WorldWideScience

Sample records for bauxite processing wastes

  1. Adsorption decontamination of radioactive waste solvent by activated alumina and bauxites

    International Nuclear Information System (INIS)

    Hassan, N.M.; Marra, J.C.; Kyser, E.A.

    1994-01-01

    An adsorption process utilizing activated alumina and activated bauxite adsorbents was evaluated as a function of operating parameters for the removal of low level radioactive contaminants from organic waste solvent generated in the fuel reprocessing facilities and support operations at Savannah River Site. The waste solvent, 30% volume tributyl phosphate in n-paraffin diluent, was degraded due to hydrolysis and radiolysis reactions of tributyl phosphate and n-paraffin diluent, producing fission product binding degradation impurities. The process, which has the potential for removing these activity-binding degradation impurities from the solvent, was operated downflow through glass columns packed with activated alumina and activated bauxite adsorbents. Experimental breakthrough curves were obtained under various operating temperatures and flow rates. The results show that the adsorption capacity of the activated alumina was in the order 10 4 dpm/g and the capacity of the activated bauxite was 10 5 dpm/g. The performance of the adsorption process was evaluated in terms of dynamic parameters (i.e. adsorption capacity, the height and the efficiency of adsorption zone) in such a way as to maximize the adsorption capacity and to minimize the height of the mass transfer or adsorption zone

  2. Applications of bauxite residue: A mini-review.

    Science.gov (United States)

    Verma, Ajay S; Suri, Narendra M; Kant, Suman

    2017-10-01

    Bauxite residue is the waste generated during alumina production by Bayer's process. The amount of bauxite residue (40-50 wt%) generated depends on the quality of bauxite ore used for the processing. High alkalinity and high caustic content in bauxite residue causes environmental risk for fertile soil and ground water contamination. The caustic (NaOH) content in bauxite residue leads to human health risks, like dermal problems and irritation to eyes. Moreover, disposal of bauxite residue requires a large area; such problems can only be minimised by utilising bauxite residue effectively. For two decades, bauxite residue has been used as a binder in cement industries and filler/reinforcement for composite materials in the automobile industry. Valuable metals and oxides, like alumina (Al 2 O 3 ), titanium oxide (TiO 2 ) and iron oxide Fe 2 O 3 , were extracted from bauxite residue to reduce waste. Bauxite residue was utilised in construction and structure industries to make geopolymers. It was also used in the making of glass-ceramics and a coating material. Recently bauxite residue has been utilised to extract rare earth elements like scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), neodymium (Nd) and dysprosium (Dy). In this review article, the mineralogical characteristics of bauxite residue are summarised and current progresses on utilisation of bauxite residue in different fields of science and engineering are presented in detail.

  3. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dongyang; Wang, Zhendong; Guo, Min [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Mei, E-mail: zhangmei@ustb.edu.cn [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Jingbo [The Department of Chemistry, Texas A and M University-Kingsville, Kingsville, TX 78363 (United States); The Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-11-15

    Highlights: • Concept to convert waste to valuable product is carried out in this study. • An industrially feasible and cost-effective approach was developed and optimized. • Highly crystalline and well-defined zeolite was produced under moderate conditions. • The zeolite derived from the bauxite tailings displayed high ion exchange capacity. • Bauxite tailings have potential application in heavy metal ions adsorbent. - Abstract: Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO{sub 3}/g, comparable to commercially-available zeolite (310 mg CaCO{sub 3}/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China.

  4. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application

    International Nuclear Information System (INIS)

    Ma, Dongyang; Wang, Zhendong; Guo, Min; Zhang, Mei; Liu, Jingbo

    2014-01-01

    Highlights: • Concept to convert waste to valuable product is carried out in this study. • An industrially feasible and cost-effective approach was developed and optimized. • Highly crystalline and well-defined zeolite was produced under moderate conditions. • The zeolite derived from the bauxite tailings displayed high ion exchange capacity. • Bauxite tailings have potential application in heavy metal ions adsorbent. - Abstract: Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO 3 /g, comparable to commercially-available zeolite (310 mg CaCO 3 /g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China

  5. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application.

    Science.gov (United States)

    Ma, Dongyang; Wang, Zhendong; Guo, Min; Zhang, Mei; Liu, Jingbo

    2014-11-01

    Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO3/g, comparable to commercially-available zeolite (310 mg CaCO3/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Processing of low-quality bauxite feedstock by thermochemistry-Bayer method

    Directory of Open Access Journals (Sweden)

    О. А. Дубовиков

    2016-11-01

    Full Text Available The modern production of aluminum which by its global output ranks first among the non-ferrous metals includes three main stages: ore extraction, its processing into alumina and, finally, the production of primary aluminum. Alumina production from bauxites,  being the  primary raw material in the  alumina industry,  is based  on two main methods: the Bayer method and the sintering method developed in Russia under the lead of an academician Nikolay Semenovich Kurnakov. Alumina production by the Bayer’s method is more cost effective,  but  has  higher  requirements to the  quality of the bauxite feedstock.  A great deal  of research has  been carried  out on low quality bauxites focusing firstly on finding ways to enrich the feedstock, secondly on improving the combined sequential Bayer-sintering method and thirdly on developing new hydrometallurgical ways for bauxites processing. Mechanical methods of bauxite enrichment have not yet brought any positive outcome, and a development of new hydrometallurgical high alkaline  autoclave process  faced  significant hardware  difficulties not addressed so far. For efficient processing of such low quality bauxite feedstock it is suggested to use a universal thermochemistry-Bayer method, which was developed in St. Petersburg Mining University under  the lead  of  Nikolay Ivanovich Eremin, allows to process different substandard bauxite feedstock and has a competitive costing as compared to the sintering method and combined methods. The main stages of thermochemistry-Bayer method are thermal activation of feedstock, its further desiliconization with the alkaline solution and leaching of the resultant bauxite product  under Bayer’s method. Despite high energy consumption at  the baking stage,  it  allows to condition the  low quality bauxite feedstock by neutralizing a variety of technologically harmful impurities such as organic matter, sulfide sulfur, carbonates, and at the

  7. Acid transformation of bauxite residue: Conversion of its alkaline characteristics

    OpenAIRE

    Kong, X.; Li, M.; Xue, S.; Hartley, W.; Chen, C.; Wu, C.; Li, X.; Li, Y.

    2016-01-01

    Bauxite residue (BR) is a highly alkaline solid hazardous waste produced from bauxite processing for alumina production. Alkaline transformation appears to reduce the environmental risk of bauxite residue disposal areas (BRDAs) whilst potentially providing opportunities for the sustainable reuse and on-going management of BR. Mineral acids, a novel citric acid and a hybrid combination of acid-gypsum treatments were investigated for their potential to reduce residue pH and total alkalinity and...

  8. Proposal for management and alkalinity transformation of bauxite residue in China.

    Science.gov (United States)

    Xue, Shengguo; Kong, Xiangfeng; Zhu, Feng; Hartley, William; Li, Xiaofei; Li, Yiwei

    2016-07-01

    Bauxite residue is a hazardous solid waste produced during the production of alumina. Its high alkalinity is a potential threat to the environment which may disrupt the surrounding ecological balance of its disposal areas. China is one of the major global producers of alumina and bauxite residue, but differences in alkalinity and associated chemistry exist between residues from China and those from other countries. A detailed understanding of the chemistry of bauxite residue remains the key to improving its management, both in terms of minimizing environmental impacts and reducing its alkaline properties. The nature of bauxite residue and the chemistry required for its transformation are still poorly understood. This review focuses on various transformation processes generated from the Bayer process, sintering process, and combined Bayer-sintering process in China. Problems associated with transformation mechanisms, technical methods, and relative merits of these technologies are reviewed, while current knowledge gaps and research priorities are recommended. Future research should focus on transformation chemistry and its associated mechanisms and for the development of a clear and economic process to reduce alkalinity and soda in bauxite residue.

  9. Carbothermal Upgrading of the Awaso Bauxite Ore using Waste ...

    African Journals Online (AJOL)

    ... a measure will increase the unemployment rate since the sachet water business employs a significant proportion of people. Meanwhile, the country currently exports its bauxite raw, without any value addition. Gradual depletion of high grade bauxite (with high alumina content) and the emergence of low grade bauxite with ...

  10. Bauxite mining and alumina refining: process description and occupational health risks.

    Science.gov (United States)

    Donoghue, A Michael; Frisch, Neale; Olney, David

    2014-05-01

    To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Review article. The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust, alumina dust, and caustic mist in contemporary best-practice bauxite mining and alumina refining operations have not been demonstrated to be associated with clinically significant decrements in lung function. Exposures to bauxite dust and alumina dust at such operations are also not associated with the incidence of cancer. A range of occupational health risks in bauxite mining and alumina refining require the maintenance of effective control measures.

  11. Mineralogy and crystal chemistry of iron in the Timan bauxite and products of their technological processing

    Science.gov (United States)

    Kotova, O.; Silaev, V.; Lutoev, V.; Vakhrushev, A.

    2016-04-01

    Mineralogical and geochemical features of two series of samples of typical bauxites from two deposits of Middle Timan mining area (Vezhayu-Vorykva and Svetlinskoe) were studied. The phase composition of ferrous bauxites generally is boehmite, hematite, ultradisperse low-ordered goethite and berthierine. In a boehmite and kaolinite structural impurity of iron to 10%, and in the iron oxidehydroxides aluminum impurity is revealed. On iron content bauxites are subdivided into three mineral types for which quantitative data on valence states of ions of iron and proportions of their distribution last on nonequivalent structural positions in hematite, goethite and berthierine are obtained. Noble metals (Ag, Au, Ir, Rh, Pd) concentrating in bauxites are revealed for the first time. Obtained data can lead to decrease of power consumption during aluminum production and high quality ceramics, to provide production of valuable iron oxide, and also to minimize the ecological harm from accumulation of bauxite wastes.

  12. Comparative Analysis of Processes for Recovery of Rare Earths from Bauxite Residue

    Science.gov (United States)

    Borra, Chenna Rao; Blanpain, Bart; Pontikes, Yiannis; Binnemans, Koen; Van Gerven, Tom

    2016-11-01

    Environmental concerns and lack of space suggest that the management of bauxite residue needs to be re-adressed. The utilization of the residue has thus become a topic high on the agenda for both academia and industry, yet, up to date, it is only rarely used. Nonetheless, recovery of rare earth elements (REEs) with or without other metals from bauxite residue, and utilization of the left-over residue in other applications like building materials may be a viable alternative to storage. Hence, different processes developed by the authors for recovery of REEs and other metals from bauxite residue were compared. In this study, preliminary energy and cost analyses were carried out to assess the feasibility of the processes. These analyses show that the combination of alkali roasting-smelting-quenching-leaching is a promising process for the treatment of bauxite residue and that it is justified to study this process at a pilot scale.

  13. Bio-mineralization and potential biogeochemical processes in bauxite deposits: genetic and ore quality significance

    Science.gov (United States)

    Laskou, Magdalini; Economou-Eliopoulos, Maria

    2013-08-01

    The Parnassos-Ghiona bauxite deposit in Greece of karst type is the 11th largest bauxite producer in the world. The mineralogical, major and trace-element contents and δ18O, δ12C, δ34S isotopic compositions of bauxite ores from this deposit and associated limestone provide valuable evidence for their origin and biogeochemical processes resulting in the beneficiation of low grade bauxite ores. The organic matter as thin coal layers, overlying the bauxite deposits, within limestone itself (negative δ12C isotopic values) and the negative δ34S values in sulfides within bauxite ores point to the existence of the appropriate circumstances for Fe bio-leaching and bio-mineralization. Furthermore, a consortium of microorganisms of varying morphological forms (filament-like and spherical to lenticular at an average size of 2 μm), either as fossils or presently living and producing enzymes, is a powerful factor to catalyze the redox reactions, expedite the rates of metal extraction and provide alternative pathways for metal leaching processes resulting in the beneficiation of bauxite ore.

  14. Preparation of polymeric aluminium ferric chloride from bauxite tailings

    Directory of Open Access Journals (Sweden)

    Ma D.

    2013-01-01

    Full Text Available Bauxite tailings are the main solid wastes in the ore dressing process. The Al2O3 and Fe2O3 contents in bauxite tailings can reach 50% and 13% respectively. The present study proposed a feasible method to use bauxite tailings to prepare polymeric aluminium ferric chloride (PAFC, a new composite inorganic polymer for water purification. Bauxite tailings roasted reacting with hydrochloric acid under air, pickle liquor which mainly contains Fe3+, Al3+ was generated, then calcium aluminate was used to adjust pH value and the basicity of the pickle liquor, the PAFC was subsequently prepared after the polymerization process. The optimal synthesizing parameters for the preparation of PAFC obtained were as follows: the concentration of hydrochloric acid of 24 wt%, ratio of hydrochloric acid to bauxite tailings of 6:1, temperature of 90ºC, leaching time of 2.5 hours, ration of pickle liquor to calcium aluminate of 12:1, polymerization temperature of 90ºC and polymerization time of about 3 hours. The basicity of PAFC was higher than 68%, the sum concentration of Al2O3 and Fe2O3 was beyond 12.5%. The results of flocculation tests indicate that the PAFC has a better performance of removing the turbidity of wastewater compared to PAC, and PAFC prepared by bauxite tailings is a kind of high quality flocculants.

  15. Analysis of ASTER data for mapping bauxite rich pockets within high altitude lateritic bauxite, Jharkhand, India

    Science.gov (United States)

    Guha, Arindam; Singh, Vivek Kr.; Parveen, Reshma; Kumar, K. Vinod; Jeyaseelan, A. T.; Dhanamjaya Rao, E. N.

    2013-04-01

    Bauxite deposits of Jharkhand in India are resulted from the lateritization process and therefore are often associated with the laterites. In the present study, ASTER (Advanced Space borne Thermal Emission and Reflection Radiometer) image is processed to delineate bauxite rich pockets within the laterites. In this regard, spectral signatures of lateritic bauxite samples are analyzed in the laboratory with reference to the spectral features of gibbsite (main mineral constituent of bauxite) and goethite (main mineral constituent of laterite) in VNIR-SWIR (visible-near infrared and short wave infrared) electromagnetic domain. The analysis of spectral signatures of lateritic bauxite samples helps in understanding the differences in the spectral features of bauxites and laterites. Based on these differences; ASTER data based relative band depth and simple ratio images are derived for spatial mapping of the bauxites developed within the lateritic province. In order to integrate the complementary information of different index image, an index based principal component (IPC) image is derived to incorporate the correlative information of these indices to delineate bauxite rich pockets. The occurrences of bauxite rich pockets derived from density sliced IPC image are further delimited by the topographic controls as it has been observed that the major bauxite occurrences of the area are controlled by slope and altitude. In addition to above, IPC image is draped over the digital elevation model (DEM) to illustrate how bauxite rich pockets are distributed with reference to the topographic variability of the terrain. Bauxite rich pockets delineated in the IPC image are also validated based on the known mine occurrences and existing geological map of the bauxite. It is also conceptually validated based on the spectral similarity of the bauxite pixels delineated in the IPC image with the ASTER convolved laboratory spectra of bauxite samples.

  16. Bauxite and bauxite residue, characterization and electron microscopy study

    International Nuclear Information System (INIS)

    Antunes, M.L.P.; Conceicao, F.T.; Toledo, S.P.; Kiyohara, P.K.

    2012-01-01

    Through the Bayer process, bauxite is refined and alumina is produced. In this process, a highly alkaline residue, red mud is generated and its disposal represents an environmental problem. The aim of this paper is to present the characterization of Brazilian bauxite and Brazilian red mud by: X-ray diffraction, specific surface area, chemical composition analysis by ICP-MS, transmission electron microscopy (TEM) and energy dispersive X-ray spectrometry (EDS), and scanning electron microscopy (SEM) and discuss possible applications of this residue. The results identify as a constituent of both materials: Al 2 O 3 , Fe 2 O 3 , TiO 2 and SiO 2 and the presence of Na 2 O in residue. The analysis by electron microscopy of Bauxite shows particles with hexagonal shape and red mud shows small particles size. (author)

  17. Semi-industrial experimental study on bauxite separation using a cell-column integration process

    Science.gov (United States)

    Zhang, Ning-ning; Zhou, Chang-chun; Cong, Long-fei; Cao, Wen-long; Zhou, You

    2016-01-01

    The cyclonic-static micro-bubble flotation column (FCSMC) is a highly efficient mineral processing equipment. In this study, a cell-column (FCSMC) integration process was investigated for the separation of bauxite and its feasibility was analyzed on a theoretical basis. The properties of low-grade bauxite ore from Henan Province, China were analyzed. Parameters such as reagent dosage, scraping bubble time, and pressure of the circulating pump during the sorting process were investigated and optimized to improve the flotation efficiency. On the basis of these parameters, continuous separation experiments were conducted. Bauxite concentrate with an aluminum-to-silicon (A/S) mass ratio of 6.37 and a 77.63wt% recovery rate were achieved via a flow sheet consisting of "fast flotation using a flotation cell, one roughing flotation and one cleaning flotation using flotation columns". Compared with the full-flotation-cells process, the cell-column integration process resulted in an increase of the A/S ratio by 0.41 and the recovery rate by 17.58wt%. Cell-column integration separation technology represents a new approach for the separation of middle-to-low-grade bauxite ore.

  18. Kinetics of the Leaching Process of an Australian Gibbsitic Bauxite by Hydrochloric Acid

    Directory of Open Access Journals (Sweden)

    Aichun Zhao

    2016-01-01

    Full Text Available Gibbsitic bauxite from Australia was leached by hydrochloric acid in this work. Analysis on kinetics for the extraction of Al2O3 was quantitatively studied. It was concluded that the hydrochloric acid leaching process of gibbsitic bauxite was controlled by chemical reaction. Moreover, the mechanism for the dissolution followed the equation, ln⁡k=39.44-1.66×104(1/T, with an apparent activation energy of 137.90 kJ/mol, according to the equation of k=Ae-Ea/RT. This work aims to provide a good theory support for the process control by using a new method of alumina production from the low grade bauxite.

  19. Image analyses in bauxitic ores: The case of the Apulian karst bauxites

    Science.gov (United States)

    Buccione, Roberto; Sinisi, Rosa; Mongelli, Giovanni

    2015-04-01

    This study concern two different karst bauxite deposits of the Apulia region (southern Italy). These deposits outcrop in the Murge and Salento areas: the Murge bauxite (upper Cretaceous) is a typical canyon-like deposit formed in a karst depression whereas the Salento bauxite (upper Eocene - Oligocene) is the result of the erosion, remobilization and transport of older bauxitic material from a relative distant area. This particular bauxite arrangement gave the name to all the same bauxite deposits which are thus called Salento-type deposits. Bauxite's texture is essentially made of sub-circular concentric aggregates, called ooids, dispersed in a pelitic matrix. The textural properties of the two bauxitic ores, as assessed by SEM-EDX, are different. In the bauxite from the canyon-like deposit the ooids/matrix ratio is higher than in the Salento-type bauxite. Furthermore the ooids in the Salento-like bauxite are usually made by a large core surrounded by a narrow, single, accretion layer, whereas the ooids from the canyon-like deposit have a smaller core surrounded by several alternating layers of Al-hematite and boehmite (Mongelli et al., 2014). In order to explore in more detail the textural features of both bauxite deposits, particle shape analyses were performed. Image analyses and the fractal dimension have been widely used in geological studies including economic geology (e.g. Turcotte, 1986; Meakin, 1991; Deng et al., 2011). The geometric properties evaluated are amounts of ooids, average ooids size, ooids rounding and the fractal dimension D, which depends on the ooids/matrix ratio. D is the slope of a plotting line obtained using a particular counting technique on each sample image. The fractal dimension is slightly lower for the Salento-type bauxites. Since the process which led to the formation of the ooids is related to an aggregation growth involving chemical fractionation (Mongelli, 2002) a correlation among these parameters and the contents of major

  20. Natural radioactivity in Egyptian and industrially used australian bauxites and its tailing red mud

    International Nuclear Information System (INIS)

    Ibrahirm, N.; Abd el Maksoud, T.; El Ezaby, B.; Nada, A.; Abu Zeid, H.

    1999-01-01

    Red mud is produced in considerable masses as a waste product in the production of aluminum from bauxite. It may be used for industrial or agricultural purposes. According to it's genesis by weathering and sedimentation bauxites contain high concentrations of uranium and thorium. Three Egyptian bauxites, Australian industry used bauxite and its red mud tailing were analyzed by a high resolution gamma spectrometer, with a hyper pure germanium detector. The three Egyptian bauxites show high concentrations in uranium series, and around 120 Bq kg -1 for uranium -235. K-40 concentrations for these samples ranged from 289 to 575 Bq kg -1 . Thorium series concentrations show lower values. The industrially used bauxite shows very low concentrations for all radioactive nuclides. Its tailing red mud as a low level radioactive waste LLRW, shows low concentrations for uranium - series, thorium - series and also 40 K, so it is recommended to be used in industrial and agricultural purposes, which is not permissible for the normal red mud. (author)

  1. Rare Earth Element Phases in Bauxite Residue

    Directory of Open Access Journals (Sweden)

    Johannes Vind

    2018-02-01

    Full Text Available The purpose of present work was to provide mineralogical insight into the rare earth element (REE phases in bauxite residue to improve REE recovering technologies. Experimental work was performed by electron probe microanalysis with energy dispersive as well as wavelength dispersive spectroscopy and transmission electron microscopy. REEs are found as discrete mineral particles in bauxite residue. Their sizes range from <1 μm to about 40 μm. In bauxite residue, the most abundant REE bearing phases are light REE (LREE ferrotitanates that form a solid solution between the phases with major compositions (REE,Ca,Na(Ti,FeO3 and (Ca,Na(Ti,FeO3. These are secondary phases formed during the Bayer process by an in-situ transformation of the precursor bauxite LREE phases. Compared to natural systems, the indicated solid solution resembles loparite-perovskite series. LREE particles often have a calcium ferrotitanate shell surrounding them that probably hinders their solubility. Minor amount of LREE carbonate and phosphate minerals as well as manganese-associated LREE phases are also present in bauxite residue. Heavy REEs occur in the same form as in bauxites, namely as yttrium phosphates. These results show that the Bayer process has an impact on the initial REE mineralogy contained in bauxite. Bauxite residue as well as selected bauxites are potentially good sources of REEs.

  2. Bauxite Mining and Alumina Refining

    Science.gov (United States)

    Frisch, Neale; Olney, David

    2014-01-01

    Objective: To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Methods: Review article. Results: The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust, alumina dust, and caustic mist in contemporary best-practice bauxite mining and alumina refining operations have not been demonstrated to be associated with clinically significant decrements in lung function. Exposures to bauxite dust and alumina dust at such operations are also not associated with the incidence of cancer. Conclusions: A range of occupational health risks in bauxite mining and alumina refining require the maintenance of effective control measures. PMID:24806720

  3. Bauxite Mining Sustainably

    Science.gov (United States)

    Atkins, Patrick R.; Bayliss, Chris; Ward, Sam

    In 1990, the International Aluminum Institute began a program to report on the bauxite mining and rehabilitation activities of the worldwide industry. A survey process was initiated and reports were published in 1992, 2000 and 2004. The most recent report includes extensive data on mines representing over 70% of the world's output of bauxite and includes a more detailed focus on the social and economic as well as the environmental performance of the industry.

  4. Evaluation of blends bauxite-calcination-method red mud with other industrial wastes as a cementitious material: Properties and hydration characteristics

    International Nuclear Information System (INIS)

    Zhang Na; Liu Xiaoming; Sun Henghu; Li Longtu

    2011-01-01

    Red mud is generated from alumina production, and its disposal is currently a worldwide problem. In China, large quantities of red mud derived from bauxite calcination method are being discharged annually, and its utilization has been an urgent topic. This experimental research was to evaluate the feasibility of blends red mud derived from bauxite calcination method with other industrial wastes for use as a cementitious material. The developed cementitious material containing 30% of the bauxite-calcination-method red mud possessed compressive strength properties at a level similar to normal Portland cement, in the range of 45.3-49.5 MPa. Best compressive strength values were demonstrated by the specimen RSFC2 containing 30% bauxite-calcination-method red mud, 21% blast-furnace slag, 10% fly ash, 30% clinker, 8% gypsum and 1% compound agent. The mechanical and physical properties confirm the usefulness of RSFC2. The hydration characteristics of RSFC2 were characterized by XRD, FTIR, 27 Al MAS-NMR and SEM. As predominant hydration products, ettringite and amorphous C-S-H gel are principally responsible for the strength development of RSFC2. Comparing with the traditional production for ordinary Portland cement, this green technology is easier to be implemented and energy saving. This paper provides a key solution to effectively utilize bauxite-calcination-method red mud.

  5. Bauxite and alumina

    Science.gov (United States)

    Bray, E. Lee

    2013-01-01

    The United States is reliant upon imports for nearly all of the bauxite that it consumes. Small amounts of bauxite and bauxitic clays are produced in Alabama, Arkansas and Georgia for nonmetallurgical uses. Metallurgical-grade bauxite (crude dry) imports in 2012 totaled 10.3 Mt (11.3 million st), 8 percent more than the quantity imported in 2011. Jamaica (46 percent), Guinea (27 percent) and Brazil (25 percent) were the leading suppliers to the United States in 2012. In 2012, 84 kt (92,600 st) of refractory-grade calcined bauxite was imported, an 8-percent decrease compared with imports in 2011. Although domestic steel production increased by about 3 percent in 2012, compared with production in 2011, increased use of magnesia for refractory products may account for the decrease in refractory-grade calcined bauxite imports. Guyana (55 percent) and China (45 percent) were the sources of U.S. refractory-grade calcined bauxite imports. Imports of nonrefractory-grade calcined bauxite in 2012 totaled 323 kt (356,000 st), 24 percent more than the quantity imported in 2011. This increase was attributed to increased use of bauxite in cement, as proppants for hydraulic fracturing by the petroleum industry and by steel makers. Guyana (32 percent), Australia (29 percent) and Greece (25 percent) were the leading sources.

  6. Acid transformation of bauxite residue: Conversion of its alkaline characteristics.

    Science.gov (United States)

    Kong, Xiangfeng; Li, Meng; Xue, Shengguo; Hartley, William; Chen, Chengrong; Wu, Chuan; Li, Xiaofei; Li, Yiwei

    2017-02-15

    Bauxite residue (BR) is a highly alkaline solid hazardous waste produced from bauxite processing for alumina production. Alkaline transformation appears to reduce the environmental risk of bauxite residue disposal areas (BRDAs) whilst potentially providing opportunities for the sustainable reuse and on-going management of BR. Mineral acids, a novel citric acid and a hybrid combination of acid-gypsum treatments were investigated for their potential to reduce residue pH and total alkalinity and transform the alkaline mineral phase. XRD results revealed that with the exception of andradite, the primary alkaline solid phases of cancrinite, grossular and calcite were transformed into discriminative products based on the transformation used. Supernatants separated from BR and transformed bauxite residue (TBR) displayed distinct changes in soluble Na, Ca and Al, and a reduction in pH and total alkalinity. SEM images suggest that mineral acid transformations promote macro-aggregate formation, and the positive promotion of citric acid, confirming the removal or reduction in soluble and exchangeable Na. NEXAFS analysis of Na K-edge revealed that the chemical speciation of Na in TBRs was consistent with BR. Three acid treatments and gypsum combination had no effect on Na speciation, which affects the distribution of Na revealed by sodium STXM imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Characterization of bauxite mud of Alumar to be used as a geopolymer

    International Nuclear Information System (INIS)

    Soares, A.F.B.; Cartaxo, J.M.; Sousa, B.V.; Menezes, R.R.

    2011-01-01

    The process of Geopolymerization aluminium-siliceous materials has prompted several scientific works to develop materials with interesting thermomechanical properties. Currently, one of the problems encountered by the industries responsible for the production of aluminum is the waste from the Bayer process, known as mud bauxite. In our study, the characterization of bauxite (fresh) and residue from two different lakes company ALUMAR to be applied in obtaining geopolymers. Through the results of analysis by X-ray fluorescence (EDX) was observed after the Bayer process, the presence of oxides of sodium, silicon, aluminum and iron in larger quantities. It was found through a combination of diffraction and vibration obtained by infrared spectrometry the presence of silicates and aluminate groups. Thus, the analyzed material will be activated and tested as geopolymer. (author)

  8. Application of Moessbauer spectroscopy to iron-57 bauxite

    International Nuclear Information System (INIS)

    Hill, V.G.; Wynter, C.

    1978-01-01

    Five different samples from bauxite and related terrains in Jamaica were selected for Moessbauer analysis. Sample 1 is lithiophorite, a lithium aluminum manganese oxide, present as an impurity in Jamaican bauxite; sample 2 is a common red bauxite ore, from Kirkvine, Manchester; sample 3 is a pisolitic bauxite from Reynolds, St. Ann; sample 4 is a red bauxite with pisolites from Mocho; and sample 5 is a shaly material containing some lateritic material which characterizes mining areas. Whereas sample 1 contains fine particles of goettite and/or aluminium substituted goettite, samples 2,3,4,5 contain mixtures of haematite and goettite and/or aluminium substituted goettite in varying concentrations. The findings are consistent with Hill's bauxitization process

  9. A study of inter-particle bonds in dry bauxite waste resulting in atmospheric aerosols

    Science.gov (United States)

    Wagh, Arun S.; Thompson, Bentley

    1988-02-01

    Bauxite and Alumina production are one of the main activities of several third world countries such as Jamaica, Brazil, India, Guinea, eastern European countries such as Hungary and Rumania and advanced countries such as Australia, West Germany, Japan and the United States. The mining operations lead to dust pollution, but the refining of bauxite to alumina yield large amounts of highly caustic sludge waste, called "Red Mud". Millions of tons of the waste produced in every country are stored in containment dams or natural valleys. This leads to ground water pollution, destruction of plant and bird life and is hazardous to human settlement in earthquake prone regions like Jamaica. As a result several companies have been looking into dry mud stacking which involves thickening the mud in the refining plants and sprying it on the slopes to sun dry it. Typically it involves a drying field of about two hundred acres, which could act as a potential source of caustic dust. In Jamaica one company has started disposing of the mud in this way. The aerosol formation from such areas depends mainly on the integrity of the top dry layers. Presently this is done by studying the approximate parameters such as the friability of the mud. However, following the recent advances in powder technology it has been possible for us to develop an instrument to study the average interparticle forces between the red mud particles. The instrument is based on the principle of a tensometer and a split cell is used to load specimens. A load cell is used to measure the force and a chart recorder is used for plotting separation and the force. The present study reports elemental composition of the dust and its health hazards. It also reports the physical measurement of the average interparticle force as a function of their separation in the Jamaican mud. The effect of ultraviolet radiation on the strength of the material is studied to see the effect of sun-drying of the waste. The five-fold increase

  10. Application of Response Surface Methodology on Leaching of Iron from Partially Laterised Khondalite Rocks: A Bauxite Mining Waste

    Science.gov (United States)

    Swain, Ranjita; Bhima Rao, R.

    2018-04-01

    In the present investigation, response surface methodology (RSM) is used for a quadratic model that continuously controls the process parameters. This model is used to optimize the removal of iron oxide from Partially Laterised Khondalite (PLK) rocks which is influenced by several independent variables namely acid concentration, time and temperature. Second order response functions are produced for leaching of iron oxide from PLK rocks-a bauxite mining waste. In RSM, Box-Behnken design is used for the process optimization to achieve maximum removal of iron oxide. The influence of the process variables of leaching of iron oxide is presented in the form of 3-D response graphs. The results of this investigation reveals that 3 M hydrochloric acid concentration, 240 min time and 373 K temperature are found to be the best conditions for removal of 99% Fe2O3. The product obtain at this condition contain 80% brightness which is suitable for ceramic and filler industry applications. The novelity of the work is that the waste can be a value added product after suitable physical beneficiation and chemical treatment.

  11. Application of Response Surface Methodology on Leaching of Iron from Partially Laterised Khondalite Rocks: A Bauxite Mining Waste

    Science.gov (United States)

    Swain, Ranjita; Bhima Rao, R.

    2017-08-01

    In the present investigation, response surface methodology (RSM) is used for a quadratic model that continuously controls the process parameters. This model is used to optimize the removal of iron oxide from Partially Laterised Khondalite (PLK) rocks which is influenced by several independent variables namely acid concentration, time and temperature. Second order response functions are produced for leaching of iron oxide from PLK rocks-a bauxite mining waste. In RSM, Box-Behnken design is used for the process optimization to achieve maximum removal of iron oxide. The influence of the process variables of leaching of iron oxide is presented in the form of 3-D response graphs. The results of this investigation reveals that 3 M hydrochloric acid concentration, 240 min time and 373 K temperature are found to be the best conditions for removal of 99% Fe2O3. The product obtain at this condition contain 80% brightness which is suitable for ceramic and filler industry applications. The novelity of the work is that the waste can be a value added product after suitable physical beneficiation and chemical treatment.

  12. Bauxite and alumina

    Science.gov (United States)

    Bray, E.L.

    2012-01-01

    The United States is import-reliant for nearly all of the bauxite that it consumes. Small amounts of bauxite and bauxitic clays are produced in Alabama, Arkansas and Georgia for nonmetallurgical uses. Metallurgical-grade bauxite (crude dry) imports in 2011 totaled 9.54 Mt (10.5 million st), 18 percent more than the quantity imported in 2010. Jamaica (54 percent). Guinea (25 percent) and Brazil (18 percent) were the leading suppliers to the United States in 2011. In 2011,117 kt (129,000 st) of refractory-grade calcined bauxite was imported, a 69-percent decrease compared with imports in 2010. This decrease was partly attributed to an increase in net imports of refractory products such as bricks and crucibles, which were 39 percent higher than in the prior year. Imports of refractory-grade calcined bauxite from Brazil declined by 99 percent and by 75 percent from Greece. Restrictions on exports of raw materials from China also might have contributed a small amount to the decrease in imports. Imports from China declined by 45 percent. Guyana (42 percent), China (35 percent) and Greece (22 percent) were the leading sources of U.S. refractory-grade calcined bauxite imports. Imports of nonrefractory-grade calcined bauxite in 2011 totaled 236 kt (260,000 st), 23 percent less than the quantity imported in 2010. Guyana (51 percent), Australia (37 percent) and China (7 percent) were the leading sources

  13. Development of a process for continuous determination of aluminium in bauxite

    International Nuclear Information System (INIS)

    Freitas, A.M.R. de; Dantas, C.C.; Narain, R.

    1984-01-01

    An analysis of a process to determine aluminium in Bauxite is done, when a relatively small (5 Ci) Am-Be neutron source with 10 7 n/sec giving neutron flux approximatelly 10 4 n/cm 2 .s. is used. (E.G.) [pt

  14. The mineralogy of bauxite for producing smelter-grade alumina

    Science.gov (United States)

    Authier-Martin, M.; Forte, G.; Ostap, S.; See, J.

    2001-12-01

    Aluminum-producing companies rely on low-cost, high-purity, smelter-grade alumina (aluminum oxide), and alumina production utilizes the bulk of bauxites mined world-wide. The mineralogy of the bauxites has a significant impact on the operation of the Bayer process for alumina production. Typically, the Bayer process produces smelter-grade alumina of 99.5% Al2O3, starting from bauxite containing 30% to 60% Al2O3. The main objective of the Bayer process is to extract the maximum amount of aluminum from the bauxite at as high an aluminate concentration in solution as possible, while limiting any troublesome side reactions. Only with a better understanding of the chemistry of the mineral species and a strict control of the operating/processing conditions can the Bayer process produce efficiently, a low cost, high-quality alumina with minimum detrimental environmental impact.

  15. Bauxite Mining and Alumina Refining

    OpenAIRE

    Donoghue, A. Michael; Frisch, Neale; Olney, David

    2014-01-01

    Objective: To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Methods: Review article. Results: The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust,...

  16. Influence of organic waste and residue mud additions on chemical, physical and microbial properties of bauxite residue sand.

    Science.gov (United States)

    Jones, Benjamin E H; Haynes, Richard J; Phillips, Ian R

    2011-02-01

    In an alumina refinery, bauxite ore is treated with sodium hydroxide at high temperatures and pressures and for every tone of alumina produced, about 2 tones of alkaline, saline bauxite processing waste is also produced. At Alcoa, a dry stacking system of disposal is used, and it is the sand fraction of the processing waste that is rehabilitated. There is little information available regarding the most appropriate amendments to add to the processing sand to aid in revegetation. The purpose of this study was to investigate how the addition of organic wastes (biosolids and poultry manure), in the presence or absence of added residue mud, would affect the properties of the residue sand and its suitability for revegetation. Samples of freshly deposited residue sand were collected from Alcoa's Kwinana refinery. Samples were treated with phosphogypsum (2% v/v), incubated, and leached. A laboratory experiment was then set up in which the two organic wastes were applied at 0 or the equivalent to 60 tones ha(-1) in combination with residue mud added at rates of 0%, 10% and 20% v/v. Samples were incubated for 8 weeks, after which, key chemical, physical and microbial properties of the residue sand were measured along with seed germination. Additions of residue mud increased exchangeable Na(+), ESP and the pH, and HCO (3) (-) and Na(+) concentrations in saturation paste extracts. Additions of biosolids and poultry manure increased concentrations of extractable P, NH (4) (+) , K, Mg, Cu, Zn, Mn and Fe. Addition of residue mud, in combination with organic wastes, caused a marked decrease in macroporosity and a concomitant increase in mesoporosity, available water holding capacity and the quantity of water held at field capacity. With increasing residue mud additions, the percentage of sample present as sand particles (2 mm diameter) increased; greatest aggregation occurred where a combination of residue mud and poultry manure were added. Stability of aggregates, as measured by

  17. Carbothermal Upgrading of the Awaso Bauxite Ore using Waste ...

    African Journals Online (AJOL)

    Michael

    2015-06-01

    Jun 1, 2015 ... The use of PWS as reductant prevented the formation of hercynite (FeAl2O4). Keywords: Pure water ... bauxite with high iron oxide content calls for novel .... mineral assemblages likely to form at temperatures below 900 °C ...

  18. Basic and Morphological Properties of Bukit Goh Bauxite

    Science.gov (United States)

    Hasan, Muzamir; Nor Azmi, Ahmad Amirul Faez Ahmad; Tam, Weng Long; Phang, Biao Yu; Azizul Moqsud, M.

    2018-03-01

    Investigation conducted by International Maritime Organization (IMO) concluded that the loss of the Bulk Jupiter that carrying bauxite from Kuantan has uncovered evidence to suggest liquefaction led to loss of stability. This research analysed Bukit Goh bauxite and comparison was made with International Maritime Solid Bulk Cargoes (IMSBC Code) standard. To analyse these characteristics of the bauxite, four samples were selected at Bukit Goh, Kuantan ; two of the samples from the Bukit Goh mine and two samples from the stock piles were tested to identify the bauxite basic and morphological properties by referring to GEOSPEC 3 : Model Specification for Soil Testing ; particle size distribution, moisture content and specific gravity and its morphological properties. Laboratory tests involved including Hydrometer test, Small Pycnometer test, Dry Sieve test and Field Emission Scanning Electron Microscop (FESEM) test. The results show that the average moisture content of raw Bukit Goh bauxite is 20.64% which exceeded the recomended value of maximum 10%. Average fine material for raw bauxite is 37.75% which should not be greater than 30% per IMSBC standard. By that, the bauxite from Bukit Goh mine do not achieved the minimum requirements and standards of the IMSBC standard and need to undergo beneficiation process for better quality and safety.

  19. One step sintering of homogenized bauxite raw material and kinetic study

    Science.gov (United States)

    Gao, Chang-he; Jiang, Peng; Li, Yong; Sun, Jia-lin; Zhang, Jun-jie; Yang, Huan-ying

    2016-10-01

    A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exhibits the liquid-phase sintering behavior. A small portion of impurities existed in the raw material act as a liquid phase. After X-ray diffraction analyses, scanning electron microscopy observations, and kinetics calculations, sintering temperature and heating duration were determined as the two major factors contributing to the sintering process and densification of bauxite ore. An elevated heating temperature and longer duration favor the densification process. The major obstacle for the densification of bauxite material is attributed to the formation of the enclosed blowhole during liquid-phase sintering.

  20. Development of a process for continuous determination of aluminium in bauxite

    International Nuclear Information System (INIS)

    Freitas, A.M.R. de.

    1984-01-01

    A system for aluminium analysis in bauxite using activation technique with the aid of a 5 Ci 241 Am/Be neutron source was developed. The system comprises the following steps: sampling, irradiation and counting. The reaction 27 Al(n,γ) 28 Al is used for determination of aluminium. A 2'' x 2'' NaI(T1) scintillation detector was used for the γ-activity measurements and integral counting technique was employed. Half-life determinations for samples were carried out in order to assure that the induced activity was predominantly due to the radionuclide 28 Al. In order to construct a system with solids, paraffin was chosen as moderator and reflector and an optimum irradiation position was determined. Analysis on a laboratory scale with 100g of the sample showed a good linear correlation between counts and aluminium content in bauxite samples. An irradiation chamber consisting of neutron source, moderator and reflector was constructed for activation of 2 Kg samples. Analysis with these bauxite samples indicated a relative precision in the range of 2 to 3% in less than ten minutes. Based on these results, a preliminary pilot-project was designed for continuous aluminium analysis in bauxite. (Author) [pt

  1. Ball milled bauxite residue as a reinforcing filler in phosphate-based intumescent system

    Directory of Open Access Journals (Sweden)

    Adiat Ibironke Arogundade

    2018-01-01

    Full Text Available Bauxite residue (BR is an alumina refinery waste with a global disposal problem. Of the 120 MT generated annually, only 3 MT is disposed via utilization. One of the significant challenges to sustainable utilization has been found to be the cost of processing. In this work, using ball milling, we achieved material modification of bauxite residue. Spectrometric imaging with FESEM showed the transformation from an aggregate structure to nano, platy particulates, leading to particle size homogeneity. BET analysis showed surface area was increased by 23%, while pH was reduced from 10.8 to 9.1 due to collapsing of the hydroxyl surface by the fracturing action of the ball mill. Incorporation of this into a phosphate-based fire retardant, intumescent formulation led to improved material dispersion and the formation of reinforcing heat shielding char nodules. XRD revealed the formation of ceramic metal phosphates which acted as an additional heat sink to the intumescent system, thereby reducing char oxidation and heat transfer to the substrate. Steel substrate temperature from a Bunsen burner test reduced by 33%. Therefore, ball milling can serve as a simple, low-cost processing route for the reuse of bauxite residue in intumescent composites.

  2. A study of bauxite tailing quality improvement by reverse flotation

    Science.gov (United States)

    Wulandari, W.; Purwasasmita, M.; Sanwani, E.; Malatsih, W.; Fadilla, F.

    2018-01-01

    The pre-treatment of bauxite ore from Tayan, West Kalimantan includes washing and screening fine bauxite particles (-2mm) prior as the feed to the Bayer process for producing alumina. These fine particles are believed to have high content of silica which is detrimental to the process. This washed bauxite tailing still has a significant amount of alumina content. Previous research has indicated that bauxite ore can be upgraded by applying reverse flotation method to reduce its silica content in the ore. Therefore, this study is aimed to utilize reverse flotation method to recover alumina content from washed bauxite tailing. The reverse flotation experiments were carried out at pH of 6 and 8; while the particle sizes were varied at - 140+270 mesh and -270 mesh, using a batch and circuit configuration. The result of this study shows that the batch reverse flotation can recover alumina in the tailing up to 81.4%, however the silica content is still significant. The complexity of silica-alumina minerals in the tailing prevents a complete separation of the ores by only using reverse flotation.

  3. FOUR CENTURIES OF BAUXITE MINING

    Directory of Open Access Journals (Sweden)

    Rikard Marušić

    1993-12-01

    Full Text Available In the paper the results of many years of archival and field investigations in the history of bauxite mining of the three authors are presented. It was established that in Istria in the valley of the river Mirna beneath the Castle of Sovinjak bauxite was exploited already 400 years ago, and that 1808 about this ore the first scientific account was published. Accordingly, the statements in the professional literature that the first bauxite mine opened 1873 in the French Provence and that the bauxite ore for the first time was scientifically described 1821 have to be revised. About this necessary revision here the essential proofs are produced.

  4. FOUR CENTURIES OF BAUXITE MINING

    OpenAIRE

    Rikard Marušić; Krešimir Sakač; Slavko Vujec

    1993-01-01

    In the paper the results of many years of archival and field investigations in the history of bauxite mining of the three authors are presented. It was established that in Istria in the valley of the river Mirna beneath the Castle of Sovinjak bauxite was exploited already 400 years ago, and that 1808 about this ore the first scientific account was published. Accordingly, the statements in the professional literature that the first bauxite mine opened 1873 in the French Provence and that the b...

  5. Treatment of alumina refinery waste (red mud) through neutralization techniques: A review.

    Science.gov (United States)

    Rai, Suchita; Wasewar, K L; Agnihotri, A

    2017-06-01

    In the Bayer process of extraction of alumina from bauxite, the insoluble product generated after bauxite digestion with sodium hydroxide at elevated temperature and pressure is known as 'red mud' or 'bauxite residue'. This alumina refinery waste is highly alkaline in nature with a pH of 10.5-12.5 and is conventionally disposed of in mostly clay-lined land-based impoundments. The alkaline constituents in the red mud impose severe and alarming environmental problems, such as soil and air pollution. Keeping in view sustainable re-vegetation and residue management, neutralization/treatment of red mud using different techniques is the only alternative to make the bauxite residue environmentally benign. Hence, neutralization techniques, such as using mineral acids, acidic waste (pickling liquor waste), coal dust, superphosphate and gypsum as amenders, CO 2 , sintering with silicate material and seawater for treatment of red mud have been studied in detail. This paper is based upon and emphasizes the experimental work carried out for all the neutralization techniques along with a comprehensive review of each of the processes. The scope, applicability, limitations and feasibility of these processes have been compared exhaustively. Merits and demerits have been discussed using flow diagrams. All the techniques described are technically feasible, wherein findings obtained with seawater neutralization can be set as a benchmark for future work. Further studies should be focused on exploring the economical viability of these processes for better waste management and disposal of red mud.

  6. THE IMPROVEMENT OF THE EXCAVATION METHODS IN BAUXITE DEPOSITS

    Directory of Open Access Journals (Sweden)

    Borislav Perić

    1990-12-01

    Full Text Available The underground bauxite excavation in Yugoslavia is getting more important recently due to gradual exploitation of shallow deposits. The main excavation method is sublevel caving method. That technology of exploitation is characterized by high excavation loosses reaching even to 50% due to mixing of bauxite with waste. By beds with competent limestone roof which are not liable to direct caving are formed unplanned open spaces so the work safety is often dangercd by sudden caving. That was the reason for carrying out the observations in situ and investigations on mathematical models to define boundary of excavated space stability. This investigation were the basis for the new conception of further excavation of the »Jukići-Didare« mine with the application of even three exploitation methods maximally adapted to the characteristics of the remaining part of deposit.

  7. Technospheric Mining of Rare Earth Elements from Bauxite Residue (Red Mud): Process Optimization, Kinetic Investigation, and Microwave Pretreatment.

    Science.gov (United States)

    Reid, Sable; Tam, Jason; Yang, Mingfan; Azimi, Gisele

    2017-11-10

    Some rare earth elements (REEs) are classified under critical materials, i.e., essential in use and subject to supply risk, due to their increasing demand, monopolistic supply, and environmentally unsustainable and expensive mining practices. To tackle the REE supply challenge, new initiatives have been started focusing on their extraction from alternative secondary resources. This study puts the emphasis on technospheric mining of REEs from bauxite residue (red mud) produced by the aluminum industry. Characterization results showed the bauxite residue sample contains about 0.03 wt% REEs. Systematic leaching experiments showed that concentrated HNO 3 is the most effective lixiviant. However, because of the process complexities, H 2 SO 4 was selected as the lixiviant. To further enhance the leaching efficiency, a novel process based on microwave pretreatment was employed. Results indicated that microwave pretreatment creates cracks and pores in the particles, enabling the lixiviant to diffuse further into the particles, bringing more REEs into solution, yielding of 64.2% and 78.7% for Sc and Nd, respectively, which are higher than the maximum obtained when HNO 3 was used. This novel process of "H 2 SO 4 leaching-coupled with-microwave pretreatment" proves to be a promising technique that can help realize the technological potential of REE recovery from secondary resources, particularly bauxite residue.

  8. Process Design Aspects for Scandium-Selective Leaching of Bauxite Residue with Sulfuric Acid

    OpenAIRE

    Konstantinos Hatzilyberis; Theopisti Lymperopoulou; Lamprini-Areti Tsakanika; Klaus-Michael Ochsenkühn; Paraskevas Georgiou; Nikolaos Defteraios; Fotios Tsopelas; Maria Ochsenkühn-Petropoulou

    2018-01-01

    Aiming at the industrial scale development of a Scandium (Sc)-selective leaching process of Bauxite Residue (BR), a set of process design aspects has been investigated. The interpretation of experimental data for Sc leaching yield, with sulfuric acid as the leaching solvent, has shown significant impact from acid feed concentration, mixing time, liquid to solids ratio (L/S), and number of cycles of leachate re-usage onto fresh BR. The thin film diffusion model, as the fundamental theory for l...

  9. Serum aluminium levels of workers in the bauxite mines.

    Science.gov (United States)

    de Kom, J F; Dissels, H M; van der Voet, G B; de Wolff, F A

    1997-01-01

    Aluminium is produced from the mineral bauxite. Occupational exposure is reported during the industrial processing of aluminium and is associated with pulmonary and neurotoxicity. However, data on exposure and toxicity of workers in the open bauxite mining industry do not exist. Therefore, a study was performed to explore aluminium exposure in employees involved in this bauxite mining process in a Surinam mine. A group of workers occupationally exposed to aluminium in an open bauxite mine were compared with a group of nonexposed wood processors. Serum aluminium was analyzed using atomic absorption spectrometry Data from the clinical chemistry of the blood and a questionnaire were used to explore determinants for aluminium exposure. No significant difference between serum aluminium in the exposed (4.4 +/- 2.0 micrograms/L, n = 27) and control group (5.1 +/- 1.5 micrograms/L, n = 27) was detected. For the serum concentration of the clinical chemical variables (calcium, citrate, and creatinine), a statistically significant difference was computed (p < or = 0.02) between the exposed and control group. All levels were slightly higher in the exposed group; no statistically significant correlations with serum aluminium were found. In this study, serum aluminium values were in the normal range, no significant difference between the groups could be detected despite long-term occupational exposure.

  10. Raman spectroscopic analysis of real samples: Brazilian bauxite mineralogy

    Science.gov (United States)

    Faulstich, Fabiano Richard Leite; Castro, Harlem V.; de Oliveira, Luiz Fernando Cappa; Neumann, Reiner

    2011-10-01

    In this investigation, Raman spectroscopy with 1064 and 632.8 nm excitation was used to investigate real mineral samples of bauxite ore from mines of Northern Brazil, together with Raman mapping and X-rays diffraction. The obtained results show clearly that the use of microRaman spectroscopy is a powerful tool for the identification of all the minerals usually found in bauxites: gibbsite, kaolinite, goethite, hematite, anatase and quartz. Bulk samples can also be analysed, and FT-Raman is more adequate due to better signal-to-noise ratio and representativity, although not efficient for kaolinite. The identification of fingerprinting vibrations for all the minerals allows the acquisition of Raman-based chemical maps, potentially powerful tools for process mineralogy applied to bauxite ores.

  11. Assessment of bauxite, clay, and laterite deposits in Afghanistan

    Science.gov (United States)

    Renaud, Karine M.; Wardlaw, Bruce R.; Hubbard, Bernard E.

    2015-01-01

    Bauxite-bearing rocks are present in several regions of Afghanistan; specifically, the southeast segment of the North Afghanistan Platform, the eastern parts of South Afghanistan, and within the Afghanistan-North and -South Pamir Fold Regions. Bauxite-bearing rocks occur at various stratigraphic levels, in lithologically different sequences of sedimentary rocks. The bauxites are paleosols and represent previous, rather than recent, weathering events. Bauxites and bauxite-type horizons are most common at the base of carbonate rock units, where they form the basal horizons of sedimentary rock sequences separated by erosion and stratigraphic unconformity surfaces. Less common are zones in redeposited weathering developed on igneous rocks. At present there are five known stratigraphic intervals with significant bauxite and bauxite-type deposits and occurrences: the lower Permian, the upper Permian, the Upper Triassic, the Lower Jurassic, and the base of the Upper Jurassic.

  12. The geomicrobiology of bauxite deposits

    Directory of Open Access Journals (Sweden)

    Xiluo Hao

    2010-10-01

    Full Text Available Bauxite deposits are studied because of their economic value and because they play an important role in the study of paleoclimate and paleogeography of continents. They provide a rare record of the weathering and evolution of continental surfaces. Geomicrobiological analysis makes it possible to verify that microorganisms have played a critical role during the formation of bauxite with the possibility already intimated in previous studies. Ambient temperature, abundance of water, organic carbon and bioavailable iron and other metal substrates provide a suitable environment for microbes to inhabit. Thiobacillus, Leptospirilum, Thermophilic bacteria and Heterotrophs have been shown to be able to oxidize ferrous iron and to reduce sulfate-generating sulfuric acid, which can accelerate the weathering of aluminosilicates and precipitation of iron oxyhydroxides. Microorganisms referred to the genus Bacillus can mediate the release of alkaline metals. Although the dissimilatory iron-reducing and sulfate-reducing bacteria in bauxites have not yet been identified, some recorded authigenic carbonates and “bacteriopyrites” that appear to be unique in morphology and grain size might record microbial activity. Typical bauxite minerals such as gibbsite, kaolinite, covellite, galena, pyrite, zircon, calcium plagioclase, orthoclase, and albite have been investigated as part of an analysis of microbial mediation. The paleoecology of such bauxitic microorganisms inhabiting continental (sub surfaces, revealed through geomicrobiological analysis, will add a further dimension to paleoclimatic and paleoenvironmental studies.

  13. Respiratory symptoms and lung function in bauxite miners.

    Science.gov (United States)

    Beach, J R; de Klerk, N H; Fritschi, L; Sim, M R; Musk, A W; Benke, G; Abramson, M J; McNeil, J J

    2001-09-01

    To determine whether cumulative bauxite exposure is associated with respiratory symptoms or changes in lung function in a group of bauxite miners. Current employees at three bauxite mines in Australia were invited to participate in a survey comprising: questionnaire on demographic details, respiratory symptoms, and work history; skin prick tests for four common aeroallergens; and spirometry. A task exposure matrix was constructed for bauxite exposure in all tasks in all jobs based on monitoring data. Data were examined for associations between cumulative bauxite exposure, and respiratory symptoms and lung function, by regression analyses. The participation rate was 86%. Self-reported work-related respiratory symptoms were reported by relatively few subjects (1.5%-11.8%). After adjustment for age and smoking no significant differences in the prevalence of respiratory symptoms were identified between subjects, in the quartiles of cumulative bauxite exposure distribution. The forced expiratory volume in I s (FEV1) of the exposed group was found to be significantly lower than that for the unexposed group. After adjustment for age, height, and smoking there were no statistically significant differences between quartiles in FEVI, forced vital capacity (FVC) and FEVl/FVC ratio. These data provide little evidence of a serious adverse effect on respiratory health associated with exposure to bauxite in an open-cut bauxite mine in present day conditions.

  14. Reforestation of bauxite mine spoils with Eucalyptus tereticornis Sm. seedlings inoculated with arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    N. Krishnakumar

    2012-11-01

    Full Text Available Open cast mining for bauxite at Yercaud hills (India resulted indegradation of forest ecosystem and production of large quantities of waste rocks (called mine spoils. To ameliorate mine spoils, topsoil is used to spread over before the planting of tree species, conventional method as the topsoil has a good structure, water holding capacity and beneficial microbes like Arbuscular Mycorrhizal (AM fungi essential for plant growth.However, the use of top soil is expensive and in this study bauxite mine spoils were reforestated with AM fungi instead of it. The beneficial microbes AM fungi (Glomus aggregatum Schenck & Smith, G. fasciculatum(Thatcher Gerd. & Trappe emend. Walker & Koske, G. geosporum(Nicol. & Gerd. Walker were isolated, cultured and inoculated into the seedlings of Eucalyptus tereticornis Sm. and grown in bauxite mine spoils as potting medium under nursery conditions. Then, the biomass improved seedlings of E. tereticornis with inoculation of AM fungi were directly transplanted at bauxite mine spoils. After transplantation of the seedlings at bauxite mine spoils, the growth and survival rate were monitored for two years. The AM fungi inoculated seedlings of E. tereticornis showed 95% survival over the control seedlings and their growth was also significantlyhigher. Tissue nutrients (N, P, K were also found higher inAM fungi inoculated E. tereticornis than un inoculated control seedlings.

