determined that the trophic structure index of the community was 0.94, which confirms the significant dominance in biomass of bivalves over other species in

  19. Changes of the phytoplankton community as symptoms of deterioration of water quality in a shallow lake.

    Science.gov (United States)

    Dembowska, Ewa Anna; Mieszczankin, Tomasz; Napiórkowski, Paweł

    2018-01-25

    Covering more than 60% of the lake surface, macrophytes determined the taxonomic composition of phytoplankton. We have found numerous indications of ecological deterioration and an increased trophic level year to year: an increased total number of taxa; a significantly increased number of species of Chlorophyta, Bacillariophyceae and Cyanoprokaryota; a decreased number of Chrysophyceae; increased Nygaard index, and high diversity and variability of phytoplankton functional groups. Within 2 years (2002 and 2003) algal biomass doubled: from 3.616 to 7.968 mg l -1 . An increased contribution of Chlorococcales and Cyanoprokaryota indicates progressive eutrophication of the lake. The average size of planktonic algae increased, particularly Cyanoprokaryota, where small-celled decreased dramatically and were replaced by large colonies. Cyanoprokaryota remained the dominant group of phytoplankton after 10 years, and the ecosystem of the lake remained in the turbid state. This group of algae had the average biomass 9.734 mg l -1 , which constituted almost 92% of the total biomass.

  20. Effects of green macroalgal blooms on the meiofauna community structure in the Bay of Cádiz

    DEFF Research Database (Denmark)

    Bohorquez, Julio; Papaspyrou, Sokratis; Yufera, M

    2013-01-01

    The effect of macroalgal blooms on the abundance and community structure of intertidal sediment meiofauna was studied using an in situ enclosure experiments (Bay of Cádiz, Spain). Meiofaunal abundance (3500–41,000 ind 10 cm−2) was three to sevenfold higher in the presence of macroalgae. Nematoda...

  1. Oyster Reef Communities in the Chesapeake Bay: A Brief Primer. VORTEX: Virginia's Oyster Reef Teaching EXperience.

    Science.gov (United States)

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This document introduces Virginia's Oyster Reef Teaching EXperience (VORTEX), which is an interdisciplinary program focusing on the importance of oyster reef communities in the Chesapeake Bay ecosystem. The VORTEX program uses field and laboratory experience supported by multimedia instruction. This document presents an overview on the biology of…

  2. Destruction of the Phoenix/Hibiscus and Barringtonia racemosa Communities at Richards Bay, Natal, South Africa

    Directory of Open Access Journals (Sweden)

    P. J. Weisser

    1982-10-01

    Full Text Available The destruction of the Phoenix!Hibiscus and Barringtonia racemosa Communities described by Venter in 1972 on the southern shores of Richards Bay is reported. The cause was the artificial openingof a new mouth about 5,5 km south of the original mouth, which increased tidal range and salinity. These swamp communities occupied a narrow band about 6 ha in area behind the Bruguiera gymnorrhiza Community. An estimated 95 % of the communities was affected and only on the landward border were some isolated remnants of species such as Acrostichum aureum, Hibiscus tiliaceus and Phoenix reclinata detected .Young stands of  Phragmites australis, seedlings of  Bruguiera gymnorrhiza and Avicennia marina and epipelic algae are recoIonizing the affected area.

  3. Impact of the river Liffey discharge on nutrient and chlorophyll concentrations in the Liffey estuary and Dublin Bay (Irish Sea)

    Science.gov (United States)

    O'Higgins, T. G.; Wilson, J. G.

    2005-08-01

    Temperature, salinity, nutrients (total oxidised nitrogen (TON), ammonium (NH 4) and orthophosphate (PO 4)) and chlorophyll a were monitored in the Liffey estuary and Dublin Bay from June 2000 to June 2003. Four groups of sites were defined comprising the upper estuary (Gp. I), the outer estuary (Gp. III) with a small set (Gp. II) of sites between Groups I and III heavily influenced by the sewage treatment works outflow, and the Bay proper (Gp. IV). Riverine inputs of TON and PO 4 were calculated at an average of 826 t N y -1 and 31 t P y -1, respectively, and were largely controlled by flow rate. The sewage treatment works were identified as a major source of PO 4 and NH 4 to the system. Mixing in the upper estuary of nutrient limited saline waters with hypernutrified river water regularly (i.e. annually) produced relatively high concentrations of chlorophyll a (>10 mg chl a m -3), and also sporadic blooms with extremely high chlorophyll a values (max. 121.6 mg chl a m -3). These latter phytoplankton blooms occurred in high salinity waters and were due to mixing of nutrient limited saline waters and nutrient rich river waters. The mean annual flux of phytoplankton carbon from the river Liffey was calculated at 23.5 t C y -1, of which half was accumulated or remineralised in the estuary and did not enter the Bay. In the Bay proper (Gp. IV) summer nutrient concentrations dropped below detection limits, and chlorophyll a concentrations followed the classic pattern with a spring bloom maximum of 5.5 mg chl a m -3. This pattern in nutrients and chlorophyll a came from the advection of waters into the Bay from an offshore source. Overall while there was considerable evidence for eutrophication in the estuary, the bay itself showed little biological response to nutrient loading.

  4. Photoreception in Phytoplankton.

    Science.gov (United States)

    Colley, Nansi Jo; Nilsson, Dan-Eric

    2016-11-01

    In many species of phytoplankton, simple photoreceptors monitor ambient lighting. Photoreceptors provide a number of selective advantages including the ability to assess the time of day for circadian rhythms, seasonal changes, and the detection of excessive light intensities and harmful UV light. Photoreceptors also serve as depth gauges in the water column for behaviors such as diurnal vertical migration. Photoreceptors can be organized together with screening pigment into visible eyespots. In a wide variety of motile phytoplankton, including Chlamydomonas, Volvox, Euglena, and Kryptoperidinium, eyespots are light-sensitive organelles residing within the cell. Eyespots are composed of photoreceptor proteins and typically red to orange carotenoid screening pigments. This association of photosensory pigment with screening pigment allows for detection of light directionality, needed for light-guided behaviors such as positive and negative phototaxis. In Chlamydomonas, the eyespot is located in the chloroplast and Chlamydomonas expresses a number of photosensory pigments including the microbial channelrhodopsins (ChR1 and ChR2). Dinoflagellates are unicellular protists that are ecologically important constituents of the phytoplankton. They display a great deal of diversity in morphology, nutritional modes and symbioses, and can be photosynthetic or heterotrophic, feeding on smaller phytoplankton. Dinoflagellates, such as Kryptoperidinium foliaceum, have eyespots that are used for light-mediated tasks including phototaxis. Dinoflagellates belonging to the family Warnowiaceae have a more elaborate eye. Their eye-organelle, called an ocelloid, is a large, elaborate structure consisting of a focusing lens, highly ordered retinal membranes, and a shield of dark pigment. This complex eye-organelle is similar to multicellular camera eyes, such as our own. Unraveling the molecular makeup, structure and function of dinoflagellate eyes, as well as light-guided behaviors in

  5. Benthic diatom community response to environmental variables and metal concentrations in a contaminated bay adjacent to Casey Station, Antarctica

    International Nuclear Information System (INIS)

    Cunningham, Laura; Snape, Ian; Stark, Jonathan S.; Riddle, Martin J.

    2005-01-01

    This study examined the effects of anthropogenic contaminants and environmental variables on the composition of benthic diatom communities within a contaminated bay adjacent to an abandoned waste disposal site in Antarctica. The combination of geographical, environmental and chemical data included in the study explained all of the variation observed within the diatom communities. The chemical data, particularly metal concentrations, explained 45.9% of variation in the diatom communities, once the effects of grain-size and spatial structure had been excluded. Of the metals, tin explained the greatest proportion of variation in the diatom communities (28%). Tin was very highly correlated (R 2 > 0.95) with several other variables (copper, iron, lead, and sum of metals), all of which explained similarly high proportions of total variation. Grain-size data explained 23% of variation once the effects of spatial structure and the chemical data had been excluded. The pure spatial component explained only 1.8% of the total variance. The study demonstrates that much of the compositional variability observed in the bay can be explained by concentrations of metal contaminants

  6. Phospholipid-derived fatty acids as chemotaxonomic markers for phytoplankton: application for inferring phytoplankton composition

    NARCIS (Netherlands)

    Dijkman, N.A.; Kromkamp, J.C.

    2006-01-01

    Phospholipid-derived fatty acids (PLFA) are widely used as chemotaxonomic markers in microbial ecology. In this paper we explore the use of PLFA as chemotaxonomic markers for phytoplankton species. The PLFA composition was determined for 23 species relevant to estuarine phytoplankton. The taxonomic

  7. The response of a natural phytoplankton community from the Godavari River Estuary to increasing CO2 concentration during the pre-monsoon period

    Digital Repository Service at National Institute of Oceanography (India)

    Biswas, H.; Cros, A.; Yadav, K.; Ramana, V.V.; Prasad, V.R.; Acharyya, T.; Babu, P.V.R.

    –Phaeocystis-dominated community in the Ross Sea. The authors interpreted this enhancement effect by the down-regulation of energy cost for inorganic carbon transport under the high CO 2 conditions. Therefore, we can assume diatoms can benefit from increased CO 2 levels... and HCO 3 - , or only HCO 3 - , (Giordano, 2005) at the cost of energy (Raven and Johnson 1991). In parallel, there is also continuous diffusive loss of CO 2 from the cell. The uptake of CO 2 in groups of phytoplankton without active CCM occurs...

  8. Studies on the phytoplankton of the deep subalpine Lake Iseo

    Directory of Open Access Journals (Sweden)

    Rosario MOSELLO

    2003-08-01

    Full Text Available This paper reports the results of investigations carried out on the chemical characteristics and phytoplankton community of Lake Iseo. Samplings were performed on a monthly basis from 1998 to 2000. At least three main algal groups dominated the community throughout the study period. The large Bacillariophyceae were dominant mainly during late winter and early spring (Aulacoseira spp., Melosira varians, Asterionella formosa, with few species able to maintain occasional positive growth also during mid summer and/or autumn (Fragilaria crotonensis and Diatoma elongatum. The thermal stability of the water column and silica depletion were the main factors responsible for the decline of the large spring diatoms. The subsequent growth of Mougeotia sp. (Conjugatophyceae was favoured by its lower sinking rate and resistance to increasing grazing pressure by the dominant copepods (Copidodiaptomus steueri and cladocerans (Daphnia hyalina × galeata. Among the cyanobacteria, the greater development of Planktothrix rubescens in the autumn months, with conditions of vertical homogenisation and decreasing Zeu/Zmix ratios, was favoured by its ability to survive at low light irradiances. The temporal replacement of these three groups constitutes the main sequence of the annual phytoplankton succession in Lake Iseo. A large development of other algal groups was recorded only in one or two of the three study years (e.g. Dinophyceae and Chlorococcales. The changes observed in the annual phytoplankton development are discussed in the light of differences in the spring fertilisation of the waters, caused by differences in the depth of the layer involved in the late winter and spring vertical mixing.

  9. Characterization of the current biological communities within the Nanticoke River in the vicinity of the Vienna SES

    International Nuclear Information System (INIS)

    Stroup, C.F.; Brindley, A.; Kazyak, P.F.

    1991-07-01

    Pursuant to a utility's intent to file for permission to build a generating station along the Nanticoke River, Maryland, a field program was conducted to update characterizations of major aquatic biota of the river in proximity to the existing power plant and a potential intake/discharge location. This characterization sampled five stations on the Nanticoke River, spanning 14 miles from Chapter Point to Riverton, between July 1988 and October 1989. During the study period, the juvenile and adult fish community was dominated by white perch, Atlantic menhaden, bay anchovy, hogchoker, and spot. Spring ichthyoplankton was composed of white perch, striped bass, yellow perch, and alosids, while summer ichthyoplankton was dominated by naked gobies and bay anchovy. Acartia tonsa, Eurytemora affinis and Bosmina longirostris dominated zooplankton samples. The phytoplankton community was composed primarily of diatoms, green algae, and monads. Polychaetes and crustaceans were the dominant macrobenthic taxa, with molluscs contributing to total abundance primarily during spring recruitment. The final report presents the results of fish, ichthyoplankton, zooplankton, and benthic surveys conducted between July 1988 and October 1989 in the middle portion of the Nanticoke River, Maryland. During the dry conditions of 1988, aquatic communities were dominated by estuarine species, while the lower saline environment of 1989 resulted in the presence of more freshwater species

  10. Emergent neutrality drives phytoplankton species coexistence

    Science.gov (United States)

    Segura, Angel M.; Calliari, Danilo; Kruk, Carla; Conde, Daniel; Bonilla, Sylvia; Fort, Hugo

    2011-01-01

    The mechanisms that drive species coexistence and community dynamics have long puzzled ecologists. Here, we explain species coexistence, size structure and diversity patterns in a phytoplankton community using a combination of four fundamental factors: organism traits, size-based constraints, hydrology and species competition. Using a ‘microscopic’ Lotka–Volterra competition (MLVC) model (i.e. with explicit recipes to compute its parameters), we provide a mechanistic explanation of species coexistence along a niche axis (i.e. organismic volume). We based our model on empirically measured quantities, minimal ecological assumptions and stochastic processes. In nature, we found aggregated patterns of species biovolume (i.e. clumps) along the volume axis and a peak in species richness. Both patterns were reproduced by the MLVC model. Observed clumps corresponded to niche zones (volumes) where species fitness was highest, or where fitness was equal among competing species. The latter implies the action of equalizing processes, which would suggest emergent neutrality as a plausible mechanism to explain community patterns. PMID:21177680

  11. Phytoplankton-bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge.

    Science.gov (United States)

    Bertrand, Erin M; McCrow, John P; Moustafa, Ahmed; Zheng, Hong; McQuaid, Jeffrey B; Delmont, Tom O; Post, Anton F; Sipler, Rachel E; Spackeen, Jenna L; Xu, Kai; Bronk, Deborah A; Hutchins, David A; Allen, Andrew E

    2015-08-11

    Southern Ocean primary productivity plays a key role in global ocean biogeochemistry and climate. At the Southern Ocean sea ice edge in coastal McMurdo Sound, we observed simultaneous cobalamin and iron limitation of surface water phytoplankton communities in late Austral summer. Cobalamin is produced only by bacteria and archaea, suggesting phytoplankton-bacterial interactions must play a role in this limitation. To characterize these interactions and investigate the molecular basis of multiple nutrient limitation, we examined transitions in global gene expression over short time scales, induced by shifts in micronutrient availability. Diatoms, the dominant primary producers, exhibited transcriptional patterns indicative of co-occurring iron and cobalamin deprivation. The major contributor to cobalamin biosynthesis gene expression was a gammaproteobacterial population, Oceanospirillaceae ASP10-02a. This group also contributed significantly to metagenomic cobalamin biosynthesis gene abundance throughout Southern Ocean surface waters. Oceanospirillaceae ASP10-02a displayed elevated expression of organic matter acquisition and cell surface attachment-related genes, consistent with a mutualistic relationship in which they are dependent on phytoplankton growth to fuel cobalamin production. Separate bacterial groups, including Methylophaga, appeared to rely on phytoplankton for carbon and energy sources, but displayed gene expression patterns consistent with iron and cobalamin deprivation. This suggests they also compete with phytoplankton and are important cobalamin consumers. Expression patterns of siderophore- related genes offer evidence for bacterial influences on iron availability as well. The nature and degree of this episodic colimitation appear to be mediated by a series of phytoplankton-bacterial interactions in both positive and negative feedback loops.

  12. Avian communities in baylands and artificial salt evaporation ponds of the San Francisco Bay estuary

    Science.gov (United States)

    Takekawa, John Y.; Lu, C.T.; Pratt, R.T.

    2001-01-01

    San Francisco Bay wetlands, seasonal and tidal marshes between the historic low and high tide lines, are now highly fragmented because of development during the past 150 years. Artificial salt pond systems in the Bay are hypersaline and typically support simple assemblages of algae and invertebrates. In order to establish the value of salt ponds for migratory waterbirds, we used datasets to conduct a meta-analysis of avian communities in the baylands and salt ponds of San Pablo Bay. Fifty-three species of waterbirds in the salt ponds represented six foraging guilds: surface feeders, shallow probers, deep probers, dabblers, diving benthivores and piscivores. The total number of species and the Shannon-Weiner diversity index was higher in baylands than in salt ponds during all four seasons. However, overall bird density (number/ha) was higher in salt ponds compared with baylands in the winter and spring, primarily because of large concentrations of benthivores. Cessation of salt production in 1993 and subsequent reduction in water depth resulted in a decline of some diving duck populations that used the salt ponds.

  13. Ecosystem responses to long-term nutrient management in an urban estuary: Tampa Bay, Florida, USA

    Science.gov (United States)

    Greening, H.; Janicki, A.; Sherwood, E. T.; Pribble, R.; Johansson, J. O. R.

    2014-12-01

    In subtropical Tampa Bay, Florida, USA, we evaluated restoration trajectories before and after nutrient management strategies were implemented using long-term trends in nutrient loading, water quality, primary production, and seagrass extent. Following citizen demands for action, reduction in wastewater nutrient loading of approximately 90% in the late 1970s lowered external total nitrogen (TN) loading by more than 50% within three years. Continuing nutrient management actions from public and private sectors were associated with a steadily declining TN load rate and with concomitant reduction in chlorophyll-a concentrations and ambient nutrient concentrations since the mid-1980s, despite an increase of more than 1 M people living within the Tampa Bay metropolitan area. Water quality (chlorophyll-a concentration, water clarity as indicated by Secchi disk depth, total nitrogen concentration and dissolved oxygen) and seagrass coverage are approaching conditions observed in the 1950s, before the large increases in human population in the watershed. Following recovery from an extreme weather event in 1997-1998, water clarity increased significantly and seagrass is expanding at a rate significantly different than before the event, suggesting a feedback mechanism as observed in other systems. Key elements supporting the nutrient management strategy and concomitant ecosystem recovery in Tampa Bay include: 1) active community involvement, including agreement about quantifiable restoration goals; 2) regulatory and voluntary reduction in nutrient loadings from point, atmospheric, and nonpoint sources; 3) long-term water quality and seagrass extent monitoring; and 4) a commitment from public and private sectors to work together to attain restoration goals. A shift from a turbid, phytoplankton-based system to a clear water, seagrass-based system that began in the 1980s following comprehensive nutrient loading reductions has resulted in a present-day Tampa Bay which looks and

  14. Toxicity of natural mixtures of organic pollutants in temperate and polar marine phytoplankton

    KAUST Repository

    Echeveste, Pedro

    2016-07-26

    Semivolatile and persistent organic pollutants (POPs) undergo atmospheric transport before being deposited to the oceans, where they partition to phytoplankton organic matter. The goal of this study was to determine the toxicity of naturally occurring complex mixtures of organic pollutants to temperate and polar phytoplankton communities from the Mediterranean Sea, the North East (NE) Atlantic, and Southern Oceans. The cell abundance of the different phytoplankton groups, chlorophyll a concentrations, viability of the cells, and growth and decay constants were monitored in response to addition of a range of concentrations of mixtures of organic pollutants obtained from seawater extracts. Almost all of the phytoplankton groups were significantly affected by the complex mixtures of non-polar and polar organic pollutants, with toxicity being greater for these mixtures than for single POPs or simple POP mixtures. Cocktails\\' toxicity arose at concentrations as low as tenfold the field oceanic levels, probably due to a higher chemical activity of the mixture than of simple POPs mixtures. Overall, smaller cells were the most affected, although Mediterranean picophytoplankton was significantly more tolerant to non-polar POPs than picophytoplankton from the Atlantic Ocean or the Bellingshausen Sea microphytoplankton. © 2016 Elsevier B.V.

  15. Structure and temporal variation of the phytoplankton of a macrotidal beach from the Amazon coastal zone.

    Science.gov (United States)

    Matos, Jislene B; Oliveira, Suellen M O DE; Pereira, Luci C C; Costa, Rauquírio M DA

    2016-09-01

    The present study aimed to analyze the structure and the temporal variation of the phytoplankton of Ajuruteua beach (Bragança, Pará) and to investigate the influence of environmental variables on the dynamics of this community to provide a basis about the trophic state of this environment. Biological, hydrological and hydrodynamic samplings were performed during a nyctemeral cycle in the months of November/08, March/09, June/09 and September/09. We identified 110 taxa, which were distributed among the diatoms (87.3%), dinoflagellates (11.8%) and cyanobacteria (0.9%), with the predominance of neritic species, followed by the tychoplankton species. Chlorophyll-a concentrations were the highest during the rainy period (24.5 mg m-3), whereas total phytoplankton density was higher in the dry period (1,255 x 103 cell L-1). However, phytoflagellates density was significantly higher during the rainy period. Cluster Analysis revealed the formation of four groups, which were influenced by the monthly differences in the environmental variables. The Principal Component Analysis indicated salinity and chlorophyll-a as the main variables that explained the components. Spearman correlation analysis supported the influence of these variables on the local phytoplankton community. Overall, the results obtained suggest that rainfall and strong local hydrodynamics play an important role in the dynamic of the phytoplankton of Ajuruteua beach, by influencing both environmental and biological variables.

  16. Abundance of anemone fishes in North Bay Island and mass culture of live food organisms for their larval rearing

    Directory of Open Access Journals (Sweden)

    Rajaram Rajendran

    2014-12-01

    Full Text Available Understanding the transect survey for abundance of anemone fishes and other living organisms is important to asses reef associated fish diversity in North Bay island. The percentage distribution of 10 different substratum from the disturbed, semi-disturbed and undisturbed areas was recorded during the survey in North Bay islands during November 2009 to April 2010. The survey observations reveal that the fishes were the dominant groups followed by mollusks, lobsters and octopus. There are 5 different anemone fishes were collected during the transect survey and their distribution is more in undisturbed area. We are standardizing the different mass culture techniques for production of phytoplankton and zooplankton for the nutritional source for the anemone fish larvae. Monitoring the water quality parameters and culture the phytoplankton and zooplankton used in different culture media with 2 adjustment studies like with and without salinity adjustment. The results of this experiment indicate that zooplankton was rich in protein and fat content and it will be used as high nutritional source for feeding fish larvae.

  17. Meso-scale atmospheric events promote phytoplankton blooms in the coastal Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Maneesha, K.; Sarma, V.V.S.S.; Reddy, N.P.C.; Sadhuram, Y.; Murty, T.V.R.; Sarma, V.V.; DileepKumar, M.

    mixing does not cool SST in the post monsoon north Bay of Bengal; Atmos. Sci. Letts. 9 1–6. Senjyu T and Watanabe T 1999 A sudden temperature decrease along the Sanin coast induced by a typhoon; Umi to Sora 75 1–8 (in Japanese with English abstract...

  18. Effects of energy related activities on the plankton of the Chesapeake Bay. Section 1. Progress report, 1 August 1976--30 September 1977

    International Nuclear Information System (INIS)

    Taft, J.L.

    1977-01-01

    Progress is reported on a comprehensive study of the ecology of the Chesapeake Bay estuary system. Emphasis is placed on seasonal variations of initial energy fixation by phytoplankton primary producers and subsequent energy transfer to herbivours and becterial heterotrophs. The impact of chemical and radioactive effluents from electric power plants on the ecology of Chesapeake Bay will be assessed. Data are included on the role of plankton metabolism in regenerating nutrients, nutrient exchange with sediments, and the role of micro-zooplankton in nutrient cycling

  19. Concentration of PSP (Paralytic Shellfish Poisoning) Toxin On Shellfish From Inner Ambon Bay and Kao Bay North Halmahera

    Science.gov (United States)

    Pello, F. S.; Haumahu, S.; Huliselan, N. V.; Tuapattinaja, M. A.

    2017-10-01

    The Inner Ambon Bay and Kao Bay have potential on fisheries resources which one of them is molluscs. Molluscs especially for class bivalve have economical values and are consumed by coastal community. The research had been done to analyze saxitoxin (STX) concentration on bivalves from Kao Bay and Inner Ambon Bay. The Saxitoxin Elisa Test Kit Protocol was used to determine saxitoxin concentration. The measurement showed that the highest concentration of saxitoxin (392.42 µg STXeq/100g shellfish meat) was Gafrarium tumidum from Ambon Bay, whereas concentration of saxitoxin (321.83 µg STXeq/100g shellfish meat) was Mactra mera from Kao Bay

  20. Microbial activity during a coastal phytoplankton bloom on the Western Antarctic Peninsula in late summer.

    Science.gov (United States)

    Alcamán-Arias, María E; Farías, Laura; Verdugo, Josefa; Alarcón-Schumacher, Tomás; Díez, Beatriz

    2018-05-01

    Phytoplankton biomass during the austral summer is influenced by freezing and melting cycles as well as oceanographic processes that enable nutrient redistribution in the West Antarctic Peninsula (WAP). Microbial functional capabilities, metagenomic and metatranscriptomic activities as well as inorganic 13C- and 15N-assimilation rates were studied in the surface waters of Chile Bay during two contrasting summer periods in 2014. Concentrations of Chlorophyll a (Chla) varied from 0.3 mg m-3 in February to a maximum of 2.5 mg m-3 in March, together with a decrease in nutrients; however, nutrients were never depleted. The microbial community composition remained similar throughout both sampling periods; however, microbial abundance and activity changed with Chla levels. An increased biomass of Bacillariophyta, Haptophyceae and Cryptophyceae was observed along with night-grazing activity of Dinophyceae and ciliates (Alveolates). During high Chla conditions, HCO3- uptake rates during daytime incubations increased 5-fold (>2516 nmol C L-1 d-1), and increased photosynthetic transcript numbers that were mainly associated with cryptophytes; meanwhile night time NO3- (>706 nmol N L-1 d-1) and NH4+ (41.7 nmol N L-1 d-1) uptake rates were 2- and 3-fold higher, respectively, due to activity from Alpha-/Gammaproteobacteria and Bacteroidetes (Flavobacteriia). Due to a projected acceleration in climate change in the WAP, this information is valuable for predicting the composition and functional changes in Antarctic microbial communities.

  1. Community structure, phytoplankton density and physical-chemical factor of batang palangki waters of sijunjung regency, west sumatera

    Science.gov (United States)

    Gusmaweti; Deswati, L.

    2018-03-01

    The long-term goal of this study is to provide an overview of the presence of phytoplankton in support of its functions in the waters of Batang Palangki as a conservation area of information on river water management, especially for Batang Palangki stakeholders. Specific targets to be achieved in achieving these objectives are (1) to know the density of phytoplankton, index of diversity of species, equitabilty index, domination index, and in Batang Palangki waters, and (2) to analyze the chemical and physical factors of the waters. The sampling method of phytoplankton is purposive sampling. The phytoplankton sampling is done By filtering 100 liters of water into the net plankton no 25 and filtered into the 25 cc, and then identified. The determination of water quality such as water temperature, water pH and watercolour. dissolved oxygen (DO) and BOD, and Hg content (mercury). The results showed that phytoplankton found from each of station was 370 individualis per liter with the highest density found in the station I of 155. The number of genus was 7, namely Neidium, Gyrogsima, Synedra, Frustulia, Fragillaria, Nitzschia and Peridinium. The diversity index averaged at 0.45, equabilty index averaged at 0.54, while the dominance index averaged at 0.28. Physical and chemical factor measurement results found that water temperature averaged at 26 °C, transparency ranged from 12 - 30 cm, velocity speed ranged from 8 - 15 m/s, while chemical factors such as DO, BOD, and COD ranged from 5.25 to 5.96 mg/L, 3.28 - 3.49 mg/L, and 47.05 - 76.25 mg/L respectively. Likewise, TOM measured in this research was 9.61 - 2.10 mg/L while Hg content ranged from 0.098 - 0.208 mg/L.

  2. Pilot Water Quality Monitoring Station in Dublin Bay : North Bank Station (NBMS), MATSIS Project Part I

    OpenAIRE

    O'Donnell, Garvan; Joyce, Eileen; Silke, Joe; O'Boyle, Shane; McGovern, Evin

    2008-01-01

    This report describes the pilot development of an autonomous monitoring station in Dublin Bay and validation of the system. It presents results from initial deployments. Sensors were deployed for testing, including an optical sensor for measuring nitrate and sensors for measurement of salinity, temperature, fluorescence and dissolved oxygen. Automated water samplers enabled periodic, remote triggered and event triggered sampling for nutrient and phytoplankton samples.

  3. Characteristics of phytoplankton in Lake Karachay, a storage reservoir of medium-level radioactive waste.

    Science.gov (United States)

    Atamanyuk, Natalia I; Osipov, Denis I; Tryapitsina, Galina A; Deryabina, Larisa V; Stukalov, Pavel M; Ivanov, Ivan A; Pryakhin, Evgeny A

    2012-07-01

    The status of the phytoplankton community in Lake Karachay, a storage reservoir of liquid medium-level radioactive waste from the Mayak Production Association, Chelyabinsk Region, Russia, is reviewed. In 2010, the concentration of Sr in water of this reservoir was found to be 6.5 × 10(6) Bq L, the concentration of 137Cs was 1.6 × 10(7) Bq L, and total alpha activity amounted to 3.0 × 10(3) Bq L. An increased level of nitrates was observed in the reservoir-4.4 g L. It has been demonstrated that in this reservoir under the conditions of the maximum contamination levels known for aquatic ecosystems in the entire biosphere, a phytoplankton community exists that has a pronounced decline in species diversity, almost to the extent of a monoculture of widely-spread thread eurytopic cyanobacteria Geitlerinema amphibium.

  4. Primary production in a tropical large lake: The role of phytoplankton composition

    International Nuclear Information System (INIS)

    Darchambeau, F.; Sarmento, H.; Descy, J.-P.