  15. Reforestation of Bauxite mine spoils with Eucalyptus tereticornis Sm. seedlings inoculated with Arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    A. Karthikeyan

    2012-12-01

    Full Text Available Open cast mining for bauxite at Yercaud hills (India resulted in degradation of forest ecosystem and production of large quantities of waste rocks (called mine spoils. To ameliorate mine spoils, topsoil is used to spread over before the planting of tree species, conventional method as the topsoil has a good structure, water holding capacity and beneficial microbes like Arbuscular Mycorrhizal (AM fungi essential for plant growth. However, the use of top soil is expensive and in this study bauxite mine spoils were reforestated with AM fungi instead of it. The beneficial microbes AM fungi (Glomus aggregatum Schenck & Smith, G. fasciculatum (Thatcher Gerd. & Trappe emend. Walker & Koske, G. geosporum (Nicol. & Gerd. Walker were isolated, cultured and inoculated into the seedlings ofEucalyptus tereticornis Sm. and grown in bauxite mine spoils as potting medium under nursery conditions. Then, the biomass improved seedlings of E. tereticornis with inoculation of AM fungi were directly transplanted at bauxite mine spoils. After transplantation of the seedlings at bauxite mine spoils, the growth and survival rate were monitored for two years. The AM fungi inoculated seedlings ofE. tereticornis showed 95% survival over the control seedlings and their growth was also significantly higher. Tissue nutrients (N, P, K were also found higher in AM fungi inoculated E. tereticornis than un inoculated control seedlings. 

  16. Sustainable Bauxite Mining — A Global Perspective

    Science.gov (United States)

    Wagner, Christian

    In 2008 the International Aluminium Institute commissioned its fourth sustainable bauxite mining report with the aim to collect global data on the environmental, social and economic impacts of bauxite mining operations and their rehabilitation programmes. The report shows that bauxite mining has become sustainable and land area footprint neutral;it is a relatively small land use operation when compared to most other types of mining. All operations have clearly defined rehabilitation objectives, fully integrated rehabilitation programmes, and written rehabilitation procedures. The rehabilitation objectives can be summarized as follows: "The bauxite mining operations aim to restore pre-mining environment and the respective conditions; this can be a self-sustaining ecosystem consisting of native flora and fauna or any other land-use to the benefit of the local community".

  17. Management of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.J. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Civil Engineering

    1996-12-31

    This chapter introduces the range of solid waste materials produced in the mining and mineral processing industries, with particular reference to Australia. The waste materials are characterised and their important geotechnical engineering properties are discussed. Disposal management techniques for metalliferous, coal, heavy mineral sand, fly ash and bauxite solid wastes are described. Geo-technical techniques for the management of potential contaminants are presented. Minimisation and utilisation of solid wastes, and the economics of solid waste management, are discussed from the perspectives of policy, planning, costing and rehabilitation. 19 figs., 2 tabs.

  18. Kaolinite removal from bauxite by flotation

    Directory of Open Access Journals (Sweden)

    Otávia Martins Silva Rodrigues

    Full Text Available Abstract This paper presents a potential condition to separate kaolinite through flotation when it is present in bauxite ore. This research anticipates a Brazilian industry requirement, considering the tendency towards the need for aluminosilicates removal from bauxite ores, as has already occurred in China. Kaolinite is the most abundant aluminosilicate, and gibbsite is the main aluminum bearing mineral in Brazilian bauxite ores. The first step was a fundamental study involving microflotation experiments with pure samples of kaolinite and gibbsite. Ammonium quaternary salts and amines were used as the collector and corn starch as the depressant. In a fundamental study, the best conditions determined in the first step were evaluated for the flotation of kaolinite from bauxite ore using laboratory scale experiments. Tests with AQ142/starch (pH 10 and CTAB (pH 7 led to satisfactory results. In general, the highest values of alumina/silica mass ratio were obtained with AQ142/starch and the highest values of mass recovery and metallurgical recovery were achieved with CTAB.

  19. THE BAUXITES AND JELAR - BEDS

    Directory of Open Access Journals (Sweden)

    Krešimir Sakač

    1993-12-01

    Full Text Available Minor bauxite deposits and occurrences were formed in technically disturbed environments in the middle part of the Adriatic geotectonic unit in Dinarides, contemporary with the clastic Jelar-beds in the Late Lutetian time. Uneven chemical composition of these Eocene bauxites, their sporadic occurrences in developed paleorelief as well as characteristic petrographic composition of the immediate overlying rocks point out at different genetical conditions (the paper is published in Croatian.

  20. Bauxite formation on Tertiary sediments and Proterozoic bedrock in Suriname

    NARCIS (Netherlands)

    Monsels, D.A.

    2018-01-01

    The lateritic bauxite deposits in Suriname are traditionally distinguished into Coastal plain bauxites and Plateau bauxites, a subdivision that is primarily based on their topographic and geographic position. The first group is located in the lowlands of the coastal plain, while the second group is

  1. LOWER PALEOGENE BAUXITES OF VINIŠĆE, UGLJAN, SILBA AND OLIB

    Directory of Open Access Journals (Sweden)

    Berislav Šebečić

    1999-12-01

    Full Text Available Bauxite Deposits of Lower Paleogene in the studied area are minor and rare. In these bauxites and bauxitic limestones oolitic textures and bochmite composition prevail as in other Lower Paleogene bauxites of Dinarides, however, with a difference that these bauxites more frequently have increased contents of kaolinite. Bauxites were created during the emergence wich lasted from the end of Senonian to the Upper Paleocene — Lower Eocene. The analyzed bauxites have the increased contents of silica and they differ in regard to the contents of Al2O3 and microelements. There are differences also in the degree of sphericity of ooides, while the degree of roundness is more or less equal. On the basis of investigations so far, it may be concluded that the most advantageous conditions for the formation of Lower Paleogene bauxites have been in Istria and Herzegovina. Less favourable condi¬tions have been in the area of today's islands of the Northern Adriatic. The most unfavourable were the areas of Southern Primorje and Northern Dalmatia, as shown in the example of Lower Paleogene deposits described here (the paper is published in Croatian.

  2. Perspectives for on-line analysis of bauxite by neutron irradiation

    Science.gov (United States)

    Beurton, Gabriel; Ledru, Bertrand; Letourneur, Philippe

    1995-03-01

    The interest in bauxite as a major source of alumina results in a strong demand for on-line instrumentation suitable for sorting, blending, and processing operations at the bauxite mine and for monitoring instrumentation in the Bayer process. The results of laboratory experiments based on neutron interactions with bauxite are described. The technique was chosen in order to overcome the problem of spatial heterogeneity in bulk mineral analysis. The evaluated elements contributed to approximately 99.5% of the sample weight. In addition, the measurements provide valuable information on physical parameters such as density, hygrometry, and material flow. Using a pulsed generator, the analysis system offers potential for on-line measurements (borehole logging or conveyor belt). An overall description of the experimental set-up is given. The experimental data include measurements of natural radioactivity, delayed radioactivity induced by activation, and prompt gamma rays following neutron reaction. In situ applications of neutron interactions provide continuous analysis and produce results which are more statistically significant. The key factors contributing to advances in industrial applications are the development of high count rate gamma spectroscopy and computational tools to design measurement systems and interpret their results.

  3. Occurrence and mineralogy of ferruginous bauxites along the eastern seaboard of South Africa

    International Nuclear Information System (INIS)

    Fitzpatrick, R.W.

    1983-01-01

    The distribution of ferruginous bauxites along the eastern seaboard of South Africa is shown in a small-scale map and their genesis is briefly described. The aluminium oxide, iron oxide, primary slightly-altered iron and titanium oxides and layer silicate minerals in some typical ferruginous bauxites from the eastern seaboard of South Africa have been investigated by X-ray powder diffraction (XRD), infra-red spectroscopy (IR), thin section, electron optical (SEM and TEM) and chemical extraction analysis. The dominant aluminium oxide mineral is well-crystalline gibbsite. Traces of boehmite were identified in some samples. The dominant iron oxide mineral is finely-divided goethite containing from 20 to 25 mole per cent AIO(OH), this being the mineral which gives the bauxites their characteristic yellowish colour. The reddish bauxites also contain finely-divided Al-substituted hematite which masks the colour of the goethite. The aluminium incorporated in the iron oxide structures is not recoverable by the normal Bayer Process

  4. THE TECHNOLOGY OF THE HYDROLYSİS PROCESS OF ALUMINA PRODUCTION FROM THE BAUXITES

    Directory of Open Access Journals (Sweden)

    Sami ŞAHİN

    2000-01-01

    Full Text Available The degree of growth level for many countries can be measured with their aluminum production and explatation rates. Ever though a great partion of aluminum hydroxide is turned into alumina still it has great merit. On the other hand, a large percentage of alumina is used in the aluminum production. The operation in the decomposition processes is referred to succinetly as hydrolysis process. Aluminum hydroxide is obtained from the aluminate solution. This production is named as hydrate and settled down which is proceded by filtration and finally sent to the calcination unit. Hydrolysis process is one of the most important stages in the production of alumina from bauxites. The ocovinence of hydrolysis reaction in a desirable manner is dependent on the factors that effect the reaction rate.

  5. Merits of using andalusite-based refractories compared to bauxite-based refractories

    OpenAIRE

    Nyoka, M.; Brazier, D.; Courtney, T.; Parry, R.A.

    2013-01-01

    Historically bauxite-based refractories have been used in applications where andalusite-based refractories could work. Bauxite-based refractories were chosen over andalusite-based refractories mainly because of the availability of low-cost Chinese bauxite and also because many furnaces were designed by international companies that cannot easily access high-quality products. Currently, the availability of low-cost bauxite is under threat as a result of high export duties and tariffs as well as...

  6. Effects of iron-aluminium oxides and organic carbon on aggregate stability of bauxite residues.

    Science.gov (United States)

    Zhu, Feng; Li, Yubing; Xue, Shengguo; Hartley, William; Wu, Hao

    2016-05-01

    In order to successfully establish vegetation on bauxite residue, properties such as aggregate structure and stability require improvement. Spontaneous plant colonization on the deposits in Central China over the last 20 years has revealed that natural processes may improve the physical condition of bauxite residues. Samples from three different stacking ages were selected to determine aggregate formation and stability and its relationship with iron-aluminium oxides and organic carbon. The residue aggregate particles became coarser in both dry and wet sieving processes. The mean weight diameter (MWD) and geometry mean diameter (GMD) increased significantly, and the proportion of aggregate destruction (PAD) decreased. Natural stacking processes could increase aggregate stability and erosion resistant of bauxite residues. Free iron oxides and amorphous aluminium oxides were the major forms in bauxite residues, but there was no significant correlation between the iron-aluminium oxides and aggregate stability. Aromatic-C, alkanes-C, aliphatic-C and alkenes-C were the major functional groups present in the residues. With increasing stacking age, total organic carbon content and aggregate-associated organic carbon both increased. Alkanes-C, aliphatic-C and alkenes-C increased and were mainly distributed in macro-aggregates, whereas aromatic-C was mainly distributed in aluminium oxides maybe more important for stability of micro-aggregates.

  7. Natural radionuclides in bauxitic tailings (Red-Mud) in the Gulf of Corinth, Greece

    International Nuclear Information System (INIS)

    Papatheodorou, G.; Maratou, A.; Ferentinos, G.; Papaefthymiou, H.

    2004-01-01

    A detailed environmental survey was carried out in the central Gulf of Corinth in order to determine radionuclides in the bauxite ed-mud tailings which have been discharged on the sea floor by a Bauxite Processing Plant (Aluminio Ellados A.E). The discharge of bauxitic tailings via two pipelines at a water depth of 100 m, in Antikyra Bay (Northern Gulf of Corinth), has resulted in the formation of two red-mud mound-like deposits. The red-mud deposits at the mouth of the out falls, are not stable and very often red-mud masses are detached from the two main deposits and are transported to the Corinth central basin, by turbidity currents, at a water depth of 850 m and about 17 km away from the main deposits. Thus, at the Antikyra bay, the red-mud has formed a surficial veneer (0.5-2.0 cm) on the sea floor. On the Corinth central basin floor the red mud has formed successive red-mud layers which are interrupted by layers of natural mud. Fifteen gravity cores have been selected from the studied area and a number of bauxite samples have been collected from mines that supply the bauxite processing plant. Red-mud, natural mud and bauxite samples were analyzed for 238 U 226 Ra, 232 Th, 40 K, and 137 Cs by direct gamma spectrometry. The study of radionuclides concentrations has shown that: (a) the enrichment factor of radionuclides in the red-mud in the main deposit at the mouth of the out falls, in relation to bauxite samples, is about 2.0, (b) the enrichment factor of 238 U, 226 Ra and 232 Th in the red-mud in the main deposit and the central basin, in relation to natural sediments below, is visibly higher than 1.0 (2.0-19.0) whilst 40 K exhibits the opposite trend, and (c) the enrichment/dilution factor of radionuclides in the red-mud surficial veneer at the Antikyra Bay, in relation to the natural sediments below, is ranging between 0.4 and 3.5. (author)

  8. Hidden values in bauxite residue (red mud): recovery of metals.

    Science.gov (United States)

    Liu, Yanju; Naidu, Ravi

    2014-12-01

    Bauxite residue (red mud) is a hazardous waste generated from alumina refining industries. Unless managed properly, red mud poses significant risks to the local environment due to its extreme alkalinity and its potential impacts on surface and ground water quality. The ever-increasing generation of red mud poses significant challenges to the aluminium industries from management perspectives given the low proportion that are currently being utilized beneficially. Red mud, in most cases, contains elevated concentrations of iron in addition to aluminium, titanium, sodium and valuable rare earth elements. Given the scarcity of iron supply globally, the iron content of red mud has attracted increasing research interest. This paper presents a critical overview of the current techniques employed for iron recovery from red mud. Information on the recovery of other valuable metals is also reviewed to provide an insight into the full potential usage of red mud as an economic resource rather than a waste. Traditional hydrometallurgy and pyrometallurgy are being investigated continuously. However, in this review several new techniques are introduced that consider the process of iron recovery from red mud. An integrated process which can achieve multiple additional values from red mud is much preferred over the single process methods. The information provided here should help to improve the future management and utilization of red mud. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Bauxite and Kaolin Deposits of the Irwinton district, Georgia

    Science.gov (United States)

    Lang, Walter B.; Warren, Walter C.; Thompson, Raymond M.; Overstreet, Elizabeth F.

    1965-01-01

    The Irwinton district is in the central part of Georgia at the inner margin of the Coastal Plain province. The oldest rocks exposed in the district are crystalline rocks of the Piedmont province. They are unconformably overlain by nonmarine sedimentary strata of Late Cretaceous age, including gravel, micaceous sand, and lenses of kaolin. Bauxite has been found in a few of the kaolin lenses near the top of the sequence of these strata. During a long period prior to deposition of the over- lying marine beds of the Claiborne and Jackson Groups (middle and upper Eocene), the Upper Cretaceous strata were subjected to subaerial erosion. The bauxite deposits are considered to have formed during this period. They range in thickness from a few inches to more than 10 feet and occupy areas ranging from a few square feet to more than 5 acres. Most of the known bauxite deposits lie along the valleys of Commissioners Creek and Big Sandy Creek in Wilkinson County. The kaolin lenses are much larger than the bauxite deposits; some of the lenses underlie more than 200 acres and are more than 20 feet thick. Bauxite was discovered in the district in 1907 and was mined from 1910 to 1928. A few additional carloads of ore were shipped in 1941 and 1942, but no ore has been mined since that time. Reserves of high-grade bauxite are very small. Reserves of all grades of bauxite plus bauxitic clay may be about 400,000 long tons. The Irwinton district is the principal source of high-grade kaolin in the United States. The presence of kaolin here has been known since early colo- nial time, and it has been mined continuously since 1897. Production in 1959 was 1,940,279 short tons. The reserves of kaolin are very large but have never been adequately measured. Reserves of first and second grade kaolin may be 67 to 84 million short tons. Kaolin of lower grade is present in larger quantity.

  10. Spectral unmixing of hyperspectral data to map bauxite deposits

    Science.gov (United States)

    Shanmugam, Sanjeevi; Abhishekh, P. V.

    2006-12-01

    This paper presents a study about the potential of remote sensing in bauxite exploration in the Kolli hills of Tamilnadu state, southern India. ASTER image (acquired in the VNIR and SWIR regions) has been used in conjunction with SRTM - DEM in this study. A new approach of spectral unmixing of ASTER image data delineated areas rich in alumina. Various geological and geomorphological parameters that control bauxite formation were also derived from the ASTER image. All these information, when integrated, showed that there are 16 cappings (including the existing mines) that satisfy most of the conditions favouring bauxitization in the Kolli Hills. The study concludes that spectral unmixing of hyperspectral satellite data in the VNIR and SWIR regions may be combined with the terrain parameters to get accurate information about bauxite deposits, including their quality.

  11. Improvement of Sodium Leaching Ratio of Ferric Bauxite Sinter after Direct Reduction

    Directory of Open Access Journals (Sweden)

    Wentao Hu

    2017-01-01

    Full Text Available The sodium leaching ratio (ηN of ferric bauxite direct reduction process is much lower than that of ordinary bauxite; thus, the former consumes more sodium than the latter. ηN can be promoted by increasing the dosage of sodium or restricted by increasing the heating temperature and time. However, the restriction effect of heating temperature is 16.67 times larger than that of heating time, and the restriction effect decreases 47.03 times faster when heating temperature increases than that process of heating time. These imply that ηN improves with the increasing sodium carbonate dosage and the decreasing heating temperature.

  12. Influence of arbuscular mycorrhizal fungi on the growth and nutrient status of bermudagrass grown in alkaline bauxite processing residue

    International Nuclear Information System (INIS)

    Giridhar Babu, A.; Sudhakara Reddy, M.

    2011-01-01

    A nursery experiment was conducted to evaluate the potential role of arbuscular mycorrhizal (AM) fungi in encouraging the vegetation cover on bauxite residue (red mud) sites. An alkali tolerant bermudagrass (Cynodon dactylon) adapted to local conditions were grown in red mud with different amendments with and without AM fungi to assess mycorrhizal effects on plant growth, mineral nutrition, metal uptake and neutralization of bauxite residue. Inoculation of AM fungi significantly increased the plant growth, nutrient uptake and reduced Fe, Al accumulation in plant tissue and also improved the soil physico-chemical and biochemical properties. Gypsum and sludge amended treatments inoculated with AM fungi had maximum biomass, nutrient uptake and reduced accumulation of metals. The neutralization of red mud was significant in presence of AM fungi than control. The experiment provided evidence for the potential use of bermudagrass in combination with AM fungi for ecological restoration of bauxite residue sites. - Inoculation of red mud tolerant AM fungi enhanced the growth and nutrient status of bermudagrass and the physico-chemical properties of the bauxite residues amended with gypsum or sewage sludge.

  13. Influence of arbuscular mycorrhizal fungi on the growth and nutrient status of bermudagrass grown in alkaline bauxite processing residue

    Energy Technology Data Exchange (ETDEWEB)

    Giridhar Babu, A., E-mail: anamgiri@gmail.co [Department of Biotechnology, Thapar University, Patiala 147 004 (India); Sudhakara Reddy, M., E-mail: msreddy@thapar.ed [Department of Biotechnology, Thapar University, Patiala 147 004 (India)

    2011-01-15

    A nursery experiment was conducted to evaluate the potential role of arbuscular mycorrhizal (AM) fungi in encouraging the vegetation cover on bauxite residue (red mud) sites. An alkali tolerant bermudagrass (Cynodon dactylon) adapted to local conditions were grown in red mud with different amendments with and without AM fungi to assess mycorrhizal effects on plant growth, mineral nutrition, metal uptake and neutralization of bauxite residue. Inoculation of AM fungi significantly increased the plant growth, nutrient uptake and reduced Fe, Al accumulation in plant tissue and also improved the soil physico-chemical and biochemical properties. Gypsum and sludge amended treatments inoculated with AM fungi had maximum biomass, nutrient uptake and reduced accumulation of metals. The neutralization of red mud was significant in presence of AM fungi than control. The experiment provided evidence for the potential use of bermudagrass in combination with AM fungi for ecological restoration of bauxite residue sites. - Inoculation of red mud tolerant AM fungi enhanced the growth and nutrient status of bermudagrass and the physico-chemical properties of the bauxite residues amended with gypsum or sewage sludge.

  14. Bauxite Mine Rehabilitation Programs — A Progress Report Patrick Atkins, Alcoa Inc.

    Science.gov (United States)

    Donaldson, Don; Raahauge, Benny E.

    Bauxite is the primary source of raw material for the production of aluminum oxide and aluminum metal. At the current primary aluminum production level, known bauxite reserves will last for hundreds of years. Two to three tonnes of bauxite are required to produce one tonne of alumina and two tonnes of alumina are required to produce one tonne of aluminum metal. Typical bauxites contain from 30%-60% aluminum hydroxides and various levels of iron, silica, and titanium impurities. Approximately 125 million tonnes of bauxite are mined each year from 45 mines located on every continent except Antarctica. The major mining areas are located in the tropics, above and below the equator, as well as in Western Australia, the Caribbean Region, and the Mediterranean. Most bauxite is surface mined, although a few small underground mines remain active. The overburden depth ranges from almost none to several 10s of meters, with the average near five meters. The total land disturbed by bauxite mining each year is estimated to be 2,000-2,500 hectares per year.

  15. Arsenic ِAdsorption on Bauxite Mineral Using Batch Equilibrium Test

    OpenAIRE

    Fares Y. Alshaebi; Wan Z.W. Yaacob; Abdul R. Samsudin; Esmail Alsabahi

    2009-01-01

    Problem statement: Study suggested a solution to remove arsenic contamination from contaminated water. Approach: Bauxite, which is a mineral, was proposed as natural remediation material used in this study. Bauxite was collected from Johor mining company in Teluk Ramunia, Johor Bharu, Malaysia. Batch equilibrium test was performed in accordance to different initial concentrations, shaking time and different initial pH values. Results: Results showed that mineral bauxite has high Cation Exchan...

  16. Effect of Bauxite addition on Adhesion Strength and Surface Roughness of Fly ash based Plasma Sprayed Coatings

    Science.gov (United States)

    Bhuyan, S. K.; Samal, S.; Pattnaik, D.; Sahu, A.; Swain, B.; Thiyagarajan, T. K.; Mishra, S. C.

    2018-03-01

    The environment is being contaminated with advancement of new technology, day by day. One of the primary sources for this contamination is the industrial waste. Industrialization is the prime reason behind the prosperity of any country to meet the materialistic demand. To run the industries, a huge amount of (electric) power is needed and hence need for thermal power plants to serve the purpose. In present scenario, coal fired thermal power plants are set up which generates a huge quantity of Fly ash. Consumption of industrial waste (Fly ash), continually a major concern for human race. In recent years, fly ash is being utilized for various purposes i.e. making bricks, mine reclamation, production of cements etc. The presence of Silica and Alumina in fly ash makes it useful for thermal barrier applications also. The plasma spray technology has the advantage of being able to process any types of metal/ceramic mineral, low-grade-ore minerals etc. to make value-added products and also to deposit ceramics, metals and a combination of these to deposit composite coatings with desired microstructure and required properties on a range of substrate materials. The present work focuses on utilization of fly ash mixing with bauxite (ore mineral) for a high valued application. Fly ash with 10 and 20% bauxite addition is used to deposit plasma spray overlay coatings at different power levels (10-20kW) on aluminum and mild steel substrates. Adhesion strength and surface roughness of the coatings are evaluated. Phase composition analysis of the coatings were done using X-ray diffraction analysis. Surface morphology of the coatings was studied using a scanning electron microscope (SEM). Maximum adhesion strength of 4.924 MPa is obtained for the composition fly ash and bauxite (10%), coated on mild steel at 16kW torch power level. The surface roughness (Ra) of the coatings is found to vary between 10.0102 to 17.2341 micron.

  17. Bauxite deposits in Suriname : Geological context and resource development

    NARCIS (Netherlands)

    Monsels, D. A.

    2016-01-01

    Bauxite, the raw material of aluminum, has been one of the economically vital natural resources for Suriname. Mining operations started about a century ago, and subsequent development of a refinery industry and hydro-electric power made Suriname one of the foremost bauxite and alumina producers

  18. UNDERGROUND BAUXITE EXPLOITATION IN THE WESTERN DINARIDS ESSENTIAL FACTS AND COMMENTS

    Directory of Open Access Journals (Sweden)

    Slavko Vujec

    1994-12-01

    Full Text Available After a short information about the causes both for the deficiency of papers on bauxite underground mines and for the development of such mines, a concise sketch of the geologic structures of the bauxite regions in the Western Dinarids, inclusive the chemical composition of the bauxites, is given. The main portion of the paper is devoted to the description of the following bauxitic regions: Drniš (with the mines Kalun and Kumanovo, Obrovac (Dračevac, Ćukovac—Grižinice and Krš, Mostar (Orašnica, Tribošić, Trobukva, Dabrica, Jajce (Poljane, Crvene Stijene, Bosanska Krupa (Risovac, and Sinj (Visoka. Presented are the »bauxitic« history of the region as well as its mining characteristics, from the mode of opening to the used mining methods, with their adventages and disadvantages. Comments are made, but no conclusions drawn; the future remains open.

  19. Digestion of Alumina from Non-Magnetic Material Obtained from Magnetic Separation of Reduced Iron-Rich Diasporic Bauxite with Sodium Salts

    Directory of Open Access Journals (Sweden)

    Guanghui Li

    2016-11-01

    Full Text Available Recovery of iron from iron-rich diasporic bauxite ore via reductive roasting followed by magnetic separation has been explored recently. However, the efficiency of alumina extraction in the non-magnetic materials is absent. In this paper, a further study on the digestion of alumina by the Bayer process from non-magnetic material obtained after magnetic separation of reduced iron-rich diasporic bauxite with sodium salts was investigated. The results indicate that the addition of sodium salts can destroy the original occurrences of iron-, aluminum- and silicon-containing minerals of bauxite ore during reductive roasting. Meanwhile, the reactions of sodium salts with complex aluminum- and silicon-bearing phases generate diaoyudaoite and sodium aluminosilicate. The separation of iron via reductive roasting of bauxite ore with sodium salts followed by magnetic separation improves alumina digestion in the Bayer process. When the alumina-bearing material in bauxite ore is converted into non-magnetic material, the digestion temperature decreases significantly from 280 °C to 240 °C with a nearly 99% relative digestion ratio of alumina.

  20. Hidden values in bauxite residue (red mud): Recovery of metals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanju; Naidu, Ravi, E-mail: ravi.naidu@unisa.edu.au

    2014-12-15

    Highlights: • Current iron recovery techniques using red mud are depicted. • Advantages and disadvantages exist in different recovering processes. • Economic and environmental friendly integrated usage of red mud is promising. - Abstract: Bauxite residue (red mud) is a hazardous waste generated from alumina refining industries. Unless managed properly, red mud poses significant risks to the local environment due to its extreme alkalinity and its potential impacts on surface and ground water quality. The ever-increasing generation of red mud poses significant challenges to the aluminium industries from management perspectives given the low proportion that are currently being utilized beneficially. Red mud, in most cases, contains elevated concentrations of iron in addition to aluminium, titanium, sodium and valuable rare earth elements. Given the scarcity of iron supply globally, the iron content of red mud has attracted increasing research interest. This paper presents a critical overview of the current techniques employed for iron recovery from red mud. Information on the recovery of other valuable metals is also reviewed to provide an insight into the full potential usage of red mud as an economic resource rather than a waste. Traditional hydrometallurgy and pyrometallurgy are being investigated continuously. However, in this review several new techniques are introduced that consider the process of iron recovery from red mud. An integrated process which can achieve multiple additional values from red mud is much preferred over the single process methods. The information provided here should help to improve the future management and utilization of red mud.

  1. Hidden values in bauxite residue (red mud): Recovery of metals

    International Nuclear Information System (INIS)

    Liu, Yanju; Naidu, Ravi

    2014-01-01

    Highlights: • Current iron recovery techniques using red mud are depicted. • Advantages and disadvantages exist in different recovering processes. • Economic and environmental friendly integrated usage of red mud is promising. - Abstract: Bauxite residue (red mud) is a hazardous waste generated from alumina refining industries. Unless managed properly, red mud poses significant risks to the local environment due to its extreme alkalinity and its potential impacts on surface and ground water quality. The ever-increasing generation of red mud poses significant challenges to the aluminium industries from management perspectives given the low proportion that are currently being utilized beneficially. Red mud, in most cases, contains elevated concentrations of iron in addition to aluminium, titanium, sodium and valuable rare earth elements. Given the scarcity of iron supply globally, the iron content of red mud has attracted increasing research interest. This paper presents a critical overview of the current techniques employed for iron recovery from red mud. Information on the recovery of other valuable metals is also reviewed to provide an insight into the full potential usage of red mud as an economic resource rather than a waste. Traditional hydrometallurgy and pyrometallurgy are being investigated continuously. However, in this review several new techniques are introduced that consider the process of iron recovery from red mud. An integrated process which can achieve multiple additional values from red mud is much preferred over the single process methods. The information provided here should help to improve the future management and utilization of red mud

  2. Mineralogy and geochemistry of bauxite and bentonite deposits from Mozambique

    NARCIS (Netherlands)

    Dos Muchangos, A.C.

    2000-01-01

    Results of mineralogical and geochemical studies of bauxites, kaolinitic clays and bentoniteS from Mozambique are presented in this thesis. The bauxite and kaolinitic clay deposits in Penhalonga area (in the central western part of Mozambique) are associated with Precambrian magmatic rocks and

  3. Restraining Sodium Volatilization in the Ferric Bauxite Direct Reduction System

    Directory of Open Access Journals (Sweden)

    Wentao Hu

    2016-03-01

    Full Text Available Direct reduction is an emerging utilization technology of ferric bauxite. However, it requires much more sodium carbonate than ordinary bauxite does. The volatilization is one of the most significant parts of sodium carbonate consumption, as reported in previous studies. Based on the new direct reduction method for utilization of ferric bauxite, this paper has systematically investigated factors including heating temperature, heating time, and sodium carbonate dosage influencing sodium volatilization. For the purpose of reducing sodium volatilization, the Box–Benhken design was employed, and the possibility of separating iron and sodium after direct reduction was also investigated.

  4. The investigation of efficient conditions for alumina production from diasporic bauxites

    International Nuclear Information System (INIS)

    Alp, A.; Aydin, A.O.

    2002-01-01

    The main objective of this study was to investigate the leach conditions of diasporic bauxites in the region of Mugla-Milas for alumina production. The chemical composition was 57.91% Al 2 O 3 , 21.33% Fe 2 O 3 , 3.84% SiO 2 , 2.20% TiO 2 , 2.10% CaO, 1.02% FeS 2 , 1.65% CO 2 , and 0.52% other. The effects of alkaline (CaO and/or Na 2 CO 3 ) additives, precalcination temperature, calcination time, leaching time, solution concentration, liquid/bauxite ratio and particle size on the efficiency of alumina and silica dissolution were investigated. The optimum conditions of the process were the addition of alkaline in 0.5 mole fraction, 900 o C precalcination temperature, 2 hours of calcination time, 3 hours of leaching time, 1.5 molar Na 2 O of caustic concentration and liquid/bauxite ratio of 30 at the boiling temperature of leach solution under continuous stirring. Although the highest extraction efficiency of Al 2 O 3 was found to be 81.77% with precalcination at 1200 o C, 900 o C was preferred as an optimum calcination temperature. (author)

  5. Analysis of bauxite by inductively coupled plasma-atomic emission spectroscopy

    Science.gov (United States)

    Barnes, Ramon M.; Mahanti, Himansu S.

    Methods are described for the analysis of bauxite by inductively coupled plasma (ICP) emission spectroscopy. Bauxite samples were dissolved either in HCl, HNO 3, and HF at 160°C in all-PTFE bomb or fused with NaOH. Spectral lines were selected after examination of experimental wavelength scans at each potential analyte wavelength. Limits of detection, background equivalent concentration, and analytical figures of merit were established. The accuracy of the method was confirmed by determining 17 elements in NBS-SRM bauxite samples. Silicon in HF solutions was analyzed using a modified ICP torch with a graphite injector tube, an inert nebulizer using PTFE capillary tubes, and a PTFE spray chamber.

  6. The bauxite deposits of Floyd, Bartow, and Polk counties of northwest Georgia

    Science.gov (United States)

    White, Walter S.; Denson, N.M.

    1952-01-01

    Most of the bauxite deposits ipf northwest Georgia are in the Hermitage, Bobo, and Cave Spring districts in Floyd, Bartow, and Polk Counties. The region has produced in the neighborhood of 400,000 tons of bauxite from about 65 small mines, but the known reserves of high grade bauxite are very small. The region was studied in 1942-43 as part of the strategic minerals program of the U. S. Geological Survey.

  7. Ore-forming fluid system of bauxite in WZD area of northern Guizhou province, China

    Science.gov (United States)

    Cui, Tao

    2017-12-01

    The ore-forming fluid system of bauxite in Wuchuan-Zheng,an-Daozhen (short for WZD) Area of northern Guizhou Province was studied from the perspective of deposit formation mechanism. It was discovered that ore-forming fluids were mainly effective for transporting and leaching during the formation of bauxite. The means of transport mainly included colloidal transport, suspended transport and gravity flow transport. In the course of their leaching, fluids had a range of chemical reactions, as a result of which elements such as silicon and iron migrated downwards. In this process, properties of fluids changed as well.

  8. Design and Operation of the World's First Long Distance Bauxite Slurry Pipeline

    Science.gov (United States)

    Gandhi, Ramesh; Weston, Mike; Talavera, Maru; Brittes, Geraldo Pereira; Barbosa, Eder

    Mineracão Bauxita Paragominas (MBP) is the first long distance slurry pipeline transporting bauxite slurry. Bauxite had developed a reputation for being difficult to hydraulically transport using long distance pipelines. This myth has now been proven wrong. The 245-km- long, 13.5 MTPY capacity MBP pipeline was designed and commissioned by PSI for CVRD. The pipeline is located in the State of Para, Brazil. The Miltonia bauxite mine is in a remote location with no other efficient means of transport. The bauxite slurry is delivered to Alunorte Alumina refinery located near Barcarena. This first of its kind pipeline required significant development work in order to assure technical and economic feasibility. This paper describes the technical aspects of design of the pipeline. It also summarizes the operating experience gained during the first year of operation.

  9. Extraction of rare earth elements from low-grade Bauxite via precipitation reaction

    Science.gov (United States)

    Kusrini, E.; Nurani, Y.; Bahari, ZJ

    2018-03-01

    The aim of this research was to determine the optimum hydrometallurgical parameters to extract the rare earth elements (REE) from low-grade bauxite through acid leaching and precipitation reaction. REE or lanthanide recovery by a precipitation method with sodium sulphate and sodium phosphate as precipitation agents is reported where the effect of pH and recovery of REE are described. The metal composition of REE in low-grade bauxite after treatment were analyzed by ICP-OES. The total recovery values of REE elements at the first precipitation reaction using sodium sulphate as the precipitation agent at pH 3.5 showed ~68.2% of lanthanum, ~18.9% cerium, and ~7.8% yttrium. Lanthanum was the rare-earth element present at the highest concentration in the low-grade bauxite after the series treatments. An optimum pH of 3.5 for precipitation of rare-earth elements using sodium sulphate was demonstrated where this method is recommended for the extraction of REE elements from low-grade bauxite.

  10. A Technological Comparison of Six Processes for the Production of Reduction-Grade Alumina from Non-Bauxitic Raw Materials

    Science.gov (United States)

    Bengtson, K. B.

    The U. S. Bureau of Mines, by means of a contract with Kaiser Engineers and with Kaiser Aluminum & Chemical Corporation as a subcontractor, has sponsored a technological and an economic evaluation of six candidate processes for the manufacture of alumina from certain U. S. raw materials other than bauxite. This paper describes each process. Flow diagrams and the total energy requirement for each process are included. Important characteristics affecting the economics of producing alumina by each process are discussed, and some presently unsolved technical problems are identified. The extraction of alumina from clay via hydrochloric acid with iron separation by solvent extraction, and the crystallization of intermediate AlCl3·6H2O through the introduction of HCl gas into the pregnant mother liquor, appears to be technically feasible and the most attractive of the six raw material/process combinations.

  11. GEOLOGICAL-GEOPHYSICAL EXPLORATION OF THE BAUXITE DEPOSITS APPLICATION OF THE SHALLOW SEIZMIC REFLECTION METHOD

    Directory of Open Access Journals (Sweden)

    Ivan Dragičević

    1991-12-01

    Full Text Available The exploration of bauxite deposits in the region of the carbonaceous Dinarides has been performed by using different geological and geophysical methods. Deposits laying shallower or deeper below the roof sediments have so far most often been discovered by expensive drilling methods in a corresponding grid. Complex geological explorations have led to a series of valuable data thus enabling the application of other much more economical methods as well. In the region of the bauxite sedimentary basin Mesihovina-Rakitno, western Herzegovina, at the site of Studena vrila - after extensive geological explorations - a conclusion was drawn that the shallow seismic reflection geophysical method as well might be successfully applied in locating new bauxite deposits. In the paper, the geological framework of the bauxite deposits occurrences, stipulating the selection of this methode, will be presented. Measurements were performed on a known deposit (L-84, Povaljenica, completely defined by exploration drilling. The obtained results justify the selection of the shallow seismic reflection method as one of the methods for exploring bauxite deposits beneath the roof beds.

  12. Measurement of the loss on ignition of bulk calcined bauxite samples by neutron moderation

    International Nuclear Information System (INIS)

    Aylmer, J.A.; Borsaru, M.

    1985-01-01

    The production of high-grade calcined bauxite is very dependent on the moisture content of the final product. Existing procedures rely on the ignition of small samples to monitor the effectiveness of the calcination process. The results obtained by this gravimetric technique are several hours behind production and do not permit regular adjustment of the furnace to optimize the control of the chemically bound water content (LOI). To provide rapid and more relevant results, a neutron moderation technique has been developed for measuring the LOI of bulk samples of calcined bauxite while they are still hot. The method uses fast neutrons from an 241 Am-Be neutron source to irradiate the samples, and the backscattered thermal neutrons detected are a measure of bound moisture content. The rms deviation between neutron and conventional determinations of LOI, in 15 calcined bauxite samples, was 0.08 per cent LOI over the range 0.1 to 0.9 per cent LOI. When allowance is made for the rms error in the ignition method, the error in the neutron method is found to be 0.07 per cent LOI

  13. Radiological assessment for bauxite mining and alumina refining.

    Science.gov (United States)

    O'Connor, Brian H; Donoghue, A Michael; Manning, Timothy J H; Chesson, Barry J

    2013-01-01

    Two international benchmarks assess whether the mining and processing of ores containing Naturally Occurring Radioactive Material (NORM) require management under radiological regulations set by local jurisdictions. First, the 1 Bq/g benchmark for radionuclide head of chain activity concentration determines whether materials may be excluded from radiological regulation. Second, processes may be exempted from radiological regulation where occupational above-background exposures for members of the workforce do not exceed 1 mSv/year. This is also the upper-limit of exposure prescribed for members of the public. Alcoa of Australia Limited (Alcoa) has undertaken radiological evaluations of the mining and processing of bauxite from the Darling Range of Western Australia since the 1980s. Short-term monitoring projects have demonstrated that above-background exposures for workers do not exceed 1 mSv/year. A whole-of-year evaluation of above-background, occupational radiological doses for bauxite mining, alumina refining and residue operations was conducted during 2008/2009 as part of the Alcoa NORM Quality Assurance System (NQAS). The NQAS has been guided by publications from the International Commission on Radiological Protection (ICRP), the International Atomic Energy Agency (IAEA) and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). The NQAS has been developed specifically in response to implementation of the Australian National Directory on Radiation Protection (NDRP). Positional monitoring was undertaken to increase the accuracy of natural background levels required for correction of occupational exposures. This is important in view of the small increments in exposure that occur in bauxite mining, alumina refining and residue operations relative to natural background. Positional monitoring was also undertaken to assess the potential for exposure in operating locations. Personal monitoring was undertaken to characterise exposures in Similar

  14. [Pneumoconiosis in bauxite miners].

    Science.gov (United States)

    Molinini, R; Pesola, M; Digennaro, M A; Carino, M; Nuzzaco, A; Coviello, F

    1985-01-01

    The authors examined a group of 40 miners who were being working at an Apulian bauxite mine, presently inactive. Radiographic findings of pulmonary micronodulation without significant reduction of lung functions were showed in 15 miners. Mineralogical analysis of mine dust samples excluded any presence of more than 1% free silica. As a result of this study hypotheses have been formulated about pathogenesis of this moderated and non-invasive pneumoconiosis, showed in long exposed subjects to low silica content dusts.

  15. Elemental analysis and radiation hazards parameters of bauxite located in Saudi Arabia

    Science.gov (United States)

    Alashrah, S.; E Taher, A.

    2017-04-01

    Since Bauxite has been widely used in industry and in scientific investigations for producing Aluminum, it is important to measure the radionuclides concentrations to determine the health effect. The Bauxite mine is located in Az Zabirah city in Saudi Arabia. The concentrations of the radionuclides in the bauxite samples were measured using γ-ray spectrometer NaI (Tl). The average and range values of the concentrations of 226Ra, 232Th and 40K were 102.2 (141.1-62.7), 156.3 (202.8-102.8) and 116.8 (191.7- 48.9) Bq/kg respectively. These results were compared with the reported ranges in the literature from other locations around the world. The radiation hazard parameters; radium equivalent activity, annual dose, external hazard were also calculated and compared with the recommended levels by International Commission on Radiological Protection (ICRP-60) and united nations scientific committee on the effects of atomic radiation UNSCEAR reports. There are no studies for the natural radioactivity in the bauxite mine in Az Zabirah city, so these results are a start to establishing a database in this location.

  16. ROCKBOLTS SUPPORT OF THE DRIFTS AND CROSSCUTS IN BAUXITE

    Directory of Open Access Journals (Sweden)

    Srećko Majić

    1990-12-01

    Full Text Available The article discusses the excavation method in bauxite underground exploitation of the »Trobukva« mine in the »Bauxite Mine Posušje«, and the experiences in drift and crosscut supporting so far. Frame support is the only activity which is not mechanized and it has an important part in the production costs. Therefore the possibility of supporting by bolts and wire mesh has been developed. The estimation of bolting elements was performed for the Swellex boit and it proved, that bolt support compared with the frame support, beside the technical and safety advantages has also a considerable economic justification.

  17. Vanadium removal and recovery from bauxite residue leachates by ion exchange.

    Science.gov (United States)

    Gomes, Helena I; Jones, Ashley; Rogerson, Mike; Burke, Ian T; Mayes, William M

    2016-11-01

    Bauxite residue is an important by-product of the alumina industry, and current management practices do not allow their full valorisation, especially with regard to the recovery of critical metals. This work aims to test the efficiency of ion exchange resins for vanadium (V) removal and recovery from bauxite residue leachates at alkaline pH (11.5 and 13). As an environmental pollutant, removal of V from leachates may be an obligation of bauxite residue disposal areas (BRDA) long-term management requirements. Vanadium removal from the leachate can be coupled with the recovery, and potentially can be used to offset long-term legacy treatment costs in legacy sites. Kinetics studies were performed to understand the adsorption process. The rate kinetics for the V adsorption was consistent with the pseudo-first-order kinetic model, with a higher adsorption rate for pH 11.5 (1.2 min -1 ). Adsorption isotherm data fitted better to Freundlich equations than to the Langmuir model. The maximum adsorption capacity (Langmuir value q max ) was greatest for pH 13 (9.8 mg V g -1 resin). In column tests, breakthrough was reached at 70 bed volumes with the red mud leachate at pH 13, while no breakthrough was achieved with the effluent at pH 11.5. In regeneration, 42 and 76 % of V were eluted from the resin with 2 M NaOH from the red mud leachate at pH 13 and 11.5, respectively. Further optimization will be needed to upscale the treatment.

  18. Binding of Vapour-Phase Mercury (Hg0) on Chemically Treated Bauxite Residues (Red Mud)

    Science.gov (United States)

    In this study, Hg capture using red mud, seawater-neutralized red mud, and acid-treated red mud is evaluated and compared to other, more conventional sorbent materials. Red mud (also known as bauxite residue) is a by-product of extracting alumina from ground bauxite ore by treati...

  19. Amelioration of bauxite residue sand by intermittent additions of nitrogen fertiliser and leaching fractions: The effect on growth of kikuyu grass and fate of applied nutrients.

    Science.gov (United States)

    Kaur, Navjot; Phillips, Ian; Fey, Martin V

    2016-04-15

    Bauxite residue, a waste product of aluminium processing operations is characterised by high pH, salinity and exchangeable sodium which hinders sustainable plant growth. The aim of this study was to investigate the uptake form, optimum application rate and timing of nitrogen fertiliser to improve bauxite residue characteristics for plant growth. Kikuyu grass was grown in plastic columns filled with residue sand/carbonated residue mud mixture (20:1) previously amended with gypsum, phosphoric acid and basal nutrients. The experiment was set up as a 4×4 factorial design comprising four levels of applied nitrogen (N) fertiliser (0, 3, 6 and 12mgNkg(-1) residue) and four frequencies of leaching (16, 8 and 4day intervals). We hypothesised that the use of ammonium sulfate fertiliser would increase retention of N within the rhizosphere thereby encouraging more efficient fertiliser use. We found that N uptake by kikuyu grass was enhanced due to leaching of excess salts and alkalinity from the residue profile. It was also concluded that biomass production and associated N uptake by kikuyu grass grown in residue is dependent on the type of fertiliser used. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Experimental Simulation of Long Term Weathering in Alkaline Bauxite Residue Tailings

    Directory of Open Access Journals (Sweden)

    Talitha C. Santini

    2015-07-01

    Full Text Available Bauxite residue is an alkaline, saline tailings material generated as a byproduct of the Bayer process used for alumina refining. Developing effective plans for the long term management of potential environmental impacts associated with storage of these tailings is dependent on understanding how the chemical and mineralogical properties of the tailings will change during weathering and transformation into a soil-like material. Hydrothermal treatment of bauxite residue was used to compress geological weathering timescales and examine potential mineral transformations during weathering. Gibbsite was rapidly converted to boehmite; this transformation was examined with in situ synchrotron XRD. Goethite, hematite, and calcite all precipitated over longer weathering timeframes, while tricalcium aluminate dissolved. pH, total alkalinity, and salinity (electrical conductivity all decreased during weathering despite these experiments being performed under “closed” conditions (i.e., no leaching. This indicates the potential for auto-attenuation of the high alkalinity and salinity that presents challenges for long term environmental management, and suggests that management requirements will decrease during weathering as a result of these mineral transformations.

  1. IMPROVMENT OF THE MINING METHOD IN THE BAUXITE MINE ĆUKOVAC-GRIŽINICA

    Directory of Open Access Journals (Sweden)

    Borislav Perić

    1992-12-01

    Full Text Available Exploitation of bauxite in region of Dalmatia has tradition of more than 50 years. The biggest underground mine of this bauxite hearing area was developed in deposit Ćukovac-Grižinica with proved workable reserves of 1.2 x 106 t. Yearly output in 1990. was 100.000 t. Production in this mine started 1987, and sublevel caving method was used. Coefficient of extraction in the parts with weak rocks is low, and unsufficient security in the conditions with firm roof. Therefore investigation of improvement of mining method was carrying on to coinside characteristics of rocks, and mining methods. Following methods were selected: sublevel caving (actually retreat stoping, sublevel sloping and sublevel caving with bauxite protection layer (the paper is published in Croatian.

  2. Characterization of three Brazilian bauxites and the corresponding bayer liquors in regard to rare earth and other minor elements

    International Nuclear Information System (INIS)

    Ikeda Oba, C.A.; Avritscher, W.; Pini, R.A.; Abrao, A.; Chaves, A.P.

    1998-01-01

    Full text: In this paper the results of chemical analysis of representative Brazilian bauxites are presented and discussed. Analyses were made on original mother rocks, ores, tailings from washing plants, Bayer liquors produced from this ores and also from the red muds. Samples of the ores were submitted to size, magnetic and density separation and these fractions were also analysed. Minor elements of interest assayed were rare earth, gallium and vanadium. Atomic absorption spectroscopy, x-ray fluorescence and emission spectroscopy were applied for the minor elements and also conventional wet chemical analyses mainly for major elements. A special technique for a rapid identification and semi-quantitative analysis of gallium and a permanent file for the results are presented as well. Brazilian bauxites are all of lateritic origin, constituted essentially by gibbsite and formed by intense tropical weathering of different rocks. This paper presents the chemical characterization of three Brazilian bauxites, namely Porto Trombetas, Cataguazes and Pocos de Caldas and the behaviour of their minor elements during the industrial processing in the mines and alumina mills. The grades of rare earths elements, gallium and vanadium show significant variations. This is most probably due to mother rocks characteristics than to bauxitization processes. The review deposits have the following mother rocks: Porto Trombetas Sedimentary - Cataguazes Metamorphic - Pocos de Caldas Alkaline (sienite). The samples from Pocos de Caldas show high grade for La+Ce with an average over 800ppm, Cataguazes has an average of 76 ppm La+Ce and Porto Trombetas 6,5ppm. Gallium grades are higher for Pocos de Caldas (average 135 ppm), followed by Porto Trombetas (62 ppm) and Cataguazes (37ppm). Vanadium grades are higher for Porto Trombetas (243 ppm) then Pocos de Caldas (165 ppm). Pocos de Caldas shows 50% enrichment in Ce in the washed ore and in Porto Trombetas most of the Y goes to the fines (product

  3. The Role of Organic Matter in the Formation of High-Grade Al Deposits of the Dopolan Karst Type Bauxite, Iran: Mineralogy, Geochemistry, and Sulfur Isotope Data

    Directory of Open Access Journals (Sweden)

    Somayeh Salamab Ellahi

    2017-06-01

    Full Text Available Mineralogical and geochemical analyses of the Dopolan karstic bauxite ore were performed to identify the characteristics of four bauxite horizons, which comprise from top to bottom, bauxitic kaolinite, diaspore-rich bauxite, clay-rich bauxite, and pyrite-rich bauxite. Diaspore, kaolinite, and pyrite are the main minerals; böhmite, muscovite, rutile, and anatase are the accessory minerals. The main minerals of the Dopolan bauxite deposit indicate slightly acidic to alkaline reducing conditions during bauxitization. Immobile elements (Nb, Ta, Zr, Hf, and rare earth elements are enriched in the diaspore-rich horizon, which also has the highest alumina content, whereas redox sensitive elements (e.g., Cr, Cu, Ni, Pb, Zn, Ag, U, and V are enriched in the lowest horizon of pyrite-rich bauxite. The presence of a high content of organic matter was identified in different horizons of bauxitic ore from wet chemistry. The presence of organic matter favored Fe bioleaching, which resulted in Al enrichment and the formation of diaspore-rich bauxite. The leached Fe2+ reacted with the hydrogen sulfur that was produced due to bacterial metabolism, resulting in the formation of the pyrite-rich horizon towards the bottom of the Dopolan bauxite horizons. Biogeochemical activity in the Dopolan bauxitic ore was deduced from the reducing environment of bauxitization, and the deposition of framboidal and cubic or cubic/octahedral pyrite crystals, with large negative values of δ34S of pyrite (−10‰ to −34‰ and preserved fossil cells of microorganisms.

  4. All cause mortality and incidence of cancer in workers in bauxite mines and alumina refineries

    NARCIS (Netherlands)

    Fritschi, Lin; Hoving, Jan Lucas; Sim, Malcolm R.; del Monaco, Anthony; Macfarlane, Ewan; McKenzie, Dean; Benke, Geza; de Klerk, Nicholas

    2008-01-01

    Bauxite is a reddish clay that is refined to produce alumina, which is then reduced to aluminium. There have been studies examining the health of workers in aluminium smelters, but not workers in bauxite mining and alumina refining. A cohort of employees of 1 large aluminium company since 1983 was

  5. Sorptive removal of cesium-137 and strontium-90 from water by unconventional sorbents. 1. Usage of bauxite wastes (red muds)

    Energy Technology Data Exchange (ETDEWEB)

    Apak, R.; Atun, G.; Gueclue, K.; Tuetem, E.; Keskin, G. [Istanbul Univ. (Turkey). Faculty of Engineering

    1995-10-01

    Bauxite wastes of alumina manufacture, i.e., red muds, have been tested for radiocesium and strontium removal from water. The red muds were water-washed, acid-, and heat-treated before usage to produce hydrous oxide like sorbents. Surface treatment of the sorbent was beneficial for {sup 137}Cs uptake, while heat-treatment was detrimental to the -SOH surface sites responsible for high {sup 90}Sr affinity. Fractionation of the sorbent with respect to apparent grain size did not produce significant differences in the sorption efficiency. The distribution coefficients vs. equilibrium activity in solution showed a maximum with Cs, and a gradual decrease trend with Sr. The solution activity vs. adsorption data were fitted to B.E.T. (essentially types IV-V) isotherms for Cs and B.E.T.-Langmuir isotherms for Sr. Desorption, temperature-, pH-, and ionic strength-dependence tests revealed that the primary mode of sorption for both cations is specific adsorption while the secondary mode is ion exchange. A rise in pH favours the ion-exchange sorption of Sr while the specific adsorption of Cs is negatively affected. Competitive adsorption of an inert electrolyte, i.e., NaCl, severely hinders Cs sorption, while Sr sorption on water-washed red mud is not significantly affected. (author).

  6. Sorptive removal of cesium-137 and strontium-90 from water by unconventional sorbents. 1. Usage of bauxite wastes (red muds)

    International Nuclear Information System (INIS)

    Apak, R.; Atun, G.; Gueclue, K.; Tuetem, E.; Keskin, G.

    1995-01-01

    Bauxite wastes of alumina manufacture, i.e., red muds, have been tested for radiocesium and strontium removal from water. The red muds were water-washed, acid-, and heat-treated before usage to produce hydrous oxide like sorbents. Surface treatment of the sorbent was beneficial for 137 Cs uptake, while heat-treatment was detrimental to the -SOH surface sites responsible for high 90 Sr affinity. Fractionation of the sorbent with respect to apparent grain size did not produce significant differences in the sorption efficiency. The distribution coefficients vs. equilibrium activity in solution showed a maximum with Cs, and a gradual decrease trend with Sr. The solution activity vs. adsorption data were fitted to B.E.T. (essentially types IV-V) isotherms for Cs and B.E.T.-Langmuir isotherms for Sr. Desorption, temperature-, pH-, and ionic strength-dependence tests revealed that the primary mode of sorption for both cations is specific adsorption while the secondary mode is ion exchange. A rise in pH favours the ion-exchange sorption of Sr while the specific adsorption of Cs is negatively affected. Competitive adsorption of an inert electrolyte, i.e., NaCl, severely hinders Cs sorption, while Sr sorption on water-washed red mud is not significantly affected. (author)

  7. MORPHOLOGICAL AND GEOLOGICAL INDICATORS OF THE POSSIBLE BAUXITE DEPOSITS IN THE KARST REGION OF WESTERN HERZEGOVINA

    Directory of Open Access Journals (Sweden)

    Ivan Blašković

    1995-12-01

    Full Text Available Investigation results of morphological and geological potential bauxite deposit indicators in the Mesihovina-Rakitno bauxitebearing sedimentary basin in Western Herzegovina are presented. Region with carbonate and clastic hangingwalls as well as those without overlying sediments have been studied. It was established that the expression and number of the indicators depend size as well as on character and thickness of hangingwall sediments. The morphological indicators are expressed as a particular relief forms situated right above the deposits or nearby and are a consequence of geological relations and exodynamic processes. Ihe numerous geological indicators resulted from complex geological events. The most important are: preore structural relations, the formation of paleorelief, peculiar way of hangingwall rocks sedimentation, lithification processes and the formation of the recent structural pattern. It has been observed that particular indicators should be recognized within a relatively thick succession of the overlying sediments which is of the great importance in the exploration of bauxite deposits.

  8. Characterization and Beneficiation Studies of a Low Grade Bauxite Ore

    Science.gov (United States)

    Rao, D. S.; Das, B.