    2014-01-01

    Phytoplankton biomass and primary production in tropical large lakes vary at different time scales, from seasons to centuries. We provide a dataset made of 7 consecutive years of phytoplankton biomass and production in Lake Kivu (Eastern Africa). From 2002 to 2008, bi-weekly samplings were performed in a pelagic site in order to quantify phytoplankton composition and biomass, using marker pigments determined by HPLC. Primary production rates were estimated by 96 in situ 14 C incubations. A principal component analysis showed that the main environmental gradient was linked to a seasonal variation of the phytoplankton assemblage, with a clear separation between diatoms during the dry season and cyanobacteria during the rainy season. A rather wide range of the maximum specific photosynthetic rate (P Bm ) was found, ranging between 1.15 and 7.21 g carbon g −1 chlorophyll a h −1 , and was best predicted by a regression model using phytoplankton composition as an explanatory variable. The irradiance at the onset of light saturation (I k ) ranged between 91 and 752 μE m −2 s −1 and was linearly correlated with the mean irradiance in the mixed layer. The inter-annual variability of phytoplankton biomass and production was high, ranging from 53 to 100 mg chlorophyll a m −2 (annual mean) and from 143 to 278 g carbon m −2 y −1 , respectively. The degree of seasonal mixing determined annual production, demonstrating the sensitivity of tropical lakes to climate variability. A review of primary production of other African great lakes allows situating Lake Kivu productivity in the same range as that of lakes Tanganyika and Malawi, even if mean phytoplankton biomass was higher in Lake Kivu. - Highlights: • We provide a 7-year dataset of primary production in a tropical great lake. • Specific photosynthetic rate was determined by community composition. • Annual primary production varied between 143 and 278 mg C m −2 y −1 . • Pelagic production was highly

  5. Phytoplankton absorption predicts patterns in primary productivity in Australian coastal shelf waters

    Science.gov (United States)

    Robinson, C. M.; Cherukuru, N.; Hardman-Mountford, N. J.; Everett, J. D.; McLaughlin, M. J.; Davies, K. P.; Van Dongen-Vogels, V.; Ralph, P. J.; Doblin, M. A.

    2017-06-01

    The phytoplankton absorption coefficient (aPHY) has been suggested as a suitable alternate first order predictor of net primary productivity (NPP). We compiled a dataset of surface bio-optical properties and phytoplankton NPP measurements in coastal waters around Australia to examine the utility of an in-situ absorption model to estimate NPP. The magnitude of surface NPP (0.20-19.3 mmol C m-3 d-1) across sites was largely driven by phytoplankton biomass, with higher rates being attributed to the microplankton (>20 μm) size class. The phytoplankton absorption coefficient aPHY for PAR (photosynthetically active radiation; āPHY)) ranged from 0.003 to 0.073 m-1, influenced by changes in phytoplankton community composition, physiology and environmental conditions. The aPHY coefficient also reflected changes in NPP and the absorption model-derived NPP could explain 73% of the variability in measured surface NPP (n = 41; RMSE = 2.49). The absorption model was applied to two contrasting coastal locations to examine NPP dynamics: a high chlorophyll-high variation (HCHV; Port Hacking National Reference Station) and moderate chlorophyll-low variation (MCLV; Yongala National Reference Station) location in eastern Australia using the GIOP-DC satellite aPHY product. Mean daily NPP rates between 2003 and 2015 were higher at the HCHV site (1.71 ± 0.03 mmol C m-3 d-1) with the annual maximum NPP occurring during the austral winter. In contrast, the MCLV site annual NPP peak occurred during the austral wet season and had lower mean daily NPP (1.43 ± 0.03 mmol C m-3 d-1) across the time-series. An absorption-based model to estimate NPP is a promising approach for exploring the spatio-temporal dynamics in phytoplankton NPP around the Australian continental shelf.

  6. Carbon Stored on Seagrass Community in Marine Nature Tourism Park of Kotania Bay, Western Seram, Indonesia

    Directory of Open Access Journals (Sweden)

    Mintje Wawo

    2014-04-01

    Full Text Available Currently, the function of seagrass community as carbon storage has been discussed in line with “blue carbon” function of that seagrass has. Seagrass bed are a very valuable coastal ecosystem, however, seagrass bed is threatened if compared to other coastal ecosystems, such as mangroves and coral reefs. The threatened seagrass experienced also contributes to its capacity in absorbing CO2 emission from greenhouse gasses such as CO2 emission Temporal estimation shows that CO2 emission will increase in the coming decade. On the other side, efforts to decrease climate change can be influenced by the existence of seagrass. Informations about existence of seagrass as carbon storage are still very rare or limited. This study was aimed to estimate carbon storage on seagrass community in Marine Nature Tourism Park of Kotania Bay Area, Western Seram, Maluku Province. The quadrat transect method of 0.25 m2 for each plot was used to collect seagrass existence. The content of carbon in the sample of dry biomass of seagrass was analyzed in the laboratory using Walkley & Black method. The results showed that total carbon stored was higher in both Osi and Burung Islands of Kotania Bay than other studied areas (Buntal and Tatumbu Islands, Marsegu Island, Barnusang Peninsula, Loupessy and Tamanjaya Village. The average carbon stored in Kotania Bay waters was 2.385 Mg C ha-1, whereas the total of carbon stored was 2054.4967 Mg C.

  7. Global Ocean Phytoplankton

    Science.gov (United States)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2014-01-01

    Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.

  8. Distribusi Spasial Dan Struktur Komunitas Plankton Di Daerah Teluk Penerusan, Kabupaten Buleleng

    Directory of Open Access Journals (Sweden)

    Ni Made Dewi Damayanti

    2017-06-01

    Full Text Available Research spatial distribution and community structure of plankton in the Penerusan bay has been done on 22 February 2016.Plankton samples were taken at 17 stations using the Horizontal haul. The results obtained by the group of phytoplankton of the most widely found are from class Bacillariophyceae with the abundance of species composition percentage of 77% and the group most zooplankton were found came from class Maxillopoda with the percentage of the species composition of 85%. Highest abundance of phytoplankton found in abundance station 5, while the highest abundance of zooplankton found in abundance station 4. Index values diversity, uniformity and dominance of phytoplankton that is 1,06, 0.40 and 0.11 while the index value of diversity, uniformity and dominance zooplankton are 0.52,0.40 and 0.34. Results of the spatial distribution of phytoplankton abundance scattered in the middle of the bay towards the outside while the spatial distribution of zooplankton abundance spread from the south of the bay towards the middle of the bay and to the north of the bay Forwarding. Water quality in Penerusan Bay of physicists chemical parameters such as temperature obtained ranged from 31.1to 32,5 0C, average brightness obtained 87 %, turbidity obtained ranges between 0,73 to 2.62 ntu, dissolved oxygen (DO obtained ranged from 6 to 8.3 mg/l , the degree of acidity (pH obtained ranged from 7.17 to 8.04, salinity obtained ranged from 31-35 ppt, nitrate values obtained ranged from 0.60 to 1.83 mg/l and phosphate values obtained ranged from 0.10 to 0.78 mg/l.

  9. Preliminary results of water quality assessment using phytoplankton and physicochemical approaches in the Huai River Basin, China.

    Science.gov (United States)

    Chen, Hao; Zuo, Qi-Ting; Zhang, Yong-Yong

    2017-11-01

    Water pollution has been a significant issue in the Huai River Basin (HRB) of China since the late 1970s. In July and December 2013, two field investigations were carried out at 10 sites along the main streams of the basin. The monitoring indices contained both physicochemical variables and the structure and composition of phytoplankton communities. The correlations between communities and physicochemical variables were analyzed using cluster analysis and redundancy analysis. Moreover, water quality was evaluated using the comprehensive nutrition state index (TLI) and Shannon-Wiener diversity index (H). Results indicated that more phytoplankton species were present in December than in July, but total density was less in December. Phytoplankton communities in the midstream of the Shaying River were affected by the same physicochemical factors throughout the year, but ammonia nitrogen and total phosphorus had the greatest influence on these sites in July and December, respectively. The water pollution status of the sampling sites was much greater in the Shaying River midstream than at other sites. TLI was more suitable than H for assessing water quality in the study area. These results provide valuable information for policy makers and stakeholders in water quality assessment, water ecosystem restoration, and sustainable basin management in the HRB.

  10. Dynamic modelling of five different phytoplankton groups in the River Thames (UK)

    Science.gov (United States)

    Bussi, Gianbattista; Whitehead, Paul; Bowes, Michael; Read, Daniel; Dadson, Simon

    2015-04-01

    Phytoplankton play a vital role in fluvial ecosystems, being a major producer of organic carbon, a food source for primary consumers and a relevant source of oxygen for many low-gradient rivers, but also a producer of potentially harmful toxins (e.g. cyanobacteria). For these reasons, the forecast and prevention of algal blooms is fundamental for the safe management of river systems. In this study, we developed a new process-based phytoplankton model for operational management and forecast of algal and cyanobacteria blooms subject to environmental change. The model is based on a mass-balance and it reproduces phytoplankton growth and death, taking into account the controlling effect played by water temperature, solar radiation, self-shading and dissolved phosphorus and silicon concentrations. The model was implemented in five reaches of the River Thames (UK) with a daily time step over a period of three years, and its results were compared to a novel dataset of cytometric data which includes community cell abundance of chlorophytes, diatoms, cyanobacteria, microcystis-like cyanobacteria and picoalgae. The model results were satisfactory in terms of fitting the observed data. A Multi-Objective General Sensitivity Analysis was also carried out in order to quantify model sensitivity to its parameters. It showed that the most influential parameters are phytoplankton growth and death rates, while phosphorus concentration showed little influence on phytoplankton growth, due to the high levels of phosphorus in the River Thames. The model was demonstrated to be a reliable tool to be used in algal bloom forecasting and management.

  11. Limnological characteristics and seasonal changes in density and diversity of the phytoplanktonic community at the Caçó pond, Maranhão State, Brazil

    Directory of Open Access Journals (Sweden)

    Maria José Dellamano-Oliveira

    2003-12-01

    Full Text Available Seasonal changes of the phytoplanktonic community and limnological abiotic characteristics of Caçó pond (Maranhão State, Brazil was evaluated from two field researches during the rainy (April 1999 and dry (November 1999 seasons. Measurements of twelve chemical and physical variables and phytoplankton collections were carried out at eight sampling stations. The Chlorophyceae and Cyanobacteria groups were in highest fractions during the rainy and dry seasons, respectively. The limnological abiotic variables showed a homogenous spatial distribution. The cluster analysis, using Bray-Curtis distance, distinguished two major groups, represented by the most common and abundant species in both the periods. The results showed that the climate regime, due to the seasonal changes in pluviosity, was a determinant over the phytoplanktonic community structure at Caçó pond.Mudanças sazonais na comunidade fitoplanctônica e nas características limnológicas abióticas da lagoa do Caçó, Estado do Maranhão, Brasil, foram avaliadas a partir de duas coletas, nos períodos de chuva (Abril/1999 e seca (Novembro/1999. Medidas de quatorze variáveis físicas e químicas e coletas do fitoplâncton foram realizadas em oito estações de amostragem. Quantitativamente, os grupos Chlorophyceae e Cyanobacteria apresentaram maior contribuição nos períodos de chuva e seca, respectivamente. As variáveis limnológicas abióticas mostraram uma distribuição espacial homogênea em relação aos dois períodos amostrados. A análise de agrupamento a partir da distância de Bray-Curtis para comunidade fitoplanctônica distinguiu dois grandes grupos (estação seca e chuvosa, representados pelas espécies mais comuns e abundantes em ambos períodos. Os resultados deste estudo permitiram concluir que o regime climatológico foi determinante sobre a dinâmica e a estrutura da comunidade fitoplanctônica da lagoa do Caçó.

  12. Lighting the Way: Keweenaw Bay Ojibwa Community College Serves as a Beacon Light for Tribal Members

    Science.gov (United States)

    Benton, Sherrole

    2015-01-01

    On the shores of Lake Superior, the Keweenaw Bay Indian Community (KBIC), a small cluster of Ojibwa (also known as Chippewa), keep their fires alive in the face of daunting pressures to let go of their ways. After the ravages of war, colonization, and territorial loss, KBIC continues to make a stand for their people and future generations. Their…

  13. Analysis of Marketing and Customer Satisfaction in Base Housing Communities of the Monterey Bay Area

    Science.gov (United States)

    2011-06-01

    in Seattle, Washington. The company claims to be based on four basic principles : “exceptional people, strong customer service, market knowledge, and...FtOrd.html Keller, K., & Kotler , P. (2009). A framework for marketing management. Upper Saddle River, NJ: Pearson Education, Inc. Office of...SUBTITLE Analysis of Marketing and Customer Satisfaction in Base Housing Communities of the Monterey Bay Area 5. FUNDING NUMBERS 6. AUTHOR(S

  14. Impact of predation by Ostracion immaculatus (Pisces: Ostraciidae) on the macrofouling community structure in Kanayama Bay, Kii Peninsula (Japan)

    Digital Repository Service at National Institute of Oceanography (India)

    Raveendran, T.V.; Harada, E.

    An investigation on the impact of predation by Ostracion immaculatus on fouling community structure in Kanayama Bay, Kii Peninsula, Japan was undertaken from April 1994 to February 1995. Caging experiments with three size groups of O. immaculatus...

  15. Occurrence and biosynthesis of carotenoids in phytoplankton.

    Science.gov (United States)

    Huang, Jim Junhui; Lin, Shaoling; Xu, Wenwen; Cheung, Peter Chi Keung

    2017-09-01

    Naturally occurring carotenoids are important sources of antioxidants, anti-cancer compounds and anti-inflammatory agents and there is thus considerable market demand for their pharmaceutical applications. Carotenoids are widely distributed in marine and freshwater organisms including microalgae, phytoplankton, crustaceans and fish, as well as in terrestrial plants and birds. Recently, phytoplankton-derived carotenoids have received much attention due to their abundance, rapid rate of biosynthesis and unique composition. The carotenoids that accumulate in particular phytoplankton phyla are synthesized by specific enzymes and play unique physiological roles. This review focuses on studies related to the occurrence of carotenoids in different phytoplankton phyla and the molecular aspects of their biosynthesis. Recent biotechnological advances in the isolation and characterization of some representative carotenoid synthases in phytoplankton are also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Promotion Effect of Asian Dust on Phytoplankton Growth and Potential Dissolved Organic Phosphorus Utilization in the South China Sea

    Science.gov (United States)

    Chu, Qiang; Liu, Ying; Shi, Jie; Zhang, Chao; Gong, Xiang; Yao, Xiaohong; Guo, Xinyu; Gao, Huiwang

    2018-03-01

    Dust deposition is an important nutrient source to the South China Sea (SCS), but few in situ experiments were conducted on phytoplankton response to the deposition. We conducted onboard incubation experiments at three stations near Luzon Strait in the SCS, with addition of multiple dissolved inorganic nutrients, Asian dust, and rainwater. From our results, nitrogen and phosphorus were both urgently needed for phytoplankton growth in the SCS, indicated by the evident Chl a response to the addition of nitrogen and phosphorus together. Almost no evident response was observed by adding phosphorus or iron alone to incubation waters, although a delayed response of Chl a in mass concentration was observed by adding nitrogen alone. The latter implied a possible utilization of dissolved organic phosphorus because of insufficient dissolved inorganic phosphorus in incubation waters. Under such nutrient condition, Asian dust showed an apparent promotion effect on phytoplankton growth by providing sufficient amounts of nitrogen but low phosphorus. Meanwhile, it was found that large sized (> 5 μm) phytoplankton community showed different responses to dust addition at different stations. At stations A3 and A6, Chaetoceros spp. became the dominant species during the bloom period, while at station WG2, Nitzschia spp. became dominant. In combination with different initial nutrients and Chl a levels at the three stations, the different phytoplankton community evolution implied the response difference to external inputs between oligotrophic (stations A3 and A6) and ultraoligotrophic (station WG2) conditions in the SCS.

  17. 76 FR 2409 - Proclaiming Certain Lands, Lot 32 Acquisition, as an Addition to the Bay Mills Indian Reservation...

    Science.gov (United States)

    2011-01-13

    ..., as an Addition to the Bay Mills Indian Reservation for the Bay Mills Indian Community of Michigan..., more or less, to be added to the Bay Mills Indian Reservation for the Bay Mills Indian Community of... Mills Indian Reservation and part of the Bay Mills Indian Community of Michigan for the exclusive use of...

  18. Deep nirS amplicon sequencing of San Francisco Bay sediments enables prediction of geography and environmental conditions from denitrifying community composition.

    Science.gov (United States)

    Lee, Jessica A; Francis, Christopher A

    2017-12-01

    Denitrification is a dominant nitrogen loss process in the sediments of San Francisco Bay. In this study, we sought to understand the ecology of denitrifying bacteria by using next-generation sequencing (NGS) to survey the diversity of a denitrification functional gene, nirS (encoding cytchrome-cd 1 nitrite reductase), along the salinity gradient of San Francisco Bay over the course of a year. We compared our dataset to a library of nirS sequences obtained previously from the same samples by standard PCR cloning and Sanger sequencing, and showed that both methods similarly demonstrated geography, salinity and, to a lesser extent, nitrogen, to be strong determinants of community composition. Furthermore, the depth afforded by NGS enabled novel techniques for measuring the association between environment and community composition. We used Random Forests modelling to demonstrate that the site and salinity of a sample could be predicted from its nirS sequences, and to identify indicator taxa associated with those environmental characteristics. This work contributes significantly to our understanding of the distribution and dynamics of denitrifying communities in San Francisco Bay, and provides valuable tools for the further study of this key N-cycling guild in all estuarine systems. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. ZOOPLANKTON COMMUNITY STRUCTURE OF THE SEA SURFACE MICROLAYER NEAR NUCLEAR POWER PLANTS AND MARINE FISH CULTURE ZONES IN DAYA BAY

    Institute of Scientific and Technical Information of China (English)

    杨宇峰; 王肇鼎; 潘明祥; 焦念志

    2002-01-01

    The authors' surveys in May-June 1999 (two cruises) at six sampling stations near nuclear power plants (NPP) and marine fish culture zones in Daya Bay, Guangdong, revealed species composition, densities and body-size of thesea surface microlayer (SM) zooplankton (>35 μm). Results showed that protozoans and copepod nauplii were the predominant components, accounting for 65.40% to95.56% of total zooplankton in abundance. The size-frequency distributions showed that the frequency of micro-zooplankton (0.02-0.2 mm) reached 0.8235. The SM zooplankton community structure revealed in the present study was quite different from that revealed by investigations in the 1980s in Daya Bay. Difference of sampling method has important influence on the obtained zooplankton community structure. SM zooplankton consisted of micro- and mesozooplankton (0.2-2.0 mm), with micro-zooplankton being predominant. Some possible cause-effect relations between the zooplankton community structure and mariculture, nuclear power plants cooling systems and sampling method are discussed.``

  20. Macrobenthic community response to copper in Shelter Island Yacht Basin, San Diego Bay, California.

    Science.gov (United States)

    Neira, Carlos; Mendoza, Guillermo; Levin, Lisa A; Zirino, Alberto; Delgadillo-Hinojosa, Francisco; Porrachia, Magali; Deheyn, Dimitri D

    2011-04-01

    We examined Cu contamination effects on macrobenthic communities and Cu concentration in invertebrates within Shelter Island Yacht Basin, San Diego Bay, California. Results indicate that at some sites, Cu in sediment has exceeded a threshold for "self defense" mechanisms and highlight the potential negative impacts on benthic faunal communities where Cu accumulates and persists in sediments. At sites with elevated Cu levels in sediment, macrobenthic communities were not only less diverse but also their total biomass and body size (individual biomass) were reduced compared to sites with lower Cu. Cu concentration in tissue varied between species and within the same species, reflecting differing abilities to "regulate" their body load. The spatial complexity of Cu effects in a small marina such as SIYB emphasizes that sediment-quality criteria based solely on laboratory experiments should be used with caution, as they do not necessarily reflect the condition at the community and ecosystem levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Differential recolonization of Atlantic intertidal habitats after disturbance reveals potential bottom-up community regulation.

    Science.gov (United States)

    Petzold, Willy; Scrosati, Ricardo A

    2014-01-01

    In the spring of 2014, abundant sea ice that drifted out of the Gulf of St. Lawrence caused extensive disturbance in rocky intertidal habitats on the northern Atlantic coast of mainland Nova Scotia, Canada. To monitor recovery of intertidal communities, we surveyed two wave-exposed locations in the early summer of 2014. Barnacle recruitment and the abundance of predatory dogwhelks were low at one location (Tor Bay Provincial Park) but more than 20 times higher at the other location (Whitehead). Satellite data indicated that the abundance of coastal phytoplankton (the main food source for barnacle larvae) was consistently higher at Whitehead just before the barnacle recruitment season, when barnacle larvae were in the water column. These observations suggest bottom-up forcing of intertidal communities. The underlying mechanisms and their intensity along the NW Atlantic coast could be investigated through studies done at local and regional scales.

  2. Highly Heterogeneous Soil Bacterial Communities around Terra Nova Bay of Northern Victoria Land, Antarctica

    Science.gov (United States)

    Lim, Hyoun Soo; Hong, Soon Gyu; Kim, Ji Hee; Lee, Joohan; Choi, Taejin; Ahn, Tae Seok; Kim, Ok-Sun

    2015-01-01

    Given the diminished role of biotic interactions in soils of continental Antarctica, abiotic factors are believed to play a dominant role in structuring of microbial communities. However, many ice-free regions remain unexplored, and it is unclear which environmental gradients are primarily responsible for the variations among bacterial communities. In this study, we investigated the soil bacterial community around Terra Nova Bay of Victoria Land by pyrosequencing and determined which environmental variables govern the bacterial community structure at the local scale. Six bacterial phyla, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Cyanobacteria, and Bacteroidetes, were dominant, but their relative abundance varied greatly across locations. Bacterial community structures were affected little by spatial distance, but structured more strongly by site, which was in accordance with the soil physicochemical compositions. At both the phylum and species levels, bacterial community structure was explained primarily by pH and water content, while certain earth elements and trace metals also played important roles in shaping community variation. The higher heterogeneity of the bacterial community structure found at this site indicates how soil bacterial communities have adapted to different compositions of edaphic variables under extreme environmental conditions. Taken together, these findings greatly advance our understanding of the adaption of soil bacterial populations to this harsh environment. PMID:25799273

  3. Micro-phytoplankton photosynthesis, primary production and potential export production in the Atlantic Ocean

    Science.gov (United States)

    Tilstone, Gavin H.; Lange, Priscila K.; Misra, Ankita; Brewin, Robert J. W.; Cain, Terry

    2017-11-01

    Micro-phytoplankton is the >20 μm component of the phytoplankton community and plays a major role in the global ocean carbon pump, through the sequestering of anthropogenic CO2 and export of organic carbon to the deep ocean. To evaluate the global impact of the marine carbon cycle, quantification of micro-phytoplankton primary production is paramount. In this paper we use both in situ data and a satellite model to estimate the contribution of micro-phytoplankton to total primary production (PP) in the Atlantic Ocean. From 1995 to 2013, 940 measurements of primary production were made at 258 sites on 23 Atlantic Meridional Transect Cruises from the United Kingdom to the South African or Patagonian Shelf. Micro-phytoplankton primary production was highest in the South Subtropical Convergence (SSTC ∼ 409 ± 720 mg C m-2 d-1), where it contributed between 38 % of the total PP, and was lowest in the North Atlantic Gyre province (NATL ∼ 37 ± 27 mg C m-2 d-1), where it represented 18 % of the total PP. Size-fractionated photosynthesis-irradiance (PE) parameters measured on AMT22 and 23 showed that micro-phytoplankton had the highest maximum photosynthetic rate (PmB) (∼5 mg C (mg Chl a)-1 h-1) followed by nano- (∼4 mg C (mg Chl a)-1 h-1) and pico- (∼2 mg C (mg Chl a)-1 h-1). The highest PmB was recorded in the NATL and lowest in the North Atlantic Drift Region (NADR) and South Atlantic Gyre (SATL). The PE parameters were used to parameterise a remote sensing model of size-fractionated PP, which explained 84 % of the micro-phytoplankton in situ PP variability with a regression slope close to 1. The model was applied to the SeaWiFS time series from 1998-2010, which illustrated that micro-phytoplankton PP remained constant in the NADR, NATL, Canary Current Coastal upwelling (CNRY), Eastern Tropical Atlantic (ETRA), Western Tropical Atlantic (WTRA) and SATL, but showed a gradual increase in the Benguela Upwelling zone (BENG) and South Subtropical Convergence (SSTC

  4. State of Climate 2011 - Global Ocean Phytoplankton

    Science.gov (United States)

    Siegel, D. A.; Antoine, D.; Behrenfeld, M. J.; d'Andon, O. H. Fanton; Fields, E.; Franz, B. A.; Goryl, P.; Maritorena, S.; McClain, C. R.; Wang, M.; hide

    2012-01-01

    Phytoplankton photosynthesis in the sun lit upper layer of the global ocean is the overwhelmingly dominant source of organic matter that fuels marine ecosystems. Phytoplankton contribute roughly half of the global (land and ocean) net primary production (NPP; gross photosynthesis minus plant respiration) and phytoplankton carbon fixation is the primary conduit through which atmospheric CO2 concentrations interact with the ocean s carbon cycle. Phytoplankton productivity depends on the availability of sunlight, macronutrients (e.g., nitrogen, phosphorous), and micronutrients (e.g., iron), and thus is sensitive to climate-driven changes in the delivery of these resources to the euphotic zone

  5. Driving forces of the diel distribution of phytoplankton functional groups in a shallow tropical lake (Lake Monte Alegre, Southeast Brazil

    Directory of Open Access Journals (Sweden)

    LM. Rangel

    Full Text Available Phytoplankton vertical and diel dynamics in a small shallow lake (Lake Monte Alegre, Ribeirão Preto, state of São Paulo were investigated in two climatological periods: July 2001 (cool-dry season and March 2002 (warm-rainy season. Monte Alegre is a eutrophic reservoir, with a warm polymictic discontinuous circulation pattern. The lake was thermally stratified in both periods, although dissolved oxygen varied less in the cool-dry period. Phytoplankton biomass was higher in the warm-rainy season and the vertical distribution was stratified in both seasons. Flagellate groups (Lm, Y, W1 and W2 and functional groups typical of shallow eutrophic environments (J, X1 and Sn were important throughout the study period. The lake's thermal pattern strongly influenced the vertical distribution of the phytoplankton community in both periods. Biomass, functional groups and size classes of phytoplankton also were determined by the presence of more efficient herbivores in the lake, especially during the cool-dry period when phytoplankton biomass decreased.

  6. Optical assessment of phytoplankton nutrient depletion

    DEFF Research Database (Denmark)

    Heath, M.R.; Richardson, Katherine; Kiørboe, Thomas

    1990-01-01

    The ratio of light absorption at 480 and 665 nm by 90% acetone extracts of marine phytoplankton pigments has been examined as a potential indicator of phytoplankton nutritional status in both laboratory and field studies. The laboratory studies demonstrated a clear relationship between nutritiona......-replete and nutrient-depleted cells. The field data suggest that the absorption ratio may be a useful indicator of nutritional status of natural phytoplankton populations, and can be used to augment the interpretation of other data....

  7. 76 FR 9593 - Proclaiming Certain Lands, Reykers Acquisition, as an Addition to the Bay Mills Indian...

    Science.gov (United States)

    2011-02-18

    ..., as an Addition to the Bay Mills Indian Reservation for the Bay Mills Indian Community of Michigan..., more or less, to be added to the Bay Mills Indian Reservation for the Bay Mills Indian Community of... the land described below. The land was proclaimed to be an addition to the Bay Mills Indian...

  8. Teaching Sustainability and Resource Management Using NOAA's Voices Of The Bay Community Fisheries Education Curriculum

    Science.gov (United States)

    Hams, J. E.; Uttal, L.; Hunter-Thomson, K.; Nachbar, S.

    2010-12-01

    This presentation highlights the implementation of the NOAA VOICES OF THE BAY education curriculum at a two-year college. The VOICES OF THE BAY curriculum provides students with an understanding of the marine ecology, economy, and culture of fisheries through three interdisciplinary modules that use hands-on activities while meeting a wide range of science, math, social science, and communications standards. In the BALANCE IN THE BAY module, students use critical-thinking skills and apply principles of ecosystem-based management to analyze data, debate and discuss their findings, and make decisions that recognize the complex dynamics associated with maintaining a balance in fisheries. Through role-playing, teamwork, and a little fate, the FROM OCEAN TO TABLE module provides students with an opportunity to get an insider’s view of what it takes to be an active stakeholder in a commercial fishery. In the CAPTURING THE VOICES OF THE BAY module, students research, plan, and conduct personal interviews with citizens of the local fishing community and explore the multiple dimensions of fisheries and how they inter-connect through the lives of those who live and work in the region. The VOICES OF THE BAY modules were introduced into the curriculum at Los Angeles Valley College during the Fall 2009 semester and are currently being used in the introductory Oceanography lecture, introductory Oceanography laboratory, and Environmental Science laboratory courses. Examples of curriculum materials being used (power point presentations, module worksheets and simulated fishing activities) will be presented. In addition, samples of completed student worksheets for the three interdisciplinary modules are provided. Students commented that their overall awareness and knowledge of the issues involved in sustainable fishing and managing fishery resources increased following completion of the VOICES OF THE BAY education curriculum. Students enrolled in the laboratory sections commented

  9. Large-scale shifts in phytoplankton groups in the Equatorial Pacific during ENSO cycles

    Directory of Open Access Journals (Sweden)

    I. Masotti

    2011-03-01

    Full Text Available The El Niño Southern Oscillation (ENSO drives important changes in the marine productivity of the Equatorial Pacific, in particular during major El Niño/La Niña transitions. Changes in environmental conditions associated with these climatic events also likely impact phytoplankton composition. In this work, the distribution of four major phytoplankton groups (nanoeucaryotes, Prochlorococcus, Synechococcus, and diatoms was examined between 1996 and 2007 by applying the PHYSAT algorithm to the ocean color data archive from the Ocean Color and Temperature Sensor (OCTS and Sea-viewing Wide Field-of-view Sensor (SeaWiFS. Coincident with the decrease in chlorophyll concentrations, a large-scale shift in the phytoplankton composition of the Equatorial Pacific, that was characterized by a decrease in Synechococcus and an increase in nanoeucaryote dominance, was observed during the early stages of both the strong El Niño of 1997 and the moderate El Niño of 2006. A significant increase in diatoms dominance was observed in the Equatorial Pacific during the 1998 La Niña and was associated with elevated marine productivity. An analysis of the environmental variables using a coupled physical-biogeochemical model (NEMO-PISCES suggests that the Synechococcus dominance decrease during the two El Niño events was associated with an abrupt decline in nutrient availability (−0.9 to −2.5 μM NO3 month−1. Alternatively, increased nutrient availability (3 μM NO3 month−1 during the 1998 La Niña resulted in Equatorial Pacific dominance diatom increase. Despite these phytoplankton community shifts, the mean composition is restored after a few months, which suggests resilience in community structure.

  10. Evolution and Adaptation of Phytoplankton Photosynthetic Pathways to perturbations of the geological carbon system

    Science.gov (United States)

    Rickaby, R. E.; Young, J. N.; Hermoso, M.; Heureux, A.; McCLelland, H.; Lee, R.; Eason Hubbard, M.