    2014-10-01

    A low grade bauxite sample of central India was thoroughly characterized with the help of stereomicroscope, reflected light microscope and electron microscope using QEMSCAN. A few hand picked samples were collected from different places of the mine and were subjected to geochemical characterization studies. The geochemical studies indicated that most of the samples contain high silica and low alumina, except a few which are high grade. Mineralogically the samples consist of bauxite (gibbsite and boehmite), ferruginous mineral phases (goethite and hematite), clay and silicate (quartz), and titanium bearing minerals like rutile and ilmenite. Majority of the gibbsite, boehmite and gibbsitic oolites contain clay, quartz and iron and titanium mineral phases within the sample as inclusions. The sample on an average contains 39.1 % Al2O3 and 12.3 % SiO2, and 20.08 % of Fe2O3. Beneficiation techniques like size classification, sorting, scrubbing, hydrocyclone and magnetic separation were employed to reduce the silica content suitable for Bayer process. The studies indicated that, 50 % by weight with 41 % Al2O3 containing less than 5 % SiO2 could be achieved. The finer sized sample after physical beneficiation still contains high silica due to complex mineralogical associations.

  9. Bauxite slurry pipeline: start up operation

    Energy Technology Data Exchange (ETDEWEB)

    Othon, Otilio; Babosa, Eder; Edvan, Francisco; Brittes, Geraldo; Melo, Gerson; Janir, Joao; Favacho, Orlando; Leao, Marcos; Farias, Obadias [Vale, Rio de Janeiro, RJ (Brazil); Goncalves, Nilton [Anglo Ferrous Brazil S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The mine of Miltonia is located in Paragominas-PA, in the north of Brazil. Bauxite slurry pipeline starts at the Mine of Miltonia and finishes in the draining installation of Alunorte refinery at the port of Barcarena-PA, located approximately 244km away from the mine. The pipeline runs over seven cities and passes below four great rivers stream beds. The system was designed for an underground 24 inches OD steel pipe to carry 9.9 million dry metric tonnes per annum (dMTAs) of 50.5% solid concentration bauxite slurry, using only one pumping station. The system is composed by four storage tanks and six piston diaphragm pumps, supplying a flow of 1680 m3/h. There is a cathodic protection system along the pipeline extension to prevent external corrosion and five pressure monitoring stations to control hydraulic conditions, there is also a fiber optic cable interconnection between pump station and terminal station. Pipeline Systems Incorporated (PSI) was the designer and followed the commissioning program of the start up operations. This paper will describe the beginning of the pipeline operations, technical aspects of the project, the operational experiences acquired in these two years, the faced problems and also the future planning. (author)

  10. Carbothermal Upgrading of the Awaso Bauxite Ore using Sawdust ...

    African Journals Online (AJOL)

    Michael

    2016-12-02

    Dec 2, 2016 ... Bauxite Ore using Sawdust and Coconut Shells as Reductant”, Ghana Mining Journal, Vol. 16, No. 2, pp ... The fruit is consumed locally, producing greater volumes .... made into paste by drop-wise addition of water. The paste ...

  11. Neopterin: A candidate biomarker for the early assessment of toxicity of aluminum among bauxite dust exposed mine workers

    Science.gov (United States)

    Pingle, Shubhangi K.; Thakkar, Lucky R.; Jawade, Aruna A.; Tumane, Rajani G.; Jain, Ruchika K.; Soni, Pravin N.

    2015-01-01

    Introduction: Bauxite ore is a major source of aluminum (Al) which contains approximately 35–60% Al by weight. Occupational and environmental bauxite dust exposure may cause toxicity by interaction with human biological systems resulting in oxidative stress (OS) and cell death. A neopterin derivative as an antioxidant is able to modulate cytotoxicity by the induction of OS. Materials and Methods: A total of 273 subjects were selected for blood collection from three different major Al producing bauxite mines and were categorized into three groups as experimental (Exp) (n = 150), experimental controls (ExC) (n = 73) and control (Con) (n = 50). Whole blood and serum samples were used for measurement of Al, neopterin, urea and creatinine values. Statistical analysis was performed using R-2.15.1 programming language. Results and Discussion: The result showed that age, body mass index and the behavioral habits, that is, smoking, tobacco and alcohol consumption have possible effects on neopterin level. Serum neopterin levels were found to be significantly higher (P bauxite dust (even at low levels of Al) changes biochemical profile leading to high levels of serum neopterin. Levels of serum neopterin in workers exposed to bauxite dust were probably examined for the 1st time in India. The outcome of this study suggested that serum neopterin may be used as potential biomarker for early detection of health risks associated with bauxite dust exposed population. PMID:26500413

  12. Rapid preparation of ceramic moulds for medium-sized superalloy castings with magnesia-phosphate-bonded bauxite-mullite investments

    Directory of Open Access Journals (Sweden)

    Li Tingzhong

    2010-11-01

    Full Text Available Phosphate-bonded investments have already been widely utilized in dental restoration and micro-casting of artistic products for its outstanding rapid setting and high strength. However, the rapid setting rate of investment slurry has up to now been a barrier to extend the use of such slurry in preparation of medium-sized ceramic moulds. This paper proposes a new process of rapid fabrication of magnesia-phosphate-bonded investment ceramic moulds for medium-sized superalloy castings utilizing bauxite and mullite as refractory aggregates. In order to determine the properties of magnesia-phosphate-bonded bauxite-mullite investments (MPBBMI, a series of experiments were conducted, including modification of the workable time of slurry by liquid(mL/powder(g(L/P ratio and addition of boric acid as retard agent and sodium tri-polyphosphate (STP as strengthening agent, and adjustment of bauxite (g/mullite(g(B/M ratio for mechanical strength. Mechanical vibration was applied to improve initial setting time and fluidity when pouring investment slurry; then an intermediate size ceramic mould for superalloy castings was manufactured by means of this rapid preparing process with MPBBMI material. The results showed that the MPBBMI slurry exhibits proper initial setting time and excellent fluidity when the L/P ratio is 0.64 and the boric acid content is 0.88wt.%. The fired specimens made from the MPBBMI material demonstrated adequate compression strength to withstand impact force of molten metal when the B/M ratio is 0.89 and the STP content is 0.92wt.%. The experimental results confirmed the feasibility of the proposed rapid fabricating process for medium-sized ceramic moulds with MPBBMI material by appropriate measures.

  13. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  14. Deep-sea foraminifera from the Cassidaigne Canyon (NW Mediterranean): Assessing the environmental impact of bauxite red mud disposal

    NARCIS (Netherlands)

    Fontanier, C.; Fabri, M.-C.; Buscail, R.; Biscara, L.; Koho, K.A.; Reichart, G.-J.; Cossa, D.; Galaup, S.; Chabaud, G.; Pigot, L.

    2012-01-01

    Benthic foraminiferal assemblages were investigated from two sites along the axis of the Cassidaigne Canyon (NW Mediterranean Sea). Both areas are contaminated by bauxite red mud enriched in iron, titanium, vanadium and chromium. These elemental enrichments are related to bauxite-derived

  15. GEOLOGICAL-GEOPHYSICAL EXPLORATION OF THE BAUXITE DEPOSITS APPLICATION OF THE SHALLOW SEIZMIC REFLECTION METHOD

    OpenAIRE

    Ivan Dragičević; Miroslav Andrić; Ivan Blašković

    1991-01-01

    The exploration of bauxite deposits in the region of the carbonaceous Dinarides has been performed by using different geological and geophysical methods. Deposits laying shallower or deeper below the roof sediments have so far most often been discovered by expensive drilling methods in a corresponding grid. Complex geological explorations have led to a series of valuable data thus enabling the application of other much more economical methods as well. In the region of the bauxite sedimentary ...

  16. Process equipment waste and process waste liquid collection systems

    International Nuclear Information System (INIS)

    1990-06-01

    The US DOE has prepared an environmental assessment for construction related to the Process Equipment Waste (PEW) and Process Waste Liquid (PWL) Collection System Tasks at the Idaho Chemical Processing Plant. This report describes and evaluates the environmental impacts of the proposed action (and alternatives). The purpose of the proposed action would be to ensure that the PEW and PWL collection systems, a series of enclosed process hazardous waste, and radioactive waste lines and associated equipment, would be brought into compliance with applicable State and Federal hazardous waste regulations. This would be accomplished primarily by rerouting the lines to stay within the buildings where the lined floors of the cells and corridors would provide secondary containment. Leak detection would be provided via instrumented collection sumps locate din the cells and corridors. Hazardous waste transfer lines that are routed outside buildings will be constructed using pipe-in-pipe techniques with leak detection instrumentation in the interstitial area. The need for the proposed action was identified when a DOE-sponsored Resource Conservation and Recovery Act (RCRA) compliance assessment of the ICPP facilities found that singly-contained waste lines ran buried in the soil under some of the original facilities. These lines carried wastes with a pH of less than 2.0, which were hazardous waste according to the RCRA standards. 20 refs., 7 figs., 1 tab

  17. Technological Proposals for Recycling Industrial Wastes for Environmental Applications

    Directory of Open Access Journals (Sweden)

    Isabel Romero-Hermida

    2014-08-01

    Full Text Available A two-fold objective is proposed for this research: removing hazardous and unpleasant wastes and mitigating the emissions of green house gasses in the atmosphere. Thus, the first aim of this work is to identify, characterize and recycle industrial wastes with high contents of calcium or sodium. This involves synthesizing materials with the ability for CO2 sequestration as preliminary work for designing industrial processes, which involve a reduction of CO2 emissions. In this regard, phosphogypsum from the fertilizer industry and liquid wastes from the green olive and bauxite industries have been considered as precursors. Following a very simple procedure, Ca-bearing phosphogypsum wastes are mixed with Na-bearing liquid wastes in order to obtain a harmless liquid phase and an active solid phase, which may act as a carbon sequestration agent. In this way, wastes, which are unable to fix CO2 by themselves, can be successfully turned into effective CO2 sinks. The CO2 sequestration efficiency and the CO2 fixation power of the procedure based on these wastes are assessed.

  18. Harmful Waste Process

    International Nuclear Information System (INIS)

    Ki, Mun Bong; Lee, Shi Jin; Park, Jun Seok; Yoon, Seok Pyo; Lee, Jae Hyo; Jo, Byeong Ryeol

    2008-08-01

    This book gives descriptions of processing harmful waste, including concerned law and definition of harmful waste, current conditions and generation of harmful waste in Korea, international condition of harmful waste, minimizing of generation of harmful waste, treatment and storage. It also tells of basic science for harmful waste disposal with physics, chemistry, combustion engineering, microbiology and technique of disposal such as physical, chemical, biological process, stabilizing and solidification, incineration and waste in landfill.

  19. Development of Ceramic Coating on Metal Substrate using Industrial Waste and Ore Minerals

    Science.gov (United States)

    Bhuyan, S. K.; Thiyagarajan, T. K.; Mishra, S. C.

    2017-02-01

    The technological advancement in modern era has a boon for enlightening human life; but also is a bane to produce a huge amount of (industrial) wastes, which is of great concern for utilization and not to create environmental threats viz. polution etc. In the present piece of research work, attempts have been made to utilize fly ash (wastes of thermal power plants) and along with alumina bearing ore i.e. bauxite, for developing plasma spray ceramic coatings on metals. Fly ash and with 10 and 20% bauxite addition is used to deposit plasma spray coatings on a metal substrate. The surface morphology of the coatings deposited at different power levels of plasma spraying investigated through SEM and EDS analysis. The coating thickness is measured. The porosity levels of the coatings are evaluated. The coating hardness isalso measured. This piece of research work will be beneficial for future development and use of industrial waste and ore minerals for high-valued applications.

  20. Monitoring of waste disposal in deep geological formations

    Science.gov (United States)

    German, V.; Mansurov, V.

    2003-04-01

    In the paper application of kinetic approach for description of rock failure process and waste disposal microseismic monitoring is advanced. On base of two-stage model of failure process the capability of rock fracture is proved. The requests to monitoring system such as real time mode of data registration and processing and its precision range are formulated. The method of failure nuclei delineation in a rock masses is presented. This method is implemented in a software program for strong seismic events forecasting. It is based on direct use of the fracture concentration criterion. The method is applied to the database of microseismic events of the North Ural Bauxite Mine. The results of this application, such as: efficiency, stability, possibility of forecasting rockburst are discussed.

  1. Waste processing air cleaning

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1998-01-01

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases

  2. Water And Waste Water Processing

    International Nuclear Information System (INIS)

    Yang, Byeong Ju

    1988-04-01

    This book shows US the distribution diagram of water and waste water processing with device of water processing, and device of waste water processing, property of water quality like measurement of pollution of waste water, theoretical Oxygen demand, and chemical Oxygen demand, processing speed like zero-order reactions and enzyme reactions, physical processing of water and waste water, chemical processing of water and waste water like neutralization and buffering effect, biological processing of waste water, ammonia removal, and sludges processing.

  3. Effectiveness of a constructed wetland for treating alkaline bauxite residue leachate: a 1-year field study.

    Science.gov (United States)

    Higgins, Derek; Curtin, Teresa; Courtney, Ronan

    2017-03-01

    Increasing volumes of bauxite residues and their associated leachates represent a significant environmental challenge to the alumina industry. Constructed wetlands have been proposed as a potential approach for leachate treatment, but there is limited data on field-scale applications. The research presented here provides preliminary evaluation of a purpose-built constructed wetland to buffer leachate from a bauxite residue disposal site in Ireland. Data collected over a 1-year period demonstrated that the pH of bauxite residue leachates could be effectively reduced from ca. pH 10.3 to 8.1 but was influenced by influent variability and temporal changes. The wetland was also effective in decreasing elemental loading, and sequential extractions suggested that the bulk of the sediment-bound metal inventory was in hard-to-leach phases. Elemental analysis of Phragmites australis showed that although vegetation displayed seasonal variation, no trace elements were at concentrations of concern.

  4. Ground Radiometric Method as a Tool for Determining the Surface Boundary of a Buried Bauxitic Karst

    Directory of Open Access Journals (Sweden)

    Kamal Kareem Ali

    2011-12-01

    Full Text Available Forty two ground radiometric measurements along nine traverses within a rectangular network area were taken across a bauxitic karst within the Ubaid Formation (Lower Jurassic in the Western Desert of Iraq. A 4-Channel Gamma Ray Spectrometer (GAD-6 with sodium iodide NaI (Tl crystal (GSP-4S was used in the field to measure the total radioactivity of the surface soil. Soil samples collected from the surface at each measurement point and core samples collected from a test well penetrating the karst were analyzed by Gamma ray spectrometer. The main objective of this study was to detect the hidden bauxitic karst and determine its surface boundary. The radioactivity on the surface of the karst was ranging between 60 and 80 count per second (c/s, while the background radioactivity of the Ubaid Formation, which hosts the karst, was ranging between 100 and150 c/s. Chemical weathering, especially dissolution and leaching moved uranium (238U and thorium(232Th from the overburden downward. Accordingly, these elements have been adsorbed on the surface of clay minerals and bauxite buried at a depth of about 5m causing enrichment with radioactivity. The leached overburden lack radioelements, so its radioactivity was less than background radioactivity level. The gamma ray spectroanalysis showed that the radioactivity of 238U and 232Th in the overburden was 0.5 and 3 Bq/Kg, whereas, in the bauxite and flint clay bed, it was 240 and 160 Bq/Kg respectively. Based on the radioactivity anomaly contrast on the surface, an isorad map was plotted and the karst diameter which represents low anomaly was determined to be ranging from 150 to 200m. The current study demonstrates that the ground radiometric method is quite useful for detecting the bauxitic karst and inferring its surface boundaries.

  5. Impact of mine waste dumps on growth and biomass of economically important crops.

    Science.gov (United States)

    Mathiyazhagan, Narayanan; Natarajan, Devarajan

    2012-11-01

    The present study aimed to investigate the effect of magnesite and bauxite waste dumps on growth and biochemical parameters of some edible and economically important plants such as Vigna radiata, V. mungo, V. unguiculata, Eleusine coracana, Cajanus cajan, Pennisetum glaucum, Macrotyloma uniflorum, Oryza sativa, Sorghum bicolour, Sesamum indicum, Ricinus communis, Brassica juncea, Gossypium hirsutum and Jatropha curcas. The growth rate of all the crops was observed in the range of 75 to 100% in magnesite and 15 to 100% in bauxite mine soil. The moisture content of roots and shoots of all the crops were in the range of 24 to 77, 20 to 88% and 42 to 87, 59 to 88% respectively. The height of the crops was in the range of 2.6 to 48 cm in magnesite soil and 3 to 33 cm in bauxite soil. Thus the study shows that both mine soils reflects some physical and biomolecule impact on selected crops.

  6. CROSSING SUPPORT OF THE DRIFT AND CROSSCUTS IN SUBLEVEL BAUXITE MINING

    Directory of Open Access Journals (Sweden)

    Srećko Majić

    1993-12-01

    Full Text Available The report discusses the excavation method in underground bauxite exploitation of the Bauxite Mine Posušjc, as well as the experiences in crossing support of drifts and crosscuts till now, where it came in about 6% cases to the breakage of the frame support and to crossing ceiling caving. On the basis of such biggest caving, the estimate and dimensioning of critical support elements (runner and bar were performed. The possibility of supporting by bolting and stell plate was also considered. For the central part of the crosscut the use of bolts was assumed, which are fixed in the up-face. and for the rest of crossing the expansion shell anchors. For the latter, the estimate for anchoring elements was elaborated. Technical, safety and economic advantage of the bolts support is proved when compared with the frame support (the paper is published in Croatian.

  7. Isolation of chromium resistant bacteria from a former bauxite mine ...

    African Journals Online (AJOL)

    The Cr (VI) reducing capacity of bacteria has been investigated in many different soils and waters but little or no information is available from soils originating from bauxite mine areas. From soil, mud and rhizospheres of the floating aquatic plant Potamogeton natans L. and the terrestrial plant Carduus acanthoides L., the Cr ...

  8. DESIGN OF EXPERIMENTS IN THE STUDY OF BAUXITE REFRACTORY CASTABLE PROPERTIES

    Directory of Open Access Journals (Sweden)

    Ilona Kieliba

    2017-07-01

    Full Text Available This paper presents results of an investigation of the influence of preparation conditions of low-cement refractory castables on their service properties using experiment planning methods. Using the orthogonal Plackett-Burman design, the influence of the amount of water, vibration time, curing conditions and firing conditions on the service properties of the finished refractory castable (apparent density, open porosity, permanent linear changes, Young's modulus, bending strength and compressive strength at ambient temperature is demonstrated. It is found that, among the investigated properties under the conditions of the conducted experiment, only the mixing time is a negligible factor that has no significant influence on the process of developing service properties of low-cement bauxite castables.

  9. Potential Health Impacts of Bauxite Mining in Kuantan

    OpenAIRE

    Abdullah, Noor Hisham; Mohamed, Norlen; Sulaiman, Lokman Hakim; Zakaria, Thahirahtul Asma; Rahim, Daud Abdul

    2016-01-01

    Bauxite mining is not known to most Malaysian except recently due to environmental pollution issues in Kuantan, Pahang. Potential impacts are expected to go beyond physical environment and physical illness if the situation is not controlled. Loss of economic potentials, and the presence of unpleasant red dust causing mental distress, anger and community outrage. More studies are needed to associate it with chronic physical illness. While evidences are vital for action, merely waiting for a di...

  10. Large-Scale Consumption and Zero-Waste Recycling Method of Red Mud in Steel Making Process

    Directory of Open Access Journals (Sweden)

    Guoshan Ning

    2018-03-01

    Full Text Available To release the environmental pressure from the massive discharge of bauxite residue (red mud, a novel recycling method of red mud in steel making process was investigated through high-temperature experiments and thermodynamic analysis. The results showed that after the reduction roasting of the carbon-bearing red mud pellets at 1100–1200 °C for 12–20 min, the metallic pellets were obtained with the metallization ratio of ≥88%. Then, the separation of slag and iron achieved from the metallic pellets at 1550 °C, after composition adjustment targeting the primary crystal region of the 12CaO·7Al2O3 phase. After iron removal and composition adjustment, the smelting-separation slag had good smelting performance and desulfurization capability, which meets the demand of sulfurization flux in steel making process. The pig iron quality meets the requirements of the high-quality raw material for steel making. In virtue of the huge scale and output of steel industry, the large-scale consumption and zero-waste recycling method of red mud was proposed, which comprised of the carbon-bearing red mud pellets roasting in the rotary hearth furnace and smelting separation in the electric arc furnace after composition adjustment.

  11. Water quality assessment of the rivers in bauxite mining area at ...

    African Journals Online (AJOL)

    Water quality assessment of the rivers in bauxite mining area at Kuantan Pahang. ... mining area. Water samples were collected at Kuantan River, Riau River, Pinang River and Pandan Rivers. ... All these rivvers were classified into class II based on INWQS and required conventional treatment for water supply purposes.

  12. Post-mining deterioration of bauxite overburdens in Jamaica: storage methods or subsoil dilution?

    Science.gov (United States)

    Harris, Mark A.; Omoregie, Samson N.

    2008-03-01

    Rapid degradation of disturbed soil from a karst bauxite mine in Jamaica was recorded. Substantial macronutrient losses were incurred during a short (1 month) or a long (12 months) storage of the replaced topsoils during frequent wet/dry changes. The results suggested very high rates (>70% in the first year) of soil degradation from storage, alongside moderate rates (30%) within the same storage dump. However, higher levels of soil organic matter (SOM) were indicated just below the surface, compared with the surface horizons. It was unlikely that under a high leaching humid tropical rainfall regime, natural degradation processes could have re-emplaced such material firmly intact in the 15-30 cm zone. It was therefore concluded that these SOM anomalies were due to mechanical dilution of surface soil with subsoil material during overburden removal and emplacement rather than from long storage. Increasing the soil organic content during storage could be one corrective approach. However, it is far less costly to exercise greater care to apply more precise overburden removal and emplacement techniques initially, than it is to correct the results of topsoil contamination with subsoil. Although this study was limited to one mine, in the context of imminent large-scale mining expansion and current practices, further investigations are needed to accurately ascertain the proportion of similar subsoil contamination in other bauxite-mined sites.

  13. Predictive hydrogeochemical modelling of bauxite residue sand in field conditions.

    Science.gov (United States)

    Wissmeier, Laurin; Barry, David A; Phillips, Ian R

    2011-07-15

    The suitability of residue sand (the coarse fraction remaining from Bayer's process of bauxite refining) for constructing the surface cover of closed bauxite residue storage areas was investigated. Specifically, its properties as a medium for plant growth are of interest to ensure residue sand can support a sustainable ecosystem following site closure. The geochemical evolution of the residue sand under field conditions, its plant nutrient status and soil moisture retention were studied by integrated modelling of geochemical and hydrological processes. For the parameterization of mineral reactions, amounts and reaction kinetics of the mineral phases natron, calcite, tricalcium aluminate, sodalite, muscovite and analcime were derived from measured acid neutralization curves. The effective exchange capacity for ion adsorption was measured using three independent exchange methods. The geochemical model, which accounts for mineral reactions, cation exchange and activity corrected solution speciation, was formulated in the geochemical modelling framework PHREEQC, and partially validated in a saturated-flow column experiment. For the integration of variably saturated flow with multi-component solute transport in heterogeneous 2D domains, a coupling of PHREEQC with the multi-purpose finite-element solver COMSOL was established. The integrated hydrogeochemical model was applied to predict water availability and quality in a vertical flow lysimeter and a cover design for a storage facility using measured time series of rainfall and evaporation from southwest Western Australia. In both scenarios the sand was fertigated and gypsum-amended. Results show poor long-term retention of fertilizer ions and buffering of the pH around 10 for more than 5 y of leaching. It was concluded that fertigation, gypsum amendment and rainfall leaching alone were insufficient to render the geochemical conditions of residue sand suitable for optimal plant growth within the given timeframe. The

  14. Radioactive waste processing

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1978-01-01

    This article gives an outline of the present situation, from a Belgian standpoint, in the field of the radioactive wastes processing. It estimates the annual quantity of various radioactive waste produced per 1000 MW(e) PWR installed from the ore mining till reprocessing of irradiated fuels. The methods of treatment concentration, fixation, final storable forms for liquid and solid waste of low activity and for high level activity waste. The storage of radioactive waste and the plutonium-bearing waste treatement are also considered. The estimated quantity of wastes produced for 5450 MW(e) in Belgium and their destination are presented. (A.F.)

  15. EPRI waste processing projects

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1987-01-01

    The Electric Power Research Institute (EPRI) manages research for its sponsoring electric utilities in the United States. Research in the area of low level radioactive waste (LLRW) from light water reactors focuses primarily on waste processing within the nuclear power plants, monitoring of the waste packages, and assessments of disposal technologies. Accompanying these areas and complimentary to them is the determination and evaluation of the sources of nuclear power plants radioactive waste. This paper focuses on source characterization of nuclear power plant waste, LLRW processing within nuclear power plants, and the monitoring of these wastes. EPRI's work in waste disposal technology is described in another paper in this proceeding by the same author. 1 reference, 5 figures

  16. Modification of bauxite residue generated in the Bayer process by thermal treatment

    International Nuclear Information System (INIS)

    Garcia, M.C.S.; Pileggi, R.G.; John, V.M.; Gouvea, D.

    2011-01-01

    Red mud is the waste generated by the aluminum industry, and as other industrial waste presents complex characteristics with numerous difficulties in handling, as well as being a hazardous material due to its low granulometry, alkalinity and high amount generated. It is a waste with potential high polluter, aggravated by the generally adopted vulnerable disposal form, being this, the disposition of the residue in ponds designed for this purpose. The study and development of sustainable alternatives for the use of sludge, treated as raw materials from other processes, are important tendency and necessary trends in the global context of environmental preservation. This work deals with the thermal treatment as a method of modification of the characteristics of the residue, suggesting the reduction of alkalinity together with the lower leaching of alkaline ions. This approach can be a more reliable and environmentally safe disposal alternatives

  17. Developing alternative resources of rare earth elements in Europe - EURARE and the red mud challenge

    Science.gov (United States)

    Deady, Eimear; Mouchos, Evangelos; Goodenough, Kathryn; Wall, Frances; Williamson, Ben

    2015-04-01

    Rare earth elements (REE) are considered to be highly "critical" by the European Commission [1], owing to the concentration of global supply [2] and their use in a wide range of emerging technologies (e.g. smart phones, electric cars and wind turbines). The main source of REE is the mineral bastnäsite, which is primarily extracted from carbonatites. Alternative resources of REE have been identified in a variety of other environments such as alluvial placers, bauxites and ore tailings. The EURARE project (www.eurare.eu), funded by the European Commission, aims to improve understanding of potential REE resources in Europe with the overall objective of establishing the basis for a European REE industry. As a part of this project, alternative sources of rare earth elements in Europe are being considered. REE have been identified as being particularly enriched in karst-bauxites and hence in the red muds generated as a waste product from the processing of these bauxites to alumina through the Bayer process [3]. Karst-bauxites are widely distributed with deposits known across the Mediterranean and with intermittent exploitation occurring over many decades. REE become concentrated in the bauxite deposits by the bauxitisation process and are retained due to the geochemical barrier created by the limestone bedrock below. This can result in several processes, including the crystallisation of authigenic REE-bearing minerals, the accumulation of residual phases and the adsorption of ions onto clays and other mineral surfaces [4]. Red muds produced from alumina processing represent a potentially important concentration of REE as it has been demonstrated that the REE pass through the alumina extraction process into the waste, and the total REE concentrations are typically enriched by a factor of two compared with the original bauxite ore [5]. Bauxites and red muds from the Parnassus Ghiona region of Greece [6] and the Seydişehir-Akseki region of Turkey have been assessed as

  18. THE SOLUBILITY OF MILAS BAUXITE ORE IN SULPHURIC ACI

    Directory of Open Access Journals (Sweden)

    Mustafa GULFEN

    2001-06-01

    Full Text Available The effects of calcination conditions,sulphuric acid concentrations and dissolvingtemperature and period as parameters to thesolubility of the bauxite ore from Gobekdagı reservesin Mugla-Milas region were investigated. The bauxitesamples were calcined in different periods at differenttemperatures. Then the solubility of the calcinedbauxite samples in sulphuric acid solution wasexamined. Dissolving activation energy (Ea wascalculated using the optimum kinetics equation andthe results obtained from the solubility studiesexamined dissolving temperatures and periods

  19. The Defense Waste Processing Facility: an innovative process for high-level waste immobilization

    International Nuclear Information System (INIS)

    Cowan, S.P.

    1985-01-01

    The Defense Waste Processing Facility (DWPF), under construction at the Department of Energy's Savannah River Plant (SRP), will process defense high-level radioactive waste so that it can be disposed of safely. The DWPF will immobilize the high activity fraction of the waste in borosilicate glass cast in stainless steel canisters which can be handled, stored, transported and disposed of in a geologic repository. The low-activity fraction of the waste, which represents about 90% of the high-level waste HLW volume, will be decontaminated and disposed of on the SRP site. After decontamination the canister will be welded shut by an upset resistance welding technique. In this process a slightly oversized plug is pressed into the canister opening. At the same time a large current is passed through the canister and plug. The higher resistance of the canister/plug interface causes the heat which welds the plug in place. This process provides a high quality, reliable weld by a process easily operated remotely

  20. Comparison of inductively coupled plasma mass spectrometry with inductively coupled plasma atomic emission spectrometry and instrumental neutron activation analysis for the determination of rare earth elements in Greek bauxites

    International Nuclear Information System (INIS)

    Ochsenkuehn-Petropoulou, Maria; Luck, Joachim

    1991-01-01

    Fore the determination of rare earth elements (REE) in bauxitic materials the techniques of inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and instrumental neutron activation analysis (INAA) were compared. In the NIST (National Institute of Standards and Technology) bauxites SRM 697 Dominican, and SRM 69 b Arkansas, the concentration of some REEs were determined. With the reference bauxite BX-N of the ARNT (Association Nationale de la Recherche Technique) the precision and accuracy of ICP-AES for the determination of REEs in bauxites was tested. Furthermore, Greek bauxites of the Parnassos-Giona area were investigated. In a comparison of the three methods it was possible to calculate from the data series the precision of each method, which showed that the tendency found in the deviations for the different REEs is in accordance with published values. Also the limits of detection for REEs in bauxites were calculated and found to be in the same range as those in the literature. (author)

  1. Moengo on strike: the politics of labour in Suriname’s Bauxite industry

    NARCIS (Netherlands)

    de Koning, A.

    2011-01-01

    This article examines one crucial period of contestation in colonial Suriname, the years 1941 and 1942, when sustained labour unrest in the bauxite town of Moengo led to the establishment of the first mining unions. It argues that these strikes laid the groundwork for future relations between

  2. Environmental impact of noise levels in and around opencast bauxite mine.

    Science.gov (United States)

    Kisku, G C; Barman, S C; Kidwai, M M; Bhargava, S K

    2002-01-01

    Until recently, noise pollution has not been paid adequate attention as air, water and land pollution. In order to assess (predict) the impact of bauxite mine noise on employees health and in and around bauxite mine environment, general noise sources and equipment noise were monitored. All these noise sources were compared with prescribed standard noise levels laid down by Central Pollution Control Board (CPCB). Data has also been compared with reference site, north block hill top which is barren and virgin plateau/top covered with grass only and free from human interference. Equipment noise levels were much higher than the other zone of the mine which does not have the corresponding standards. Rock breaker recorded the highest noise level with 73.1 +/- 14.2 to 89.5 +/- 10.1 dB (A) while from ripper dozer it was least with 61.0 +/- 17.3 to 76.2 +/- 6.2 dB (A). Meteorological parameters did not have much influence upon equipment noise up to 100 feet from the source.

  3. Carnian bauxite horizon on the Kopitov grič near Borovnica (Slovenia – is there a »forgotten« stratigraphic gap in its footwall?

    Directory of Open Access Journals (Sweden)

    Bogomir Celarc

    2008-12-01

    Full Text Available Beds underlying the Carnian bauxite on the Kopitov gri~ (Slovenia are by the author’s opinion not Carnian (Cordevolian, but Ladinian age. The considerable stratigraphical gap is presented between Carnian clastic rocks and underlying limestones and dolomites. Bauxite is result of the weathering during the emersion.

  4. On-line and bulk analysis of iron ore and bauxite

    International Nuclear Information System (INIS)

    Holmes, R.J.; Roczniok, A.F.

    1983-01-01

    A number of analysis techniques based on neutron and gamma radiation have been developed for the mining industry. Current projects include the measurement of annihilation radiation arising from pair production for the on-line determination of the iron content of iron ores, and the construction of a demonstration bauxite analyser based on fast-neutron activation analysis for the simultaneous determination of aluminium and silicon content

  5. Food-Processing Wastes.

    Science.gov (United States)

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2017-10-01

    Literature published in 2016 and early 2017 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  6. Comparative assessment of TRU waste forms and processes. Volume I. Waste form and process evaluations

    International Nuclear Information System (INIS)

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This study provides an assesses seven waste forms and eight processes for immobilizing transuranic (TRU) wastes. The waste forms considered are cast cement, cold-pressed cement, FUETAP (formed under elevated temperature and pressure) cement, borosilicate glass, aluminosilicate glass, basalt glass-ceramic, and cold-pressed and sintered silicate ceramic. The waste-immobilization processes considered are in-can glass melting, joule-heated glass melting, glass marble forming, cement casting, cement cold-pressing, FUETAP cement processing, ceramic cold-pressing and sintering, basalt glass-ceramic processing. Properties considered included gas generation, chemical durability, mechanical strength, thermal stability, and radiation stability. The ceramic products demonstrated the best properties, except for plutonium release during leaching. The glass and ceramic products had similar properties. The cement products generally had poorer properties than the other forms, except for plutonium release during leaching. Calculations of the Pu release indicated that the waste forms met the proposed NRC release rate limit of 1 part in 10 5 per year in most test conditions. The cast-cement process had the lowest processing cost, followed closely by the cold-pressed and FUETAP cement processes. Joule-heated glass melting had the lower cost of the glass processes. In-can melting in a high-quality canister had the highest cost, and cold-pressed and sintered ceramic the second highest. Labor and canister costs for in-can melting were identified. The major contributor to costs of disposing of TRU wastes in a defense waste repository is waste processing costs. Repository costs could become the dominant cost for disposing of TRU wastes in a commercial repository. It is recommended that cast and FUETAP cement and borosilicate glass waste-form systems be considered. 13 figures, 16 tables

  7. Gold and radioactive elements in the bauxite deposits of Shevaroy hills, Tamil Nadu

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, B K; Sengupta, D K

    1982-11-01

    The presence of gold and radioactive elements in the bauxite deposits of Shevaroy Hills has been determined by neutron activation technique. The behaviour of uranium supports the theoretical findings. The higher concentration of gold (<10/sup 3/%) indicates that the deposits are auriferous.

  8. Gold and radioactive elements in the bauxite deposits of Shevaroy hills, Tamil Nadu

    International Nuclear Information System (INIS)

    Mukherjee, B.K.; Sengupta, D.K.

    1982-01-01

    The presence of gold and radioactive elements in the bauxite deposits of Shevaroy Hills has been determined by neutron activation technique. The behaviour of uranium supports the theoretical findings. The higher concentration of gold ( -3 %) indicates that the deposits are auriferous. (author)

  9. Pyro-processes and the wastes

    International Nuclear Information System (INIS)

    Kurata, Masaki; Tokiwai, Moriyasu; Inoue, Tadashi; Nishimura, Tomohiro

    2000-01-01

    Reprocessing using pyrometallurgical processes is generally considered to have economical benefits comparing with conventional aqueous processes because of the combination of simpler process and equipments, less criticality, and more compact facilities. On the other hand, the pyrometallurgical processes must generate peculiar wastes and R and D on those wastes is slightly inferior, as compared with the main processes. In this paper, process flows of major pyrometallurgical processes are firstly summarized and, then, the present R and D condition on the wastes are shown. (author)

  10. Plasma technologies: applications to waste processing

    International Nuclear Information System (INIS)

    Fauchais, P.

    2007-01-01

    Since the 1990's, plasma technologies have found applications in the processing of toxic wastes of military and industrial origin, like the treatment of contaminated solids and low level radioactive wastes, the decontamination of soils etc.. Since the years 2000, this development is becoming exponential, in particular for the processing of municipal wastes and the recovery of their synthesis gas. The advantage of thermal plasmas with respect to conventional combustion techniques are: a high temperature (more than 6000 K), a pyrolysis capability (CO formation instead of CO 2 ), about 90% of available energy above 1500 K (with respect to 23% with flames), a greater energy density, lower gas flow rates, and plasma start-up and shut-down times of only few tenth of seconds. This article presents: 1 - the present day situation of thermal plasmas development; 2 - some general considerations about plasma waste processing; 3 - the plasma processes: liquid toxic wastes, solid wastes (contaminated soils and low level radioactive wastes, military wastes, vitrification of incinerators fly ash, municipal wastes processing, treatment of asbestos fibers, treatment of chlorinated industrial wastes), metallurgy wastes (dusts, aluminium slags), medical and ship wastes, perspectives; 4 -conclusion. (J.S.)

  11. Process and device for processing radioactive wastes

    International Nuclear Information System (INIS)

    1974-01-01

    A method is described for processing liquid radioactive wastes. It includes the heating of the liquid wastes so that the contained liquids are evaporated and a practically anhydrous mass of solid particles inferior in volume to that of the wastes introduced is formed, then the transformation of the solid particles into a monolithic structure. This transformation includes the compressing of the particles and sintering or fusion. The solidifying agent is a mixture of polyethylene and paraffin wax or a styrene copolymer and a polyester resin. The device used for processing the radioactive liquid wastes is also described [fr

  12. Iron and aluminium oxides containing industrial wastes as adsorbents of heavy metals: Application possibilities and limitations.

    Science.gov (United States)

    Jacukowicz-Sobala, Irena; Ociński, Daniel; Kociołek-Balawejder, Elżbieta

    2015-07-01

    Industrial wastes with a high iron or aluminium oxide content are produced in huge quantities as by-products of water treatment (water treatment residuals), bauxite processing (red mud) and hard and brown coal burning in power plants (fly ash). Although they vary in their composition, the wastes have one thing in common--a high content of amorphous iron and/or aluminium oxides with a large specific surface area, whereby this group of wastes shows very good adsorbability towards heavy metals, arsenates, selenates, etc. But their physical form makes their utilisation quite difficult, since it is not easy to separate the spent sorbent from the solution and high bed hydraulic resistances occur in dynamic regime processes. Nevertheless, because of the potential benefits of utilising the wastes in industrial effluent treatment, this issue attracts much attention today. This study describes in detail the waste generation processes, the chemical structure of the wastes, their physicochemical properties, and the mechanisms of fixing heavy metals and semimetals on the surface of iron and aluminium oxides. Typical compositions of wastes generated in selected industrial plants are given. A detailed survey of the literature on the adsorption applications of the wastes, including methods of their thermal and chemical activation, as well as regeneration of the spent sorbents, is presented. The existing and potential ways of modifying the physical form of the discussed group of wastes, making it possible to overcome the basic limitation on their practical use, are discussed. © The Author(s) 2015.

  13. Waste Management Process Improvement Project

    International Nuclear Information System (INIS)

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-01-01

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle

  14. The occurrence and potential ecological risk assessment of bauxite mine-impacted water and sediments in Kuantan, Pahang,Malaysia.

    Science.gov (United States)

    Kusin, Faradiella Mohd; Rahman, Muhammad Syazwan Abd; Madzin, Zafira; Jusop, Shamshuddin; Mohamat-Yusuff, Ferdaus; Ariffin, Mariani; Z, Mohd Syakirin Md

    2017-01-01

    Recent bauxite mining activities in the vicinity of Kuantan, Pahang, have been associated with apparent environmental quality degradation and have raised environmental concerns among the public. This study was carried out to evaluate the overall ecological impacts on water and sediment quality from the bauxite mining activities. Water and sediment samples were collected at seven sampling locations within the bauxite mining areas between June and December 2015. The water samples were analyzed for water quality index (WQI) and distribution of major and trace element geochemistry. Sediment samples were evaluated based on geochemical indices, i.e., the enrichment factor (EF) and geoaccumulation index (I geo ). Potential ecological risk index was estimated to assess the degree to which sediments of the mine-impacted areas have been contaminated with heavy metals. The results showed that WQIs of some locations were classified as slightly polluted and contained metal contents exceeding the recommended guideline values. The EFs indicated minimal to moderate enrichment of metals (Pb, Cu, Zn, Mn, As, Cd, Cr, Ni, Co, and Sr) in the sediments. I geo showed slightly to partially polluted sediments with respect to As at some locations. The potential ecological risk index (RI) showed that As posed the highest potential ecological risk with RI of 52.35-60.92 at two locations, while other locations indicated low risk. The findings from this study have demonstrated the impact of recent bauxite mining activities, which might be of importance to the local communities and relevant authorities to initiate immediate rehabilitation phase of the impacted area.

  15. Shadows of the Plantation? A social history of Suriname’s bauxite town Moengo

    NARCIS (Netherlands)

    de Koning, A.

    2011-01-01

    This article explores the social history of Suriname’s first bauxite town, Moengo, founded in the late 1910s. It recounts the rise of a new industry that drew workers away from the plantations and urban artisanal occupations to work in a massive, highly organized and orchestrated

  16. Recovery of alumina from khushab bauxite by leaching with sulphuric acid and removal of iron impurity by ethanol

    International Nuclear Information System (INIS)

    Tariq, M.; Iqbal, M.M.; Shafiq, M.; Aziz, A.

    2014-01-01

    Bauxite is heterogeneous material principally composed of aluminum oxide minerals and found in all continents. It is being used in chemical, cement, refractory, abrasive, fertilizer, steel and other industries. In order to extract the alumina, the calcined samples of bauxite of Khushab area were ground to -710 meum. Sulphuric acid of purity 40% was used as leaching agent and slurry of pulp density 14% was prepared by dissolving 60 ml acid in 20 gm sample. The leaching was carried out at 90 degree C for 2 hours. The iron impurity was removed by ethanol of purity 68%. The drying, dehydration and desulphurization temperatures were kept 105 degree C, 450 degree C and 850 degree C respectively in all the stages of the process. Alumina recoveries from four samples of Sultan Mehdhi, Chamil More, Niaz Mine and Nadi locations were 20.8%, 9.81%, 15.47% and 7.78% respectively. Iron was almost completely removed as the analysis shows that the Fe/sub 2/O/sub 3/ removal was from 97.8% to 99.6%. It is concluded that leaching efficiency was quite encouraging except Nadi ore sample. However the iron free alumina recoveries were low as the analysis of Fe/sub 2/O/sub 3/ processed residue shows that it contains 72.72% to 92.94% of leached alumina in all the four experiments. (author)

  17. Addressing mixed waste in plutonium processing

    International Nuclear Information System (INIS)

    Christensen, D.C.; Sohn, C.L.; Reid, R.A.

    1991-01-01

    The overall goal is the minimization of all waste generated in actinide processing facilities. Current emphasis is directed toward reducing and managing mixed waste in plutonium processing facilities. More specifically, the focus is on prioritizing plutonium processing technologies for development that will address major problems in mixed waste management. A five step methodological approach to identify, analyze, solve, and initiate corrective action for mixed waste problems in plutonium processing facilities has been developed

  18. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Nomura, Ichiro; Hashimoto, Yasuo.

    1984-01-01

    Purpose: To improve the volume-reduction effect, as well as enable simultaneous procession for the wastes such as burnable solid wastes, resin wastes or sludges, and further convert the processed materials into glass-solidified products which are much less burnable and stable chemically and thermally. Method: Auxiliaries mainly composed of SiO 2 such as clays, and wastes such as burnable solid wastes, waste resins and sludges are charged through a waste hopper into an incinerating melting furnace comprising an incinerating and a melting furnace, while radioactive concentrated liquid wastes are sprayed from a spray nozzle. The wastes are burnt by the heat from the melting furnace and combustion air, and the sprayed concentrated wastes are dried by the hot air after the combustion into solid components. The solid matters from the concentrated liquid wastes and the incinerating ashes of the wastes are melted together with the auxiliaries in the melting furnace and converted into glass-like matters. The glass-like matters thus formed are caused to flow into a vessel and gradually cooled to solidify. (Horiuchi, T.)

  19. Processes for production of alternative waste forms

    International Nuclear Information System (INIS)

    Ross, W.A.; Rusin, J.M.; McElroy, J.L.

    1979-01-01

    During the past 20 years, numerous waste forms and processes have been proposed for solidification of high-level radioactive wastes (HLW). The number has increased significantly during the past 3 to 4 years. At least five factors must be considered in selecting the waste form and process method: 1) processing flexibility, 2) waste loading, 3) canister size and stability, 4) waste form inertness and stability, and 5) processing complexity. This paper describes various waste form processes and operations, and a simple system is proposed for making comparisons. This system suggests that one goal for processes would be to reduce the number of process steps, thereby providing less complex processing systems

  20. Organic waste incineration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lemort, F.; Charvillat, J.P.; Nabot, J.P. [CEA Valrho, Bagnols sur Ceze Cedex (France); Chateauvieux, H.; Thiebaut, C. [CEA Valduc, 21 - Is-sur-Tille (France)

    2001-07-01

    Nuclear activities produce organic waste compatible with thermal processes designed to obtain a significant weight and volume reduction as well as to stabilize the inorganic residue in a form suitable for various interim storage or disposal routes. Several processes may be implemented (e.g. excess air, plasma, fluidized bed or rotating furnace) depending on the nature of the waste and the desired objectives. The authors focus on the IRIS rotating-kiln process, which was used for the first time with radioactive materials during the first half of 1999. IRIS is capable of processing highly chlorinated and {alpha}-contaminated waste at a rate of several kilograms per hour, while limiting corrosion due to chlorine as well as mechanical entrainment of radioactive particles in the off-gas stream. Although operated industrially, the process is under continual development to improve its performance and adapt it to a wider range of industrial applications. The main focus of attention today is on adapting the pyrolytic processes to waste with highly variable compositions and to enhance the efficiency of the off-gas purification systems. These subjects are of considerable interest for a large number of heat treatment processes (including all off-gas treatment systems) for which extremely durable, high-performance and low-flow electrostatic precipitators are now being developed. (author)

  1. Organic waste incineration processes

    International Nuclear Information System (INIS)

    Lemort, F.; Charvillat, J.P.; Nabot, J.P.; Chateauvieux, H.; Thiebaut, C.

    2001-01-01

    Nuclear activities produce organic waste compatible with thermal processes designed to obtain a significant weight and volume reduction as well as to stabilize the inorganic residue in a form suitable for various interim storage or disposal routes. Several processes may be implemented (e.g. excess air, plasma, fluidized bed or rotating furnace) depending on the nature of the waste and the desired objectives. The authors focus on the IRIS rotating-kiln process, which was used for the first time with radioactive materials during the first half of 1999. IRIS is capable of processing highly chlorinated and α-contaminated waste at a rate of several kilograms per hour, while limiting corrosion due to chlorine as well as mechanical entrainment of radioactive particles in the off-gas stream. Although operated industrially, the process is under continual development to improve its performance and adapt it to a wider range of industrial applications. The main focus of attention today is on adapting the pyrolytic processes to waste with highly variable compositions and to enhance the efficiency of the off-gas purification systems. These subjects are of considerable interest for a large number of heat treatment processes (including all off-gas treatment systems) for which extremely durable, high-performance and low-flow electrostatic precipitators are now being developed. (author)

  2. Microwave waste processing technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, R.D.

    1993-02-01

    Applications using microwave energy in the chemical processing industry have increased within the last ten years. Recently, interest in waste treatment applications process development, especially solidification, has grown. Microwave waste processing offers many advantages over conventional waste treatment technologies. These advantages include a high density, leach resistant, robust waste form, volume and toxicity reduction, favorable economics, in-container treatment, good public acceptance, isolated equipment, and instantaneous energy control. The results from the {open_quotes}cold{close_quotes} demonstration scale testing at the Rocky Flats nuclear weapons facility are described. Preliminary results for a transuranic (TRU) precipitation sludge indicate that volume reductions of over 80% are achievable over the current immobilization process. An economic evaluation performed demonstrated cost savings of $11.68 per pound compared to the immobilization process currently in use on wet sludge.

  3. Microwave waste processing technology overview

    International Nuclear Information System (INIS)

    Petersen, R.D.

    1993-02-01

    Applications using microwave energy in the chemical processing industry have increased within the last ten years. Recently, interest in waste treatment applications process development, especially solidification, has grown. Microwave waste processing offers many advantages over conventional waste treatment technologies. These advantages include a high density, leach resistant, robust waste form, volume and toxicity reduction, favorable economics, in-container treatment, good public acceptance, isolated equipment, and instantaneous energy control. The results from the open-quotes coldclose quotes demonstration scale testing at the Rocky Flats nuclear weapons facility are described. Preliminary results for a transuranic (TRU) precipitation sludge indicate that volume reductions of over 80% are achievable over the current immobilization process. An economic evaluation performed demonstrated cost savings of $11.68 per pound compared to the immobilization process currently in use on wet sludge

  4. Preliminary assessment of nine waste-form products/processes for immobilizing transuranic wastes

    International Nuclear Information System (INIS)

    Crisler, L.R.

    1980-09-01

    Nine waste-form processes for reduction of the present and projected Transuranic (TRU) waste inventory to an immobilized product have been evaluated. Product formulations, selected properties, preparation methods, technology status, problem areas needing resolution and location of current research development being pursued in the United States are discussed for each process. No definitive utility ranking is attempted due to the early stage of product/process development for TRU waste containing products and the uncertainties in the state of current knowledge of TRU waste feed compositional and quantitative makeup. Of the nine waste form products/processes included in this discussion, bitumen and cements (encapsulation agents) demonstrate the degree of flexibility necessary to immobilize the wide composition range present in the TRU waste inventory. A demonstrated process called Slagging Pyrolysis Incineration converts a varied compositional feed (municipal wastes) to a ''basalt'' like product. This process/product appears to have potential for TRU waste immobilization. The remaining waste forms (borosilicate glass, high-silica glass, glass ceramics, ''SYNROC B'' and cermets) have potential for immobilizing a smaller fraction of the TRU waste inventory than the above discussed waste forms

  5. Defense waste processing facility precipitate hydrolysis process

    International Nuclear Information System (INIS)

    Doherty, J.P.; Eibling, R.E.; Marek, J.C.

    1986-03-01

    Sodium tetraphenylborate and sodium titanate are used to assist in the concentration of soluble radionuclide in the Savannah River Plant's high-level waste. In the Defense Waste Processing Facility, concentrated tetraphenylborate/sodium titanate slurry containing cesium-137, strontium-90 and traces of plutonium from the waste tank farm is hydrolyzed in the Salt Processing Cell forming organic and aqueous phases. The two phases are then separated and the organic phase is decontaminated for incineration outside the DWPF building. The aqueous phase, containing the radionuclides and less than 10% of the original organic, is blended with the insoluble radionuclides in the high-level waste sludge and is fed to the glass melter for vitrification into borosilicate glass. During the Savannah River Laboratory's development of this process, copper (II) was found to act as a catalyst during the hydrolysis reactions, which improved the organic removal and simplified the design of the reactor

  6. Biofuels from food processing wastes.

    Science.gov (United States)

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. Copyright © 2016. Published by Elsevier Ltd.

  7. Process Waste Assessment - Paint Shop

    International Nuclear Information System (INIS)

    Phillips, N.M.

    1993-06-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Paint Shop, Building 913, Room 130. Special attention is given to waste streams generated by the spray painting process because it requires a number of steps for preparing, priming, and painting an object. Also, the spray paint booth covers the largest area in R-130. The largest and most costly waste stream to dispose of is open-quote Paint Shop wasteclose quotes -- a combination of paint cans, rags, sticks, filters, and paper containers. These items are compacted in 55-gallon drums and disposed of as solid hazardous waste. Recommendations are made for minimizing waste in the Paint Shop. Paint Shop personnel are very aware of the need to minimize hazardous wastes and are continuously looking for opportunities to do so

  8. Waste Analysis Plan for the Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    TRINER, G.C.

    1999-01-01

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for dangerous, mixed, and radioactive waste accepted for confirmation, nondestructive examination (NDE) and nondestructive assay (NDA), repackaging, certification, and/or storage at the Waste Receiving and Processing Facility (WRAP). Mixed and/or radioactive waste is treated at WRAP. WRAP is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  9. Electron accelerators for waste processing

    International Nuclear Information System (INIS)

    Kon'kov, N.G.

    1976-01-01

    The documents of the International symposium on radiation vaste processing are presented. Questions on waste utilization with the help of electron accelerators are considered. The electron accelerators are shown to have an advantage over some other ionizing radiation sources. A conclusion is made that radiation methods of waste processing are extensively elaborated in many developed countries. It has been pointed out that an electron accelerator is a most cheap and safe ionizing radiation source primarily for processing of gaseous and liquid wastes

  10. Methods for maintaining a record of waste packages during waste processing and storage

    International Nuclear Information System (INIS)

    2005-01-01

    During processing, radioactive waste is converted into waste packages, and then sent for storage and ultimately for disposal. A principal condition for acceptance of a waste package is its full compliance with waste acceptance criteria for disposal or storage. These criteria define the radiological, mechanical, physical, chemical and biological properties of radioactive waste that can, in principle, be changed during waste processing. To declare compliance of a waste package with waste acceptance criteria, a system for generating and maintaining records should be established to record and track all relevant information, from raw waste characteristics, through changes related to waste processing, to final checking and verification of waste package parameters. In parallel, records on processing technology and the operational parameters of technological facilities should adhere to established and approved quality assurance systems. A records system for waste management should be in place, defining the data to be collected and stored at each step of waste processing and using a reliable selection process carried over into the individual steps of the waste processing flow stream. The waste management records system must at the same time ensure selection and maintenance of all the main information, not only providing evidence of compliance of waste package parameters with waste acceptance criteria but also serving as an information source in the case of any future operations involving the stored or disposed waste. Records generated during waste processing are a constituent part of the more complex system of waste management record keeping, covering the entire life cycle of radioactive waste from generation to disposal and even the post-closure period of a disposal facility. The IAEA is systematically working on the preparation of a set of publications to assist its Member States in the development and implementation of such a system. This report covers all the principal

  11. Restoration of tropical moist forest on bauxite mined lands in the Brazilian Amazon

    Science.gov (United States)

    John A Parrotta; Oliver H. Knowles

    1999-01-01

    We evaluated forest structure and composition in 9- to 13-year-old stands established on a bauxite-mined site at Trombetas (Pará), Brazil, using four different reforestation techniques following initial site preparation and topsoil replacement. These techniques included reliance on natural forest regeneration, mixed commercial species plantings of mostly exotic timber...

  12. Correlation between radwaste processing and hazardous waste treatment processes

    International Nuclear Information System (INIS)

    Block, O.U.J.; Tulipano, F.J.

    1988-01-01

    The basic framework under SARA has established that preferred remedies are those which permanently and significantly reduce toxicity, mobility or volume of wastes. In the 1970's radwaste process designs at power plants received pressure to satisfy essentially the same criteria when increased emphasis was placed on limited disposal sites which resulted in rapidly escalating disposal costs. This paper provides a historical perspective of radwaste experience and discusses valuable insight to hazardous waste treatment technologies. The radwaste system experience is discussed in terms of providing a source of proven and reliable technologies. Discussion is presented on specific radwaste processes which are applicable technologies for hazardous waste treatment. The technologies presented include (a) Solidification, (b) Evaporation, and (c) Incineration. Experience is presented which establishes assurance that the treatment technologies will provide a permanent remedy to hazardous waste treatment. This paper describes typical radwaste solidification, evaporation and incineration processes at power plants. The design requirements and implementation of radwaste equipment is correlated to design requirement of hazardous waste equipment. Specific discussion is provided on how the available process equipment can reduce toxicity, mobility, and volume of waste. Discussion is presented on how the standard off the shelf processing equipment needs to be modified for radwaste and hazardous waste applications

  13. Radioactive waste processing

    International Nuclear Information System (INIS)

    Curtiss, D.H.; Heacock, H.W.

    1976-01-01

    The description is given of a process for treating radioactive waste whereby a mud of radioactive waste and cementing material is formed in a mixer. This mud is then transferred from the mixer to a storage and transport container where it is allowed to harden. To improve transport efficiency an alkali silicate or an alkaline-earth metal silicate is added to the mud. For one hundred parts by weight of radioactive waste in the mud, twenty to one hundred parts by weight of cementing material are added and five to fifty parts by weight of silicate, the amount of waste in the mud exceeding the combined amount of cementing and silicate material [fr

  14. Waste processing building with incineration technology

    Science.gov (United States)

    Wasilah, Wasilah; Zaldi Suradin, Muh.