    2012-12-01

    The ocean and atmosphere carbon system has varied greatly over geological history both in response to initial evolutionary innovation, and as a driver of adaptive change. Here we establish that positive selection in Rubisco, the most abundant enzyme on the Earth responsible for all photosynthetic carbon fixation, occurred early in Earth's history, and basal to the radiation of the modern marine algal groups. Our signals of positive selection appear to be triggered by changing intracellular concentrations of carbon dioxide (CO2) due to the emergence of carbon concentrating mechanisms between 1.56 and 0.41 Ba in response to declining atmospheric CO2 . We contend that, at least in terms of carbon, phytoplankton generally were well poised to manage subsequent abrupt carbon cycle perturbations. The physiological pathways for optimising carbon acquisition across a wide range of ambient carbon dioxide concentrations had already been established and were genetically widespread across open ocean phytoplankton groups. We will further investigate some case studies from the Mesozoic and Cenozoic abrupt carbon cycle excursions using isotopic tools to probe the community photosynthetic response and demonstrate the flexibility of phytoplankton photosynthesis in the face of major perturbations. In particular, an unprecedented resolution record across the Toarcian (Early Jurassic) carbon isotope excursion in the Paris Basin reveals a selection and evolution towards a community reliant solely on diffusive carbon dioxide supply for photosynthesis at the height of the excursion at 1500-2500 ppm CO2. The continued flourishing of the phytoplankton biological pump throughout this excursion was able to remove the excess carbon injected into the water column in less than 45 kyrs.

  11. Phytoplankton Monitoring Network - Phytoplankton Analysis with Associated Collection Information

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A qualitative collection of data that includes salinity, temperature, phytoplankton counts and abundance ratios obtained from surface tows in the estuarine and...

  12. Title: Freshwater phytoplankton responses to global warming.

    Science.gov (United States)

    Wagner, Heiko; Fanesi, Andrea; Wilhelm, Christian

    2016-09-20

    Global warming alters species composition and function of freshwater ecosystems. However, the impact of temperature on primary productivity is not sufficiently understood and water quality models need to be improved in order to assess the quantitative and qualitative changes of aquatic communities. On the basis of experimental data, we demonstrate that the commonly used photosynthetic and water chemistry parameters alone are not sufficient for modeling phytoplankton growth under changing temperature regimes. We present some new aspects of the acclimation process with respect to temperature and how contrasting responses may be explained by a more complete physiological knowledge of the energy flow from photons to new biomass. We further suggest including additional bio-markers/traits for algal growth such as carbon allocation patterns to increase the explanatory power of such models. Although carbon allocation patterns are promising and functional cellular traits for growth prediction under different nutrient and light conditions, their predictive power still waits to be tested with respect to temperature. A great challenge for the near future will be the prediction of primary production efficiencies under the global change scenario using a uniform model for phytoplankton assemblages. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Uncertainty Analysis of Phytoplankton Dynamics in Coastal Waters

    NARCIS (Netherlands)

    Niu, L.

    2015-01-01

    There is an increasing concern about the interactions between phytoplankton and coastal ecosystems, especially on the negative effects from coastal eutrophication and phytoplankton blooms. As the key indicator of the coastal ecosystem, phytoplankton plays an important role in the whole impact-effect

  14. Indicators: Phytoplankton

    Science.gov (United States)

    Phytoplankton are free-floating, microscopic algae that inhabit the sunlit, upper layer of most freshwater and marine environments. They are usually responsible for the color and clarity of lakes, wetlands, rivers, streams and estuaries.

  15. Bioaccumulation of heavy metals both in wild and mariculture food chains in Daya Bay, South China

    Science.gov (United States)

    Qiu, Yao-Wen

    2015-09-01

    Bioaccumulation and trophic transfer of heavy metals both in the natural marine ecosystem (seawater, sediment, coral reef, phytoplankton, macrophyte, shrimp, crab, shellfish, planktivorous and carnivorous fish) and in the mariculture ecosystem (compound feed, trash fish, farmed pompano and snapper) were studied at Daya Bay, a typical subtropical bay in Southern China. The levels of Cu, Zn, Pb and Cd in sediment were 11.7, 10.2, 53.8 and 2.8 times than those in coral reef, respectively. Pb and Zn levels were markedly higher in phytoplankton than in macrophyte, probably caused by the larger specific surface area in phytoplankton. The highest levels of Zn (98.1), Pb (1.87) and Cd (5.11 μg g-1 dw) in wild organisms were all found in clam (Veremolpa scabra), indicating that these metals were apt to bioaccumulate in shellfish. The average concentrations of Cu, Zn, Pb and Cd in wild fish were 3.7, 2.1, 0.4 and 22.2 times than those in farmed fish, confirming the "growth dilution" hypothesis in farmed fish. Heavy metal bioconcentration factors (BCFs) in algae, bioaccumulation factors (BAFs) in wild species and transfer factors (TFs) in organism were calculated and discussed. The results suggested that biologically essential Cu and Zn were easier to accumulate in fish than non-essential Cd. Concentrations of Cu, Zn and Cd were several times higher in wild fish than in farmed fish whereas the opposite was observed for Pb. This metal also showed the highest transfer factor from food, which means that special attention must be given to fish feed production in relation to metal contamination.

  16. Impacts of the construction of the Port of Suape on phytoplankton in the Ipojuca River estuary (Pernambuco-Brazil

    Directory of Open Access Journals (Sweden)

    Koening Maria Luise

    2003-01-01

    Full Text Available In order to address the impact on phytoplankton, sampling was conducted monthly at 4 fixed stations, from April/86 to March/87 at diurnal low and high tide using a plankton net (65 mum mesh size and a 1 L Van Dorn bottle. Among the 133 taxa identified, marine littoral euryhaline species were most common, outranking Gyrosigma balticum (Ehrenberg Rabenhorst, Nitzschia sigma (Kützing Wm. Smith, Licmophora abbreviata Agardh, Climacosphenia moniligera Ehrenberg, Surirella febigerii Lewis, Terpsinoe musica Ehrenberg and Cylindrotheca closterium (Ehrenberg Reiman and Lewis. The port construction caused significant changes to the phytoplankton community with a strong influence of marine species (mainly dinoflagellate because of the opening of the reef near the river mouth in 1983. The shallow depth and hydrodynamic brought many littoral species to the water columm. The community was composed by marine euryhaline and limnetic organisms, influenced by the salinity, rain and tide. Species diversity was high (> 3 bits.cel-1 owing to the high environmental heterogeneity (marine, freshwater and benthic interactions. After the port implantation, a strong decrease occurred in phytoplankton density owing to high loads of suspended matter. Lowest values (121,00 cells.l-1 were registered during rainy season. During dry season, when light intensity was higher, phytoplankton presented highest density ( 1,789,000 cells.l-1.

  17. A prospective study of marine phytoplankton and reported ...

    Science.gov (United States)

    BACKGROUND: Blooms of marine phytoplankton may adversely affect human health. The potential public health impact of low-level exposures is not well established, and few prospective cohort studies of recreational exposures to marine phytoplankton have been conducted.OBJECTIVE: We evaluated the association between phytoplankton cell counts and subsequent illness among recreational beachgoers.METHODS:We recruited beachgoers at Boquer6n Beach, Puerto Rico, during the summer of 2009. We conducted interviews at three time points to assess baseline health, water activities, and subsequent illness. Daily water samples were quantitatively assayed for phytoplankton cell count. Logistic regression models, adjusted for age and sex, were used to assess the association between exposure to three categories of phytoplankton concentration and subsequent illness.RESULTS: During 26 study days, 15,726 individuals successfully completed all three interviews. Daily total phytoplankton cell counts ranged from 346 to 2,012 cells/ml (median, 712 cells/ml). The category with the highest (≥75th percentile) total phytoplankton cell count was associated with eye irritation [adjusted odds ratio (OR) = 1.30; 95% confidence interval (Cl): 1.01, 1.66], rash (OR = 1.27; 95% Cl: 1.02, 1.57), and earache (OR = 1.25; 95% Cl: 0.88, 1.77). In phytoplankton group-specific analyses, the category with the highest Cyanobacteria counts was associated with respiratory illness (OR = 1.37; 95% Cl: 1.12, 1

  18. Multivariate Analysis of Water Quality and Benthic Macrophyte Communities in Florida Bay, USA Reveals Hurricane Effects and Susceptibility to Seagrass Die-Off

    Directory of Open Access Journals (Sweden)

    Amanda M. Cole

    2018-05-01

    Full Text Available Seagrass communities, dominated by Thalassia testudinum, form the principal benthic ecosystem within Florida Bay, Florida USA. The bay has had several large-scale seagrass die-offs in recent decades associated with drought and hypersaline conditions. In addition, three category-5 hurricanes passed in close proximity to the bay during the fall of 2005. This study investigated temporal and spatial trends in macrophyte abundance and water quality from 2006 to 2013 at 15 permanent transect sites, which were co-located with long-term water quality stations. Relationships, by year and by transect location (basin, between antecedent water quality (mean, minimum and maximum for a 6-month period and benthic macrophyte communities were examined using multivariate analyses. Total phosphorus, salinity, pH, turbidity, dissolved inorganic nitrogen (DIN, DIN to phosphate ratio (DIN:PO4-3, chlorophyll a, and dissolved oxygen correlated with temporal and spatial variations in the macrophyte communities. Temporal analysis (MDS and LINKTREE indicated that the fall 2005 hurricanes affected both water quality and macrophyte communities for approximately a 2-year period. Spatial analysis revealed that five basins, which subsequently exhibited a major seagrass die-off during summer 2015, significantly differed from the other ten basins in macrophyte community structure and water quality more than 2 years before this die-off event. High total phosphorus, high pH, low DIN, and low DIN:PO4-3, in combination with deep sediments and high seagrass cover were characteristic of sites that subsequently exhibited severe die-off. Our results indicate basins with more mixed seagrass communities and higher macroalgae abundance are less susceptible to die-off, which is consistent with the management goals of promoting more heterogeneous benthic macrophyte communities.

  19. Primary production in a tropical large lake: The role of phytoplankton composition

    Energy Technology Data Exchange (ETDEWEB)

    Darchambeau, F., E-mail: francois.darchambeau@ulg.ac.be [Chemical Oceanography Unit, University of Liège, Liège (Belgium); Sarmento, H., E-mail: hugo.sarmento@gmail.com [Department of Hydrobiology, Federal University of São Carlos, 13565-905 São Carlos, São Paulo (Brazil); Descy, J.-P., E-mail: jean-pierre.descy@unamur.be [Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur (Belgium)

    2014-03-01

    Phytoplankton biomass and primary production in tropical large lakes vary at different time scales, from seasons to centuries. We provide a dataset made of 7 consecutive years of phytoplankton biomass and production in Lake Kivu (Eastern Africa). From 2002 to 2008, bi-weekly samplings were performed in a pelagic site in order to quantify phytoplankton composition and biomass, using marker pigments determined by HPLC. Primary production rates were estimated by 96 in situ {sup 14}C incubations. A principal component analysis showed that the main environmental gradient was linked to a seasonal variation of the phytoplankton assemblage, with a clear separation between diatoms during the dry season and cyanobacteria during the rainy season. A rather wide range of the maximum specific photosynthetic rate (P{sub Bm}) was found, ranging between 1.15 and 7.21 g carbon g{sup −1} chlorophyll a h{sup −1}, and was best predicted by a regression model using phytoplankton composition as an explanatory variable. The irradiance at the onset of light saturation (I{sub k}) ranged between 91 and 752 μE m{sup −2} s{sup −1} and was linearly correlated with the mean irradiance in the mixed layer. The inter-annual variability of phytoplankton biomass and production was high, ranging from 53 to 100 mg chlorophyll a m{sup −2} (annual mean) and from 143 to 278 g carbon m{sup −2} y{sup −1}, respectively. The degree of seasonal mixing determined annual production, demonstrating the sensitivity of tropical lakes to climate variability. A review of primary production of other African great lakes allows situating Lake Kivu productivity in the same range as that of lakes Tanganyika and Malawi, even if mean phytoplankton biomass was higher in Lake Kivu. - Highlights: • We provide a 7-year dataset of primary production in a tropical great lake. • Specific photosynthetic rate was determined by community composition. • Annual primary production varied between 143 and 278 mg C m

  20. Net heterotrophy in Faroe Islands clear-water lakes: causes and consequences for bacterioplankton and phytoplankton

    DEFF Research Database (Denmark)

    Pålsson, C.; Kritzberg, E. S.; Christoffersen, K.

    2005-01-01

    conditions and hence low primary production in combination with an input of allochthonous C with a relatively high availability. 4. Mixotrophic phytoplankton (Cryptomonas spp., Dinobryon spp. and flagellates cf. Ochromonas spp.) constituted a large percentage of the plankton community (17-83%), possibly...

  1. Phytoplankton biomass and pigment responses to Fe amendments in the Pine Island and Amundsen polynyas

    NARCIS (Netherlands)

    Mills, M.M.; Alderkamp, A.C.; Thuróczy, C.E.; van Dijken, G.L.; Laan, P.; de Baar, H.J.W.; Arrigo, K.R.

    2012-01-01

    Nutrient addition experiments were performed during the austral summer in the Amundsen Sea (Southern Ocean) to investigate the availability of organically bound iron (Fe) to the phytoplankton communities, as well as assess their response to Fe amendment. Changes in autotrophic biomass, pigment

  2. Environmental controls on spatial variability of summer phytoplankton structure and biomass in the Bering Sea

    Science.gov (United States)

    Wang, Yu; Xiang, Peng; Kang, Jian-hua; Ye, You-yin; Lin, Geng-ming; Yang, Qing-liang; Lin, Mao

    2018-01-01

    The subarctic Bering Sea, one of the most productive regions of the world's oceans, is undergoing significant ecological shifts possibly linked to global climate change. During the Fourth Chinese National Arctic Research Expedition (CHINARE) from July 10 to 20 of 2010, phytoplankton community structure, species diversity, spatial distribution, community types, abundance and biomass variations were investigated in a large scale study extending from the Bering Strait into the open waters down to the subarctic Pacific. These patterns were linked to potential environmental drivers, including effects of water masses and seasonal sea ice retreat. Results showed a marked spatial zonation in the taxonomic composition, abundance and biomass. A total of 149 phytoplankton taxa distributed among 57 genera of 5 phyla were identified, characterized into three ecological groups, namely Arctic, Boreal-temperate and cosmopolitan species. Phytoplankton included 101 species of diatoms, 44 species of dinoflagellates, 2 species of Chrysophyta, 1 species of each Chlorophyta and Euglenophyta. Both abundance and biomass were highest in the Bering Shelf, moderate on the Bering Slope, and lowest on the Bering Basin. Chlorophyll a was found highest in the subsurface chlorophyll maxima (SCM) close to the thermocline and halocline layers but its depth varied regionally. Multi-dimensional scaling (MDS) revealed two types of assemblages, one a deep-sea assemblage associated with the Bering Basin and a neritic assemblage found in the Bering Slope and Shelf. Average abundance (10.22 × 103 cells/L), biomass (0.43 mg/m3), species diversity (2.60) and species richness (1.66) were established for deep-sea assemblage with the dominant species ranked as Neodenticula seminae, Chaetoceros atlanticus, Pseudonitzschia delicatissima, and Thalassionema nitzschioides. Neritic assemblage had higher values with 12.73 × 103 cells/L, 2.41 mg/m3, and 2.55 species richness but lower (2.41) species diversity, and

  3. Phytoplankton assemblage of a small, shallow, tropical African reservoir.

    Science.gov (United States)

    Mustapha, Moshood K

    2009-12-01

    I measured physico-chemical properties and phytoplankton in the small, shallow tropical reservoir of Oyun (Offa, Nigeria) between January 2002 and December 2003. I identified 25 phytoplankton genera in three sampling stations. Bacillariophyceae dominated (75.3%), followed by Chlorophyceae (12.2%), Cyanobacteria (11.1%) and Desmidiaceae (0.73%). The high amount of nutrients (e.g. nitrate, phosphate, sulphate and silica) explain phytoplankton heterogeneity (p<0.05). Phytoplankton was abundant during the rainy season, but the transition period had the richest assemblage and abundance. Fluctuations in phytoplankton density were a result of seasonal changes in concentration of nutrients, grazing pressure and reservoir hydrology. The reservoir is eutrophic with excellent water quality and a diverse phytoplankton assemblage: fish production would be high. These conditions resulted from strategies such as watershed best management practices (BMPs) to control eutrophication and sedimentation, and priorities for water usage established through legislation. Additional measures are recommended to prevent oligotrophy, hypereutrophy, excessive phytoplankton bloom, toxic cyanobacteria, and run-off of organic waste and salts.

  4. Phytoplankton Assessment in Danube Delta Biosphere Reserve

    Directory of Open Access Journals (Sweden)

    SPIRIDON Cosmin

    2016-12-01

    Full Text Available The term ”plankton” refers to those microscopic aquatic forms having little or no resistance to currents and living free-floating and suspended, in open or pelagic waters. Phytoplankton development has different consequences depending on biomass quality and quantity, the overgrowth result being eutrophication process. The eutrophication intensity can cause both a lower water transparency, by excessive algal growth, to fish death in the area. In this study, it was presented the ecological status and phytoplankton biomass dynamic, in the Danube branches from upstream to downstream. The measurements have been made in 2013, in March, June, September and November, using spectrofluorometer for algal biomass determination and a microscope for qualitative analyses of phytoplankton species. Shannon-Wiener index was calculated to compare phytoplankton species diversity. Also, the biodegradable organic matter loading the ecosystem was determined by computing the Saprobic index. The values obtained do not exceed the eutrophication limits according to the Water Framework Directive, transposed into Romanian legislation by Order 161/2006, with normal concentrations for rheophile ecosystems, as Danube's branches. In this area, water currents and high water turbidity inhibit phytoplankton growth, in contrast to lacustrine ecosystems, where light penetration to depths favors the development of different phytoplankton groups.

  5. 76 FR 2409 - Proclaiming Certain Lands, Golf Course Acquisition, as an Addition to the Bay Mills Indian...

    Science.gov (United States)

    2011-01-13

    ... Acquisition, as an Addition to the Bay Mills Indian Reservation for the Bay Mills Indian Community of Michigan..., more or less, to be added to the Bay Mills Indian Reservation for the Bay Mills Indian Community of... the land described below. The land was proclaimed to be an addition to the Bay Mills Indian...

  6. 76 FR 52011 - Proclaiming Certain Lands, Forest Service Lands, as an Addition to the Bay Mills Indian...

    Science.gov (United States)

    2011-08-19

    ... Lands, as an Addition to the Bay Mills Indian Reservation for the Bay Mills Indian Community of Michigan... acres, more or less, to be added to the Bay Mills Indian Reservation for the Bay Mills Indian Community... the land described below. The land was proclaimed to be an addition to the Bay Mills Indian...

  7. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability.

    Science.gov (United States)

    Marchetti, Adrian; Schruth, David M; Durkin, Colleen A; Parker, Micaela S; Kodner, Robin B; Berthiaume, Chris T; Morales, Rhonda; Allen, Andrew E; Armbrust, E Virginia

    2012-02-07

    In vast expanses of the oceans, growth of large phytoplankton such as diatoms is limited by iron availability. Diatoms respond almost immediately to the delivery of iron and rapidly compose the majority of phytoplankton biomass. The molecular bases underlying the subsistence of diatoms in iron-poor waters and the plankton community dynamics that follow iron resupply remain largely unknown. Here we use comparative metatranscriptomics to identify changes in gene expression associated with iron-stimulated growth of diatoms and other eukaryotic plankton. A microcosm iron-enrichment experiment using mixed-layer waters from the northeastern Pacific Ocean resulted in increased proportions of diatom transcripts and reduced proportions of transcripts from most other taxa within 98 h after iron addition. Hundreds of diatom genes were differentially expressed in the iron-enriched community compared with the iron-limited community; transcripts of diatom genes required for synthesis of photosynthesis and chlorophyll components, nitrate assimilation and the urea cycle, and synthesis of carbohydrate storage compounds were significantly overrepresented. Transcripts of genes encoding rhodopsins in eukaryotic phytoplankton were significantly underrepresented following iron enrichment, suggesting rhodopsins help cells cope with low-iron conditions. Oceanic diatoms appear to display a distinctive transcriptional response to iron enrichment that allows chemical reduction of available nitrogen and carbon sources along with a continued dependence on iron-free photosynthetic proteins rather than substituting for iron-containing functional equivalents present within their gene repertoire. This ability of diatoms to divert their newly acquired iron toward nitrate assimilation may underlie why diatoms consistently dominate iron enrichments in high-nitrate, low-chlorophyll regions.

  8. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton

    Science.gov (United States)

    Chambouvet, Aurélie; Milner, David S.; Attah, Victoria; Terrado, Ramón; Lovejoy, Connie; Moreau, Hervé; Derelle, Évelyne; Richards, Thomas A.

    2017-01-01

    Phytoplankton community structure is shaped by both bottom–up factors, such as nutrient availability, and top–down processes, such as predation. Here we show that marine viruses can blur these distinctions, being able to amend how host cells acquire nutrients from their environment while also predating and lysing their algal hosts. Viral genomes often encode genes derived from their host. These genes may allow the virus to manipulate host metabolism to improve viral fitness. We identify in the genome of a phytoplankton virus, which infects the small green alga Ostreococcus tauri, a host-derived ammonium transporter. This gene is transcribed during infection and when expressed in yeast mutants the viral protein is located to the plasma membrane and rescues growth when cultured with ammonium as the sole nitrogen source. We also show that viral infection alters the nature of nitrogen compound uptake of host cells, by both increasing substrate affinity and allowing the host to access diverse nitrogen sources. This is important because the availability of nitrogen often limits phytoplankton growth. Collectively, these data show that a virus can acquire genes encoding nutrient transporters from a host genome and that expression of the viral gene can alter the nutrient uptake behavior of host cells. These results have implications for understanding how viruses manipulate the physiology and ecology of phytoplankton, influence marine nutrient cycles, and act as vectors for horizontal gene transfer. PMID:28827361

  9. SCOR Working Group 137: "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems": An introduction to the special issue of Estuarine, Coastal and Shelf Science

    Science.gov (United States)

    Paerl, Hans W.; Yin, Kedong; O'Brien, Todd D.

    2015-09-01

    Phytoplankton form the base of most aquatic food webs and play a central role in assimilation and processing of carbon and nutrients, including nitrogen, phosphorus, silicon, iron and a wide range of trace elements (Reynolds, 2006). In the marine environment, estuarine and coastal ecosystems (jointly termed coastal here) are among the most productive, resourceful and dynamic habitats on Earth (Malone et al., 1999; Day et al., 2012). These ecosystems constitute only ∼10% of the global oceans' surface, but account for over 30% of its primary production (Day et al., 2012). They process vast amounts of nutrients, sediments, carbonaceous, and xenobiotic compounds generated in coastal watersheds, in which approximately 70% of the world's human population resides (Nixon, 1995; Vitousek et al., 1997; NOAA, 2013). Estuarine and coastal ecosystems are also strongly influenced by localized nutrient enrichment from coastal upwelling, with major impacts on the structure and function of phytoplankton communities and the food webs they support (Legendre and Rassoulzadegan, 2012; Paerl and Justić, 2012). In addition, introductions and invasions of exotic plant and animal species have led to significant "top down" mediated changes in phytoplankton community structure and function (Carlton, 1999; Thompson, 2005). Lastly, the coastal zone is the "front line" of climatically-induced environmental change, including warming, altered rainfall patterns, intensities and magnitudes (Trenberth, 2005; IPCC, 2012), which jointly impact phytoplankton community structure and function (Cloern and Jassby, 2012; Hall et al., 2013). The combined effects of these pressures translate into a myriad of changes in phytoplankton production and community structure along geomorphological and geographic gradients (Fig. 1), with cascading quantitative and qualitative impacts on biogeochemical cycling, food web structure and function, water quality and overall resourcefulness and sustainability of these

  10. Towards a sustainable future in Hudson Bay

    International Nuclear Information System (INIS)

    Okrainetz, G.

    1991-01-01

    To date, ca $40-50 billion has been invested in or committed to hydroelectric development on the rivers feeding Hudson Bay. In addition, billions more have been invested in land uses such as forestry and mining within the Hudson Bay drainage basin. However, there has never been a study of the possible impacts on Hudson Bay resulting from this activity. Neither has there been any federal environmental assessment on any of the economic developments that affect Hudson Bay. To fill this gap in knowledge, the Hudson Bay Program was established. The program will not conduct scientific field research but will rather scan the published literature and consult with leading experts in an effort to identify biophysical factors that are likely to be significantly affected by the cumulative influence of hydroelectric and other developments within and outside the region. An annotated bibliography on Hudson Bay has been completed and used to prepare a science overview paper, which will be circulated for comment, revised, and used as the basis for a workshop on cumulative effects in Hudson Bay. Papers will then be commissioned for a second workshop to be held in fall 1993. A unique feature of the program is its integration of traditional ecological knowledge among the Inuit and Cree communities around Hudson Bay with the scientific approach to cumulative impact assessment. One goal of the program is to help these communities bring forward their knowledge in such a way that it can be integrated into the cumulative effects assessment

  11. Monitoring and toxicity evaluation of phytoplankton on lithium manganese oxide adsorbents at lithium recovery pilot plant field.

    Science.gov (United States)

    Yoon, H. O.; Kim, J. A.; Kim, J. C.; Chung, K. S.; Ryu, J. H.

    2015-12-01

    For recovery of rare mineral resources such as lithium or boron from seawater, the lithium adsorbent material have been made by Korea Institute of Geoscience and Mineral Resources (KIGAM) and pilot plant was conducted in Okgye Harbor, Gangneung, Korea. The application of lithium adsorbent in pilot plant, it is important to consider the impact on the marine environment. Especially phytoplankton communities are important marine microorganism to represent marine primary product. At the same time, phytoplankton is possible to induce the decrease of lithium recovery rate due to cause of biofouling to surfaces of lithium adsorbents. Therefore long-term and periodic monitoring of phytoplankton is necessary to understand the environmental impact and biofouling problems near the lithium pilot plant. The abundance and biomass of phytoplankton have been evaluated through monthly interval sampling from February 2013 to May 2015. Abundance and species diversity of phytoplankton went up to summer from winter. When lithium adsorbents were immersing to seawater, eco-toxicities of released substances were determined using Microtox with bioluminescence bacteria Vibrio fischeri. The adsorbents were soaked in sterilized seawater and aeration for 1, 3, 5, 7, 10 and 14 days intervals under controlled temperature. Maximum EC50 concentration was 61.4% and this toxicity was showed in more than 10 days exposure.

  12. A strong CO2 sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil)

    Science.gov (United States)

    Cotovicz, L. C., Jr.; Knoppers, B. A.; Brandini, N.; Costa Santos, S. J.; Abril, G.

    2015-10-01

    In contrast to its small surface area, the coastal zone plays a disproportionate role in the global carbon cycle. Carbon production, transformation, emission and burial rates at the land-ocean interface are significant at the global scale but still poorly known, especially in tropical regions. Surface water pCO2 and ancillary parameters were monitored during nine field campaigns between April 2013 and April 2014 in Guanabara Bay, a tropical eutrophic to hypertrophic semi-enclosed estuarine embayment surrounded by the city of Rio de Janeiro, southeast Brazil. Water pCO2 varied between 22 and 3715 ppmv in the bay, showing spatial, diurnal and seasonal trends that mirrored those of dissolved oxygen (DO) and chlorophyll a (Chl a). Marked pCO2 undersaturation was prevalent in the shallow, confined and thermally stratified waters of the upper bay, whereas pCO2 oversaturation was restricted to sites close to the small river mouths and small sewage channels, which covered only 10 % of the bay's area. Substantial daily variations in pCO2 (up to 395 ppmv between dawn and dusk) were also registered and could be integrated temporally and spatially for the establishment of net diurnal, seasonal and annual CO2 fluxes. In contrast to other estuaries worldwide, Guanabara Bay behaved as a net sink of atmospheric CO2, a property enhanced by the concomitant effects of strong radiation intensity, thermal stratification, and high availability of nutrients, which promotes phytoplankton development and net autotrophy. The calculated CO2 fluxes for Guanabara Bay ranged between -9.6 and -18.3 mol C m-2 yr-1, of the same order of magnitude as the organic carbon burial and organic carbon inputs from the watershed. The positive and high net community production (52.1 mol C m-2 yr-1) confirms the high carbon production in the bay. This autotrophic metabolism is apparently enhanced by eutrophication. Our results show that global CO2 budgetary assertions still lack information on tropical

  13. Phytoplankton chlorophyll

    NARCIS (Netherlands)

    van de Poll, W.H.; Kulk, G.; Timmermans, K.R.; Brussaard, C.P.D.; van der Woerd, H.J.; Kehoe, M.J.; Mojica, K.D.A.; Visser, R.J.W.; Rozema, P.D.; Buma, A.G.J.

    2013-01-01

    Relationships between sea surface temperature (SST, > 10 m) and vertical density stratification, nutrient concentrations, and phytoplankton biomass, composition, and chlorophyll a (Chl a) specific absorption were assessed in spring and summer from latitudes 29 to 63 degrees N in the northeast

  14. Amplified Arctic warming by phytoplankton under greenhouse warming.

    Science.gov (United States)

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  15. Seasonal Distribution of Phytoplankton in Riwada Reservoir, Visakhapatnam, Andhra Pradesh, India

    Directory of Open Access Journals (Sweden)

    Jyothi KAPARAPU

    2013-08-01

    Full Text Available The present study deals with seasonal variations, correlation coefficient and biodiversity indices of phytoplankton during April 2011 to March 2012 in the Riwada reservoir, Visakhapatnam, Andhra Pradesh, India. Sampling was performed at five stations during pre-monsoon, monsoon and post monsoon. There were a total of 57 genera belonging to four major groups i.e., Chlorophyceae (27 genera, Bacillariophyceae (14 genera, Cyanophyceae (13 genera and Euglenophyceae (three genera. Maximum and minimum total phytoplankton population and percentages were recorded at station three in pre monsoon and at station two during monsoon. The maximum and minimum species richness (Menhinick index R2 were found to be 1.29 at station one and 1.10 at station three respectively. Maximum and minimum species diversity (H1 were found at station four (3.98 and station two (3.71. Maximum species evenness was recorded at stations one, being four and five; minimum species evenness was recorded at station two. Correlation coefficient matrix indicated significant positive relationship with water temperature, pH, transparency, biological oxygen demand and chlorides, negative relationship with electric conductivity, total solids, total dissolved solids, total hardness, dissolved oxygen, nitrates, sulphates and phosphates of water. The diversity indices showed that the reservoir have a well balanced phytoplankton community.