    2017-12-01

    In Indonesia, waste problem is one of major problem of the society in the city as part of their life dynamics. Based on Regional Medium Term Development Plan of South Sulawesi Province in 2013-2018, total volume and waste production from Makassar City, Maros, Gowa, and Takalar Regency estimates the garbage dump level 9,076.949 m3/person/day. Additionally, aim of this design is to present a recommendation on waste processing facility design that would accommodate waste processing process activity by incineration technology and supported by supporting activity such as place of education and research on waste, and the administration activity on waste processing facility. Implementation of incineration technology would reduce waste volume up to 90% followed by relative negative impact possibility. The result planning is in form of landscape layout that inspired from the observation analysis of satellite image line pattern of planning site and then created as a building site pattern. Consideration of building orientation conducted by wind analysis process and sun path by auto desk project Vasari software. The footprint designed by separate circulation system between waste management facility interest and the social visiting activity in order to minimize the croos and thus bring convenient to the building user. Building mass designed by inseparable connection series system, from the main building that located in the Northward, then connected to a centre visitor area lengthways, and walked to the waste processing area into the residue area in the Southward area.

  15. Process for remediation of plastic waste

    Science.gov (United States)

    Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  16. Radioisotope waste processing systems

    International Nuclear Information System (INIS)

    Machida, Tadashi

    1978-01-01

    The Atomic Energy Safety Bureau established the policy entitled ''On Common Processing System of Radioactive Wastes'' consulting with the Liaison Committee of Radioactive Waste Processing. Japan Atomic Energy Research Institute (JAERI) and Japan Radioisotope Association (JRIA) had been discussing the problems required for the establishment of the common disposal facilities based on the above policy, and they started the organization in spring, 1978. It is a foundation borrowing equipments from JAERI though installing newly some of them not available from JAERI, and depending the fund on JRIA. The operation expenses will be borne by those who want to dispose the wastes produced. The staffs are sent out from JAERI and JRIA. For animal wastes contaminated with RI, formaldehyde dipping should be abolished, but drying and freezing procedures will be taken before they are burnt up in a newly planned exclusive furnace with disposing capacity of 50 kg/hour. To settle the problems of other wastes, enough understanding and cooperation of users are to be requested. (Kobatake, H.)

  17. Food waste and food processing waste for biohydrogen production: a review.

    Science.gov (United States)

    Yasin, Nazlina Haiza Mohd; Mumtaz, Tabassum; Hassan, Mohd Ali; Abd Rahman, Nor'Aini

    2013-11-30

    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Studies of mineralogy and geochemistry of Rare Earth Elements in permo-Triassic Bauxite deposit, Northeast of Bukan, North West of Iran

    International Nuclear Information System (INIS)

    Abedini, A.; Calagari, A. A.; Hadjalilu, B.; Jahangiri, A.

    2008-01-01

    Bauxite deposit of Permo-Triassic age in northeast of Bukan was developed stratiformly along the boundary between Ruteh and Elika formations, and includes four distinct rock units. This deposit was affected by tectonic and morphological processes. Mineralogical and geochemical investigations showed that during weathering processes, two mechanisms of ferrugenization and deferrugenization played crucial role in formation of minerals such as Diaspora, boehmite, hematite, goethite, kaolinite, pyrophyllite, clinochlore, illite, montmorillonite, anatase, rutile, albite, sanidine, quartz, and calcite in this deposit. By taking notice of field evidence and of mineralogical and geochemical data, the basalts (whose remnants are still present along the contact of this deposit with carbonate bedrock) are the potential parent rock of this deposit. The distribution pattern of rare earth elements (normalized to chondrite and basaltic parent rock) along with anomaly variations of Eu, Ce, and (La/Yb) N indicates differentiation of LREEs from HREEs during bauxitization processes. Further geochemical considerations indicate that the concentrations of LREEs were occurred by hematite, goethite, manganese oxides, cerianite, and secondary phosphates (rhabdophane, vitusite, gorceixite, monazite) and of HREEs by clay minerals; rutile, anatase, zircon, euxenite, and fergusonite. Incorporation of the results obtained from mineralogical and geochemical investigations suggests that in addition to factors such as p H of weathering solutions, ionic potential, composition of the parent rock, and fixation by residual minerals, adsorption processes also played crucial role in enrichment of rare earth elements during moderate to intense lateritization in the study area

  19. Investigation of the anomalous isotope ratios of the Central-Transdanubian bauxites

    International Nuclear Information System (INIS)

    Viczian, M.

    1977-01-01

    In the case of the Central Transdanubian bauxite deposits significant anomaly of the lead isotope ratios has been found. The 206 Pb/ 204 Pb isotope ratio in approximately 40 samples was investigated and the results have shown an average deviation from the literary value by about 80%. These results have been cont confirmed by thermal ionisation measurings, too. Some possibilities for the explanation of this isotope anomaly are also dealt with in the paper. (author)

  20. RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    International Nuclear Information System (INIS)

    Smith, M; Allan Barnes, A; Jim Coleman, J; Robert Hopkins, R; Dan Iverson, D; Richard Odriscoll, R; David Peeler, D

    2006-01-01

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF), the world's largest operating high level waste (HLW) vitrification plant, began stabilizing about 35 million gallons of SRS liquid radioactive waste by-product in 1996. The DWPF has since filled over 2000 canisters with about 4000 pounds of radioactive glass in each canister. In the past few years there have been several process and equipment improvements at the DWPF to increase the rate at which the waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process and therefore minimized process upsets and thus downtime. These improvements, which include glass former optimization, increased waste loading of the glass, the melter glass pump, the melter heated bellows liner, and glass surge protection software, will be discussed in this paper

  1. Solidifying processing device for radioactive waste

    International Nuclear Information System (INIS)

    Sueto, Kumiko; Toyohara, Naomi; Tomita, Toshihide; Sato, Tatsuaki

    1990-01-01

    The present invention concerns a solidifying device for radioactive wastes. Solidifying materials and mixing water are mixed by a mixer and then charged as solidifying and filling materials to a wastes processing container containing wastes. Then, cleaning water is sent from a cleaning water hopper to a mixer to remove the solidifying and filling materials deposited in the mixer. The cleaning liquid wastes are sent to a separator to separate aggregate components from cleaning water components. Then, the cleaning water components are sent to the cleaning water hopper and then mixed with dispersing materials and water, to be used again as the mixing water upon next solidifying operation. On the other hand, the aggregate components are sent to a processing mechanism as radioactive wastes. With such procedures, since the discharged wastes are only composed of the aggregates components, and the amount of the wastes are reduced, facilities and labors for the processing of cleaning liquid wastes can be decreased. (I.N.)

  2. Gaseous waste processing facility

    International Nuclear Information System (INIS)

    Konno, Masanobu; Uchiyama, Yoshio; Suzuki, Kunihiko; Kimura, Masahiro; Kawabe, Ken-ichi.

    1992-01-01

    Gaseous waste recombiners 'A' and 'B' are connected in series and three-way valves are disposed at the upstream and the downstream of the recombiners A and B, and bypass lines are disposed to the recombiners A and B, respectively. An opening/closing controller for the three-way valves is interlocked with a hydrogen densitometer disposed to a hydrogen injection line. Hydrogen gas and oxygen gas generated by radiolysis in the reactor are extracted from a main condenser and caused to flow into a gaseous waste processing system. Gaseous wastes are introduced together with overheated steams to the recombiner A upon injection of hydrogen. Both of the bypass lines of the recombiners A and B are closed, and recombining reaction for the increased hydrogen gas is processed by the recombiners A and B connected in series. In an operation mode not conducting hydrogen injection, it is passed through the bypass line of the recombiner A and processed by the recombiner B. With such procedures, the increase of gaseous wastes due to hydrogen injection can be coped with existent facilities. (I.N.)

  3. Liquid waste processing device

    International Nuclear Information System (INIS)

    Matsumoto, Kaname; Obe, Etsuji; Wakamatsu, Toshifumi.

    1989-01-01

    In a liquid waste processing device for processing living water wastes discharged from nuclear power plant facilities through a filtration vessel and a sampling vessel, a filtration layer disposed in the filtration vessel is divided into a plurality of layers along planes vertical to the direction of flow and the size of the filter material for each of the divided layers is made finer toward the downstream. Further, the thickness of the filtration material in each of the divided layers is also reduced toward the downstream. The filter material is packed such that the porosity in each of the divided layers is substantially identical. Further, the filtration material is packed in a mesh-like bag partitioned into a desired size and laid with no gaps to the planes vertical to the direction of the flow. Thus, liquid wastes such as living water wastes can be processed easily and simply so as to satisfy circumstantial criteria without giving undesired effects on the separation performance and life time and with easy replacement of filter. (T.M.)

  4. Thermal processing systems for TRU mixed waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

    1992-01-01

    This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended

  5. Method of processing decontaminating liquid waste

    International Nuclear Information System (INIS)

    Kusaka, Ken-ichi

    1989-01-01

    When decontaminating liquid wastes are processed by ion exchange resins, radioactive nuclides, metals, decontaminating agents in the liquid wastes are captured in the ion exchange resins. When the exchange resins are oxidatively deomposed, most of the ingredients are decomposed into water and gaseous carbonic acid and discharged, while sulfur ingredient in the resins is converted into sulfuric acid. In this case, even less oxidizable ingredients in the decontaminating agent made easily decomposable by oxidative decomposition together with the resins. The radioactive nuclides and a great amount of iron dissolved upon decontamination in the liquid wastes are dissolved in sulfuric acid formed. When the sulfuric acid wastes are nuetralized with sodium hydroxide, since they are formed into sodium sulfate, which is most popular as wastes from nuclear facilities, they can be condensated and solidified by existent waste processing systms to thereby facilitate the waste processing. (K.M.)

  6. Growing Eremanthus erythropappus in crushed laterite: A promising alternative to topsoil for bauxite-mine revegetation.

    Science.gov (United States)

    Machado, Naiara Amaral de Miranda; Leite, Mariangela Garcia Praça; Figueiredo, Maurílio Assis; Kozovits, Alessandra Rodrigues

    2013-11-15

    Topsoil is the preferred substrate for areas requiring rehabilitation after bauxite mining. However, topsoil is sometimes lacking and so there is a need to test the suitability of other, locally available substrates. In an abandoned bauxite mine in Southeastern Brazil, small patches of native vegetation spontaneously established in shallow depressions over weathered laterite, suggesting that granulometric reduction may have facilitated the establishment of plants. To test this hypothesis, blocks of laterite collected in the area were crushed to simulate texture observed in the vegetation patches. Topsoil collected in a preserved ferruginous field near to the extraction area was also used as a substrate in which Eremanthus erythropappus seedlings, a native woody species, were grown. Seedlings were cultivated without fertilizers in these two substrates and also directly over the exposed and uncrushed laterite. The species proved to be very promising for the revegetation, showing a high survival rate in all substrates. Higher annual growth rates and higher final biomass values were observed in topsoil, but the granulometric reduction of laterite doubled plant growth rate in comparison to the exposed laterite. This result was likely due to the increased availability of essential nutrients to plants and to the improvement in physical conditions for root growth and functioning. Moreover, seedling allometry was not altered by the type of substrate, suggesting that the species was highly tolerant to the new substrate conditions, a fundamental characteristic for success of revegetation of bauxite extraction degraded areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Processing of nuclear waste

    International Nuclear Information System (INIS)

    Hennelly, E.J.

    1981-01-01

    The processing of nuclear waste to transform the liquid waste from fuel reprocessing activities is well defined. Most solid waste forms, if they are cooled and contain diluted waste, are compatible with many permanent storage environments. The public acceptance of methods for disposal is being delayed in the US because of the alternatives studies of waste forms and repositories now under way that give the impression of indecision and difficulty for the disposal of HLW. Conservative programs that dilute and cool solid waste are under way in France and Sweden and demonstrate that a solution to the problem is available now. Research and development should be directed toward improving selected methods rather than seeking a best method, which at best, may always be illusory

  8. Liquid waste processing at Comanche Peak

    International Nuclear Information System (INIS)

    Hughes-Edwards, L.M.; Edwards, J.M.

    1996-01-01

    This article describes the radioactive waste processing at Comanche Peak Steam Electric Station. Topics covered are the following: Reduction of liquid radioactive discharges (system leakage, outage planning); reduction of waste resin generation (waste stream segregation, processing methodology); reduction of activity released and off-site dose. 8 figs., 2 tabs

  9. Radioactive waste processing method

    International Nuclear Information System (INIS)

    Sakuramoto, Naohiko.

    1992-01-01

    When granular materials comprising radioactive wastes containing phosphorus are processed at first in a fluidized bed type furnace, if the granular materials are phosphorus-containing activated carbon, granular materials comprising alkali compound such as calcium hydroxide and barium hydroxide are used as fluidizing media. Even granular materials of slow burning speed can be burnt stably in a fluidizing state by high temperature heat of the fluidizing media, thereby enabling to take a long burning processing time. Accordingly, radioactive activated carbon wastes can be processed by burning treatment. (T.M.)

  10. The Influence of Backwater Al3+ on Diaspore Bauxite Flotation

    Directory of Open Access Journals (Sweden)

    Chaojun Fang

    2017-10-01

    Full Text Available The effect of Al3+ in backwater on the flotation of diaspore bauxite was investigated by micro-flotation tests and the underlying mechanisms were investigated by inductively coupled plasma (ICP measurement, zeta potential measurements, solution chemistry analyses, and synchrotron near edge X-ray absorption fine structure (NEXAFS analyses. The ICP measurement results show the concentration of Al3+ in backwater was up to 1 × 10−4 mol/L. The micro-flotation results indicated that backwater Al3+ reduced the flotation recovery of diaspore and improved the flotation recovery of kaolinite at pH 9, which was the pH value used in the industrial flotation. The adsorption of Al3+ species changed the zeta potential, the Al atomic abundance, and the number of active sites on the mineral surface. In particular, the result of solution chemistry analyses and synchrotron NEXAFS analyses show that the Al3+ in backwater was adsorbed on the mineral surface in the form of Al(OH3 (s, and the bond of –Al–O–Al–(OH2 or –Al/Si–O–Al–(OH2 was formed at pH 9. It changed the intensity of hydrogen bond force between minerals and collectors, and resulted in the depression of diaspore flotation and the activation of kaolinite flotation. This study can be used to guide the application of backwater in the flotation of diaspore bauxite in industry.

  11. Solid waste treatment processes for space station

    Science.gov (United States)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  12. Distribution of Selected Trace Elements in the Bayer Process

    Directory of Open Access Journals (Sweden)

    Johannes Vind

    2018-05-01

    Full Text Available The aim of this work was to achieve an understanding of the distribution of selected bauxite trace elements (gallium (Ga, vanadium (V, arsenic (As, chromium (Cr, rare earth elements (REEs, scandium (Sc in the Bayer process. The assessment was designed as a case study in an alumina plant in operation to provide an overview of the trace elements behaviour in an actual industrial setup. A combination of analytical techniques was used, mainly inductively coupled plasma mass spectrometry and optical emission spectroscopy as well as instrumental neutron activation analysis. It was found that Ga, V and As as well as, to a minor extent, Cr are principally accumulated in Bayer process liquors. In addition, Ga is also fractionated to alumina at the end of the Bayer processing cycle. The rest of these elements pass to bauxite residue. REEs and Sc have the tendency to remain practically unaffected in the solid phases of the Bayer process and, therefore, at least 98% of their mass is transferred to bauxite residue. The interest in such a study originates from the fact that many of these trace constituents of bauxite ore could potentially become valuable by-products of the Bayer process; therefore, the understanding of their behaviour needs to be expanded. In fact, Ga and V are already by-products of the Bayer process, but their distribution patterns have not been provided in the existing open literature.

  13. Novel Approach for Enhanced Scandium and Titanium Leaching Efficiency from Bauxite Residue with Suppressed Silica Gel Formation.

    Science.gov (United States)

    Alkan, Gözde; Yagmurlu, Bengi; Cakmakoglu, Seckin; Hertel, Tobias; Kaya, Şerif; Gronen, Lars; Stopic, Srecko; Friedrich, Bernd

    2018-04-04

    The need of light weight alloys for future transportation industry puts Sc and Ti under a sudden demand. While these metals can bring unique and desired properties to alloys, lack of reliable sources brought forth a supply problem which can be solved by valorization of the secondary resources. Bauxite residue (red mud), with considerable Ti and Sc content, is a promising resource for secure supply of these metals. Due to drawbacks of the direct leaching route from bauxite residue, such as silica gel formation and low selectivity towards these valuable metals, a novel leaching process based on oxidative leaching conditions, aiming more efficient and selective leaching but also considering environmental aspects via lower acid consumption, was investigated in this study. Combination of hydrogen peroxide (H 2 O 2 ) and sulfuric acid (H 2 SO 4 ) was utilized as the leaching solution, where various acid concentrations, solid-to-liquid ratios, leaching temperatures and times were examined in a comparative manner. Leaching with 2.5 M H 2 O 2 : 2.5 M H 2 SO 4 mixture at 90 °C for 30 min was observed to be the best leaching conditions with suppressed silica gel formation and the highest reported leaching efficiency with high S/L ratio for Sc and Ti; 68% and 91%; respectively.

  14. Processability analysis of candidate waste forms

    International Nuclear Information System (INIS)

    Gould, T.H. Jr.; Dunson, J.B. Jr.; Eisenberg, A.M.; Haight, H.G. Jr.; Mello, V.E.; Schuyler, R.L. III.

    1982-01-01

    A quantitative merit evaluation, or processability analysis, was performed to assess the relative difficulty of remote processing of Savannah River Plant high-level wastes for seven alternative waste form candidates. The reference borosilicate glass process was rated as the simplest, followed by FUETAP concrete, glass marbles in a lead matrix, high-silica glass, crystalline ceramics (SYNROC-D and tailored ceramics), and coated ceramic particles. Cost estimates for the borosilicate glass, high-silica glass, and ceramic waste form processing facilities are also reported

  15. A process for treatment of mixed waste containing chemical plating wastes

    International Nuclear Information System (INIS)

    Anast, K.R.; Dziewinski, J.; Lussiez, G.

    1995-01-01

    The Waste Treatment and Minimization Group at Los Alamos National Laboratory has designed and will be constructing a transportable treatment system to treat low-level radioactive mixed waste generated during plating operations. The chemical and plating waste treatment system is composed of two modules with six submodules, which can be trucked to user sites to treat a wide variety of aqueous waste solutions. The process is designed to remove the hazardous components from the waste stream, generating chemically benign, disposable liquids and solids with low level radioactivity. The chemical and plating waste treatment system is designed as a multifunctional process capable of treating several different types of wastes. At this time, the unit has been the designated treatment process for these wastes: Destruction of free cyanide and metal-cyanide complexes from spent plating solutions; destruction of ammonia in solution from spent plating solutions; reduction of Cr VI to Cr III from spent plating solutions, precipitation, solids separation, and immobilization; heavy metal precipitation from spent plating solutions, solids separation, and immobilization, and acid or base neutralization from unspecified solutions

  16. CNAEM waste processing and storage facility

    International Nuclear Information System (INIS)

    Osmanlioglu, A.E.; Kahraman, A.; Altunkaya, M.

    1998-01-01

    Radioactive waste in Turkey is generated from various applications. Radioactive waste management activities are carried out in a facility at Cekmece Nuclear Research and Training Center (CNAEM). This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes and their activities are up to 10 -3 Ci/m 3 (except spent sealed sources). Chemical treatment and cementation of liquid radwaste, segregation and compaction of solid wastes and conditioning of spent sources are the main processing activities of this facility. A.so, analyses, registration, quality control and interim storage of conditioned low-level wastes are the other related activities of this facility. Conditioned wastes are stored in an interim storage building. All waste management activities, which have been carried out in CNAEM, are generally described in this paper. (author)

  17. Neutralization of red mud with pickling waste liquor using Taguchi's design of experimental methodology.

    Science.gov (United States)

    Rai, Suchita; Wasewar, Kailas L; Lataye, Dilip H; Mishra, Rajshekhar S; Puttewar, Suresh P; Chaddha, Mukesh J; Mahindiran, P; Mukhopadhyay, Jyoti

    2012-09-01

    'Red mud' or 'bauxite residue', a waste generated from alumina refinery is highly alkaline in nature with a pH of 10.5-12.5. Red mud poses serious environmental problems such as alkali seepage in ground water and alkaline dust generation. One of the options to make red mud less hazardous and environmentally benign is its neutralization with acid or an acidic waste. Hence, in the present study, neutralization of alkaline red mud was carried out using a highly acidic waste (pickling waste liquor). Pickling waste liquor is a mixture of strong acids used for descaling or cleaning the surfaces in steel making industry. The aim of the study was to look into the feasibility of neutralization process of the two wastes using Taguchi's design of experimental methodology. This would make both the wastes less hazardous and safe for disposal. The effect of slurry solids, volume of pickling liquor, stirring time and temperature on the neutralization process were investigated. The analysis of variance (ANOVA) shows that the volume of the pickling liquor is the most significant parameter followed by quantity of red mud with 69.18% and 18.48% contribution each respectively. Under the optimized parameters, pH value of 7 can be achieved by mixing the two wastes. About 25-30% of the total soda from the red mud is being neutralized and alkalinity is getting reduced by 80-85%. Mineralogy and morphology of the neutralized red mud have also been studied. The data presented will be useful in view of environmental concern of red mud disposal.

  18. Miners' radiation exposure in a subsurface bauxite-mine

    International Nuclear Information System (INIS)

    Somlai, J.; Kovacs, T.; Jobbagy, V.; Varhegyi, A.

    2004-01-01

    To examine the natural origin radioactivity of the bauxite samples we can establish that the 226 Ra activity concentration exceeded (155-489 Bq/kg) the average values measured in the rocks (25-40 Bq/kg). 222 Rn produced from the 226 Ra could be concentrated in the mines. In the course of our work we carried out an extensive radiological-dosimetric survey for 1 month. On the grounds of the different kind of working processes we put 11 track detectors in different places and continuous radon detector equipment were placed into 2 sites. Besides these measurements we determined the gamma dose rate, the equilibrium factor, the amount of the flying-dust and the long-lived alpha emitter isotopes 2 times in 7 different places. We gave personal radon dosimeter to 14 miners. It was worn only during the working time and after hours was stored in a well-controlled Rn concentration place. The average radon activity concentration measured in different places in the mine changed between 204-3910 Bq/m 3 . We found very high radon levels some places especially in the drawings. The miners during this 1 month have taken part several mining processes, so lower values were detected. To take into account the results, the miners' estimated annual dose exposure is between the range of 2.5-10.2 mSv/y which is not negligible compared to the natural radiation background (2.5 mSv/y). (author)

  19. Bryophyte communities as biomonitors of environmental factors in the Goujiang karst bauxite, southwestern China.

    Science.gov (United States)

    Wang, Shiqiang; Zhang, Zhaohui; Wang, Zhihui

    2015-12-15

    Bauxite mining on karst results in several ecological and environmental issues including heavy metal pollution, soil erosion and the destruction of vegetation. In turn, these may affect the distribution of plant communities and endanger human health. In general, bryophytes (mosses, liverworts and hornworts) are pioneer plants, lacking roots, vascular systems and well-developed cuticles. Due to their high sensitivity to the environment, they are often used to monitor air and soil pollution. A total of 25 bryophyte taxa from 19 genera and 9 families were recorded on Goujiang karst bauxite near the city of Zunyi in the Guizhou Province of southwestern China. Eleven principal bryophyte communities were identified, most of which consisted of only one species (monospecific assemblage), although the proportion of these single-species communities differed at the six locations. The levels of heavy metals also differed in soil from the six locations: iron, 8748.9-10,023μg/g; zinc, 146.7-240.9μg/g; copper, 24.6-60.4μg/g; and nickel, 35.6-95.1μg/g. A canonical correspondence analysis (CCA) of the bryophyte communities and environmental variables revealed the effect of gradient (slope), altitude and heavy metals in the soil on the distribution of the principal bryophyte communities. More than 36% of bryophyte taxa identified reproduced asexually by gemmae, as gemmiferous bryophyte communities tolerate substrates with high levels of heavy metals more readily than non-gemmiferous communities do. The distribution of heavy metals in the soil is reflected in the distribution of the bryophyte communities. The distribution characteristics of the principal bryophyte communities and of the gemmiferous bryophyte communities are useful in monitoring heavy metal pollution in karst bauxite. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Processing of low-level wastes

    International Nuclear Information System (INIS)

    Vance, J.N.

    1986-01-01

    Although low-level wastes have been generated and have required processing for more than two decades now, it is noteworthy that processing methods are continuing to change. The changes are not only attributable to improvements in technology, but are also the result of changing regulations and economics and uncertainties regarding the future availabilities of burial space for disposal. Indeed, because of the changes which have and are taking place in the processing of low-level waste, an overview of the current situation is in order. This presentation is a brief overview of the processing methods generally employed to treat the low-level wastes generated from both fuel cycle and non-fuel cycle sources. The presentation is far too brief to deal with the processing technologies in a comprehensive fashion, but does provide a snapshot of what the current or typical processing methods are and what changes are occurring and why

  1. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2015-07-01

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  2. All cause mortality and incidence of cancer in workers in bauxite mines and alumina refineries.

    Science.gov (United States)

    Fritschi, Lin; Hoving, Jan Lucas; Sim, Malcolm R; Del Monaco, Anthony; MacFarlane, Ewan; McKenzie, Dean; Benke, Geza; de Klerk, Nicholas

    2008-08-15

    Bauxite is a reddish clay that is refined to produce alumina, which is then reduced to aluminium. There have been studies examining the health of workers in aluminium smelters, but not workers in bauxite mining and alumina refining. A cohort of employees of 1 large aluminium company since 1983 was assembled (n = 6,485, 5,828 men). Deaths and incident cancers to 2002 were ascertained by linkage to national and state cancer and death registries. SIRs and SMRs were calculated compared to national rates standardizing for calendar year, sex and 5-year age group. The mortality from all causes (SMR 0.68, 95% CI: 0.60-0.77), and from circulatory and respiratory diseases, all cancers combined and injury in the male cohort were lower than in the Australian male population and were similar across work groups and with duration of employment. The only significant increased mortality risk was from pleural mesothelioma. The incidence of all cancers combined was similar to the Australian rate. The cohort had a lower risk of incident lymphohaematopoietic cancer (SIR 0.50, 95% CI: 0.31-0.88) and a higher risk of melanoma (SIR 1.30, 95% CI: 1.00-1.69) although no dose-responses were seen. There was also an increased risk of mesothelioma (SIR 3.49, 95% CI: 1.82-6.71), which was associated with exposures outside the aluminium industry. This study is the first to examine cancer and mortality amongst workers in bauxite mines and alumina refineries and found little evidence for increased cancer incidence or mortality in these workers. (c) 2008 Wiley-Liss, Inc.

  3. Comparative assessment of TRU waste forms and processes. Volume II. Waste form data, process descriptions, and costs

    International Nuclear Information System (INIS)

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Thornhill, R.E.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This volume contains supporting information for the comparative assessment of the transuranic waste forms and processes summarized in Volume I. Detailed data on the characterization of the waste forms selected for the assessment, process descriptions, and cost information are provided. The purpose of this volume is to provide additional information that may be useful when using the data in Volume I and to provide greater detail on particular waste forms and processes. Volume II is divided into two sections and two appendixes. The first section provides information on the preparation of the waste form specimens used in this study and additional characterization data in support of that in Volume I. The second section includes detailed process descriptions for the eight processes evaluated. Appendix A lists the results of MCC-1 leach test and Appendix B lists additional cost data. 56 figures, 12 tables

  4. Potential Health Impacts of Bauxite Mining in Kuantan.

    Science.gov (United States)

    Abdullah, Noor Hisham; Mohamed, Norlen; Sulaiman, Lokman Hakim; Zakaria, Thahirahtul Asma; Rahim, Daud Abdul

    2016-05-01

    Bauxite mining is not known to most Malaysian except recently due to environmental pollution issues in Kuantan, Pahang. Potential impacts are expected to go beyond physical environment and physical illness if the situation is not controlled. Loss of economic potentials, and the presence of unpleasant red dust causing mental distress, anger and community outrage. More studies are needed to associate it with chronic physical illness. While evidences are vital for action, merely waiting for a disease to occur is a sign of failure in prevention. All responsible agencies should focus on a wider aspect of health determinants rather than merely on the occurrence of diseases to act and the need to emphasize on sustainable mining to ensure health of people is not compromised.

  5. Waste processing method

    International Nuclear Information System (INIS)

    Furukawa, Osamu; Shibata, Minoru.

    1996-01-01

    X-rays are irradiated from a predetermined direction to solid wastes containing radioactive isotopes packed in a bag before charged into an inlet of an incinerator. Most of the wastes is burnable plastics such as test tubes and papers. Glasses such as chemical bottles and metals such as lead plates for radiation shielding are contained as a portion of the wastes. The X-rays have such an intensity capable of discriminating metals and glasses from burnable materials. Irradiation images formed on a X-ray irradiation receiving portion are processed, and the total number of picture elements on the portion where a gradation of the light receiving portion of the metal is within a predetermined range is counted on the image. Then, the bag having total picture elements of not less than a predetermined number are separated from the bag having a lesser number. Similar processings are conducted for glasses. With such procedures, the bags containing lead and glasses not suitable to incineration are separated from the bags not containing them thereby enabling to prevent lowering of operation efficiency of the incinerator. (I.N.)

  6. Processing of palm oil mill wastes based on zero waste technology

    Science.gov (United States)

    Irvan

    2018-02-01

    Indonesia is currently the main producer of palm oil in the world with a total production reached 33.5 million tons per year. In the processing of fresh fruit bunches (FFB) besides producing palm oil and kernel oil, palm oil mills also produce liquid and solid wastes. The increase of palm oil production will be followed by an increase in the production of waste generated. It will give rise to major environmental issues especially the discharge of liquid waste to the rivers, the emission of methane from digestion pond and the incineration of empty fruit bunches (EFB). This paper describes a zero waste technology in processing palm oil mill waste after the milling process. The technology involves fermentation of palm oil mill effluent (POME) to biogas by using continuous stirred tank reactor (CSTR) in the presence of thermophilic microbes, producing activated liquid organic fertilizer (ALOF) from discharge of treated waste effluent from biogas digester, composting EFB by spraying ALOF on the EFB in the composter, and producing pellet or biochar from EFB by pyrolysis process. This concept can be considered as a promising technology for palm oil mills with the main objective of eliminating the effluent from their mills.

  7. ORNL process waste treatment plant modifications

    International Nuclear Information System (INIS)

    Bell, J.P.

    1982-01-01

    The ORNL Process Waste Treatment Plant removes low levels of radionuclides (primarily Cs-137 and Sr-90) from process waste water prior to discharge. The previous plant operation used a scavenging precipitaton - ion exchange process which produced a radioactive sludge. In order to eliminate the environmental problems associated with sludge disposal, the plant is being converted to a new ion exchange process without the precipitation process

  8. Plasma separation process: Disposal of PSP radioactive wastes

    International Nuclear Information System (INIS)

    1989-07-01

    Radioactive wastes, in the form of natural uranium contaminated scrap hardware and residual materials from decontamination operations, were generated in the PSP facilities in buildings R1 and 106. Based on evaluation of the characteristics of these wastes and the applicable regulations, the various options for the processing and disposal of PSP radioactive wastes were investigated and recommended procedures were developed. The essential features of waste processing included: (1) the solidification of all liquid wastes prior to shipment; (2) cutting of scrap hardware to fit 55-gallon drums and use of inerting agents (diatomaceous earth) to eliminate pyrophoric hazards; and (3) compaction of soft wastes. All PSP radioactive wastes were shipped to the Hanford Site for disposal. As part of the waste disposal process, a detailed plan was formulated for handling and tracking of PSP radioactive wastes, from the point of generation through shipping. In addition, a waste minimization program was implemented to reduce the waste volume or quantity. Included in this document are discussions of the applicable regulations, the types of PSP wastes, the selection of the preferred waste disposal approach and disposal site, the analysis and classification of PSP wastes, the processing and ultimate disposition of PSP wastes, the handling and tracking of PSP wastes, and the implementation of the PSP waste minimization program. 9 refs., 1 fig., 8 tabs

  9. Vitrification process testing for reference HWVP waste

    International Nuclear Information System (INIS)

    Perez, J.M. Jr.; Goles, R.W.; Nakaoka, R.K.; Kruger, O.L.

    1991-01-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify high-level radioactive wastes stored on the Hanford site. The vitrification flow-sheet is being developed to assure the plant will achieve plant production requirements and the glass product will meet all waste form requirements for final geologic disposal. The first Hanford waste to be processed by the HWVP will be a neutralized waste resulting from PUREX fuel reprocessing operations. Testing is being conducted using representative nonradioactive simulants to obtain process and product data required to support design, environmental, and qualification activities. Plant/process criteria, testing requirements and approach, and results to date will be presented

  10. Tank Waste Remediation System optimized processing strategy

    International Nuclear Information System (INIS)

    Slaathaug, E.J.; Boldt, A.L.; Boomer, K.D.; Galbraith, J.D.; Leach, C.E.; Waldo, T.L.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility

  11. Process analytical chemistry applied to actinide waste streams

    International Nuclear Information System (INIS)

    Day, R.S.

    1994-01-01

    The Department of Energy is being called upon to clean up it's legacy of waste from the nuclear complex generated during the cold war period. Los Alamos National Laboratory is actively involved in waste minimization and waste stream polishing activities associated with this clean up. The Advanced Testing Line for Actinide Separations (ATLAS) at Los Alamos serves as a developmental test bed for integrating flow sheet development of nitric acid waste streams with process analytical chemistry and process control techniques. The wastes require processing in glove boxes because of the radioactive components, thus adding to the difficulties of making analytical measurements. Process analytical chemistry methods provide real-time chemical analysis in support of existing waste stream operations and enhances the development of new waste stream polishing initiatives. The instrumentation and methods being developed on ATLAS are designed to supply near-real time analyses on virtually all of the chemical parameters found in nitric acid processing of actinide waste. These measurements supply information on important processing parameters including actinide oxidation states, free acid concentration, interfering anions and metal impurities

  12. Utilization of red mud for the purification of waste waters from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Luka, Mikelic; Visnja, Orescanin; Stipe, Lulic [Rudjer Boskovic Institute, Lab. for radioecology, Zagreb (Croatia)

    2006-07-01

    Sorption of the radionuclides and heavy metals from low level liquid radioactive waste on the coagulant produced from bauxite waste (red mud and waste base) was presented. Research was conducted on composite annual samples of waste water collected in the Waste Monitor Tank (W.M.T.) from Kro Nuclear Power Plant during each month. Activities of radionuclide in W.M.T. were measured before and after purification using high purity germanium detector. Also, elemental concentrations in W.M.T. before and after purification were measured by source excited energy dispersive X-ray fluorescence (E.D.X.R.F.). It has been showed that activated red mud is excellent purification agent for the removal of radionuclides present in low level liquid radioactive waste. Removal efficiency was 100% for the radionuclides {sup 58}Co and {sup 60}Co 100%, and over 60% for {sup 134}Cs and {sup 137}Cs. (authors)

  13. Utilization of red mud for the purification of waste waters from nuclear power plants

    International Nuclear Information System (INIS)

    Luka, Mikelic; Visnja, Orescanin; Stipe, Lulic

    2006-01-01

    Sorption of the radionuclides and heavy metals from low level liquid radioactive waste on the coagulant produced from bauxite waste (red mud and waste base) was presented. Research was conducted on composite annual samples of waste water collected in the Waste Monitor Tank (W.M.T.) from Kro Nuclear Power Plant during each month. Activities of radionuclide in W.M.T. were measured before and after purification using high purity germanium detector. Also, elemental concentrations in W.M.T. before and after purification were measured by source excited energy dispersive X-ray fluorescence (E.D.X.R.F.). It has been showed that activated red mud is excellent purification agent for the removal of radionuclides present in low level liquid radioactive waste. Removal efficiency was 100% for the radionuclides 58 Co and 60 Co 100%, and over 60% for 134 Cs and 137 Cs. (authors)

  14. Gaseous waste processing device in nuclear power plant

    International Nuclear Information System (INIS)

    Takechi, Eisuke; Matsutoshi, Makoto.

    1978-01-01

    Purpose: To arrange the units of waste processing devices in a number one more than the number thereof required for a plurality of reactors, and to make it usable commonly as a preliminary waste processing device thereby to effectively use all the gaseous waste processing devices. Constitution: A gaseous waste processing device is constituted by an exhaust gas extractor, a first processing device, a second processing device and the like, which are all connected in series. Upon this occasion, devices from the exhaust gas extractor to the first processing device and valves, which are provided in each of reactors, are arranged in series, on one hand, but valves at the downstream side join one another by one pipeline, and are connected to a stack through a total gaseous waste processing device, on another. (Yoshihara, H.)

  15. Waste Disposition Issues and Resolutions at the TRU Waste Processing Center at Oak Ridge TN

    International Nuclear Information System (INIS)

    Gentry, R.

    2009-01-01

    This paper prepared for the Waste Management Conference 2009 provides lessons learned from the Transuranic (TRU) Waste Processing Center (TWPC) associated with development of approaches used to certify and ensure disposition of problematic TRU wastes at the Waste Isolation Pilot Plant (WIPP) site. The TWPC is currently processing the inventory of available waste TRU waste at the Oak Ridge National Lab (ORNL). During the processing effort several waste characteristics were identified/discovered that did not conform to the normal standards and processes for disposal at WIPP. Therefore, the TWPC and ORNL were challenged with determining a path forward for this problematic, special case TRU wastes to ensure that they can be processed, packaged, and shipped to WIPP. Additionally, unexpected specific waste characteristics have challenged the project to identify and develop processing methods to handle problematic waste. The TWPC has several issues that have challenged the projects ability to process RH Waste. High Neutron Dose Rate resulting from both Californium and Curium in the waste stream challenge the RH-TRU 72-B limit for dose rate measured from the side of the package under normal conditions of transport, as specified in Chapter 5.0 of the RH-TRU 72-B SAR (i.e., ≤10 mrem/hour at 2 meters). Difficult to process waste in the hot cell has introduced processing and handling difficulties included problems associated with the disposition of prohibited items that fall out of the waste stream such as liquids, aerosol cans, etc. Lastly, multiple waste streams require characterization and AK challenge the ability to generate dose-to curie models for the waste. Repackaging is one solution to the high neutron dose rate issue. In parallel, an effort is underway to request a change to the TRAMPAC requirements to allow shielding in the drum or canister to reduce the impact of the high neutron dose rates. Due diligence on supporting AK efforts is important in ensuring adequate

  16. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  17. Process arrangement options for Defense waste immobilization

    International Nuclear Information System (INIS)

    1980-02-01

    Current plans are to immobilize the SRP high-level liquid wastes in a high integrity form. Borosilicate glass was selected in 1977 as the reference waste form and a mjaor effort is currently underway to develop the required technology. A large new facility, referred to as the Defense Waste Processing Facility (DWPF) is being designed to carry out this mission, with project authorization targeted for 1982 and plant startup in 1989. However, a number of other process arrangements or manufacturing strategies, including staging the major elements of the project or using existing SRP facilities for some functions, have been suggested in lieu of building the reference DWPF. This study assesses these various options and compares them on a technical and cost basis with the DWPF. Eleven different manufacturing options for SRP defense waste solidification were examined in detail. These cases are: (1) vitrification of acid waste at current generation rate; (2) vitrification of current rate acid waste and caustic sludge; (3 and 4) vitrification of the sludge portion of neutralized waste; (5) decontamination of salt cake and storage of concentrated cesium and strontium for later immobilization; (6) processing waste in a facility with lower capacity than the DWPF; (7) processing waste in a combination of existing and new facilities; (8) waste immobilization in H Canyon; (9) vitrification of both sludge and salt; (10) DWPF with onsite storage; (11) deferred authorization of DWPF

  18. Process waste assessment for the Radiography Laboratory

    International Nuclear Information System (INIS)

    Phillips, N.M.

    1994-07-01

    This Process Waste Assessment was conducted to evaluate the Radiography Laboratory, located in Building 923. It documents the processes, identifies the hazardous chemical waste streams generated by these processes, recommends possible ways to minimize waste, and serves as a reference for future assessments of this facility. The Radiography Laboratory provides film radiography or radioscopy (electronic imaging) of weapon and nonweapon components. The Radiography Laboratory has six x-ray machines and one gamma ray source. It also has several other sealed beta- and gamma-ray isotope sources of low microcurie (μCi) activity. The photochemical processes generate most of the Radiography Laboratory's routinely generated hazardous waste, and most of that is generated by the DuPont film processor. Because the DuPont film processor generates the most photochemical waste, it was selected for an estimated material balance

  19. Multibarrier waste forms. Part III: Process considerations

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1979-10-01

    The multibarrier concept for the solidification and storage of radioactive waste utilizes up to three barriers to isolate radionuclides from the environment: a solidified waste inner core, an impervious coating, and a metal matrix. The coating and metal matrix give the composite waste form enhanced inertness with improvements in thermal stability, mechanical strength, and leach resistance. Preliminary process flow rates and material costs were evaluated for four multibarrier waste forms with the process complexity increasing thusly: glass marbles, uncoated supercalcine, glass-coated supercalcine, and PyC/Al 2 O 3 -coated supercalcine. This report discusses the process variables and their effect on optimization of product quality, processing simplicity, and material cost. 11 figures, 2 tables

  20. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Ikeda, Takashi; Funabashi, Kiyomi; Chino, Koichi.

    1992-01-01

    In a waste processing device for solidifying, pellets formed by condensing radioactive liquid wastes generated from a nuclear power plant, by using a solidification agent, sodium chloride, sodium hydroxide or sodium nitrate is mixed upon solidification. In particular, since sodium sulfate in a resin regenerating liquid wastes absorbs water in the cement upon cement solidification, and increases the volume by expansion, there is a worry of breaking the cement solidification products. This reaction can be prevented by the addition of sodium chloride and the like. Accordingly, integrity of the solidification products can be maintained for a long period of time. (T.M.)

  1. A review of the surface features and properties, surfactant adsorption and floatability of four key minerals of diasporic bauxite resources.

    Science.gov (United States)

    Zhang, Ningning; Nguyen, Anh V; Zhou, Changchun

    2018-04-01

    Diasporic bauxite represents one of the major aluminum resources. Its upgrading for further processing involves a separation of diaspore (the valuable mineral) from aluminosilicates (the gangue minerals) such as kaolinite, illite, and pyrophyllite. Flotation is one of the most effective ways to realize the upgrading. Since flotation is a physicochemical process based on the difference in the surface hydrophobicity of different components, determining the adsorption characteristics of various flotation surfactants on the mineral surfaces is critical. The surfactant adsorption properties of the minerals, in turn, are controlled by the surface chemistry of the minerals, while the latter is related to the mineral crystal structures. In this paper, we first discuss the crystal structures of the four key minerals of diaspore, kaolinite, illite, and pyrophyllite as well as the broken bonds on their exposed surfaces after grinding. Next, we summarize the surface chemistry properties such as surface wettability and surface electrical properties of the four minerals, and the differences in these properties are explained from the perspective of mineral crystal structures. Then we review the adsorption mechanism and adsorption characteristics of surfactants such as collectors (cationic, anionic, and mixed surfactants), depressants (inorganic and organic), dispersants, and flocculants on these mineral surfaces. The separation of diaspore and aluminosilicates by direct flotation and reverse flotation are reviewed, and the collecting properties of different types of collectors are compared. Furthermore, the abnormal behavior of the cationic flotation of kaolinite is also explained in this section. This review provides a strong theoretical support for the optimization of the upgrading of diaspore bauxite ore by flotation and the early industrialization of the reverse flotation process. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Bauxite to eclogite: Evidence for late Permian supracontinental subduction at the Red River shear zone, northern Vietnam

    Science.gov (United States)

    Nakano, Nobuhiko; Osanai, Yasuhito; Nam, Nguyen Van; Tri, Tran Van

    2018-03-01

    We have investigated the geological processes recorded in aluminous granulites from the Red River shear zone in northern Vietnam using mineral and whole-rock chemistries, fluid inclusions, metamorphic pressure-temperature paths, and geochronology. The granulites are extremely rich in Al2O3 (36.3-50.9 wt%), TiO2, and total Fe2O3, and poor in SiO2 (7.9-24.1 wt%), MgO, CaO, Na2O, and K2O. The granulites are enriched in high-field-strength elements and rare earth elements, and severely depleted in large-ion lithophile elements. These features strongly suggest the protolith was lateritic bauxite. Moreover, the other elemental concentrations and the Zr/Ti ratios point to basaltic rock as the precursor of the bauxite. Some of the aluminous granulites contain high-pressure mineral inclusions of kyanite, staurolite, siderite, and rutile, none of which are observed in the matrix. Abundant primary carbonic fluid inclusions are observed in garnet, corundum, and staurolite, but are rare in quartz and zircon. The average densities of fluid inclusions in garnet, corundum, staurolite, quartz, and zircon are 1.00 ± 0.06, 1.07 ± 0.04, 1.09 ± 0.03, 0.29 ± 0.07, and 1.15 ± 0.05 g/cm3, respectively. The mineral features not only in the matrix and but also in garnet from all rock types, isochemical phase diagrams obtained for each bulk rock composition, and Zr-in-rutile thermometry indicate an early eclogite-facies metamorphism ( 2.5 GPa at 650 °C) and a subsequent nearly isothermal decompression. Zircons yield a wide range of U-Pb ages from 265 to 36 Ma, whereas the dark luminescent cores of the zircons, which contain high-density CO2 inclusions, yield a concordia age of 257 ± 8 Ma. These observations suggest that the dark luminescent zircon cores were formed at the same time as the garnet, corundum, and staurolite that contain high-density CO2 fluid inclusions. Based on the carbonic fluid inclusion isochore and the densities as well as calculated phase diagram, the concordia

  3. Waste Receiving and Processing Module 2A waste certification strategy

    International Nuclear Information System (INIS)

    LeClair, M.D.; Pottmeyer, J.A.; Hyre, R.A.

    1994-01-01

    This document addresses the certification of Mixed Low Level Waste (MLLW) that will be treated in the Waste Receiving and Processing Facility Module 2A (WRAP 2A) and is destined for disposal in the MLLW trench of the Low Level Burial Grounds (LLBG). The MLLW that will be treated in WRAP 2A contains land disposal restricted and radioactive constituents. Certification of the treated waste is dependent on numerous waste management activities conducted throughout the WRAP 2A operation. These activities range from waste treatability testing conducted prior to WRAP 2A waste acceptance to overchecking final waste form quality prior to transferring waste to disposal. This document addresses the high level strategies and methodologies for certifying the final waste form. Integration among all design and verification activities that support final waste form quality assurance is also discussed. The information generated from this effort may directly support other ongoing activities including the WRAP 2A Waste Characterization Study, WRAP 2A Waste Analysis Plan development, Sample Plan development, and the WRAP 2A Data Management System functional requirements definition

  4. Soil Quality of Bauxite Mining Areas

    Science.gov (United States)

    Terezinha Gonçalves Bizuti, Denise; Dinarowski, Marcela; Casagrande, José Carlos; Silva, Luiz Gabriel; Soares, Marcio Roberto; Henrique Santin Brancalion, Pedro

    2015-04-01

    The study on soil quality index (SQI) aims to assess the current state of the soil after use and estimating its recovery through sustainable management practices This type of study is being used in this work in order to check the efficiency of forest recovery techniques in areas that have been deeply degraded by bauxite mining process, and compare them with the area of native forest, through the determination of SQI. Treatments were newly mined areas, areas undergoing restoration (topsoil use with planting of native forest species), areas in rehabilitation (employment of the green carpet with topsoil and planting of native forest species) and areas of native forests, with six repetitions, in areas of ALCOA, in the municipality of Poços de Caldas/MG. To this end, we used the additive pondered model, establishing three functions: Fertility, water movement and root development, based on chemical parameters (organic matter, base saturation, aluminum saturation and calcium content); physical (macroporosity, soil density and clay content); and microbiological testing (basal respiration by the emission of CO2 ). The SQIs obtained for each treatment was 41%, 56%, 63% and 71% for newly mined areas, native forest, areas in restoration and rehabilitation, respectively. The recovering technique that most approximates the degraded soil to the soil of reference is the restoration, where there was no statistically significant difference of areas restored with native forest. It was found that for the comparison of the studied areas must take into account the nutrient cycling, that disappear with plant removal in mining areas, once the soil of native forest features low fertility and high saturation by aluminum, also taking in account recovering time.

  5. Method of controlling radioactive waste processing systems

    International Nuclear Information System (INIS)

    Mikawa, Hiroji; Sato, Takao.

    1981-01-01

    Purpose: To minimize the pellet production amount, maximize the working life of a solidifying device and maintaining the mechanical strength of pellets to a predetermined value irrespective of the type and the cycle of occurrence of the secondary waste in the secondary waste solidifying device for radioactive waste processing systems in nuclear power plants. Method: Forecasting periods for the type, production amount and radioactivity level of the secondary wastes are determined in input/output devices connected to a control system and resulted signals are sent to computing elements. The computing elements forecast the production amount of regenerated liquid wastes after predetermined days based on the running conditions of a condensate desalter and the production amounts of filter sludges and liquid resin wastes after predetermined days based on the liquid waste processing amount or the like in a processing device respectively. Then, the mass balance between the type and the amount of the secondary wastes presently stored in a tank are calculated and the composition and concentration for the processing liquid are set so as to obtain predetermined values for the strength of pellets that can be dried to solidify, the working life of the solidifying device itself and the radioactivity level of the pellets. Thereafter, the running conditions for the solidifying device are determined so as to maximize the working life of the solidifying device. (Horiuchi, T.)

  6. Waste Receiving and Processing (WRAP) facility engineering study

    International Nuclear Information System (INIS)

    Christie, M.A.; Cammann, J.W.; McBeath, R.S.; Rode, H.H.

    1985-01-01

    A new Hanford waste management facility, the Waste Receiving and Processing (WRAP) facility (planned to be operational by FY 1994) will receive, inspect, process, and repackage contact-handled transuranic (CH-TRU) contaminated solid wastes. The wastes will be certified according to the waste acceptance criteria for disposal at the Waste Isolation Pilot Plant (WIPP) geologic repository in southeast New Mexico. Three alternatives which could cost effectively be applied to certify Hanford CH-TRU waste to the WIPP Waste Acceptance Criteria (WIPP-WAC) have been examined in this updated engineering study. The alternatives differed primarily in the reference processing systems used to transform nonconforming waste into an acceptable, certified waste form. It is recommended to include the alternative of shredding and immobilizing nonconforming wastes in cement (shred/grout processing) in the WRAP facility. Preliminary capital costs for WRAP in mid-point-of-construction (FY 1991) dollars were estimated at $45 million for new construction and $37 million for modification and installation in an existing Hanford surplus facility (231-Z Building). Operating, shipping, and decommissioning costs in FY 1986 dollars were estimated at $126 million, based on a 23-y WRAP life cycle (1994 to 2017). During this period, the WRAP facility will receive an estimated 38,000 m 3 (1.3 million ft 3 ) of solid CH-TRU waste. The study recommends pilot-scale testing and evaluation of the processing systems planned for WRAP and advises further investigation of the 231-Z Building as an alternative to new facility construction

  7. Hanford Central Waste Complex: Waste Receiving and Processing Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Central Waste Complex is an existing and planned series of treatment, and/or disposal (TSD) unites that will centralize the management of solid waste operations at a single location on the Hanford Facility. The Complex includes two units: the WRAP Facility and the Radioactive Mixed Wastes Storage Facility (RMW Storage Facility). This Part B permit application addresses the WRAP Facility. The Facility will be a treatment and storage unit that will provide the capability to examine, sample, characterize, treat, repackage, store, and certify radioactive and/or mixed waste. Waste treated and stored will include both radioactive and/or mixed waste received from onsite and offsite sources. Certification will be designed to ensure and demonstrate compliance with waste acceptance criteria set forth by onsite disposal units and/or offsite facilities that subsequently are to receive waste from the WRAP Facility. This permit application discusses the following: facility description and general provisions; waste characterization; process information; groundwater monitoring; procedures to prevent hazards; contingency plant; personnel training; exposure information report; waste minimization plan; closure and postclosure requirements; reporting and recordkeeping; other relevant laws; certification

  8. Radioactive waste processing container

    International Nuclear Information System (INIS)

    Ishizaki, Kanjiro; Koyanagi, Naoaki; Sakamoto, Hiroyuki; Uchida, Ikuo.

    1992-01-01

    A radioactive waste processing container used for processing radioactive wastes into solidification products suitable to disposal such as underground burying or ocean discarding is constituted by using cements. As the cements, calcium sulfoaluminate clinker mainly comprising calcium sulfoaluminate compound; 3CaO 3Al 2 O 3 CaSO 4 , Portland cement and aqueous blast furnace slug is used for instance. Calciumhydroxide formed from the Portland cement is consumed for hydration of the calcium sulfoaluminate clinker. According, calcium hydroxide is substantially eliminated in the cement constituent layer of the container. With such a constitution, damages such as crackings and peelings are less caused, to improve durability and safety. (I.N.)

  9. High Level Waste (HLW) Processing Experience with Increased Waste Loading

    International Nuclear Information System (INIS)

    JANTZEN, CAROL

    2004-01-01

    The Defense Waste Processing Facility (DWPF) Engineering requested characterization of glass samples that were taken after the second melter had been operational for about 5 months. After the new melter had been installed, the waste loading had been increased to about 38 weight percentage after a new quasicrystalline liquidus model had been implemented. The DWPF had also switched from processing with refractory Frit 200 to a more fluid Frit 320. The samples were taken after DWPF observed very rapid buildup of deposits in the upper pour spout bore and on the pour spout insert while processing the high waste loading feedstock. These samples were evaluated using various analytical techniques to determine the cause of the crystallization. The pour stream sample was homogeneous, amorphous, and representative of the feed batch from which it was derived. Chemical analysis of the pour stream sample indicated that a waste loading of 38.5 weight per cent had been achieved. The data analysis indicated that surface crystallization, induced by temperature and oxygen fugacity gradients in the pour spout, caused surface crystallization to occur in the spout and on the insert at the higher waste loadings even though there was no crystallization in the pour stream

  10. The defense waste processing facility: the final processing step for defense high-level waste disposal

    International Nuclear Information System (INIS)

    Cowan, S.P.; Sprecher, W.M.; Walton, R.D.

    1983-01-01

    The policy of the U.S. Department of Energy is to pursue an aggressive and credible waste management program that advocates final disposal of government generated (defense) high-level nuclear wastes in a manner consistent with environmental, health, and safety responsibilities and requirements. The Defense Waste Processing Facility (DWPF) is an essential component of the Department's program. It is the first project undertaken in the United States to immobilize government generated high-level nuclear wastes for geologic disposal. The DWPF will be built at the Department's Savannah River Plant near Aiken, South Carolina. When construction is complete in 1989, the DWPF will begin processing the high-level waste at the Savannah River Plant into a borosilicate glass form, a highly insoluble and non-dispersable product, in easily handled canisters. The immobilized waste will be stored on site followed by transportation to and disposal in a Federal repository. The focus of this paper is on the DWPF. The paper discusses issues which justify the project, summarizes its technical attributes, analyzes relevant environmental and insitutional factors, describes the management approach followed in transforming technical and other concepts into concrete and steel, and concludes with observations about the future role of the facility

  11. Logistic paradigm for industrial solid waste treatment processes

    Directory of Open Access Journals (Sweden)

    Janusz Grabara

    2014-12-01

    Full Text Available Due to the fact that industrial waste are a growing problem, both economic and environmental as their number is increasing every year, it is important to take measures to correctly dealing wi th industrial waste. This article presents the descriptive model of logistics processes concerning the management of industrial waste. In this model the flow of waste begins in the place of production and ends at their disposal. The article presents the concept of logistics model in graphical form together with an analysis of individual processes and their linkages, and opportunities to improve flow of industrial waste streams. Furthermore, the model allows for justification of the relevance of use logistics and its processes for waste management

  12. Cost analysis and ecological benefits of environmental recovery methodologies in bauxite mining

    OpenAIRE

    Guimarães,João Carlos Costa; Barros,Dalmo Arantes de; Pereira,José Aldo Alves; Silva,Rossi Allan; Oliveira,Antonio Donizette de; Borges,Luís Antônio Coimbra

    2013-01-01

    This work analyzed and compared three methods of environmental recovery in bauxite mining commonly used in Poços de Caldas Plateau, MG, by means of recovery costs and ecological benefits. Earnings and costs data of environmental recovery activities were obtained for the areas that belonged to the Companhia Geral de Minas – CGM, on properties sited in the city of Poços de Caldas, MG. The amount of costs of these activities was used to compare the recovery methods by updating them monetarily to...