  16. Temporal changes in carbon and nitrogen stable isotope ratios of macrozoobenthos on an artificial tidal flat facing a hypertrophic canal, inner Tokyo Bay

    International Nuclear Information System (INIS)

    Kanaya, Gen; Nakamura, Yasuo; Koizumi, Tomoyoshi; Yamada, Katsumasa; Koshikawa, Hiroshi; Kohzu, Ayato; Maki, Hideaki

    2013-01-01

    Highlights: • Temporal changes in food web structure were analyzed in a tidal flat in a hypertrophic coastal bay. • Microphytobenthos mainly supported the benthic food web throughout seasons. • Phytoplankton and terrestrial detritus were utilized after red tides and urban runoffs. • Seasonal changes in consumer-δ 15 N was much larger in inner Tokyo Bay than in other estuaries. • This study showed specific characteristics of benthic food web in highly urbanized estuaries. -- Abstract: Temporal changes in benthic food web structure were analyzed in an artificial tidal flat in inner Tokyo Bay, Japan, using carbon and nitrogen stable isotope ratios (δ 13 C and δ 15 N). Microphytobenthos were the most important food sources of macrozoobenthos, due to high microphytobenthic biomass on the tidal flat, while phytoplankton in canal water (canal POM PP ), terrestrial materials from urban surface runoff (canal POM TM ), and marsh plants were less important. Dietary contribution of microphytobenthos was highest in April to June, while decreased towards December owing to the supply of canal POM PP and canal POM TM following red tides and heavy rainfall events in summer to fall. Temporal changes in δ 15 N (Δδ 15 N) of consumer corresponded well to the 15 N-enrichment in canal POM PP in summer. A meta-analysis showed that the consumer-Δδ 15 N was considerably larger in inner Tokyo Bay than those in other estuaries, which may be a specific characteristic of benthic food web in highly urbanized estuaries

  17. Physicochemical Flux and Phytoplankton diversity in Shagari ...

    African Journals Online (AJOL)

    USER

    2007-03-20

    Mar 20, 2007 ... distribution of phytoplankton species were also determined. Phytoplankton classes ... could have a significant impact on water quality. (Carpenter and Kitchell ..... Environmental Impact assessment Report on proposed Shagari ...

  18. The Vertical Distribution of Sediment Archaeal Community in the “Black Bloom” Disturbing Zhushan Bay of Lake Taihu

    Science.gov (United States)

    Fan, Xianfang; Xing, Peng

    2016-01-01

    Using the Illumina sequencing technology, we investigated the vertical distribution of archaeal community in the sediment of Zhushan Bay of Lake Taihu, where the black bloom frequently occurred in summer. Overall, the Miscellaneous Crenarchaeotal Group (MCG), Deep Sea Hydrothermal Vent Group 6 (DHVEG-6), and Methanobacterium dominated the archaeal community. However, we observed significant difference in composition of archaeal community among different depths of the sediment. DHVEG-6 dominated in the surface layer (0–3 cm) sediment. Methanobacterium was the dominating archaeal taxa in the L2 (3–6 cm) and L3 (6–10) sediment. MCG was most abundant in the L4 (10–15 cm) and L5 (15–20 cm) sediment. Besides, DHVEG-6 was significantly affected by the concentration of total phosphorus (TP). And loss on ignition (LOI) was an important environmental factor for Methanobacterium. As the typical archaeal taxa in the surface layer sediment, DHVEG-6 and Methanobacterium might be more adapted to abundant substrate supply from cyanobacterial blooms and take active part in the biomass transformation. We propose that DHVEG-6 and Methanobacterium could be the key archaeal taxa correlated with the “black bloom” formation in Zhushan Bay. PMID:26884723

  19. 77 FR 54607 - Proclaiming Certain Lands, Sugar Parcel Lands, as an Addition to the Bay Mills Indian Reservation...

    Science.gov (United States)

    2012-09-05

    ..., as an Addition to the Bay Mills Indian Reservation for the Bay Mills Indian Community of Michigan... acres, more or less, to be added to the Bay Mills Indian Reservation for the Bay Mills Indian Community... the land described below. The land was proclaimed to be an addition to the Bay Mills Indian...

  20. 77 FR 54607 - Proclaiming Certain Lands, Dafter Parcel, as an Addition to the Bay Mills Indian Reservation for...

    Science.gov (United States)

    2012-09-05

    ... an Addition to the Bay Mills Indian Reservation for the Bay Mills Indian Community of Michigan AGENCY..., more or less, to be added to the Bay Mills Indian Reservation for the Bay Mills Indian Community of... the land described below. The land was proclaimed to be an addition to the Bay Mills Indian...

  1. Temporal and spatial changes of microbial community in an industrial effluent receiving area in Hangzhou Bay.

    Science.gov (United States)

    Zhang, Yan; Chen, Lujun; Sun, Renhua; Dai, Tianjiao; Tian, Jinping; Zheng, Wei; Wen, Donghui

    2016-06-01

    Anthropogenic activities usually contaminate water environments, and have led to the eutrophication of many estuaries and shifts in microbial communities. In this study, the temporal and spatial changes of the microbial community in an industrial effluent receiving area in Hangzhou Bay were investigated by 454 pyrosequencing. The bacterial community showed higher richness and biodiversity than the archaeal community in all sediments. Proteobacteria dominated in the bacterial communities of all the samples; Marine_Group_I and Methanomicrobia were the two dominant archaeal classes in the effluent receiving area. PCoA and AMOVA revealed strong seasonal but minor spatial changes in both bacterial and archaeal communities in the sediments. The seasonal changes of the bacterial community were less significant than those of the archaeal community, which mainly consisted of fluctuations in abundance of a large proportion of longstanding species rather than the appearance and disappearance of major archaeal species. Temperature was found to positively correlate with the dominant bacteria, Betaproteobacteria, and negatively correlate with the dominant archaea, Marine_Group_I; and might be the primary driving force for the seasonal variation of the microbial community. Copyright © 2016. Published by Elsevier B.V.

  2. Spatial patterning of water quality in Biscayne Bay, Florida as a function of land use and water management.

    Science.gov (United States)

    Caccia, Valentina G; Boyer, Joseph N

    2005-11-01

    An objective classification analysis was performed on a water quality data set from 25 sites collected monthly during 1994-2003. The water quality parameters measured included: TN, TON, DIN, NH4+, NO3-, NO2-, TP, SRP, TN:TP ratio, TOC, DO, CHL A, turbidity, salinity and temperature. Based on this spatial analysis, Biscayne Bay was divided into five zones having similar water quality characteristics. A robust nutrient gradient, driven mostly by dissolved inorganic nitrogen, from alongshore to offshore in the main Bay, was a large determinant in the spatial clustering. Two of these zones (Alongshore and Inshore) were heavily influenced by freshwater input from four canals which drain the South Dade agricultural area, Black Point Landfill, and sewage treatment plant. The North Bay zone, with high turbidity, phytoplankton biomass, total phosphorus, and low DO, was affected by runoff from five canals, the Munisport Landfill, and the urban landscape. The South Bay zone, an embayment surrounded by mangrove wetlands with little urban development, was high in dissolved organic constituents but low in inorganic nutrients. The Main Bay was the area most influenced by water exchange with the Atlantic Ocean and showed the lowest nutrient concentrations. The water quality in Biscayne Bay is therefore highly dependent of the land use and influence from the watershed.

  3. Par Pond phytoplankton in association with refilling of the pond: Final Report for sampling from February 1995 -- September 1996

    International Nuclear Information System (INIS)

    Wilde, E.W.; Johnson, M.A.; Cody, W.C.

    1996-01-01

    This report describes the results of phytoplankton analyses from Par Pond samples collected between February 1995 and September 1996. The principal objective of the study was to determine the effect of refilling of Par Pond following repair of the dam on the phytoplankton community. Algal blooms are often responsible for fish kills and other detrimental effects in ponds and lakes, and it was postulated that decaying vegetation from formerly exposed sediments might trigger algal blooms that could result in fish kills in Par Pond following the refill. Sporadic algal blooms involving blue-green algae were detected, especially during the summer of 1996. However, the data derived from the study demonstrates that overall, the refilling effort caused no significant negative impact to the pond attributable to phytoplankton dynamics

  4. Par Pond phytoplankton in association with refilling of the pond: Final Report for sampling from February 1995 -- September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W.; Johnson, M.A.; Cody, W.C.

    1996-12-31

    This report describes the results of phytoplankton analyses from Par Pond samples collected between February 1995 and September 1996. The principal objective of the study was to determine the effect of refilling of Par Pond following repair of the dam on the phytoplankton community. Algal blooms are often responsible for fish kills and other detrimental effects in ponds and lakes, and it was postulated that decaying vegetation from formerly exposed sediments might trigger algal blooms that could result in fish kills in Par Pond following the refill. Sporadic algal blooms involving blue-green algae were detected, especially during the summer of 1996. However, the data derived from the study demonstrates that overall, the refilling effort caused no significant negative impact to the pond attributable to phytoplankton dynamics.

  5. Composition and seasonal variation of phytoplankton community in Lake Hlan, Republic of Bénin

    Directory of Open Access Journals (Sweden)

    Arsène Mathieu Houssou

    2016-12-01

    Full Text Available Knowledge of biodiversity of aquatic ecosystems is nowadays a challenge for global research. Phytoplankton being very important in the sustainability of ecosystems, its mastery allows the development of early monitoring and evaluation tools of the health status of aquatic environments. The study aims to make an initial inventory of phytoplankton of the lake Hlan and to evaluate the influence of hydrologic season on its dynamics. Plankton samples were collected monthly between May and December 2012 using plankton net of 30 µm size. They were then treated and species identified using light microscopy. 39 species in 7 classes (Bacillariophyceae, 18 species in 10 genera, (Cyanophyceae, 5 species in 5 genera, (Chlorophyceae, 5 species in 3 genera, (Zygnematophyceae, 3 species in 2 genera, (Trebouxiophyceae, 2 species in 2 genera (Euglenophyceae, 4 species in 3 genera and (Dinophyceae, 2 species in 2 genera have been identified. The Shannon index varied between 4.8 and 5.1 bit cell-1. This shows that the ecosystem is balanced. Nevertheless, the presence of potentially toxic species requires a monitoring program for Lake Hlan.

  6. Variability in the mechanisms controlling Southern Ocean phytoplankton bloom phenology in an ocean model and satellite observations

    Science.gov (United States)

    Rohr, Tyler; Long, Matthew C.; Kavanaugh, Maria T.; Lindsay, Keith; Doney, Scott C.

    2017-05-01

    A coupled global numerical simulation (conducted with the Community Earth System Model) is used in conjunction with satellite remote sensing observations to examine the role of top-down (grazing pressure) and bottom-up (light, nutrients) controls on marine phytoplankton bloom dynamics in the Southern Ocean. Phytoplankton seasonal phenology is evaluated in the context of the recently proposed "disturbance-recovery" hypothesis relative to more traditional, exclusively "bottom-up" frameworks. All blooms occur when phytoplankton division rates exceed loss rates to permit sustained net population growth; however, the nature of this decoupling period varies regionally in Community Earth System Model. Regional case studies illustrate how unique pathways allow blooms to emerge despite very poor division rates or very strong grazing rates. In the Subantarctic, southeast Pacific small spring blooms initiate early cooccurring with deep mixing and low division rates, consistent with the disturbance-recovery hypothesis. Similar systematics are present in the Subantarctic, southwest Atlantic during the spring but are eclipsed by a subsequent, larger summer bloom that is coincident with shallow mixing and the annual maximum in division rates, consistent with a bottom-up, light limited framework. In the model simulation, increased iron stress prevents a similar summer bloom in the southeast Pacific. In the simulated Antarctic zone (70°S-65°S) seasonal sea ice acts as a dominant phytoplankton-zooplankton decoupling agent, triggering a delayed but substantial bloom as ice recedes. Satellite ocean color remote sensing and ocean physical reanalysis products do not precisely match model-predicted phenology, but observed patterns do indicate regional variability in mechanism across the Atlantic and Pacific.

  7. Seasonal changes in the abundance of bacterial genes related to dimethylsulfoniopropionate catabolism in seawater from Ofunato Bay revealed by metagenomic analysis

    KAUST Repository

    Kudo, Toshiaki; Kobiyama, Atsushi; Rashid, Jonaira; Reza, Shaheed; Yamada, Yuichiro; Ikeda, Yuri; Ikeda, Daisuke; Mizusawa, Nanami; Ikeo, Kazuho; Sato, Shigeru; Ogata, Takehiko; Jimbo, Mitsuru; Kaga, Shinnosuke; Watanabe, Shiho; Naiki, Kimiaki; Kaga, Yoshimasa; Segawa, Satoshi; Mineta, Katsuhiko; Bajic, Vladimir B.; Gojobori, Takashi; Watabe, Shugo

    2018-01-01

    Ofunato Bay is located in the northeastern Pacific Ocean area of Japan, and it has the highest biodiversity of marine organisms in the world, primarily due to tidal influences from the cold Oyashio and warm Kuroshio currents. Our previous results from performing shotgun metagenomics indicated that Candidatus Pelagibacter ubique and Planktomarina temperata were the dominant bacteria (Reza et al., 2018a, 2018b). These bacteria are reportedly able to catabolize dimethylsulfoniopropionate (DMSP) produced from phytoplankton into dimethyl sulfide (DMS) or methanethiol (MeSH). This study was focused on seasonal changes in the abundances of bacterial genes (dddP, dmdA) related to DMSP catabolism in the seawater of Ofunato Bay by BLAST+ analysis using shotgun metagenomic datasets. We found seasonal changes among the Candidatus Pelagibacter ubique strains, including those of the HTCC1062 type and the Red Sea type. A good correlation was observed between the chlorophyll a concentrations and the abundances of the catabolic genes, suggesting that the bacteria directly interact with phytoplankton in the marine material cycle system and play important roles in producing DMS and MeSH from DMSP as signaling molecules for the possible formation of the scent of the tidewater or as fish attractants.

  8. Seasonal changes in the abundance of bacterial genes related to dimethylsulfoniopropionate catabolism in seawater from Ofunato Bay revealed by metagenomic analysis

    KAUST Repository

    Kudo, Toshiaki

    2018-04-26

    Ofunato Bay is located in the northeastern Pacific Ocean area of Japan, and it has the highest biodiversity of marine organisms in the world, primarily due to tidal influences from the cold Oyashio and warm Kuroshio currents. Our previous results from performing shotgun metagenomics indicated that Candidatus Pelagibacter ubique and Planktomarina temperata were the dominant bacteria (Reza et al., 2018a, 2018b). These bacteria are reportedly able to catabolize dimethylsulfoniopropionate (DMSP) produced from phytoplankton into dimethyl sulfide (DMS) or methanethiol (MeSH). This study was focused on seasonal changes in the abundances of bacterial genes (dddP, dmdA) related to DMSP catabolism in the seawater of Ofunato Bay by BLAST+ analysis using shotgun metagenomic datasets. We found seasonal changes among the Candidatus Pelagibacter ubique strains, including those of the HTCC1062 type and the Red Sea type. A good correlation was observed between the chlorophyll a concentrations and the abundances of the catabolic genes, suggesting that the bacteria directly interact with phytoplankton in the marine material cycle system and play important roles in producing DMS and MeSH from DMSP as signaling molecules for the possible formation of the scent of the tidewater or as fish attractants.

  9. Does ecosystem variability explain phytoplankton diversity? Solving an ecological puzzle with long-term data sets

    Science.gov (United States)

    Sarker, Subrata; Lemke, Peter; Wiltshire, Karen H.

    2018-05-01

    Explaining species diversity as a function of ecosystem variability is a long-term discussion in community-ecology research. Here, we aimed to establish a causal relationship between ecosystem variability and phytoplankton diversity in a shallow-sea ecosystem. We used long-term data on biotic and abiotic factors from Helgoland Roads, along with climate data to assess the effect of ecosystem variability on phytoplankton diversity. A point cumulative semi-variogram method was used to estimate the long-term ecosystem variability. A Markov chain model was used to estimate dynamical processes of species i.e. occurrence, absence and outcompete probability. We identified that the 1980s was a period of high ecosystem variability while the last two decades were comparatively less variable. Ecosystem variability was found as an important predictor of phytoplankton diversity at Helgoland Roads. High diversity was related to low ecosystem variability due to non-significant relationship between probability of a species occurrence and absence, significant negative relationship between probability of a species occurrence and probability of a species to be outcompeted by others, and high species occurrence at low ecosystem variability. Using an exceptional marine long-term data set, this study established a causal relationship between ecosystem variability and phytoplankton diversity.

  10. Resource competition and an analytical model of zooplankton feeding on phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Smith, O L; Shugart, H H; O' Neill, R V; Booth, R S; McNaught, D C

    1975-01-01

    A new consumer-resource The model was developed with specific reference to zooplankton feeding on phytoplankton. In principle, the model can be extended to any terrestrial or aquatic community in which the consumers graze nearly randomly. It is assumed that the food as relatively little escape capabity. An attempt was made to derive the consumer-resource interaction term from first principles.A general form with clearly defined parameters that represent fundamental system processes such as consumer filtering rate. model parameters describes two known forms of feeding:(1): saturation feeding in which the rate remains constant above a given food density while the filtering rate decreases, and(2) inhibited feeding in which a decline appears at high food density. From an examination of the model's equilibrium equations for strongly similar zooplankton species feeding on similar phytoplankton species, the following conclusions were drawn. The competitive exclusion principle has only limited validity. For a community in which the consumers exhibit no intraspecific competition and have identical assimilation efficiency to death-rate ratios, e/d, any number of consumer species may, in fact, coexist and compete for the same food. The equations for a complex community composed of many consumer and food species can be reduced to a single equation with form identical to that of a single-consumer, single-food system. The standard competition coefficient, ..cap alpha.., of the Volterra equation is a poor measure of competition in nonlinear systems. It exhibits incongruous variations with changes in system parameters. In a community with no intraspecific competition, allcompetition coefficients are unity. In a community with intraspecific competition, the competition coefficients C/sub in/ tend to equalize as the number of food species increases, resulting in equal competitive strength of all consumer species in systems of the type studied.

  11. Phytoplankton variability in relation to some environmental factors in the eastern coast of Suez Gulf, Egypt.

    Science.gov (United States)

    Nassar, Mohamed Z; El-Din, Nihal G Shams; Gharib, Samiha M

    2015-10-01

    Water samples were seasonally collected from 12 stations of the eastern coast of Suez Gulf during autumn of 2012 and winter, spring, and summer of 2013 in order to investigate phytoplankton community structure in relation to some physicochemical parameters. The study area harbored a diversified phytoplankton community (138 species), belonging to 67 genera. Four algal groups were represented and classified as Bacillariophyceae (90 species), Dinophyceae (28 species), Cyanophyceae (16 species), and Chlorophyceae (4 species). The results indicated a relative high occurrence of some species namely.; Pleurotaenium trabecula of green algae; Chaetoceros lorenzianus, Proboscia alata var. gracillima, Pseudosolenia calcar-avis, and Pseudo-nitzschia pungens of diatoms; Trichodesmium erythraeum and Pseudoanabaena limnetica of cyanophytes. Most of other algal species were fairly distributed at the selected stations of the study area. The total abundance of phytoplankton was relatively low (average of 2989 unit/L) in the eastern coast of Suez Gulf, as compared its western coast and the northern part of the Red Sea. The diversity of phytoplankton species was relatively high (2.35-3.82 nats) with an annual average of 3.22 nats in the present study. The results concluded that most of eastern coast of Suez Gulf is still healthy, relatively unpolluted, and oligotrophic area, which is clearly achieved by the low values of dissolved phosphate (0.025-0.3 μM), nitrate (0.18-1.26 μM), and dissolved ammonium (0.81-5.36 μM). Even if the occurrence of potentially harmful algae species was low, the study area should be monitored continuously. The dissolved oxygen ranged between 1.77 and 8.41 mg/L and pH values between 7.6 and 8.41. The multiple regression analysis showed that the dissolved nitrate and pH values were the most effective factors that controlled the seasonal fluctuations of phytoplankton along the eastern coast of Suez Gulf during 2012-2013.

  12. Photosynthetic pigment fingerprints as indicators of phytoplankton biomass and development in different water masses of the Southern Ocean during austral spring

    Science.gov (United States)

    Peeken, Ilka

    The development of phytoplankton biomass and composition was investigated on three occasions along a longitudinal transect (6°W) between 60°S and 47°S from October 13 to November 21, 1992 by measurement of photosynthetic pigments with high performance liquid chromatography (HPLC). Measured accessory pigment concentrations were multiplied by conversion factors to derive the proportions of phytoplankton groups contributing to the biomass indicator chlorophyll a. Phytoplankton blooms developed in the Polar Frontal region (PFr) and were dominated (80%) by diatoms. Other groups contributing to the phytoplankton included prymnesiophytes, green algae, autotrophic dinoflagellates, cryptophytes, pelagophytes and micromonadophytes, and their distributions varied with time. In contrast, phytoplankton biomass remained low in the southern Antarctic Circumpolar Current (ACC) and was dominated by flagellates, particularly green algae and prymnesiophytes. Green algae contributed more to total biomass than in previous investigations, partly attributed to "Chlorella-like" type organisms rather than prasinophytes. Cryptophytes decreased during the investigation, possibly due to salp grazing. No bloom was observed at the retreating ice-edge, presumably due to strong wind mixing. Only a slight increase in phytoplankton biomass, composed primarily of diatoms, was found at the ACC-Weddell Gyre front. Cluster analysis revealed that different phytoplankton communities characterised the different water masses of the PFr and southern ACC; the history of different water masses in the PFr could be reconstructed on this basis.

  13. Risk associated with toxic blooms of marine phytoplankton functional groups on Artemia franciscana

    Directory of Open Access Journals (Sweden)

    Ana D’ors

    2014-08-01

    Full Text Available Objective: To study mortality of copepod Artemia franciscana against the occurrence of harmful marine algae and possible toxicological changes exhibited by binary and tertiary combinations of these harmful algae toxins. Methods: Tweenty four hours acute toxicity assays were performed with selected concentrations of Alexandrium minutum, Prorocentrum lima and Nitzschia N1c1 living cells. Additionally, the results were analyzed using the median-effect/combination index (CI-isobologram equation to assess possible changes in the toxic effect induced by phytoplankton functional groups. Results: Biotoxin equivalent values obtained by immunodetection were (2.12±0.10, (8.60±1.30 and (4.32±1.67 pg/cell for saxitoxin, okadaic acid and domoic acid, respectively. The 24-h LC50 values estimated to saxitoxin and okadaic acid equivalents were 4.06 and 6.27 µg/L, significantly below the value obtained for Nitzschia N1c1, which was established at 467.33 µg/L. CI analysis applied on phytoplankton assemblages showed that both ternary mixture as the binary combinations exhibited antagonic action on toxic effects in Artemia nauplii, which were significantly lower than the toxic effect exhibited by each species studied. Conclusions: These results show that, although these harmful algae represent a serious risk to estuarine zooplankton community, the presence of phytoplankton functional groups within the same bloom can reduce the potential risk compared to the expected risk when each of the phytoplankton groups are evaluated individually.

  14. Developing a wintering waterfowl community baseline for environmental monitoring of Narragansett Bay, Rhode Island [version 3; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Betty J. Kreakie

    2015-12-01

    Full Text Available In 2004, the Atlantic Ecology Division of the US Environmental Protection Agency’s Office of Research and Development began an annual winter waterfowl survey of Rhode Island’s Narragansett Bay. Herein, we explore the survey data gathered from 2004 to 2011 in order to establish a benchmark understanding of our waterfowl communities and to establish a statistical framework for future environmental monitoring. The abundance and diversity of wintering waterfowl were relatively stable during the initial years of this survey, except in 2010 when there was a large spike in abundance and a reciprocal fall in diversity. There was no significant change in ranked abundance of most waterfowl species, with only Bufflehead (Bucephala albeola and Hooded Merganser (Lophodytes cucllatus showing a slight yet significant upward trend during the course of our survey period. Nonmetric multidimensional scaling (NMDS was used to examine the community structure of wintering waterfowl. The results of the NMDS indicate that there is a spatial structure to the waterfowl communities of Narragansett Bay and this structure has remained relatively stable since the survey began. Our NMDS analysis helps to solidify what is known anecdotally about the bay’s waterfowl ecology, and provides a formalized benchmark for long-term monitoring of Narragansett Bay’s waterfowl communities. Birds, including waterfowl, are preferred bioindicators and we propose using our multivariate approach to monitor the future health of the bay. While this research focuses on a specific area of New England, these methods can be easily applied to novel areas of concern and provide a straightforward nonparametric approach to community-level monitoring. The methods provide a statistic test to examine potential drivers of community turnover and well-suited visualization tools.

  15. Species-Specific Variations in the Nutritional Quality of Southern Ocean Phytoplankton in Response to Elevated pCO2

    Directory of Open Access Journals (Sweden)

    Cathryn Wynn-Edwards

    2014-06-01

    Full Text Available Increased seawater pCO2 has the potential to alter phytoplankton biochemistry, which in turn may negatively affect the nutritional quality of phytoplankton as food for grazers. Our aim was to identify how Antarctic phytoplankton, Pyramimonas gelidicola, Phaeocystis antarctica, and Gymnodinium sp., respond to increased pCO2. Cultures were maintained in a continuous culture setup to ensure stable CO2 concentrations. Cells were subjected to a range of pCO2 from ambient to 993 µatm. We measured phytoplankton response in terms of cell size, cellular carbohydrate content, and elemental, pigment and fatty acid composition and content. We observed few changes in phytoplankton biochemistry with increasing CO2 concentration which were species-specific and predominantly included differences in the fatty acid composition. The C:N ratio was unaffected by CO2 concentration in the three species, while carbohydrate content decreased in Pyramimonas gelidicola, but increased in Phaeocystis antarctica. We found a significant reduction in the content of nutritionally important polyunsaturated fatty acids in Pyramimonas gelidicola cultures under high CO2 treatment, while cellular levels of the polyunsaturated fatty acid 20:5ω3, EPA, in Gymnodinium sp. increased. These changes in fatty acid profile could affect the nutritional quality of phytoplankton as food for grazers, however, further research is needed to identify the mechanisms for the observed species-specific changes and to improve our ability to extrapolate laboratory-based experiments on individual species to natural communities.

  16. Factors driving the spatiotemporal variability in phytoplankton in the Northern South China Sea

    Science.gov (United States)

    Wei, Na; Satheeswaran, Thangaraj; Jenkinson, Ian R.; Xue, Bing; Wei, Yuqiu; Liu, Haijiao; Sun, Jun

    2018-06-01

    The influence of oceanographic processes on phytoplankton diversity and community structure was examined during a cruise conducted from July to August 2012 in the northern South China Sea (nSCS). One hundred ninety seven seawater samples were collected and analyzed from 41 stations in the nSCS. A total of 215 species were identified belonging to 67 genera, mostly dominated by diatoms (67.36%) followed by dinoflagellates (28.16%). The mean cell abundance of diatoms and dinoflagellates were 1.954 × 103 cells L-1 and 0.817 × 103 cells L-1, respectively. Diatoms mainly distributed in coastal region whereas dianoflaglletes in the open sea. Margalaf's species richness (dMa) was maximum (3.96) at SQD1 station (Depth 15 m), whereas it was minimum (0.07) at SS1 (Depth 200 m). Further, Box-Whisker plot displayed that dissolved inorganic nutrients incresed with depth. Nevertheless, redundacy analysis reveled that phytoplankton density has a negative relationship with nutrients. Overall the presesant study provides latest in-depth information about how the factors influencing the phytoplankton density and diversity in the (nSCS) during summer based on the cruise data which could serve as a reference for the similar study.

  17. Planktonic copepod community in the neritic area south western part of Tunis bay influenced by Meliane river supplies (south western Mediterranean sea)

    OpenAIRE

    Ben Lamine, Y.; Daly Yahia Kefi, O.; Daly Yahia, N.

    2012-01-01

    The Tunis bay is located in the North Estern coast of Tunisia and receives in its Western part flows from Meliane River. Our study aims to describe the composition and the spatiotemporal distribution of planktonic copepods in the bay in order to identify the effect of the Meliane River supplies on the community. A grid of 19 stations was investigated monthly from July 2004 to December 2004 using a 160 μm mesh size plankton net, towed obliquely from the bottom to the surface. The planktonic co...

  18. Carbon-14 labeling of phytoplankton carbon and chlorophyll a carbon: determination of specific growth rates

    International Nuclear Information System (INIS)

    Welschmeyer, N.A.; Lorenzen, C.J.

    1984-01-01

    The pattern of photosynthetic 14 C labeling over time is described for phytoplankton. The carbon-specific growth rate (d -1 ) is defined explicitly by changes in the specific activity (dpm μg -1 C) of the algae. For Skeletonema costatum, growing in axenic batch culture, the specific activities of both total cellular carbon and chlorophyll carbon increase at equal rates and the change in specific activity with time follows the predicted pattern. The specific activity of 14 C-labeled chlorophyll a was used to estimate phytoplankton growth rates and C:Chl ratios of field samples in Dabob Bay (Puget Sound), Washington. Growth rates decreased with depth and C:Chl ratios were higher for samples incubated under high light intensity. In several instances the C:Chl ratio increased from the beginning to the end of the incubation; this trend was most conspicuous near surface light intensities and for days of high total incident radiation. On these occasions, Chl a was actively 14 C labeled, yet little (or even negative) change was noted in the concentration of Chl a. These results suggest that some process (or processes) of chlorophyll degradation must be active at the same time that chlorophyll is being synthesized

  19. Baseline surveys of Lac Bay benthic and fish communities, Bonaire

    NARCIS (Netherlands)

    Debrot, A.O.; Hylkema, A.; Vogelaar, W.; Meesters, H.W.G.; Engel, M.S.; Leon, R.; Prud'homme van Reine, W.F.; Nagelkerken, I.

    2012-01-01

    Lac Bay is a clear-water, 5 m deep shallow tropical lagoon of 7 km2 opening onto the wave and wind exposed east coast of the island of Bonaire, southern Caribbean. Over the last decades land reclamation by mangroves in Lac has been expanding the surface of turbid, saline backwaters into the bay at

  20. 76 FR 2409 - Proclaiming Certain Lands, Lots 15 and 16 Acquisition, as an Addition to the Bay Mills Indian...

    Science.gov (United States)

    2011-01-13

    ... Acquisition, as an Addition to the Bay Mills Indian Reservation for the Bay Mills Indian Community of Michigan..., more or less, to be added to the Bay Mills Indian Reservation for the Bay Mills Indian Community of... the land described below. The land was proclaimed to be an addition to the Bay Mills Indian...