  13. Methods for the Evaluation of Waste Treatment Processes

    Directory of Open Access Journals (Sweden)

    Hans-Joachim Gehrmann

    2017-01-01

    Full Text Available Decision makers for waste management are confronted with the problem of selecting the most economic, environmental, and socially acceptable waste treatment process. This paper elucidates evaluation methods for waste treatment processes for the comparison of ecological and economic aspects such as material flow analysis, statistical entropy analysis, energetic and exergetic assessment, cumulative energy demand, and life cycle assessment. The work is based on the VDI guideline 3925. A comparison of two thermal waste treatment plants with different process designs and energy recovery systems was performed with the described evaluation methods. The results are mainly influenced by the type of energy recovery, where the waste-to-energy plant providing district heat and process steam emerged to be beneficial in most aspects. Material recovery options from waste incineration were evaluated according to sustainability targets, such as saving of resources and environmental protection.

  14. Processing constraints on high-level nuclear waste glasses for Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Hrma, P.R.

    1993-09-01

    The work presented in this paper is a part of a major technology program supported by the U.S. Department of Energy (DOE) in preparation for the planned operation of the Hanford Waste Vitrification Plant (HWVP). Because composition of Hanford waste varies greatly, processability is a major concern for successful vitrification. This paper briefly surveys general aspects of waste glass processability and then discusses their ramifications for specific examples of Hanford waste streams

  15. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant liquid, high-level radioactive waste into a solid form, such as borosilicate glass. To prevent the spread of radioactivity, the outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated by-products, which are difficult to immobilize by vitrification

  16. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-06-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  17. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-01-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  18. Advanced liquid waste processing technologies: Theoretical versus actual application

    International Nuclear Information System (INIS)

    Barker, Tracy A.

    1992-01-01

    This paper provides an overview of Chem-Nuclear Systems, Inc. (CNSI) experience with turn-key chromate removal at the Maine Yankee Nuclear Plant. Theoretical and actual experiences are addressed on topics such as processing duration, laboratory testing, equipment requirements, chromate removal, waste generation, and waste processing. Chromate salts are used in industrial recirculation cooling water systems as a corrosion inhibitor. However, chromates are toxic at concentrations necessary for surface inhibition. As a result, Chem-Nuclear was contracted to perform turn-key chromate removal and waste disposal by demineralization. This project was unique in that prior to on-site mobilization, a composite sample of chromated waste was shipped to CNSI laboratories for treatment through a laboratory scale system. Removal efficiency, process media requirements, and waste processing methodology were determined from this laboratory testing. Samples of the waste resulting from this testing were processed by dewatering and solidification, respectively. TCLP tests were performed on the actual processed waste, and based on the TCLP results, pre-approval for media waste disposal was obtained. (author)

  19. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    Roberts, R.J.

    1991-01-01

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  20. Towards an impact assessment of bauxite red mud waste on the knowledge of the structure and functions of bathyal ecosystems: The example of the Cassidaigne canyon (north-western Mediterranean Sea)

    International Nuclear Information System (INIS)

    Dauvin, Jean-Claude

    2010-01-01

    Since 1967, the alumina plants in the Marseilles area (Barasse and Gardanne) have been discharging the mineral residue (i.e., red mud) resulting from the alkaline processing of bauxite into the submarine Cassidaigne canyon (north-western Mediterranean Sea) through pipes situated at 320-330 m in depth. The Barasse pipe stopped being used in 1988. From 1987 to 1996, many decrees and regulations were promulgated by the French State to rule the conditions under which the Gardanne alumina refinery was authorized to dispose of the bauxite residue in the sea. The refinery was required: (i) to study the hydrodynamic circulation in the Cassidaigne canyon to evaluate the potential dispersion and transport of fine elements discharged into the water mass and their impact on the pelagic ecosystem; (ii) to survey the marine environment every five years to control the expansion and thickness of the red mud deposit and compare the evolution of the benthic macrofauna at representative sampling sites in the environment affected by the red mud discharge with that of reference sites outside of the red mud plume; (iii) to study the effect of the discharge on fishing activities; and (iv) to investigate the toxicity of the red mud, particularly its persistence, accumulation, interaction and effect on the marine ecosystem, paying special attention to the bio-accumulation of chromium and vanadium. A Scientific Committee was created to insure an independent evaluation of the studies promised by the manufacturer in response to the State's regulations. Since the beginning of the 1960s, data have been accumulating on the structure and long-term functioning of the Cassidaigne bathyal ecosystem. This paper presents the collaborative efforts of the State-Manufacturer-Committee triplet and summarizes the main results obtained during the last period's sea campaigns (1991-2007). This paper also illustrates how national regulations concerning manufacturers, such as Gardanne alumina refinery, have

  1. Enrichment of Sc{sub 2}O{sub 3} and TiO{sub 2} from bauxite ore residues

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Bona; Li, Guanghui, E-mail: liguangh@csu.edu.cn; Luo, Jun; Ye, Qing; Liu, Mingxia; Peng, Zhiwei; Jiang, Tao

    2017-06-05

    Highlights: • Sc{sub 2}O{sub 3} and TiO{sub 2} from bauxite ore residue were successfully enriched. • H{sub 3}PO{sub 4} and NaOH were efficient for enriching Sc{sub 2}O{sub 3} and TiO{sub 2} by removing SiO{sub 2}, Al{sub 2}O{sub 3}, and partial Fe{sub 2}O{sub 3} and CaO. • Enriching mechanism of Sc{sub 2}O{sub 3} and TiO{sub 2} was explicitly explained. - Abstract: As a major byproduct generated in the alumina industry, bauxite ore residue is an important reserve of scandium and titanium. In this study, the feasibility and mechanism of enriching Sc{sub 2}O{sub 3} and TiO{sub 2} from a non-magnetic material, which was obtained from carbothermal reductive roasting and magnetic separation of bauxite ore residue, were investigated based on a two-step (acidic and alkali) leaching process. It was revealed that approximately 78% SiO{sub 2} and 30–40% of CaO, FeO and Al{sub 2}O{sub 3} were removed from a non-magnetic material with 0.0134 wt.% Sc{sub 2}O{sub 3} and 7.64 wt.% TiO{sub 2} by phosphoric acidic leaching, while about 95% Al{sub 2}O{sub 3} and P{sub 2}O{sub 5} were further leached by subsequent sodium hydroxide leaching of the upper-stream leach residue. A Sc{sub 2}O{sub 3}-, TiO{sub 2}- rich material containing 0.044 wt.% Sc{sub 2}O{sub 3} and 25.5 wt.% TiO{sub 2} was obtained, the recovery and the enrichment factor of Sc{sub 2}O{sub 3} and TiO{sub 2} were about 85% and 5, respectively. The enrichment of Sc{sub 2}O{sub 3} was attributed to higher pH (>3.3) of phosphoric acid solution than its dissolution pH{sup 0}, and the enrichment of TiO{sub 2} was mainly associated with the insoluble perovskite (CaTiO{sub 3}) in the acidic solution at ambient temperature. As Sc{sub 2}O{sub 3} and TiO{sub 2} cannot be dissolved in the alkali solution, they were further enriched in the leach residue.

  2. Plasma Processing of Model Residential Solid Waste

    Science.gov (United States)

    Messerle, V. E.; Mossé, A. L.; Nikonchuk, A. N.; Ustimenko, A. B.; Baimuldin, R. V.

    2017-09-01

    The authors have tested the technology of processing of model residential solid waste. They have developed and created a pilot plasma unit based on a plasma chamber incinerator. The waste processing technology has been tested and prepared for commercialization.

  3. Fuel processing. Wastes processing

    International Nuclear Information System (INIS)

    Bourgeois, M.

    2000-01-01

    The gaseous, liquid and solid radioactive effluents generated by the fuel reprocessing, can't be release in the environment. They have to be treated in order to respect the limits of the pollution regulations. These processing are detailed and discussed in this technical paper. A second part is devoted to the SPIN research program relative to the separation of the long life radionuclides in order to reduce the radioactive wastes storage volume. (A.L.B.)

  4. Radioactive liquid wastes processing device

    International Nuclear Information System (INIS)

    Sauda, Kenzo; Koshiba, Yukihiko; Yagi, Takuro; Yamazaki, Hideki.

    1985-01-01

    Purpose: To carry out optimum photooxidizing procession following after the fluctuation in the density of organic materials in radioactive liquid wastes to thereby realize automatic remote procession. Constitution: A reaction tank is equipped with an ultraviolet lamp and an ozone dispersing means for the oxidizing treatment of organic materials in liquid wastes under the irradiation of UV rays. There are also provided organic material density measuring devices to the inlet and outlet of the reaction tank, and a control device for controlling the UV lamp power adjusting depending on the measured density. The output of the UV lamp is most conveniently adjusted by changing the applied voltage. The liquid wastes in which the radioactivity dose is reduced to a predetermined level are returned to the reaction tank by the operation of a switching valve for reprocession. The amount of the liquid wastes at the inlet is controlled depending on the measured ozone density by the adjusting valve. In this way, the amount of organic materials to be subjected to photolysis can be kept within a certain limit. (Kamimura, M.)

  5. Environmental information document defense waste processing facility

    International Nuclear Information System (INIS)

    1981-07-01

    This report documents the impact analysis of a proposed Defense Waste Processing Facility (DWPF) for immobilizing high-level waste currently being stored on an interim basis at the Savannah River Plant (SRP). The DWPF will process the waste into a form suitable for shipment to and disposal in a federal repository. The DWPF will convert the high-level waste into: a leach-resistant form containing above 99.9% of all the radioactivity, and a residue of slightly contaminated salt. The document describes the SRP site and environs, including population, land and water uses; surface and subsurface soils and waters; meteorology; and ecology. A conceptual integrated facility for concurrently producing glass waste and saltcrete is described, and the environmental effects of constructing and operating the facility are presented. Alternative sites and waste disposal options are addressed. Also environmental consultations and permits are discussed

  6. Technology Summary Advancing Tank Waste Retreival And Processing

    International Nuclear Information System (INIS)

    Sams, T.L.

    2010-01-01

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated since it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans and methods. WRPS and the DOE are therefore developing, testing, and deploying technologies to ensure that they can meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  7. Topicality and possibilities for complete processing of red mud of aluminous production

    Directory of Open Access Journals (Sweden)

    В. Л. Трушко

    2017-10-01

    Full Text Available In the aluminum industry, the largest amount of waste is red mud (RM. that is a solid bauxite residue after hydrochemical processing and extraction of alumina. The topicality of its processing was shown by the ecological catastrophe in Hungary (2010, where the bund wall of the slurry storage was destroyed and the viscous mass of fine red mud fell on thousands of hectares of land.The risks of a recurrence of such a catastrophe increase due to the increased natural disasters: earthquakes, torrential rains and floods, as well as terrorist attacks. Therefore, it is proposed to exclude the storage of red mud in sludge storages and organize its shipment in transportable form to processing complexes.The article presents the results of scientific research and the experience of complex processing of red sludge on an industrial scale with the production of new types of marketable products.

  8. An approach for sampling solid heterogeneous waste at the Hanford Site waste receiving and processing and solid waste projects

    International Nuclear Information System (INIS)

    Sexton, R.A.

    1993-03-01

    This paper addresses the problem of obtaining meaningful data from samples of solid heterogeneous waste while maintaining sample rates as low as practical. The Waste Receiving and Processing Facility, Module 1, at the Hanford Site in south-central Washington State will process mostly heterogeneous solid wastes. The presence of hazardous materials is documented for some packages and unknown for others. Waste characterization is needed to segregate the waste, meet waste acceptance and shipping requirements, and meet facility permitting requirements. Sampling and analysis are expensive, and no amount of sampling will produce absolute certainty of waste contents. A sampling strategy is proposed that provides acceptable confidence with achievable sampling rates

  9. Waste package materials selection process

    International Nuclear Information System (INIS)

    Roy, A.K.; Fish, R.L.; McCright, R.D.

    1994-01-01

    The office of Civilian Radioactive Waste Management (OCRWM) of the United States Department of Energy (USDOE) is evaluating a site at Yucca Mountain in Southern Nevada to determine its suitability as a mined geologic disposal system (MGDS) for the disposal of high-level nuclear waste (HLW). The B ampersand W Fuel Company (BWFC), as a part of the Management and Operating (M ampersand O) team in support of the Yucca Mountain Site Characterization Project (YMP), is responsible for designing and developing the waste package for this potential repository. As part of this effort, Lawrence Livermore National Laboratory (LLNL) is responsible for testing materials and developing models for the materials to be used in the waste package. This paper is aimed at presenting the selection process for materials needed in fabricating the different components of the waste package

  10. Processing of transuranic waste at the Savannah River Plant

    International Nuclear Information System (INIS)

    Daugherty, B.A.; Gruber, L.M.; Mentrup, S.J.

    1986-01-01

    Transuranic wastes at the Savannah River Plant (SRP) have been retrievably stored on concrete pads since early 1972. This waste is stored primarily in 55-gallon drums and large carbon steel boxes. Higher activity drums are placed in concrete culverts. In support of a National Program to consolidate and permanently dispose of this waste, a major project is planned at SRP to retrieve and process this waste. This project, the TRU Waste Facility (TWF), will provide equipment and processes to retrieve TRU waste from 20-year retrievable storage and prepare it for permanent disposal at the Waste Isolation Pilot Plant (WIPP) geological repository in New Mexico. This project is an integral part of the SRP Long Range TRU Waste Management Program to reduce the amount of TRU waste stored at SRP. The TWF is designed to process 15,000 cubic feet of retrieved waste and 6200 cubic feet of newly generated waste each year of operation. This facility is designed to minimize direct personnel contact with the waste using state-of-the-art remotely operated equipment

  11. Electrochemical processing of low-level waste solutions

    International Nuclear Information System (INIS)

    Hobbs, D.T.; Ebra, M.A.

    1987-01-01

    The feasibility of treating low-level Savannah River Plant (SRP) waste solutions by an electrolytic process has been demonstrated. Although the economics of the process are marginal at the current densities investigated at the laboratory scale, there are a number of positive environmental benefits. These benefits include: (1) reduction in the levels of nitrate and nitrite in the waste, (2) further decontamination of 99 Tc and 106 Ru, and (3) reduction in the volume of waste

  12. A big picture prospective for wet waste processing management

    International Nuclear Information System (INIS)

    Gibson, J.D.

    1996-01-01

    This paper provides an overview of general observations made relative to the technical and economical considerations being evaluated by many commercial nuclear power plants involving their decision making process for implementation of several new wet waste management technologies. The waste management processes reviewed include the use of, Reverse Osmosis, Non-Precoat Filters, Resin Stripping ampersand Recycling, Evaporation ampersand Calcination (RVR trademark, ROVER trademark ampersand Thermax trademark), Compression Dewatering (PressPak trademark), Incineration (Resin Express trademark), Survey ampersand Free Release (Green Is Clean) and Quantum Catalytic Extraction Processing (QCEP trademark). These waste management processes are reviewed relative to their general advantages and disadvantages associated with the processing of various wet waste streams including: reactor make-up water, floor drain sludges and other liquid waste streams such as boric acid concentrates and steam generator cleaning solutions. A summary of the conclusions generally being derived by most utilities associated with the use of these waste management processes is also provided

  13. Waste container weighing data processing to create reliable information of household waste generation.

    Science.gov (United States)

    Korhonen, Pirjo; Kaila, Juha

    2015-05-01

    Household mixed waste container weighing data was processed by knowledge discovery and data mining techniques to create reliable information of household waste generation. The final data set included 27,865 weight measurements covering the whole year 2013 and it was selected from a database of Helsinki Region Environmental Services Authority, Finland. The data set contains mixed household waste arising in 6m(3) containers and it was processed identifying missing values and inconsistently low and high values as errors. The share of missing values and errors in the data set was 0.6%. This provides evidence that the waste weighing data gives reliable information of mixed waste generation at collection point level. Characteristic of mixed household waste arising at the waste collection point level is a wide variation between pickups. The seasonal variation pattern as a result of collective similarities in behaviour of households was clearly detected by smoothed medians of waste weight time series. The evaluation of the collection time series against the defined distribution range of pickup weights on the waste collection point level shows that 65% of the pickups were from collection points with optimally dimensioned container capacity and the collection points with over- and under-dimensioned container capacities were noted in 9.5% and 3.4% of all pickups, respectively. Occasional extra waste in containers occurred in 21.2% of the pickups indicating the irregular behaviour of individual households. The results of this analysis show that processing waste weighing data using knowledge discovery and data mining techniques provides trustworthy information of household waste generation and its variations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Pozzolanic properties of clays used for shelter construction in Ghana ...

    African Journals Online (AJOL)

    Pozzolanas produced from clay and bauxite wastes have been blended with Portland cement to produce Portland-Pozzolana composite cement. The production processes, including nodulization, are discussed. The mechanical properties of the composite cement, such as compressive strength and setting times, were ...

  15. Quantum-CEP trademark for mixed waste processing

    International Nuclear Information System (INIS)

    Nahass, P.; Sekula-Moise, P.A.; Chanenchuk, C.A.

    1994-01-01

    No commercially available technology exists to effectively treat the hundreds of thousands of tons of mixed waste stored and generated in the United States and worldwide. Catalytic Extraction Processing (CEP) is an innovative flexible recycling technology which has inherent advantages for processing mixed wastes in a wide variety of chemical and physical forms. CEP uses a molten metal bath to completely dissociate feeds and recombine them with selected reactants to form useful products. Dissolved carbon in the metal bath creates a reducing atmosphere, readily converting hydrocarbons to synthesis gas, metals to alloys in their reduced state, and inorganics to an engineered ceramic phase. Process conditions can be manipulated to strongly favor partitioning of select radionuclides to a nonleachable vitreous phase, ready for final form disposal. Molten Metal Technology has adapted its CEP technology for radioactive processing and has delivered Quantum-CEP trademark units to customers for demonstration of mixed waste processing leading to commercial scale installations for reducing both private and government inventories. Agreements have also been reached to build commercial CEP facilities to recycle hazardous and industrial wastes

  16. Safety Evaluation for Hull Waste Treatment Process in JNC

    International Nuclear Information System (INIS)

    Kojima, H.; Kurakata, K.

    2002-01-01

    Hull wastes and some scrapped equipment are typical radioactive wastes generated from reprocessing process in Tokai Reprocessing Plant (TRP). Because hulls are the wastes remained in the fuel shearing and dissolution, they contain high radioactivity. Japan Nuclear Cycle Development Institute (JNC) has started the project of Hull Waste Treatment Facility (HWTF) to treat these solid wastes using compaction and incineration methods since 1993. It is said that Zircaloy fines generated from compaction process might burn and explode intensely. Therefore explosive conditions of the fines generated in compaction process were measured. As these results, it was concluded that the fines generated from the compaction process were not hazardous material. This paper describes the outline of the treatment process of hulls and results of safety evaluation

  17. Processing and discarding method for contaminated concrete wastes

    International Nuclear Information System (INIS)

    Yamamoto, Kazuo; Konishi, Masao; Matsuda, Atsuo; Iwamoto, Yoshiaki; Yoshikane, Toru; Koie, Toshio; Nakajima, Yoshiro

    1998-01-01

    Contaminated concrete wastes are crashed into granular concrete wastes having a successive grain size distribution. They are filled in a contamination processing vessel and made hardenable in the presence of a water-hardenable material in the granular concrete wastes. When underground water intrudes into the contamination processing vessel filled with the granular concrete wastes upon long-term storage, the underground water reacts with the water-hardenable material to be used for the solidification effect. Accordingly, leaching of contaminated materials due to intrusion of underground water can be suppressed. Since the concrete wastes have a successive grain size distribution, coarse grains can be used as coarse aggregates, medium grains can be used as fine aggregates and fine grains can be used as a solidifying material. Accordingly, the amount of wastes after processing can be remarkably reduced, with no supply of a solidifying material from outside. (T.M.)

  18. Colloidal agglomerates in tank sludge: Impact on waste processing

    International Nuclear Information System (INIS)

    Bunker, B.C.; Martin, J.E.

    1998-01-01

    'Insoluble colloidal sludges in hazardous waste streams such as tank wastes can pose serious problems for waste processing, interfering with retrieval, transport, separation, and solidification procedures. Properties of sediment layers and sludge suspensions such as slurry viscosities, sedimentation rates, and final sediment densities can vary by orders of magnitude depending on the particle types present, the degree to which the particles agglomerate or stick to each other, and on a wide range of processing parameters such as solution shear rates, pH, salt content, and temperature. The objectives of this work are to: (1) understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions; (2) determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation, and filtration; and (3) develop strategies for optimizing processing conditions via control of agglomeration phenomena. Insoluble colloidal sludges in hazardous waste streams such as tank wastes can pose serious problems for waste processing, interfering with retrieval, transport, separation, and solidification procedures. Properties of sediment layers and sludge suspensions such as slurry viscosities, sedimentation rates, and final sediment densities can vary by orders of magnitude depending on the particle types present, the degree to which the particles agglomerate or stick to each other, and on a wide range of processing parameters such as solution shear rates, pH, salt content, and temperature. The objectives of this work are to: (1) understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions; (2) determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation, and filtration; and (3) develop strategies for optimizing processing conditions via control

  19. Shadows of the Plantation? A Social History of Suriname’s Bauxite Town Moengo

    Directory of Open Access Journals (Sweden)

    Anouk de Koning

    2011-12-01

    Full Text Available This article explores the social history of Suriname’s first bauxite town, Moengo, founded in the late 1910s. It recounts the rise of a new industry that drew workers away from the plantations and urban artisanal occupations to work in a massive, highly organized and orchestrated organization-cum-social community. Using oral narratives about life in Moengo, as well as census and other statistical data, this contribution asks whether everyday life in the mining enclave echoed features of the plantation.

  20. Electroacoustic isoelectric point determinations of bauxite refinery residues: different neutralization techniques and minor mineral effects.

    Science.gov (United States)

    Freire, Tiago S S; Clark, Malcolm W; Comarmond, M Josick; Payne, Timothy E; Reichelt-Brushett, Amanda J; Thorogood, Gordon J

    2012-08-14

    Bauxite refinery residue (BRR) is a highly caustic, iron hydroxide-rich byproduct from alumina production. Some chemical treatments of BRR reduce soluble alkalinity and lower residue pH (to values work shows that minor mineral components in complex mineral systems may have a disproportionate effect on the observable bulk IEP. Furthermore, this work shows the appropriateness of electroacoustic techniques in investigating samples with significant soluble mineral components (e.g., ANC).

  1. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  2. Small-scale demonstration of high-level radioactive waste processing and solidification using actual SRP waste

    International Nuclear Information System (INIS)

    Okeson, J.K.; Galloway, R.M.; Wilhite, E.L.; Woolsey, G.B.; Ferguson, R.B.

    1980-01-01

    A small-scale demonstration of the high-level radioactive waste solidification process by vitrification in borosilicate glass is being conducted using 5-6 liter batches of actual waste. Equipment performance and processing characteristics of the various unit operations in the process are reported and, where appropriate, are compared to large-scale results obtained with synthetic waste

  3. Microbial processes in radioactive waste repository

    International Nuclear Information System (INIS)

    Gazso, L.; Farkas-Galgoczi, G.; Diosi, G.

    2002-01-01

    Microbial processes could potentially affect the performance of a radioactive waste disposal system and related factors that could have an influence on the mobility of radionuclides are outlined. Analytical methods, including sampling of water, rock and surface swabs from a potential disposal site, are described and the quantitative as well as qualitative experimental results obtained are given. Although the results contribute to an understanding of the impact of microbial processes on deep geological disposal of nuclear waste, there is not yet sufficient information for a model which will predict the consequences of these processes. (author)

  4. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Inaguma, Masahiko; Takahara, Nobuaki; Hara, Satomi.

    1996-01-01

    In a processing device for filtering laundry liquid wastes and shower drains incorporated with radioactive materials, a fiber filtration device is disposed and an activated carbon filtration device is also disposed subsequent to the fiber filtration device. In addition, a centrifugal dewatering device is disposed for dewatering spent granular activated carbon in the activated carbon filtration device, and a minute filtering device is disposed for filtering the separated dewatering liquid. Filtrates filtered by the minute filtration device are recovered in a collecting tank. Namely, at first, suspended solid materials in laundry liquid wastes and shower drains are captured, and then, ingredients concerning COD are adsorbed in the activated carbon filtration device. The radioactive liquid wastes of spent granular activated carbon in the activated carbon filtration device are reduced by dewatering them by the centrifugal dewatering device, and then the granular activated carbon is subjected to an additional processing. Further, it is separated by filtration using the minute filtration device and removed as cakes. Since the filtrates are recovered to the collecting tank and filtered again, the water quality of the drains is not degraded. (N.H.)

  5. Method of processing radioactive liquid wastes

    International Nuclear Information System (INIS)

    Kurumada, Norimitsu; Shibata, Setsuo; Wakabayashi, Toshikatsu; Kuribayashi, Hiroshi.

    1984-01-01

    Purpose: To facilitate the procession of liquid wastes containing insoluble salts of boric acid and calcium in a process for solidifying under volume reduction of radioactive liquid wastes containing boron. Method: A soluble calcium compound (such as calcium hydroxide, calcium oxide and calcium nitrate) is added to liquid wastes whose pH value is adjusted neutral or alkaline such that the molar ratio of calcium to boron in the liquid wastes is at least 0.2. Then, they are agitated at a temperature between 40 - 70 0 C to form insoluble calcium salt containing boron. Thereafter, the liquid is maintained at a temperature less than the above-mentioned forming temperature to age the products and, thereafter, the liquid is evaporated to condensate into a liquid concentrate containing 30 - 80% by weight of solid components. The concentrated liquid is mixed with cement to solidify. (Ikeda, J.)

  6. Proposed Changes to EPA's Transuranic Waste Characterization Approval Process

    International Nuclear Information System (INIS)

    Joglekar, R.D.; Feltcorn, E.M.; Ortiz, A.M.

    2003-01-01

    This paper describes the changes to the waste characterization (WC) approval process proposed in August 2002 by the U.S. Environmental Protection Agency (EPA or the Agency or we). EPA regulates the disposal of transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) repository in Carlsbad, New Mexico. EPA regulations require that waste generator/storage sites seek EPA approval of WC processes used to characterize TRU waste destined for disposal at WIPP. The regulations also require that EPA verify, through site inspections, characterization of each waste stream or group of waste streams proposed for disposal at the WIPP. As part of verification, the Agency inspects equipment, procedures, and interviews personnel to determine if the processes used by a site can adequately characterize the waste in order to meet the waste acceptance criteria for WIPP. The paper discusses EPA's mandate, current regulations, inspection experience, and proposed changes. We expect that th e proposed changes will provide equivalent or improved oversight. Also, they would give EPA greater flexibility in scheduling and conducting inspections, and should clarify the regulatory process of inspections for both Department of Energy (DOE) and the public

  7. Molten salt destruction process for mixed wastes

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Wilder, J.G.; Karlsen, C.E.

    1993-04-01

    We are developing an advanced two-stage process for the treatment of mixed wastes, which contain both hazardous and radioactive components. The wastes, together with an oxidant gas, such as air, are injected into a bed of molten salt comprising a mixture of sodium-, potassium-, and lithium-carbonates, with a melting point of about 580 degree C. The organic constituents of the mixed waste are destroyed through the combined effect of pyrolysis and oxidation. Heteroatoms. such as chlorine, in the mixed waste form stable salts, such as sodium chloride, and are retained in the melt. The radioactive actinides in the mixed waste are also retained in the melt because of the combined action of wetting and partial dissolution. The original process, consists of a one-stage unit, operated at 900--1000 degree C. The advanced two-stage process has two stages, one for pyrolysis and one for oxidation. The pyrolysis stage is designed to operate at 700 degree C. The oxidation stage can be operated at a higher temperature, if necessary

  8. Improved liquid waste processing system of PWR plant

    International Nuclear Information System (INIS)

    Suehiro, Kazuyasu

    1977-01-01

    Mitsubishi Heavy Industries, Ltd. has engaged in the improvement and enhancement of waste-processing facilities for PWR power stations, and recently established the improved processing system. With this system, it becomes possible to contain radioactive waste gas semi-permanently within plants and to recycle waste liquid after the treatment, thus to make the release of radioactive wastes practically zero. The improved system has the following features, namely the recycling system is adopted, drain is separated and each separated drain is treated by specialized process, the reboiler type evaporator and the reverse osmosis equipment are used, and the leakless construction is adopted for the equipments. The radioactive liquid wastes in PWR power stations are classified into coolant drain, drain from general equipments, chemical drain and cleaning water. The outline of the improved processing system and the newly developed equipments such as the reboiler type evaporator and the reverse osmosis equipment are explained. With the evaporator, the concentration rate of waste liquid can be raised to about three times, and foaming waste can be treated efficiently. The decontamination performance is excellent. The reverse osmosis treatment is stable and reliable method, and is useful for the treatment of cleaning water. It is also effective for concentrating treatment. The unmanned automatic operation is possible. (Kako, I.)

  9. Processing of combustible radioactive waste using incineration techniques

    International Nuclear Information System (INIS)

    Maestas, E.

    1981-01-01

    Among the OECD Nuclear Energy Agency Member countries numerous incineration concepts are being studied as potential methods for conditioning alpha-bearing and other types of combustible radioactive waste. The common objective of these different processes is volume reduction and the transformation of the waste to a more acceptable waste form. Because the combustion processes reduce the mass and volume of waste to a form which is generally more inert than the feed material, the resulting waste can be more uniformly compatible with safe handling, packaging, storage and/or disposal techniques. The number of different types of combustion process designed and operating specifically for alpha-bearing wastes is somewhat small compared with those for non-alpha radioactive wastes; however, research and development is under way in a number of countries to develop and improve alpha incinerators. This paper provides an overview of most alpha-incineration concepts in operation or under development in OECD/NEA Member countries. The special features of each concept are briefly discussed. A table containing characteristic data of incinerators is presented so that a comparison of the major programmes can be made. The table includes the incinerator name and location, process type, capacity throughput, operational status and application. (author)

  10. Processing of tetraphenylborate precipitates in the Savannah River Site Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Eibling, R.E.

    1990-01-01

    The Savannah River Site has generated 77 million gallons of high level radioactive waste since the early 1950's. By 1987, evaporation had reduced the concentration of the waste inventory to 35 million gallons. Currently, the wastes reside in large underground tanks as a soluble fraction stored, crystallized salts, and an insoluble fraction, sludge, which consists of hydrated transition metal oxides. The bulk of the radionuclides, 67 percent, are in the sludge while the crystallized salts and supernate are composed of the nitrates, nitrites, sulfates and hydroxides of sodium, potassium, and cesium. The principal radionuclide in the soluble waste is 137 Cs with traces of 90 Sr. The transformation of the high level wastes into a borosilicate glass suitable for permanent disposal is the goal of the Defense Waste Processing Facility (DWPF). To minimize the volume of glass produced, the soluble fraction of the waste is treated with sodium tetraphenylborate and sodium titanate in the waste tanks to precipitate the radioactive cesium ion and absorb the radioactive strontium ion. The precipitate is washed in the waste tanks and is then pumped to the DWPF. The precipitate, as received, is incompatible with the vitrification process because of the high aromatic carbon content and requires further chemical treatment. Within the DWPF, the precipitate is processed in the Salt Processing Cell to remove the aromatic carbon as benzene. The precipitate hydrolysis process hydrolyzes the tetraphenylborate anion to produce borate anion and benzene. The benzene is removed by distillation, decontaminated and transferred out of the DWPF for disposal

  11. Molten salt processing of mixed wastes with offgas condensation

    International Nuclear Information System (INIS)

    Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R.; Gay, R.L.; Stewart, A.; Yosim, S.

    1991-01-01

    We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000 degrees C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700 degrees C. 15 refs., 5 figs., 1 tab

  12. Defense Waste Processing Facility Process Simulation Package Life Cycle

    International Nuclear Information System (INIS)

    Reuter, K.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) will be used to immobilize high level liquid radioactive waste into safe, stable, and manageable solid form. The complexity and classification of the facility requires that a performance based operator training to satisfy Department of Energy orders and guidelines. A major portion of the training program will be the application and utilization of Process Simulation Packages to assist in training the Control Room Operators on the fluctionality of the process and the application of the Distribution Control System (DCS) in operating and managing the DWPF process. The packages are being developed by the DWPF Computer and Information Systems Simulation Group. This paper will describe the DWPF Process Simulation Package Life Cycle. The areas of package scope, development, validation, and configuration management will be reviewed and discussed in detail

  13. Development of floristic diversity in 10-year-old restoration forests on a bauxite mined site in Amazonia.

    Science.gov (United States)

    J. A. Parrotta; O. H. Knowles; J.M. Wunderle Jr.

    1997-01-01

    Patterns of plant and animal diversity were studied in a 10-year-old native species reforestation area at a bauxite-mined site at porto Trombetas in western Para State, Brazil. Understorey and overstorey floristic composition and structure, understorey light conditions, forest floor development and soil properties were evaluated in a total of 38 78.5-m2

  14. THOREX processing and zeolite transfer for high-level waste stream processing blending

    International Nuclear Information System (INIS)

    Kelly, S. Jr.; Meess, D.C.

    1997-07-01

    The West Valley Demonstration Project (WVDP) completed the pretreatment of the high-level radioactive waste (HLW) prior to the start of waste vitrification. The HLW originated form the two million liters of plutonium/uranium extraction (PUREX) and thorium extraction (THOREX) wastes remaining from Nuclear Fuel Services' (NFS) commercial nuclear fuel reprocessing operations at the Western New York Nuclear Service Center (WNYNSC) from 1966 to 1972. The pretreatment process removed cesium as well as other radionuclides from the liquid wastes and captured these radioactive materials onto silica-based molecular sieves (zeolites). The decontaminated salt solutions were volume-reduced and then mixed with portland cement and other admixtures. Nineteen thousand eight hundred and seventy-seven 270-liter square drums were filled with the cement-wastes produced from the pretreatment process. These drums are being stored in a shielded facility on the site until their final disposition is determined. Over 6.4 million liters of liquid HLW were processed through the pretreatment system. PUREX supernatant was processed first, followed by two PUREX sludge wash solutions. A third wash of PUREX/THOREX sludge was then processed after the neutralized THOREX waste was mixed with the PUREX waste. Approximately 6.6 million curies of radioactive cesium-137 (Cs-137) in the HLW liquid were removed and retained on 65,300 kg of zeolites. With pretreatment complete, the zeolite material has been mobilized, size-reduced (ground), and blended with the PUREX and THOREX sludges in a single feed tank that will supply the HLW slurry to the Vitrification Facility

  15. The Plasco Process for energy from waste

    Energy Technology Data Exchange (ETDEWEB)

    Bryden, R.M. [Plasco Energy Group, Ottawa, ON (Canada)

    2006-07-01

    Plasco Energy Group (Plasco) has a patented process that provides a way of recycling products that are difficult or uneconomic for conventional recycle programs. This presentation included information on the Plasco PGP system that can process energy from waste. The specifications and benefits of the Plasco process were discussed, notably that no energy supplements such as coal or natural gas are required for the process. The amount of power consumed by households and in a Plasco plant were identified. The amounts of waste processed and converted by the Plasco plant were also provided along with sketches of Plasco's Ottawa demonstration facility and Plasco gasification converter. Last, the presentation addressed the cooperative solution involving several partners such as the city of Ottawa, province of Ontario and Plasco. The waste recycling opportunities for communities were also highlighted. 1 tab., figs.

  16. Current and potential uses of bioactive molecules from marine processing waste.

    Science.gov (United States)

    Suleria, Hafiz Ansar Rasul; Masci, Paul; Gobe, Glenda; Osborne, Simone

    2016-03-15

    Food industries produce huge amounts of processing waste that are often disposed of incurring expenses and impacting upon the environment. For these and other reasons, food processing waste streams, in particular marine processing waste streams, are gaining popularity amongst pharmaceutical, cosmetic and nutraceutical industries as sources of bioactive molecules. In the last 30 years, there has been a gradual increase in processed marine products with a concomitant increase in waste streams that include viscera, heads, skins, fins, bones, trimmings and shellfish waste. In 2010, these waste streams equated to approximately 24 million tonnes of mostly unused resources. Marine processing waste streams not only represent an abundant resource, they are also enriched with structurally diverse molecules that possess a broad panel of bioactivities including anti-oxidant, anti-coagulant, anti-thrombotic, anti-cancer and immune-stimulatory activities. Retrieval and characterisation of bioactive molecules from marine processing waste also contributes valuable information to the vast field of marine natural product discovery. This review summarises the current use of bioactive molecules from marine processing waste in different products and industries. Moreover, this review summarises new research into processing waste streams and the potential for adoption by industries in the creation of new products containing marine processing waste bioactives. © 2015 Society of Chemical Industry.

  17. Process evaluation for treatment of aluminium bearing declad waste

    International Nuclear Information System (INIS)

    Banerjee, D.; Rao, Manjula A.; Srinivas, C.; Wattal, P.K.

    2012-01-01

    Declad waste generated by the process of chemical decladding of Al-cladded uranium metal fuel is characterized by highly alkaline, high Al bearing intermediate level waste. It was found that the process developed and adopted in India for plant scale treatment of alkaline intermediate level waste (ILW) is unsuitable for treatment of declad waste. This is mainly due to its exotic characteristics, notably substantial amounts of aluminium in the declad waste. As part of development of treatment scheme for this waste, 137 Cs removal by RFPR has been demonstrated earlier and the present paper reports the results of further processing of the Cs-lean effluent. The waste simulated with respect to the major chemical constituents of stored Al-bearing alkaline ILW after 137 Cs and 90 Sr removal by ion exchange, is used in this study

  18. Toxic and hazardous waste disposal. Volume 1. Processes for stabilization/solidification

    International Nuclear Information System (INIS)

    Pojasek, R.B.

    1979-01-01

    Processes for the stabilization and/or solidification of toxic, hazardous, and radioactive wastes are reviewed. The types of wastes classified as hazardous are defined. The following processes for the solidification of hazardous wastes are described: lime-based techniques; thermoplastic techniques; organic polymer techniques; and encapsulation. The following processes for the solidification of high-level radioactive wastes are described: calcination; glassification; and ceramics. The solidification of low-level radioactive wastes with asphalt, cement, and polymeric materials is also discussed. Other topics covered include: the use of an extruder/evaporator to stabilize and solidify hazardous wastes; effect disposal of fine coal refuse and flue gas desulfurization slurries using Calcilox additive stabilization; the Terra-Tite Process; the Petrifix Process; the SFT Terra-Crete Process; Sealosafe Process; Chemfix Process; and options for disposal of sulfur oxide wastes

  19. Thermal processing system concepts and considerations for RWMC buried waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided

  20. Thermal processing system concepts and considerations for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  1. Defense Waste Processing Facility, Savannah River Plant

    International Nuclear Information System (INIS)

    After 10 years of research, development, and testing, the US Department of Energy is building a new facility which will prepare high-level radioactive waste for permanent disposal. The Defense Waste Processing Facility, known as the DWPF, will be the first production-scale facility of its kind in the United States. In the DWPF, high-level waste produced by defense activities at the Savannah River Plant will be processed into a solid form, borosilicate glass, suitable for permanent off-site geologic disposal. With construction beginning in the fall of 1983, the DWPT is scheduled to be operational in 1989. By 2005, the DWPF will have immobilized the backlog of high-level waste which has been accumulating in storage tanks at the Savannah River Plant since 1954. Canisters of the immobilized waste will then be ready for permanent disposal deep under the ground, safely isolated from the environment

  2. Discarding processing method for radioactive waste

    International Nuclear Information System (INIS)

    Komura, Shiro; Kato, Hiroaki; Hatakeyama, Takao; Oura, Masato.

    1992-01-01

    At first, in a discrimination step, extremely low level radioactive wastes are discriminated to metals and concretes and further, the metal wastes are discriminated to those having hollow portions and those not having hollow portions, and the concrete wastes are discriminated to those having block-like shape and those having other shapes respectively. Next, in a processing step, the metal wastes having hollow portions are applied with cutting, devoluming or packing treatment and block-like concrete wastes are applied with surface solidification treatment, and concrete wastes having other shapes are applied with crushing treatment respectively. Then, the extremely low level radioactive wastes contained in a container used exclusively for transportation are taken out, in a movable burying facility with diffusion inhibiter kept at a negative pressure as required, in a field for burying operation, and buried in a state that they are isolated from the outside. Accordingly, they can be buried safely and efficiently. (T.M.)

  3. Diatomaceous earth and activated bauxite used as granular sorbents for the removal of sodium chloride vapor from hot flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Swift, W.M.; Johnson, I.

    1980-01-01

    Diatomaceous earth and activated bauxite were tested as granular sorbents for use as filter media in granular-bed filters for the removal of gaseous alkali metal compounds from the hot (800/sup 0/C) flue gas of PFBC. Tests were performed at atmospheric pressure, using NaCl vapor transported in relatively dry simulated flue gas of PFBC. Either a fixed-bed combustor or a high-temperature sorption test rig was used. The effects of sorbent bed temperature, superficial gas velocity, gas hourly space velocity, and NaCl-vapor concentration in flue gas on the sorption behavior of these two sorbents and their ultimate sorption capacities were determined. Both diatomaceous earth and activated bauxite were found to be very effective in removing NaCl vapor from flue gas. Preliminary cost evaluations showed that they are economically attractive as granular sorbents for cleaning alkali vapor from simulated flue gas.

  4. Hospital waste processing. Tratamiento de residuos hospitalarios

    Energy Technology Data Exchange (ETDEWEB)

    Rocafiguera, X de

    1994-01-01

    Generally speaking, Hospitalary wastes are apparently similar to any kind of urban waste. Nevertheless it must be taken into account that the origin of Hospitalary wastes is different as they can be contaminated with microbes, virus, bacteria, bacillus...Because of this they should be treated and stored with special techniques in all the process. (Author)

  5. Waste Minimization Study on Pyrochemical Reprocessing Processes

    International Nuclear Information System (INIS)

    Boussier, H.; Conocar, O.; Lacquement, J.

    2006-01-01

    Ideally a new pyro-process should not generate more waste, and should be at least as safe and cost effective as the hydrometallurgical processes currently implemented at industrial scale. This paper describes the thought process, the methodology and some results obtained by process integration studies to devise potential pyro-processes and to assess their capability of achieving this challenging objective. As example the assessment of a process based on salt/metal reductive extraction, designed for the reprocessing of Generation IV carbide spent fuels, is developed. Salt/metal reductive extraction uses the capability of some metals, aluminum in this case, to selectively reduce actinide fluorides previously dissolved in a fluoride salt bath. The reduced actinides enter the metal phase from which they are subsequently recovered; the fission products remain in the salt phase. In fact, the process is not so simple, as it requires upstream and downstream subsidiary steps. All these process steps generate secondary waste flows representing sources of actinide leakage and/or FP discharge. In aqueous processes the main solvent (nitric acid solution) has a low boiling point and evaporate easily or can be removed by distillation, thereby leaving limited flow containing the dissolved substance behind to be incorporated in a confinement matrix. From the point of view of waste generation, one main handicap of molten salt processes, is that the saline phase (fluoride in our case) used as solvent is of same nature than the solutes (radionuclides fluorides) and has a quite high boiling point. So it is not so easy, than it is with aqueous solutions, to separate solvent and solutes in order to confine only radioactive material and limit the final waste flows. Starting from the initial block diagram devised two years ago, the paper shows how process integration studies were able to propose process fittings which lead to a reduction of the waste variety and flows leading at an 'ideal

  6. Thermal process for immobilization of radioactive wastes

    International Nuclear Information System (INIS)

    Brownell, L.E.; Isaacson, R.E.; Kupfer, M.J.; Schulz, W.W.

    1971-01-01

    The Thermalt process involves an exothermic, thermite-like reaction of aluminum metal with basalt, quartz sand, and radioactive waste. The resulting melt when solidified is a silicious stone-like material that is similar in chemical composition to basalt. The process utilizes low cost ingredients: basalt rock, which occurs naturally in the Hanford region, inexpensive aluminum metal such as aluminum scrap which need not be pure, and the waste which is predominately sodium nitrate salt. The waste itself along with the basalt provides the oxygen necessary for the reaction. The exothermic reaction provides the necessary heat to melt the ingredients thus eliminating the need for external heat sources such as furnaces which are necessary with most other melt methods. The final product is highly stable and essentially nonleachable; leach rates appear as low or lower than other melt products described in the literature. Initial studies indicate the process is effective for both low-level and high-level wastes. (U.S.)

  7. SILVER RECYCLING FROM PHOTO-PROCESSING WASTE USING ELECTRODEPOSITION METHOD

    Directory of Open Access Journals (Sweden)

    Mochammad Feri Hadiyanto

    2010-06-01

    Full Text Available Silver electrodeposition of photo-processing waste and without addition of KCN 1,0 M has been studied for silver recycling. Photo procesing waste containing silver in form of [Ag(S2O32]3- was electrolysed at constant potential and faradic efficiency was determined at various of electrolysis times. Electrolysis of 100 mL photo processing waste without addition of KCN 1,0 M was carried out at constant potential 1.20 Volt, while electrolysis 100 mL photo procesing waste with addition of 10 mL KCN 1,0 M electrolysis was done at 1.30 Volt.The results showed that for silver electrodeposition from photo processing waste with addition of KCN 1,0 M was more favorable with faradic efficiency respectively were 93,16; 87,02; 74,74 and 78,35% for 30; 60; 90 and 120 minutes of electrolysis.   Keywords: Silver extraction, electrodeposition, photo-processing waste

  8. Hanford's self-assessment of the solid waste forecast process

    International Nuclear Information System (INIS)

    Hauth, J.; Skumanich, M.; Morgan, J.

    1996-01-01

    In fiscal year (FY) 1995 the forecast process used at Hanford to project future solid waste volumes was evaluated. Data on current and future solid waste generation are used by Hanford site planners to determine near-term and long-term planning needs. Generators who plan to ship their waste to Hanford's Solid Waste Program for treatment, storage, and disposal provide volume information on the types of waste that could be potentially generated, waste characteristics, and container types. Generators also provide limited radionuclide data and supporting assumptions. A self-assessment of the forecast process identified many effective working elements, including a well-established and systematic process for data collection, analysis and reporting; sufficient resources to obtain the necessary information; and dedicated support and analytic staff. Several areas for improvement were identified, including the need to improve confidence in the forecast data, integrate forecast data with other site-level and national data calls, enhance the electronic data collection system, and streamline the forecast process

  9. Return transport of processed radioactive waste from France and Great Britain

    International Nuclear Information System (INIS)

    2010-11-01

    The report on returning transport and interim storage of processed radioactive waste from France and Great Britain in vitrified block containers covers the following issues: German contracts with radioactive waste processing plants concerning the return of processed waste to Germany; optimized radioactive waste processing using vitrified block containers; the transport casks as basic safety with respect to radiation protection; interim storage of processes high-level waste by GNS in Gorleben; licensing, inspections and declarations; quality assurance and control.

  10. Waste processing system for nuclear power plant

    International Nuclear Information System (INIS)

    Higashinakagawa, Emiko; Tezuka, Fuminobu; Maesawa, Yukishige; Irie, Hiromitsu; Daibu, Etsuji.

    1996-01-01

    The present invention concerns a waste processing system of a nuclear power plant, which can reduce the volume of a large amount of plastics without burying them. Among burnable wastes and plastic wastes to be discarded in the power plant located on the sea side, the plastic wastes are heated and converted into oils, and the burnable wastes are burnt using the oils as a fuel. The system is based on the finding that the presence of Na 2 O, K 2 O contained in the wastes catalytically improves the efficiency of thermal decomposition in a heating atmosphere, in the method of heating plastics and converting them into oils. (T.M.)

  11. Estudo da ativação ácida e tratamento térmico de bauxita extraída de jazidas em Minas Gerais, Brasil Study of acid activation and thermal treatment of bauxite extracted from deposits in Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    C. M. R. Prado

    2012-03-01

    Full Text Available O Brasil é um dos maiores produtores mundiais de bauxita, contudo pouco se conhece sobre as características químicas e mineralógicas desse mineral. Assim sendo, este trabalho tem por objetivo dar prosseguimento à caracterização de bauxita, estudando as transformações ocorridas nesse material quando submetido à ativação ácida e ao tratamento térmico. Os resultados demonstraram que a bauxita "in natura" é composta basicamente pelo mineral gibbsita, seguido de semicristalitos de goethita e óxido de silício, apresentando característica de sólido com ausência de mesoporosidade, com baixos valores de área superficial total, diâmetro e volume de poros. As modificações químicas e físicas que ocorrem no material durante a calcinação são governadas, principalmente, pela desidratação das fases de hidróxidos de alumínio presentes, levando à formação das fases boehmita, hematita e alfa alumina, além de resultar em aumento na porosidade e na área superficial da bauxita. As bauxitas ativadas em meio ácido mostraram que as transformações sofridas no sólido estão diretamente relacionadas com a concentração da solução ácida utilizada e resultam em aumento da área superficial total, diâmetro e volume de poros.Brazil is one of the world's leading producers of bauxite. Little is known, however, about the chemical and mineralogical characteristics of Brazilian bauxite. The objective of this paper is to characterize bauxite in both natural and thermally and chemically activated forms. The transformations occurring during these two processes are described. The results show that the raw bauxite is basically composed of the mineral gibbsite, followed by semicrystalites of goethite and silicon oxide. Its characteristics are those of a solid without mesoporosity, with small total surface area and pore diameter and volume. The chemical and physical modifications that occur in the material during the calcination process are

  12. Technology Summary Advancing Tank Waste Retrieval And Processing

    International Nuclear Information System (INIS)

    Sams, T.L.; Mendoza, R.E.

    2010-01-01

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. This technology overview provides a high-level summary of technologies being investigated, developed, and deployed by WRPS to advance Hanford Site tank waste retrieval and processing. Transformational technologies are needed to complete Hanford tank waste retrieval and treatment by 12/31/2047. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated because it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans, and methods. WRPS and the DOE are developing, testing, and deploying technologies to meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them. DOE's Office of Environmental Management (EM) identifies the environmental management technology needs and the activities necessary to address them. The U.S. Congress then funds these activities through EM or the DOE field offices. Finally, an array of entities that include DOE site prime contractors and

  13. Internal standard method for determination of gallium and some trace elements in bauxite by neutron activation analysis

    International Nuclear Information System (INIS)

    Chen, S.G.; Tsai, H.T.

    1983-01-01

    A method is described for the determination of gallium and other trace elements such as Ce, Cr, Hf, Lu and Th in bauxite by the technique of neutron activation analysis using gold as internal standard. Isopropyl ether was used as organic extractant radioactive gallium from the sample. This method yields very good accuracy with a relative error of +-3%. (author)

  14. Basic design of alpha aqueous waste treatment process in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Mineo, Hideaki; Matsumura, Tatsuro; Nishizawa, Ichio; Mitsui, Takeshi; Ueki, Hiroyuki; Wada, Atsushi; Sakai, Ichita; Takeshita, Isao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nishimura, Kenji

    1996-11-01

    This paper described the basic design of Alpha Aqueous Waste Treatment Process in NUCEF. Since various experiments using the TRU (transuranium) elements are carried out in NUCEF, wastes containing TRU elements arise. The liquid wastes in NUCEF are categorized into three types. Decontamination and volume reduction of the liquid waste mainly of recovery water from acid recovery process which has lowest radioactive concentration is the most important task, because the arising rate of the waste is large. The major function of the Alpha Aqueous Waste Treatment Process is to decontaminate the radioactive concentration below the level which is allowed to discharge into sea. Prior the process design of this facility, the followings are evaluated:property and arising rate of the liquid waste, room space to install and licensing condition. Considering varieties of liquid wastes and their large volume, the very high decontamination factor was proposed by a process of multiple evaporation supported with filtration and adsorption in the head end part and reverse osmosis in the distillate part. (author)

  15. The TEES process cleans waste and produces energy

    International Nuclear Information System (INIS)

    Elliott, D.C.; Silva, L.J.

    1995-02-01

    A gasification system is under development that can be used with most types of wet organic wastes. The system operates at 350 degrees C and 205 atm using a liquid water phase as the processing medium. Since a pressurized system is used, the wet waste can be fed as a solution or slurry to the reactor without drying. Through the development of catalysts, a useful processing system has been produced. The system has utility both for direct conversion of high-moisture biomass to fuel gas or as a wastewater cleanup system for wet organic wastes including unconverted biomass from bioconversion processes. By the use of this system >99% conversions of organic waste to medium-Btu fuel gas can be achieved

  16. Technical and economic evaluation of processes being developed for solid waste processing

    International Nuclear Information System (INIS)

    Tittlova, E.; Hladky, E.

    1985-01-01

    An analysis was made of the economic benefits of two developed processes for reducing the volume of solid radioactive wastes prior to disposal, namely compacting and incineration. Input data were obtained from the actual production of solid radioactive wastes at the V-1 nuclear power plant, from compacting on site, and the operation of an experimental incineration plant. The two WWER-440 units of the V-1 nuclear power plant generate ca 200 m 3 of wastes per annum (not including air filters and wood) of which 69% is assumed to be incinerable and 27% compactable. The rest is disposed of without prior volume reduction. Disposal costs are assessed at 7,500 Czechoslovak crowns per 1 m 3 of wastes, representing a total of 1.5 million crowns per annum. As compared with the disposal of unprocessed wastes the compacting of 95% of wastes generated, reduces the costs of transport and disposal to 25%. With both compacting and incineration, the costs represent 16 to 25% of the initial sum, depending on the ratio of the two processes. The high capital costs of building the incineration plant will thus be offset by the reduction in costs of the radioactive waste disposal. From the technical point of view the analysis did not make a detailed comparison of the properties of the compacted incinerable wastes and ash with regard to stability and leachability of radionuclides. It did also not take into account operating costs and the technological challenge of the two waste volume redution processes. (Z.M.)

  17. Processing and certification of defense transuranic waste at the INEL

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cargo, C.H.; McKinley, K.B.; Smith, T.H.; Anderson, B.C.

    1984-01-01

    Since 1970, defense-generated transuranic waste has been placed into 20-year retrievable storage at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL). A major objective of the US Department of Energy (DOE) Nuclear Waste Management Program is to remove all retrievably stored transuranic waste form the INEL. To support this objective, the Stored Waste Examination Pilot Plant (SWEPP) and the Process Experimental Pilot Plant (PREPP) are currently being constructed. SWEPP will certify waste, using nondestructive examination techniques, for shipment to the Waste Isolation Pilot Plant (WIPP). PREPP will process uncertifiable waste into a certifiable waste form. 3 references

  18. Description of processes for the immobilization of selected transuranic wastes

    International Nuclear Information System (INIS)

    Timmerman, C.L.

    1980-12-01

    Processed sludge and incinerator-ash wastes contaminated with transuranic (TRU) elements may require immobilization to prevent the release of these elements to the environment. As part of the TRU Waste Immobilization Program sponsored by the Department of Energy (DOE), the Pacific Northwest Laboratory is developing applicable waste-form and processing technology that may meet this need. This report defines and describes processes that are capable of immobilizing a selected TRU waste-stream consisting of a blend of three parts process sludge and one part incinerator ash. These selected waste streams are based on the compositions and generation rates of the waste processing and incineration facility at the Rocky Flats Plant. The specific waste forms that could be produced by the described processes include: in-can melted borosilicate-glass monolith; joule-heated melter borosilicate-glass monolith or marble; joule-heated melter aluminosilicate-glass monolith or marble; joule-heated melter basaltic-glass monolith or marble; joule-heated melter glass-ceramic monolith; cast-cement monolith; pressed-cement pellet; and cold-pressed sintered-ceramic pellet

  19. Newly Generated Liquid Waste Processing Alternatives Study, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Landman, William Henry; Bates, Steven Odum; Bonnema, Bruce Edward; Palmer, Stanley Leland; Podgorney, Anna Kristine; Walsh, Stephanie

    2002-09-01

    This report identifies and evaluates three options for treating newly generated liquid waste at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The three options are: (a) treat the waste using processing facilities designed for treating sodium-bearing waste, (b) treat the waste using subcontractor-supplied mobile systems, or (c) treat the waste using a special facility designed and constructed for that purpose. In studying these options, engineers concluded that the best approach is to store the newly generated liquid waste until a sodium-bearing waste treatment facility is available and then to co-process the stored inventory of the newly generated waste with the sodium-bearing waste. After the sodium-bearing waste facility completes its mission, two paths are available. The newly generated liquid waste could be treated using the subcontractor-supplied system or the sodium-bearing waste facility or a portion of it. The final decision depends on the design of the sodium-bearing waste treatment facility, which will be completed in coming years.

  20. Waste Form Features, Events, and Processes

    International Nuclear Information System (INIS)

    R. Schreiner

    2004-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of the waste form features, events and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical bases for screening decisions. This information is required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs addressed in this report deal with the issues related to the degradation and potential failure of the waste form and the migration of the waste form colloids. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA, (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical bases for exclusion from TSPA-LA (i.e., why the FEP is excluded). This revision addresses the TSPA-LA FEP list (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). The primary purpose of this report is to identify and document the analyses and resolution of the features, events, and processes (FEPs) associated with the waste form performance in the repository. Forty FEPs were identified that are associated with the waste form performance. This report has been prepared to document the screening methodology used in the process of FEP inclusion and exclusion. The analyses documented in this report are for the license application (LA) base case design (BSC 2004 [DIRS 168489]). In this design, a drip shield is placed over the waste package and no backfill is placed over the drip shield (BSC 2004 [DIRS 168489]). Each FEP may include one or more specific issues that are collectively described by a FEP name and a FEP description. The FEP description may encompass a single feature, process or event, or a few closely related or coupled processes if the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs are

  1. Waste Form Features, Events, and Processes

    Energy Technology Data Exchange (ETDEWEB)

    R. Schreiner

    2004-10-27

    The purpose of this report is to evaluate and document the inclusion or exclusion of the waste form features, events and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical bases for screening decisions. This information is required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs addressed in this report deal with the issues related to the degradation and potential failure of the waste form and the migration of the waste form colloids. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA, (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical bases for exclusion from TSPA-LA (i.e., why the FEP is excluded). This revision addresses the TSPA-LA FEP list (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). The primary purpose of this report is to identify and document the analyses and resolution of the features, events, and processes (FEPs) associated with the waste form performance in the repository. Forty FEPs were identified that are associated with the waste form performance. This report has been prepared to document the screening methodology used in the process of FEP inclusion and exclusion. The analyses documented in this report are for the license application (LA) base case design (BSC 2004 [DIRS 168489]). In this design, a drip shield is placed over the waste package and no backfill is placed over the drip shield (BSC 2004 [DIRS 168489]). Each FEP may include one or more specific issues that are collectively described by a FEP name and a FEP description. The FEP description may encompass a single feature, process or event, or a few closely related or coupled processes if the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs are

  2. Process and technological wastes compaction through a fluidized bed incineration process

    International Nuclear Information System (INIS)

    Guiroy, J.J.

    1993-01-01

    The various fluidized bed systems (dense or circulating) are reviewed and the advantages of the circulation fluidized bed are highlighted (excellent combustion performance, clean combustion, large operating range, poly-functionality with regards to waste type, ...). Applications to contaminated graphite (with the problem of ash management) and to plant process wastes (ion exchangers, technological wastes, aqueous effluents); study of the neutralization and chlorine emission

  3. Organic waste processing using molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M. G., LLNL

    1998-03-01

    Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.

  4. Pilot process waste assessment for the fireset area

    International Nuclear Information System (INIS)

    Cole, M.J.; Goethe, M.C.

    1992-08-01

    A pilot process waste assessment (WA) was conducted in the fireset area to develop methodology for conducting future process waste assessments. The study was conducted on trichloroethylene spray cleaning using the guidance for PWAs supplied by Environment, Safety, and Health (ES ampersand H). The first objective was to draw up a flow diagram (see Appendix A, worksheet 4) for the process. When this was done, a mass balance (see Appendix A, Worksheet 5) was conducted to determine the quantity of incoming material and where it was going during the process. The mass balance showed that a large quantity of trichloroethylene and all the isopropyl alcohol was being released to the atmosphere instead of being captured in the waste solvent container. Upon completion of the mass balance, waste minimization options where identified (see Appendix A, Worksheet 8) to reduce or eliminate the quantity of hazardous solvent used

  5. Method for processing radioactive wastes containing sodium

    International Nuclear Information System (INIS)

    Kubota, Takeshi.

    1975-01-01

    Object: To bake, solidify and process even radioactive wastes highly containing sodium. Structure: H and or NH 4 zeolites of more than 90g per chemical equivalent of sodium present in the waste is added to and left in radioactive wastes containing sodium, after which they are fed to a baker such as rotary cylindrical baker, spray baker and the like to bake and solidify the wastes at 350 to 800 0 C. Thereby, it is possible to bake and solidify even radioactive wastes highly containing sodium, which has been impossible to do so previously. (Kamimura, M.)

  6. Hydrological response to bauxite mining and rehabilitation in the jarrah forest in south west Australia

    OpenAIRE

    Andrew H. Grigg

    2017-01-01

    Study region: Jarrah forest in south west Australia. Study focus: The hydrological response to bauxite mining in the jarrah forest could differ from other land uses such as timber harvesting or clearing for agriculture, since mining involves excavation of the upper regolith in addition to changes in forest cover due to clearing and subsequent rehabilitation. Three catchments, one subject to mining, a second subject to an intensive forest thinning treatment and an untreated control were mon...

  7. The acid digestion process for radioactive waste: The radioactive waste management series. Volume II

    International Nuclear Information System (INIS)

    Cecille, L.; Simon, R.

    1983-01-01

    This volume focuses on the acid digestion process for the treatment of alpha combustible solid waste by presenting detailed performance figures for the principal sub-assemblies of the Alona pilot plant, Belgium. Experience gained from the operation of the US RADTU plant, the only other acid digestion pilot plant, is also summarized, and the performances of these two plants compared. In addition, the research and development programmes carried out or supported by the Commission of the European Communities are reviewed, and details of an alternative to acid digestion for waste contamination described. Topics considered include review of the treatment of actinides-bearing radioactive wastes; alpha waste arisings in fuel fabrication; Alona Demonstration Facility for the acid digestion process at Eurochemic Mol (Belgium); the treatment of alpha waste at Eurochemic by acid digestion-feed pretreatment and plutonium recovery; US experience with acid digestion of combustible transuranic waste; and The European Communities R and D actions on alpha waste

  8. A Cask Processing Enclosure for the TRU Waste Processing Center - 13408

    Energy Technology Data Exchange (ETDEWEB)

    Newman, John T.; Mendez, Nicholas [IP Systems, Inc., 2685 Industrial Lane, Broomfield, Colorado 80020 (United States)

    2013-07-01

    This paper will discuss the key elements considered in the design, construction, and use of an enclosure system built for the TRU Waste Processing Center (TWPC). The TWPC system is used for the repackaging and volume reduction of items contaminated with radioactive material, hazardous waste and mixed waste. The modular structural steel frame and stainless steel skin was designed for rapid field erection by the use of interchangeable self-framing panel sections to allow assembly of a sectioned containment building and for ease of field mobility. The structure was installed on a concrete floor inside of an outer containment building. The major sections included an Outer Cask Airlock, Inner Cask Airlock, Cask Process Area, and Personnel Airlocks. Casks in overpacks containing transuranic waste are brought in via an inter-site transporter. The overpack lid is removed and the cask/overpack is transferred into the Outer Cask Airlock. A contamination cover is installed on the overpack body and the Outer Cask Airlock is closed. The cask/overpack is transferred into the Inner Cask Airlock on a cask bogie and the Inner Cask Airlock is closed. The cask lid is removed and the cask is transferred into the Cask Process Area where it is placed on a cask tilting station. Once the Cask Processing Area is closed, the cask tilt station is activated and wastes are removed, size reduced, then sorted and re-packaged into drums and standard waste boxes through bag ports. The modular system was designed and built as a 'Fast Track' project at IP Systems in Broomfield Colorado and then installed and is currently in use at the DOE TWPC located near Oak Ridge, Tennessee. (authors)

  9. Treatment of tributyl phosphate wastes by extraction cum pyrolysis process

    International Nuclear Information System (INIS)

    Deshingkar, D.S.; Ramaswamy, M.; Kartha, P.K.S.; Kutty, P.V.E.; Ramanujam, A.

    1989-01-01

    For the treatment of spent tri n-butyl phospate (TBP) wastes from Purex process, a method involving extraction of TBP with phosphoric acid followed by pyrolysis of TBP - phosphoric acid phase was investigated. The process was examined with respect to simulated waste, process solvent wastes and aged organic waste samples. These studies seem to offer a simple treatment method for the separation of bulk of diluent from spent solvent wastes. The diluent phase needs further purification for reuse in reprocessing plant; otherwise it can be incinerated. (author). 18 refs., 3 tabs., 6 figs

  10. The effects of bauxite, metakaolin, and porosity on the thermal properties of prepared Iraqi clays refractory mortars

    Science.gov (United States)

    Zaidan, Shihab A.; Omar, Mustafa H.

    2018-05-01

    One of the most important requirements for the manufacture of refractory mortars, especially those used in the construction of thermal systems (building or plastering), is the balance between thermal insulation properties and porosity. Where, increasing porosity of mortar to a large amount may be always undesirable, because the absorption of liquid and gases emitted from industrial system is decline the bonded with bricks and structural properties of mortars. Refractory mortars prepared from either fired bauxite or metakaolin clays with different percentages of kaolin (10, 20, 30, and 40 wt%). Bauxite rocks were fired at 1200 °C and metakaolin was obtained by firing kaolin up to 700 °C then crushed and grinded. Grog was added to mixture to reduce the shrinkage. Cylindrical specimens are prepared and then sintered at 1200 °C. All mixtures maintained a low thermal conductivity within the limits of thermal insulation material (less than 0.5 W/m K); it was done by controlling the porosity which reached a maximum value approximately 25%. The volumetric heat capacity and thermal diffusivity was ranged between (1-10 MJ/m3 K), (0.06-0.2 mm2/s), respectively.

  11. Incineration process for plutonium-contaminated waste

    International Nuclear Information System (INIS)

    Vincent, J.J.; Longuet, T.; Cartier, R.; Chaudon, L.

    1992-01-01

    A reprocessing plant with an annual throughput of 1600 metric tons of fuel generates 50 m 3 of incinerable α-contaminated waste. The reference treatment currently adopted for these wastes is to embed them in cement grout, with a resulting conditioned waste volume of 260 m 3 . The expense of mandatory geological disposal of such volumes justifies examination of less costly alternative solutions. After several years of laboratory and inactive pilot-scale research and development, the Commissariat a l'Energie Atomique has developed a two-step incineration process that is particularly suitable for α-contaminated chlorinated plastic waste. A 4 kg-h -1 pilot unit installed at the Marcoule Nuclear Center has now logged over 3500 hours in operation, during which the operating parameters have been optimized and process performance characteristics have been determined. Laboratory research during the same period has also determined the volatility of transuranic nuclides (U, Am and Pu) under simulated incineration conditions. A 100 g-h -1 laboratory prototype has been set up to obtain data for designing the industrial pilot facility

  12. Electromagnetic mixed waste processing system for asbestos decontamination

    International Nuclear Information System (INIS)

    Kasevich, R.S.; Nocito, T.; Vaux, W.G.; Snyder, T.

    1994-01-01

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the US nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCBs, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay, and fission products of DOE operations. To allow disposal, the asbestos must be converted chemically, followed by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives. An attempt was made to apply techniques that have already proved successful in the mining, oil, and metals processing industries to the development of a multi-stage process to remove and separate hazardous chemical radioactive materials from asbestos. This process uses three methods: ABCOV chemicals which converts the asbestos to a sanitary waste; dielectric heating to volatilize the organic materials; and electrochemical processing for the removal of heavy metals, RCRA wastes and radionuclides. This process will result in the destruction of over 99% of the asbestos; limit radioactive metal contamination to 0.2 Bq alpha per gram and 1 Bq beta and gamma per gram; reduce hazardous organics to levels compatible with current EPA policy for RCRA delisting; and achieve TCLP limits for all solidified waste

  13. Complex processing of rubber waste through energy recovery

    Directory of Open Access Journals (Sweden)

    Roman Smelík

    2015-12-01

    Full Text Available This article deals with the applied energy recovery solutions for complex processing of rubber waste for energy recovery. It deals specifically with the solution that could maximize possible use of all rubber waste and does not create no additional waste that disposal would be expensive and dangerous for the environment. The project is economically viable and energy self-sufficient. The outputs of the process could replace natural gas and crude oil products. The other part of the process is also the separation of metals, which can be returned to the metallurgical secondary production.

  14. Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)

    International Nuclear Information System (INIS)

    CHANG, ROBERT

    2006-01-01

    All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program

  15. Cost analysis and ecological benefits of environmental recovery methodologies in bauxite mining

    Directory of Open Access Journals (Sweden)

    João Carlos Costa Guimarães

    2013-03-01

    Full Text Available This work analyzed and compared three methods of environmental recovery in bauxite mining commonly used in Poços de Caldas Plateau, MG, by means of recovery costs and ecological benefits. Earnings and costs data of environmental recovery activities were obtained for the areas that belonged to the Companhia Geral de Minas – CGM, on properties sited in the city of Poços de Caldas, MG. The amount of costs of these activities was used to compare the recovery methods by updating them monetarily to a reference date, in other words, the present moment. It is concluded that the difference between the present value of costs for simple restoration and rehabilitation activities are less than 1% and that between the complete restoration and rehabilitation is about 15.12%, suggesting that the choice of the methods to be used must be based on the ecological earnings proportional to each of them. The methodology of environmental restoration of the mining areas emphasizes the ecological variables in the process of establishment of the community, to the detriment of complex ecological aspects, which show difficulties in measuring the actual moment of the development of the ecosystem considered.

  16. Statistical process control support during Defense Waste Processing Facility chemical runs

    International Nuclear Information System (INIS)

    Brown, K.G.

    1994-01-01

    The Product Composition Control System (PCCS) has been developed to ensure that the wasteforms produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will satisfy the regulatory and processing criteria that will be imposed. The PCCS provides rigorous, statistically-defensible management of a noisy, multivariate system subject to multiple constraints. The system has been successfully tested and has been used to control the production of the first two melter feed batches during DWPF Chemical Runs. These operations will demonstrate the viability of the DWPF process. This paper provides a brief discussion of the technical foundation for the statistical process control algorithms incorporated into PCCS, and describes the results obtained and lessons learned from DWPF Cold Chemical Run operations. The DWPF will immobilize approximately 130 million liters of high-level nuclear waste currently stored at the Site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive sludge and precipitate streams and less radioactive water soluble salts. (In a separate facility, soluble salts are disposed of as low-level waste in a mixture of cement slag, and flyash.) In DWPF, the precipitate steam (Precipitate Hydrolysis Aqueous or PHA) is blended with the insoluble sludge and ground glass frit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository

  17. Proposed methods for treating high-level pyrochemical process wastes

    International Nuclear Information System (INIS)

    Johnson, T.R.; Miller, W.E.; Steunenberg, R.K.

    1985-01-01

    This survey illustrates the large variety and number of possible techniques available for treating pyrochemical wastes; there are undoubtedly other process types and many variations. The choice of a suitable process is complicated by the uncertainty as to what will be an acceptable waste form in the future for both TRU and non-TRU wastes

  18. Solid waste processing experience at Susquehanna Steam Electric Station

    International Nuclear Information System (INIS)

    Phillips, J.W.; Granus, M.W.

    1984-01-01

    This paper reviews the first year's operation at the Susquehanna Steam Electric Station (SSES) with respect to the Westinghouse Hittman Nuclear Incorporated (Hittman) mobile solidification system and the dry activated waste generation, handling and processing. Experiences pertinent to the mobile solidification system are reviewed with emphasis on the integration of the system into the plant, problems associated with unexpected waste properties and the myriad of operating procedures that had to be prepared. The processing history for 1983 is reviewed in terms of the volume of waste, including solidified wastes, dewatered wastes an DAW. Factors that must be considered in evaluating processing alternatives, i.e., dewatering vs. solidification; steel liners vs. HICs, are discussed. Actions taken by Hittman and SSES to maximize the processing economics are also discussed. Finally, recommendations are provided to the utility considering implementing mobile solification services to ensure a smooth and timely integration of services into the plant

  19. From mineral processing to waste treatment: an open-mind process simulator

    International Nuclear Information System (INIS)

    Guillaneau, J.C.; Brochot, S.; Durance, M.V.; Villeneuve, J.; Fourniguet, G.; Vedrine, H.; Sandvik, K.; Reuter, M.

    1999-01-01

    More than two hundred companies are using the USIM PAC process simulator within the mineral industry world-wide. Either for design or plant adaptation, simulation is increasingly supporting the process Engineer in his activities. From the mineral field, new domains have been concerned by this model-based approach as new models are developed and new applications involving solid waste appears. Examples are presented in bio-processing, steel-making flue dust treatment for zinc valorisation, soil decontamination or urban waste valorisation (sorting, composting and incineration). (author)

  20. Process Waste Assessment for the Plotting and Digitizing Support Laboratory

    International Nuclear Information System (INIS)

    Phillips, N.M.

    1994-04-01

    This Process Waste Assessment was conducted to evaluate the Plotting and Digitizing Support Laboratory, located in Building 913, Room 157. It documents the processes, identifies the hazardous chemical waste streams generated by these processes, recommends possible ways to minimize waste, and serves as a reference for future assessments of this facility

  1. Thorium partitioning in Greek industrial bauxite investigated by synchrotron radiation and laser-ablation techniques

    Science.gov (United States)

    Gamaletsos, P.; Godelitsas, A.; Mertzimekis, T. J.; Göttlicher, J.; Steininger, R.; Xanthos, S.; Berndt, J.; Klemme, S.; Kuzmin, A.; Bárdossy, G.

    2011-12-01

    Typical red-brown (Fe-rich) and high-quality white-grey (Fe-depleted) bauxite samples from active mines of the Parnassos-Ghiona area, central Greece, were investigated. According to XRF and ICP-MS analyses their actinide content, and particularly of Th, is relatively increased. Fe-depleted samples contain up to 62.75 ppm Th corresponding to 220 Bq/kg due to 228Ac ( 232Th-series), whereas Fe-rich samples are less Th-radioactive (up to 58.25 ppm Th, 180 Bq/kg due to 228Ac). Powder-XRD patterns showed that Th-enriched (Fe-depleted) bauxite consists mostly of diaspore (AlOOH polymorph), anatase and rutile (TiO 2 polymorphs). SEM-EDS indicated the presence of Ti-Fe-containing phases (e.g. ilmenite, FeTiO 3), chromite (Cr-spinel) and besides LREE-minerals (mostly bastnäsite/parisite-group) and zircon (ZrSiO 4) hosting a part of the bulk Th. The presence of Th in diaspore and in Ti-containing phases (not detected by SEM-EDS as in the case of REE-minerals and zircon) was investigated, into distinct pisoliths of Fe-depleted bauxite, using μ-XRF and μ-XAFS in the SUL-X beamline of the ANKA Synchrotron facility (KIT, Germany). XAFS spectra of Th salts and Th-containing reference materials were obtained as well. Accordingly it was revealed, for the first time in the literature, that Ti-phases, and particularly anatase, host significant amounts of Th. This novel conclusion was complementary supported by LA-ICP-MS analyses indicated an average of 73 ppm Th in anatase grains together with abundant Nb (3356 ppm), Ta (247 ppm) and U (33 ppm). The Th LIII-edge XAFS spectra as compared to reference materials, give also evidence that Th 4+ may not replace Ti 4+ in distorted [TiO 6] fundamental octahedral units of anatase and ilmenite lattice (CN = 6). The occupation of either extraframework sites of higher coordination (CN = 6.9 or even CN = 7.4), according to EXAFS signals evaluation, or of defected/vacant (**) sites is more probable. This is likely explained by the difficulty of

  2. Thorium partitioning in Greek industrial bauxite investigated by synchrotron radiation and laser-ablation techniques

    International Nuclear Information System (INIS)

    Gamaletsos, P.; Godelitsas, A.; Mertzimekis, T.J.; Göttlicher, J.; Steininger, R.; Xanthos, S.; Berndt, J.; Klemme, S.; Kuzmin, A.; Bárdossy, G.

    2011-01-01

    Typical red–brown (Fe-rich) and high-quality white–grey (Fe-depleted) bauxite samples from active mines of the Parnassos-Ghiona area, central Greece, were investigated. According to XRF and ICP-MS analyses their actinide content, and particularly of Th, is relatively increased. Fe-depleted samples contain up to 62.75 ppm Th corresponding to 220 Bq/kg due to 228 Ac ( 232 Th-series), whereas Fe-rich samples are less Th-radioactive (up to 58.25 ppm Th, 180 Bq/kg due to 228 Ac). Powder-XRD patterns showed that Th-enriched (Fe-depleted) bauxite consists mostly of diaspore (AlOOH polymorph), anatase and rutile (TiO 2 polymorphs). SEM-EDS indicated the presence of Ti–Fe–containing phases (e.g. ilmenite, FeTiO 3 ), chromite (Cr-spinel) and besides LREE-minerals (mostly bastnäsite/parisite-group) and zircon (ZrSiO 4 ) hosting a part of the bulk Th. The presence of Th in diaspore and in Ti-containing phases (not detected by SEM-EDS as in the case of REE-minerals and zircon) was investigated, into distinct pisoliths of Fe-depleted bauxite, using μ-XRF and μ-XAFS in the SUL-X beamline of the ANKA Synchrotron facility (KIT, Germany). XAFS spectra of Th salts and Th-containing reference materials were obtained as well. Accordingly it was revealed, for the first time in the literature, that Ti-phases, and particularly anatase, host significant amounts of Th. This novel conclusion was complementary supported by LA-ICP-MS analyses indicated an average of 73 ppm Th in anatase grains together with abundant Nb (3356 ppm), Ta (247 ppm) and U (33 ppm). The Th L III -edge XAFS spectra as compared to reference materials, give also evidence that Th 4+ may not replace Ti 4+ in distorted [TiO 6 ] fundamental octahedral units of anatase and ilmenite lattice (CN = 6). The occupation of either extraframework sites of higher coordination (CN = 6.9 or even CN = 7.4), according to EXAFS signals evaluation, or of defected/vacant (**) sites is more probable. This is likely explained by

  3. Late Gothic/early Renaissance gilding technology and the traditional poliment material "Armenian bole": Truly red clay, or rather bauxite?

    Czech Academy of Sciences Publication Activity Database

    Hradil, David; Hradilová, J.; Bezdička, Petr

    2017-01-01

    Roč. 135, JAN (2017), s. 271-281 ISSN 0169-1317 R&D Projects: GA ČR(CZ) GA14-22984S Institutional support: RVO:61388980 Keywords : Historical gilding technology * Poliment * Armenian bole * X-ray powder micro-diffraction * Bauxite Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Mineralogy Impact factor: 3.101, year: 2016

  4. Method for processing powdery radioactive wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Matsuura, Hiroyuki; Tomita, Toshihide; Nakayama, Yasuyuki.

    1978-01-01

    Purpose: To solidify radioactive wastes with ease and safety at a high reaction speed but with no boiling by impregnating the radioactive wastes with chlorostyrene. Method: Beads-like dried ion exchange resin, powdery ion exchange resin, filter sludges, concentrated dried waste liquor or the like are mixed or impregnated with a chlorostyrene monomer dissolving therein a polymerization initiator such as methyl ethyl ketone peroxide and benzoyl peroxide. Mixed or impregnated products are polymerized to solid after a predetermined of time through curing reaction to produce solidified radioactive wastes. Since inflammable materials are used, this process has a high safety. About 70% wastes can be incorporated. The solidified products have a strength as high as 300 - 400 kg/cm 3 and are suitable to ocean disposal. The products have a greater radioactive resistance than other plastic solidification products. (Seki, T.)

  5. Waste minimization/pollution prevention at R ampersand D facilities: Implementing the SNL/NM Process Waste Assessment Program

    International Nuclear Information System (INIS)

    Kjeldgaard, E.A.; Stermer, D.L.; Saloio, J.H. Jr.; Lorton, G.A.

    1993-01-01

    The Sandia National Laboratories, New Mexico (SNL/NM) Process Waste Assessment (PWA) program began formally on November 2, 1992. This program represents the first laboratory-wide attempt to explicitly identify and characterize SNL/NM's waste generating processes for waste minimization purposes. This paper describes the major elements of the SNL/NM PWA program, the underlying philosophy for designing a PWA program at a highly diverse laboratory setting such as SNL/NM, and the experiences and insights gained from five months of implementing this living program. Specifically, the SNL/NM PWA program consists of four major, interrelated phases: (1) Process Definition, (2) Process Characterization, (3) Waste Minimization Opportunity Assessment, and (4) Project Evaluation, Selection, Implementation, and Tracking. This phased approach was developed to Provide a flexible, yet appropriate, level of detail to the multitude of different ''processes'' at SNL/NM. Using a staff infrastructure of approximately 60 Waste Minimization Network Representatives (MinNet Reps) and consulting support, the SNL/NM PWA program has become the linchpin of even more progressive and proactive environmental, safety, and health (ES ampersand H) initiatives such as: (1) cradle-to-grove material/waste tracking, (2) centralized ES ampersand H reporting, and (3) detailed baselining and tracking for measuring multi-media waste reduction goals. Specific examples from the SNL/NM PWA program are provided, including the results from Process Definition, Process Characterization, and Waste Minimization Opportunity Assessments performed for a typical SNL/NM process

  6. Low Activity Waste Feed Process Control Strategy

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2000-01-01

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system

  7. Design of a Pu-238 waste incineration process

    International Nuclear Information System (INIS)

    Charlesworth, D.L.; McCampbell, R.B.

    1985-01-01

    Combustible 238 Pu waste is generated as a result of normal operation and decommissioning activity at the Savannah River Plant and is being retrievably stored at the Plant. As part of the long-term plan to process the stored waste and current waste in preparation for future disposition, a 238 Pu incinceration process is being cold-tested at SRL. The incineration process consists of a continuous-feed preparation system, a two-stage, electrically fired incinerator, and a filtration off-gas system. Process equipment has been designed, fabricated, and installed for nonradioactive testing and cold run-in. Design features to maximize the ability to remotely maintain the equipment were incorporated into the process. Interlock, alarm, and control functions are provided by a programmable controller. Cold testing is scheduled to be completed in 1986

  8. Vermicomposting of vegetable waste: A biophysicochemical process ...

    African Journals Online (AJOL)

    some cities, the organic waste (market, municipal, household) are dumped indiscriminately or littered on the streets causing environmental deterioration. Biological processes such as composting followed by vermicomposting to convert vegetables waste (as valuable nutrient source) in agriculturally useful organic fertilizer ...

  9. Method of processing low-level radioactive liquid wastes

    International Nuclear Information System (INIS)

    Matsunaga, Ichiro; Sugai, Hiroshi.

    1984-01-01

    Purpose: To effectively reduce the radioactivity density of low-level radioactive liquid wastes discharged from enriched uranium conversion processing steps or the likes. Method: Hydrazin is added to low-level radioactive liquid wastes, which are in contact with iron hydroxide-cation exchange resins prepared by processing strongly acidic-cation exchange resins with ferric chloride and aqueous ammonia to form hydrorizates of ferric ions in the resin. Hydrazine added herein may be any of hydrazine hydrate, hydrazine hydrochloride and hydranine sulfate. The preferred addition amount is more than 100 mg per one liter of the liquid wastes. If it is less than 100 mg, the reduction rate for the radioactivety density (procession liquid density/original liquid density) is decreased. This method enables to effectively reduce the radioactivity density of the low-level radioactive liquid wastes containing a trace amount of radioactive nucleides. (Yoshihara, H.)

  10. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Katada, Katsuo.

    1986-01-01

    Purpose: To improve the management for radioactive wastes containers thereby decrease the amount of stored matters by arranging the radioactive wastes containers in the order of their radioactivity levels. Method: The radiation doses of radioactive wastes containers arranged in the storing area before volume-reducing treatment are previously measured by a dosemeter. Then, a classifying machine is actuated to hoist the containers in the order to their radiation levels and the containers are sent out passing through conveyor, surface contamination gage, weight measuring device and switcher to a volume-reducing processing machine. The volume-reduced products are packed each by several units to the storing containers. Thus, the storing containers after stored for a certain period of time can be transferred in an assembled state. (Kawakami, Y.)

  11. Process for the biological purification of waste water

    DEFF Research Database (Denmark)

    1992-01-01

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  12. The Valduc waste incineration facility starts operations (iris process)

    International Nuclear Information System (INIS)

    Chateauvieux, H.; Guiberteuau, P.; Longuet, T.; Lannaud, J.; Lorich, M.

    1998-01-01

    In the operation of its facilities the Valduc Research Center produces alpha-contaminated solid waste and thus decided to build an incineration facility to treat the most contaminated combustible waste. The process selected for waste incineration is the IRIS process developed by the CEA at the Marcoule Nuclear Research Center. The Valduc Center asked SGN to build the incineration facility. The facility was commissioned in late 1996, and inactive waste incineration campaigns were run in 1997. The operator conducted tests with calibrated radioactive sources to qualify the systems for measuring holdup of active material from outside the equipment. Chlorinated waste incineration test runs were performed using the phosphatizing process developed by the Marcoule Research Center. Inspections performed after these incineration runs revealed the complete absence of corrosion in the equipment. Active commissioning of the facility is scheduled for mid-1998. The Valduc incinerator is the first industrial application of the IRIS process. (author)

  13. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    International Nuclear Information System (INIS)

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes

  14. Process innovations in the management of radioactive wastes

    International Nuclear Information System (INIS)

    Theyyunni, T.K.

    1995-01-01

    Innovative processes and techniques were investigated for their possible application in the management of low, intermediate and high level radioactive wastes. High decontamination, high volume reduction, process simplicity and operational safety are some of the objectives of these investigation. Based on the favourable results, it is hoped that many of these process innovations can be introduced in the waste management schemes with beneficial results. (author)

  15. Water Mock-up for the Sodium Waste Treatment Process

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ho Yun; Kim, Jong Man; Kim, Byung Ho; Lee, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    It is important to safely treat the waste sodium which was produced from the sodium cooled fast reactors and the sodium facilities. About 1.3 tons of sodium waste has accumulated at KAERI from the sodium experiments which have been carried out since 1990. Also, large scaled sodium experiments are scheduled to verify the design of the sodium cooled fast reactor. As a treatment method for the waste sodium produced at the sodium facility, an investigation of the reaction procedure of the waste sodium with the sodium hydroxide aqueous has been developed. The NOAH process was developed in France for the treatment of waste sodium produced from sodium facilities and reactors. In the NOAH process, a small amount of sodium waste is continuously injected into the upper space which is formed on the free surface of the aqueous and slowly reacted with sodium hydroxide aqueous. Since the density of the sodium is lower than that of the aqueous, the injected sodium waste sometimes accumulates above the free surface of the sodium hydroxide aqueous, and its reaction rate becomes slow or suddenly increases. In the improved process, the sodium was injected into a reaction vessel filled with a sodium hydroxide aqueous through an atomizing nozzle installed on a lower level than that of the aqueous to maintain the reaction uniformly. Fig.1 shows the sodium waste process which was proposed in KAERI. The aqueous is composed of 60% sodium hydroxide, and its temperature is about 60 .deg. C. The process is an exothermic reaction. The hydrogen gas is generated, and the concentration of the sodium hydroxide increases in this process. It needs several systems for the process, i.e. a waste sodium injection, a cooling of the aqueous, hydrogen ventilation, and neutralization with nitric acid. The atomizing nozzle was designed to inject the sodium with the nitrogen gas which supplies a heat to the sodium to prevent its solidification and to uniformly mix the sodium with the aqueous. There are

  16. Radioactive liquid waste processing system

    International Nuclear Information System (INIS)

    Noda, Tetsuya; Kuramitsu, Kiminori; Ishii, Tomoharu.

    1997-01-01

    The present invention provides a system for processing radioactive liquid wastes containing laundry liquid wastes, shower drains or radioactive liquid wastes containing chemical oxygen demand (COD) ingredients and oil content generated from a nuclear power plant. Namely, a collecting tank collects radioactive liquid wastes. A filtering device is connected to the exit of the collective tank. A sump tank is connected to the exit of the filtering device. A powdery active carbon supplying device is connected to the collecting tank. A chemical fluid tank is connected to the collecting tank and the filtering device by way of chemical fluid injection lines. Backwarding pipelines connect a filtered water flowing exit of the filtering device and the collecting tank. The chemical solution is stored in the chemical solution tank. Then, radioactive materials in radioactive liquid wastes generated from a nuclear power plant are removed by the filtering device. The water quality standard specified in environmental influence reports can be satisfied. In the filtering device, when the filtering flow rate is reduced, the chemical fluid is supplied from the chemical fluid tank to the filtering device to recover the filtering flow rate. (I.S.)

  17. Plasma processing of compacted drums of simulated radioactive waste

    International Nuclear Information System (INIS)

    Geimer, R.; Batdorf, J.; Larsen, M.M.

    1991-01-01

    The charter of the Department of Energy (DOE) Office of Technology Development (OTD) is to identify and develop technologies that have potential application in the treatment of DOE wastes. One particular waste of concern within the DOE is transuranic (TRU) waste, which is generated and stored at several DOE sites. High temperature DC arc generated plasma technology is an emerging treatment method for TRU waste, and its use has the potential to provide many benefits in the management of TRU. This paper begins by discussing the need for development of a treatment process for TRU waste, and the potential benefits that a plasma waste treatment system can provide in treating TRU waste. This is followed by a discussion of the results of a project conducted for the DOE to demonstrate the effectiveness of a plasma process for treating supercompacted TRU waste. 1 fig., 1 tab

  18. Experimental research of solid waste drying in the process of thermal processing

    Science.gov (United States)

    Bukhmirov, V. V.; Kolibaba, O. B.; Gabitov, R. N.

    2015-10-01

    The convective drying process of municipal solid waste layer as a polydispersed multicomponent porous structure is studied. On the base of the experimental data criterial equations for calculating heat transfer and mass transfer processes in the layer, depending on the humidity of the material, the speed of the drying agent and the layer height are obtained. These solutions are used in the thermal design of reactors for the thermal processing of multicomponent organic waste.

  19. Separation processes for high-level radioactive waste treatment

    International Nuclear Information System (INIS)

    Sutherland, D.G.

    1992-11-01

    During World War II, production of nuclear materials in the United States for national defense, high-level waste (HLW) was generated as a byproduct. Since that time, further quantities of HLW radionuclides have been generated by continued nuclear materials production, research, and the commercial nuclear power program. In this paper HLW is defined as the highly radioactive material resulting from the processing of spent nuclear fuel. The HLW is the liquid waste generated during the recovery of uranium and plutonium in a fuel processing plant that generally contains more than 99% of the nonvolatile fission products produced during reactor operation. Since this paper deals with waste separation processes, spent reactor fuel elements that have not been dissolved and further processed are excluded

  20. Late Cretaceous coal overlying karstic bauxite deposits in the Parnassus-Ghiona Unit, Central Greece: Coal characteristics and depositional environment

    Energy Technology Data Exchange (ETDEWEB)

    Kalaitzidis, Stavros; Siavalas, George; Christanis, Kimon [Dept. of Geology, University of Patras, 26504 Rio-Patras (Greece); Skarpelis, Nikos [Dept. of Geology and Geoenvironment, University of Athens, 15784 Zografou (Greece); Araujo, Carla Viviane [Petrobras-Cenpes GEOQ/PDEXP, Rua Horacio Macedo n 950, Cidade Universitaria - Ilha do Fundao, 21941-915 Rio de Janeiro (Brazil)

    2010-04-01

    The Pera-Lakkos coal located on top of bauxite deposits in the Ghiona mining district (Central Greece), is the only known Mesozoic (Late Cretaceous) coal in the country. It was derived from herbaceous plants and algae growing in mildly brackish mires that formed behind a barrier system during a regression of the sea, on a karstified limestone partly filled in with bauxitic detritus. Petrological, mineralogical and geochemical data point to the predominance of reducing conditions and intense organic matter degradation in the palaeomires. O/C vs. H/C and OI vs. HI plots, based on elemental analysis and Rock-Eval data, characterize kerogen types I/II. This reflects the relatively high liptinite content of the coal. Besides kerogen composition, O/C vs. H/C plot for the Pera-Lakkos coals is in accordance with a catagenesis stage of maturation in contrast with vitrinite reflectance and T{sub max} from Rock-Eval pyrolysis, which indicate the onset of oil window maturation stage. Suppression of vitrinite reflectance should be considered and the high liptinite content corroborates this hypothesis. Despite some favourable aspects for petroleum generation presented by the Pera-Lakkos coal, its maximum thickness (up to 50 cm) points to a restricted potential for petroleum generation. Coal oxidation took place either during the late stage of peat formation, due to wave action accompanying the subsequent marine transgression, or epigenetically after the emergence of the whole sequence due to percolation of drainage waters. Both options are also supported by the REE shale-normalized profiles, which demonstrate an upwards depletion in the coal layer. Oxidation also affected pyrite included in the coal; this led to the formation of acidic (sulfate-rich) solutions, which percolated downwards resulting in bleaching of the upper part of the underlying bauxite. (author)

  1. Waste processing of chemical cleaning solutions

    International Nuclear Information System (INIS)

    Peters, G.A.

    1991-01-01

    This paper reports on chemical cleaning solutions containing high concentrations of organic chelating wastes that are difficult to reduce in volume using existing technology. Current methods for evaporating low-level radiative waste solutions often use high maintenance evaporators that can be costly and inefficient. The heat transfer surfaces of these evaporators are easily fouled, and their maintenance requires a significant labor investment. To address the volume reduction of spent, low-level radioactive, chelating-based chemical cleaning solutions, ECOSAFE Liquid Volume Reduction System (LVRS) has been developed. The LVRS is based on submerged combustion evaporator technology that was modified for treatment of low-level radiative liquid wastes. This system was developed in 1988 and was used to process 180,000 gallons of waste at Oconee Nuclear Station

  2. Radioactive alpha wastes processing at the nuclear center of Mol

    International Nuclear Information System (INIS)

    Voorde, N. van de

    1978-01-01

    This process is based on calcination at very high temperature (1500 0 C) of wastes, mainly burnable, with selected non-burnable wastes, such as glass, metal, sludge, ion echanger, etc. Incineration wastes melt at this temperature and an insoluble granitic mass is obtained. This operation is performed in a special oven equipped with a gas purification device installed in a place like alpha bearing wastes treatment working spot where the staff can work in an air-supplied suit. Two incineration units are planned, the first one with a capacity of 150 kg/hr in view to treat a large amount of wastes with a low plutonium content (max. 10 mg/l), the second smaller with a capacity of 10 kg/hr, specially designed to process wastes with a high Pu content. This project for the first unit, at least is now tested with beta gamma wastes processing. Alpha bearing wastes pocessing will start at the end of 1978, we are now building the second unit [fr

  3. Retrieval process development and enhancements waste simulant compositions and defensibility

    International Nuclear Information System (INIS)

    Powell, M.R.; Golcar, G.R.; Geeting, J.G.H.

    1997-09-01

    The purpose of this report is to document the physical waste simulant development efforts of the EM-50 Tanks Focus Area at the Hanford Site. Waste simulants are used in the testing and development of waste treatment and handling processes because performing such tests using actual tank waste is hazardous and prohibitively expensive. This document addresses the simulant development work that supports the testing of waste retrieval processes using simulants that mimic certain key physical properties of the tank waste. Development and testing of chemical simulants are described elsewhere. This work was funded through the EM-50 Tanks Focus Area as part of the Retrieval Process Development and Enhancements (RPD ampersand E) Project at the Pacific Northwest National Laboratory (PNNL). The mission of RPD ampersand E is to understand retrieval processes, including emerging and existing processes, gather performance data on those processes, and relate the data to specific tank problems to provide end users with the requisite technical bases to make retrieval and closure decisions. Physical simulants are prepared using relatively nonhazardous and inexpensive materials rather than the chemicals known to be in tank waste. Consequently, only some of the waste properties are matched by the simulant. Deciding which properties need to be matched and which do not requires a detailed knowledge of the physics of the process to be tested using the simulant. Developing this knowledge requires reviews of available literature, consultation with experts, and parametric tests. Once the relevant properties are identified, waste characterization data are reviewed to establish the target ranges for each property. Simulants are then developed that possess the desired ranges of properties

  4. Characterization and process technology capabilities for Hanford tank waste disposal

    International Nuclear Information System (INIS)

    Buelt, J.L.; Weimer, W.C.; Schrempf, R.E.

    1996-03-01

    The purpose of this document is to describe the Paciflc Northwest National Laboratory's (the Laboratory) capabilities in characterization and unit process and system testing that are available to support Hanford tank waste processing. This document is organized into two parts. The first section discusses the Laboratory's extensive experience in solving the difficult problems associated with the characterization of Hanford tank wastes, vitrified radioactive wastes, and other very highly radioactive and/or heterogeneous materials. The second section of this document discusses the Laboratory's radioactive capabilities and facilities for separations and waste form preparation/testing that can be used to Support Hanford tank waste processing design and operations

  5. A process for treating radioactive water-reactive wastes

    International Nuclear Information System (INIS)

    Dziewinski, J.; Lussiez, G.; Munger, D.

    1995-01-01

    Los Alamos National Laboratory and other locations in the complex of experimental and production facilities operated by the United States Department of Energy (DOE) have generated an appreciable quantity of hazardous and radioactive wastes. The Resource Conservation and Recovery Act (RCRA) enacted by the United States Congress in 1976 and subsequently amended in 1984, 1986, and 1988 requires that every hazardous waste must be rendered nonhazardous before disposal. Many of the wastes generated by the DOE complex are both hazardous and radioactive. These wastes, called mixed wastes, require applying appropriate regulations for radioactive waste disposal and the regulations under RCRA. Mixed wastes must be treated to remove the hazardous waste component before they are disposed as radioactive waste. This paper discusses the development of a treatment process for mixed wastes that exhibit the reactive hazardous characteristic. Specifically, these wastes react readily and violently with water. Wastes such as lithium hydride (LiH), sodium metal, and potassium metal are the primary wastes in this category

  6. Strategy for research on radioactive waste processing and conditioning in France

    International Nuclear Information System (INIS)

    Cavedon, J.M.; Tallec, M.

    2001-01-01

    Research on radioactive medium level waste processing and conditioning aims at offering processing routes for waste forms and materials of potential value that are not yet provided easy handling by existing industrial processes. These studies are mandatory under the Dec 31, 1991 law and are coordinated by CEA. The strategy relies on the completion and rationalization of the existing processing routes, within acceptable technical and economic limits. Waste processing techniques aim at reducing the volume and the chemical diversity of medium activity waste, and are based on incineration-vitrification. Conditioning techniques call for high performance matrices and standardized containers, the latter keeping an ability to contain bulk waste. (author)

  7. Department of Energy's process waste assessment graded approach methodology

    International Nuclear Information System (INIS)

    Pemberton, S.E.

    1994-03-01

    As the initial phase of the formal waste minimization program, the Department of Energy requires assessments of all its waste-generating operations. These assessments, called process waste assessments (PWAs), are a tool which helps achieve the pollution prevention goals. The DOE complex is comprised of numerous sites located in many different states. The facilities as a whole represent a tremendous diversity of technologies, processes, and activities. Due to this diversity, there are also a wide variety and number of waste streams generated. Many of these waste streams are small, intermittent, and not of consistent composition. The PWA graded approach methodology addresses these complexities and recognizes that processes vary in the quantity of pollution they generate, as well as in the perceived risk and associated hazards. Therefore, the graded approach was developed to provide a cost-effective and flexible methodology which allows individual sites to prioritize their local concerns and align their efforts with the resources allocated. This presentation will describe a project sponsored by the DOE Office of Environmental Restoration and Waste Management, Waste Minimization Division, which developed a graded approach methodology for use throughout the DOE. This methodology was initiated in FY93 through a combined effort of the following DOE/Defense Program sites: Kansas City Plant, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Sandia National Laboratories. This presentation will describe the process waste assessment tool, benefits achieved through the completion of PWAs, DOE's graded approach methodology, and an update on the project's current status

  8. The Hybrid Treatment Process for mixed radioactive and hazardous waste treatment

    International Nuclear Information System (INIS)

    Ross, W.A.; Kindle, C.H.

    1992-06-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process. It also uses techniques from several additional technologies. Mixed wastes are being generated by both the US Department of Energy (DOE) and by commercial sources. The wastes are those that contain both a hazardous waste regulated under the US Environmental Protection Agency's (EPA) Resource, Conservation, and Recovery Act (RCRA) regulations and a radioactive waste with source, special nuclear, or byproduct materials. The dual regulation of the wastes increases the complexity of the treatment, handling, and storage of the waste. The DOE is the largest holder and generator of mixed waste. Its mixed wastes are classified as either high-level, transuranic (TRU), or low-level waste (LLW). High-level mixed wastes will be treated in vitrification plants. Transuranic wastes may be disposed of without treatment by obtaining a no-migration variance from the EPA. Lowlevel wastes, however, will require treatment, but treatment systems with sufficient capacity are not yet available to DOE. Various facilities are being proposed for the treatment of low-level waste. The concept described in this paper represents one option for establishing that treatment capacity

  9. Processing method for cleaning water waste from cement kneader

    International Nuclear Information System (INIS)

    Soda, Kenzo; Fujita, Hisao; Nakajima, Tadashi.

    1990-01-01

    The present invention concerns a method of processing cleaning water wastes from a cement kneader in a case of processing liquid wastes containing radioactive wastes or deleterious materials such as heavy metals by means of cement solidification. Cleaning waste wastes from the kneader are sent to a cleaning water waste tank, in which gentle stirring is applied near the bottom and sludges are retained so as not to be coagulated. Sludges retained at the bottom of the cleaning water waste tank are sent after elapse of a predetermined time and then kneaded with cements. Thus, since the sludges in the cleaning water are solidified with cement, inhomogenous solidification products consisting only of cleaning sludges with low strength are not formed. The resultant solidification product is homogenous and the compression strength thereof reaches such a level as capable of satisfying marine disposal standards required for the solidification products of radioactive wastes. (I.N.)

  10. Effects of biodrying process on municipal solid waste properties.

    Science.gov (United States)

    Tambone, F; Scaglia, B; Scotti, S; Adani, F

    2011-08-01

    In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779±2,074kJ kg(-1) wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290g kg(-1) VS), reduced of about 28% the total producible biogas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Radioactive waste disposal process geological structure for the waste disposal

    International Nuclear Information System (INIS)

    Courtois, G.; Jaouen, C.

    1983-01-01

    The process described here consists to carry out the two phases of storage operation (intermediate and definitive) of radioactive wastes (especially the vitrified ones) in a geological dispositif (horizontal shafts) at an adequate deepness but suitable for a natural convection ventilation with fresh air from the land surface and moved only with the calorific heat released by the burried radioactive wastes when the radioactive decay has reached the adequate level, the shafts are totally and definitely occluded [fr

  12. Integrated treatment process of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Shibuya, M.; Suzuki, K.; Fujimura, Y.; Nakashima, T.; Moriya, Y.

    1993-01-01

    An integrated waste treatment system was studied based on technologies developed for the treatment of liquid radioactive, organic, and aqueous wastes containing hazardous materials and soils contaminated with heavy metals. The system consists of submerged incineration, metal ion fixing and stabilization, and soil washing treatments. Introduction of this system allows for the simultaneous processing of toxic waste and contaminated soils. Hazardous organic wastes can be decomposed into harmless gases, and aqueous wastes can be converted into a dischargeable effluent. The contaminated soil is backfilled after the removal of toxic materials. Experimental data show that the integration system is practical for complicated toxic wastes

  13. Process development for treatment of fluoride containing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahesh; Kanvinde, V Y [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Many chemical and metallurgical industries generate liquid wastes containing high values of fluorides in association of nitrates and other metals. Due to harmful effects of fluorides these type of wastes can not be disposed off in the environment without proper treatment. Bench-scale laboratory experiments were conducted to develop a process scheme to fix the fluorides as non-leachable solid waste and fluoride free treated liquid waste for their disposal. To optimize the important parameters, simulated synthetic and actual wastes were used. For this study, three waste streams were collected from Nuclear Fuel Complex, Hyderabad. (author). 6 tabs., 1 fig.

  14. SPEEDUP simulation of liquid waste batch processing. Revision 1

    International Nuclear Information System (INIS)

    Shannahan, K.L.; Aull, J.E.; Dimenna, R.A.

    1994-01-01

    The Savannah River Site (SRS) has accumulated radioactive hazardous waste for over 40 years during the time SRS made nuclear materials for the United States Department of Energy (DOE) and its predecessors. This waste is being stored as caustic slurry in a large number of 1 million gallon steel tanks, some of which were initially constructed in the early 1950's. SRS and DOE intend to clean up the Site and convert this waste into stable forms which then can be safely stored. The liquid waste will be separated into a partially decontaminated low-level and radioactive high-level waste in one feed preparation operation, In-Tank Precipitation. The low-level waste will be used to make a concrete product called saltstone in the Saltstone Facility, a part of the Defense Waste Processing Facility (DWPF). The concrete will be poured into large vaults, where it will be permanently stored. The high-level waste will be added to glass-formers and waste slurry solids from another feed preparation operation, Extended Sludge Processing. The mixture will then be converted to a stable borosilicate glass by a vitrification process that is the other major part of the DWPF. This glass will be poured into stainless steel canisters and sent to a temporary storage facility prior to delivery to a permanent underground storage site

  15. French processes for waste embedding. The use of epoxy resin for waste containment

    International Nuclear Information System (INIS)

    Augustin, X.; Gauthey, J.C.

    1993-01-01

    The low- and medium-level wastes generated by nuclear facilities when operating as well as during their decommissioning (dismantling, decontamination, etc.) are embedded for the purpose of obtaining a product suitable for disposal. Due to the varieties of waste produced, it was necessary to resort to multi-purpose techniques to solve problems relating to their embedding. The process for waste embedding in thermosetting polymer (polyester, epoxy) developed by the French Atomic Energy Commission (CEA) and its subsidiary TECHNICATOME is easy to operate and yields excellent results having regard to volume reduction and containment of radioisotopes (particularly caesium). The industrial development of this process has led to the design of small, flexible, fixed or mobile, embedding stations. Examples illustrating the increasing use of this process during facility dismantling are described

  16. Processing of basalt fiber production waste

    Science.gov (United States)

    Sevostyanov, V. S.; Shatalov, A. V.; Shatalov, V. A.; Golubeva, U. V.

    2018-03-01

    The production of mineral rock wool forms a large proportion of off-test waste products. In addition to the cost of their production, there are costs for processing and utilization, such as transportation, disposal and preservation. Besides, wastes have harmful effect on the environment. This necessitates research aimed to study the stress-related characteristics of materials, their recyclability and use in the production of heat-saving products.

  17. Process Technical Basis Documentation Diagram for a solid-waste processing facility

    International Nuclear Information System (INIS)

    Benar, C.J.; Petersen, C.A.

    1994-02-01

    The Process Technical Basis Documentation Diagram is for a solid-waste processing facility that could be designed to treat, package, and certify contact-handled mixed low-level waste for permanent disposal. The treatment processes include stabilization using cementitious materials and immobilization using a polymer material. The Diagram identifies several engineering/demonstration activities that would confirm the process selection and process design. An independent peer review was conducted at the request of Westinghouse Hanford Company to determine the technical adequacy of the technical approach for waste form development. The peer review panel provided comments and identified documents that it felt were needed in the Diagram as precedence for Title I design. The Diagram is a visual tool to identify traceable documentation of key activities, including those documents suggested by the peer review, and to show how they relate to each other. The Diagram is divided into three sections: (1) the Facility section, which contains documents pertaining to the facility design, (2) the Process Demonstration section, which contains documents pertaining to the process engineering/demonstration work, and 3) the Regulatory section, which contains documents describing the compliance strategy for each acceptance requirement for each feed type, and how this strategy will be implemented

  18. Increasing operational efficiency in a radioactive waste processing plant - 16100

    International Nuclear Information System (INIS)

    Turner, T.W.; Watson, S.N.

    2009-01-01

    The solid waste plant at Harwell in Oxfordshire, contains a purpose built facility to input, assay, visually inspect and sort remote handled intermediate level radioactive waste (RHILW). The facility includes a suite of remote handling cells, known as the head-end cells (HEC), which waste must pass through in order to be repackaged. Some newly created waste from decommissioning works on site passes through the cells, but the vast majority of waste for processing is historical waste, stored in below ground tube stores. Existing containers are not suitable for long term storage, many are already badly corroded, so the waste must be efficiently processed and repackaged in order to achieve passive safety. The Harwell site is currently being decommissioned and the land is being restored. The site is being progressively de-licensed, and redeveloped as a business park, which can only be completed when all the nuclear liabilities have been removed. The recovery and processing of old waste in the solid waste plant is a key project linked to de-licensing of a section of the site. Increasing the operational efficiency of the waste processing plant could shorten the time needed to clear the site and has the potential to save money for the Nuclear Decommissioning Authority (NDA). The waste processing facility was constructed in the mid 1990's, and commissioned in 1999. Since operations began, the yearly throughput of the cells has increased significantly every year. To achieve targets set out in the lifetime plan (LTP) for the site, throughput must continue to increase. The operations department has measured the overall equipment effectiveness (OEE) of the process for the last few years, and has used continuous improvement techniques to decrease the average cycle time. Philosophies from operational management practices such as 'lean' and 'kaizen' have been employed successfully to drive out losses and increase plant efficiency. This paper will describe how the solid waste plant

  19. Evaluating the potential of process sites for waste heat recovery

    International Nuclear Information System (INIS)

    Oluleye, Gbemi; Jobson, Megan; Smith, Robin; Perry, Simon J.

    2016-01-01

    Highlights: • Analysis considers the temperature and duties of the available waste heat. • Models for organic Rankine cycles, absorption heat pumps and chillers proposed. • Exploitation of waste heat from site processes and utility systems. • Concept of a site energy efficiency introduced. • Case study presented to illustrate application of the proposed methodology. - Abstract: As a result of depleting reserves of fossil fuels, conventional energy sources are becoming less available. In spite of this, energy is still being wasted, especially in the form of heat. The energy efficiency of process sites (defined as useful energy output per unit of energy input) may be increased through waste heat utilisation, thereby resulting in primary energy savings. In this work, waste heat is defined and a methodology developed to identify the potential for waste heat recovery in process sites; considering the temperature and quantity of waste heat sources from the site processes and the site utility system (including fired heaters and, the cogeneration, cooling and refrigeration systems). The concept of the energy efficiency of a site is introduced – the fraction of the energy inputs that is converted into useful energy (heat or power or cooling) to support the methodology. Furthermore, simplified mathematical models of waste heat recovery technologies using heat as primary energy source, including organic Rankine cycles (using both pure and mixed organics as working fluids), absorption chillers and absorption heat pumps are developed to support the methodology. These models are applied to assess the potential for recovery of useful energy from waste heat. The methodology is illustrated for an existing process site using a case study of a petroleum refinery. The energy efficiency of the site increases by 10% as a result of waste heat recovery. If there is an infinite demand for recovered energy (i.e. all the recoverable waste heat sources are exploited), the site

  20. Waste immobilization process development at the Savannah River Plant

    International Nuclear Information System (INIS)

    Charlesworth, D.L.

    1986-01-01

    Processes to immobilize various wasteforms, including waste salt solution, transuranic waste, and low-level incinerator ash, are being developed. Wasteform characteristics, process and equipment details, and results from field/pilot tests and mathematical modeling studies are discussed

  1. High-Level Waste System Process Interface Description

    International Nuclear Information System (INIS)

    D'Entremont, P.D.

    1999-01-01

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment

  2. Waste Processing Cost Recovery at Los Alamos National Laboratory-Analysis and Recommendations

    International Nuclear Information System (INIS)

    Booth, St. R.

    2009-01-01

    Los Alamos National Laboratory is implementing full cost recovery for waste processing in fiscal year 2009 (FY2009), after a transition year in FY2008. Waste processing cost recovery has been implemented in various forms across the nuclear weapons complex and in corporate America. The fundamental reasoning of sending accurate price signals to waste generators is economically sound, and leads to waste minimization and reduced waste expense over time. However, Los Alamos faces significant implementation challenges because of its status as a government-owned, contractor-operated national scientific institution with a diverse suite of experimental and environmental cleanup activities, and the fact that this represents a fundamental change in how waste processing is viewed by the institution. This paper describes the issues involved during the transition to cost recovery and the ultimate selection of the business model. Of the six alternative cost recovery models evaluated, the business model chosen to be implemented in FY2009 is Recharge Plus Generators Pay Distributed Direct. Under this model, all generators who produce waste must pay a distributed direct share associated with their specific waste type to use a waste processing capability. This cost share is calculated using the distributed direct method on the fixed cost only, i.e., the fixed cost share is based on each program's forecast proportion of the total Los Alamos volume forecast of each waste type. (Fixed activities are those required to establish the waste processing capability, i.e., to make the process ready, permitted, certified, and prepared to handle the first unit of waste. Therefore, the fixed cost ends at the point just before waste begins to be processed. The activities to actually process the waste are considered variable.) The volume of waste actually sent for processing is charged a unit cost based solely on the variable cost of disposing of that waste. The total cost recovered each year is the

  3. Molten metal technologies advance waste processing systems for liquid radioactive waste treatment for PWRs and BWRs

    International Nuclear Information System (INIS)

    Strand, Gary; Vance, Jene N.

    1997-01-01

    Molten Metal Technologies (MMT) has recently acquired a proprietary filtration process for specific use in radioactive liquid waste processing systems. The filtration system has been incorporated in to a PWR liquid radwaste system which is currently being designed for the ComEd Byron Nuclear Station. It has also been adopted as the prefiltration step up from of the two RO systems which were part of the VECTRA acquisition and which are currently installed in the ComEd Dresden and Lacily Nuclear Stations. The filtration process has been successfully pilot-tested at both Byron and Dresden and is currently being tested at LaSalle. The important features of the filtration process are the high removal efficiencies for particulates, including colloidal particles, and the low solid waste volume generation per gallon filtered which translates into very small annual solid waste volumes. This filtration process system has been coupled with the use of selective ion exchange media in the PWR processing system to reduce the solid waste volumes generated compared to the current processing methods and to reduce the curie quantities discharged to the environs. In the BWR processing system, this filtration method allows the coupling of an RO system to provide for recycling greater than 95% of the liquid radwaste back to the plant for reuse while significantly reducing the solid waste volumes and operating costs. This paper discusses the process system configurations for the MMT Advanced Waste Processing Systems for both PWRs and BWRs. In addition, the pilot test data and full-scale performance projections for the filtration system are discussed which demonstrate the important features of the filtration process

  4. Boiling water reactor liquid radioactive waste processing system

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The standard sets forth minimum design, construction and performance requirements with due consideration for operation of the liquid radioactive waste processing system for boiling water reactor plants for routine operation including design basis fuel leakage and design basis occurrences. For the purpose of this standard, the liquid radioactive waste processing system begins at the interfaces with the reactor coolant pressure boundary, at the interface valve(s) in lines from other systems and at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material. The system terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system and at the point of recycle back to storage for reuse. The standard does not include the reactor coolant clean-up system, fuel pool clean-up system, sanitary waste system, any nonaqueous liquid system or controlled area storm drains

  5. Management of radioactive liquid waste at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Bendixsen, C.L.

    1992-01-01

    Highly radioactive liquid wastes (HLLW) are routinely produced during spent nuclear fuel processing at the Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering Laboratory (INEL). This paper discusses the processes and safe practices for management of the radioactive process waste streams, which processes include collection, concentration, interim storage, calcination to granular solids, and long-term intermediate storage. Over four million gallons of HLLW have been converted to a recoverable granular solid form through waste liquid injection into a high-temperature, fluidized bed wherein the wastes are converted to their respective solid oxides. The development of a glass ceramic solid for the long-term permanent disposal of the high level waste (HLW) solids is also described

  6. Device for processing regenerative wastes of ion exchange resin

    International Nuclear Information System (INIS)

    Kuroda, Osamu; Ebara, Katsuya; Shindo, Toshikazu; Takahashi, Sankichi

    1986-01-01

    Purpose: To facilitate the operation and maintenance of a processing device by dividing radioactive wastes produced in the regenerative process of ion exchange resin into a regenerated usable recovery liquid and wastes. Constitution: Sulfuric acid is recovered by a diffusion dialysis method from wastes containing sulfuric acid that are generated in the regenerative process of cation-exchange resin and also caustic soda is recovered by the diffusion dialysis method from wastes containing caustic soda that are generated in the regenerative process of anion-exchange resin. The sulfuric acid and caustic soda thus recovered are used for the regeneration of ion-exchange resin. A concentrator is provided for concentrating the sulfuric acid and caustic soda water solution to concentration suitable for the regeneration of these ion-exchange resins. Also provided is a recovery device for recovering water generated from the concentrator. This device is of so simple a constitution that its operation and maintenance can be performed very easily, thereby greatly reducing the quantity of waste liquid required to be stored in drums. (Takahashi, M.)

  7. Probabilistic Safety Assessment of Waste from PyroGreen Processes

    International Nuclear Information System (INIS)

    Ju, Hee Jae; Ham, In hye; Hwang, Il Soon

    2016-01-01

    The main object of PyroGreen processes is decontaminating SNFs into intermediate level waste meeting U.S. WIPP contact-handled (CH) waste characteristics to achieve long-term radiological safety of waste disposal. In this paper, radiological impact of PyroGreen waste disposal is probabilistically assessed using domestic input parameters for safety assessment of disposal. PyroGreen processes is decontamination technology using pyro-chemical process developed by Seoul National University in collaboration with KAERI, Chungnam University, Korea Hydro-Nuclear Power and Yonsei University. Advanced Korean Reference Disposal System (A-KRS) design for vitrified waste is applied to develop safety assessment model using GoldSim software. The simulation result shows that PyroGreen vitrified waste is expected to satisfy the regulatory dose limit criteria, 0.1 mSv/yr. With small probability, however, radiological impact to public can be higher than the expected value after 2E5-year. Although the result implies 100 times safety margin even in that case, further study will be needed to assess the sensitivity of other input parameters which can affect the radiological impact for long-term.

  8. Probabilistic Safety Assessment of Waste from PyroGreen Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hee Jae; Ham, In hye; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    The main object of PyroGreen processes is decontaminating SNFs into intermediate level waste meeting U.S. WIPP contact-handled (CH) waste characteristics to achieve long-term radiological safety of waste disposal. In this paper, radiological impact of PyroGreen waste disposal is probabilistically assessed using domestic input parameters for safety assessment of disposal. PyroGreen processes is decontamination technology using pyro-chemical process developed by Seoul National University in collaboration with KAERI, Chungnam University, Korea Hydro-Nuclear Power and Yonsei University. Advanced Korean Reference Disposal System (A-KRS) design for vitrified waste is applied to develop safety assessment model using GoldSim software. The simulation result shows that PyroGreen vitrified waste is expected to satisfy the regulatory dose limit criteria, 0.1 mSv/yr. With small probability, however, radiological impact to public can be higher than the expected value after 2E5-year. Although the result implies 100 times safety margin even in that case, further study will be needed to assess the sensitivity of other input parameters which can affect the radiological impact for long-term.

  9. Evaluation procedure for radioactive waste treatment processes

    International Nuclear Information System (INIS)

    Whitty, W.J.

    1979-11-01

    An aspect of the Los Alamos Scientific Laboratory's nuclear waste management R and D programs has been to develop an evaluation procedure for radioactive waste treatment processes. This report describes the process evaluation method. Process worth is expressed as a numerical index called the Figure-of-Merit (FOM), which is computed using a hierarchial, linear, additive, scoring model with constant criteria weights and nonlinear value functions. A numerical example is used to demonstrate the procedure and to point out some of its strengths and weaknesses. Potential modifications and extensions are discussed, and an extensive reference list is included

  10. Industrial-Scale Processes For Stabilizing Radioactively Contaminated Mercury Wastes

    International Nuclear Information System (INIS)

    Broderick, T. E.; Grondin, R.

    2003-01-01

    This paper describes two industrial-scaled processes now being used to treat two problematic mercury waste categories: elemental mercury contaminated with radionuclides and radioactive solid wastes containing greater than 260-ppm mercury. The stabilization processes were developed by ADA Technologies, Inc., an environmental control and process development company in Littleton, Colorado. Perma-Fix Environmental Services has licensed the liquid elemental mercury stabilization process to treat radioactive mercury from Los Alamos National Laboratory and other DOE sites. ADA and Perma-Fix also cooperated to apply the >260-ppm mercury treatment technology to a storm sewer sediment waste collected from the Y-12 complex in Oak Ridge, TN

  11. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  12. Chemical precipitation processes for the treatment of aqueous radioactive waste

    International Nuclear Information System (INIS)

    1992-01-01

    Chemical precipitation by coagulation-flocculation and sedimentation has been commonly used for many years to treat liquid (aqueous) radioactive waste. This method allows the volume of waste to be substantially reduced for further treatment or conditioning and the bulk of the waste to de discharged. Chemical precipitation is usually applied in combination with other methods as part of a comprehensive waste management scheme. As with any other technology, chemical precipitation is constantly being improved to reduce cost to increase the effectiveness and safety on the entire waste management system. The purpose of this report is to review and update the information provided in Technical Reports Series No. 89, Chemical Treatment of Radioactive Wastes, published in 1968. In this report the chemical methods currently in use for the treatment of low and intermediate level aqueous radioactive wastes are described and illustrated. Comparisons are given of the advantages and limitations of the processes, and it is noted that good decontamination and volume reduction are not the only criteria according to which a particular process should be selected. Emphasis has been placed on the need to carefully characterize each waste stream, to examine fully the effect of segregation and the importance of looking at the entire operation and not just the treatment process when planning a liquid waste treatment facility. This general approach includes local requirements and possibilities, discharge authorization, management of the concentrates, ICRP recommendations and economics. It appears that chemical precipitation process and solid-liquid separation techniques will continue to be widely used in liquid radioactive waste treatment. Current research and development is showing that combining different processes in one treatment plant can provide higher decontamination factors and smaller secondary waste arisings. Some of these processes are already being incorporated into new and

  13. New process of co-coking of waste plastics and blend coal

    Energy Technology Data Exchange (ETDEWEB)

    Liao, H.; Yu, G.; Zhao, P. (and others) [Shougang Technical Research Institute, Beijing (China)

    2006-07-01

    To recycle and reuse waste plastics, as well as to get a new resource of coking, co-coking process of waste plastics and blend coal has been developed by Nippon Steel. However, the ratio of waste plastics in blend coal should be limited in the range of 1% to maintain the coke strength. This paper suggested a new process of co-coking of waste plastics and blend coal. The new process can add the waste plastics ratio up to 2-4%; when the waste plastics ratio is 2%, the coke strength after reaction with CO{sub 2} (CSR) increased 8%. 8 refs., 2 figs., 3 tabs.

  14. Logistic paradigm for industrial solid waste treatment processes

    OpenAIRE

    Janusz Grabara; Ioan Constantin Dima

    2014-01-01

    Due to the fact that industrial waste are a growing problem, both economic and environmental as their number is increasing every year, it is important to take measures to correctly dealing wi th industrial waste. This article presents the descriptive model of logistics processes concerning the management of industrial waste. In this model the flow of waste begins in the place of production and ends at their disposal. The article presents the concept of logistics model in graphical form...

  15. Solid municipal waste processing plants: Cost benefit analysis

    International Nuclear Information System (INIS)

    Gerardi, V.

    1992-01-01

    This paper performs cost benefit analyses on three solid municipal waste processing alternatives with plants of diverse daily outputs. The different processing schemes include: selected wastes incineration with the production of refuse derived fuels; selected wastes incineration with the production of refuse derived fuels and compost; pyrolysis with energy recovery in the form of electric power. The plant daily outputs range from 100 to 300 tonnes for the refuse derived fuel alternatives, and from 200 to 800 tonnes for the pyrolysis/power generation scheme. The cost analyses consider investment periods of fifteen years in duration and interest rates of 5%

  16. Radioactive waste processing and disposal

    International Nuclear Information System (INIS)

    1980-01-01

    This compilation contains 4144 citations of foreign and domestic reports, journal articles, patents, conference proceedings, and books pertaining to radioactive waste processing and disposal. Five indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  17. High level waste vitrification at the SRP [Savannah River Plant] (DWPF [Defense Waste Processing Facility] summary)

    International Nuclear Information System (INIS)

    Weisman, A.F.; Knight, J.R.; McIntosh, D.L.; Papouchado, L.M.

    1988-01-01

    The Savannah River Plant has been operating a nuclear fuel cycle since the early 1950's. Fuel and target elements are fabricated and irradiated to produce nuclear materials. After removal from the reactors, the fuel elements are processed to extract the products, and waste is stored. During the thirty years of operation including evaporation, about 30 million gallons of high level radioactive waste has accumulated. The Defense Waste Processing Facility (DWPF) under construction at Savannah River will process this waste into a borosilicate glass for long-term geologic disposal. The construction of the DWPF is about 70% complete; this paper will describe the status of the project, including design demonstrations, with an emphasis on the melter system. 9 figs

  18. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    International Nuclear Information System (INIS)

    Ebert, W. L.; Snyder, C. T.; Frank, Steven; Riley, Brian

    2016-01-01

    This report describes the scientific basis underlying the approach being followed to design and develop ''advanced'' glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na_2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl- in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease the waste

  19. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Snyder, C. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Brian [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    This report describes the scientific basis underlying the approach being followed to design and develop “advanced” glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl– in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease

  20. The Hybrid Treatment Process for treatment of mixed radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Ross, W.A.; Kindle, C.H.

    1992-04-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process

  1. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    International Nuclear Information System (INIS)

    Dippre, M. A.

    2003-01-01

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational

  2. Crystalline Ceramic Waste Forms: Comparison Of Reference Process For Ceramic Waste Form Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K. S. [Savannah River National Laboratory; Marra, J. C. [Savannah River National Laboratory; Amoroso, J. [Savannah River National Laboratory; Tang, M. [Los Alamos National Laboratory

    2013-08-22

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be produced from a melting and crystallization process. The objective of this report is to explore the phase formation and microstructural differences between lab scale melt processing in varying gas environments with alternative densification processes such as Hot Pressing (HP) and Spark Plasma Sintering (SPS). The waste stream used as the basis for the development and testing is a simulant derived from a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. Melt processing as well as solid state sintering routes SPS and HP demonstrated the formation of the targeted phases; however differences in microstructure and elemental partitioning were observed. In SPS and HP samples, hollandite, pervoskite/pyrochlore, zirconolite, metallic alloy and TiO{sub 2} and Al{sub 2}O{sub 3} were observed distributed in a network of fine grains with small residual pores

  3. Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats

    International Nuclear Information System (INIS)

    McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

    1990-01-01

    Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment ''systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs

  4. Plutonium scrap waste processing based on aqueous nitrate and chloride media

    International Nuclear Information System (INIS)

    Navratil, J.D.

    1985-01-01

    A brief review of plutonium scrap aqueous waste processing technology at Rocky Flats is given. Nitric acid unit operations include dissolution and leaching, anion exchange purification and precipitation. Chloride waste processing consists of cation exchange and carbonate precipitation. Ferrite and carrier precipitation waste treatment processes are also described. 3 figs

  5. Quality assurance in processing radioactive waste for land disposal

    International Nuclear Information System (INIS)

    1984-01-01

    To provide the appropriate assurances as to the quality of processed radioactive waste it is necessary to consider the complete range of activities involved in the formation and operation of a radioactive waste processing facility. To this end, an outline has been given to the individual elements which should be addressed in quality assurance proposals to the authorising Departments. In general terms, the quality checks on product material should be aimed at demonstrating that the radioactive waste product is what was agreed at the time of process approval. In addition, at the discretion of the authorising Departments, the waste processor will be required to confirm that the product meets any specific acceptance criteria such as the capability to retain the immobilised radionuclides when in contact with water. (author)

  6. Life cycle environmental impacts of different construction wood waste and wood packaging waste processing methods

    OpenAIRE

    Manninen, Kaisa; Judl, Jáchym; Myllymaa, Tuuli

    2016-01-01

    This study compared the life cycle environmental impacts of different wood waste processing methods in three impact categories: climate impact, acidification impacts and eutrophication impacts. The wood waste recovery methods examined were the use of wood waste in terrace boards made out of wood composite which replace impregnated terrace boards, incineration of wood waste in a multi-fuel boiler instead of peat and the use of wood waste in the production of particleboard in either Finland or ...

  7. Citrus processing waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hawash, S; Hafez, A J; El-Diwani, G

    1988-02-01

    The process utilizes biological treatment to decompose organic matter and decreases the COD to a value of 230 ppm, using 161 of air per 1 of treated waste water for a contact time of 2.5 h. Ozone is used subsequently for further purification of the waste water by destroying refractory organics. This reduces the COD to a value of 40 ppm, and consequently also lowers the BOD. Ozone also effectively removed the yellow-brown colour due to humic substances in dissolved or colloidal form; their oxidation leaves the water sparkling. Iron and manganese are also eliminated.

  8. Growth and nutritional status of Brazilian wood species Cedrella fissilis and Anadenanthera peregrina in bauxite spoil in response to arbuscular mycorrhizal inoculation and substrate amendment

    Directory of Open Access Journals (Sweden)

    Tótola Marcos Rogério

    2000-01-01

    Full Text Available The growth of Cedrella fissilis Vell. (Cedro Rosa and of Anadenanthera peregrina Benth (Angico Vermelho in bauxite spoil was studied to evaluate their response to substrate amendment or to inoculation with arbuscular mycorrhizal fungi (AMF. The plants were grown in bauxite spoil, topsoil or spoil amended with either topsoil or compost, and inoculated with the AMF Acaulospora scrobiculata, Gigaspora margarita or Glomus etunicatum. Root colonization was highly dependent on the interaction plant-fungus-substrate. In C. fissilis, root colonization by Gigaspora margarita dropped from 75% in bauxite spoil to only 4% in topsoil. Contrarily, root colonization of A. peregrina by the same fungus increased from 48% in spoil to 60% in topsoil. Root colonization of C. fissilis in topsoil was lower than in the three other substrates. The opposite was observed for A. peregrina. Inoculation of the plants with Acaulospora scrobiculata or Glomus etunicatum was very effective in promoting plant growth. Plants of both C. fissilis and A. peregrina did not respond to amendments of bauxite spoil unless they were mycorrhizal. Also, a preferential partitioning of photosynthates to the shoots of A. peregrina inoculated with G. etunicatum or A. scrobiculata, and of C. fissilis inoculated with any of the three species of AMF was observed. C. fissilis showed a greater response to mycorrhizal inoculation than A. peregrina. The mean mycorrhizal efficiency (ME for dry matter production by C. fissilis was 1,847% for A. scrobiculata, 1,922% for G. etunicatum, and 119% for G. margarita. In A. peregrina, the ME was 249% for A. scrobiculata, 540% for G. etunicatum, and 50% for G. margarita. The effect of mycorrhizal inoculation on plant growth seems to be related in part to an enhanced phosphorus absorption by inoculated plants. Moreover, the efficiency with which the absorbed nutrients were used to produce plant biomass was much greater in plants inoculated with A. scrobiculata or

  9. Inverse osmotic process for radioactive laundry waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebara, K; Takahashi, S; Sugimoto, Y; Yusa, H; Hyakutake, H

    1977-01-07

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount.

  10. Dry anaerobic conversion of municipal solid wastes: Dranco process

    International Nuclear Information System (INIS)

    Six, W.; De Baere, L.

    1992-01-01

    The DRANCO process was developed for the conversion of solid organic wastes, specifically the organic fraction of municipal solid waste (MSW), to energy and a humus-like final product, called Humotex. The DRANCO process can be compared to landfill gas production accelerated by a factor 1000. A Dranco installation with a digester of 808 cubic meters treating 10,500 tonnes of source separated waste per year is under construction in Brecht, Belgium. A description of the plant is presented. A 56 cubic meters demonstration plant, using mixed garbage as feedstock, has been in operation for several years in Gent, Belgium. The operating temperature in the digester is 55 degrees C and the total solids concentration is about 32%. The gas production process is finalized in 3 weeks. The final product is de-watered and further stabilized in 10 days during aerobic post-treatment. Humotex is free of pathogens. Low concentrations of heavy metals can only be obtained through the collection of sorted garbage. The Dranco process is suitable for the digestion of source separated wastes such as vegetables, fruit, garden and non-recyclable paper wastes

  11. Flow measurement and control in the defense waste process

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1985-01-01

    The Defense Waste Processing Facility (DWPF) for immobilizing Savannah River Plant (SRP) high-level radioactive waste is now under construction. Previously stored waste is retrieved and processed into a glass matrix for permanent storage. The equipment operates in an entirely remote environment for both processing and maintenance due to the highly radioactive nature of the waste. A fine powdered glass frit is mixed with the waste prior to its introduction as a slurry into an electric glass furnace. The slurry is Bingham plastic in nature and of high viscosity. This combination of factors has created significant problems in flow measurement and control. Specialized pieces of equipment have been demonstrated that will function properly in a highly abrasive environment while receiving no maintenance during their lifetime. Included are flow meters, flow control technology, flow switching, and remote connections. No plastics or elastomers are allowed in contact with fluids and all electronic components are mounted remotely. Both two- and three-way valves are used. Maintenance is by crane replacement of process sections, utilizing specialized connectors. All portions of the above are now operating full scale (radioactively cold) at the test facility at SRP. 4 references, 8 figures

  12. Process simulation and uncertainty analysis of plasma arc mixed waste treatment

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Welch, T.D.

    1994-01-01

    Innovative mixed waste treatment subsystems have been analyzed for performance, risk, and life-cycle cost as part of the U.S. Department of Energy's (DOE)'s Mixed Waste Integrated Program (MWIP) treatment alternatives development and evaluation process. This paper concerns the analysis of mixed waste treatment system performance. Performance systems analysis includes approximate material and energy balances and assessments of operability, effectiveness, and reliability. Preliminary material and energy balances of innovative processes have been analyzed using FLOW, an object-oriented, process simulator for waste management systems under development at Oak Ridge National Laboratory. The preliminary models developed for FLOW provide rough order-of-magnitude calculations useful for sensitivity analysis. The insight gained from early modeling of these technologies approximately will ease the transition to more sophisticated simulators as adequate performance and property data become available. Such models are being developed in ASPEN by DOE's Mixed Waste Treatment Project (MWTP) for baseline and alternative flow sheets based on commercial technologies. One alternative to the baseline developed by the MWIP support groups in plasma arc treatment. This process offers a noticeable reduction in the number of process operations as compared to the baseline process because a plasma arc melter is capable of accepting a wide variety of waste streams as direct inputs (without sorting or preprocessing). This innovative process for treating mixed waste replaces several units from the baseline process and, thus, promises an economic advantage. The performance in the plasma arc furnace will directly affect the quality of the waste form and the requirements of the off-gas treatment units. The ultimate objective of MWIP is to reduce the amount of final waste produced, the cost, and the environmental impact

  13. Process description and plant design for preparing ceramic high-level waste forms

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKisson, R.L.; Guon, J.; Flintoff, J.F.; McKenzie, D.E.

    1983-01-01

    The ceramics process flow diagram has been simplified and upgraded to utilize only two major processing steps - fluid-bed calcination and hot isostatic press consolidating. Full-scale fluid-bed calcination has been used at INEL to calcine high-level waste for 18 y; and a second-generation calciner, a fully remotely operated and maintained calciner that meets ALARA guidelines, started calcining high-level waste in 1982. Full-scale hot isostatic consolidation has been used by DOE and commercial enterprises to consolidate radioactive components and to encapsulate spent fuel elements for several years. With further development aimed at process integration and parametric optimization, the operating knowledge of full-scale demonstration of the key process steps should be rapidly adaptable to scale-up of the ceramic process to full plant size. Process flowsheets used to prepare ceramic and glass waste forms from defense and commercial high-level liquid waste are described. Preliminary layouts of process flow diagrams in a high-level processing canyon were prepared and used to estimate the preliminary cost of the plant to fabricate both waste forms. The estimated costs for using both options were compared for total waste management costs of SRP high-level liquid waste. Using our design, for both the ceramic and glass plant, capital and operating costs are essentially the same for both defense and commercial wastes, but total waste management costs are calculated to be significantly less for defense wastes using the ceramic option. It is concluded from this and other studies that the ceramic form may offer important advantages over glass in leach resistance, waste loading, density, and process flexibility. Preliminary economic calculations indicate that ceramics must be considered a leading candidate for the form to immobilize high-level wastes

  14. Radioactive wastes processing device

    International Nuclear Information System (INIS)

    Takamura, Yoshiyuki; Fukujoji, Seiya.

    1986-01-01

    Purpose: To exactly recognize the deposition state of mists into conduits thereby effectively conduct cleaning. Constitution: A drier for performing drying treatment of liquid wastes, a steam decontaminating tower for decontaminating the steams generated from the drier and a condenser for condensating the decontaminating steams are connected with each other by means of conduits to constitute a radioactive wastes processing apparatus. A plurality of pressure detectors are disposed to the conduits, the pressure loss within the conduits is determined based on the detector output and the clogged state in the conduits due to the deposition of mists is detected by the magnitude of the pressure loss. If the clogging exceeds a certain level, cleaning water is supplied to clean-up the conduits thereby keep the operation to continue always under sound conditions. (Sekiya, K.)

  15. Processing the THOREX waste at the West Valley demonstration project

    International Nuclear Information System (INIS)

    Barnes, S.M.; Schiffhauer, M.A.

    1994-01-01

    This paper focuses on several options for neutralizing the THOREX and combining it with the PUREX wastes. Neutralization testing with simulated wastes (nonradioactive chemicals) was performed to evaluate the neutralization reactions and the reaction product generation. Various methods for neutralizing the THOREX solution were examined to determine their advantages and disadvantages relative to the overall project objectives and compatibility with the existing process. The primary neutralization process selection criteria were safety and minimizing the potential delays prior to vitrification. The THOREX neutralization method selected was direct addition to the high pH PUREX wastes within Tank 8D-2. Laboratory testing with simulated waste has demonstrated rapid neutralization of the THOREX waste acid. Test results for various direct addition scenarios has established the optimum process operating conditions which provide the largest safety margins

  16. Method of processing liquid wastes

    International Nuclear Information System (INIS)

    Naba, Katsumi; Oohashi, Takeshi; Kawakatsu, Ryu; Kuribayashi, Kotaro.

    1980-01-01

    Purpose: To process radioactive liquid wastes with safety by distillating radioactive liquid wastes while passing gases, properly treating the distillation fractions, adding combustible and liquid synthetic resin material to the distillation residues, polymerizing to solidify and then burning them. Method: Radioactive substance - containing liquid wastes are distillated while passing gases and the distillation fractions containing no substantial radioactive substances are treated in an adequate method. Synthetic resin material, which may be a mixture of polymer and monomer, is added together with a catalyst to the distillation residues containing almost of the radioactive substances to polymerize and solidify. Water or solvent in such an extent as not hindering the solidification may be allowed if remained. The solidification products are burnt for facilitating the treatment of the radioactive substances. The resin material can be selected suitably, methacrylate syrup (mainly solution of polymethylmethacrylate and methylmethacrylate) being preferred. (Seki, T.)

  17. Nuclear and toxic waste recycling process

    International Nuclear Information System (INIS)

    Bottillo, T.V.

    1988-01-01

    This patent describes the process for the safe and convenient disposal of nuclear and/or toxic wastes which comprises the steps of (a) collecting nuclear and/or toxic wastes which pose a danger to health; (b) packaging the wastes within containers for the safe containment thereof to provide filled containers having a weight sufficient to sink into the molten lava present within an active volcano; and (c) depositing the filled containers directly into the molten lava present within a volcano containing same to cause the containers to sink therein end to be dissolved or consumed by the heat, whereby the contents thereof are consumed to become a part of the mass of molten lava present within the volcano

  18. Feed Basis for Processing Relatively Low Radioactivity Waste Tanks

    International Nuclear Information System (INIS)

    Pike, J.A.

    2002-01-01

    This paper presents the characterization of potential feed for processing relatively low radioactive waste tanks. The feed characterization is based on waste characterization data extracted from the waste characterization system. This data is compared to salt cake sample results from Tanks 37, 38 and 41

  19. Process and apparatus for emissions reduction from waste incineration

    International Nuclear Information System (INIS)

    Khinkis, M.J.; Abbasi, H.A.; Lisauskas, R.A.; Itse, D.C.

    1991-01-01

    This paper describes a process for waste combustion. It comprises: introducing the waste into a drying zone within a combustion chamber; supplying air to the drying zone for preheating, drying, and partially combusting the waste; advancing the waste to a combustion zone within the combustion chamber; supplying air to the combustion zone for further advancing the waste to a burnout zone with the combustion chamber; supplying air to the burnout zone for final burnout of organics in the waste; and injecting fuel and recirculated glue gases into the combustion chamber above the waste to create a reducing secondary combustion zone

  20. Handling and processing of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    2001-01-01

    The main objective of this report is to provide technical information and reference material on different steps and components of radioactive waste management for staff in establishments that use radionuclides and in research centres in Member States. It provides technical information on the safe handling, treatment, conditioning and storage of waste arising from the various activities associated with the production and application of radioisotopes in medical, industrial, educational and research facilities. The technical information cited in this report consists mainly of processes that are commercialised or readily available, and can easily be applied as they are or modified to solve specific waste management requirements. This report covers the sources and characteristics of waste and approaches to waste classification, and describes the particular processing steps from pretreatment until storage of conditioned packages

  1. Processing biodegradable waste by applying aerobic digester EWA

    Directory of Open Access Journals (Sweden)

    Đokić Dragoslav

    2014-01-01

    Full Text Available The paper presents research results obtained in the process of processing biodegradable wastes, resulting from agricultural production as well as municipal waste. Aerobic fermenter EWA (stationed within the Institute for Forage Crops Globoder- Kruševac was using for this purpose, during the one month testing. Biodegradable material with different ratios of components was used for filling aerobic digester. EWA fermenter is certified device that is used to stabilize and hygienic disposal of biodegradable waste, including sewage sludge and animal products produced in accordance with European Union regulations. Fermenter is intended to be used for combustion in boilers for solid fuels with humidity of biomaterials below 30%.

  2. Principles of development of the industry of technogenic waste processing

    Directory of Open Access Journals (Sweden)

    Maria A. Bayeva

    2014-01-01

    Full Text Available Objective to identify and substantiate the principles of development of the industry of technogenic waste processing. Methods systemic analysis and synthesis method of analogy. Results basing on the analysis of the Russian and foreign experience in the field of waste management and environmental protection the basic principles of development activities on technogenic waste processing are formulated the principle of legal regulation the principle of efficiency technologies the principle of ecological safety the principle of economic support. The importance of each principle is substantiated by the description of the situation in this area identifying the main problems and ways of their solution. Scientific novelty the fundamental principles of development of the industry of the industrial wastes processing are revealed the measures of state support are proposed. Practical value the presented theoretical conclusions and proposals are aimed primarily on theoretical and methodological substantiation and practical solutions to modern problems in the sphere of development of the industry of technogenic waste processing.

  3. Storage process of large solid radioactive wastes

    International Nuclear Information System (INIS)

    Morin, Bruno; Thiery, Daniel.

    1976-01-01

    Process for the storage of large size solid radioactive waste, consisting of contaminated objects such as cartridge filters, metal swarf, tools, etc, whereby such waste is incorporated in a thermohardening resin at room temperature, after prior addition of at least one inert charge to the resin. Cross-linking of the resin is then brought about [fr

  4. Decontamination of alpha contaminated metallic waste by cerium IV redox process

    International Nuclear Information System (INIS)

    Shah, J.G.; Dhami, P.S.; Gandhi, P.M.; Wattal, P.K.

    2012-01-01

    Decontamination of alpha contaminated metallic waste is an important aspect in the management of waste generated during dismantling and decommissioning of nuclear facilities. Present work on cerium redox process targets decontamination of alpha contaminated metallic waste till it qualifies for the non alpha waste category for disposal in near surface disposal facility. Recovery of the alpha radio nuclides and cerium from aqueous secondary waste streams was also studied deploying solvent extraction process and established. The alpha-lean secondary waste stream has been immobilised in cement based matrix for final disposal. (author)

  5. High-Level Waste (HLW) Feed Process Control Strategy

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2000-01-01

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system

  6. Thermal processes evaluation for RWMC wastes

    International Nuclear Information System (INIS)

    1991-01-01

    The objective of this activity was to provide a white paper that identifies, collects information, and presents a preliminary evaluation of ''core'' thermal technologies that could be applied to RWMC stored and buried mixed waste. This paper presents the results of the following activities: General thermal technology identification, collection of technical and cost information on each technology, identification of thermal technologies applicable to RWMC waste, evaluation of each technology as applied to RWMC waste in seven process attributes, scoring each technology on a one to five scale (five highest) in each process attribute. Reaching conclusions about the superiority of one technology over others is not advised based on this preliminary study alone. However, the highly rated technologies (i.e., overall score of 2.9 or better) are worthy of a more detailed evaluation. The next step should be a more detailed evaluation of the technologies that includes onsite visits with operational facilities, preconceptual treatment facility design analysis, and visits with developers for emerging technologies. 2 figs., 6 tabs

  7. Rhizobial characterization in revegetated areas after bauxite mining

    Directory of Open Access Journals (Sweden)

    Wardsson Lustrino Borges

    2016-06-01

    Full Text Available Abstract Little is known regarding how the increased diversity of nitrogen-fixing bacteria contributes to the productivity and diversity of plants in complex communities. However, some authors have shown that the presence of a diverse group of nodulating bacteria is required for different plant species to coexist. A better understanding of the plant symbiotic organism diversity role in natural ecosystems can be extremely useful to define recovery strategies of environments that were degraded by human activities. This study used ARDRA, BOX-PCR fingerprinting and sequencing of the 16S rDNA gene to assess the diversity of root nodule nitrogen-fixing bacteria in former bauxite mining areas that were replanted in 1981, 1985, 1993, 1998, 2004 and 2006 and in a native forest. Among the 12 isolates for which the 16S rDNA gene was partially sequenced, eight, three and one isolate(s presented similarity with sequences of the genera Bradyrhizobium, Rhizobium and Mesorhizobium, respectively. The richness, Shannon and evenness indices were the highest in the area that was replanted the earliest (1981 and the lowest in the area that was replanted most recently (2006.

  8. Development of very low-level radioactive waste sequestration process criteria

    Energy Technology Data Exchange (ETDEWEB)

    Chan, N.; Wong, P., E-mail: nicholas.chan@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2015-12-15

    Segregating radioactive waste at the source and reclassifying radioactive waste to lower waste classes are the key activities to reduce the environmental footprint and long-term liability. In the Canadian Standards Association's radioactive waste classification system, there are 2 sub-classes within low-level radioactive waste: very short-lived radioactive waste and very low-level radioactive waste (VLLW). VLLW has a low hazard potential but is above the Canadian unconditional clearance criteria as set out in Schedule 2 of Nuclear Substances and Devices Regulations. Long-term waste management facilities for VLLW do not require a high degree of containment and isolation. In general, a relatively low-cost near-surface facility with limited regulatory control is suitable for VLLW. At Canadian Nuclear Laboratories' Chalk River Laboratories site an initiative, VLLW Sequestration, was implemented in 2013 to set aside potential VLLW for temporary storage and to be later dispositioned in the planned VLLW facility. As of May 2015, a total of 236m{sup 3} resulting in approximately $1.1 million in total savings have been sequestered. One of the main hurdles in implementing VLLW Sequestration is the development of process criteria. Waste Acceptance Criteria (WAC) are used as a guide or as requirements for determining whether waste is accepted by the waste management facility. Establishment of the process criteria ensures that segregated waste materials have a high likelihood to meet the VLLW WAC and be accepted into the planned VLLW facility. This paper outlines the challenges and various factors which were considered in the development of interim process criteria. (author)

  9. Decolorization of Industrial Waste Using Fenton Process and Photo Fenton

    OpenAIRE

    Wardiyati, Siti; Dewi, Sari Hasnah; Fisli, Adel

    2013-01-01

    Industrial waste water decolorization has been done using the method of Fenton and Photo Fenton. The experiment was conducted in order to obtain the optimum process conditions for industrial waste treatment method with Fenton and Photo Fenton. Industrial waste used in this experiment waste of blue batik making process derived from Rara Djograng Batik Yogyakarta. Factors were studied in this research are the effect of the amount of catalyst FeSO4.7H2O, the amount of oxidant H2O2, and the time ...

  10. Audit Report on 'Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site'

    International Nuclear Information System (INIS)

    2010-01-01

    The Department of Energy's Office of Environmental Management's (EM), Richland Operations Office (Richland), is responsible for disposing of the Hanford Site's (Hanford) transuranic (TRU) waste, including nearly 12,000 cubic meters of radioactive contact-handled TRU wastes. Prior to disposing of this waste at the Department's Waste Isolation Pilot Plant (WIPP), Richland must certify that it meets WIPP's waste acceptance criteria. To be certified, the waste must be characterized, screened for prohibited items, treated (if necessary) and placed into a satisfactory disposal container. In a February 2008 amendment to an existing Record of Decision (Decision), the Department announced its plan to ship up to 8,764 cubic meters of contact-handled TRU waste from Hanford and other waste generator sites to the Advanced Mixed Waste Treatment Project (AMWTP) at Idaho's National Laboratory (INL) for processing and certification prior to disposal at WIPP. The Department decided to maximize the use of the AMWTP's automated waste processing capabilities to compact and, thereby, reduce the volume of contact-handled TRU waste. Compaction reduces the number of shipments and permits WIPP to more efficiently use its limited TRU waste disposal capacity. The Decision noted that the use of AMWTP would avoid the time and expense of establishing a processing capability at other sites. In May 2009, EM allocated $229 million of American Recovery and Reinvestment Act of 2009 (Recovery Act) funds to support Hanford's Solid Waste Program, including Hanford's contact-handled TRU waste. Besides providing jobs, these funds were intended to accelerate cleanup in the short term. We initiated this audit to determine whether the Department was effectively using Recovery Act funds to accelerate processing of Hanford's contact-handled TRU waste. Relying on the availability of Recovery Act funds, the Department changed course and approved an alternative plan that could increase costs by about $25 million

  11. Evaluation of process alternatives for solidification of the West Valley high-level liquid wastes

    International Nuclear Information System (INIS)

    Holton, L.K.; Larson, D.E.

    1982-01-01

    The Department of Energy (DOE) established the West Valley Solidification Project (WVSP) in 1980. The project purpose is to demonstrate removal and solidification of the high-level liquid wastes (HLLW) presently stored in tanks at the Western New York Nuclear Service Center (WNYNSC), West Valley, New York. As part of this effort, the Pacific Northwest Laboratory (PNL) conducted a study to evaluate process alternatives for solidifcation of the WNYNSC wastes. Two process approaches for waste handling before solidification, together with solidification processes for four terminal and four interim waste forms, were considered. The first waste-handling approach, designated the salt/sludge separation process, involves separating the bulk of the nonradioactive nuclear waste constituents from the radioactive waste constituents, and the second waste-handling approach, designated the combined-waste process, involves no waste segregation prior to solidification. The processes were evaluated on the bases of their (1) readiness for plant startup by 1987, (2) relative technical merits, and (3) process cost. The study has shown that, based on these criteria, the salt/sludge separation process with a borosilicate glass waste form is preferred when producing a terminal waste form. It was also concluded that if an interim waste form is to be used, the preferred approach would be the combined waste process with a fused-salt waste form

  12. Overview - Defense Waste Processing Facility Operating Experience

    International Nuclear Information System (INIS)

    Norton, M.R.

    2002-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the world's largest radioactive waste vitrification facility. Radioactive operations began in March 1996 and over 1,000 canisters have been produced. This paper presents an overview of the DWPF process and a summary of recent facility operations and process improvements. These process improvements include efforts to extend the life of the DWPF melter, projects to increase facility throughput, initiatives to reduce the quantity of wastewater generated, improved remote decontamination capabilities, and improvements to remote canyon equipment to extend equipment life span. This paper also includes a review of a melt rate improvement program conducted by Savannah River Technology Center personnel. This program involved identifying the factors that impacted melt rate, conducting small scale testing of proposed process changes and developing a cost effective implementation plan

  13. Inverse osmotic process for radioactive laundry waste

    International Nuclear Information System (INIS)

    Ebara, Katsuya; Takahashi, Sankichi; Sugimoto, Yoshikazu; Yusa, Hideo; Hyakutake, Hiroshi.

    1977-01-01

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount. (Furukawa, Y.)

  14. TRUEX process: a new dimension in management of liquid TRU wastes

    International Nuclear Information System (INIS)

    Schulz, W.W.; Horwitz, E.P.

    1986-01-01

    The TRUEX process is one of the, if not the, most exciting and potentially useful nuclear separations processes to be developed since the PUREX process was developed and applied in the 1950s. Attesting to its potential widespread use, Rockwell Hanford and ANL investigators, in a joint effort, are developing and testing TRUEX process flow sheets for removal of TRU elements from several Hanford Site wastes including the Plutonium Finishing Plant and complexed concentrate wastes. The TRUEX process also appears to be well suited to removal of plutonium and Am from aqueous chloride wastes generated during plutonium processing operations at the Los Alamos National Lab. (LANL); collaborative efforts between LANL and ANL scientists to develop and demonstrate TRUEX process flow sheets for treatment of LANL site chloride wastes are currently under way

  15. Practical utilization of modeling and simulation in laboratory process waste assessments

    International Nuclear Information System (INIS)

    Lyttle, T.W.; Smith, D.M.; Weinrach, J.B.; Burns, M.L.

    1993-01-01

    At Los Alamos National Laboratory (LANL), facility waste streams tend to be small but highly diverse. Initial characterization of such waste streams is difficult in part due to a lack of tools to assist the waste generators in completing such assessments. A methodology has been developed at LANL to allow process knowledgeable field personnel to develop baseline waste generation assessments and to evaluate potential waste minimization technology. This process waste assessment (PWA) system is an application constructed within the process modeling system. The Process Modeling System (PMS) is an object-oriented, mass balance-based, discrete-event simulation using the common LISP object system (CLOS). Analytical capabilities supported within the PWA system include: complete mass balance specifications, historical characterization of selected waste streams and generation of facility profiles for materials consumption, resource utilization and worker exposure. Anticipated development activities include provisions for a best available technologies (BAT) database and integration with the LANL facilities management Geographic Information System (GIS). The environments used to develop these assessment tools will be discussed in addition to a review of initial implementation results

  16. Processing method and device for radioactive liquid waste

    International Nuclear Information System (INIS)

    Matsuo, Toshiaki; Nishi, Takashi; Matsuda, Masami; Yukita, Atsushi.

    1997-01-01

    When only suspended particulate ingredients are contained as COD components in radioactive washing liquid wastes, the liquid wastes are heated by a first process, for example, an adsorption step to adsorb the suspended particulate ingredients to an activated carbon, and then separating and removing the suspended particulate ingredients by filtration. When both of the floating particle ingredients and soluble organic ingredients are contained, the suspended particulate ingredients are separated and removed by the first process, and then soluble organic ingredients are removed by other process, or both of the suspended particulate ingredients and the soluble organic ingredients are removed by the first process. In an existent method of adding an activated carbon and then filtering them at a normal temperature, the floating particle ingredients cover the layer of activated carbon formed on a filter paper or fabric to sometimes cause clogging. However, according to the method of the present invention, since disturbance by the floating particle ingredients does not occur, the COD components can be separated and removed sufficiently without lowering liquid waste processing speed. (T.M.)

  17. Membrane preparation and process development for radioactive waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. W.; Kim, G. W.; Kim, S. K. [KAERI, Daejeon (Korea, Republic of); and others

    2012-01-15

    The membrane manufacturing technology with hydrophilic function that can minimize fouling when it applies to the radioactive liquid waste treatment process was developed. Thermodynamic and rheological analysis for polysulfone casting solution containing polyvinylpyrrolidone was performed. On the basis of the results of preparation of the hydrophilic polymer membrane solution, the hollow fiber membrane for radioactive liquid waste treatment was manufactured and its performance analysis was carried out. As a results, it turns out the hydrophilic hollow fiber membrane has more 90 % of flux increment effect and also more 2.5 times fouling reducing effect than one prepared with only polysulfone. In addition, as investigating the separation property of radioactive liquid waste for the electrofilteration membrane process, a proper range for application of radioactive liquid wastes was established through the thorough electrofiltration analysis of various wastes containing metal salt, surfactants and oil.

  18. Membrane preparation and process development for radioactive waste treatment

    International Nuclear Information System (INIS)

    Lee, K. W.; Kim, G. W.; Kim, S. K.

    2012-01-01

    The membrane manufacturing technology with hydrophilic function that can minimize fouling when it applies to the radioactive liquid waste treatment process was developed. Thermodynamic and rheological analysis for polysulfone casting solution containing polyvinylpyrrolidone was performed. On the basis of the results of preparation of the hydrophilic polymer membrane solution, the hollow fiber membrane for radioactive liquid waste treatment was manufactured and its performance analysis was carried out. As a results, it turns out the hydrophilic hollow fiber membrane has more 90 % of flux increment effect and also more 2.5 times fouling reducing effect than one prepared with only polysulfone. In addition, as investigating the separation property of radioactive liquid waste for the electrofilteration membrane process, a proper range for application of radioactive liquid wastes was established through the thorough electrofiltration analysis of various wastes containing metal salt, surfactants and oil

  19. Processing of high-temperature simulated waste glass in a continuous ceramic melter

    International Nuclear Information System (INIS)

    Barnes, S.M.; Brouns, R.A.; Hanson, M.S.

    1980-01-01

    Recent operations have demonstrated that high-melting-point glasses and glass-ceramics can be successfully processed in joule-heated, ceramic-lined melters with minor modifications to the existing technology. Over 500 kg of simulated waste glasses have been processed at temperatures up to 1410 0 C. The processability of the two high-temperature waste forms tested is similar to existing borosilicate waste glasses. High-temperature waste glass formulations produced in the bench-scale melter exhibit quality comparing favorably to standard waste glass formulations

  20. Processing of radioactive waste solutions in a vacuum evaporator-crystallizer

    International Nuclear Information System (INIS)

    Petrie, J.C.; Donovan, R.I.; Van der Cook, R.E.; Christensen, W.R.

    1975-01-01

    Results of the first 18 months' operation of Hanford's vacuum evaporator-crystallizer are reported. This process reduces the volume of radioactive waste solutions and simultaneously converts the waste to a less mobile salt cake. The evaporator-crystallizer is operating at better than design production rates and has reduced the volume of radioactive wastes by more than 15 million gallons. A process description, plant performance data, mechanical difficulties, and future operating plans are discussed. Also discussed is a computer model of the evaporator-crystallizer process

  1. Geochemical behaviour of U3O8, Mo, Y, Ga, V and Zr in laterite - bauxitic sequence of the ''Croanta-Paragominas''

    International Nuclear Information System (INIS)

    Ferraioli, R.N.M.; Ferreira, Z.C.A.

    1987-10-01

    Fifteen samples are studied, analyzed for U 3 O 8 (delayed neutrons), ThO 2 (X-ray fluorescence spectrometry) and Mo, Y, Ga, V and Zr (optical emission spectrography) in laterite - bauxitic sequence of the Paragominas, Brazil. Generical datas about the arrangements of thorium, uranium and zirconium are also presented. (C.G.C.) [pt

  2. Processing biodegradable waste by applying aerobic digester EWA

    OpenAIRE

    Đokić, Dragoslav; Lugić, Zoran; Terzić, Dragan; Jevtić, Goran; Milenković, Jasmina; Húrka, Miroslav; Stanisavljević, Rade

    2014-01-01

    The paper presents research results obtained in the process of processing biodegradable wastes, resulting from agricultural production as well as municipal waste. Aerobic fermenter EWA (stationed within the Institute for Forage Crops Globoder- Kruševac) was using for this purpose, during the one month testing. Biodegradable material with different ratios of components was used for filling aerobic digester. EWA fermenter is certified device that is used to stabilize and hygienic disposal of bi...

  3. Selection of efficient options for processing and storage of radioactive waste in countries with small amounts of waste generation

    International Nuclear Information System (INIS)

    2003-09-01

    The report is intended to assist decision makers in countries using nuclear energy for non-power applications to organize their waste management practices. It describes methodologies, criteria and options for the selection of appropriate technologies for processing and storage of low and intermediate level radioactive waste from different nuclear applications. The report reviews both technical and non-technical factors important for decision making and planning, and for implementation of waste management activities at the country and facility levels. It makes practical recommendations for the selection of particular technologies for different scales of waste generation. These wastes may arise from production of radionuclides and their application in industry, agriculture, medicine, education and research. The report also considers waste generated at research reactors, research centers and research laboratories using radioisotopes, as well as waste from decommissioning of research reactors and small nuclear facilities such as hot cells, laboratories and irradiation facilities. Management of uranium mining and milling waste and management of spent fuel from research reactors are not considered in this report. Discussed in detail are: the basic legal, regulatory, administrative and technical requirements set up in a national waste management system and review of the factors and components affecting the selection of an appropriate national waste management system. the origins and characteristics of radioactive waste from different nuclear applications. the technical factors that might affect the selection of waste processing and storage technologies, the main waste management steps, information on available technologies, the basis for planning of waste processing and storage and the selection of a particular option for radioactive waste processing and storage in countries with a different scale of nuclear applications

  4. Selection of efficient options for processing and storage of radioactive waste in countries with small amounts of waste generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-01

    The report is intended to assist decision makers in countries using nuclear energy for non-power applications to organize their waste management practices. It describes methodologies, criteria and options for the selection of appropriate technologies for processing and storage of low and intermediate level radioactive waste from different nuclear applications. The report reviews both technical and non-technical factors important for decision making and planning, and for implementation of waste management activities at the country and facility levels. It makes practical recommendations for the selection of particular technologies for different scales of waste generation. These wastes may arise from production of radionuclides and their application in industry, agriculture, medicine, education and research. The report also considers waste generated at research reactors, research centers and research laboratories using radioisotopes, as well as waste from decommissioning of research reactors and small nuclear facilities such as hot cells, laboratories and irradiation facilities. Management of uranium mining and milling waste and management of spent fuel from research reactors are not considered in this report. Discussed in detail are: the basic legal, regulatory, administrative and technical requirements set up in a national waste management system and review of the factors and components affecting the selection of an appropriate national waste management system. the origins and characteristics of radioactive waste from different nuclear applications. the technical factors that might affect the selection of waste processing and storage technologies, the main waste management steps, information on available technologies, the basis for planning of waste processing and storage and the selection of a particular option for radioactive waste processing and storage in countries with a different scale of nuclear applications.

  5. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  6. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  7. Vacuum evaporator-crystallizer process development for Hanford defense waste

    International Nuclear Information System (INIS)

    Tanaka, K.H.

    1978-04-01

    One of the major programs in the Department of Energy (DOE) waste management operations at Hanford is the volume reduction and solidification of Hanford Defense Residual Liquor (HDRL) wastes. These wastes are neutralized radioactive wastes that have been concentrated and stored in single-shell underground tanks. Two production vacuum evaporator-crystallizers were built and are operating to reduce the liquid volume and solidify these wastes. The process involves evaporating water under vacuum and thus concentrating and crystallizing the salt waste. The high caustic residual liquor is composed primarily of nitrate, nitrite, aluminate, and carbonate salts. Past evaporator-crystallizer operation was limited to crystallizing nitrate, nitrite, and carbonate salts. These salts formed a drainable salt cake that was acceptable for storage in the original single-shell tanks. The need for additional volume reduction and further concentration necessitated this process development work. Further concentration forms aluminate salts which pose unique processing problems. The aluminate salts are very fine crystals, non-drainable, and suitable only for storage in new double-shell tanks where the fluid waste can be continuously monitored. A pilot scale vacuum evaporator-crystallizer system was built and operated by Rockwell Hanford Operations to support flowsheet development for the production evaporator-crystallizers. The process developed was the concentration of residual liquor to form aluminate salts. The pilot plant tests demonstrated that residual liquors with high aluminum concentrations could be concentrated and handled in a vacuum evaporator-crystallizer system. The dense slurry with high solids content and concentrated liquor was successfully pumped in the insulated heated piping system. The most frequent problem encountered in the pilot plant was the failure of mechanical pump seals due to the abrasive slurry

  8. Treatment of Municipal and Industrial Waste by Radiation Processing

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.

    1999-01-01

    In recent years the effort in science and technology is shifting from conventional technologies preventing the pollution of air, water and soil, towards processing by gamma or by electron beam (EB) irradiation in order to prevent pollution, rather than curing the problems caused by production processes, which are not optimized with regard to pollution control. Radiation processing may help to improve the environmental situation in two aspects : It provides alternatives to conventional technologies for the cleaning of air, flue gases and water,...etc, and it also helps to realize clean processes for preventing pollution in the first place. This paper will outline the basic principles of radiation processing for waste streams of environmental relevance, will summarize the state-of -the-art in environmental applications of radiation processing to show both the advantages and the limitations of the radiation processing of waste streams, and to highlight the environmental and economic benefits of clean processes made possible by radiation processing applied to municipal and industrial waste. Reference is made to gamma and EB radiation sources, and description of new technologies is presented

  9. Processing of nuclear power plant waste streams containing boric acid

    International Nuclear Information System (INIS)

    1996-10-01

    Boric acid is used in PWR type reactor's primary coolant circuit to control the neutron flux. However, boric acid complicates the control of water chemistry of primary coolant and the liquid radioactive waste produced from NPP. The purpose of this report is to provide member states with up-to-date information and guidelines for the treatment and conditioning of boric acid containing wastes. It contains chapters on: (a) characteristics of waste streams; (b) options for management of boric acid containing waste; (c) treatment/decontamination of boric acid containing waste; (d) concentration and immobilization of boric acid containing waste; (e) recovery and re-use of boric acid; (f) selected industrial processes in various countries; and (g) the influence of economic factors on process selection. 72 refs, 23 figs, 5 tabs

  10. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    International Nuclear Information System (INIS)

    Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

    1981-10-01

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied. The terminal waste form processes considered were: borosilicate glass, low-alkali glass, marbles-in-lead matrix, and crystallinolecular potential and molecular dynamics calculations of the effect are yet to be completed. Cous oxide was also investigated. The reaction is first order in nitrite ion, second order in hydrogen ion, and between zero and first order in hydroxylamine monosulfonate, depending on the concentration

  11. Defense Waste Processing Facility prototypic analytical laboratory

    International Nuclear Information System (INIS)

    Policke, T.A.; Bryant, M.F.; Spencer, R.B.

    1991-01-01

    The Defense Waste Processing Technology (DWPT) Analytical Laboratory is a relatively new laboratory facility at the Savannah River Site (SRS). It is a non-regulated, non-radioactive laboratory whose mission is to support research and development (R ampersand D) and waste treatment operations by providing analytical and experimental services in a way that is safe, efficient, and produces quality results in a timely manner so that R ampersand D personnel can provide quality technical data and operations personnel can efficiently operate waste treatment facilities. The modules are sample receiving, chromatography I, chromatography II, wet chemistry and carbon, sample preparation, and spectroscopy

  12. Thermoelectric energy harvesting for a solid waste processing toilet

    Science.gov (United States)

    Stokes, C. David; Baldasaro, Nicholas G.; Bulman, Gary E.; Stoner, Brian R.

    2014-06-01

    Over 2.5 billion people do not have access to safe and effective sanitation. Without a sanitary sewer infrastructure, self-contained modular systems can provide solutions for these people in the developing world and remote areas. Our team is building a better toilet that processes human waste into burnable fuel and disinfects the liquid waste. The toilet employs energy harvesting to produce electricity and does not require external electrical power or consumable materials. RTI has partnered with Colorado State University, Duke University, and Roca Sanitario under a Bill and Melinda Gates Foundation Reinvent the Toilet Challenge (RTTC) grant to develop an advanced stand-alone, self-sufficient toilet to effectively process solid and liquid waste. The system operates through the following steps: 1) Solid-liquid separation, 2) Solid waste drying and sizing, 3) Solid waste combustion, and 4) Liquid waste disinfection. Thermoelectric energy harvesting is a key component to the system and provides the electric power for autonomous operation. A portion of the exhaust heat is captured through finned heat-sinks and converted to electricity by thermoelectric (TE) devices to provide power for the electrochemical treatment of the liquid waste, pumps, blowers, combustion ignition, and controls.

  13. Entrapment process of radioactive gaseous wastes

    International Nuclear Information System (INIS)

    Gagneraud, Francis; Gagneraud, Michel.

    1981-01-01

    Process for collecting chemically inert gaseous radioactive waste in melted substances, whereby the gaseous waste is injected under pressure in a molten substance to its saturation point followed by fast cooling. This substance is constituted of glass, ceramics, metallurgical drosses and slag masses in fusion. Its cooling is carried out by quenching by means of running water or a gas fluid, or by casting into vessels with great thermal inertia such as cast iron or similar, before recovery and confinement in receptacles for storage [fr

  14. Oxygen incineration process for treatment of alpha-contaminated wastes

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes

  15. Oxygen incineration process for treatment of alpha-contaminated wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes.

  16. Pollution prevention at the Kansas City Division through process waste assessments

    International Nuclear Information System (INIS)

    Pemberton, S.E.; Gentile, C.C.

    1992-01-01

    Allied-Signal Inc., Kansas City Division (KCD) is committed to the hazardous waste minimization requirements set forth under RCRA as amended by the Pollution Prevention Act and DOE Order 5400.1. To assure compliance with these regulations, the KCD has developed a comprehensive Pollution Prevention Program which focuses on the elimination or minimization of all material releases to all environmental media. The ownership of waste minimization is given to all of the waste generators through Departmental Pollution Prevention Plans. These plans include tools to achieve the waste minimization goals. One of these tools is the process waste assessment (PWA). A PWA is a planned procedure with the objective of identifying opportunities and methods to reduce or eliminate waste. A material balance is performed around a specific process which qualifies and quantifies the materials entering and exiting the process. These materials are further defined to the hazardous component level. The exiting materials are separated into what goes into the product, sent to waste management, and what is released to the air (fugitive or point source). Next, opportunities are identified and evaluated for the ability to eliminate or minimize the waste streams exiting the process. Therefore, the PWA provides the basic tool for the creation of a comprehensive process baseline and identification of opportunities to eliminate/minimize the release of hazardous and non-hazardous wastes. This presentation will describe the status and activities of the program conceived to initiate PWAs at the Kansas City Division (KCD) of Allied-Signal Inc.. This program is organized through business units Which consist of manufacturing, quality, and engineering personnel from a specific product line. The departments that these business units represent are the generators of the major process waste at the KCD. Included in the update will be a brief overview of the lessons learned from the methodology development and

  17. Preliminary evaluation of alternative waste form solidification processes. Volume I. Identification of the processes

    International Nuclear Information System (INIS)

    Treat, R.L.; Nesbitt, J.F.; Blair, H.T.; Carter, J.G.; Gorton, P.S.; Partain, W.L.; Timmerman, C.L.

    1980-04-01

    This document contains preconceptual design data on 11 processes for the solidification and isolation of nuclear high-level liquid wastes (HLLW). The processes are: in-can glass melting (ICGM) process, joule-heated glass melting (JHGM) process, glass-ceramic (GC) process, marbles-in-lead (MIL) matrix process, supercalcine pellets-in-metal (SCPIM) matrix process, pyrolytic-carbon coated pellets-in-metal (PCCPIM) matrix process, supercalcine hot-isostatic-pressing (SCHIP) process, SYNROC hot-isostatic-pressing (SYNROC HIP) process, titanate process, concrete process, and cermet process. For the purposes of this study, it was assumed that each of the solidification processes is capable of handling similar amounts of HLLW generated in a production-sized fuel reprocessing plant. It was also assumed that each of the processes would be enclosed in a shielded canyon or cells within a waste facility located at the fuel reprocessing plant. Finally, it was assumed that all of the processes would be subject to the same set of regulations, codes and standards. Each of the solidification processes converts waste into forms that may be acceptable for geological disposal. Each process begins with the receipt of HLLW from the fuel reprocessing plant. In this study, it was assumed that the original composition of the HLLW would be the same for each process. The process ends when the different waste forms are enclosed in canisters or containers that are acceptable for interim storage. Overviews of each of the 11 processes and the bases used for their identification are presented in the first part of this report. Each process, including its equipment and its requirements, is covered in more detail in Appendices A through K. Pertinent information on the current state of the art and the research and development required for the implementation of each process are also noted in the appendices

  18. Materials evaluation programs at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Gee, J.T.; Iverson, D.C.; Bickford, D.F.

    1992-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided

  19. Process chemistry for the pretreatment of Hanford tank wastes

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Swanson, J.L.; Barker, S.A.

    1992-08-01

    Current guidelines for disposing radioactive wastes stored in underground tanks at the US Department of Energy's Hanford Site call for the vitrification of high-level waste in borosilicate glass and disposal of the glass canisters in a deep geologic repository. Low-level waste is to be cast in grout and disposed of on site in shallow burial vaults. Because of the high cost of vitrification and geologic disposal, methods are currently being developed to minimize the volume of high-level waste requiring disposal. Two approaches are being considered for pretreating radioactive tank sludges: (1) leaching of selected components from the sludge and (2) acid dissolution of the sludge followed by separation of key radionuclides. The leaching approach offers the advantage of simplicity, but the acid dissolution/radionuclide extraction approach has the potential to produce the least number of glass canisters. Four critical components (Cr, P, S, and Al) were leached from an actual Hanford tank waste-Plutonium Finishing Plant sludge. The Al, P, and S were removed from the sludge by digestion of the sludge with 0.1 M NaOH at 100 degrees C. The Cr was leached by treating the sludge with alkaline KMnO 4 at 100 degrees C. Removing these four components from the sludge will dramatically lower the number of glass canisters required to dispose of this waste. The transuranic extraction (TRUEX) solvent extraction process has been demonstrated at a bench scale using an actual Hanford tank waste. The process, which involves extraction of the transuranic elements with octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), separated 99.9% of the transuranic elements from the bulk components of the waste. Several problems associated with the TRUEX processing of this waste have been addressed and solved

  20. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 1, Industrial solid waste processing municipal waste reduction/recycling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarizes the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  1. Waste Receiving and Processing Facility Module 1: Volume 1, Preliminary Design report

    International Nuclear Information System (INIS)

    1992-03-01

    The Preliminary Design Report (Title 1) for the Waste Receiving and Processing (WRAP) Module 1 provides a comprehensive narrative description of the proposed facility and process systems, the basis for each of the systems design, and the engineering assessments that were performed to support the technical basis of the Title 1 design. The primary mission of the WRAP 1 Facility is to characterize and certify contact-handled (CH) waste in 55-gallon drums for disposal. Its secondary function is to certify CH waste in Standard Waste Boxes (SWBs) for disposal. The preferred plan consist of retrieving the waste and repackaging as necessary in the Waste Receiving and Processing (WRAP) facility to certify TRU waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. WIPP is a research and development facility designed to demonstrate the safe and environmentally acceptable disposal of TRU waste from National Defense programs. Retrieved waste found to be Low-Level Waste (LLW) after examination in the WRAP facility will be disposed of on the Hanford site in the low-level waste burial ground. The Hanford Site TRU waste will be shipped to the WIPP for disposal between 1999 and 2013

  2. Design of the Waste Receiving and Processing (WRAP) 2A Facility

    International Nuclear Information System (INIS)

    Lamberd, D.L.; Weingardt, K.M.

    1994-07-01

    Radioactive and Hazardous Mixed Waste have accumulated at the US Department of Energy (DOE) Hanford Site in south-central Washington State. Future generated waste streams from planned facilities at the Hanford Site and off site will also generate solid wastes that contain both radiological and hazardous chemical components. Most of the low-level waste (LLW) in this category is generated in batches sized to be stored in smaller containers (mostly 55-gallon drums and boxes). To meet the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions, most of this waste will need to be treated to meet disposal requirements. In general this treatment must include stabilization/solidification either as a sole method or as part of a treatment train. A planned DOE facility, the Waste Receiving and Processing (WRAP) Module 2A, Building 2337-W, is scoped to provide this required treatment for containerized contact-handle at sign d (CH), mixed low-level waste (MLLW) at the Hanford Site. The core processes in WRAP Module 2A include cement stabilization of particulate waste, polyethylene encapsulation (via extrusion) of particulate waste, and cement encapsulation (via vibratory infilling) of hard and soft debris. A conceptual design was prepared and issued in July 1992. Since that time, process development test activities and further design iterations have evolved into the optimized process and facility design presented in this paper. This paper will discuss the revised processing scheme, equipment configuration, and facility layout. The WRAP Module 2A will begin construction in 1996 after a detailed design effort and pilot testing activities

  3. PROCESSING OF RADIOACTIVE WASTE

    Science.gov (United States)

    Johnson, B.M. Jr.; Barton, G.B.

    1961-11-14

    A process for treating radioactive waste solutions prior to disposal is described. A water-soluble phosphate, borate, and/or silicate is added. The solution is sprayed with steam into a space heated from 325 to 400 deg C whereby a powder is formed. The powder is melted and calcined at from 800 to 1000 deg C. Water vapor and gaseous products are separated from the glass formed. (AEC)

  4. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    Energy Technology Data Exchange (ETDEWEB)

    Carilli, Jhon T. [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States); Krenzien, Susan K. [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)

    2013-07-01

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  5. Method of volume-reducing processing for radioactive wastes

    International Nuclear Information System (INIS)

    Sato, Koei; Yamauchi, Noriyuki; Hirayama, Toshihiko.

    1985-01-01

    Purpose: To process the processing products of radioactive liquid wastes and burnable solid wastes produced from nuclear facilities into stable solidification products by heat melting. Method: At first, glass fiber wastes of contaminated air filters are charged in a melting furnace. Then, waste products obtained through drying, sintering, incineration, etc. are mixed with a proper amount of glass fibers and charged into the melting furnace. Both of the charged components are heated to a temperature at which the glass fibers are melted. The burnable materials are burnt out to provide a highly volume-reduced products. When the products are further heated to a temperature at which metals or metal oxides of a higher melting point than the glass fiber, the glass fibers and the metals or metal oxides are fused to each other to be combined in a molecular structure into more stabilized products. The products are excellent in strength, stability, durability and leaching resistance at ambient temperature. (Kamimura, M.)

  6. Batching alternatives for Phase I retrieval wastes to be processed in WRAP Module 1

    International Nuclear Information System (INIS)

    Mayancsik, B.A.

    1994-01-01

    During the next two decades, the transuranic (TRU) waste now stored in the 200 Area burial trenches and storage buildings is to be retrieved, processed in the Waste Receiving and Processing (WRAP) Module 1 facility, and shipped to a final disposal facility. The purpose of this document is to identify the criteria that can be used to batch suspect TRU waste, currently in retrievable storage, for processing through the WRAP Module 1 facility. These criteria are then used to generate a batch plan for Phase 1 Retrieval operations, which will retrieve the waste located in Trench 4C-04 of the 200 West Area burial ground. The reasons for batching wastes for processing in WRAP Module 1 include reducing the exposure of workers and the environment to hazardous material and ionizing radiation; maximizing the efficiency of the retrieval, processing, and disposal processes by reducing costs, time, and space throughout the process; reducing analytical sampling and analysis; and reducing the amount of cleanup and decontamination between process runs. The criteria selected for batching the drums of retrieved waste entering WRAP Module 1 are based on the available records for the wastes sent to storage as well as knowledge of the processes that generated these wastes. The batching criteria identified in this document include the following: waste generator; type of process used to generate or package the waste; physical waste form; content of hazardous/dangerous chemicals in the waste; radiochemical type and quantity of waste; drum weight; and special waste types. These criteria were applied to the waste drums currently stored in Trench 4C-04. At least one batching scheme is shown for each of the criteria listed above

  7. Mixed waste treatment with a mediated electrochemical process

    International Nuclear Information System (INIS)

    Hickman, R.G.; Gray, L.W.; Chiba, Z.

    1991-01-01

    The process described in this paper is intended to convert mixed waste containing toxic organic compounds (not heavy metals) to ordinary radioactive waste, which is treatable. The process achieves its goal by oxidizing hydrocarbons to CO 2 and H 2 O. Other atoms that may be present in the toxic organic generally are converted to nonhazardous anions such as sulfate and phosphate. This electro chemical conversion is performed at conditions of temperature and pressure that are just moderately above ambient conditions. Gaseous hydroxides and oxyhydroxides that are formed by many radionuclides during incineration cannot form in this process. 1 ref., 3 figs

  8. Coupled processes in NRC high-level waste research

    International Nuclear Information System (INIS)

    Costanzi, F.A.

    1987-01-01

    The author discusses NRC research effort in support of evaluating license applications for disposal of nuclear waste and for promulgating regulations and issuing guidance documents on nuclear waste management. In order to do this they fund research activities at a number of laboratories, academic institutions, and commercial organizations. One of our research efforts is the coupled processes study. This paper discusses interest in coupled processes and describes the target areas of research efforts over the next few years. The specific research activities relate to the performance objectives of NRC's high-level waste (HLW) regulation and the U.S. Environmental Protection Agency (EPA) HLW standard. The general objective of the research program is to ensure the NRC has a sufficient independent technical base to make sound regulatory decisions

  9. Minimally processed beetroot waste as an alternative source to obtain functional ingredients.

    Science.gov (United States)

    Costa, Anne Porto Dalla; Hermes, Vanessa Stahl; Rios, Alessandro de Oliveira; Flôres, Simone Hickmann

    2017-06-01

    Large amounts of waste are generated by the minimally processed vegetables industry, such as those from beetroot processing. The aim of this study was to determine the best method to obtain flour from minimally processed beetroot waste dried at different temperatures, besides producing a colorant from such waste and assessing its stability along 45 days. Beetroot waste dried at 70 °C originates flour with significant antioxidant activity and higher betalain content than flour produced from waste dried at 60 and 80 °C, while chlorination had no impact on the process since microbiological results were consistent for its application. The colorant obtained from beetroot waste showed color stability for 20 days and potential antioxidant activity over the analysis period, thus it can be used as a functional additive to improve nutritional characteristics and appearance of food products. These results are promising since minimally processed beetroot waste can be used as an alternative source of natural and functional ingredients with high antioxidant activity and betalain content.

  10. High-Level waste process and product data annotated bibliography

    International Nuclear Information System (INIS)

    Stegen, G.E.

    1996-01-01

    The objective of this document is to provide information on available issued documents that will assist interested parties in finding available data on high-level waste and transuranic waste feed compositions, properties, behavior in candidate processing operations, and behavior on candidate product glasses made from those wastes. This initial compilation is only a partial list of available references

  11. High-level waste processing at the Savannah River Site: An update

    International Nuclear Information System (INIS)

    Marra, J.E.; Bennett, W.M.; Elder, H.H.; Lee, E.D.; Marra, S.L.; Rutland, P.L.

    1997-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) in Aiken, SC mg began immobilizing high-level radioactive waste in borosilicate glass in 1996. Currently, the radioactive glass is being produced as a ''sludge-only'' composition by combining washed high-level waste sludge with glass frit. The glass is poured in stainless steel canisters which will eventually be disposed of in a permanent, geological repository. To date, DWPF has produced about 100 canisters of vitrified waste. Future processing operations will, be based on a ''coupled'' feed of washed high-level waste sludge, precipitated cesium, and glass frit. This paper provides an update of the processing activities completed to date, operational/flowsheet problems encountered, and programs underway to increase production rates

  12. Recent development of anaerobic digestion processes for energy recovery from wastes.

    Science.gov (United States)

    Nishio, Naomichi; Nakashimada, Yutaka

    2007-02-01

    Anaerobic digestion leads to the overall gasification of organic wastewaters and wastes, and produces methane and carbon dioxide; this gasification contributes to reducing organic matter and recovering energy from organic carbons. Here, we propose three new processes and demonstrate the effectiveness of each process. By using complete anaerobic organic matter removal process (CARP), in which diluted wastewaters such as sewage and effluent from a methane fermentation digester were treated under anaerobic condition for post-treatment, the chemical oxygen demand (COD) in wastewater was decreased to less than 20 ppm. The dry ammonia-methane two-stage fermentation process (Am-Met process) is useful for the anaerobic treatment of nitrogen-rich wastes such as waste excess sludge, cow feces, chicken feces, and food waste without the dilution of the ammonia produced by water or carbon-rich wastes. The hydrogen-methane two-stage fermentation (Hy-Met process), in which the hydrogen produced in the first stage is used for a fuel cell system to generate electricity and the methane produced in the second stage is used to generate heat energy to heat the two reactors and satisfy heat requirements, is useful for the treatment of sugar-rich wastewaters, bread wastes, and biodiesel wastewaters.

  13. Low and medium activity solid wastes processing and encapsulation

    International Nuclear Information System (INIS)

    Taillard, D.; Claes, J.; Hennart, D.

    1983-01-01

    This work, carried out under contract with the European Atomic Energy Community, describes the techniques in use for waste management. The activity of low and medium activity solid wastes is from few curies to few tens of curies per cubic meter, they are produced by nuclear facilities and are often complex mixtures. Radioactive wastes are characterized and processing and conditioning are described. Leaching, stability, mechanical resistance and radiolysis of encapsulated wastes are examined. Handling, storage and disposal are treated

  14. Process development work plan for waste feed delivery system

    International Nuclear Information System (INIS)

    Papp, I.G.

    1998-01-01

    This work plan defines the process used to develop project definition for Waste Feed Delivery (WFD). Project definition provides the direction for development of definitive design media required for the ultimate implementation of operational processing hardware and software. Outlines for the major deliverables are attached as appendices. The implementation of hardware and software will accommodate requirements for safe retrieval and delivery of waste currently stored in Hanford's underground storage tanks. Operations and maintenance ensure the availability of systems, structures, and components for current and future planned operations within the boundary of the Tank Waste Remediation System (TWRS) authorization basis

  15. Process Design Concepts for Stabilization of High Level Waste Calcine

    Energy Technology Data Exchange (ETDEWEB)

    T. R. Thomas; A. K. Herbst

    2005-06-01

    The current baseline assumption is that packaging ¡§as is¡¨ and direct disposal of high level waste (HLW) calcine in a Monitored Geologic Repository will be allowed. The fall back position is to develop a stabilized waste form for the HLW calcine, that will meet repository waste acceptance criteria currently in place, in case regulatory initiatives are unsuccessful. A decision between direct disposal or a stabilization alternative is anticipated by June 2006. The purposes of this Engineering Design File (EDF) are to provide a pre-conceptual design on three low temperature processes under development for stabilization of high level waste calcine (i.e., the grout, hydroceramic grout, and iron phosphate ceramic processes) and to support a down selection among the three candidates. The key assumptions for the pre-conceptual design assessment are that a) a waste treatment plant would operate over eight years for 200 days a year, b) a design processing rate of 3.67 m3/day or 4670 kg/day of HLW calcine would be needed, and c) the performance of waste form would remove the HLW calcine from the hazardous waste category, and d) the waste form loadings would range from about 21-25 wt% calcine. The conclusions of this EDF study are that: (a) To date, the grout formulation appears to be the best candidate stabilizer among the three being tested for HLW calcine and appears to be the easiest to mix, pour, and cure. (b) Only minor differences would exist between the process steps of the grout and hydroceramic grout stabilization processes. If temperature control of the mixer at about 80„aC is required, it would add a major level of complexity to the iron phosphate stabilization process. (c) It is too early in the development program to determine which stabilizer will produce the minimum amount of stabilized waste form for the entire HLW inventory, but the volume is assumed to be within the range of 12,250 to 14,470 m3. (d) The stacked vessel height of the hot process vessels

  16. Solidification of low-level radioactive liquid waste using a cement-silicate process

    International Nuclear Information System (INIS)

    Grandlund, R.W.; Hayes, J.F.

    1979-01-01

    Extensive use has been made of silicate and Portland cement for the solidification of industrial waste and recently this method has been successfully used to solidify a variety of low level radioactive wastes. The types of wastes processed to date include fuel fabrication sludges, power reactor waste, decontamination solution, and university laboratory waste. The cement-silicate process produces a stable solid with a minimal increase in volume and the chemicals are relatively inexpensive and readily available. The method is adaptable to either batch or continuous processing and the equipment is simple. The solid has leaching characteristics similar to or better than plain Portland cement mixtures and the leaching can be further reduced by the use of ion-exchange additives. The cement-silicate process has been used to solidify waste containing high levels of boric acid, oils, and organic solvents. The experience of handling the various types of liquid waste with a cement-silicate system is described

  17. Waste management study: Process development at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1984-12-01

    This report presents the results of an evaluation of the present Toxic Waste Control Operations at the Lawrence Livermore National Laboratory, evaluates the technologies most applicable to the treatment of toxic and hazardous wastes and presents conceptual designs of processes for the installation of a new decontamination and waste treatment facility (DWTF) for future treatment of these wastes

  18. Estimation of centerline temperature of the waste form for the rare earth waste generated from pyrochemical process

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Hoon, E-mail: mrchoijh@kaeri.re.kr; Eun, Hee-Chul; Lee, Tae-Kyo; Lee, Ki-Rak; Han, Seung-Youb; Jeon, Min-Ku; Park, Hwan-Seo; Ahn, Do-Hee

    2017-01-15

    Estimation of centerline temperature of nuclear glass waste form for each waste stream is very essential in the period of storage because the centerline temperature being over its glass transition temperature results in the increase of leaching rate of radioactive nuclides due to the devitrification of glass waste form. Here, to verify the effects of waste form diameter and transuranic element content in the rare earth waste on the centerline temperature of the waste form, the surrogate rare earth glass waste generated from pyrochemical process was immobilized with SiO{sub 2}−Al{sub 2}O{sub 3}−B{sub 2}O{sub 3} glass frit system, and thermal properties of the rare earth glass waste form were determined by thermomechanical analysis and thermal conductivity analysis. The estimation of centerline temperature was carried out using the experimental thermal data and steady-state conduction equation in a long and solid cylinder type waste form. It was revealed that thermal stability of waste form in case of 0.3 m diameter was not affected by the TRU content even in the case of 80% TRU recovery ratio in the electrowinning process, meaning that the waste form of 0.3 m diameter is thermally stable due to the low centerline temperature relative to its glass transition temperature of the rare earth glass waste form.

  19. Accelerator Production of Tritium project process waste assessment

    Energy Technology Data Exchange (ETDEWEB)

    Carson, S.D.; Peterson, P.K.

    1995-09-01

    DOE has made a commitment to compliance with all applicable environmental regulatory requirements. In this respect, it is important to consider and design all tritium supply alternatives so that they can comply with these requirements. The management of waste is an integral part of this activity and it is therefore necessary to estimate the quantities and specific wastes that will be generated by all tritium supply alternatives. A thorough assessment of waste streams includes waste characterization, quantification, and the identification of treatment and disposal options. The waste assessment for APT has been covered in two reports. The first report was a process waste assessment (PWA) that identified and quantified waste streams associated with both target designs and fulfilled the requirements of APT Work Breakdown Structure (WBS) Item 5.5.2.1. This second report is an expanded version of the first that includes all of the data of the first report, plus an assessment of treatment and disposal options for each waste stream identified in the initial report. The latter information was initially planned to be issued as a separate Waste Treatment and Disposal Options Assessment Report (WBS Item 5.5.2.2).

  20. Accelerator Production of Tritium project process waste assessment

    International Nuclear Information System (INIS)

    Carson, S.D.; Peterson, P.K.

    1995-09-01

    DOE has made a commitment to compliance with all applicable environmental regulatory requirements. In this respect, it is important to consider and design all tritium supply alternatives so that they can comply with these requirements. The management of waste is an integral part of this activity and it is therefore necessary to estimate the quantities and specific wastes that will be generated by all tritium supply alternatives. A thorough assessment of waste streams includes waste characterization, quantification, and the identification of treatment and disposal options. The waste assessment for APT has been covered in two reports. The first report was a process waste assessment (PWA) that identified and quantified waste streams associated with both target designs and fulfilled the requirements of APT Work Breakdown Structure (WBS) Item 5.5.2.1. This second report is an expanded version of the first that includes all of the data of the first report, plus an assessment of treatment and disposal options for each waste stream identified in the initial report. The latter information was initially planned to be issued as a separate Waste Treatment and Disposal Options Assessment Report (WBS Item 5.5.2.2)

  1. Radioactive waste processing method and device

    International Nuclear Information System (INIS)

    Ozaki, Shigeru; Tateyama, Shinji.

    1998-01-01

    A powdery activated carbon is charged to radioactive liquid wastes to form a mixed slurry. The slurry is subjected to solid/liquid separation, and a high-molecular water absorbent is charged to the separated activated carbon sludge wastes to process them while stirring. The high-molecular water absorbent comprises a graft polymer of starch and acrylonitrile or a cross-linked polymer of sodium acrylate and a cross-linking agent. The high-molecular water absorbing agent is previously charged to a vessel for containing the wasted active carbon sludges. The device of the present invention comprises a filtration device for solid/liquid separation of the mixed slurry, a sludge-containing vessel, a device for charging the high-molecular water absorbent and a sludge stirring device. The device of charging the high-molecular water absorbent comprises a plurality of weighing devices for weighing the change of the weight of the charged products and a conveyor for transferring the sludge-containing vessels. With such a constitution, stable sludge can be obtained, and activated carbon sludge wastes can be burnt without crushing them. (T.M.)

  2. Decontamination of irradiated-fuel processing waste using manganese dioxide hydrate

    International Nuclear Information System (INIS)

    Auchapt, J.M.; Gaudier, J.F.

    1969-01-01

    The 'manganese dioxide' process is designed to replace the 'calcium carbonate' treatment for low and medium activity wastes. The objective to attain during the research for a new process was the diminution of the volume of the sludge without decreasing the decontamination factor of the wastes. The new process involves addition in series of twice over 100 ppm of Mn 2+ in the waste which has previously been made basic and oxidizing; the precipitate formed in situ is separated after each addition. The process has the advantage of increasing the decontamination of strontium. The treatment can be used in a plant including two decantation units and has given effective results when applied in such a plant. (author) [fr

  3. Colloidal agglomerates in tank sludge and their impact on waste processing

    International Nuclear Information System (INIS)

    Tingey, J.M.; Bunker, B.C.; Graff, G.L.; Keefer, K.D.; Lea, A.S.; Rector, D.R.

    1999-01-01

    Disposal of millions of gallons of existing radioactive wastes in underground storage tanks is a major remediation activity for the US Department of Energy. These wastes include a substantial volume of insoluble sludges consisting of submicron colloidal particles. Processing these sludges under the proposed processing conditions presents unique challenges in retrieval transport, separation, and solidification of these waste streams. Depending on processing conditions, these colloidal particles can form agglomerated networks having high viscosities that could clog transfer lines or produce high volumes of low-density sediments that interfere with solid-liquid separations. Under different conditions, these particles can be dispersed to form very fine suspended particles that do not settle. Given the wide range of waste chemistries present at Department of Energy sites, it is impractical to measure the properties of all treatment procedures. Under the current research activities, the underlying principles of colloid chemistry and physics are being studied to predict and eventually control the physical properties of sludge suspensions and sediment layers in tank wastes and other waste processing streams. Proposed tank processing strategies include retrieval transport, and solid-liquid separations in basic (pH 10 to 14), high ionic strength (0.1 to 1.0 M) salt solutions. The effect of salt concentration, ionic strength, and salt composition on the physical properties such as viscosity, agglomerate size, and sedimentation of model suspensions containing mixtures of one or two of the major components found in actual wastes have been measured to understand how agglomeration influences processing. Property models developed from theory and experiment on these simple suspensions are then applied to explain the results obtained on actual wastes

  4. New technology of extracting the amount of rare earth metals from the red mud

    International Nuclear Information System (INIS)

    Martoyan, G A; Karamyan, G G; Vardan, G A

    2016-01-01

    The paper outlined the environmental and economic problems associated with red mud - the waste generated in processing of bauxite ore for aluminum production. The chemical analysis of red mud has identified a number of useful elements including rare earth metals. The electromembrane technology of red mud processing with extraction of valuable elements is described. A possible scheme of separation of these metals through electrolysis is also given. (paper)

  5. Small-scale integrated demonstration of high-level radioactive waste processing and vitrification using actual SRP waste

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Woolsey, G.B.; Galloway, R.M.; Baumgarten, P.M.; Eibling, R.E.

    1980-01-01

    Experiments have been made to demonstrate the feasibility of immobilizing SRP high-level waste in borosilicate glass. Results to date are encouraging. Equipment performance and processing characteristics for solidifying small batches of actual SRP waste have agreed well with previous experience with small- and large-scale tests synthetic waste, and with theoretical predictions

  6. Polyethylene encapsulatin of nitrate salt wastes: Waste form stability, process scale-up, and economics

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1991-07-01

    A polyethylene encapsulation system for treatment of low-level radioactive, hazardous, and mixed wastes has been developed at Brookhaven National Laboratory. Polyethylene has several advantages compared with conventional solidification/stabilization materials such as hydraulic cements. Waste can be encapsulated with greater efficiency and with better waste form performance than is possible with hydraulic cement. The properties of polyethylene relevant to its long-term durability in storage and disposal environments are reviewed. Response to specific potential failure mechanisms including biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation are examined. These data are supported by results from extensive waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. The bench-scale process has been successfully tested for application with a number of specific ''problem'' waste streams. Quality assurance and performance testing of the resulting waste form confirmed scale-up feasibility. Use of this system at Rocky Flats Plant can result in over 70% fewer drums processed and shipped for disposal, compared with optimal cement formulations. Based on the current Rocky Flats production of nitrate salt per year, polyethylene encapsulation can yield an estimated annual savings between $1.5 million and $2.7 million, compared with conventional hydraulic cement systems. 72 refs., 23 figs., 16 tabs

  7. Low and intermediate level radioactive waste processing in plasma reactor

    International Nuclear Information System (INIS)

    Sauchyn, V.; Khvedchyn, I.; Van Oost, G.

    2013-01-01

    Methods of low and intermediate level radioactive waste processing comprise: cementation, bituminization, curing in polymer matrices, combustion and pyrolysis. All these methods are limited in their application in the field of chemical, morphological, and aggregate composition of material to be processed. The thermal plasma method is one of the universal methods of RAW processing. The use of electric-arc plasma with mean temperatures 2000 - 8000 K can effectively carry out the destruction of organic compounds into atoms and ions with very high speeds and high degree of conversion. Destruction of complex substances without oxygen leads to a decrease of the volume of exhaust gases and dimension of gas cleaning system. This paper presents the plasma reactor for thermal processing of low and intermediate level radioactive waste of mixed morphology. The equipment realizes plasma-pyrolytic conversion of wastes and results in a conditioned product in a single stage. As a result, the volume of conditioned waste is significantly reduced (more than 10 times). Waste is converted into an environmentally friendly form that suits long-term storage. The leaching rate of macro-components from the vitrified compound is less than 1.10 -7 g/(cm 2 .day). (authors)

  8. Test plan for formulation and evaluation of grouted waste forms with shine process wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Jerden, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    The objective of this experimental project is to demonstrate that waste streams generated during the production of Mo99 by the SHINE Medical Technologies (SHINE) process can be immobilized in cement-based grouted waste forms having physical, chemical, and radiological stabilities that meet regulatory requirements for handling, storage, transport, and disposal.

  9. Processing method for miscellaneous radioactive solid waste

    International Nuclear Information System (INIS)

    Matsuda, Masami; Komori, Itaru; Nishi, Takashi.

    1995-01-01

    Miscellaneous solid wastes are subjected to heat treatment at a temperature not lower than a carbonizing temperature of organic materials in the wastes and not higher than the melting temperature of inorganic materials in the wastes, for example, not lower than 200degC but not higher than 660degC, and then resultant miscellaneous solid wastes are solidified using a water hardening solidification material. With such procedures, the organic materials in the miscellaneous solids are decomposed into gases. Therefore, solid materials excellent in long term stability can be formed. In addition, since the heat treatment is conducted at a relatively low temperature such as not higher than 660degC, the generation amount of off gases is reduced to simplify an off gas processing system, and since molten materials are not formed, handing is facilitated. (T.M.)

  10. Results Of The Extraction-Scrub-Strip Testing Using An Improved Solvent Formulation And Salt Waste Processing Facility Simulated Waste

    International Nuclear Information System (INIS)

    Peters, T.; Washington, A.; Fink, S.

    2012-01-01

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent - also known as the next generation solvent (NGS) - for deployment at the Savannah River Site to remove cesium from High Level Waste. The technical effort is a collaborative effort between Oak Ridge National Laboratory (ORNL) and Savannah River National Laboratory (SRNL). As part of the program, the Savannah River National Laboratory (SRNL) has performed a number of Extraction-Scrub-Strip (ESS) tests. These batch contact tests serve as first indicators of the cesium mass transfer solvent performance with actual or simulated waste. The test detailed in this report used simulated Tank 49H material, with the addition of extra potassium. The potassium was added at 1677 mg/L, the maximum projected (i.e., a worst case feed scenario) value for the Salt Waste Processing Facility (SWPF). The results of the test gave favorable results given that the potassium concentration was elevated (1677 mg/L compared to the current 513 mg/L). The cesium distribution value, DCs, for extraction was 57.1. As a comparison, a typical D Cs in an ESS test, using the baseline solvent formulation and the typical waste feed, is ∼15. The Modular Caustic Side Solvent Extraction Unit (MCU) uses the Caustic-Side Solvent Extraction (CSSX) process to remove cesium (Cs) from alkaline waste. This process involves the use of an organic extractant, BoBCalixC6, in an organic matrix to selectively remove cesium from the caustic waste. The organic solvent mixture flows counter-current to the caustic aqueous waste stream within centrifugal contactors. After extracting the cesium, the loaded solvent is stripped of cesium by contact with dilute nitric acid and the cesium concentrate is transferred to the Defense Waste Processing Facility (DWPF), while the organic solvent is cleaned and recycled for further use. The Salt Waste Processing Facility (SWPF), under

  11. Qualification of R.A. waste conditioning process and installations by ONDRAF/NIRAS

    International Nuclear Information System (INIS)

    Havard, P.; Faniel, L.; Voet, M.; Goeyse, A. de.

    1993-01-01

    ONDRAF/NIRAS in its role of national agency responsible for the management of radioactive waste in Belgium (including transport, intermediate storage and final disposal of the conditioned waste) has defined and enforces conditions for the acceptance (i.e. taking over) of conditioned waste packages. The waste acceptance conditions applicable at the present time are: 1. The conditioning process and installations are qualified by ONDRAF/NIRAS; 2. The waste packages are produced according to the qualified process and installations, and meet the technical specifications and acceptance criteria defined by ONDRAF/NIRAS; 3. The production of the waste packages is supervised by ONDRAF/NIRAS through an inspection and control programme specific to each conditioning process and associated installation, and has been found satisfactory. (author)

  12. Rhizobial characterization in revegetated areas after bauxite mining.

    Science.gov (United States)

    Borges, Wardsson Lustrino; Prin, Yves; Ducousso, Marc; Le Roux, Christine; de Faria, Sergio Miana

    2016-01-01

    Little is known regarding how the increased diversity of nitrogen-fixing bacteria contributes to the productivity and diversity of plants in complex communities. However, some authors have shown that the presence of a diverse group of nodulating bacteria is required for different plant species to coexist. A better understanding of the plant symbiotic organism diversity role in natural ecosystems can be extremely useful to define recovery strategies of environments that were degraded by human activities. This study used ARDRA, BOX-PCR fingerprinting and sequencing of the 16S rDNA gene to assess the diversity of root nodule nitrogen-fixing bacteria in former bauxite mining areas that were replanted in 1981, 1985, 1993, 1998, 2004 and 2006 and in a native forest. Among the 12 isolates for which the 16S rDNA gene was partially sequenced, eight, three and one isolate(s) presented similarity with sequences of the genera Bradyrhizobium, Rhizobium and Mesorhizobium, respectively. The richness, Shannon and evenness indices were the highest in the area that was replanted the earliest (1981) and the lowest in the area that was replanted most recently (2006). Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Waste removal in pyrochemical fuel processing for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Johnson, T.R.; Laidler, J.J.

    1994-01-01

    Electrorefining in a molten salt electrolyte is used in the Integral Fast Reactor fuel cycle to recover actinides from spent fuel. Processes that are being developed for removing the waste constituents from the electrorefiner and incorporating them into the waste forms are described in this paper. During processing, halogen, chalcogen, alkali, alkaline earth, and rare earth fission products build up in the molten salt as metal halides and anions, and fuel cladding hulls and noble metal fission products remain as metals of various particle sizes. Essentially all transuranic actinides are collected as metals on cathodes, and are converted to new metal fuel. After processing, fission products and other waste are removed to a metal and a mineral waste form. The metal waste form contains the cladding hulls, noble metal fission products, and (optionally) most rare earths in a copper or stainless steel matrix. The mineral waste form contains fission products that have been removed from the salt into a zeolite or zeolite-derived matrix

  14. Flexible process options for the immobilisation of residues and wastes containing plutonium

    International Nuclear Information System (INIS)

    Stewart, M.W.A.; Moricca, S.A.; Day, R. A.; Begg, B. D.; Scales, C. R.; Maddrell, E. R.; Eilbeck, A. B.

    2007-01-01

    Residues and waste streams containing plutonium present unique technical, safety, regulatory, security, and socio-political challenges. In the UK these streams range from lightly plutonium contaminated materials (PCM) through to residue s resulting directly from Pu processing operations. In addition there are potentially stocks of Pu oxide powders whose future designation may be either a waste or an asset, due to their levels of contamination making their reuse uneconomic, or to changes in nuclear policy. While waste management routes exist for PCM, an immobilisation process is required for streams containing higher levels of Pu. Such a process is being developed by Nexia Solutions and ANSTO to treat and immobilise Pu waste and residues currently stored on the Sellafield site. The characteristics of these Pu waste streams are highly variable. The physical form of the Pu waste ranges from liquids, sludges, powders/granules, to solid components (e.g., test fuels), with the Pu present as an ion in solution, as a salt, metal, oxide or other compound. The chemistry of the Pu waste streams also varies considerably with a variety of impurities present in many waste streams. Furthermore, with fissile isotopes present, criticality is an issue during operations and in the store or repository. Safeguards and security concerns must be assessed and controlled. The process under development, by using a combination of tailored waste form chemistry combined with flexible process technology aims to develop a process line to handle a broad range of Pu waste streams. It aims to be capable of dealing with not only current arisings but those anticipated to arise as a result of future operations or policy changes. (authors)

  15. Tank waste remediation system optimized processing strategy with an altered treatment scheme

    International Nuclear Information System (INIS)

    Slaathaug, E.J.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy with an altered treatment scheme performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility

  16. Process to separate transuranic elements from nuclear waste

    Science.gov (United States)

    Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

    1989-03-21

    A process is described for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

  17. Process to separate transuranic elements from nuclear waste

    International Nuclear Information System (INIS)

    Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

    1989-01-01

    A process is described for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs

  18. Application of thermal technologies for processing of radioactive waste

    International Nuclear Information System (INIS)

    2006-12-01

    The primary objective of this publication is to provide an overview of the various thermal technologies for processing various solid, liquid, organic and inorganic radioactive waste streams. The advantages, limitations and operating experience of various thermal technologies are explained. This publication also goes beyond previous work on thermal processes by addressing the applicability of each technology to national or regional nuclear programmes of specific relative size (major advanced programmes, small to medium programmes, and emerging programmes with other nuclear applications). The most commonly used thermal processing technologies are reviewed, and the key factors influencing the selection of thermal technologies as part of a national waste management strategy are discussed. Accordingly, the structure and content of this publication is intended to assist decision-makers, regulators, and those charged with developing such strategies to identify and compare thermal technologies for possible inclusion in the mix of available, country-specific waste management processes. This publication can be used most effectively as an initial cutting tool to identify whether any given technology will best serve the local waste management strategy in terms of the waste generated, technical complexity, available economic resources, environmental impact considerations, and end product (output) of the technology. If multiple thermal technologies are being actively considered, this publication should be instrumental in comparing the technologies and assisting the user to reach an informed decision based on local needs, economics and priorities. A detailed set of conclusions is provided in Section 7

  19. Glovebox design requirements for molten salt oxidation processing of transuranic waste

    International Nuclear Information System (INIS)

    Ramsey, K.B.; Acosta, S.V.; Wernly, K.D.

    1998-01-01

    This paper presents an overview of potential technologies for stabilization of 238 Pu-contaminated combustible waste. Molten salt oxidation (MSO) provides a method for removing greater than 99.999% of the organic matrix from combustible waste. Implementation of MSO processing at the Los Alamos National Laboratory (LANL) Plutonium Facility will eliminate the combustible matrix from 238 Pu-contaminated waste and consequently reduce the cost of TRU waste disposal operations at LANL. The glovebox design requirements for unit operations including size reduction and MSO processing will be presented

  20. Measures for waste water management from recovery processing of Zhushanxia uranium deposit

    International Nuclear Information System (INIS)

    Liu Yaochi; Xu Lechang

    2000-01-01

    Measures for waste water management from recovery processing of Zhushanxia uranium deposit of Wengyuan Mine is analyzed, which include improving process flow, recycling process water used in uranium mill as much as possible and choosing a suitable disposing system. All these can decrease the amount of waste water, and also reduce costs of disposing waste water and harm to environment

  1. Use of food waste, fish waste and food processing waste for China's aquaculture industry: Needs and challenge.

    Science.gov (United States)

    Mo, Wing Yin; Man, Yu Bon; Wong, Ming Hung

    2018-02-01

    China's aquaculture industry is growing dramatically in recent years and now accounts for 60.5% of global aquaculture production. Fish protein is expected to play an important role in China's food security. Formulated feed has become the main diet of farmed fish. The species farmed have been diversified, and a large amount of 'trash fish' is directly used as feed or is processed into fishmeal for fish feed. The use of locally available food waste as an alternative protein source for producing fish feed has been suggested as a means of tackling the problem of sourcing safe and sustainable feed. This paper reviews the feasibility of using locally available waste materials, including fish waste, okara and food waste. Although the fishmeal derived from fish waste, okara or food waste is less nutritious than fishmeal from whole fish or soybean meal, most fish species farmed in China, such as tilapia and various Chinese carp, grow well on diets with minimal amounts of fishmeal and 40% digestible carbohydrate. It can be concluded that food waste is suitable as a component of the diet of farmed fish. However, it will be necessary to revise regulations on feed and feed ingredients to facilitate the use of food waste in the manufacture of fish feed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO x , CO, volatile acids, hazardous metals, and organic chemicals. Some calculated relative emissions are summarized and insights on building simulations are discussed

  3. The Defense Waste Processing Facility, from vision to reality

    International Nuclear Information System (INIS)

    Randall, C.T.

    2000-01-01

    When the Savannah River Plant began operation in the early 1950's producing nuclear materials for the National defense, liquid, highly radioactive waste was generated as a by-product. Since that time the waste has been stored in large, carbon steel tanks that are buried underground. In 1960 one of the tanks developed a leak, and before recovery measures could be taken, about 25-gallons of radioactive salt solution had overflowed the secondary liner and seeped into the soil surrounding the tank. Significant improvements to the tanks were made, but constant surveillance was still required. Thus, the opinion began forming that storage of the mobile, highly radioactive waste in tanks was not a responsible long-term practice. So in the late 1960's the Savannah River Laboratory began research to find a suitable long-term solution to the waste disposal problem. Several alternative waste forms were evaluated, and in 1972 the first Savannah River waste was vitrified on a laboratory scale. By the mid-1970's, the DuPont Company, prime contractor at the Savannah River Plant, began to develop a vision of constructing America's first vitrification plant to immobilize the high level radioactive waste in borosilicate glass. This vision was later championed by DuPont in the form of a vitrification plant called the Defense Waste Processing Facility (DWPF). Today, the DWPF processes Savannah River High Level Waste sludge turning it into a solid, durable waste form of borosilicate glass. The DWPF is the world's largest vitrification facility. It was brought to reality through over 25-years of research and 13-years of careful construction, tests, and reviews at a cost of approximately $3 billion dollars

  4. Proposed Atomic Energy of Canada Ltd. 99Mo waste calcination process

    International Nuclear Information System (INIS)

    Ramey, D.W.; Haas, P.A.; Malkemus, D.W.; McGinnis, C.P.; Meyers, E.S.; Patton, B.D.; Birdwell, J.F.; Jubin, R.T.; Coltharp, K.A.

    1994-10-01

    Atomic Energy of Canada Limited (AECL), at its Chalk River Laboratory, generates from 3000 to 5000 L/year of high-level fissile waste solution from the production of 99 Mo. In this Mo process, highly enriched uranium (93 wt % 235 U, total uranium basis) contained in uranium-aluminum alloy target rods is irradiated to produce the 99 Mo product. The targets are removed from the reactor and dissolved in a mercury nitrate-catalyzed reaction with nitric acid. The 99 Mo product is then recovered by passing the solution through an alumina (Al 2 O 3 ) column. During discussions with personnel from the Oak Ridge National Laboratory (ORNL) on September 10, 1992, the ORNL-developed technology formerly applied to the solidification of aqueous uranium waste (Consolidated Edison Uranium Solidification Program or CEUSP) was judged potentially applicable to the AECL 99 Mo waste. Under a Work-for-Others contract (no. ERD-92-1132), which began May 24, 1993, ORNL was tasked to determine the feasibility of applying the CEUSP (or a similar) calcination process to solidify AECL's 99 Mo waste for > 30 years of safe dry storage. This study was to provide sufficient detailed information on the applicability of a CEUSP-type waste solidification process to allow AECL to select the process which best suited its needs. As with the CEUSP process, evaporation of the waste and a simultaneously partial destruction of acid by reaction with formaldehyde followed by in situ waste can thermal denitration waste was chosen as the best means of solidification. Unlike the CEUSP material, the 99 Mo waste has a considerable number of problem volatile and semivolatile constituents which must be recovered in the off-gas treatment system. Mercury removal before calcination was seen as the best option

  5. Waste Receiving and Processing (WRAP) Weight Scale Analysis Results

    International Nuclear Information System (INIS)

    JOHNSON, M.D.

    2000-01-01

    Fairbanks Weight Scales are used at the Waste Receiving and Processing (WRAP) facility to determine the weight of waste drums as they are received, processed, and shipped. Due to recent problems, discovered during calibration, the WRAP Engineering Department has completed this document which outlines both the investigation of the infeed conveyor scale failure in September of 1999 and recommendations for calibration procedure modifications designed to correct deficiencies in the current procedures

  6. Radioactive waste processing method for a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Kuriyama, O

    1976-06-04

    Object is to subject radioactive liquid waste in a nuclear power plant to reverse permeation process after which it is vaporized and concentrated thereby decreasing the quantity of foam to be used to achieve effective concentration of the liquid waste. Liquid waste containing a radioactive material produced from a nuclear power plant is first applied with pressure in excess of osmotic pressure by a reverse permeation device and is separated into clean water and concentrated liquid by semi-permeable membrane. Next, the thus reverse-permeated and concentrated waste is fed to an evaporator which control foaming by the foam and then further reconcentrated for purification of the liquid waste.

  7. pH and Organic Carbon Dose Rates Control Microbially Driven Bioremediation Efficacy in Alkaline Bauxite Residue.

    Science.gov (United States)

    Santini, Talitha C; Malcolm, Laura I; Tyson, Gene W; Warren, Lesley A

    2016-10-18

    Bioremediation of alkaline tailings, based on fermentative microbial metabolisms, is a novel strategy for achieving rapid pH neutralization and thus improving environmental outcomes associated with mining and refining activities. Laboratory-scale bioreactors containing bauxite residue (an alkaline, saline tailings material generated as a byproduct of alumina refining), to which a diverse microbial inoculum was added, were used in this study to identify key factors (pH, salinity, organic carbon supply) controlling the rates and extent of microbially driven pH neutralization (bioremediation) in alkaline tailings. Initial tailings pH and organic carbon dose rates both significantly affected bioremediation extent and efficiency with lower minimum pHs and higher extents of pH neutralization occurring under low initial pH or high organic carbon conditions. Rates of pH neutralization (up to 0.13 mM H + produced per day with pH decreasing from 9.5 to ≤6.5 in three days) were significantly higher in low initial pH treatments. Representatives of the Bacillaceae and Enterobacteriaceae, which contain many known facultative anaerobes and fermenters, were identified as key contributors to 2,3-butanediol and/or mixed acid fermentation as the major mechanism(s) of pH neutralization. Initial pH and salinity significantly influenced microbial community successional trajectories, and microbial community structure was significantly related to markers of fermentation activity. This study provides the first experimental demonstration of bioremediation in bauxite residue, identifying pH and organic carbon dose rates as key controls on bioremediation efficacy, and will enable future development of bioreactor technologies at full field scale.

  8. Hanford underground storage tank waste filtration process evaluation

    International Nuclear Information System (INIS)

    Walker, B.W.; McCabe, D.J.

    1997-01-01

    The purpose of this filter study was to evaluate cross-flow filtration as effective solid-liquid separation technology for treating Hanford wastes, outline operating conditions for equipment, examine the expected filter flow rates, and determine proper cleaning. Two Hanford waste processing applications have been identified as candidates for the use of cross-flow filtration. The first of the Hanford applications involves filtration of the decanted supernate from sludge leaching and washing operations. This process involves the concentration and removal of dilute (0.05 wt percent) fines from the bulk of the supernate. The second application involves filtration to wash and concentrate the sludge during out-of-tank processing. This process employs a relatively concentrated (8 wt percent) solids feed stream. Filter studies were conducted with simulants to evaluate whether 0.5 micron cross-flow sintered metal Mott filters and 0.1 micron cross-flow Graver filters can perform solid-liquid separation of the solid/liquid waste streams effectively. In cross-flow filtration the fluid to be filtered flows in parallel to the membrane surface and generates shearing forces and/or turbulence across the filter medium. This shearing influences formation of filter cake stabilizing the filtrate flow rate

  9. Processing vessel for high level radioactive wastes

    International Nuclear Information System (INIS)

    Maekawa, Hiromichi

    1998-01-01

    Upon transferring an overpack having canisters containing high level radioactive wastes sealed therein and burying it into an underground processing hole, an outer shell vessel comprising a steel plate to be fit and contained in the processing hole is formed. A bury-back layer made of dug earth and sand which had been discharged upon forming the processing hole is formed on the inner circumferential wall of the outer shell vessel. A buffer layer having a predetermined thickness is formed on the inner side of the bury-back layer, and the overpack is contained in the hollow portion surrounded by the layer. The opened upper portion of the hollow portion is covered with the buffer layer and the bury-back layer. Since the processing vessel having a shielding performance previously formed on the ground, the state of packing can be observed. In addition, since an operator can directly operates upon transportation and burying of the high level radioactive wastes, remote control is no more necessary. (T.M.)

  10. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    International Nuclear Information System (INIS)

    Wasan, Darsh T.; Nikolov, Alex D.; Lamber, D.P.; Calloway, T. Bond; Stone, M.E.

    2005-01-01

    Savannah River National Laboratory (SRNL) has reported severe foaminess in the bench scale evaporation of the Hanford River Protection - Waste Treatment Plant (RPP-WPT) envelope C waste. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. The antifoams used at Hanford and tested by SRNL are believed to degrade and become inactive in high pH solutions. Hanford wastes have been known to foam during evaporation causing excessive down time and processing delays

  11. The evolution of waste management processes and technologies in BNFL

    International Nuclear Information System (INIS)

    Asquith, R.W.; Fairhall, G.A.

    1997-01-01

    The treatment of wastes arising from BNFL''s nuclear fuel cycle operations can be traced through a number of phases. The first was the development of vitrification and cementation for fresh arisings. Plants utilising these technologies are now in operation. To handle the mixed, heterogeneous intermediate level wastes, retrieval, segregation and robust treatment processes are at an advanced stage of development, with all plants to be operational from 2002. BNFL is focusing attention on reducing waste management lifetime costs including reducing waste volumes of source. Technologies aimed at significant reductions are now being developed. The final phase, now in progress, recognizes the need for an integrated approach to advanced fuel cycle processes which incorporates BNFL''s holistic concept. (author)

  12. Liquid radioactive waste processing system for pressurized water reactor plants

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Standard sets forth design, construction, and performance requirements, with due consideration for operation, of the Liquid Radioactive Waste Processing System for pressurized water reactor plants for design basis inputs. For the purpose of this Standard, the Liquid Radioactive Waste Processing System begins at the interfaces with the reactor coolant pressure boundary and the interface valve(s) in lines from other systems, or at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material; and it terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system, and at the point of recycle back to storage for reuse

  13. The evolution of waste management processes and technologies in BNFL

    International Nuclear Information System (INIS)

    Asquith, R. W.; Fairhall, G. A.

    1997-01-01

    The treatment of wastes arising from BNFL's nuclear fuel cycle operations can be traced through a number of phases. The first was the development of vitrification and cementation for fresh arising and plants are now in operation. To handle the mixed, heterogeneous intermediate level wastes, retrieval, segregation and robust treatment processes are at an advanced stage of development, with all plants to be operational from 2002. BNFL is focusing attention on reducing waste management lifetime costs including reducing waste volumes of source. Technologies aimed at significant reductions are now being developed. The final phase, now in progress, recognizes the need for an integrated approach to advanced fuel cycle processes which incorporates BNFL holistic concept. (author) 6 refs., 1 fig

  14. Processing method of radioactive metal wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Urata, Megumu; Sato, Masao.

    1985-01-01

    Purpose: To reduce the volume and increase the density of radioactive metal wastes easily while preventing scattering of radioactivity and process them into suitable form to storage and treatment. Method: Metal wastes mainly composed of zirconium are discharged from nuclear power plants or fuel re-processing plants, and these metals such as zirconium and titanium vigorously react with hydrogen and rapidly diffuse as hydrides. Since the hydrides are extremely brittle and can be pulverized easily, they can be volume-reduced. However, since metal hydrides have no ductility, dehydrogenation is applied for the molding fabrication in view of the subsequent storage and processing. The dehydrogenation is easy like the hydrogenation and fine metal pieces can be molded in a small compression device. For the dehydrogenation, a temperature is slightly increased as compared with that in the hydrogenation, pressure is reduced through the vacuum evacuation system and the removed hydrogen is purified for reuse. The upper limit for the temperature of the hydrogenation is 680 0 C in order to prevent the scttering of radioactivity. (Kamimura, M.)

  15. Glovebox design requirements for molten salt oxidation processing of transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, K.B.; Acosta, S.V. [Los Alamos National Lab., NM (United States); Wernly, K.D. [Molten Salt Oxidation Corp., Bensalem, PA (United States)

    1998-12-31

    This paper presents an overview of potential technologies for stabilization of {sup 238}Pu-contaminated combustible waste. Molten salt oxidation (MSO) provides a method for removing greater than 99.999% of the organic matrix from combustible waste. Implementation of MSO processing at the Los Alamos National Laboratory (LANL) Plutonium Facility will eliminate the combustible matrix from {sup 238}Pu-contaminated waste and consequently reduce the cost of TRU waste disposal operations at LANL. The glovebox design requirements for unit operations including size reduction and MSO processing will be presented.

  16. Management of waste from mining and minerals processing

    International Nuclear Information System (INIS)

    Kraus, W.

    2000-01-01

    Growing attention has been paid to exposures to enhanced natural radiation in the last decade. One important problem is the management of waste from mining and minerals processing. The inconsistencies in the relevant approaches may partly be a consequence of the fact that feasible but too expensive measures to reduce doses may be unreasonable because of their socio-economic impacts. Although in principle airborne and liquid effluents belong to the definition of radioactive waste they are not discussed in this paper: There are three different basic waste types: -Waste rock piles and tailings from uranium mining and milling as practices. -Wastes created by mining and processing of minerals where the enhanced radioactivity is incidental to the work, e.g. phosphate industry, processing of metal ores and zircon sands, manufacture of rare earths, manufacture and use of thorium compounds, oil and gas extraction industry, combustion of coal. (Amounts of wastes and their activity concentrations are very different in different countries. Most of these 'practices' already exist, and they might be included in the radiation protection system like an intervention situation. In the European Basic Safety Standards they are called 'work activities'.) -Residues from former mining and processing, where radiation protection had not or inadequately been observed, as pure intervention situations. To solve radiation protection problems with regard to enhanced natural radioactivity a flexible approach is to be preferred. After an overview of the problems and their significance in a country work activities and intervention situations of concern should be identified. Compliance with established dose criteria should be achieved by simple intervention measures. Only if this is not possible a radiation protection system as for practices should be applied. At present efforts are focussed on occupational exposures. The management of wastes should analogously and simultaneously be included in new

  17. Solid Waste Processing Center Primary Opening Cells Systems, Equipment and Tools

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Sharon A.; Baker, Carl P.; Mullen, O Dennis; Valdez, Patrick LJ

    2006-04-17

    This document addresses the remote systems and design integration aspects of the development of the Solid Waste Processing Center (SWPC), a facility to remotely open, sort, size reduce, and repackage mixed low-level waste (MLLW) and transuranic (TRU)/TRU mixed waste that is either contact-handled (CH) waste in large containers or remote-handled (RH) waste in various-sized packages.

  18. Ninth Processing Campaign in the Waste Calcining Facility

    International Nuclear Information System (INIS)

    Childs, K.F.; Donovan, R.I.; Swenson, M.C.

    1982-04-01

    This report discusses the Ninth (and final) Processing Campaign at the Waste Calcining Facility. Several processing interruptions were experienced during this campaign and the emphasis of this report is on process and equipment performance with operating problems and corrective actions discussed in detail

  19. Reliability analysis of common hazardous waste treatment processes

    International Nuclear Information System (INIS)

    Waters, R.D.

    1993-05-01

    Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption

  20. Reliability analysis of common hazardous waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Robert D. [Vanderbilt Univ., Nashville, TN (United States)

    1993-05-01

    Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption.