WorldWideScience

Sample records for battery system quarterly

  1. Technical Progress Report for PEPCO: Turbo-Z Battery Charging System. Calendar Quarter Ending March 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    The project is proceeding at a rapid pace now. The software is in development for the control board and the test stand. Portions of the writing and debugging of this software have been in conjunction with the hardware development. The software now interfaces with all the measurement instruments and displays the measurements on the screen, and it saves the measurements to a disc file. There is still cleanup work to do on the display items. Work must still be imparted to the code to control a charging sequence while taking measurements of the results. The test stand hardware has received a good development effort this quarter. The timer-counter board is working in the computer. This board paces the measurement cycle and times the discharge pulse (whine circuit). The thermocouple multiplexer is scanning at the same time the analog to digital converter is taking measurements. We have made a good number of hardware modifications to solve problems revealed while writing the software. The power factor correction for the charger power section is still in development. The engineers have found additional sources for the PFC chips, and they have obtained more technical data sheets and acquired samples. The control board schematics are complete, and the software is far along in the development phase. The functions of the control board have been detailed. The control board must next be integrated with the power supply unit. The next phase of development will concentrate on integrating the components together. At this time, the final debugging of the hardware and software will begin. Additionally, the capacitive coupler development is proceeding. The annual DARPA/DoT Advanced Transportation review will be held on May 16, 1999. We expect to learn the status of our project proposal during this conference. Should we more forward, UL has agreed to help us determine the design requirements of the complete charging system at their EV testing facility, prior to manufacturing. This

  2. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  3. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 2: January through March 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

    2011-05-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 2 Milestone was completed on time. The milestone entails an ex situ analysis of the four carbons that have been added to the negative active material of valve-regulated lead-acid (VRLA) batteries for the purposes of this study. The four carbons selected for this study were a graphitic carbon, a carbon black, an activated carbon, and acetylene black. The morphology, crystallinity, and impurity contents of each of the four carbons were analyzed; results were consistent with previous data. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown.

  4. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems Program (FY11 Quarter 4: July through September 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-10-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 4 Milestone was completed on time. The milestone entails the initiation of high rate, partial state of charge (HRPSoC) cycling of the carbon enhanced batteries. The morphology, porosity, and porosity distribution within the plates after 1k and 10k cycles were documented, illustrating the changes which take place in the early life of the carbon containing batteries, and as the battery approaches failure due to hard sulfation for the control battery. Longer term cycling on a subset of the received East Penn cells containing different carbons (and a control) continues, and will progress into FY12. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO2) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown in a graph. In addition to the aforementioned hybrid device, carbon has

  5. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE energy storage systems program (FY11 Quarter 3: April through June 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-09-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 3 Milestone was completed on time. The milestone entails an ex situ analysis of a control as well as three carbon-containing negative plates in the raw, as cast form as well as after formation. The morphology, porosity, and porosity distribution within each plate was evaluated. In addition, baseline electrochemical measurements were performed on each battery to establish their initial performance. These measurements included capacity, internal resistance, and float current. The results obtained for the electrochemical testing were in agreement with previous evaluations performed at East Penn manufacturing. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated.

  6. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 1: October through December 2010).

    Energy Technology Data Exchange (ETDEWEB)

    Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

    2011-05-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 1 Milestone was completed on time. The milestone entails conducting a thorough literature review to establish the current level of understanding of the mechanisms through which carbon additions to the negative active material improve valve-regulated lead-acid (VRLA) batteries. Most studies have entailed phenomenological research observing that the carbon additions prevent/reduce sulfation of the negative electrode; however, no understanding is available to provide insight into why certain carbons are successful while others are not. Impurities were implicated in one recent review of the electrochemical behavior of carbon additions. Four carbon samples have been received from East Penn Manufacturing and impurity contents have been analyzed. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic

  7. Battery charging system

    Energy Technology Data Exchange (ETDEWEB)

    Carollo, J.A.; Kalinsky, W.A.

    1984-02-21

    A battery charger utilizes three basic modes of operation that includes a maintenance mode, a rapid charge mode and time controlled limited charging mode. The device utilizes feedback from the battery being charged of voltage, current and temperature to determine the mode of operation and the time period during which the battery is being charged.

  8. Battery system with temperature sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  9. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications t

  10. Battery Cell Balancing System and Method

    Science.gov (United States)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  11. Optimised battery capacity utilisation within battery management systems

    NARCIS (Netherlands)

    Wilkins, S.; Rosca, B.; Jacob, J.; Hoedmaekers, E.

    2015-01-01

    Battery Management Systems (BMSs) play a key role in the performance of both hybrid and fully electric vehicles. Typically, the role of the BMS is to help maintain safety, performance, and overall efficiency of the battery pack. One important aspect of its operation is the estimation of the state of

  12. Battery system with temperature sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Steven J; Trester, Dale B

    2014-02-04

    A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

  13. 77 FR 8325 - Sixth Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-02-14

    ... with Li-Ion Batteries (15 min). Results of EFB thermal runaway on flightdeck (smoke and toxic gases... Batteries and Battery Systems, Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise...

  14. Stand Alone Battery Thermal Management System

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Brad [Denso International America, Incorporated, Southfield, MI (United States)

    2015-09-30

    The objective of this project is research, development and demonstration of innovative thermal management concepts that reduce the cell or battery weight, complexity (component count) and/or cost by at least 20%. The project addresses two issues that are common problems with current state of the art lithium ion battery packs used in vehicles; low power at cold temperatures and reduced battery life when exposed to high temperatures. Typically, battery packs are “oversized” to satisfy the two issues mentioned above. The first phase of the project was spent making a battery pack simulation model using AMEsim software. The battery pack used as a benchmark was from the Fiat 500EV. FCA and NREL provided vehicle data and cell data that allowed an accurate model to be created that matched the electrical and thermal characteristics of the actual battery pack. The second phase involved using the battery model from the first phase and evaluate different thermal management concepts. In the end, a gas injection heat pump system was chosen as the dedicated thermal system to both heat and cool the battery pack. Based on the simulation model. The heat pump system could use 50% less energy to heat the battery pack in -20°C ambient conditions, and by keeping the battery cooler at hot climates, the battery pack size could be reduced by 5% and still meet the warranty requirements. During the final phase, the actual battery pack and heat pump system were installed in a test bench at DENSO to validate the simulation results. Also during this phase, the system was moved to NREL where testing was also done to validate the results. In conclusion, the heat pump system can improve “fuel economy” (for electric vehicle) by 12% average in cold climates. Also, the battery pack size, or capacity, could be reduced 5%, or if pack size is kept constant, the pack life could be increased by two years. Finally, the total battery pack and thermal system cost could be reduced 5% only if the

  15. MODAL ANALYSIS OF QUARTER CAR MODEL SUSPENSION SYSTEM

    OpenAIRE

    Viswanath. K. Allamraju *

    2016-01-01

    Suspension system is very important for comfort driving and travelling of the passengers. Therefore, this study provides a numerical tool for modeling and analyzing of a two degree of freedom quarter car model suspension system. Modal analysis places a vital role in designing the suspension system. In this paper presented the modal analysis of quarter car model suspension system by considering the undamped and damped factors.  The modal and vertical equations of motions describing the su...

  16. Automatic Battery Swap System for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2012-12-01

    Full Text Available This paper presents the design and implementation of an automatic battery swap system for the prolonged activities of home robots. A battery swap station is proposed to implement battery off‐line recharging and on‐line exchanging functions. It consists of a loading and unloading mechanism, a shifting mechanism, a locking device and a shell. The home robot is a palm‐sized wheeled robot with an onboard camera and a removable battery case in the front. It communicates with the battery swap station wirelessly through ZigBee. The influences of battery case deflection and robot docking deflection on the battery swap operations have been investigated. The experimental results show that it takes an average time of 84.2s to complete the battery swap operations. The home robot does not have to wait several hours for the batteries to be fully charged. The proposed battery swap system is proved to be efficient in home robot applications that need the robots to work continuously over a long period.

  17. Lithium batteries and other electrochemical storage systems

    CERN Document Server

    Glaize, Christian

    2013-01-01

    Lithium batteries were introduced relatively recently in comparison to lead- or nickel-based batteries, which have been around for over 100 years. Nevertheless, in the space of 20 years, they have acquired a considerable market share - particularly for the supply of mobile devices. We are still a long way from exhausting the possibilities that they offer. Numerous projects will undoubtedly further improve their performances in the years to come. For large-scale storage systems, other types of batteries are also worthy of consideration: hot batteries and redox flow systems, for example.

  18. Performance Simulation Of Photovoltaic System Battery

    Directory of Open Access Journals (Sweden)

    O. A. Babatunde

    2014-09-01

    Full Text Available Solar energy, despite being inexhaustible, has a major shortcoming; it is intermittent. As a result, there's a need for it to be stored for later use. The widely used energy storage in photovoltaic system applications is the lead-acid battery and the knowledge of its state-of-charge (SOC is important in effecting efficient control and energy management. However, SOC cannot be measured while the battery is connected to the system. This study adjusts and validates two estimation models: battery state-of-charge model using ampere-hour counting method and battery charge voltage model. For the battery state-of-charge model, the SOC is estimated by integrating the charge/discharge current over time while the battery charge voltage characteristic response is modelled by using the equation-fit method which expresses the battery charge voltage variations by a 5th order polynomial in terms of the state-of-charge and current. These models are realized using the MATLAB program. The battery charge voltage model is corrected for errors which may result from reduced charge voltage due to variation of solar radiation using the battery state-of-charge model. Moreover, the starting SOC needed in the state-of-charge model is estimated using the charge voltage model. The accuracies of the models are verified using various laboratory experiments.

  19. Flow Battery System Design for Manufacturability.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  20. Multiscale simulation approach for battery production systems

    CERN Document Server

    Schönemann, Malte

    2017-01-01

    Addressing the challenge of improving battery quality while reducing high costs and environmental impacts of the production, this book presents a multiscale simulation approach for battery production systems along with a software environment and an application procedure. Battery systems are among the most important technologies of the 21st century since they are enablers for the market success of electric vehicles and stationary energy storage solutions. However, the performance of batteries so far has limited possible applications. Addressing this challenge requires an interdisciplinary understanding of dynamic cause-effect relationships between processes, equipment, materials, and environmental conditions. The approach in this book supports the integrated evaluation of improvement measures and is usable for different planning horizons. It is applied to an exemplary battery cell production and module assembly in order to demonstrate the effectiveness and potential benefits of the simulation.

  1. Single Switched Capacitor Battery Balancing System Enhancements

    Directory of Open Access Journals (Sweden)

    Joeri van Mierlo

    2013-04-01

    Full Text Available Battery management systems (BMS are a key element in electric vehicle energy storage systems. The BMS performs several functions concerning to the battery system, its key task being balancing the battery cells. Battery cell unbalancing hampers electric vehicles’ performance, with differing individual cell voltages decreasing the battery pack capacity and cell lifetime, leading to the eventual failure of the total battery system. Quite a lot of cell balancing topologies have been proposed, such as shunt resistor, shuttling capacitor, inductor/transformer based and DC energy converters. The shuttling capacitor balancing systems in particular have not been subject to much research efforts however, due to their perceived low balancing speed and high cost. This paper tries to fill this gap by briefly discussing the shuttling capacitor cell balancing topologies, focusing on the single switched capacitor (SSC cell balancing and proposing a novel procedure to improve the SSC balancing system performance. This leads to a new control strategy for the SSC system that can decrease the balancing system size, cost, balancing time and that can improve the SSC balancing system efficiency.

  2. Assessment of high-temperature battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Sen, R K

    1989-02-01

    Three classes of high-temperature batteries are being developed internationally with transportation and stationary energy storage applications in mind: sodium/sulfur, lithium/metal sulfide, and sodium/metal chloride. Most attention is being given to the sodium/sulfur system. The Office of Energy Storage and Distribution (OESD) and the Office of Transportation Systems (OTS) of the US Department of Energy (DOE) are actively supporting the development of this battery system. It is anticipated that pilot-scale production facilities for sodium/sulfur batteries will be in operation in the next couple of years. The lithium/metal sulfide and the sodium/metal chloride systems are not receiving the same level of attention as the sodium/sulfur battery. Both of these systems are in an earlier stage of development than sodium/sulfur. OTS and OESD are supporting work on the lithium/iron sulfide battery in collaboration with the Electric Power Research Institute (EPRI); the work is being carried out at Argonne National Laboratory (ANL). The sodium/metal chloride battery, the newest member of the group, is being developed by a Consortium of South African and British companies. Very little DOE funds are presently allocated for research on this battery. The purpose of this assessment is to evaluate the present status of the three technologies and to identify for each technology a prioritized list of R and D issues. Finally, the assessment includes recommendations to DOE for a proposed high-temperature battery research and development program. 18 figs., 21 tabs.

  3. Parallel Damping Injection for the Quarter Car Suspension System.

    NARCIS (Netherlands)

    Scherpen, Jacquelien M.A.; Jeltsema, Dimitri; Maulny, François

    2006-01-01

    In this paper we study an application of Passivity-Based Control (PBC) to a quarter car suspension system. We use Passivity-Based Control in the Brayton-Moser framework (BM-PBC) that has recently been developed for control of switching and non-switching electrical circuits. Via the usual mass-induct

  4. Federal Tax Incentives for Battery Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    Investments in renewable energy can be more attractive with the contribution of two key federal tax incentives. NREL provides basic information about the investment tax credit (ITC) and the Modified Accelerated Cost Recovery System (MACRS) depreciation deduction, which may apply to battery storage systems owned by a private party (i.e., a tax-paying business).

  5. The Utility Battery Storage Systems Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

  6. Rebalancing electrolytes in redox flow battery systems

    Science.gov (United States)

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  7. Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Danilov, D.; Regtien, P.P.L.; Notten, P.H.L.

    2008-01-01

    Battery Management Systems – Universal State-of-Charge indication for portable applications describes the field of State-of-Charge (SoC) indication for rechargeable batteries. With the emergence of battery-powered devices with an increasing number of power-hungry features, accurately estimating the

  8. Evaluation of battery packs for liquid microclimate cooling systems

    Science.gov (United States)

    Teal, Walter B., Jr.; Avellini, Barbara A.

    1995-05-01

    The Navy clothing and Textile Research Facility conducted a literature and industry survey to determine the best commercially available battery technology for use with liquid microclimate cooling systems (MCS), and a laboratory evaluation of a battery pack utilizing that technology. Nickel/cadmium batteries were determined to be the best battery technology commercially available at the present time. However, several other battery technologies are nearing commercialization and may be available in the near future.

  9. Battery Resistance Analysis of ISS Power System

    Science.gov (United States)

    Newstadt, Gregory E.

    2004-01-01

    The computer package, SPACE (Systems Power Analysis for Capability Evaluation) was created by the members of LT-9D to perform power analysis and modeling of the electrical power system on the International Space Station (ISS). Written in FORTRAN, SPACE comprises thousands of lines of code and has been used profficiently in analyzing missions to the ISS. LT-9D has also used its expertise recently to investigate the batteries onboard the Hubble telescope. During the summer of 2004, I worked with the members of LT-9D, under the care of Dave McKissock. Solar energy will power the ISS through eight solar arrays when the ISS is completed, although only two arrays are currently connected. During the majority of the periods of sunlight, the solar arrays provide enough energy for the ISS. However, rechargeable Nickel-Hydrogen batteries are used during eclipse periods or at other times when the solar arrays cannot be used (at docking for example, when the arrays are turned so that they will not be damaged by the Shuttle). Thirty-eight battery cells are connected in series, which make up an ORU (Orbital Replacement Unit). An ISS "battery" is composed of two ORUs. a great deal of time into finding the best way to represent them in SPACE. During my internship, I investigated the resistance of the ISS batteries. SPACE constructs plots of battery charge and discharge voltages vs. time using a constant current. To accommodate for a time-varying current, the voltages are adjusted using the formula, DeltaV = DeltaI * Cell Resistance. To enhance our model of the battery resistance, my research concentrated on several topics: investigating the resistance of a qualification unit battery (using data gathered by LORAL), comparing the resistance of the qualification unit to SPACE, looking at the internal resistance and wiring resistance, and examining the impact of possible recommended changes to SPACE. The ISS batteries have been found to be very difficult to model, and LT-9D has

  10. Progress in electrochemical storage for battery systems

    Science.gov (United States)

    Ford, F. E.; Hennigan, T. J.; Palandati, C. F.; Cohn, E.

    1972-01-01

    Efforts to improve electrochemical systems for space use relate to: (1) improvement of conventional systems; (2) development of fuel cells to practical power systems; and (3) a search for new systems that provide gains in energy density but offer comparable life and performance as conventional systems. Improvements in sealed conventional systems resulted in the areas of materials, charge control methods, cell operations and battery control, and specific process controls required during cell manufacture. Fuel-cell systems have been developed for spacecraft but the use of these power plants is limited. For present and planned flights, nickel-cadmium, silver-zinc, and silver-cadmium systems will be used. Improvements in nickel-cadmium batteries have been applied in medical and commercial areas.

  11. Hybrid Battery Ultracapacitor System For Human Robotic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to develop a hybrid battery-ultra capacitor storage system that powers human-robotic systems in space missions. Space missions...

  12. Program status 3. quarter -- FY 1990: Confinement systems programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-07-24

    Highlights of the DIII-D Research Operations task are: completed five weeks tokamak operations; initiated summer vent; achievement of 10.7% beta; carried out first dimensionless transport scaling experiment; completed IBW program; demonstrated divertor heat reduction with gas puffing; field task proposals presented to OFE; presentation of DIII-D program to FPAC; made presentation to Admiral Watkins; and SAN safety review. Summaries are given on research programs, operations, program development, hardware development, operations support and collaborative efforts. Brief summaries of progress on the International Cooperation task include: TORE SUPRA, ASDEX, JFT-2M, and JET. Funding for work on CIT physics was received this quarter. Several physics R and D planning tasks were initiated. Earlier in FY90, a poloidal field coil shaping system (PFC) was found for DIGNITOR. This quarter more detailed analysis has been done to optimize the design of the PFC system.

  13. Battery-Aware Scheduling of Mixed Criticality Systems

    DEFF Research Database (Denmark)

    Wognsen, Erik Ramsgaard; Hansen, Rene Rydhof; Larsen, Kim Guldstrand

    2014-01-01

    Wireless systems such as satellites and sensor networks are often battery-powered. To operate optimally they must therefore take the performance properties of real batteries into account. Additionally, these systems, and therefore their batteries, are often exposed to loads with uncertain timings...

  14. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    Science.gov (United States)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  15. Utility Battery Storage Systems Program plan: FY 1994--FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Utility Battery Storage Systems Program, sponsored by the US Department of Energy (DOE), is addressing needed improvements so that the full benefits of these systems can be realized. A key element of the Program is the quantification of the benefits of batteries used in utility applications. The analyses of the applications and benefits are ongoing, but preliminary results indicate that the widespread introduction of battery storage by utilities could benefit the US economy by more than $26 billion by 2010 and create thousands of new jobs. Other critical elements of the DOE Program focus on improving the batteries, power electronics, and control subsystems and reducing their costs. These subsystems are then integrated and the systems undergo field evaluation. Finally, the most important element of the Program is the communication of the capabilities and benefits of battery systems to utility companies. Justifiably conservative, utilities must have proven, reliable equipment that is economical before they can adopt new technologies. While several utilities are leading the industry by demonstrating battery systems, a key task of the DOE program is to inform the entire industry of the value, characteristics, and availability of utility battery systems so that knowledgeable decisions can be made regarding future investments. This program plan for the DOE Utility Battery Storage Systems Program describes the technical and programmatic activities needed to bring about the widespread use of batteries by utilities. By following this plan, the DOE anticipates that many of the significant national benefits from battery storage will be achieved in the near future.

  16. Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lawder, M. T.; Suthar, B.; Northrop, P. W. C.; De, S.; Hoff, C. M.; Leitermann, O.; Crow, M. L.; Santhanagopalan, S.; Subramanian, V. R.

    2014-05-07

    The current electric grid is an inefficient system that wastes significant amounts of the electricity it produces because there is a disconnect between the amount of energy consumers require and the amount of energy produced from generation sources. Power plants typically produce more power than necessary to ensure adequate power quality. By taking advantage of energy storage within the grid, many of these inefficiencies can be removed. Advanced modeling is required when using battery energy storage systems (BESS) for grid storage in order to accurately monitor and control the storage system. Battery management systems (BMS) control how the storage system will be used and a BMS that utilizes advanced physics-based models will offer for much more robust operation of the storage system. The paper outlines the current state of the art for modeling in BMS and the advanced models required to fully utilize BMS for both lithium-ion batteries and vanadium redox-flow batteries. In addition, system architecture and how it can be useful in monitoring and control is discussed. A pathway for advancing BMS to better utilize BESS for grid-scale applications is outlined.

  17. 78 FR 6845 - Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-01-31

    ... Federal Aviation Administration Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S..., working group meetings, and document preparation. Establish agenda for next Plenary. Review Progress...

  18. Utility battery storage systems program report for FY 94

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  19. Fail-safe designs for large capacity battery systems

    Science.gov (United States)

    Kim, Gi-Heon; Smith, Kandler; Ireland, John; Pesaran, Ahmad A.; Neubauer, Jeremy

    2016-05-17

    Fail-safe systems and design methodologies for large capacity battery systems are disclosed. The disclosed systems and methodologies serve to locate a faulty cell in a large capacity battery, such as a cell having an internal short circuit, determine whether the fault is evolving, and electrically isolate the faulty cell from the rest of the battery, preventing further electrical energy from feeding into the fault.

  20. An Advanced Battery Management System for Lithium Ion Batteries

    Science.gov (United States)

    2011-08-01

    preliminary cycle life data of the 18650 1100 mAh, and 26650 2200 mAh Lithium Iron Phosphate (LiFePO4) cells from Tenergy Battery Corp. (Manufacturer...10 shows how the data might be used to estimate SOL of a 18650 cell. The plot shows the analytical life cycle curve (blue) superimposed on actual...of equation 3 result with real 18650 Tenergy cell cycle life data. REFERENCES [1] Z. Filipi, L. Louca, A. Stefanopoulou, J. Pukrushpan, B

  1. An Advanced HIL Simulation Battery Model for Battery Management System Testing

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela; Fleischer, Christian; Christensen, Andreas Elkjær

    2016-01-01

    testing on a commercial HIL simulator. A multicell electrothermal Li-ion battery (LIB) model is integrated in a system-level simulation. Then, the LIB system model is converted to C code and run in real time with the HIL simulator. Finally, in order to demonstrate the capabilities of the setup......Developers and manufacturers of battery management systems (BMSs) require extensive testing of controller Hardware (HW) and Software (SW), such as analog front-end and performance of generated control code. In comparison with the tests conducted on real batteries, tests conducted on a state...

  2. A systems approach to lithium-ion battery management

    CERN Document Server

    Weicker, Phil

    2013-01-01

    The advent of lithium ion batteries has brought a significant shift in the area of large format battery systems. Previously limited to heavy and bulky lead-acid storage batteries, large format batteries were used only where absolutely necessary as a means of energy storage. The improved energy density, cycle life, power capability, and durability of lithium ion cells has given us electric and hybrid vehicles with meaningful driving range and performance, grid-tied energy storage systems for integration of renewable energy and load leveling, backup power systems and other applications.This book

  3. Performance of redox flow battery systems in Japan

    Institute of Scientific and Technical Information of China (English)

    Shibata Toshikazu; Kumamoto Takahiro; Nagaoko Yoshiyuki; Kawase Kazunori; Yano Keiji

    2013-01-01

    Renewable energies, such as solar and wind power, are increasingly being introduced as alternative energy sources on a glosbal scale toward a low-carbon society. For the next generation power network, which uses a large number of these distributed power generation sources, energy storage technologies will be indispensable. Among these technologies, battery energy storage technology is considered to be most viable. Sumitomo Electric Industries, Ltd. has developed a redox flow battery system suitable for large scale energy storage, and carried out several demonstration projects on the stabilization of renewable energy output using the redox flow battery system. This paper describes the advantages of the redox flow battery and reviews the demonstration projects.

  4. Utility Battery Storage Systems Program report for FY93

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1994-02-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses, contract development, and testing of rechargeable batteries and systems for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1993.

  5. An Electric Bus with a Battery Exchange System

    Directory of Open Access Journals (Sweden)

    Jeongyong Kim

    2015-07-01

    Full Text Available As part of the ongoing effort to be independent of petroleum resources and to be free from pollutant emission issues, various electric vehicles have been developed and tested through their integration with real world systems. In the current paper, yet another application specific EV for public transportation, an electric bus, is introduced and explained with results from the pilot test program which was carried out under real traffic conditions. The main feature of the current system is a battery exchanging mechanism mounted on the roof of the bus. The current configuration certainly requires an externally fabricated battery exchanging robot system that would complement the electric bus for a fully automated battery exchanging process. The major advantage of the current system is the quick re-charging of the electric energy through the physical battery exchange and the possible utilization of the battery exchange station as a mini scale energy storage system for grid system peak power shaving. With the total system solution approach for the public transportation system, it is fully expected to create outstanding business opportunities in number of areas such as battery suppliers, battery exchanging station management, battery leasing and many more.

  6. Battery Management Systems in Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Michael Pecht

    2011-10-01

    Full Text Available The battery management system (BMS is a critical component of electric and hybrid electric vehicles. The purpose of the BMS is to guarantee safe and reliable battery operation. To maintain the safety and reliability of the battery, state monitoring and evaluation, charge control, and cell balancing are functionalities that have been implemented in BMS. As an electrochemical product, a battery acts differently under different operational and environmental conditions. The uncertainty of a battery’s performance poses a challenge to the implementation of these functions. This paper addresses concerns for current BMSs. State evaluation of a battery, including state of charge, state of health, and state of life, is a critical task for a BMS. Through reviewing the latest methodologies for the state evaluation of batteries, the future challenges for BMSs are presented and possible solutions are proposed as well.

  7. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  8. Generic modelling framework for economic analysis of battery systems

    DEFF Research Database (Denmark)

    You, Shi; Rasmussen, Claus Nygaard

    2011-01-01

    for battery cycle life estimation, since the cycle life plays a central role in the economic analysis of BS. To illustrate the modelling framework, a case study using a Sodium Sulfur Battery (NAS) system with 5-minute regulating service is performed. The economic performances of two dispatch scenarios, a so...

  9. Battery energy-storage systems — an emerging market for lead/acid batteries

    Science.gov (United States)

    Cole, J. F.

    Although the concept of using batteries for lead levelling and peak shaving has been known for decades, only recently have these systems become commercially viable. Changes in the structure of the electric power supply industry have required these companies to seek more cost-effective ways of meeting the needs of their customers. Through experience gained, primarily in the USA, batteries have been shown to provide multiple benefits to electric utilities. Also, lower maintenance batteries, more reliable electrical systems, and the availability of methods to predict costs and benefits have made battery energy-storage systems more attractive. Technology-transfer efforts in the USA have resulted in a willingness of electric utilities to install a number of these systems for a variety of tasks, including load levelling, peak shaving, frequency regulation and spinning reserve. Additional systems are being planned for several additional locations for similar applications, plus transmission and distribution deferral and enhanced power quality. In the absence of US champions such as the US Department of Energy and the Electric Power Research Institute, ILZRO is attempting to mount a technology-transfer programme to bring the benefits of battery energy-storage to European power suppliers. As a result of these efforts, a study group on battery energy-storage systems has been established with membership primarily in Germany and Austria. Also, a two-day workshop, prepared by the Electric Power Research Institute was held in Dublin. Participants included representatives of several European power suppliers. As a result, ESB National Grid of Ireland has embarked upon a detailed analysis of the costs and benefits of a battery energy-storage system in their network. Plans for the future include continuation of this technology-transfer effort, assistance in the Irish effort, and a possible approach to the European Commission for funding.

  10. Properties of an adjustable quarter-wave system under conditions of multiple beam interference.

    Science.gov (United States)

    Bibikova, Evelina A; Kundikova, Nataliya D

    2013-03-20

    We investigate the polarimetric properties of an adjustable two plate quarter-wave system. We take into account multiple beam interference within single wave plates. Different adjustments of an adjustable two plate quarter-wave system are required for the production of the left-handed and the right-handed circular polarized coherent light. We investigate experimentally laser light polarization conversion by the systems consisting of two birefringent mica plates. An adjustable two plate quarter-wave system produces high-quality circularly polarized coherent light with the intensity-related ellipticity better than 0.99 at any wavelength.

  11. Two Stage Battery System for the ROSETTA Lander

    Science.gov (United States)

    Debus, André

    2002-01-01

    The ROSETTA mission, lead by ESA, will be launched by Ariane V from Kourou in January 2003 and after a long trip, the spacecraft will reach the comet Wirtanen 46P in 2011. The mission includes a lander, built under the leadership of DLR, on which CNES has a large participation and is concerned by providing a part of the payload and some lander systems. Among these, CNES delivers a specific battery system in order to comply with the mission environment and the mission scenario, avoiding particularly the use of radio-isotopic heaters and radio-isotopic electrical generators usually used for such missions far from the Sun. The battery system includes : - a pack of primary batteries of lithium/thionyl chloride cells, this kind of generator - a secondary stage, including rechargeable lithium-ion cells, used as redundancy for the - a specific electronic system dedicated to the battery handling and to secondary battery - a mechanical and thermal (insulation, and heating devices) structures permitting the The complete battery system has been designed, built and qualified in order to comply with the trip and mission requirements, keeping within low mass and low volume limits. This battery system is presently integrated into the Rosetta Lander flight model and will leave the Earth at the beginning of next year. Such a development and experience could be re-used in the frame of cometary and planetary missions.

  12. Design and Implementation of Battery Management System for Electric Bicycle

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Today the electric vehicle (EV has been developed in such a way that electronic motor, battery, and charger replace the engine, tank and gasoline pump of the conventional gasoline-powered [1]. In other word, instead of using fossil fuel to move the vehicle, in this case we used a pack of batteries to move it. The global climate change and the abnormal rising international crude oil prices call for the development of EV [2]. To solve these problems, a new energy needs to be developed or optimized in order to replace the current energy which is fossil fuel. A clean and green energy [2]. Because of this, it is very important to make sure that the battery that being used is reliable as the fossil fuel. Thus, the design of the battery management system plays an important role on battery life preservation and performance improvement of EV [3]. The BMS also performs many tasks including the measurement of system voltage, current and temperature, the cells’ state of charge (SOC, state of health (SOH, remaining useful life (RUL determination, controlling and monitoring the charge / discharge characteristics and cell balancing [3]. For this project, 18650 Lithium-Ion battery is used to develop battery management for 144V 50Ah. As lithium-ion batteries have high value of specific energy, high energy density, high open circuit voltage, and low self-discharge, they are a proper candidate for EVs among other cell chemistries [4].

  13. Research on Battery Charging-Discharging in New Energy Systems

    Directory of Open Access Journals (Sweden)

    Che Yanbo

    2013-07-01

    Full Text Available As an energy storage component, the battery plays increasingly important role in new energy industry. Charging and discharging system is the vital part of the application of the battery, but the charge and discharge are always designed separately and carried by different part in the traditional application. Additionally, most battery discharge mode and method are always simplified which cannot ensure to meet the demand of power utilization. In the actual energy storage system, the design of the energy converter, which make the power storage and supply as a whole and the design of the charge and discharge method, will play an important role in efficient utilization of the battery system. As a part of the new energy system, the study makes battery and the charging and discharging system as a whole to store energy, which can store and release electric energy high efficiently according to the system state and control the bidirectional flow of energy precisely. Using TMS320F2812 as the control core, the system which integrates charging and discharging with battery monitoring can achieve the bidirectional Buck/Boost power control. It can achieve three-stage charging and selective discharging of the battery. Due to the influence of the diode reverse recovery time, current oscillation will appear. In order to eliminate the oscillation, we can set the circuit to work in critical conduction mode. The experimental result shows that the system can achieve the charging and discharging control of lead-acid battery and increase the battery life time further.

  14. Utility battery storage systems. Program report for FY95

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1996-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  15. California community water systems quarterly indicators dataset, 1999-2008

    Data.gov (United States)

    California Environmental Health Tracking Program — This data set contains quarterly measures of arsenic and nitrates in public drinking water supplies. Data are derived from California Office of Drinking Water (ODW)...

  16. Specific systems studies of battery energy storage for electric utilities

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A.A.; Lachenmeyer, L. [Sandia National Labs., Albuquerque, NM (United States); Jabbour, S.J. [Decision Focus, Inc., Mountain View, CA (United States); Clark, H.K. [Power Technologies, Inc., Roseville, CA (United States)

    1993-08-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  17. Photovoltaic System Test Platform with Integrated Battery Energy Storage Emulator

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Stroe, Daniel-Ioan

    2017-01-01

    In this work, we present a hybrid simulation and a real-time test platform for developing control systems for photovoltaic (PV) inverters with integrated battery energy storage (BES). The platform consists of a dual-stage single-phase PV inverter system, DC coupled with a full-bridge grid connected...... or directly to a physical PV array. The platform enables real-time testing of PV+BES control systems, including battery (BMS) and energy management systems (EMS), for a variety of battery technologies, which can be modelled in detail and emulated by the full-bridge grid connected inverter. Such flexibility...... is difficult to achieve with real BES systems, due to electrical safety and cost constrains of high power charge regulators and battery packs....

  18. Battery Health Management System for Electric UAVs

    Data.gov (United States)

    National Aeronautics and Space Administration — In summary, this paper lays out a novel battery health management technique for application onboard an electric UAV. This technique is also applicable to other...

  19. Development of a control system for the teat-end vacuum in individual quarter milking systems.

    Science.gov (United States)

    Ströbel, Ulrich; Rose-Meierhöfer, Sandra; Oz, Hülya; Brunsch, Reiner

    2013-06-13

    Progress in sensor technique and electronics has led to a decrease in the costs of electronic and sensor components. In modern dairy farms, having udders in good condition, a lower frequency of udder disease and an extended service life of dairy cows will help ensure competitiveness. The objective of this study was to develop a teat-end vacuum control system with individual quarter actor reaction. Based on a review of the literature, this system is assumed to protect the teat tissue. It reduces the mean teat-end vacuum in the maximum vacuum phase (b) to a level of 20 kPa at a flow rate of 0.25 L/min per quarter. At flow rates higher than 1.50 L/min per quarter, the teat-end vacuum can be controlled to a level of 30 kPa, because in this case it is desirable to have a higher vacuum for the transportation of the milk to the receiver. With this system it is possible for the first time to supply the teat end with low vacuum at low flow rates and with higher vacuum at increasing flow rates in a continuous process with a three second reaction-rate on individual quarter level. This system is completely automated.

  20. Advances in battery manufacturing, service, and management systems

    CERN Document Server

    Zhou, Shiyu; Han, Yehui

    2016-01-01

    This book brings together experts in the field to highlight the cutting edge research advances in BM2S2 and to promote an innovative integrated research framework responding to the challenges. There are three major parts included in this book: manufacturing, service, and management. The first part focuses on battery manufacturing systems, including modeling, analysis, design and control, as well as economic and risk analyses. The second part focuses on information technology’s impact on service systems, such as data-driven reliability modeling, failure prognosis, and service decision making methodologies for battery services. The third part addresses battery management systems (BMS) for control and optimization of battery cells, opera ions, and hybrid storage systems to ensure overall performance and safety, as well as EV management.

  1. Vibration control of a nonlinear quarter-car active suspension system by reinforcement learning

    Science.gov (United States)

    Bucak, İ. Ö.; Öz, H. R.

    2012-06-01

    This article presents the investigation of performance of a nonlinear quarter-car active suspension system with a stochastic real-valued reinforcement learning control strategy. As an example, a model of a quarter car with a nonlinear suspension spring subjected to excitation from a road profile is considered. The excitation is realised by the roughness of the road. The quarter-car model to be considered here can be approximately described as a nonlinear two degrees of freedom system. The experimental results indicate that the proposed active suspension system suppresses the vibrations greatly. A simulation of a nonlinear quarter-car active suspension system is presented to demonstrate the effectiveness and examine the performance of the learning control algorithm.

  2. Handbook of secondary storage batteries and charge regulators in photovoltaic systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-08-01

    Solar photovoltaic systems often require battery subsystems to store reserve electrical energy for times of zero insolation. This handbook is designed to help the system designer make optimum choices of battery type, battery size and charge control circuits. Typical battery performance characteristics are summarized for four types of lead-acid batteries: pure lead, lead-calcium and lead-antimony pasted flat plate and lead-antimony tubular positive types. Similar data is also provided for pocket plate nickel cadmium batteries. Economics play a significant role in battery selection. Relative costs of each battery type are summarized under a variety of operating regimes expected for solar PV installations.

  3. Dynamic analysis of a photovoltaic power system with battery storage capability

    Science.gov (United States)

    Merrill, W. C.; Blaha, R. J.; Pickrell, R. L.

    1979-01-01

    A photovolataic power system with a battery storage capability is analyzed. A dual battery current control concept is proposed, which enables the battery to either supply or accept power depending upon system environment and load conditions. A simulation of the power system, including the battery current control, is developed and evaluated. The evaulation demonstrate the visbility of the battery control concept of switch the battery from a charge to discharge mode and back as required by load and environmental conditions. An acceptable system operation is demonstrated over the entire insolation range. Additionally, system sensitivity, bandwidth, and damping characteristics of the battery control are shown to be acceptable for a projected hardware implementation.

  4. Advancement Of Tritium Powered Betavoltaic Battery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Staack, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gaillard, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coughlin, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Neikirk, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fisher, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-14

    Due to their decades-long service life and reliable power output under extreme conditions, betavoltaic batteries offer distinct advantages over traditional chemical batteries, especially in applications where frequent battery replacement is hazardous, or cost prohibitive. Although many beta emitting isotopes exist, tritium is considered ideal in betavoltaic applications for several reasons: 1) it is a “pure” beta emitter, 2) the beta is not energetic enough to damage the semiconductor, 3) it has a moderately long half-life, and 4) it is readily available. Unfortunately, the widespread application of tritium powered betavoltaics is limited, in part, by their low power output. This research targets improving the power output of betavoltaics by increasing the flux of beta particles to the energy conversion device (the p-n junction) through the use of low Z nanostructured tritium trapping materials.

  5. Economic evaluation of a photovoltaic (PV) power generation system with battery; Battery wo heiyoshita taiyoko hatsuden system no keizaiseihyoka

    Energy Technology Data Exchange (ETDEWEB)

    Tomikura, S.; Kaya, Y. [Keio University, Tokyo (Japan)

    1997-01-30

    To improve the correlation characteristics between unstable output of PV system and demand, and to improve its economical value, use of battery was investigated. In this study, at first, solution of constrained optimization problem was derived in the case when the demand and PV output were defined by the continuous function, to obtain the break-even cost of PV system. To investigate the charge from PV in daytime or the charge from base power source at night, peak, middle and base power sources were considered. Finally, break-even cost of the PV system with battery was calculated as a trial using a multiple time zone model having PV and usual three power sources. As a result, the difference ranging from 25000 to 29000 yen in the break-even costs between PV and PV with battery was provided, which was considered to be a pure increase of the value using battery. 10 refs., 7 figs., 1 tab.

  6. Battery Management System (BMS) Evaluation Toolset

    Science.gov (United States)

    2011-08-16

    module was properly communicating via RS232 to our laboratory PC’s while the battery cells were still present.  Removal of cells from battery...Baseline Cell # Serial # Voltage (Measured) Voltage (BMS/ RS232 ) Difference (Absolute) 7 3HH04C246 3.342 3.339 0.003 6 3HH04C247 3.358 3.356 0.002 5...special GSYUSAS RS-232 communications box, seen in Figure 5. This RS232 connection allowed data to be collected and logged directly from the BMS. A

  7. Li-Ion Battery Charging with a Buck-Boost Power Converter for a Solar Powered Battery Management System

    Directory of Open Access Journals (Sweden)

    Chien-Wei Ma

    2013-03-01

    Full Text Available This paper analyzes and simulates the Li-ion battery charging process for a solar powered battery management system. The battery is charged using a non-inverting synchronous buck-boost DC/DC power converter. The system operates in buck, buck-boost, or boost mode, according to the supply voltage conditions from the solar panels. Rapid changes in atmospheric conditions or sunlight incident angle cause supply voltage variations. This study develops an electrochemical-based equivalent circuit model for a Li-ion battery. A dynamic model for the battery charging process is then constructed based on the Li-ion battery electrochemical model and the buck-boost power converter dynamic model. The battery charging process forms a system with multiple interconnections. Characteristics, including battery charging system stability margins for each individual operating mode, are analyzed and discussed. Because of supply voltage variation, the system can switch between buck, buck-boost, and boost modes. The system is modeled as a Markov jump system to evaluate the mean square stability of the system. The MATLAB based Simulink piecewise linear electric circuit simulation tool is used to verify the battery charging model.

  8. Lead/acid batteries in systems to improve power quality

    Science.gov (United States)

    Taylor, P.; Butler, P.; Nerbun, W.

    Increasing dependence on computer technology is driving needs for extremely high-quality power to prevent loss of information, material, and workers' time that represent billions of dollars annually. This cost has motivated commercial and Federal research and development of energy storage systems that detect and respond to power-quality failures in milliseconds. Electrochemical batteries are among the storage media under investigation for these systems. Battery energy storage systems that employ either flooded lead/acid or valve-regulated lead/acid battery technologies are becoming commercially available to capture a share of this emerging market. Cooperative research and development between the US Department of Energy and private industry have led to installations of lead/acid-based battery energy storage systems to improve power quality at utility and industrial sites and commercial development of fully integrated, modular battery energy storage system products for power quality. One such system by AC Battery Corporation, called the PQ2000, is installed at a test site at Pacific Gas and Electric Company (San Ramon, CA, USA) and at a customer site at Oglethorpe Power Corporation (Tucker, GA, USA). The PQ2000 employs off-the-shelf power electronics in an integrated methodology to control the factors that affect the performance and service life of production-model, low-maintenance, flooded lead/acid batteries. This system, and other members of this first generation of lead/acid-based energy storage systems, will need to compete vigorously for a share of an expanding, yet very aggressive, power quality market.

  9. Li-Ion Battery Charging with a Buck-Boost Power Converter for a Solar Powered Battery Management System

    OpenAIRE

    2013-01-01

    This paper analyzes and simulates the Li-ion battery charging process for a solar powered battery management system. The battery is charged using a non-inverting synchronous buck-boost DC/DC power converter. The system operates in buck, buck-boost, or boost mode, according to the supply voltage conditions from the solar panels. Rapid changes in atmospheric conditions or sunlight incident angle cause supply voltage variations. This study develops an electrochemical-based equivalent circuit mod...

  10. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the reliability and performance of these systems is to integrate energy storage devices into the power system network. Further, in the present deregulated markets these storage devices could also be used to increase the profit margins of wind farm owners and even provide arbitrage. This paper discusses...... the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...

  11. Development of power storage system. Review of development for advanced battery technique in Yuasa Battery Co. , Ltd

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    Yuasa Battery Co., Ltd. selected the ceramic battery (Na/S) for power storage to establish the basic technique, to enlarge the capacity and to develop the 50kW/400kWh battery system. The ceramic battery is one where Na and S are combined and the beta alumina, that is, a special solid hydrolyte is utilized as the Na ion conductor. The battery system under development consists of 1120 batteries in which each nominal capacity is 540Wh, and which are connected to series and parallel and is put in a insulating electric furnace. The 76-77% energy efficiency in the constant power charging and discharging per every 8 hours specified, was established at the initial test of NO. 1 50kW/400kW power system. Other tests are conducting. (1 fig, 1 tab, 2 photo)

  12. An optimal control strategy for standalone PV system with Battery-Supercapacitor Hybrid Energy Storage System

    Science.gov (United States)

    Chong, Lee Wai; Wong, Yee Wan; Rajkumar, Rajprasad Kumar; Isa, Dino

    2016-11-01

    This paper proposes an optimal control strategy for a standalone PV system with Battery-Supercapacitor Hybrid Energy Storage System to prolong battery lifespan by reducing the dynamic stress and peak current demand of the battery. Unlike the conventional methods which only use either filtration based controller (FBC) or fuzzy logic controller (FLC), the proposed control strategy comprises of a low-pass filter (LPF) and FLC. Firstly, LPF removes the high dynamic components from the battery demand. FLC minimizes the battery peak current demand while constantly considering the state-of-charge of the supercapacitor. Particle swarm optimization (PSO) algorithm optimizes the membership functions of the FLC to achieve optimal battery peak current reduction. The proposed system is compared to the conventional system with battery-only storage and the systems with conventional control strategies (Rule Based Controller and FBC). The proposed system reduces the battery peak current, battery peak power, maximum absolute value of the rate of change of power and average absolute value of the rate of change of power by 16.05%, 15.19%, 77.01%, and 95.59%, respectively as compared to the conventional system with battery-only storage. Moreover, he proposed system increases the level of supercapacitor utilization up to 687.122% in comparison to the conventional control strategies.

  13. Process control of the EUS battery energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Harke, R.; Pierschke, T.; Schroeder, M. [EUS GmbH, Gelsenkirchen (Germany)

    1999-07-01

    The process control of the EUS battery energy storage system (BESS) is presented which is used to improve the utilization of regenerative energies. This multifunctional energy storage system includes three different functions: (i) Uninterruptible power supply (UPS); (ii) Improvement of power quality; (iii) Peak load shaving. UPS application has a long tradition and is used whenever a reliable power supply is needed. Additionally, nowadays, there is a growing demand for high quality power under consideration of an increase of system perturbation of electric grids. Peak load shaving means in this case the use of regenerative produced power stored in a battery for high peak load periods. For such a multifunctional application large lead-acid batteries with high power and good charge acceptance, as well as good cycle life are needed. The batteries consist of standard OCSM cells with positive tubular plates and negative copper grids but modified according to the special demand of an multifunctional application. This paper is based on two examples where multifunctional energy storage systems have started operation recently in Germany: one system was installed in combination with a 1 MW solar plant in Herne and another one was installed in combination with a 3,5 MW wind farm in Bocholt. At each of both places a 1,2 MWh (1h-rate) lead acid battery has been installed. (orig.)

  14. Design options for automotive batteries in advanced car electrical systems

    Science.gov (United States)

    Peters, K.

    The need to reduce fuel consumption, minimize emissions, and improve levels of safety, comfort and reliability is expected to result in a much higher demand for electric power in cars within the next 5 years. Forecasts vary, but a fourfold increase in starting power to 20 kW is possible, particularly if automatic stop/start features are adopted to significantly reduce fuel consumption and exhaust emissions. Increases in the low-rate energy demand are also forecast, but the use of larger alternators may avoid unacceptable high battery weights. It is also suggested from operational models that the battery will be cycled more deeply. In examining possible designs, the beneficial features of valve-regulated lead-acid batteries made with compressed absorbent separators are apparent. Several of their attributes are considered. They offer higher specific power, improved cycling capability and greater vibration resistance, as well as more flexibility in packaging and installation. Optional circuits considered for dual-voltage supplies are separate batteries for engine starting (36 V) and low-power duties (12 V), and a universal battery (36 V) coupled to a d.c.-d.c. converter for a 12-V equipment. Battery designs, which can be made on commercially available equipment with similar manufacturing costs (per W h and per W) to current products, are discussed. The 36-V battery, made with 0.7 mm thick plates, in the dual-battery system weighs 18.5 kg and has a cold-cranking amp (CCA) rating of 790 A at -18°C to 21.6 V (1080 W kg -1 at a mean voltage of 25.4 V). The associated, cycleable 12-V battery, provides 1.5 kW h and weighs 24.6 kg. Thus, the combined battery weight is 43.1 kg. The single universal battery, with cycling capability, weighs 45.4 kg, has a CCA rating of 810 A (441 W kg -1 at a mean voltage of 24.7 V), and when connected to the d.c.-d.c. converter at 75% efficiency provides a low-power capacity of 1.5 kW h.

  15. Systems and methods for rebalancing redox flow battery electrolytes

    Science.gov (United States)

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  16. Battery outgassing sensor for electric drive vehicle energy storage systems

    Science.gov (United States)

    Beshay, Manal; Chandra Sekhar, Jai Ganesh; Kempen, Lothar U.

    2011-06-01

    Lithium-ion batteries have been proven efficient as high power density and low self-discharge rate energy storage systems, specifically in electrical drive vehicles. An important safety factor associated with these systems is the potential hazardous release and outgassing of toxic chemical vapors such as hydrogen fluoride (HF) and hydrogen sulfides (H2S), and relatively elevated levels of carbon dioxide (CO2). The release and accumulation of such gases emphasizes an in-line monitoring need. Intelligent Optical Systems, Inc. (IOS) has identified a viable approach for the development of an onboard optical sensor array that can be used to monitor battery outgassing. This paper discusses the potential of developing a battery outgas sensing approach that will meet sensitivity and response time requirements.

  17. Grid Converters for Stationary Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Trintis, Ionut

    to hours, rated at MW and MWh, battery energy storage systems are suitable and ecient solutions. Grid connection of the storage system can be done at dierent voltage levels, depending on the location and application scenario. For high power and energy ratings, increase in the battery and converter voltage...... ratings can enhance the overall system eciency. This work is divided in two parts, "Control of DC-AC Grid Converters" and "Medium Voltage Grid Converters for Energy Storage". The rst part starts with a brief review of control strategies applied to grid connected DC-AC converters. A control implementation...... was realized for a 100 kW active rectier to be used in a 6 kV battery energy storage test bench. In the second part, dierent solutions for power converters to interface energy storage units to medium voltage grid are given. A new modular multilevel converter concept is introduced, where the energy storage...

  18. PEM Fuel Cell System Replacement for BA-559O Battery

    Science.gov (United States)

    2007-11-02

    H Power Corp. developed a fuel cell system to demonstrate that fuel cells can be effectively designed for missions requiring a high degree of...equivalent in size to that of a BA-5590 battery. The system comprised an air-cooled fuel cell stack, a metal-hydride-based fuel storage section, and a

  19. Thermal Battery Systems for Ordnance Fuzing

    Science.gov (United States)

    1982-07-01

    researched. 13 L .. - . .... .. ... LITERATURE CITED (1) R. B. Goodrich and R. C. Evans, Thermal (11) 0. Updike et al, Study of Fused Salt Elec- Batteries...WASHINGTON, DC 20585 WARREN, MI 48090 DOD PROJECT MANAGER-MOBIL ARRADCOM ELECTRIC POWER ATTN MR. DAVID YEDWAB ATTN DRCPM-MEP-T, MR. JOHN T. WASDI TE&S...LOWELL A. KING ATTN FJSRL/NCE, CPT. JOHN L. WILLIAMS, SANDIA NATIONAL LABS, DIV 2522 USAF ACADEMY, CO 80840I• KIRTLAND AIP FORCE 3ASE, EAST ATTN MR

  20. Lessons Learned from the Puerto Rico Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

    1999-09-01

    The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.

  1. SUNRAYCE 95: Working safely with lead-acid batteries and photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    DePhillips, M.P.; Moskowitz, P.D.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States). Biomedical and Environmental Assessment Group

    1994-05-27

    This document is a power system and battery safety handbook for participants in the SUNRAYCE 95 solar powered electric vehicle program. The topics of the handbook include batteries, photovoltaic modules, safety equipment needed for working with sulfuric acid electrolyte and batteries, battery transport, accident response, battery recharging and ventilation, electrical risks on-board vehicle, external electrical risks, electrical risk management strategies, and general maintenance including troubleshooting, hydrometer check and voltmeter check.

  2. Laboratory evaluation of a pilot cell battery protection system for photovoltaic applications

    Science.gov (United States)

    Cataldo, R. L.; Thomas, R. D.

    1981-01-01

    An energy storage method for the 3.5 kW battery power system was investigated. The Pilot Cell Battery Protection System was tested for use in photovoltaic power systems and results show that this is a viable method of storage battery control. The method of limiting battery depth of discharge has the following advantages: (1) temperature sensitivity; (2) rate sensitivity; and (3) state of charge indication. The pilot cell concept is of interest in remote stand alone photovoltaic power systems. The battery can be protected from damaging overdischarge by using the proper ratio of pilot cell capacities to main battery capacity.

  3. 76 FR 70531 - Fifth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2011-11-14

    ... Federal Aviation Administration Fifth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S.... Working Group Meeting--Review draft document. Working Group report, review progress and actions....

  4. 77 FR 56253 - Ninth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2012-09-12

    ... Federal Aviation Administration Ninth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S.... Working Group Meeting--Review draft document. Working Group report, review progress and actions....

  5. Control of second-life hybrid battery energy storage system based on modular boost-multilevel buck converter

    OpenAIRE

    Mukherjee, Nilanjan; Strickland, Dani

    2015-01-01

    To fully utilize second-life batteries on the grid system, a hybrid battery scheme needs to be considered for several reasons: the uncertainty over using a single source supply chain for second-life batteries, the differences in evolving battery chemistry and battery configuration by different suppliers to strive for greater power levels, and the uncertainty of degradation within a second-life battery. Therefore, these hybrid battery systems could have widely different module voltage, capacit...

  6. Characterization of electrochemical systems and batteries: Materials and systems

    Energy Technology Data Exchange (ETDEWEB)

    McBreen, J.

    1992-01-01

    Materials are a pacing problem in battery development. The battery environment, particularly in rechargeable batteries, places great demands on materials. Characterization of battery materials is difficult because of their complex nature. In many cases meaningful characterization requires iii situ methods. Fortunately, several new electrochemical and spectroscopic techniques for in situ characterization studies have recently become available, and reports of new techniques have become more frequent. The opportunity now exists to utilize advanced instrumentation to define detailed features, participating chemical species and interfacial structure of battery materials with a precision heretofore not possible. This overview gives key references to these techniques and discusses the application of x-ray absorption spectroscopy to the study of battery materials.

  7. Characterization of electrochemical systems and batteries: Materials and systems

    Energy Technology Data Exchange (ETDEWEB)

    McBreen, J.

    1992-12-01

    Materials are a pacing problem in battery development. The battery environment, particularly in rechargeable batteries, places great demands on materials. Characterization of battery materials is difficult because of their complex nature. In many cases meaningful characterization requires iii situ methods. Fortunately, several new electrochemical and spectroscopic techniques for in situ characterization studies have recently become available, and reports of new techniques have become more frequent. The opportunity now exists to utilize advanced instrumentation to define detailed features, participating chemical species and interfacial structure of battery materials with a precision heretofore not possible. This overview gives key references to these techniques and discusses the application of x-ray absorption spectroscopy to the study of battery materials.

  8. Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-12-31

    HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, including commercial and residential buildings, data centers, and telecom facilities.

  9. Mathematical modeling of the nickel/metal hydride battery system

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Blaine Kermit [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  10. Advanced Turbine Systems program. Quarterly report, November 1, 1995--January 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Allison continued progress on the following tasks during this quarter: Task 5: market study; Task 6: GFATS system definition and analysis; Task 8.01: Castcool{trademark} technology demonstration; Task 8.04: low emissions combustion system; Task 8.07: ceramic vane design and evaluation; and Task 9.0: program management.

  11. High Efficient Bidirectional Battery Converter for residential PV Systems

    DEFF Research Database (Denmark)

    Pham, Cam; Kerekes, Tamas; Teodorescu, Remus

    2012-01-01

    the power to balance it. High efficient bidirectional converter for the battery storage is required due high system cost and because the power is processed twice. A 1.5kW prototype is designed and built with CoolMOS and SiC diodes, >;95% efficiency has been obtained with 200 kHz hard switching....

  12. Smart Power Supply for Battery-Powered Systems

    Science.gov (United States)

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have

  13. Quarter Car Active Suspension System Control Using PID Controller tuned by PSO

    OpenAIRE

    Wissam H. Al-Mutar

    2015-01-01

    The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compa...

  14. Second life battery energy storage system for enhancing renewable energy grid integration

    DEFF Research Database (Denmark)

    Koch-Ciobotaru, C.; Saez-de-Ibarra, A.; Martinez-Laserna, E.;

    2015-01-01

    must be explored especially that large battery energy storage systems are still expensive solutions. Thus, in order to make battery investment economic viable, the use of second life batteries is investigated in the present work. This paper proposes a method for determining firstly, the optimal rating...... of a second life battery energy storage system (SLBESS) and secondly, to obtain the power exchange and battery state of charge profiles during the operation. These will constitute the cycling patterns for testing batteries and studying the ageing effect of this specific application. Real data from the Spanish...

  15. Operation of Grid -Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation: A Battery Lifetime Perspective

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Knap, Vaclav; Swierczynski, Maciej Jozef;

    2016-01-01

    there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re......Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...

  16. Pre-Study for a Battery Storage for a Kinetic Energy Storage System

    OpenAIRE

    2015-01-01

    This bachelor thesis investigates what kind of battery system that is suitable for an electric driveline equipped with a mechanical fly wheel, focusing on a battery with high specific energy capacity. Basic battery theory such as the principle of an electrochemical cell, limitations and C-rate is explained as well as the different major battery systems that are available. Primary and secondary cells are discussed, including the major secondary chemistries such as lead acid, nickel cadmium (Ni...

  17. Second life battery energy storage systems:converter topology and redundancy selection

    OpenAIRE

    Mukherjee, N.; Strickland, D

    2014-01-01

    Battery energy storage systems have traditionally been manufactured using new batteries with a good reliability. The high cost of such a system has led to investigations of using second life transportation batteries to provide an alternative energy storage capability. However, the reliability and performance of these batteries is unclear and multi-modular power electronics with redundancy have been suggested as a means of helping with this issue. This paper reviews work already undertaken on ...

  18. Promising future energy storage systems: Nanomaterial based systems, Zn-air, and electromechanical batteries

    Science.gov (United States)

    Koopman, R.; Richardson, J.

    1993-10-01

    Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

  19. Development of power storage system. Advanced battery power storage system. (The development results and research plan in 1988 fiscal year)

    Energy Technology Data Exchange (ETDEWEB)

    Kouda, Atsushi; Yazawa, Tetsuo

    1988-07-01

    The research and trial manufacture of 1kW battery on the electrode and battery construction, development of 10kW battery module, capacity enlarging and trial manufacturing as to four type batteries, that is, Na-S battery, Zn-Cl battery, Zn-Br battery and redox flow type battery were forwarded as the items to be developed in Japan for the advanced battery power storage system. The research and development of system technology was started in 1980 to verify the operating and controlling characteristics and the protection system. The technology of the 60kW class module for 1,000kW class battery system was established in 1987 and the total system research and development is forwarding. The 1,000kW class system test is continued; the 60kW class module batteries of Na-S battery and Zn-Br battery are operated; the fabrication of 1,000kW class pilot plant is initiated; and the reliability and safety of the power system are verified in 1988. (1 fig, 2 tabs)

  20. Battery and electrochemical systems program summary, FY 1977

    Energy Technology Data Exchange (ETDEWEB)

    Webster, W. H. [ed.

    1978-04-01

    The success of wind and photovoltaic energy conversion systems for residential, commercial, and industrial applications is highly dependent on the development of a cost-effective battery storage system to provide power during periods of no wind or sunlight. The use of 3 to 9 million electric cars by the year 2000 will result in an oil saving from 35 to 90 million barrels per year. During FY 1977, STOR committed $13.3 million of its funds to these electrochemical programs, and managed an additional $5.6 million for the Division of Transportation Energy Conservation to develop near-term batteries for electric vehicles. This publication consists of summaries of all these programs, including contractors, major subcontracts, names of program managers, funding, and a brief description of the objectives and status of each program.

  1. Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems with Supercapacitors

    OpenAIRE

    Pinto, Claudio; Barreras, Jorge Varela; Castro, Ricardo; Schaltz, Erik; Andreasen, Søren Juhl; Araujo, Rui Esteves

    2014-01-01

    This paper presents a comparative study of the influence of different aggregated electrical circuit battery models in the sizing process of a hybrid energy storage system (ESS), composed by Li-ion batteries and supercapacitors (SCs). The aim is to find the number of cells required to propel a certain vehicle over a predefined driving cycle. During this process, three battery models will be considered. The first consists in a linear static zeroeth order battery model over a restricted operatin...

  2. Numerical and analytical modelling of battery thermal management using passive cooling systems

    OpenAIRE

    Greco, Angelo

    2016-01-01

    This thesis presents the battery thermal management systems (BTMS) modelling of Li-ions batteries and investigates the design and modelling of different passive cooling management solutions from single battery to module level. A simplified one-dimensional transient computational model of a prismatic lithium-ion battery cell is developed using thermal circuit approach in conjunction with the thermal model of the heat pipe. The proposed model is compared to an analytical solution based on varia...

  3. Maintenance-free lead acid battery for inertial navigation systems aircraft

    Science.gov (United States)

    Johnson, William R.; Vutetakis, David G.

    1995-05-01

    Historically, Aircraft Inertial Navigation System (INS) Batteries have utilized vented nickel-cadmium batteries for emergency DC power. The United States Navy and Air Force developed separate systems during their respective INS developments. The Navy contracted with Litton Industries to produce the LTN-72 and Air Force contracted with Delco to produce the Carousel IV INS for the large cargo and specialty aircraft applications. Over the years, a total of eight different battery national stock numbers (NSNs) have entered the stock system along with 75 battery spare part NSNs. The Standard Hardware Acquisition and Reliability Program is working with the Aircraft Battery Group at Naval Surface Warfare Center Crane Division, Naval Air Systems Command (AIR 536), Wright Laboratory, Battelle Memorial Institute, and Concorde Battery Corporation to produce a standard INS battery. This paper discusses the approach taken to determine whether the battery should be replaced and to select the replacement chemistry. The paper also discusses the battery requirements, aircraft that the battery is compatible with, and status of Navy flight evaluation. Projected savings in avoided maintenance in Navy and Air Force INS Systems is projected to be $14.7 million per year with a manpower reduction of 153 maintenance personnel. The new INS battery is compatible with commercially sold INS systems which represents 66 percent of the systems sold.

  4. [Redesign of the Spacesuit Long Life Battery and the Personal Life Support System Battery

    Science.gov (United States)

    Scharf, Stephanie

    2015-01-01

    This fall I was working on two different projects that culminated into a redesign of the spacesuit LLB (long life battery). I also did some work on the PLSS (personal life support system) battery with EC. My first project was redlining the work instruction for completing DPAs (destructive physical analysis) on battery cells in the department. The purpose of this document is to create a standard process and ensure that the data in the same way no matter who carries out the analysis. I observed three DPAs, conducted one with help, and conducted two on my own all while taking notes on the procedure. These notes were used to write the final work instruction that will become is the department standard. My second project continued the work of the summer co-op before me. I was testing aluminum heat sinks for their ability to provide good thermal conduction and structural support during a thermal runaway event. The heat sinks were designed by the summer intern but there was not much time for testing before he left. We ran tests with a heater on the bottom of a trigger cell to try to drive thermal runaway and ensure that it will not propagate to adjacent cells. We also ran heat-to-vent tests in an oven to see if the assembly provided structural support and prevented sidewall rupture during thermal runaway. These tests were carried out at ESTA (energy systems test area) and are providing very promising results that safe, high performing (greater than 180 Wh/kg) designs are possible. My main project was a redesign of the LLB battery. Another summer intern did some testing and concluded that there was no simple fix to mitigate thermal runaway propagation hazards in the current design. The only option was a clean sheet redesign of the battery. I was given a volume and ideal energy density and the rest of the design was up to me. First, I created new heat sink banks in Creo using the information gathered in the metal heat sink tests from the summer intern. After this, I made

  5. Battery management system with distributed wireless sensors

    Science.gov (United States)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2016-02-23

    A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.

  6. [Geothermal system temperature-depth database and model for data analysis]. 5. quarterly technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, D.D.

    1998-04-25

    During this first quarter of the second year of the contract activity has involved several different tasks. The author has continued to work on three tasks most intensively during this quarter: the task of implementing the data base for geothermal system temperature-depth, the maintenance of the WWW site with the heat flow and gradient data base, and finally the development of a modeling capability for analysis of the geothermal system exploration data. The author has completed the task of developing a data base template for geothermal system temperature-depth data that can be used in conjunction with the regional data base that he had already developed and is now implementing it. Progress is described.

  7. Lithium-Ion Battery Cell-Balancing Algorithm for Battery Management System Based on Real-Time Outlier Detection

    Directory of Open Access Journals (Sweden)

    Changhao Piao

    2015-01-01

    Full Text Available A novel cell-balancing algorithm which was used for cell balancing of battery management system (BMS was proposed in this paper. Cell balancing algorithm is a key technology for lithium-ion battery pack in the electric vehicle field. The distance-based outlier detection algorithm adopted two characteristic parameters (voltage and state of charge to calculate each cell’s abnormal value and then identified the unbalanced cells. The abnormal and normal type of battery cells were acquired by online clustering strategy and bleeding circuits (R = 33 ohm were used to balance the abnormal cells. The simulation results showed that with the proposed balancing algorithm, the usable capacity of the battery pack increased by 0.614 Ah (9.5% compared to that without balancing.

  8. Investigation of Impedance-Based Parameters in Metal-O2 Batteries for Next Generation of Battery Management Systems

    DEFF Research Database (Denmark)

    Christensen, Andreas Elkjær; Højberg, Jonathan

    2015-01-01

    compared to current Li-ion batteries1,2. A battery management system (BMS) typically uses a combination of coulomb counting and calibration based on open circuit voltage (OCV) measurements that depend on the state of charge (SOC). Calibration is needed due to the accumulation of errors in the coulomb...... the entire discharge, both OCV and discharge potential is constant until the end of discharge, where other processes become limiting, as shown in figure 1. New methods have to be developed to overcome the constant OCV and flat discharge plateau that otherwise would complicate both battery management.......1149/2.086202jes [2] Hartmann, P. (2012). A rechargeable room-temperature sodium superoxide (NaO2) battery. Nature Materials, 12(3), 228–232. doi:10.1038/nmat3486 [3] Ng, K. S., Moo, C.-S., Chen, Y.-P., & Hsieh, Y.-C. (2009). Enhanced coulomb counting method for estimating state-of-charge and state...

  9. Li-ion battery thermal runaway suppression system using microchannel coolers and refrigerant injections

    Energy Technology Data Exchange (ETDEWEB)

    Bandhauer, Todd M.; Farmer, Joseph C.

    2016-11-08

    A battery management system with thermally integrated fire suppression includes a multiplicity of individual battery cells in a housing; a multiplicity of cooling passages in the housing within or between the multiplicity of individual battery cells; a multiplicity of sensors operably connected to the individual battery cells, the sensors adapted to detect a thermal runaway event related to one or more of the multiplicity of individual battery cells; and a management system adapted to inject coolant into at least one of the multiplicity of cooling passages upon the detection of the thermal runaway event by the any one of the multiplicity of sensors, so that the thermal runaway event is rapidly quenched.

  10. Quarter Car Active Suspension System Control Using PID Controller tuned by PSO

    Directory of Open Access Journals (Sweden)

    Wissam H. Al-Mutar

    2015-07-01

    Full Text Available The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compared with passive suspension system model and input road profile. Simulation results show good performance for the designed controller

  11. Polymeric membrane systems of potential use for battery separators

    Science.gov (United States)

    Philipp, W. H.

    1977-01-01

    Two membrane systems were investigated that may have potential use as alkaline battery separators. One system comprises two miscible polymers: a support polymer (e.g., polyvinyl formal) and an ion conductor such as polyacrylic acid. The other system involves a film composed of two immiscible polymers: a conducting polymer (e.g., calcium polyacrylate) suspended in an inert polymer support matrix, polyphenylene oxide. Resistivities in 45-percent potassium hydroxide and qualitative mechanical properties are presented for films comprising various proportions of conducting and support polymers. In terms of these parameters, the results are encouraging for optimum ratios of conducting to support polymers.

  12. Power systems development facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This quarterly technical progress report summarizes work completed during the last quarter of the Second Budget Period, January 1 through March 31, 1994, entitled {open_quotes}Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.{close_quotes} The objective of this project is to evaluate hot gas particulate control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

  13. Decontamination systems information and research program. Quarterly report, October 1995--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    West Virginia University (WVU) and the U.S. Department of Energy Morgantown Energy Technology Center (DOE/METC) entered into a Cooperative Agreement on August 29, 1992 titled {open_quotes}Decontamination Systems Information and Research programs{close_quotes} (DOE Instrument No. DE-FC21-92MC29467) This report contains the efforts of the research projects comprising the Agreement for the 4th calendar quarter of 1995, and is the final quarterly report deliverable required for the period ending 31 December 1995. The projects reported for the WVU Cooperative Agreement are categorized into the following three areas: 1.0 In Situ Remediation Process Development, 2.0 Advanced Product Applications Testing, and 3.0 Information Systems, Public Policy, Community Outreach, and Economics. Summaries of the significant accomplishments for the projects reported during the period 1 October 95 through 31 December 95 are presented in the following discussions.

  14. Air quality in quarters and system of personal security

    Directory of Open Access Journals (Sweden)

    L.L. Goshka

    2010-10-01

    Full Text Available In the article climatic systems are considered as systems of personal security. Roles of State, building proprietors, inhabitants in the formation of climate favorable for health are analysed. Regulated heat and air conditioning systems are considered particularly, because they can give personal security in temperature.

  15. Reefing of Quarter Spherical Ribbon Parachutes Used in the Ares I First Stage Deceleration System

    Science.gov (United States)

    Schmidt, Jason R.; McFadden, Peter G.

    2009-01-01

    This paper introduces the parachutes that have been drop tested in support of the Ares I first stage deceleration system development. The results of the tests show that the reefing ratios for these quarter spherical ribbon parachutes provide the same reefed drag area as historical conical ribbon parachutes. Two sources are investigated for properly normalizing the parachutes relative to their suspension line length, and one is found to be superior.

  16. Recent progress in battery models for hybrid wind power systems

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, J.F.; McGowan, J.G.; Baring-Gould, I.; Stein, W. [Univ. of Massachusetts, Amherst, MA (United States)

    1995-12-31

    This paper summarizes the latest University of Massachusetts work on the analytical modeling and experimental testing of battery component models for hybrid power systems. An extension of the Kinetic Battery Model (KiBaM), developed at the University of Massachusetts is presented. The original model was based on a combination of phenomenological and physical considerations. As described in this paper, the modified KiBaM can now model the sharp increase in voltage near the end of charging, and the sharp drop in voltage when the battery is nearly empty. This model may readily be coupled with a DC load or charging source (such as a DC wind turbine or photovoltaic panels) to determine the corresponding DC bus voltage. For example, it is now an integral part of the DC bus section of the University of Massachusetts HYBRID simulation models. The paper describes the development of the extensions to the KiBaM model and the method of determining the constants from test data. On the experimental/applications side, it includes an illustration of how the constants are obtained from representative data (using a specially developed testing apparatus), and an example of how the model can be used.

  17. Institutional applications of solar total energy systems. Third quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-31

    Estimates are presented of the availability of land for solar total energy (STE) systems. The investigation of the external decision processes that affect an STE system choice was continued. The STE system/utility interface was examined, presenting regional time-of-day pricing scenarios and estimates of backup rates. The possible effects that the financial community could have on STE market penetration was considered. Regional and sectoral energy-use profiles were developed. These profiles served as a basis for simulating yearly system performance on an hourly basis to estimate system costs and savings. Preliminary conceptual designs were developed for both thermal and photovoltaic STE systems. Refined system designs and detailed capital cost and performance estimates for the optimized designs are presented. (MHR)

  18. A Quarter Active Suspension System Based Ground-Hook Controller

    OpenAIRE

    Turnip Arjon

    2016-01-01

    An alternative design technique for active suspension system of vehicle using a developved ground-hook damping system as a reference is proposed. The controller parameters are determined using Lyapunov method and can be tuned to precisely achieve the type of desired response which given by reference model. The simulation result show that the designed active suspension system based ground-hook reference model is able to significantly improve the ride comfort and the road holding compared with ...

  19. Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Weiping Diao

    2016-06-01

    Full Text Available As a critical subsystem in electric vehicles and smart grids, a battery energy storage system plays an essential role in enhancement of reliable operation and system performance. In such applications, a battery energy storage system is required to provide high energy utilization efficiency, as well as reliability. However, capacity inconsistency of batteries affects energy utilization efficiency dramatically; and the situation becomes more severe after hundreds of cycles because battery capacities change randomly due to non-uniform aging. Capacity mismatch can be solved by decomposing a cluster of batteries in series into several low voltage battery packs. This paper introduces a new analysis method to optimize energy utilization efficiency by finding the best number of batteries in a pack, based on capacity distribution, order statistics, central limit theorem, and converter efficiency. Considering both battery energy utilization and power electronics efficiency, it establishes that there is a maximum energy utilization efficiency under a given capacity distribution among a certain number of batteries, which provides a basic analysis for system-level optimization of a battery system throughout its life cycle. Quantitative analysis results based on aging data are illustrated, and a prototype of flexible energy storage systems is built to verify this analysis.

  20. Development of an Experimental Testbed for Research in Lithium-Ion Battery Management Systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ferdowsi

    2013-10-01

    Full Text Available Advanced electrochemical batteries are becoming an integral part of a wide range of applications from household and commercial to smart grid, transportation, and aerospace applications. Among different battery technologies, lithium-ion (Li-ion batteries are growing more and more popular due to their high energy density, high galvanic potential, low self-discharge, low weight, and the fact that they have almost no memory effect. However, one of the main obstacles facing the widespread commercialization of Li-ion batteries is the design of reliable battery management systems (BMSs. An efficient BMS ensures electrical safety during operation, while increasing battery lifetime, capacity and thermal stability. Despite the need for extensive research in this field, the majority of research conducted on Li-ion battery packs and BMS are proprietary works conducted by manufacturers. The available literature, however, provides either general descriptions or detailed analysis of individual components of the battery system, and ignores addressing details of the overall system development. This paper addresses the development of an experimental research testbed for studying Li-ion batteries and their BMS design. The testbed can be configured in a variety of cell and pack architectures, allowing for a wide range of BMS monitoring, diagnostics, and control technologies to be tested and analyzed. General considerations that should be taken into account while designing Li-ion battery systems are reviewed and different technologies and challenges commonly encountered in Li-ion battery systems are investigated. This testbed facilitates future development of more practical and improved BMS technologies with the aim of increasing the safety, reliability, and efficiency of existing Li-ion battery systems. Experimental results of initial tests performed on the system are used to demonstrate some of the capabilities of the developed research testbed. To the authors

  1. A Quarter Active Suspension System Based Ground-Hook Controller

    Directory of Open Access Journals (Sweden)

    Turnip Arjon

    2016-01-01

    Full Text Available An alternative design technique for active suspension system of vehicle using a developved ground-hook damping system as a reference is proposed. The controller parameters are determined using Lyapunov method and can be tuned to precisely achieve the type of desired response which given by reference model. The simulation result show that the designed active suspension system based ground-hook reference model is able to significantly improve the ride comfort and the road holding compared with semi-active suspension.

  2. Battery Energy Storage System battery durability and reliability under electric utility grid operations: Analysis of 3 years of real usage

    Science.gov (United States)

    Dubarry, Matthieu; Devie, Arnaud; Stein, Karl; Tun, Moe; Matsuura, Marc; Rocheleau, Richard

    2017-01-01

    Battery Energy Storage Systems (BESSs) show promise to help renewable energy sources integration onto the grid. These systems are expected to last for a decade or more, but the actual battery degradation under different real world conditions is still largely unknown. In this paper we analyze 3 years of usage of a lithium titanate BESS installed and in operation on an island power system in Hawai'i. The BESS was found to be operational 90% of the time and stored a cumulative 1.5 GWh of energy, which represents more than 5000 equivalent full cycles on the cells. This paper presents a statistical analysis of the BESS usage, develops a representative duty cycle, and provides an initial estimate of BESS degradation. The battery duty cycle was characterized based on 5 parameters: pulses duration, pulses intensity (current), SOC swing range, SOC event ramp rate, and temperature.

  3. Life cycle assessment of primary control provision by battery storage systems and fossil power plants

    OpenAIRE

    Koj, Jan Christian; Stenzel, Peter; Schreiber, Andrea; Hennings, Wilfried; Zapp, Petra; Wrede, Gunnar; Hahndorf, Ina

    2015-01-01

    Increasing renewable energy generation influences the reliability of electric power grids. Thus, there is a demand for new technical units providing ancillary grid services. Intermittent renewable energy sources can be balanced by energy storage devices, especially battery storage systems. By battery systems grid efficiency and reliability as well as power quality can be increased. A further characteristic of battery systems is the ability to respond rapidly and precisely to frequency deviati...

  4. Decontamination systems information and research program. Quarterly report, January 1996--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    West Virginia University (WVU) and the US Department of Energy, Morgantown Energy Technology Center (DOE/METC) entered into a Cooperative Agreement in August 1992 titled {open_quotes}Decontamination Systems Information and Research Programs{close_quotes} (DOE Instrument No.: DE-FC21-92MC29467). Requirements stipulated by the Agreement require WVU to submit quarterly Technical Progress reports. This report contains the efforts of the research projects comprising the Agreement for the 1st calendar quarter of 1996. For the period January 1 through December 31, 1996 twelve projects have been selected for funding, and the Kanawha Valley will continue under a no-cost extension. Three new projects have also been added to the program. This document describes these projects involving decontamination, decommissioning and remedial action issues and technologies.

  5. Battery Energy Storage System for PV Output Power Leveling

    Directory of Open Access Journals (Sweden)

    Rajkiran Singh

    2014-01-01

    Full Text Available Fluctuating photovoltaic (PV output power reduces the reliability in power system when there is a massive penetration of PV generators. Energy storage systems that are connected to the PV generators using bidirectional isolated dc-dc converter can be utilized for compensating the fluctuating PV power. This paper presents a grid connected energy storage system based on a 2 kW full-bridge bidirectional isolated dc-dc converter and a PWM converter for PV output power leveling. This paper proposes two controllers: a current controller using the d-q synchronous reference and a phase-shift controller. The main function of the current controller is to regulate the voltage at the high-side dc, so that the voltage ratio of the high-voltage side (HVS with low-voltage side (LVS is equal to the transformer turns ratio. The phase-shift controller is employed to manage the charging and discharging modes of the battery based on PV output power and battery voltage. With the proposed system, unity power factor and efficient active power injection are achieved. The feasibility of the proposed control system is investigated using PSCAD simulation.

  6. A control system for improved battery utilization in a PV-powered peak-shaving system

    Energy Technology Data Exchange (ETDEWEB)

    Palomino, E [Salt River Project, Phoenix, AZ (United States); Stevens, J. [Sandia National Labs., Albuquerque, NM (United States); Wiles, J. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1996-08-01

    Photovoltaic (PV) power systems offer the prospect of allowing a utility company to meet part of the daily peak system load using a renewable resource. Unfortunately, some utilities have peak system- load periods that do not match the peak production hours of a PV system. Adding a battery energy storage system to a grid-connected PV power system will allow dispatching the stored solar energy to the grid at the desired times. Batteries, however, pose system limitations in terms of energy efficiency, maintenance, and cycle life. A new control system has been developed, based on available PV equipment and a data acquisition system, that seeks to minimize the limitations imposed by the battery system while maximizing the use of PV energy. Maintenance requirements for the flooded batteries are reduced, cycle life is maximized, and the battery is operated over an efficient range of states of charge. This paper presents design details and initial performance results on one of the first installed control systems of this type.

  7. Numerical estimation of heat distribution from the implantable battery system of an undulation pump LVAD.

    Science.gov (United States)

    Okamoto, Eiji; Makino, Tsutomu; Nakamura, Masatoshi; Tanaka, Shuji; Chinzei, Tsuneo; Abe, Yusuke; Isoyama, Takashi; Saito, Itsuro; Mochizuki, Shu-ichi; Imachi, Kou; Inoue, Yusuke; Mitamura, Yoshinori

    2006-01-01

    We have been developing an implantable battery system using three series-connected lithium ion batteries having an energy capacity of 1,800 mAh to drive an undulation pump left ventricular assist device. However, the lithium ion battery undergoes an exothermic reaction during the discharge phase, and the temperature rise of the lithium ion battery is a critical issue for implantation usage. Heat generation in the lithium ion battery depends on the intensity of the discharge current, and we obtained a relationship between the heat flow from the lithium ion battery q(c)(I) and the intensity of the discharge current I as q(c)(I) = 0.63 x I (W) in in vitro experiments. The temperature distribution of the implantable battery system was estimated by means of three-dimentional finite-element method (FEM) heat transfer analysis using the heat flow function q(c)(I), and we also measured the temperature rise of the implantable battery system in in vitro experiments to conduct verification of the estimation. The maximum temperatures of the lithium ion battery and the implantable battery case were measured as 52.2 degrees C and 41.1 degrees C, respectively. The estimated result of temperature distribution of the implantable battery system agreed well with the measured results using thermography. In conclusion, FEM heat transfer analysis is promising as a tool to estimate the temperature of the implantable lithium ion battery system under any pump current without the need for animal experiments, and it is a convenient tool for optimization of heat transfer characteristics of the implantable battery system.

  8. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.

    Science.gov (United States)

    Okamoto, Eiji; Nakamura, Masatoshi; Akasaka, Yuhta; Inoue, Yusuke; Abe, Yusuke; Chinzei, Tsuneo; Saito, Itsuro; Isoyama, Takashi; Mochizuki, Shuichi; Imachi, Kou; Mitamura, Yoshinori

    2007-07-01

    We have developed internal battery systems for driving an undulation pump ventricular assist device using two kinds of lithium ion rechargeable batteries. The lithium ion rechargeable batteries have high energy density, long life, and no memory effect; however, rise in temperature of the lithium ion rechargeable battery is a critical issue. Evaluation of temperature rise by means of numerical estimation is required to develop an internal battery system. Temperature of the lithium ion rechargeable batteries is determined by ohmic loss due to internal resistance, chemical loss due to chemical reaction, and heat release. Measurement results of internal resistance (R(cell)) at an ambient temperature of 37 degrees C were 0.1 Omega in the lithium ion (Li-ion) battery and 0.03 Omega in the lithium polymer (Li-po) battery. Entropy change (DeltaS) of each battery, which leads to chemical loss, was -1.6 to -61.1 J/(mol.K) in the Li-ion battery and -9.6 to -67.5 J/(mol.K) in the Li-po battery depending on state of charge (SOC). Temperature of each lithium ion rechargeable battery under a discharge current of 1 A was estimated by finite element method heat transfer analysis at an ambient temperature of 37 degrees C configuring with measured R(cell) and measured DeltaS in each SOC. Results of estimation of time-course change in the surface temperature of each battery coincided with results of measurement results, and the success of the estimation will greatly contribute to the development of an internal battery system using lithium ion rechargeable batteries.

  9. Solar-heat transport fluids for solar energy collection systems (a collection of quarterly reports)

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This document consists of several quarterly reports that cover the progress made by the Houston Chemical Company, who is developing noncorrosive fluid subsystem(s) compatible with closed-loop solar heating and combined heating and hot water systems. The system is also to be compatible with both metallic and non-metallic plumbing systems, and any combination of these. At least 100 gallons of each type of fluid recommended by the contractor will be delivered, and a number of fluids will be performance tested.

  10. Behavior Patterns, Origin of Problems and Solutions Regarding Hysteresis Phenomena in Complex Battery Systems

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Barreras, Jorge Varela; Stan, Ana-Irina

    2014-01-01

    One of the common phenomenona for most of the battery cell chemistries is hysteresis. Since an open circuit voltage (OCV) path is not identical for the charge and discharge of the battery cell at different states of charge (SoC) level, the battery cells show the hysteresis effect. Usually, the OCV...... i.e. voltage with zero current after previous charge is higher than the OCV after discharge at the same SoC level. It embodies the hysteresis of the battery cell. The OCV is principally subjected to previous operating condition and cannot be taken as self-regulating from the operating history....... Therefore, an accurate knowledge of the hysteresis of OCV is vital for various applications and battery models. This is because currently Battery Management Systems (BMS) use the well-defined OCV-SoC representative curve for SoC estimation and power prediction. Particularly lithium-ion batteries with iron...

  11. System and Battery Charge Control for PV-Powered AC Lighting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kern, G.

    1999-04-01

    This report reviews a number of issues specific to stand-alone AC lighting systems. A review of AC lighting technology is presented, which discusses the advantages and disadvantages of various lamps. The best lamps for small lighting systems are compact fluorescent. The best lamps for intermediate-size systems are high- or low-pressure sodium. Specifications for battery charging and load control are provided with the goal of achieving lamp lifetimes on the order of 16,000 to 24,000 hours and battery lifetimes of 4 to 5 years. A rough estimate of the potential domestic and global markets for stand-alone AC lighting systems is presented. DC current injection tests were performed on high-pressure sodium lamps and the test results are presented. Finally, a prototype system was designed and a prototype system controller (with battery charger and DC/AC inverter) was developed and built.

  12. Cell-balancing currents in parallel strings of a battery system

    Science.gov (United States)

    Dubarry, Matthieu; Devie, Arnaud; Liaw, Bor Yann

    2016-07-01

    Lithium-ion batteries are attractive for vehicle electrification or grid modernization applications. In these applications, battery packs are required to have multiple-cell configurations and battery management system to operate properly and safely. Here, a useful equivalent circuit model was developed to simulate the spontaneous transient balancing currents among parallel strings in a battery system. The simulation results were validated with experimental data to illustrate the accuracy and validity of the model predictions. Understanding the transient behavior of such cell and string balancing in a parallel circuit configuration is very important to assess the impacts of current fluctuation and cell variability on a battery system's performance, regarding durability, reliability, safety, abuse tolerance and failure prevention, including possible short circuit or open circuit conditions. Additional features and advantages, including the ability to assessing impacts on the performance of the string assemblies from string swapping or cell/module replacement in the strings, could be realized to aid battery management, maintenance and repair.

  13. Program status 3. quarter -- FY 1994: Confinement systems programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-19

    Highlights of the DIII-D Research Operations are: began experimental research operations; successfully passed radiative divertor project review; presented papers at PSI, Diagnostics, and EPS meetings and prepared IAEA synopses; new computer speeds up data acquisition; completed installation of FWCD antennas with Faraday shields; and completed report of radiative divertor preliminary design with review committee. Summaries are given for progress in research programs; operations; mechanical engineering; electrical engineering; upgrade project; operations support; and collaborative efforts. Brief summaries are given for progress on the International Cooperation task which include JET, ASDEX, TEXTOR, TORE SUPRA, JAERI, TRINTI, T-10, and ARIES support. The work in support of the development plan for the TPX (Tokamak Physics Experiment) goals and milestones continued. Progress in improving on existing models and codes leading to improved understanding of experiments is given. Highlights from the User Service Center are: 18 gigabytes of disks were purchased for exclusive fusion use; a Hewlett-Packard 9000 Series 800 T500 computer was selected as the fusion complete server; the first VAX was removed from the USC cluster; security vulnerability on HP VUE software was corrected; and a cleanup script was developed for the NERSC Cray system. A list of personnel and their assignments is given for the ITER Design Engineering task.

  14. Crash analysis of a conceptual electric vehicle with a multifunctional battery system

    Science.gov (United States)

    Kukreja, Jaspreet S.

    For current electric vehicles, batteries are employed only as an energy source. Due to safety concerns, the space for battery storage is co-allocated with passenger space, which would constrain the design for the vehicle. An architectured multifunctional battery-structure material, namely Granular Battery Assembly (GBA), has been proposed by Tsutsui et al., 2014. Such a material system utilizes the deformation of sacrificing tubes to dissipate impact energy and protect the battery cells, thereby allowing the batteries to be placed in the front crumple zone of an electric vehicle, while also ensuring occupant safety. The primary focus of this study was vehicle level design analysis of GBA for application in an electric vehicle. A parametric study was performed to determine suitable characteristics of the GBA system for installation in a vehicle. To reduce computational cost, a homogenized material was used to represent GBA in the finite element model of the vehicle. Frontal crash simulation of a vehicle with GBA placed in crumple zone was performed on LS-DYNA platform.The crash response was used to demonstrate the utility of GBA mechanism to keep the batteries and passengers safe. The incorporation of GBA into an electric vehicle would allow for battery space to be decoupled from passenger space, thereby increasing the vehicle design freedom. Use of the crumple zone for battery storage would also result in increasing the available battery space.

  15. A Pulsed Power System Design Using Lithium-ion Batteries and One Charger per Battery

    Science.gov (United States)

    2009-12-01

    manufacturers minimum discharge voltage can permanently damage the cells internal chemistry . This damage will reduce the capacity and lifetime of the...could permanently harm the internal chemistry of the battery. Table 3 summarizes these common lithium-ion battery characteristics [5], [7], [9...possible design to meet the identified requirements. • Chapter II discusses the theory of operation of the BMS and reviews the Simulink ® model

  16. ACTIVE CONTROL OF QUARTER-CAR SUSPENSION SYSTEM USING LINEAR QUADRATIC REGULATOR

    Directory of Open Access Journals (Sweden)

    V.M. Nandedkar

    2011-06-01

    Full Text Available The automobile is composed of many systems. One of these is the suspension system. The main functions of the automotive suspension system are to provide vehicle support, stability and directional control during handling manoeuvres and to provide effective isolation from road disturbances. The suspension system has to balance the tradeoff between ride comfort and handling performance. This paper analyses the passive suspension system and active suspension system using a Linear Quadratic Regulator (LQR controller. A linear quarter-car model is used for the analysis and simulation. The performance of the LQR controller is compared with the passive suspension system. The simulation results show that the LQR controller improves vehicle ride comfort.

  17. Second life battery energy storage system for enhancing renewable energy grid integration

    OpenAIRE

    Koch-Ciobotaru, Cosmin; Saez-de Ibarra, Andoni; Martinez-Laserna, Egoitz; Stroe, Daniel-Ioan; Swierczynski, Maciej; Rodríguez Cortés, Pedro

    2015-01-01

    Connecting renewable power plants to the grid must comply with certain codes and requirements. One requirement is the ramp rate constraint, which must be fulfilled in order to avoid penalties. As this service becomes compulsory with an increased grid penetration of renewable, all possible solutions must be explored especially that large battery energy storage systems are still expensive solutions. Thus, in order to make battery investment economic viable, the use of second life batteries is i...

  18. Sea-water battery for subsea control systems

    Science.gov (United States)

    Hasvold, Øistein; Henriksen, Henrich; Melv˦r, Einar; Citi, Gianfederico; Johansen, Bent Ø.; Kjønigsen, Tom; Galetti, Robin

    This paper describes a power source for the autonomous control system of a subsea well (SWACS) in the Ionian Sea. The unit was deployed in Jan. 1996 at a depth of 180 m. The 650 kWh sea-water battery uses anodes made from commercial magnesium alloys, sea-water as the electrolyte and oxygen dissolved in the sea-water as oxidant. The inert cathodes are made from carbon fibers. The system is composed of six, two-metre high sea-water cells integrated in a steel structure, a d.c./d.c. converter and a valve regulated lead-acid accumulator enclosed in a titanium container together with a monitoring unit which transfers data to the surface via an acoustic link.

  19. Decontamination systems information and research program. Quarterly report, April--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    West Virginia University (WVU) and the US Department of Energy Morgantown Energy Technology Center (DOE/METC) entered into a Cooperative Agreement on August 29, 1992 titled `Decontamination Systems Information and Research Programs`. Requirements stipulated by the Agreement require WVU to submit Technical Progress reports on a quarterly basis. This report contains the efforts of the fourteen research projects comprising the Agreement for the period April 1 to June 30, 1995. During this period three new projects have been funded by the Agreement. These projects are: (1) WERC National Design Contest, (2) Graduate Interns to the Interagency Environmental Technology Office under the National Science and Technology Council, and (3) WV High Tech Consortium.

  20. Automatic Docking System with Recharging and Battery Replacement for Surveillance Robot

    Directory of Open Access Journals (Sweden)

    M. Meena

    2012-06-01

    Full Text Available Most of the applications like industrial automation, home automation, hospitals, space exploration, military, etc, the surveillance robot are widely used. For that, continuous functioning of surveillance robot is necessary. In this paper, the development of automatic docking system with recharging and battery replacement process for surveillance robot is proposed. The robot can return to the docking station for recharging operations when the battery is low. The charging duration of the battery mounted in the robot is an important issue. To overcome this problem, battery replacement is a perfect solution. The battery is automatically exchanged within 30 seconds. So the robot needs not to be turned off for long duration of time while replacing the battery.

  1. Solar Powered Aircraft, Photovoltaic Array/Battery System Tabletop Demonstration: Design and Operation Manual

    Science.gov (United States)

    Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)

    2000-01-01

    A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.

  2. Li-ion battery cooling system integrates in nano-fluid environment

    Science.gov (United States)

    Tran, Lien; Lopez, Jorge; Lopez, Jesus; Uriostegui, Altovely; Barrera, Avery; Wiggins, Nathanial

    2017-02-01

    In this design challenge by the Texas Space Grant Consortium, the researchers design a cooling system for a lithium-ion battery. Lithium-ion batteries are an effective and reliable source of energy for small, portable devices. However, similar to other existing sources of energy, there is always a problem with overheating. The objective is to design a cooling system for lithium-ion batteries that will work in a zero gravity environment for orbital and interplanetary space systems. The system is to serve as a backup battery and a signal booster that can be incorporated into a spacesuit. The design must be able to effectively cool the batteries without the use of an atmosphere to carry away heat but also be a lightweight and reliable design. The design incorporates carbon nanotubes suspended in distilled water creating a nano-fluid environment. This design must include a failsafe in the event of thermal runaway, a problem common to lithium-ion batteries. This failsafe will completely shut off the system if the batteries reach a certain temperature. A cooling system that incorporates nano-fluids will achieve a lightweight and efficient way of cooling batteries.

  3. Li-ion battery cooling system integrates in nano-fluid environment

    Science.gov (United States)

    Tran, Lien; Lopez, Jorge; Lopez, Jesus; Uriostegui, Altovely; Barrera, Avery; Wiggins, Nathanial

    2016-10-01

    In this design challenge by the Texas Space Grant Consortium, the researchers design a cooling system for a lithium-ion battery. Lithium-ion batteries are an effective and reliable source of energy for small, portable devices. However, similar to other existing sources of energy, there is always a problem with overheating. The objective is to design a cooling system for lithium-ion batteries that will work in a zero gravity environment for orbital and interplanetary space systems. The system is to serve as a backup battery and a signal booster that can be incorporated into a spacesuit. The design must be able to effectively cool the batteries without the use of an atmosphere to carry away heat but also be a lightweight and reliable design. The design incorporates carbon nanotubes suspended in distilled water creating a nano-fluid environment. This design must include a failsafe in the event of thermal runaway, a problem common to lithium-ion batteries. This failsafe will completely shut off the system if the batteries reach a certain temperature. A cooling system that incorporates nano-fluids will achieve a lightweight and efficient way of cooling batteries.

  4. Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems with Supercapacitors

    DEFF Research Database (Denmark)

    Pinto, Claudio; Barreras, Jorge Varela; de Castro, Ricardo

    2014-01-01

    This paper presents a comparative study of the influence of different aggregated electrical circuit battery models in the sizing process of a hybrid energy storage system (ESS), composed by Li-ion batteries and supercapacitors (SCs). The aim is to find the number of cells required to propel......-order dynamics of the battery. Simulation results demonstrate that the adoption of a more accurate battery model in the sizing of hybrid ESSs prevents over-sizing, leading to a reduction in the number of cells of up to 29%, and a cost decrease of up to 10%....

  5. Development of Software and Strategies for Battery Management System Testing on HIL Simulator

    DEFF Research Database (Denmark)

    Fleischer, Christian; Barreras, Jorge Varela; Christensen, Andreas Elkjær;

    2016-01-01

    In comparison with tests conducted on real Li-ion batteries, Battery Management System (BMS) tests conducted on a Hardware-In-the-Loop (HIL) battery simulator may be more cost and time effective, more flexible and traceable, easier to reproduce and safer beyond the normal range of operation....... This is particularly the case of tests at early stages in the development process or during fault simulation. However, the use of a HIL battery simulator requires the development of software (SW) and strategies for testing. While the possibilities are immense, it should be noted that the greater the level...

  6. The Tuning System for the HIE-ISOLDE High-Beta Quarter Wave Resonator

    CERN Document Server

    Zhang, P; Arnaudon, L; Artoos, K; Calatroni, S; Capatina, O; D'Elia, A; Kadi, Y; Mondino, I; Renaglia, T; Valuch, D; Delsolaro, W Venturini

    2014-01-01

    A new linac using superconducting quarter-wave resonators (QWR) is under construction at CERN in the framework of the HIE-ISOLDE project. The QWRs are made of niobium sputtered on a bulk copper substrate. The working frequency at 4.5 K is 101.28 MHz and they will provide 6 MV/m accelerating gradient on the beam axis with a total maximum power dissipation of 10 W on cavity walls. A tuning system is required in order to both minimize the forward power variation in beam operation and to compensate the unavoidable uncertainties in the frequency shift during the cool-down process. The tuning system has to fulfil a complex combination of RF, structural and thermal requirements. The paper presents the functional specifications and details the tuning system RF and mechanical design and simulations. The results of the tests performed on a prototype system are discussed and the industrialization strategy is presented in view of final production.

  7. The challenge to the automotive battery industry: the battery has to become an increasingly integrated component within the vehicle electric power system

    Science.gov (United States)

    Meissner, Eberhard; Richter, Gerolf

    During the time that the automotive battery was considered to be just a passive component in a vehicle electric power system, the battery industry's answer to all new challenges was constructive improvements. The emerging requirements of even higher function reliability cannot, however be met this way. A battery manufacturer of today has to give recommendations for the appropriate choice of the electrical architecture and has to design batteries that suit best the requirements. In addition, manufactures have to be engaged in the technology of battery management, of battery monitoring and state detection, and performance of prediction under future operation conditions. During service on-board a vehicle, battery performance undergoes significant changes, e.g., loss of storage capability, increase in internal resistance, and changes in voltage characteristics. These ageing processes have to be considered when the electrical architecture is being designed and management strategies are being formulated. Battery monitoring and state detection must be able to identify and quantify battery degradation. Moreover, performance prediction as well as management strategies have to be corrected on account of the changing battery characteristics.

  8. State of Charge Estimation Using the Extended Kalman Filter for Battery Management Systems Based on the ARX Battery Model

    Directory of Open Access Journals (Sweden)

    Hongjie Wu

    2013-01-01

    Full Text Available State of charge (SOC is a critical factor to guarantee that a battery system is operating in a safe and reliable manner. Many uncertainties and noises, such as fluctuating current, sensor measurement accuracy and bias, temperature effects, calibration errors or even sensor failure, etc. pose a challenge to the accurate estimation of SOC in real applications. This paper adds two contributions to the existing literature. First, the auto regressive exogenous (ARX model is proposed here to simulate the battery nonlinear dynamics. Due to its discrete form and ease of implemention, this straightforward approach could be more suitable for real applications. Second, its order selection principle and parameter identification method is illustrated in detail in this paper. The hybrid pulse power characterization (HPPC cycles are implemented on the 60AH LiFePO4 battery module for the model identification and validation. Based on the proposed ARX model, SOC estimation is pursued using the extended Kalman filter. Evaluation of the adaptability of the battery models and robustness of the SOC estimation algorithm are also verified. The results indicate that the SOC estimation method using the Kalman filter based on the ARX model shows great performance. It increases the model output voltage accuracy, thereby having the potential to be used in real applications, such as EVs and HEVs.

  9. Second life battery energy storage system for residential demand response service

    DEFF Research Database (Denmark)

    Saez-de-Ibarra, Andoni; Martinez-Laserna, Egoitz; Koch-Ciobotaru, Cosmin;

    2015-01-01

    The integration of renewable energies and the usage of battery energy storage systems (BESS) into the residential buildings opens the possibility for minimizing the electricity bill for the end-user. This paper proposes the use of batteries that have already been aged while powering electric...

  10. Model-Based Design and Integration of Large Li-ion Battery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler; Kim, Gi-Heon; Santhanagopalan, Shriram; Shi, Ying; Pesaran, Ahmad; Mukherjee, Partha; Barai, Pallab; Maute, Kurt; Behrou, Reza; Patil, Chinmaya

    2015-11-17

    This presentation introduces physics-based models of batteries and software toolsets, including those developed by the U.S. Department of Energy's (DOE) Computer-Aided Engineering for Electric-Drive Vehicle Batteries Program (CAEBAT). The presentation highlights achievements and gaps in model-based tools for materials-to-systems design, lifetime prediction and control.

  11. Comeback of the dreamliner; multiple layer protection for 787 battery systems

    NARCIS (Netherlands)

    Hosseini, S.

    2013-01-01

    In April of this year the Federal Aviation Administration approved the new battery systems of the 787-8 Dreamliner, and after having been grounded for three months, the aircraft were cleared for take-off. Boeing dealt with serious problems when complications occurred with the batteries of the 787. L

  12. Novel Battery Thermal Management System for Greater Lifetime Ratifying Current Quality and Safety Standard

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    Temperature excursions and non-uniformity of the temperature inside the battery systems are the main concern and drawback for any attempt to scale-up battery cells to the larger sizes as required for high power applications. The applications may include electric generating stations, substations......, vehicles, telecommunications installations, large industrial and commercial installations, large uninterruptible power supply (UPS) installations and renewable energy plant installations etc. The capacity of the battery pack increases as the operating temperature is raised for a battery pack however...... this come with the very high expense of accelerated capacity fade i.e. ageing. Subsequently the lifetime of the battery system is reduced. Moreover poor performance (limited capacity availability) is observed at low operating temperature. In addition, excessive or uneven temperature rise in a system or pack...

  13. Estimating the system price of redox flow batteries for grid storage

    Science.gov (United States)

    Ha, Seungbum; Gallagher, Kevin G.

    2015-11-01

    Low-cost energy storage systems are required to support extensive deployment of intermittent renewable energy on the electricity grid. Redox flow batteries have potential advantages to meet the stringent cost target for grid applications as compared to more traditional batteries based on an enclosed architecture. However, the manufacturing process and therefore potential high-volume production price of redox flow batteries is largely unquantified. We present a comprehensive assessment of a prospective production process for aqueous all vanadium flow battery and nonaqueous lithium polysulfide flow battery. The estimated investment and variable costs are translated to fixed expenses, profit, and warranty as a function of production volume. When compared to lithium-ion batteries, redox flow batteries are estimated to exhibit lower costs of manufacture, here calculated as the unit price less materials costs, owing to their simpler reactor (cell) design, lower required area, and thus simpler manufacturing process. Redox flow batteries are also projected to achieve the majority of manufacturing scale benefits at lower production volumes as compared to lithium-ion. However, this advantage is offset due to the dramatically lower present production volume of flow batteries compared to competitive technologies such as lithium-ion.

  14. Integration and Control of a Battery Balancing System

    Science.gov (United States)

    2013-12-01

    23 have been named V1,control and V2,control. To further explain the nomenclature , if the battery string had n battery cells and associated SLR...specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. LM231AILM231

  15. Decontamination Systems Information and Research Program. Quarterly technical progress report, January 1--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Reports on a quarterly basis. This report comprises the first Quarterly Technical Progress Report for Year 2 of the Agreement. This report reflects the progress and/or efforts performed on the sixteen (16) technical projects encompassed by the Year 2 Agreement for the period of January 1 through March 31, 1994. In situ bioremediation of chlorinated organic solvents; Microbial enrichment for enhancing in-situ biodegradation of hazardous organic wastes; Treatment of volatile organic compounds (VOCs) using biofilters; Drain-enhanced soil flushing (DESF) for organic contaminants removal; Chemical destruction of chlorinated organic compounds; Remediation of hazardous sites with steam reforming; Soil decontamination with a packed flotation column; Use of granular activated carbon columns for the simultaneous removal of organics, heavy metals, and radionuclides; Monolayer and multilayer self-assembled polyion films for gas-phase chemical sensors; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; A systematic database of the state of hazardous waste clean-up technologies; Dust control methods for insitu nuclear and hazardous waste handling; Winfield Lock and Dam remediation; and Socio-economic assessment of alternative environmental restoration technologies.

  16. Power systems development facility. Quarterly technical progress report, July 1--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, July 1 through September 30, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. Hot Gas Cleanup Units to mate to all gas streams; Combustion Gas Turbine; and Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility.

  17. Toyota Prius Hybrid Plug-in Conversation and Battery Monitoring system

    Science.gov (United States)

    Unnikannan, Krishnanunni; McIntyre, Michael; Harper, Doug; Kessinger, Robert; Young, Megan; Lantham, Joseph

    2012-03-01

    The objective of the project was to analyze the performance of a Toyota Hybrid. We started off with a stock Toyota Prius and taking data by driving it in city and on the highway in a mixed pre-determined route. The batteries can be charged using standard 120V AC outlets. First phase of the project was to increase the performance of the car by installing 20 Lead (Pb) batteries in a plug-in kit. To improve the performance of the kit, a centralized battery monitoring system was installed. The battery monitoring system has two components, a custom data modules and a National Instruments CompactRIO. Each Pb battery has its own data module and all the data module are connected to the CompactRIO. The CompactRIO records differential voltage, current and temperature from all the 20 batteries. The LabVIEW software is dynamic and can be reconfigured to any number of batteries and real time data from the batteries can be monitored on a LabVIEW enabled machine.

  18. Close range ISR (PRISTA) and close quarters combat (CQC) with unmanned aerial systems (UAS)

    Science.gov (United States)

    Maynell, Jon

    2010-04-01

    Ironically, the final frontiers for the UAV (unmanned aerial vehicle) are the closest spaces at hand. There is an urgent operational capability gap in the area of proximate reconnaissance, intelligence, surveillance, and target acquisition (PRISTA) as well as close quarters combats (CQC). Needs for extremely close range functionality in land, sea and urban theaters remain unfilled, largely due to the challenges presented by the maneuverability and silent operating floor required to address these missions. The evolution of small, nimble and inexpensive VTOL UAV assets holds much promise in terms of filling this gap. Just as UAVs have evolved from large manned aircraft, so have MAVs (Micro Aerial Vehicles) evolved from UAVs. As unmanned aviation evolves into aerial robotics, NAV (Nano Aerial Vehicle) research will become the next hotbed of unmanned aerial systems development as these systems continue to mature in response to the need to find robotic replacements for humans in PRISTA, CQC, and many other hazardous duties.

  19. Quarter Car Suspension System With One Degree Of Freedom Simulated Using Simulink

    Science.gov (United States)

    Bereteu, L.; Perescu, A.

    2012-12-01

    Simulate the behavior of a quarter car suspension system with Simulink®. Consider only vertical movement of the car, neglecting roll and pitch. All movements of the car axes are modeled as having equal amplitude. The characteristic equations that describe the behavior of dynamical systems based on FBD (Free Body Diagram) of automotive suspension. We make the simulation model in six steps. In simulation we consider the damping coefficient, c, variable. The rest of parameters are constant (mass, speed and stiffness). The simulation parametrs are defined in Mathlab®. We follow the final signal created on the oscilloscope. At the end of the study, we concluded the effect of damping coefficient changes over the comfort.

  20. Design and Analysis of Generic Energy Management Strategy for Controlling Second-Life Battery Systems in Stationary Applications

    OpenAIRE

    Mohamed Abdel-Monem; Omar Hegazy; Noshin Omar; Khiem Trad; Sven De Breucker; Peter Van Den Bossche; Joeri Van Mierlo

    2016-01-01

    Recently, second-life battery systems have received a growing interest as one of the most promising alternatives for decreasing the overall cost of the battery storage systems in stationary applications. The high-cost of batteries represents a prominent barrier for their use in traction and stationary applications. To make second-life batteries economically viable for stationary applications, an effective power-electronics converter should be selected as well. This converter should be support...

  1. Design and analysis of large lithium-ion battery systems

    CERN Document Server

    Santhanagopalan, Shriram; Neubauer, Jeremy

    2014-01-01

    This new resource provides you with an introduction to battery design and test considerations for large-scale automotive, aerospace, and grid applications. It details the logistics of designing a professional, large, Lithium-ion battery pack, primarily for the automotive industry, but also for non-automotive applications. Topics such as thermal management for such high-energy and high-power units are covered extensively, including detailed design examples.Every aspect of battery design and analysis is presented from a hands-on perspective. The authors work extensively with engineers in the fie

  2. Optimally sizing of solar array and battery in a standalone photovoltaic system in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Shen, W.X. [School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor Darul Ehsan (Malaysia)

    2009-01-15

    Size optimization of solar array and battery in a standalone photovoltaic (SPV) system is investigated. Based on the energy efficiency model, the loss of power supply probability (LPSP) of the SPV system is calculated for different size combinations of solar array and battery. For the desired LPSP at the given load demand, the optimal size combination is obtained at the minimum system cost. One case study is given to show the application of the method in Malaysian weather conditions. (author)

  3. Efficient testing of battery management systems; Effiziente Tests von Batteriemanagement-Systemen

    Energy Technology Data Exchange (ETDEWEB)

    Schmerler, Thomas; Liebau, Henrik; Dollmaier, Thomas; Crepin, Juergen [Etas GmbH, Stuttgart (Germany)

    2011-06-15

    One of the auto industry's principal areas of innovation is the increasing electrification of vehicle propulsion systems, with the battery's design and performance taking center stage. In the development of new means of propulsion, testing the electronic battery management system constitutes one of the major challenges. These are discussed in this article of Etas, followed by the introduction of a testing system that is both safe and efficient. (orig.)

  4. Advanced Modular "All in One" Battery System with Intelligent Autonomous Cell Balancing Management

    Science.gov (United States)

    Petitdidier, X.; Pasquier, E.; Defer, M.; Koch, M.; Knorr, W.

    2008-09-01

    A new generation of energy storage systems based on Li-ion technology emerged at the end of the last century.To perform the first tests in safe conditions, Saft designed a simple electronic.Today, all Li-ion batteries for autonomous applications such as drones, launchers, missiles, torpedoes and "human" applications such as cellular, laptop, hybrid vehicle and nearly sub-marines need a Battery Management System.The minimum in terms of functions is the overcharge and over-discharge protections.For a battery made of 2 cells connected in series or more, a balancing system is added to maintain the available energy during all the life of the battery. For stringent/demanding applications, the state of charge and state of health are calculated by one or more computers.It is now time to take benefit of the past 10 years of Saft's experience in the domain to re-evaluate the constraints of Li-ion batteries and provide customers with improved products by optimizing the battery management.Benefits of electronic for satellite applications:• Full control over battery.• Confidence whatever the possible change of conditions in environment.• The battery system can resist long exposure to gradient conditions with mitigated and stabilized impact on performances.• The balancing function allow to use all the energy of all the cells: optimize of installed energy (compact design, mass saving). It started out with the basic fact that electrochemists are not intended to be space rated electronic experts and vice versa, even if Saft has a good heritage in the electronic battery management system. Consequently, considering heritage and expertise in their respective core businesses, Saft and ASP teamed up.It became necessary to provide an "all in one" modular energy storage system with intelligent autonomous cell balancing management.

  5. Comparative study of a small size wind generation system efficiency for battery charging

    Directory of Open Access Journals (Sweden)

    Mayouf Messaoud

    2013-01-01

    Full Text Available This paper presents an energetic comparison between two control strategies of a small size wind generation system for battery charging. The output voltage of the direct drive PMSG is connected to the battery through a switch mode rectifier. A DC-DC boost converter is used to regulate the battery bank current in order to achieve maximum power from the wind. A maximum powertracking algorithm calculates the current command that corresponds to maximum power output of the turbine. The DC-DC converter uses this current to calculate the duty cycle witch is necessary to control the pulse width modulated (PWM active switching device (IGPT. The system overview and modeling are presented including characteristics of wind turbine, generator, batteries, power converter, control system, and supervisory system. A simulation of the system is performed using MATLAB/SIMULINK.

  6. Functional Analysis of Battery Management Systems using Multi-Cell HIL Simulator

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela; Swierczynski, Maciej Jozef; Schaltz, Erik;

    2015-01-01

    ) simulator may be more costant time effective, easier to reproduce and safer beyond the normal range of operation, especially at early stages in the development process or during fault simulation. In this paper a li-ion battery (LIB) electro-thermal multicell model coupled with an aging model is designed......Developers and manufacturers of Battery Management Systems (BMSs) require extensive testing of controller HW and SW, such as analog front-end (AFE) and performance of generated control code. In comparison with tests conducted on real batteries, tests conducted on hardware-in-the-loop (HIL......, characterized and validated based on experimental data, converted to C code and emulated in real-time with a dSpace HIL simulator. The BMS to be tested interacts with the emulated battery pack as if it was managing a real battery pack. BMS functions such as protection, measuring of current, voltage...

  7. Functional Observational Battery Testing for Nervous System Effects of Drugs and Other Chemicals

    Science.gov (United States)

    Screening for behavioral toxicity, or neurotoxicity, has become standard practice in preclinical safety pharmacology and toxicology. Behavior represents the integrated sum of activities mediated by the nervous system. Current screening batteries, such as the functional observat...

  8. Suggested Operation Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef;

    2015-01-01

    there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re......Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...

  9. Lithium-ion Battery Charging System using Constant-Current Method with Fuzzy Logic Based ATmega16

    Directory of Open Access Journals (Sweden)

    Rossi Passarella

    2014-10-01

    Full Text Available In this charging system, constant-current charging technique keeps the current flow into the battery on its maximum range of 2A. The use of fuzzy logic control of this charging system is to control the value of PWM. PWM is controlling the value of current flowing to the battery during the charging process. The current value into the battery depends on the value of battery voltage and also its temperature. The cutoff system will occur if the temperature of the battery reaches its maximum range

  10. Integrating STATCOM and Battery Energy Storage System for Power System Transient Stability: A Review and Application

    OpenAIRE

    Arindam Chakraborty; Musunuri, Shravana K.; Anurag K. Srivastava; Kondabathini, Anil K.

    2012-01-01

    Integration of STATCOM with energy storage devices plays an imperative role in improving the power system operation and control. Significant research has been done in this area for practical realization of benefits of the integration. This paper, however, pays particular importance to the performance improvement for the transients as is achievable by STATCOM with battery-powered storage systems. Application of STATCOM with storage in regard to intermittent renewable energy sources such as win...

  11. Battery sizing for a stand alone passive wind system using statistical techniques

    OpenAIRE

    Belouda, Malek; Belhadj, Jamel; Sareni, Bruno; Roboam, Xavier

    2011-01-01

    In this paper, an original optimization method to jointly determine a reduced study term and an optimum battery sizing is investigated. This storage device is used to connect a passive wind turbine system with a stand alone network. A Weibull probability density function is used to generate different wind speed data. The passive wind system is composed of a wind turbine, a permanent magnet synchronous generator feeding a diode rectifier associated with a very low voltage DC battery bus. This ...

  12. A Hybrid Spline Metamodel for Photovoltaic/Wind/Battery Energy Systems

    OpenAIRE

    ZAIBI, Malek; LAYADI, Toufik Madani; Champenois, Gérard; ROBOAM, xavier; Sareni, Bruno; Belhadj, Jamel

    2015-01-01

    This paper proposes a metamodel design for a Photovoltaic/Wind/Battery Energy System. The modeling of a hybrid PV/wind generator coupled with two kinds of storage i.e. electric (battery) and hydraulic (tanks) devices is investigated. A metamodel is carried out by hybrid spline interpolation to solve the relationships between several design variables i.e. the design parameters of different subsystems and their associate response variables i.e. system indicators performance. The developed model...

  13. Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System

    OpenAIRE

    Farouk Odeim; Jürgen Roes; Angelika Heinzel

    2015-01-01

    In this paper, an experimental fuel cell/battery/supercapacitor hybrid system is investigated in terms of modeling and power management design and optimization. The power management strategy is designed based on the role that should be played by each component of the hybrid power source. The supercapacitor is responsible for the peak power demands. The battery assists the supercapacitor in fulfilling the transient power demand by controlling its state-of-energy, whereas the fuel cell system, ...

  14. Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, R.L.; Turpin, J.F.; Corey, G.P. [and others

    1996-12-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PV market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.

  15. Characterisation of charge voltage of lead-acid batteries: application to the charge control strategy in photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Vela, N. [CIEMAT-DER, Madrid (Spain). Laboratorio de Energia Solar Fotovoltaica; Aguilera, J. [Universidad de Jaen (Spain). Escuela Politecnica Superior

    2006-12-15

    In stand-alone photovoltaic (PV) systems, charge controllers prevent excessive battery overcharge by interrupting or limiting the current flow from the PV array to the battery when the battery becomes fully charged. Charge regulation is most often accomplished by limiting the battery voltage to a predetermined value or cut-off voltage, higher than the gassing voltage. These regulation voltages are dependent on the temperature and battery charge current. An adequate selection of overcharge cut-off voltage for each battery type and operating conditions would maintain the highest battery state of charge without causing significant overcharge thus improving battery performance and reliability. To perform this work, a sample of nine different lead-acid batteries, typically used in stand-alone PV systems including vented and sealed batteries with 2 V cells and monoblock configurations have been selected. This paper presents simple mathematical expressions fitting two charge characteristic voltages: the gassing voltage (V{sub g}) and the end-of charge voltage (V{sub fc}) as function of charge current and temperature for the tested batteries. With these expressions, we have calculated V{sub g} and V{sub fc} at different current rates. An analysis of the different values obtained is presented here focusing in the implication in control strategies of batteries in stand-alone PV systems. (author)

  16. Techno-Economic Modeling and Analysis of Redox Flow Battery Systems

    Directory of Open Access Journals (Sweden)

    Jens Noack

    2016-08-01

    Full Text Available A techno-economic model was developed to investigate the influence of components on the system costs of redox flow batteries. Sensitivity analyses were carried out based on an example of a 10 kW/120 kWh vanadium redox flow battery system, and the costs of the individual components were analyzed. Particular consideration was given to the influence of the material costs and resistances of bipolar plates and energy storage media as well as voltages and electric currents. Based on the developed model, it was possible to formulate statements about the targeted optimization of a developed non-commercial vanadium redox flow battery system and general aspects for future developments of redox flow batteries.

  17. Industrial advanced turbine systems: Development and demonstration. Quarterly report, January 1--March 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The US Department of Energy (DOE) has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The objective of the cooperative agreements granted under the program is to join the DOE with industry in research and development that will lead to commercial offerings in the private sector. The ATS will provide ultra-high efficiency, environmental superiority, and cost competitiveness. The ATS will foster (1) early market penetration that enhances the global competitiveness of US industry, (2) public health benefits resulting from reduced exhaust gas emissions of target pollutants, (3) reduced cost of power used in the energy-intensive industrial marketplace, and (4) the retention and expansion of the skilled US technology base required for the design, development and maintenance of state-of-the-art advanced turbine products. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program. Phase 3 of the work is separated into two subphases: Phase 3A entails Component Design and Development; Phase 3B will involve Integrated Subsystem Testing. Phase 4 will cover Host Site Testing. As of the end of the reporting period work on the program is 29.1% complete (24.7% last quarter). Work on the Mercury 50 development and ATS technology development portions of the program (WBS 10000 et seq) is 48.9% complete (41.6% last quarter). Estimates of percent complete are based upon milestones completed. In order to maintain objectivity in assessing schedule progress, Solar uses a 0/100 percent complete assumption for milestones rather than subjectively estimating progress toward completion of milestones. Cost and schedule variance information is provided in Section 4.0 Program Management.

  18. Effects of imbalanced currents on large-format LiFePO4/graphite batteries systems connected in parallel

    Science.gov (United States)

    Shi, Wei; Hu, Xiaosong; Jin, Chao; Jiang, Jiuchun; Zhang, Yanru; Yip, Tony

    2016-05-01

    With the development and popularization of electric vehicles, it is urgent and necessary to develop effective management and diagnosis technology for battery systems. In this work, we design a parallel battery model, according to equivalent circuits of parallel voltage and branch current, to study effects of imbalanced currents on parallel large-format LiFePO4/graphite battery systems. Taking a 60 Ah LiFePO4/graphite battery system manufactured by ATL (Amperex Technology Limited, China) as an example, causes of imbalanced currents in the parallel connection are analyzed using our model, and the associated effect mechanisms on long-term stability of each single battery are examined. Theoretical and experimental results show that continuously increasing imbalanced currents during cycling are mainly responsible for the capacity fade of LiFePO4/graphite parallel batteries. It is thus a good way to avoid fast performance fade of parallel battery systems by suppressing variations of branch currents.

  19. Optimization of damping in the passive automotive suspension system with using two quarter-car models

    Science.gov (United States)

    Lozia, Z.; Zdanowicz, P.

    2016-09-01

    The paper presents the optimization of damping in the passive suspension system of a motor vehicle moving rectilinearly with a constant speed on a road with rough surface of random irregularities, described according to the ISO classification. Two quarter-car 2DoF models, linear and non-linear, were used; in the latter, nonlinearities of spring characteristics of the suspension system and pneumatic tyres, sliding friction in the suspension system, and wheel lift-off were taken into account. The smoothing properties of vehicle tyres were represented in both models. The calculations were carried out for three roads of different quality, with simulating four vehicle speeds. Statistical measures of vertical vehicle body vibrations and of changes in the vertical tyre/road contact force were used as the criteria of system optimization and model comparison. The design suspension displacement limit was also taken into account. The optimum suspension damping coefficient was determined and the impact of undesirable sliding friction in the suspension system on the calculation results was estimated. The results obtained make it possible to evaluate the impact of the structure and complexity of the model used on the results of the optimization.

  20. MODELING APPROACH TO SIMULTANEOUS SCHEDULING BATTERIES AND VEHICLES IN MATERIALS HANDLING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Milorad Vidović

    2015-03-01

    Full Text Available Battery operated handling equipment is the most widely applied concept in materials handling and logistic systems in general. The problem related to its application is in defining the most appropriate scheduling batteries and vehicles to handling tasks. Although the problem can be found in literature very often as very important, solution approaches are very rare and almost don’t exist. This paper presents one of possible solving approaches to the problem, considering the optimal assignment of resources (batteries and vehicles to material handling tasks. Modeling approach proposed is illustrated by a few numerical examples.

  1. Structures of battery- and energy management systems using lead-acid batteries and ultracaps; Strukturen von Batterie- und Energiemanagementsystemen mit Bleibatterien und Ultracaps

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, D.

    2007-07-01

    The publication presents methods of damage-free operation of lead batteries in electric road vehicles. The original charging method used in the citySTROMer car was based on the total voltage, causing permanent overload and fast ageing of modules. The charge state of the vehicle is defined on the basis of the residual charge state, a charge balance, and an evaluation of the temperature-compensated minimum module voltage. The time when current limiting is necessary is recognized reliably, and the charge state indicator works reliably soon after starting. The vehicle has an integrated power-assist store. Ultracap modules of various capacities were characterized in the laboratory. A variant was constructed in which the battery is discharged permanently with average driving current while the ultracap is used for making up the difference to the load at a given moment. The load cases for power-assist were identified on the basis of real driving cycles. The system can be described as an onboard dual-voltage system. The higher voltage of the ultracap provides higher power for acceleration. The availability of the ultracap is ensured in 90 percent of all accelerations. The first battery set installed in the car is now in its fourth winter, with a mileage of nearly 7000 km. In March 2006, 63 Ah were recorded in battery driving cycle in urban traffic at temperatures below freezing point. After commissioning in May 2002, 71 Ah were recorded. [German] Die vorliegende Arbeit entwickelt Verfahren zum schaedigungsfreien Betrieb von Bleibatterien in elektrischen Strassenfahrzeugen. Das urspruenglich im untersuchten citySTROMer eingesetzte Ladeverfahren war an der Gesamtspannung orientiert und hat Module hoeherer Spannungslage ueberladen. Die permanente Ueberladung fuehrt zu einem sehr schnellen Alterungsprozess. Die Ladezustandsbestimmung im Fahrzeug erfolgt ueber die Bestimmung des Restladegrades, eine Ladungsbilanzierung und die Auswertung der temperaturkompensierten

  2. Multibody dynamics modelling and system identification of a quarter-car test rig with McPherson strut suspension

    Science.gov (United States)

    Sandu, Corina; Andersen, Erik R.; Southward, Steve

    2011-02-01

    In this paper, we develop a multibody dynamics model of a quarter-car test-rig equipped with a McPherson strut suspension and we apply a system identification technique on it. Constrained equations of motion in the Lagrange multiplier form are derived and employed to characterise the dynamic behaviour of the test rig modelled once as a linear system and once as a non-linear system. The system of differential algebraic equations is integrated using a Hilber-Hughes-Taylor integrator. The responses of both models (linear and non-linear) to a given displacement input are obtained and compared with the experimental response recorded using the physical quarter-car test rig equipped with a McPherson strut suspension. The system identification is performed for control purposes. The results, as well as the performance and area of applicability of the test rig models derived, are discussed.

  3. A Rule Based Energy Management System of Experimental Battery/Supercapacitor Hybrid Energy Storage System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Qiao Zhang

    2016-01-01

    Full Text Available In this paper, a simple and efficient rule based energy management system for battery and supercapacitor hybrid energy storage system (HESS used in electric vehicles is presented. The objective of the proposed energy management system is to focus on exploiting the supercapacitor characteristics and on increasing the battery lifetime and system efficiency. The role of the energy management system is to yield battery reference current, which is subsequently used by the controller of the DC/DC converter. First, a current controller is designed to realize load current distribution between battery and supercapacitor. Then a voltage controller is designed to ensure the supercapacitor SOC to fluctuate within a preset reasonable variation range. Finally, a commercial experimental platform is developed to verify the proposed control strategy. In addition, the energy efficiency and the cost analysis of the hybrid system are carried out based on the experimental results to explore the most cost-effective tradeoff.

  4. Influence of Adhesive System on Performance of SiO/C Lithium-ion Battery

    Directory of Open Access Journals (Sweden)

    Teng Xin

    2015-01-01

    Full Text Available Silicon based anode material is turning into the research hot point of lithium-ion battery material field due to Si inside supporting higher capacity. Furthermore binder applied as major accessory material of anode system could bring anode material & current collector together, thus the influence given by binder system to battery performance becomes the key point. The paper describes the procedure of adopting commercial LiCoO2 SiO/C as composite material & electrolyte, with using styrene butadiene rubber and acrylic acid copolymer as binder to figure out lithium-ion battery with 2.5Ah, which is testified to present better performance on cold temperature & cycle life plus having a little bit swelling compared with the lithium-ion battery using only styrene butadiene rubber as binder.

  5. Photovoltaic Power System with an Interleaving Boost Converter for Battery Charger Applications

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Tseng

    2012-01-01

    Full Text Available This paper proposes a photovoltaic (PV power system for battery charger applications. The charger uses an interleaving boost converter with a single-capacitor turn-off snubber to reduce voltage stresses of active switches at turn-off transition. Therefore, active switches of the charger can be operated with zero-voltage transition (ZVT to decrease switching losses and increase conversion efficiency. In order to draw the maximum power from PV arrays and obtain the optimal power control of the battery charger, a perturbation-and-observation method and microchip are incorporated to implement maximum power point tracking (MPPT algorithm and power management. Finally, a prototype battery charger is built and implemented. Experimental results have verified the performance and feasibility of the proposed PV power system for battery charger applications.

  6. A new state of charge determination method for battery management system

    Institute of Scientific and Technical Information of China (English)

    ZHU Chun-bo 朱春波; WANG Tie-cheng 王铁成; HURLEY W G

    2004-01-01

    State of Charge (SOC) determination is an increasingly important issue in battery technology. In addition to the immediate display of the remaining battery capacity to the user, precise knowledge of SOC exerts additional control over the charging/discharging process which in turn reduces the risk of over-voltage and gassing, which degrade the chemical composition of the electrolyte and plates. This paper describes a new approach to SOC determination for the lead-acid battery management system by combining Ah-balance with an EMF estimation algorithm, which predicts the battery' s EMF value while it is under load. The EMF estimation algorithm is based on an equivalent-circuit representation of the battery, with the parameters determined from a pulse test performed on the battery and a curve-fitting algorithm by means of least-square regression. The whole battery cycle is classified into seven states where the SOC is estimated with the Ah-balance method and the proposed EMF based algorithm. Laboratory tests and results are described in detail in the paper.

  7. Molten Triazolium Chloride Systems as New Aluminum Battery Electrolytes

    DEFF Research Database (Denmark)

    Vestergaard, B.; Bjerrum, Niels; Petrushina, Irina;

    1993-01-01

    The possibility of using molten mixtures of 1,4-dimethyl-1,2,4-triazolium chloride (DMTC) and aluminum chloride (AlCl3) as secondary battery electrolytes was studied, in some cases extended by the copresence of sodium chloride. DMTC-AlCl, mixtures demonstrated high specific conductivity in a wide...... of milliamperes per square centimeter) was observed at 0.344 V on the acidic sodium tetrachloroaluminate background, involving a free triazolium radical mechanism. Molten DMTC-AlCl3 electrolytes are acceptable for battery performance and both the aluminum anode and the triazolium electrolyte can be used as active...

  8. Design and Implementation of Battery Management System for Electric Bicycle

    OpenAIRE

    Mohd Rashid Muhammad Ikram; Anak Johnny Osman James Ranggi

    2017-01-01

    Today the electric vehicle (EV) has been developed in such a way that electronic motor, battery, and charger replace the engine, tank and gasoline pump of the conventional gasoline-powered [1]. In other word, instead of using fossil fuel to move the vehicle, in this case we used a pack of batteries to move it. The global climate change and the abnormal rising international crude oil prices call for the development of EV [2]. To solve these problems, a new energy needs to be developed or optim...

  9. Comeback of the dreamliner; multiple layer protection for 787 battery systems

    OpenAIRE

    S. Hosseini

    2013-01-01

    In April of this year the Federal Aviation Administration approved the new battery systems of the 787-8 Dreamliner, and after having been grounded for three months, the aircraft were cleared for take-off. Boeing dealt with serious problems when complications occurred with the batteries of the 787. Looking back, Boeing did not only solve the problems it was facing, but the aviation company took an additional step and announced the final assembly of the 787-9 Dreamliner.

  10. Neural Network Modeling of the Lithium/Thionyl Chloride Battery System

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Jungst, R.G.; O' Gorman, C.C.; Paez, T.L.

    1998-10-29

    Battery systems have traditionally relied on extensive build and test procedures for product realization. Analytical models have been developed to diminish this reliance, but have only been partially successful in consistently predicting the performance of battery systems. The complex set of interacting physical and chemical processes within battery systems has made the development of analytical models a significant challenge. Advanced simulation tools are needed to more accurately model battery systems which will reduce the time and cost required for product realization. Sandia has initiated an advanced model-based design strategy to battery systems, beginning with the performance of lithiumhhionyl chloride cells. As an alternative approach, we have begun development of cell performance modeling using non-phenomenological models for battery systems based on artificial neural networks (ANNs). ANNs are inductive models for simulating input/output mappings with certain advantages over phenomenological models, particularly for complex systems. Among these advantages is the ability to avoid making measurements of hard to determine physical parameters or having to understand cell processes sufficiently to write mathematical functions describing their behavior. For example, ANN models are also being studied for simulating complex physical processes within the Li/SOC12 cell, such as the time and temperature dependence of the anode interracial resistance. ANNs have been shown to provide a very robust and computationally efficient simulation tool for predicting voltage and capacity output for Li/SOC12 cells under a variety of operating conditions. The ANN modeling approach should be applicable to a wide variety of battery chemistries, including rechargeable systems.

  11. SEMI-ACTIVE SUSPENSION SYSTEM DESIGN FOR QUARTER CAR MODEL AND ITS ANALYSIS WITH PASSIVE SUSPENSION MODEL

    OpenAIRE

    Vinayak S. Dixit*, Sachin C. Borse

    2017-01-01

    The three main objectives that a suspension system of an automobile must satisfy are ride comfort, vehicle handling and suspension working space. Ride comfort is directly related to the vehicle acceleration experienced by the driver and the passengers. Lesser vertical acceleration, higher is the level of comfort. The aim of the Project was to design and analyze the semi active suspension system models using skyhook, ground hook and hybrid control for quarter car. The project work includes mod...

  12. System dynamic model and charging control of lead-acid battery for stand-alone solar PV system

    KAUST Repository

    Huang, B.J.

    2010-05-01

    The lead-acid battery which is widely used in stand-alone solar system is easily damaged by a poor charging control which causes overcharging. The battery charging control is thus usually designed to stop charging after the overcharge point. This will reduce the storage energy capacity and reduce the service time in electricity supply. The design of charging control system however requires a good understanding of the system dynamic behaviour of the battery first. In the present study, a first-order system dynamics model of lead-acid battery at different operating points near the overcharge voltage was derived experimentally, from which a charging control system based on PI algorithm was developed using PWM charging technique. The feedback control system for battery charging after the overcharge point (14 V) was designed to compromise between the set-point response and the disturbance rejection. The experimental results show that the control system can suppress the battery voltage overshoot within 0.1 V when the solar irradiation is suddenly changed from 337 to 843 W/m2. A long-term outdoor test for a solar LED lighting system shows that the battery voltage never exceeded 14.1 V for the set point 14 V and the control system can prevent the battery from overcharging. The test result also indicates that the control system is able to increase the charged energy by 78%, as compared to the case that the charging stops after the overcharge point (14 V). © 2010 Elsevier Ltd. All rights reserved.

  13. Thermal Management of Battery Systems in Electric Vehicle and Smart Grid Application

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan

    on the power-system domain. The dumb grids are turning into a smart grid that contains computer intelligence and networking abilities to accommodate dispersed renewable generations (e.g. solar, wind power, geothermal, wave energy and so forth). The battery takes a primary role both as stationary......Last few years’ governments are tightening the carbon emission regulations. Moreover, the availability of different financial assistances is available to cut the market share of the fossil fuel vehicles. Conversely, to fill up the gap of the required demand, higher penetration of electrical...... vehicles is foreseen. The future battery manufacturers strive to meet the ever growing requirement of consumer’s demand using the battery as a primary power source of these cars. So naturally, the growing popularity of battery electric and hybrid vehicles have catapulted the car industry in the recent...

  14. Bidirectional Five-Level Power Processing Interface for Low Voltage Battery Energy Storage System

    Science.gov (United States)

    Huang, Jain-Yi; Jou, Hurng-Liahng; Wu, Kuen-Der; Lin, You-Si; Wu, Jinn-Chang

    A bidirectional five-level power processing interface for low voltage battery energy storage system (BESS) is developed in this paper. This BESS consists of a bidirectional five-level DC-AC converter, a bidirectional dual boost/buck DC-DC converter and a battery set. This five-level DC-AC converter includes a bidirectional full-bridge converter and a bidirectional dual buck DC-DC converter. The five-level power processing interface can charge power to the battery set form the utility or discharge the power from the battery set to the utility depending on the demanded operation of user. A hardware prototype is developed to verify the performance of this BESS. Experimental results show the performance of the developed BESS is as expected.

  15. Advanced Turbine Systems Program: Conceptual design and product development. Quarterly report, February--April 1994

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, G.J.

    1994-06-01

    Objective (Phase II) is to develop an industrial gas turbine system to operate at a thermal efficiency of 50% (ATS50) with efficiency enhancements to be added as they become possible. During this quarter, Solar`s engine design team has refined both the 1- and 2-spool cycle concepts, to determine sensitivity to key component efficiencies, cooling air usage and origin, and location of compressor surge lines. The refined analysis included more detailed component work such as compressor and turbine design; different speed trade-offs for the low-and high-pressure compressor in the 1-spool configuration were examined for the best overall compressor efficiency. High-temperature and creep testing of recuperator candidate materials continued. Creep, yield, and proportional limit were measured for foil thicknesses 0.0030--0.0050 for Type 347 ss, Inconel 625, and Haynes 230. Combustor design work included preliminary layout of a multi-can annular combustor integrated into the main engine layout. During the subscale catalytic combustion rig testing, NOx emissions < 5 ppmv were measured. Integration of the engine concept designs into the full power plant system designs has started.

  16. Management of Power Consumption in Hybrid PV-Battery System in Rapid Variation of Temperature and Irradiance

    Directory of Open Access Journals (Sweden)

    Hadi Nabizadeh

    2013-11-01

    Full Text Available In this paper, load voltage stabilization system in PV system is presented. Considering that the solar array output power varies with temperature and radiation; so to stabilizing the voltage, feeding load and battery simultaneously, aboost converter is used to transfer extra power into the battery. Thus in the maximum power point tracking system, both power consumption and saving by the load and battery are done.

  17. Powering-up Wireless Sensor Nodes Utilizing Rechargeable Batteries and an Electromagnetic Vibration Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Salar Chamanian

    2014-10-01

    Full Text Available This paper presents a wireless sensor node (WSN system where an electromagnetic (EM energy harvester is utilized for charging its rechargeable batteries while the system is operational. The capability and the performance of an in-house low-frequency EM energy harvester for charging rechargeable NiMH batteries were experimentally verified in comparison to a regular battery charger. Furthermore, the power consumption of MicaZ motes, used as the WSN, was evaluated in detail for different operation conditions. The battery voltage and current were experimentally monitored during the operation of the MicaZ sensor node equipped with the EM vibration energy harvester. A compact (24.5 cm3 in-house EM energy harvester provides approximately 65 µA charging current to the batteries when excited by 0.4 g acceleration at 7.4 Hz. It has been shown that the current demand of the MicaZ mote can be compensated for by the energy harvester for a specific low-power operation scenario, with more than a 10-fold increase in the battery lifetime. The presented results demonstrate the autonomous operation of the WSN, with the utilization of a vibration-based energy harvester.

  18. Fundamentals of Using Battery Energy Storage Systems to Provide Primary Control Reserves in Germany

    Directory of Open Access Journals (Sweden)

    Alexander Zeh

    2016-09-01

    Full Text Available The application of stationary battery storage systems to German electrical grids can help with various storage services. This application requires controlling the charge and discharge power of such a system. For example, photovoltaic (PV home storage, uninterruptible power supply, and storage systems for providing ancillary services such as primary control reserves (PCRs represent battery applications with positive profitability. Because PCRs are essential for stabilizing grid frequency and maintaining a robust electrical grid, German transmission system operators (TSOs released strict regulations in August 2015 for providing PCRs with battery storage systems as part of regulating the International Grid Control Cooperation (IGCC region in Europe. These regulations focused on the permissible state of charge (SoC of the battery during nominal and extreme conditions. The concomitant increased capacity demand oversizing may result in a significant profitability reduction, which can be attenuated only by using an optimal parameterization of the control algorithm for energy management of the storage systems. In this paper, the sizing optimization is achieved and a recommendation for a control algorithm that includes the appropriate parameters for the requirements in the German market is given. Furthermore, the storage cost is estimated, including battery aging simulations for different aging parameter sets to allow for a realistic profitability calculation.

  19. Towards Robust Predictive Fault–Tolerant Control for a Battery Assembly System

    Directory of Open Access Journals (Sweden)

    Seybold Lothar

    2015-12-01

    Full Text Available The paper deals with the modeling and fault-tolerant control of a real battery assembly system which is under implementation at the RAFI GmbH company (one of the leading electronic manufacturing service providers in Germany. To model and control the battery assembly system, a unified max-plus algebra and model predictive control framework is introduced. Subsequently, the control strategy is enhanced with fault-tolerance features that increase the overall performance of the production system being considered. In particular, it enables tolerating (up to some degree mobile robot, processing and transportation faults. The paper discusses also robustness issues, which are inevitable in real production systems. As a result, a novel robust predictive fault-tolerant strategy is developed that is applied to the battery assembly system. The last part of the paper shows illustrative examples, which clearly exhibit the performance of the proposed approach.

  20. A multifunctional energy-storage system with high-power lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R. [Sonnenschein GmbH, Buedingen (Germany). EXIDE German Group Research and Development Centre; Schroeder, M.; Stephanblome, T. [EUS Gesellschaft fuer Innovative Energieumwandlung und -Speicherung mbH, Gelsenkirchen (Germany); Handschin, E. [Dortmund Univ. (Germany)

    1999-03-01

    A multifunctional energy storage system is presented which is used to improve the utilization of renewable energy supplies. This system includes three different functions: (i) uninterruptible power supply (UPS); (ii) improvement of power quality; (iii) peak-load shaving. The UPS application has a long tradition and is used whenever a reliable power supply is needed. Additionally, nowadays, there is a growing demand for high quality power arising from an increase of system perturbation of electric grids. Peak-load shaving means in this case the use of renewable energy stored in a battery for high peak-load periods. For such a multifunctional application large lead-acid batteries with high power and good charge acceptance, as well as good cycle life are needed. OCSM batteries as with positive tubular plates and negative copper grids have been used successfully for a multitude of utility applications. This paper gives two examples where multifunctional energy storage systems have started operation recently in Germany. One system was installed in combination with a 1 MW solar plant in Herne and another one was installed in combination with a 2 MW wind farm in Bocholt. At each place, a 1.2 MW h (1 h-rate) lead-acid battery has been installed. The batteries consist of OCSM cells with the standard design but modified according to the special demand of a multifunctional application. (orig.)

  1. A multifunctional energy-storage system with high-power lead-acid batteries

    Science.gov (United States)

    Wagner, R.; Schroeder, M.; Stephanblome, T.; Handschin, E.

    A multifunctional energy storage system is presented which is used to improve the utilization of renewable energy supplies. This system includes three different functions: (i) uninterruptible power supply (UPS); (ii) improvement of power quality; (iii) peak-load shaving. The UPS application has a long tradition and is used whenever a reliable power supply is needed. Additionally, nowadays, there is a growing demand for high quality power arising from an increase of system perturbation of electric grids. Peak-load shaving means in this case the use of renewable energy stored in a battery for high peak-load periods. For such a multifunctional application large lead-acid batteries with high power and good charge acceptance, as well as good cycle life are needed. OCSM batteries as with positive tubular plates and negative copper grids have been used successfully for a multitude of utility applications. This paper gives two examples where multifunctional energy storage systems have started operation recently in Germany. One system was installed in combination with a 1 MW solar plant in Herne and another one was installed in combination with a 2 MW wind farm in Bocholt. At each place, a 1.2 MW h (1 h-rate) lead-acid battery has been installed. The batteries consist of OCSM cells with the standard design but modified according to the special demand of a multifunctional application.

  2. Design of Efficient Sound Systems for Low Voltage Battery Driven Applications

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Oortgiesen, Rien; Knott, Arnold;

    2016-01-01

    The efficiency of portable battery driven sound systems is crucial as it relates to both the playback time and cost of the system. This paper presents design considerations when designing such systems. This include loudspeaker and amplifier design. Using a low resistance voice coil realized with ...

  3. Kernel based model parametrization and adaptation with applications to battery management systems

    Science.gov (United States)

    Weng, Caihao

    With the wide spread use of energy storage systems, battery state of health (SOH) monitoring has become one of the most crucial challenges in power and energy research, as SOH significantly affects the performance and life cycle of batteries as well as the systems they are interacting with. Identifying the SOH and adapting of the battery energy/power management system accordingly are thus two important challenges for applications such as electric vehicles, smart buildings and hybrid power systems. This dissertation focuses on the identification of lithium ion battery capacity fading, and proposes an on-board implementable model parametrization and adaptation framework for SOH monitoring. Both parametric and non-parametric approaches that are based on kernel functions are explored for the modeling of battery charging data and aging signature extraction. A unified parametric open circuit voltage model is first developed to improve the accuracy of battery state estimation. Several analytical and numerical methods are then investigated for the non-parametric modeling of battery data, among which the support vector regression (SVR) algorithm is shown to be the most robust and consistent approach with respect to data sizes and ranges. For data collected on LiFePO 4 cells, it is shown that the model developed with the SVR approach is able to predict the battery capacity fading with less than 2% error. Moreover, motivated by the initial success of applying kernel based modeling methods for battery SOH monitoring, this dissertation further exploits the parametric SVR representation for real-time battery characterization supported by test data. Through the study of the invariant properties of the support vectors, a kernel based model parametrization and adaptation framework is developed. The high dimensional optimization problem in the learning algorithm could be reformulated as a parameter estimation problem, that can be solved by standard estimation algorithms such as the

  4. Optimization of the linear quadratic regulator (LQR control quarter car suspension system using genetic algorithm

    Directory of Open Access Journals (Sweden)

    Mahesh Nagarkar

    2016-04-01

    Full Text Available In this paper, a genetic algorithm (GA based in an optimization approach is presented in order to search the optimum weighting matrix parameters of a linear quadratic regulator (LQR. A Macpherson strut quarter car suspension system is implemented for ride control application. Initially, the GA is implemented with the objective of minimizing root mean square (RMS controller force. For single objective optimization, RMS controller force is reduced by 20.42% with slight increase in RMS sprung mass acceleration. Trade-off is observed between controller force and sprung mass acceleration. Further, an analysis is extended to multi-objective optimization with objectives such as minimization of RMS controller force and RMS sprung mass acceleration and minimization of RMS controller force, RMS sprung mass acceleration and suspension space deflection. For multi-objective optimization, Pareto-front gives flexibility in order to choose the optimum solution as per designer’s need.

  5. Performance Characterization of a Lithium-ion Gel Polymer Battery Power Supply System for an Unmanned Aerial Vehicle

    Science.gov (United States)

    Reid, Concha M.; Manzo, Michelle A.; Logan, Michael J.

    2004-01-01

    Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed. Due to the strict mass limitations and wide operating temperature requirements of small UAVs, the only viable cell chemistries were determined to be lithium-ion liquid electrolyte systems and lithium-ion gel polymer electrolyte systems. Two lithium-ion gel polymer cell designs were selected as candidates and were tested using potential load profiles for UAV applications. Because lithium primary batteries have a higher specific energy and energy density, for the same mass and volume allocation, the secondary batteries resulted in shorter flight times than the primary batteries typically provide. When the batteries were operated at lower ambient temperatures (0 to -20 C), flight times were even further reduced. Despite the reduced flight times demonstrated, for certain UAV applications, the secondary batteries operated within the acceptable range of flight times at room temperature and above. The results of this testing indicate that a secondary battery power supply system can provide some benefits over the primary battery power supply system. A UAV can be operated for hundreds of flights using a secondary battery power supply system that provides the combined benefits of rechargeability and an inherently safer

  6. Integrating STATCOM and Battery Energy Storage System for Power System Transient Stability: A Review and Application

    Directory of Open Access Journals (Sweden)

    Arindam Chakraborty

    2012-01-01

    Full Text Available Integration of STATCOM with energy storage devices plays an imperative role in improving the power system operation and control. Significant research has been done in this area for practical realization of benefits of the integration. This paper, however, pays particular importance to the performance improvement for the transients as is achievable by STATCOM with battery-powered storage systems. Application of STATCOM with storage in regard to intermittent renewable energy sources such as wind power generation is also discussed in the paper. At the beginning of this paper, an overall review of the STATCOM and energy storage systems are elaborated. A brief overview of the advantages of using STATCOM in conjunction to energy storage systems in achieving power system stability is presented. In the second part of the paper, a typical transient stability model of a STATCOM is presented. The dynamics of real and reactive power responses of the integrated system to transients is studied. The study is aimed at showing that the combination of STATCOM and battery energy storage significantly improves the performance of the system. The final results show that the STATCOM reactive power/voltage control helps in transient stability enhancement.

  7. Electric Vehicle Based Battery Storages for Future Power System Regulation Services

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    supplying the reserve power requirements. This limited regulation services from conventional generators in the future power system calls for other new reserve power solutions like Electric Vehicle (EV) based battery storages. A generic aggregated EV based battery storage for long-term dynamic load frequency......The large grid integration of variable wind power adds to the imbalance of a power system. This necessitates the need for additional reserve power for regulation. In Denmark, the growing wind penetration aims for an expedited change of displacing the traditional generators which are currently...... simulations is modelled. Further, it is analysed for regulation services using the case of a typical windy day in the West Denmark power system. The power deviations with other control areas in an interconnected system are minimised by the faster up and down regulation characteristics of the EV battery...

  8. Computational models of an inductive power transfer system for electric vehicle battery charge

    Science.gov (United States)

    Anele, A. O.; Hamam, Y.; Chassagne, L.; Linares, J.; Alayli, Y.; Djouani, K.

    2015-09-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV.

  9. A Method for Load Frequency Control using Battery in Power System with Highly Penetrated Photovoltaic Generation

    Science.gov (United States)

    Nagoya, Hiroyuki; Komami, Shintaro; Ogimoto, Kazuhiko

    It is generally believed that a large amount of battery system will be needed to store surplus electric energy due to high penetration of renewable energy (RE) such as photovoltaic generation (PV). Since main objective of high penetration of REs is to reduce amount of CO2 emission, reducing kWh output of thermal generation that does emit large amount of CO2 in power system should be considered sufficiently. However, thermal generation takes a important role in load frequency control (LFC) of power system. Therefore, if LFC could be done with battery and hydro generation, kWh output of thermal generation would be reduced significantly. This paper presents a method for LFC using battery in power system with highly penetrated PVs. Assessment of the effect of the proposed method would be made considering mutual smoothing effect of highly penetrated PVs.

  10. Simulation of an isolated Wind Diesel System with battery energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, R.; Alzola, R. Pena [Department of Electrical, Electronic and Control Engineering, Spanish University for Distance Education, 28040 UNED Madrid (Spain)

    2011-02-15

    The subject of this paper is to present the modelling and simulation of an isolated Wind Diesel Hybrid System (WDHS) comprising a Diesel Generator (DG), a Wind Turbine Generator (WTG), the consumer Load, a Ni-MH battery based Energy Storage System (BESS) and a Dump Load (DL). The BESS consists of a battery bank and a power converter which performs the DC/AC conversion to interface the battery with the isolated grid. The Ni-MH battery high power capability, low maintenance, resistance to abuse and absence of hazardous substances make it the best choice for WDHS. The modelling of the previously mentioned components is presented and the performance of the WDHS is tested through dynamic simulation. Simulation results with graphs for the frequency and voltage of the Isolated Power System, active powers generated/absorbed by the different elements and the battery voltage/current/state of charge are presented for load and wind speed changes. The simulation results for the BESS/no BESS cases are compared and show a remarkable improvement in the system dynamics due to the use of the BESS. (author)

  11. Developments of Electrolyte Systems for Lithium-Sulfur Batteries: A Review

    Directory of Open Access Journals (Sweden)

    Zhan eLin

    2015-02-01

    Full Text Available With a theoretical specific energy 5 times higher than that of lithium-ion (Li-ion batteries (2,600 vs. ~500 Wh kg-1, lithium-sulfur (Li-S batteries have been considered as one of the most promising energy storage systems for the electrification of vehicles. However, both the polysulfide shuttle effects of the sulfur cathode and dendrite formation of the lithium anode are still key limitations to practical use of traditional Li-S batteries. In this review, we focus on the recent developments in electrolyte systems. First we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with traditional liquid cells. We then introduce the most recent progresses in liquid systems, including ether-based, carbonate-based, and ionic liquid-based electrolytes. And then we move on to the advances in solid systems, including polymer and non-polymer electrolytes. Finally, the opportunities and perspectives for future research in both the liquid and solid Li-S batteries are presented.

  12. Monitoring and control system of charging batteries connected to a photovoltaic panel

    Science.gov (United States)

    Idzkowski, Adam; Leoniuk, Katarzyna; Walendziuk, Wojciech; Budzynski, Lukasz

    2015-09-01

    In this paper the off-grid photovoltaic system consisting of a PV panel, MMPT charge controller and battery is described. The realization of a laboratory stand for charging or discharging batteries is presented. Original monitoring and control system, which is based on LabVIEW software and LabJack DAQ device, has been built. Data acquisition part, arithmetic part and front panel of program created in LabVIEW are described. Some problems with implementation of this system, providing the monitoring of electrical parameters, are mentioned.

  13. Solar battery power supply: A reliable power supply system for nursing clinic in Australia`s remote areas

    Energy Technology Data Exchange (ETDEWEB)

    Zahedi, A. [Monash Univ., Caulfield (Australia). Div. of Electrical and Computer Systems Engineering

    1997-12-31

    Design and performance investigation of a new solar-battery system to power health clinics in Australia`s remote and isolated areas is a research project being conducted in the Department. The objective of this paper is to present the solar-battery system and to discuss the design factors of the system.

  14. Modeling, Design and Simulation of Stand-Alone Photovoltaic Power Systems with Battery Storage

    Directory of Open Access Journals (Sweden)

    Abd Essalam BADOUD

    2013-06-01

    Full Text Available Stand alone renewable energy based on photovoltaic systems accompanied with battery storage system are beginning to play an important role over the world to supply power to remote areas. The objective of the study reported in this paper is to elaborate and design a bond graphs model for sizing stand-alone domestic solar photovoltaic electricity systems and simulating the performance of the systems in a tropical climate. The systems modelled consist of an array of PV modules, a lead-acid battery, and a number of direct current appliances. This paper proposes the combination of lead acid battery system with a typical stand alone photovoltaic energy system under variable loads. The main activities of this work purpose to establish library graphical models for each individual component of standalone photovoltaic system. Control strategy has been considered to achieve permanent power supply to the load via photovoltaic/battery based on the power available from the sun. The complete model was simulated under two testing including sunny and cloudy conditions. Simulation of the system using Symbols software was performed and the results of simulation show the superior stable control system and high efficiency. These results have been contrasted with real measured data from a measurement campaign plant carried on electrical engineering laboratory of Grenoble using various interconnection schemes are presented.

  15. Operating conditions of batteries in off-grid renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, Vojtech [University of Hawaii, 1680 East-West Rd., Post 109, Honolulu, HI 96822, (United States); Wenzl, Heinz [Beratung fuer Batterien und Energietechnik, Am Bergwaeldchen 27, 37520 Osterode (Germany); Kaiser, Rudi [Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, 79110 Freiburg (Germany); Jossen, Andreas [Center for Solar Energy and Hydrogen Research Baden - Wuerttemberg, Helmholtzstrasse 8, 89081 Ulm (Germany); Baring-Gould, Ian [National Renewable Energy Laboratory, MS 3811, 1617 Cole Blvd, 80401-3393 Golden/CO (United States); Manwell, James [University of Massachusetts, Amherst, Massachusetts, MA 01003 (United States); Lundsager, Per; Bindner, Henrik; Cronin, Tom; Noergaard, Per [Riseo National Laboratory, P.O. Box 49, Frederiksborgvej 399, 4000 Roskilde (Denmark); Ruddell, Alan [Council for the Central Laboratory of the Research Councils, Rutherford Appleton Laboratory, Energy Research Unit, Chilton, OX11 0QX Didcot (United Kingdom); Perujo, Adolfo; Douglas, Kevin [E.C. Joint Research Centre, Institute for Environment and Sustainability, 21020 Ispra VA (Italy); Rodrigues, Carlos; Joyce, Antonio [INETI, Department of Renewable Energy, Estrada do Paco de Lumiar 22, 1649-038 Lisbon (Portugal); Tselepis, Stathis [Center for Renewable Energy Sources, 19th km Marathonos Ave., 19009 Pikermi (Greece); Borg, Nico van der; Nieuwenhout, Frans [The Netherlands Energy Research Foundation, P.O. Box 1, 1755 ZG Petten (Netherlands); Wilmot, Nigel [Research Institute for Sustainable Energy, Murdoch University, South Street, 6150 Perth (Australia); Mattera, Florence [Commissariat a l' Energetie Atomicque, Groupement Energetique de Cadarache, 38054 Grenoble (France)

    2007-11-15

    Operating conditions in off-grid renewable energy systems (RES) vary significantly in different applications and locations. To describe RES and the operating conditions of their components it is useful to define categories of similar operating conditions. Categories can also be used for lifetime considerations of RES components, for making recommendations and for analysing the properties and performance of a RES and its components. Categories support system designers and an economic analysis. This paper describes the process and the results of creating RES categories of similar operating conditions for batteries. Categories are defined in such a way that batteries belonging to the same category are subjected to similar operating conditions and a similar combination of stress factors. The results provide a comprehensive overview of battery operating conditions in existing off-grid renewable energy systems. This work is part of the EU research project Benchmarking. (author)

  16. Operating conditions of batteries in off-grid renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, Vojtech; Wenzl, Heinz; Kaiser, Rudi; Jossen, Andreas; Baring-Gould, Ian; Manwell, James; Lundsager, Per; Bindner, Henrik; Cronin, Tom; Nørgård, Per; Ruddell, Alan; Perujo, Adolfo; Douglas, Kevin; Rodrigues, Carlos; Joyce, António; Tselepis, Stathis; van der Borg, Nico; Nieuwenhout, Frans; Wilmot, Nigel; Mattera, Florence; Sauer, Dirk Uwe

    2007-11-01

    Operating conditions in off-grid renewable energy systems (RES) vary significantly in different applications and locations. To describe RES and the operating conditions of their components it is useful to define categories of similar operating conditions. Categories can also be used for lifetime considerations of RES components, for making recommendations and for analysing the properties and performance of a RES and its components. Categories support system designers and an economic analysis. This paper describes the process and the results of creating RES categories of similar operating conditions for batteries. Categories are defined in such a way that batteries belonging to the same category are subjected to similar operating conditions and a similar combination of stress factors. The results provide a comprehensive overview of battery operating conditions in existing off-grid renewable energy systems. This work is part of the EU research project Benchmarking.

  17. Study on Battery Capacity for Grid-connection Power Planning with Forecasts in Clustered Photovoltaic Systems

    Science.gov (United States)

    Shimada, Takae; Kawasaki, Norihiro; Ueda, Yuzuru; Sugihara, Hiroyuki; Kurokawa, Kosuke

    This paper aims to clarify the battery capacity required by a residential area with densely grid-connected photovoltaic (PV) systems. This paper proposes a planning method of tomorrow's grid-connection power from/to the external electric power system by using demand power forecasting and insolation forecasting for PV power predictions, and defines a operation method of the electricity storage device to control the grid-connection power as planned. A residential area consisting of 389 houses consuming 2390 MWh/year of electricity with 2390kW PV systems is simulated based on measured data and actual forecasts. The simulation results show that 8.3MWh of battery capacity is required in the conditions of half-hour planning and 1% or less of planning error ratio and PV output limiting loss ratio. The results also show that existing technologies of forecasting reduce required battery capacity to 49%, and increase the allowable installing PV amount to 210%.

  18. SUNRAYCE 93: Working safely with lead-acid batteries and photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    DePhillips, M.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-11-03

    The US Department of Energy (DOE) is sponsoring SUNRAYCE 93 to advance tile technology and use of photovoltaics and electric vehicles. Participants will use cars powered by photovoltaic modules and lead-acid storage batteries. This brochure, prepared for students and faculty participating in this race, outlines the health hazards presented by these electrical systems, and gives guidance on strategies for their safe usage. At the outset, it should be noted that working with photovoltaic systems and batteries requires electric vehicle drivers and technicians to have {open_quotes}hands-on{close_quotes} contact with the car on a daily basis. It is important that no one work near a photovoltaic energy system or battery, either in a vehicle or on the bench, unless they familiarize themselves with the components in use, and know and observe safe work practices including the safety precautions described in the manuals provided by the various equipment vendors and this document.

  19. Operating conditions of batteries in off-grid renewable energy systems

    DEFF Research Database (Denmark)

    Svoboda, V.; Wenzl, H.; Kaiser, R.

    2007-01-01

    Operating conditions in off-grid renewable energy systems (RES) vary significantly in different applications and locations. To describe RES and the operating conditions of their components it is useful to define categories of similar operating conditions. Categories can also be used for lifetime...... considerations of RES components, for making recommendations and for analysing the properties and performance of a RES and its components. Categories support system designers and an economic analysis. This paper describes the process and the results of creating RES categories of similar operating conditions...... for batteries. Categories are defined in such a way that batteries belonging to the same category are subjected to similar operating conditions and a similar combination of stress factors. The results provide a comprehensive overview of battery operating conditions in existing off-grid renewable energy systems...

  20. Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System

    Directory of Open Access Journals (Sweden)

    Farouk Odeim

    2015-06-01

    Full Text Available In this paper, an experimental fuel cell/battery/supercapacitor hybrid system is investigated in terms of modeling and power management design and optimization. The power management strategy is designed based on the role that should be played by each component of the hybrid power source. The supercapacitor is responsible for the peak power demands. The battery assists the supercapacitor in fulfilling the transient power demand by controlling its state-of-energy, whereas the fuel cell system, with its slow dynamics, controls the state-of-charge of the battery. The parameters of the power management strategy are optimized by a genetic algorithm and Pareto front analysis in a framework of multi-objective optimization, taking into account the hydrogen consumption, the battery loading and the acceleration performance. The optimization results are validated on a test bench composed of a fuel cell system (1.2 kW, 26 V, lithium polymer battery (30 Ah, 37 V, and a supercapacitor (167 F, 48 V.

  1. Optimal sizing of battery storage for stand-alone hybrid (photo-voltaic + diesel) power systems

    Science.gov (United States)

    Shaahid, S. M.; Elhadidy, M. A.

    2005-09-01

    An important element of hybrid photo- voltaic(PV) + diesel sytem is battery storage. Size of battery storage plays a role in optimum operation of the hybrid system. Emphasis needs to be placed on this issue. In this perspective, hourly solar radiation data, for the period 1986 93 recorded at Dhahran, Saudi Arabia, have been analyzed to investigate the optimum size of battery storage capacity for hybrid (PV + diesel) power systems. Various sizing configurations have been simulated. The monthly average daily values of solar global radiation range from 3.61 to 7.96kWh/m2. As a case study, hybrid systems considered in the present analysis consist of 225m2 PV array area (panels/modules) supplemented with battery storage unit and diesel backup generators (to meet the load requirements of a typical residential building with annual electrical energy demand of 35,200kWh). The monthly average energy generated from the aforementioned hybrid system for different scenarios has been presented. More importantly, the study explores the influence of variation of battery storage capacity on hybrid power generation. The results exhibit a trade-off between size of the storage capacity and diesel power to be generated to cope with annual load distribution. Concurrently, the energy to be generated from the diesel generator and the number of operational hours of the diesel system to meet the load demand have been also addressed.The study shows that for optimum operation of diesel system, storage capacity equivalent to 12 18h of maximum monthly average hourly demand need to be used. It has been found that in the absence of battery bank, ˜58% of the load needs to be provided by the diesel system. However, use of 12h of battery storage (autonomy) reduces diesel energy generation by ˜49% and the number of hours of operation of the diesel system get reduced by about ˜82%. The findings of this study can be employed as a tool for sizing of battery storage for PV/diesel systems for other

  2. Model predictive control for power fluctuation supression in hybrid wind/PV/battery systems

    DEFF Research Database (Denmark)

    You, Shi; Liu, Zongyu; Zong, Yi

    2015-01-01

    predictive control (MPC)-based algorithm for battery management in a hybrid wind/PV/battery system to suppress the short-term power fluctuation on the ‘minute’ scale. A case study with data collected from a practical hybrid system setup is used to demonstrate the effectiveness of the proposed algorithm...... together with a Monte Carlo simulation-based sensitivity analysis. In addition to illustrating the complementarity between the fluctuations of wind power and PV power, the results prove the proposed MPC algorithm is effective in fluctuation suppression but sensitive to factors such as forecast accuracy...

  3. Design of a Reliable Hybrid (PV/Diesel Power System with Energy Storage in Batteries for Remote Residential Home

    Directory of Open Access Journals (Sweden)

    Vincent Anayochukwu Ani

    2016-01-01

    Full Text Available This paper reports the experience acquired with a photovoltaic (PV hybrid system simulated as an alternative to diesel system for a residential home located in Southern Nigeria. The hybrid system was designed to overcome the problem of climate change, to ensure a reliable supply without interruption, and to improve the overall system efficiency (by the integration of the battery bank. The system design philosophy was to maximize simplicity; hence, the system was sized using conventional simulation tool and representative insolation data. The system includes a 15 kW PV array, 21.6 kWh (3600 Ah worth of battery storage, and a 5.4 kW (6.8 kVA generator. The paper features a detailed analysis of the energy flows through the system and quantifies all losses caused by PV charge controller, battery storage round-trip, rectifier, and inverter conversions. In addition, simulation was run to compare PV/diesel/battery with diesel/battery and the results show that the capital cost of a PV/diesel hybrid solution with batteries is nearly three times higher than that of a generator and battery combination, but the net present cost, representing cost over the lifetime of the system, is less than one-half of the generator and battery combination.

  4. Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Bingbin; Wang, Shanyu; Evans IV, Willie J.; Deng, Daniel Z.; Yang, Jihui; Xiao, Jie

    2016-01-01

    In recent years room temperature Li+ ion conductors have been intensively revisited in order to develop safe lithium ion (Li-ion) batteries and beyond that can be deployed in the electrical vehicles. Through careful modification on materials synthesis, promising solid Li+ conductors with high ionic conductivity, competitve with liquid electrolytes, have been demonstrated. However, the integration of those highly conductive solid electrolytes into the whole system is still very challenging mainly due to the high impedance existing in the different interfaces throughout the entire battery structure. Herein , this review paper focuses on the overview of the interfacial behaviors between Li+ conductors and cathode/anode materials. The origin, evolution and potential solutions to reuce these interfacial impedances are reviewed for various battery systems spanning from Li-ion, lithium sulfur (Li-S), lithium oxygen (Li-O2) batteries to lithium metal protection. The predicted gravimetric and volumetric energy densities at different scenarios are also discussed along with the prospectives for further development of solid state batteries.

  5. Advanced Analysis of Grid-connected PV System's Performance and Effect of Battery

    Science.gov (United States)

    Ueda, Yuzuru; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Akanuma, Katsumi; Yokota, Masaharu; Sugihara, Hiroyuki; Morimoto, Atsushi

    An advanced analysis method for grid connected PV systems is developed in this research. To investigate the issues which may happen in the clustered PV systems, “Demonstrative research on clustered PV systems" is being conducted from December, 2002, in Oota, Japan. More than 500 residential PV systems will be installed in the demonstrative research area, battery integrated PV systems are developed to avoid the restriction of output power due to the raising of grid voltage. Annual performance of commercial PV systems without battery is analyzed and resulted in around 80% of performance ratio on the average. Over voltage of power distribution line and snow are two major factors of very low performance ratio on daily basis. Effects of batteries are also analyzed, the results indicate that there will be some improvement for the energy loss due to the grid voltage but PCS's efficiency will be around 8% worse than that of the commercial PV systems. It is also found that the non-optimized operation of battery sometimes results in the fully-charged situation during the noontime and maximum reverse power flow may not be minimized in this situation.

  6. Modeling, Design and Simulation of Stand-Alone Photovoltaic Power Systems with Battery Storage

    OpenAIRE

    Abd Essalam BADOUD; Mabrouk KHEMLICHE

    2013-01-01

    Stand alone renewable energy based on photovoltaic systems accompanied with battery storage system are beginning to play an important role over the world to supply power to remote areas. The objective of the study reported in this paper is to elaborate and design a bond graphs model for sizing stand-alone domestic solar photovoltaic electricity systems and simulating the performance of the systems in a tropical climate. The systems modelled consist of an array of PV modules, a lead-acid batte...

  7. Power System Electronics Accommodation for a Lithium Ion Battery on the Space Technology 5 (ST5) Mission

    Science.gov (United States)

    Castell, Karen; Day, John H. (Technical Monitor)

    2001-01-01

    ST5 mission requirements include validation of Lithium-ion battery in orbit. Accommodation in the power system for Li-ion battery can be reduced with smaller amp-hour size, highly matched cells when compared to the larger amp-hour size approach. Result can be lower system mass and increased reliability.

  8. Design and Construction of a Test Bench to Characterize Efficiency and Reliability of High Voltage Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Blank, Tobias; Thomas, Stephan; Roggendorf, Christoph;

    2010-01-01

    Stationary battery energy storage systems are widely used for uninterruptible power supply systems. Furthermore, they are able to provide grid services. This yields in rising installed power and capacity. One possibility uses high voltage batteries. This results in an improvement of the overall...... system efficiency. High voltage batteries may be advantageous for future medium voltage DC-grids as well. In all cases, high availability and reliability is indispensable. Investigations on the operating behavior of such systems are needed. For this purpose, a test bench for high voltage storage systems...... was built to analyze these processes for different battery technologies. A special safety infrastructure for the test bench was developed due to the high voltage and the storable energy of approximately 120 kWh. This paper presents the layout of the test bench for analyzing high voltage batteries with about...

  9. Operation of Battery Energy Storage System in Demand Side using Local Load Forecasting

    Science.gov (United States)

    Hida, Yusuke; Yokoyama, Ryuichi; Shimizukawa, Jun; Iba, Kenji; Tanaka, Kouji; Seki, Tomomichi

    Recently, the various political movements, which reduce CO2-emission, have been proposed against global warming. Therefore, battery energy storage systems (BESSs) such as NAS (sodium and sulfur) battery are attracting attention around the world. The first purpose of BESS was the improvement of load factors. The second purpose is the improvement of power quality, especially against voltage-sag. The recent interest is oriented to utilize BESS to mitigate the intermittency of renewable energy. NAS battery has two operation modes. The first one is a fixed pattern operation, which is time-schedule in advance. The second mode is the load following operation. Although this mode can perform more the flexible operation by adjusting the change of load, it has the risks of shortage/surplus of battery energy. In this paper, an accurate demand forecasting method, which is based on multiple regression models, is proposed. Using this load forecasting, the more advanced control of load following operation for NAS battery is proposed.

  10. Design of a Battery Intermediate Storage System for Rep-Rated Pulsed Power Loads

    Science.gov (United States)

    2013-04-01

    Abstract—The U.S. Naval Research Laboratory (NRL) is developing a battery-powered, rep-rate charger for a 60-kJ capacitor bank . The capacitor ...developing a rapid charger for a 60-kJ capacitor bank capable of charging a 4800- µF capacitor to 5-kV in roughly five seconds. This system needs to...U.S. Naval Research Laboratory (NRL) is developing a battery-powered, rep-rate charger for a 60-kJ capacitor bank . The capacitor will be charged with

  11. Experimental Testing Procedures and Dynamic Model Validation for Vanadium Redox Flow Battery Storage System

    DEFF Research Database (Denmark)

    Baccino, Francesco; Marinelli, Mattia; Nørgård, Per Bromand;

    2013-01-01

    The paper aims at characterizing the electrochemical and thermal parameters of a 15 kW/320 kWh vanadium redox flow battery (VRB) installed in the SYSLAB test facility of the DTU Risø Campus and experimentally validating the proposed dynamic model realized in Matlab-Simulink. The adopted testing...... efficiency of the battery system. The test procedure has general validity and could also be used for other storage technologies. The storage model proposed and described is suitable for electrical studies and can represent a general model in terms of validity. Finally, the model simulation outputs...

  12. A Score Function for Optimizing the Cycle-Life of Battery-Powered Embedded Systems

    DEFF Research Database (Denmark)

    Wognsen, Erik Ramsgaard; Haverkort, Boudewijn; Jongerden, Marijn;

    2015-01-01

    An ever increasing share of embedded systems is powered by rechargeable batteries. These batteries deteriorate with the number of charge/discharge cycles they are subjected to, the so-called cycle life. In this paper, we propose the wear score function to compare and evaluate the relative impact...... checking and reinforcement learning to synthesize near-optimal scheduling strategies subject to possible hard timing-constaints. We use this to study the trade-off between optimal short-term dynamic payload selection and the operational life of the satellite....

  13. Electrically rechargeable zinc/air battery: a high specific energy system

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, F.; Sauter, J.-C.; Masanz, G.; Mueller, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    This contribution describes our research and development efforts towards the demonstration of a light-weight, low-cost 12 V/20 Ah electrically rechargeable Zn/air battery. We successfully developed electrodes having active areas of up to 200 cm{sup 2}. Deep discharge cycles at different currents as well as current-voltage curves are reported for a 10 cell Zn/air battery (serial connection) with a rated capacity of 20 Ah. Based on the discharge cycle at a power of 19 W, and the weight of the battery, a specific energy of more than 90 Wh/kg could be evaluated for the whole system. (author) 4 figs., 1 tab., 5 refs.

  14. Feasibility Study and Techno-Economic Optimization Model for Battery Thermal Management System

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2014-01-01

    The paper investigates the feasibility of employing a battery thermal management system (BTMS) in different applications based on a techno economic analysis considering the battery lifetime and application profile, i.e. current requirement. The preliminary objective is to set the decision criteria....... Hence, the objective of this paper is to develop and detail the method of the feasibility for commissioning BTMS called “The decision tool frame-work” (DTF) and to investigate its sensitivity to major factors (e.g. lifetime and application requirement) which are well-known to influence the battery pack...... conditions. The results provide insight into the feasibility and the required specifi-cation and configuration of a BTMS....

  15. Power Management of Hybrid Power Systems with Li-Fe Batteries and Supercapacitors for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Guohui Wang

    2014-05-01

    Full Text Available This paper presents an energy management strategy of a Li-Fe battery and supercapacitor hybrid power system to provide both high power density and energy density for mobile robots with fluctuating workloads. A two-phase power-optimization approach is proposed to exploit the high power density of supercapacitors and the high energy density of Li-Fe batteries. With our strategy, large peak power can be provided for a short time period whenever needed, while low power can be provided for very long time. A set of experiments have been conducted. The experimental results show that our strategy can effectively improve the performance of mobile robots and extend the lifetime of batteries.

  16. Optimizing MEMS-Based Storage Devices for Mobile Battery-Powered Systems

    NARCIS (Netherlands)

    Khatib, Mohammed G.; Hartel, Pieter H.

    2010-01-01

    An emerging storage technology, called MEMS-based storage, promises nonvolatile storage devices with ultrahigh density, high rigidity, a small form factor, and low cost. For these reasons, MEMS-based storage devices are suitable for battery-powered mobile systems such as PDAs. For deployment in such

  17. The Study of Operation Modes and Control Strategies of a Multidirectional MC for Battery Based System

    Directory of Open Access Journals (Sweden)

    Saman Toosi

    2015-01-01

    Full Text Available To enhance the performance of stand-alone battery based system and to achieve the continuous power transmission, the behavior of multidirectional matrix converter (MDMC has been analyzed in different operation modes. A systematic method interfacing a renewable source, a storage battery, and a load is proposed for a stand-alone battery based power system (SABBPS to utilize the MDMC as PWM converter, inverter, or PWM converter and inverter in different operation modes. In this study, the Extended Direct Duty Pulse Width Modulation (EDDPWM technique has been applied to control the power flow path between the renewable source, load, and the battery. Corresponding to generator voltage, input frequency, and loads demands, several operating states and control strategies are possible. Therefore, the boundaries and distribution of operation modes are discussed and illustrated to improve the system performance. The mathematical equation of the EDDPWM under different operation modes has been derived to achieve the maximum voltage ratio in each mode. The theoretical and modulation concepts presented have been verified in simulation using MATLAB and experimental testing. Moreover, the THD, ripple, and power flow direction have been analyzed for output current to investigate the behavior of system in each operation mode.

  18. Optimal Utilization of Microgrids Supplemented with Battery Energy Storage Systems in Grid Support Applications

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2015-01-01

    This paper proposes a control scheme which minimizes the operating cost of a grid connected micro-grid supplemented by battery energy storage system (BESS). What distinguishes approach presented here from conventional strategies is that not only the price of electricity is considered...

  19. Power Constrained High-Level Synthesis of Battery Powered Digital Systems

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard; Madsen, Jan

    2003-01-01

    of utmost importance for battery powered embedded systems. Our approach extends the partial-clique partitioning algorithm by introducing power awareness through a heuristic algorithm which bounds the design space to those of power feasible schedules. We have applied our algorithm on a set of dataflow graphs...

  20. Solid-state active switch matrix for high energy, moderate power battery systems

    Science.gov (United States)

    Deal, Larry; Paris, Peter; Ye, Changqing

    2016-06-07

    A battery management system employs electronic switches and capacitors. No traditional cell-balancing resistors are used. The BMS electronically switches individual cells into and out of a module of cells in order to use the maximum amount of energy available in each cell and to completely charge and discharge each cell without overcharging or under-discharging.

  1. Charactrization of a Li-ion battery based stand-alone a-Si photovoltaic system

    Science.gov (United States)

    Hamid Vishkasougheh, Mehdi; Tunaboylu, Bahadir

    2014-11-01

    The number of photovoltaic (PV) system installations is increasing rapidly. As more people learn about this versatile and often cost-effective power option, this trend will accelerate. This document presents a recommended design for a battery based stand-alone photovoltaic system (BSPV). BSPV system has the ability to be applied in different areas, including warning signals, lighting, refrigeration, communication, residential water pumping, remote sensing, and cathodic protection. The presented calculation method gives a proper idea for a system sizing technique. Based on application load, different scenarios are possible for designing a BSPV system. In this study, a battery based stand-alone system was designed. The electricity generation part is three a-Si panels, which are connected in parallel, and for the storage part LFP (lithium iron phosphate) battery was used. The high power LFP battery packs are 40 cells each 8S5P (configured 8 series 5 parallel). Each individual pack weighs 0.5 kg and is 25.6 V. In order to evaluate the efficiency of a-Si panels with respect to the temperature and the solar irradiation, cities of Istanbul, Ankara and Adana in Turkey were selected. Temperature and solar irradiation were gathered from reliable sources and by using translation equations, current and voltage output of panels were calculated. As a result of these calculations, current and energy outputs were computed by considering an average efficient solar irradiation time value per day in Turkey. The calculated power values were inserted to a battery cycler system, and the behavior of high power LFP batteries in a time sequence of 7.2 h was evaluated. The charging and discharging cycles were obtained and their behavior was discussed. According to the results, Istanbul has the lowest number of peak month's energy, it followed by Ankara, and ultimately Adana has the highest number of peak months and energy storage. It was observed during the tests that values up to 4 A was

  2. Design, control and power management of a battery/ultra-capacitor hybrid system for small electric vehicles

    DEFF Research Database (Denmark)

    Li, Zhihao; Onar, Omer; Khaligh, Alireza

    2009-01-01

    This paper introduces design, control, and power management of a battery/ultra-capacitor hybrid system, utilized for small electric vehicles (EV). The batteries are designed and controlled to work as the main energy storage source of the vehicle, supplying average power to the load; and the ultra...

  3. Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Yong-Song Chen

    2013-12-01

    Full Text Available A laboratory-scale passive hybrid power system for transportation applications is constructed and tested in this study. The hybrid power system consists of a fuel cell stack connected with a diode, a lithium-ion battery pack connected with a DC/DC power converter and another diode. The power converter is employed to regulate the output voltage of the battery pack. The dynamic responses of current and voltage of the stack to the start-up and acceleration of the load are experimentally investigated at two different selected output voltages of the DC/DC converter in the battery line. The power sharing of each power source and efficiency are also analyzed and discussed. Experimental results show that the battery can compensate for the shortage of supplied power for the load demand during the start-up and acceleration. The lowest operating voltage of the fuel cell stack is limited by the regulated output voltage of the DC/DC converter. The major power loss in the hybrid power system is attributed to the diodes. The power train efficiency can be improved by lowering the ratio of forward voltage drop of the diode to the operating voltage of the fuel cell stack.

  4. A Voltage Controller in Photo-Voltaic System with Battery Storage and Applications

    Directory of Open Access Journals (Sweden)

    Rajendra Aparnathi

    2013-12-01

    Full Text Available This paper work is the new voltage controller in photo-voltaic system for Stand-Alone Applications with battery energy storage. The output of the PV array is unregulated DC supply due to change in weather conditions. The maximum power is tracked with respect to temperature and irradiance levels by using DC-DC converter. The perturbation and observes algorithm is applied for maximum power point tracking (MPPT purpose. This algorithm is selected due to its ability to withstand against any parameter variation and having high efficiency. The solar cell array powers the steady state energy and the battery compensates the dynamic energy in the system. The aim of the control strategy is to control the SEPIC converter and bi-direction DC-DC converter to operate in suitable modes according to the condition of solar cell and battery, so as to coordinate the two sources of solar cell and battery supplying power and ensure the system operates with high efficiency and behaviours with good dynamic performance.

  5. Battery Recharging Issue for a Two-Power-Level Flywheel System

    Directory of Open Access Journals (Sweden)

    Janaína Gonçalves de Oliveira

    2010-01-01

    Full Text Available A novel battery recharging system for an all-electric driveline comprising a flywheel with a permanent magnet double wound synchronous machine (motor/generator is presented. The double winding enables two voltage levels and two different power levels. This topology supersedes other all-electric drivelines. The battery operates in a low-power regime supplying the average power whereas the flywheel delivers and absorbs power peaks, which are up to a higher order of magnitude. The topology presents new challenges for the power conversion system, which is the focus of this investigation. The main challenge is the control of the power flow to the battery when the vehicle is parked despite the decay of the flywheel machine voltage; which is dependent on its charge state, that is, rotational speed. The design and simulation of an unidirectional DC/DC buck/boost converter for a variable rotational speed flywheel is presented. Conventional power electronic converters are used in a new application, which can maintain a constant current or voltage on the battery side. Successful PI current control has been implemented and simulated, together with the complete closed loop system.

  6. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad

    2015-09-14

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.

  7. Optimum battery design for applications in photovoltaic systems — theoretical considerations

    Science.gov (United States)

    Sauer, Dirk Uwe; Garche, Jürgen

    In comparison to standard applications, lifetimes of lead-acid batteries in photovoltaic (PV) systems are shorter than one might expect. This investigation aims to identify reasons for the accelerated ageing. A detailed mathematical model of current, potential and acid distribution within the electrodes during normal operation is developed and used. Results show that the rather small currents in PV applications (on an average between I50 and I100) and the limited charging time cause problems, which are of minor relevance for standard applications. Small currents in conjunction with acid stratification cause a significant undercharging of the lower part of the electrodes, which again causes accelerated sulphation. Further, the number of sulphate crystals decreases with decreasing discharge current used for a full charge of the battery. This reduces the overall surface of the sulphate crystals and results in higher polarisation during the charging. The time taken for a battery cell to be completely charged is dominated by the positive electrode because it shows a high polarisation well before the electrode is completely charged. Simulations show that the charging time could be reduced if positive electrodes with less inner surface were to be used in batteries for PV systems. It is worth mentioning that the requirements for power are rather small in PV systems. This paper focuses on the qualitative results of the simulations and their interpretation. No models are explained in detail.

  8. Development of battery management systems (BMS for electric vehicles (EVs in Malaysia

    Directory of Open Access Journals (Sweden)

    Salehen P.M.W.

    2017-01-01

    Full Text Available Battery Management Systems (BMS is an electronic devices component, which is a vital fundamental device connected between the charger and the battery of the hybrid or electric vehicle (EV systems. Thus, BMS significantly enable for safety protection and reliable battery management by performing of monitoring charge control, state evaluation, reporting the data and functionalities cell balancing. To date, 97.1% of Malaysian CO2 emissions are mainly caused by transportation activities and the numbers will keep rising as numbers of registered car increase close up to 1 million yearly; double the amounts in the last two decades. The uncertainty of a battery’s performance poses a challenge to predict the extended range of EVs, which need BMS implementation of optimization of optimum power management. Hence, using MATLAB/SIMULINK software is one of the potential methods of BMS optimization with power generated by Hybrid Energy Storage system of lithium-ion battery. Therefore, this paper address through reviewing previous literatures initially focuses on the BMS optimization for EVs (car in Malaysia as prognostic technology model improvement on performance management of EVs.

  9. Battery management: Enhanced availability of interruption-free power supply systems; Batteriemanagement: Erhoehung der Zuverlaessigkeit von USV

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D. [Siemens AG, Erlangen (Germany); Lohner, A. [RWTH Aachen (Germany). Inst. fuer Stromrichtertechnik und Elektrische Antriebe (ISEA); Mauracher, P. [RWTH Aachen (Germany). Inst. fuer Stromrichtertechnik und Elektrische Antriebe (ISEA)

    1996-08-01

    Longer battery life and higher reliability is one of the main challengers for new generations of interruption-free power supply systems. Bthe battery management system is a step in the right direction: Instead of estimates of model parameters, it uses accurate measurements of the battery charge state. This requires a high-precision, low-cost measuring technology. The results are longer battery life, higher availability, and lower maintenance cost. (orig.) [Deutsch] Die Steigerung der Batterielebensdauer und -zuverlaessigkeit ist eine der wichtigsten Herausforderungen fuer neue USV-Generationen. Mit dem Batterie-Management-System (BMS) wird die reine Beobachtung von der aktiven Beeinflussung des Batteriezustands abgeloest. Die exakte Messung des Batteriezustands ersetzt das Schaetzen von Modellparametern. Voraussetzung ist eine sowohl hochpraezise als auch preisguenstige Messtechnik. Das Ergebnis ist eine deutlich gesteigerte Batterielebensdauer, eine hoehere Verfuegbarkeit sowie geringere Wartungskosten. (orig.)

  10. Regulatory islanding parameters in battery based solar PV for electricity system resiliency

    OpenAIRE

    Alsayyed, Nidal; Zhu, Weihang

    2016-01-01

    Distributed battery based solar power photovoltaic (PV) systems have the potential to supply electricity during grid outages resulting from extreme weather or other emergency situations. As such, distributed PV can significantly increase the resiliency of the electricity system. In order to take advantage of this capability, however, the PV systems must be designed with regulatory parameters in mind and combined with other technologies, such as smart energy storage and auxiliary generation. S...

  11. Optimal Dispatch of Unreliable Electric Grid-Connected Diesel Generator-Battery Power Systems

    Science.gov (United States)

    Xu, D.; Kang, L.

    2015-06-01

    Diesel generator (DG)-battery power systems are often adopted by telecom operators, especially in semi-urban and rural areas of developing countries. Unreliable electric grids (UEG), which have frequent and lengthy outages, are peculiar to these regions. DG-UEG-battery power system is an important kind of hybrid power system. System dispatch is one of the key factors to hybrid power system integration. In this paper, the system dispatch of a DG-UEG-lead acid battery power system is studied with the UEG of relatively ample electricity in Central African Republic (CAR) and UEG of poor electricity in Congo Republic (CR). The mathematical models of the power system and the UEG are studied for completing the system operation simulation program. The net present cost (NPC) of the power system is the main evaluation index. The state of charge (SOC) set points and battery bank charging current are the optimization variables. For the UEG in CAR, the optimal dispatch solution is SOC start and stop points 0.4 and 0.5 that belong to the Micro-Cycling strategy and charging current 0.1 C. For the UEG in CR, the optimal dispatch solution is of 0.1 and 0.8 that belongs to the Cycle-Charging strategy and 0.1 C. Charging current 0.1 C is suitable for both grid scenarios compared to 0.2 C. It makes the dispatch strategy design easier in commercial practices that there are a few very good candidate dispatch solutions with system NPC values close to that of the optimal solution for both UEG scenarios in CAR and CR.

  12. A new battery capacity indicator for nickel-metal hydride battery powered electric vehicles using adaptive neuro-fuzzy inference system

    CERN Document Server

    Chau, K T; Chan, C C; Shen, W X

    2003-01-01

    This paper describes a new approach to estimate accurately the battery residual capacity (BRC) of the nickel-metal hydride (Ni-MH) battery for modern electric vehicles (EVs). The key to this approach is to model the Ni-MH battery in EVs by using the adaptive neuro-fuzzy inference system (ANFIS) with newly defined inputs and output. The inputs are the temperature and the discharged capacity distribution describing the discharge current profile, while the output is the state of available capacity (SOAC) representing the BRC. The estimated SOAC from ANFIS model and the measured SOAC from experiments are compared, and the results confirm that the proposed approach can provide an accurate estimation of the SOAC under variable discharge currents.

  13. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  14. Design and Analysis of Generic Energy Management Strategy for Controlling Second-Life Battery Systems in Stationary Applications

    Directory of Open Access Journals (Sweden)

    Mohamed Abdel-Monem

    2016-10-01

    Full Text Available Recently, second-life battery systems have received a growing interest as one of the most promising alternatives for decreasing the overall cost of the battery storage systems in stationary applications. The high-cost of batteries represents a prominent barrier for their use in traction and stationary applications. To make second-life batteries economically viable for stationary applications, an effective power-electronics converter should be selected as well. This converter should be supported by an energy management strategy (EMS, which is needed for controlling the power flow among the second-life battery modules based on their available capacity and performance. This article presents the design, analysis and implementation of a generic energy management strategy (GEMS. The proposed GEMS aims to control and distribute the load demand between battery storage systems under different load conditions and disturbances. This manuscript provides the experimental verification of the proposed management strategy. The results have demonstrated that the GEMS can robustly handle any level of performance inequality among the used-battery modules with the aim to integrate different levels (i.e., size, capacity, and chemistry type of the second-life battery modules at the same time and in the same application.

  15. Control strategy of hybrid fuel cell/battery distributed generation system for grid-connected operation

    Institute of Scientific and Technical Information of China (English)

    Masoud Aliakbar GOLKAR; Amin HAJIZADEH

    2009-01-01

    This paper presents a control strategy of a hybrid fuel cell/battery distributed generation (HDG) system in distribution systems. The overall structure of the HDG system is given, dynamic models for the solid oxide fuel cell (SOFC) power plant,battery bank and its power electronic interfacing are briefly described, and controller design methodologies for the power conditioning units and fuel cell to control the power flow from the hybrid power plant to the utility grid are presented. To distribute the power between the fuel cell power plant and the battery energy storage, a neuro-fuzzy controller has been developed. Also, for controlling the active and reactive power independently in distribution systems, the current control strategy based on two fuzzy logic controllers has been presented. A Matlab/Simulink simulation model is developed for the HDG system by combining the individual component models and their controllers. Simulation results show the overall system performance including load-following and power management of the HDG system.

  16. High Temperature Sensing Systems--Characteristics of Rechargeable Batteries at High Temperature--

    OpenAIRE

    2001-01-01

     High temperature discharge characteristics were measured at 100℃ for commercial available Nickel Cadmium and Nickel Metal Hydride rechargeable batteries. A Nickel Cadmium battery has superior dis­charge characteristics than a Nickel Metal Hydride battery. A life cycle of rechargeable battery can be esti­mated by measuring an internal resistance of the battery during charge at room temperature.

  17. Study of imbalanced internal resistance on drop voltage of LiFePO4 battery system connected in parallel

    Science.gov (United States)

    Adie Perdana, Fengky; Supriyanto, Agus; Purwanto, Agus; Jamaluddin, Anif

    2017-01-01

    The purpose of this research focuses on the effect of imbalanced internal resistance for the drop voltage of LiFePO4 18650 battery system connected in parallel. The battery pack has been assembled consist of two cell battery LiFePO4 18650 that has difference combination of internal resistance. Battery pack was tested with 1/C constant current charging, 3,65V per group sel, 3,65V constant voltage charging, 5 minutes of rest time between charge and discharge process, 1/2C Constant current discharge until 2,2V, 26 cycle of measurement test, and 4320 minutes rest time after the last charge cycle. We can conclude that the difference combination of internal resistance on the battery pack seriously influence the drop voltage of a battery. Theoretical and experimental result show that the imbalance of internal resistance during cycling are mainly responsible for the drop voltage of LiFePO4 parallel batteries. It is thus a good way to avoid drop voltage fade of parallel battery system by suppressing variations of internal resistance.

  18. Transient Stability Improvement of Multi-Machine Power System with Large-Capacity Battery Systems

    Science.gov (United States)

    Kawabe, Ken-Ichi; Yokoyama, Akihiko

    An emergency control has been applied to power systems to avoid cascading outages by making the best use of existing equipment under severe fault conditions. Battery energy storage system (BESS) is one of the attractive equipment for the emergency control according to its growing installed capacity in the current grid. This paper investigates an effective use of BESS for transient stability improvement, and proposes a novel control scheme using wide-area information. The proposed control scheme adopts two stability indices, the energy function and rotor speed of the critical machine, to make it applicable to multi-machine power systems. Besides, it can control active and reactive power injection of the BESS coordinately to make the best use of its converter capacity for the stability enhancement. Digital simulations are conducted on the 32-machine meshed system with multiple BESSs. The results demonstrate that the BESSs controlled by the proposed method can improve the first swing stability and the system damping, and it is made clear how they improve the transient stability of the multi-machine power system. In addition, an impact of the reactive power control on the bus voltages around the installation sites is investigated to discuss a preferable way of their installation.

  19. Integrated Three-Port DC-DC Converter for Photovoltaic (PV) Battery Stand-alone Systems

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2016-01-01

    different single-input single-output (SISO) dc/dc converters would have been used. To reduce the cost and improve the power density of the system, an integrated three-port isolated dc/dc converter is proposed in this paper. It can realize all functions of the energy delivery due to the fluctuation nature......Several power sources such as PV solar arrays and battery are often used to manage the power flow for a photovoltaic (PV) based stand-alone power system due to the fluctuation nature of solar energy resource, and deliver a continuous power to the users in an appropriate form. Traditionally, three...... for PV and battery stand-alone system....

  20. Grid Inertial Response with Lithium-ion Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Knap, Vaclav; Sinha, Rakesh; Swierczynski, Maciej Jozef

    2014-01-01

    The increased grid-penetration levels of energy produced by renewable sources, which have almost no inertia, might have a negative impact on the reliable and stable operation of the power system. Various solutions for mitigating the aforementioned problem were proposed in the literature. The aim...... of this paper is to evaluate the technical viability of utilizing energy storage systems based on Lithium-ion batteries for providing inertial response in grids with high penetration levels of wind power. In order to perform this evaluation, the 12-bus system grid model was used; the inertia of the grid...... was varied by decreasing the number of conventional power plants in the studied grid model while in the same time increasing the load and the wind power penetration levels. Moreover, in order to perform a realistic investigation, a dynamic model of the Lithium-ion battery was considered and parameterized...

  1. Modeling, control and experimental testing of a supercapacitor/battery hybrid system : passive and semi-active topologies

    OpenAIRE

    Seim, Lars Hagvaag

    2012-01-01

    Supercapacitors possess unique properties that can complement other energy storage technologies in hybrid electric energy systems. Due to its performance characteristics - such as fast charge and discharge capability, high power density and high recycleability - a supercapacitor can relieve the battery of narrow and repeated transient charging and discharging, ensuring longer battery life, enabling higher system peak power performance and improve system efficiency. An equivalent super...

  2. A linear programming approach for battery degradation analysis and optimization in offgrid power systems with solar energy integration.

    OpenAIRE

    Bordin, C.; Anuta, H.O.; Crossland, A.; Lascurain Gutierrez, I.; Dent, C. J.; Vigo, D.

    2016-01-01

    Storage technologies and storage integration are currently key topics of research in energy systems, due to the resulting possibilities for reducing the costs of renewables integration. Off-grid power systems in particular have received wide attention around the world, as they allow electricity access in remote rural areas at lower costs than grid extension. They are usually integrated with storage units, especially batteries. A key issue in cost effectiveness of such systems is battery degra...

  3. A Linear Programming Approach for Battery Degradation Analysis and Optimization in Offgrid Power Systems with Solar Energy Integration

    OpenAIRE

    Bordin, C.; Anuta, H; Crossland, A.; Lascurain, G; Dent, C; Vigo, D.

    2017-01-01

    Storage technologies and storage integration are currently key topics of research in energy systems, due to the resulting possibilities for reducing the costs of renewables integration. Off-grid power systems in particular have received wide attention around the world, as they allow electricity access in remote rural areas at lower costs than grid extension. They are usually integrated with storage units, especially batteries. A key issue in cost effectiveness of such systems is battery degra...

  4. The performance and efficiency of four motor/controller/battery systems for the simpler electric vehicles

    Science.gov (United States)

    Shipps, P. R.

    1980-05-01

    A test and analysis program performed on four complete propulsion systems for an urban electric vehicle (EV) is described and results given. A dc series motor and a permanent magnet (PM) motor were tested, each powered by an EV battery pack and controlled by (1) a series/parallel voltage-switching (V-switch) system; and (2) a system using a pulse width modulation, 400 Hz transistorized chopper. Dynamometer tests were first performed, followed by eV performance predictions and data correlating road tests. During dynamometer tests using chopper control; current, voltage, and power were measured on both the battery and motor sides of the chopper, using three types of instrumentation. Conventional dc instruments provided adequate accuracy for eV power and energy measurements, when used on the battery side of the controller. When using the chopper controller, the addition of a small choke inductor improved system efficiency in the lower duty cycle range (some 8% increase at 50% duty cycle) with both types of motors. Overall system efficiency rankings during road tests were: (1) series motor with V-switch; (2) PM motor with V-switch; (3) series motor with chopper; and (4) PM motor with chopper. Chopper control of the eV was smoother and required less driver skill than V-switch control.

  5. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    Science.gov (United States)

    Ustinov, A.; Khayrullina, A.; Borzenko, V.; Khmelik, M.; Sveshnikova, A.

    2016-09-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia.

  6. Examination of VRLA cells sampled from a battery energy storage system (BESS) after 30-months of operations

    Energy Technology Data Exchange (ETDEWEB)

    SZYMBORSKI,JOSEPH; HUNT,GEORGE; TSAGALIS,ANGELO; JUNGST,RUDOLPH G.

    2000-06-08

    Valve-Regulated Lead-Acid (VRLA) batteries continue to be employed in a wide variety of applications for telecommunications and Uninterruptible Power Supply (UPS). With the rapidly growing penetration of internet services, the requirements for standby power systems appear to be changing. For example, at last year's INTELEC, high voltage standby power systems up to 300-vdc were discussed as alternatives to the traditional 48-volt power plant. At the same time, battery reliability and the sensitivity of VRLAS to charging conditions (e.g., in-rush current, float voltage and temperature), continue to be argued extensively. Charge regimes which provide off-line charging or intermittent charge to the battery have been proposed. Some of these techniques go against the widely accepted rules of operation for batteries to achieve optimum lifetime. Experience in the telecom industry with high voltage systems and these charging scenarios is limited. However, GNB has several years of experience in the installation and operation of large VRLA battery systems that embody many of the power management philosophies being proposed. Early results show that positive grid corrosion is not accelerated and battery performance is maintained even when the battery is operated at a partial state-of-charge for long periods of time.

  7. Analysis of battery behavior in small photovoltaic systems; Analise do comportamento da bateria utilizada em sistemas fotovoltaicos de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Jose Renato Castro Pompeia; Cagnon, Jose Angelo [Programa de Pos-Graduacao em Agronomia - Energia na Agricultura - FCA/UNESP, Botucatu, SP (Brazil); Dept. de Engenharia Eletrica - FEB/UNESP, Bauru, SP (Brazil)], e-mails: jrfraga@feb.unesp.br, jacagnon@feb.unesp.br

    2011-07-01

    This work aimed to analyze the electric energy storage system generated from a photovoltaic system with lead-acid batteries. The increasing claim for energy in the world in addition to the need of using renewable energy sources in order to preserve the environment makes necessary the development of efficient techniques of power supply and control. Two photovoltaic systems were used in this work, a conventional one with stationary solar panel and another with automatic solar position system. The comparative analysis has allowed assessing the advantages of both systems. The following characteristics were obtained during the development of this work: charge, discharge, battery capacity, operating time rate, auto-discharge reaction (through fluctuation state), among other important information that allows an extended life to the stationary battery studied. The obtained results indicate that the battery connected to the mobile system provides 36% of additional energy compared to the fixed system. When the battery was unable to provide energy to the load, the battery connected to the mobile system consumed about 33% less energy than that one connected to the fixed system (author)

  8. A novel methodology for non-linear system identification of battery cells used in non-road hybrid electric vehicles

    Science.gov (United States)

    Unger, Johannes; Hametner, Christoph; Jakubek, Stefan; Quasthoff, Marcus

    2014-12-01

    An accurate state of charge (SoC) estimation of a traction battery in hybrid electric non-road vehicles, which possess higher dynamics and power densities than on-road vehicles, requires a precise battery cell terminal voltage model. This paper presents a novel methodology for non-linear system identification of battery cells to obtain precise battery models. The methodology comprises the architecture of local model networks (LMN) and optimal model based design of experiments (DoE). Three main novelties are proposed: 1) Optimal model based DoE, which aims to high dynamically excite the battery cells at load ranges frequently used in operation. 2) The integration of corresponding inputs in the LMN to regard the non-linearities SoC, relaxation, hysteresis as well as temperature effects. 3) Enhancements to the local linear model tree (LOLIMOT) construction algorithm, to achieve a physical appropriate interpretation of the LMN. The framework is applicable for different battery cell chemistries and different temperatures, and is real time capable, which is shown on an industrial PC. The accuracy of the obtained non-linear battery model is demonstrated on cells with different chemistries and temperatures. The results show significant improvement due to optimal experiment design and integration of the battery non-linearities within the LMN structure.

  9. Robust, High Capacity, High Power Lithium Ion Batteries for Space Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium ion battery technology provides the highest energy density of all rechargeable battery technologies available today. However, the majority of the research...

  10. Lithium ion battery energy storage system for augmented wind power plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef

    Future large Wind Power Plants (WPP) will be intended to function like today's conventional power plants seen from the transmission system point of view, by complying with future, more stringent, grid codes and providing ancillary services. This is possible to achieve by integrating WPPs...... with Battery Energy Storage Systems (BESSs) into the so called Virtual Power Plants (VPP). Relatively new energy storage technologies based on Lithium ion (Li-ion) batteries are constantly improving their performance and are becoming attractive for stationary energy storage applications due...... investment profitability. Moreover, the information about the BESS State of Health (SOH), at every point, is very important since the performance of the Li-ion BESS is changing with its age. In applications, the replacement of the BESS takes place usually before the end of their actual life, depending...

  11. Control of a lithium-ion battery storage system for microgrid applications

    Science.gov (United States)

    Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol

    2014-12-01

    The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.

  12. Load leveling by a battery system in an electric power system with a photovoltaic system; Taiyoko hatsuden system ga donyusareta denryoku keito no chikudenchi ni yoru fuka heijunka

    Energy Technology Data Exchange (ETDEWEB)

    Kenmoku, Y.; Sakakibara, T. [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S. [Maizuru College of Technology, Kyoto (Japan); Kawamoto, T. [Shizuoka University, Shizuoka (Japan)

    1997-11-25

    Storage battery-aided load leveling system is introduced into a power system having a photovoltaic power generation (PV) system, and the effect of the introduction is examined. For this purpose, the resultant improvement on the load factor and reduction in the annual cost are evaluated. Used as the load factor in the studies are the hourly records of power transmitted and received by Chubu Electric Power Co., Inc., in 1995. The output of the PV system is calculated using weather data collected in Nagoya City in the same year. Findings as the result of the studies are stated below. The maximum power is suppressed but a little if it is only the PV system that is introduced into the system. That is, a 2GW PV system introduced into the system suppresses the maximum power only by 0.5GW or less. The maximum power is suppressed more effectively when a storage battery is added, and it decreases linearly with an increase in the storage battery capacity. As for reduction in the cost, the reducing effect is higher when the rate of storage battery capacity/introduced PV capacity is higher in the presence of an introduced PV capacity of 0.8GW or more. 2 refs., 7 figs., 3 tabs.

  13. Anion exchange membranes for fuel cells and flow batteries : transport and stability of model systems

    OpenAIRE

    Marino, Michael G

    2015-01-01

    Polymeric anion exchange materials in membrane form can be key components in emerging energy storage and conversions systems such as the alkaline fuel cell and the RedOx flow battery. For these applications the membrane properties need to include good ionic conductivity and sufficient chemical stability, two aspects, that are not sufficiently understood in terms of materials science. Materials fulfilling both criteria are currently not available. The transport of ions and water in a model...

  14. A Voltage Controller in Photo-Voltaic System with Battery Storage for Stand-Alone Applications

    Directory of Open Access Journals (Sweden)

    Ganesh Dharmireddy

    2012-01-01

    Full Text Available This paper proposes the new voltage controller in photo-voltaic system for Stand-Alone Applications with battery energy storage. The output of the PV array is unregulated DC supply due to change in weather conditions. The maximum power is tracked with respect to temperature and irradiance levels by using DC-DC converter. The perturbation and observes algorithm is applied for maximum power point tracking (MPPT purpose. This algorithm is selected due to its ability to withstand against any parameter variation and having high efficiency. The solar cell array powers the steady state energy and the battery compensates the dynamic energy in the system. The aim of the control strategy is to control the SEPIC converter and bi-direction DC-DC converter to operate in suitable modes according to the condition of solar cell and battery, so as to coordinate the two sources of solar cell and battery supplying power and ensure the system operates with high efficiency and behaviors with good dynamic performance. The output of DC-DC converter is converted to AC voltage by using inverter.  The AC output voltage and frequency are regulated. A closed loop voltage control for inverter is done by using unipolar sine wave pulse width modulation (SPWM. The regulated AC voltage is fed to AC standalone loads or grid integration. The overall system is designed, developed and validated by using MATLAB-SIMULINK. The simulation results demonstrate the effective working of MPPT algorithm, control strategy and voltage controller with SPWM technique for inverter in AC standalone load applications.

  15. Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems

    KAUST Repository

    Malheiro, André

    2015-05-22

    In this paper we address the optimal sizing and scheduling of isolated hybrid systems using an optimization framework. The hybrid system features wind and photovoltaic conversion systems, batteries and diesel backup generators to supply electricity demand. A Mixed-Integer Linear Programming formulation is used to model system behavior over a time horizon of one year, considering hourly changes in both the availability of renewable resources and energy demand. The optimal solution is achieved with respect to the minimization of the levelized cost of energy (LCOE) over a lifetime of 20 years. Results for a case study show that the most economical solution features all four postulated subsystems. © 2015 Elsevier Ltd.

  16. A Wind Power and Load Prediction Based Frequency Control Approach for Wind-Diesel-Battery Hybrid Power System

    OpenAIRE

    Chao Peng; Zhenzhen Zhang; Jia Wu

    2015-01-01

    A frequency control approach based on wind power and load power prediction information is proposed for wind-diesel-battery hybrid power system (WDBHPS). To maintain the frequency stability by wind power and diesel generation as much as possible, a fuzzy control theory based wind and diesel power control module is designed according to wind power and load prediction information. To compensate frequency fluctuation in real time and enhance system disturbance rejection ability, a battery energy ...

  17. A New Topology and Control Strategy for a Hybrid Battery-Ultracapacitor Energy Storage System

    Directory of Open Access Journals (Sweden)

    Changle Xiang

    2014-04-01

    Full Text Available This study investigates a new hybrid energy storage system (HESS, which consists of a battery bank and an ultra-capacitor (UC bank, and a control strategy for this system. The proposed topology uses a bi-directional DC-DC converter with a lower power rating than those used in the traditional HESS topology. The proposed HESS has four operating modes, and the proposed control strategy chooses the appropriate operating mode and regulates the distribution of power between the battery bank and the UC bank. Additionally, the control system prevents surges during mode switching and ensures that both the battery bank and the bi-directional DC-DC converter operate within their power limits. The proposed HESS is used to improve the performance of an existing power-split hybrid electric vehicle (HEV. A method for calculating the parameters of the proposed HESS is presented. A simulation model of the proposed HESS and control strategy was developed, and a scaled-down experimental platform was constructed. The results of the simulations and the experiments provide strong evidence for the feasibility of the proposed topology and the control strategy. The performance of the HESS is not influenced by the power limits of the bi-directional DC-DC converter.

  18. Computational Raman spectroscopy of organometallic reaction products in lithium and sodium-based battery systems.

    Science.gov (United States)

    Sánchez-Carrera, Roel S; Kozinsky, Boris

    2014-11-28

    A common approach to understanding surface reaction mechanisms in rechargeable lithium-based battery systems involves spectroscopic characterization of the product mixtures and matching of spectroscopic features to spectra of pure candidate reference compounds. This strategy, however, requires separate chemical synthesis and accurate characterization of potential reference compounds. It also assumes that atomic structures are the same in the actual product mixture as in the reference samples. We propose an alternative approach that uses first-principles computations of spectra of the possible reaction products and by-products present in advanced battery systems. We construct a library of computed Raman spectra for possible products, achieving excellent agreement with reference experimental data, targeting solid-electrolyte interphase in Li-ion cells and discharge products of Li-air cells. However, the solid-state crystalline structure of Li(Na) metal-organic compounds is often not known, making the spectra computations difficult. We develop and apply a novel technique of simplifying spectra calculations by using dimer-like representations of the solid state structures. On the basis of a systematic investigation, we demonstrate that molecular dimers of Li(Na)-based organometallic material provide relevant information about the vibrational properties of many possible solid reaction products. Such an approach should serve as a basis to extend existing spectral libraries of molecular structures relevant for understanding the link between atomic structures and measured spectroscopic data of materials in novel battery systems.

  19. A Novel Design and Optimization Software for Autonomous PV/Wind/Battery Hybrid Power Systems

    Directory of Open Access Journals (Sweden)

    Ali M. Eltamaly

    2014-01-01

    Full Text Available This paper introduces a design and optimization computer simulation program for autonomous hybrid PV/wind/battery energy system. The main function of the new proposed computer program is to determine the optimum size of each component of the hybrid energy system for the lowest price of kWh generated and the best loss of load probability at highest reliability. This computer program uses the hourly wind speed, hourly radiation, and hourly load power with several numbers of wind turbine (WT and PV module types. The proposed computer program changes the penetration ratio of wind/PV with certain increments and calculates the required size of all components and the optimum battery size to get the predefined lowest acceptable probability. This computer program has been designed in flexible fashion that is not available in market available software like HOMER and RETScreen. Actual data for Saudi sites have been used with this computer program. The data obtained have been compared with these market available software. The comparison shows the superiority of this computer program in the optimal design of the autonomous PV/wind/battery hybrid system. The proposed computer program performed the optimal design steps in very short time and with accurate results. Many valuable results can be extracted from this computer program that can help researchers and decision makers.

  20. Solar/battery powered nursing clinic for Australia`s remote areas (system design)

    Energy Technology Data Exchange (ETDEWEB)

    Zahedi, A. [Monash Univ., Clayton, VIC (Australia). Dept. of Electrical and Computer Systems Engineering

    1996-12-31

    In a remote nursing clinic, the main user of power is the vaccine refrigerator, which has the highest priority for power and requires the most reliability. Other devices such as lights and fans have a lower priority. The remote location also means that it is difficult to obtain quick replacements of electrical components. This paper investigates the possibility of building a photovoltaic/battery system to power the nursing clinic. The design includes a photovoltaic panel with two separate battery strings, one for the vaccine refrigerator and the other for all other loads. In normal conditions, the solar panel powers the vaccine refrigerator. In the times that more power is generated by the solar panel than is required for the refrigerator, excess power is stored in the two batteries. The cost of the whole system is approximately $A4,000. A number of other applications are possible with this system such as use on isolated farms and cattle stations. 1 fig., 4 refs.

  1. Button batteries

    Science.gov (United States)

    Swallowing batteries ... These devices use button batteries: Calculators Cameras Hearing aids Penlights Watches ... If a person puts the battery up their nose and breathes it further in, ... problems Cough Pneumonia (if the battery goes unnoticed) ...

  2. Remote power supply by wind/diesel/battery systems - operational experience and economy

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, R. [CES - Consulting and Engineering Services, Heidelberg (Germany); Cramer, G.; Toenges, K.H. [SMA Regelsysteme GmbH, Niestetal (Germany)

    1995-12-31

    To continuously supply remote villages and settlements not connected to the public grid with electric power is an ambitious technical task considering ecological and economical points of view. The German company SMA has developed a modular supply system as a solution for this task in the range of 30 kW to 5 MW. Meanwhile more than 20 applications of these `Intelligent Power Systems (IPS)` have proved their technical reliability and economical competitiveness worldwide under different, and also extreme environmental conditions. Actually it is the first commercially available advanced Wind/Diesel/Battery System for remote area electrification. The modular autonomous electric supply systems realized by SMA basically consist of two or more diesel power sets, battery storage with converter, a rotating phaseshifter, and an optional number of wind turbines. All modules are coupled on the 3-phase AC system grid and run in various parallel configurations depending on the wind speed and the consumer power demand. The control system operates fully automatical and offers a very user-friendly graphical interface. This advanced system control also contains a remote control and operating data output via modem and telephone line. SMA and CES have considerable experience with Wind/Diesel/Battery Systems for more than eight years. In many cases wind energy converters in the power range of 30 to 40 kW were used, but it is also possible to use larger wind turbines (e.g. 250 kW). In the following the system technology is described in detail, experience of different system sizes in several countries of application is presented, and economical analyses for power supply by IPS are given in comparison to a conventional fully diesel power supply. (author)

  3. A Novel Degradation Estimation Method for a Hybrid Energy Storage System Consisting of Battery and Double-Layer Capacitor

    Directory of Open Access Journals (Sweden)

    Yuanbin Yu

    2016-01-01

    Full Text Available This paper presents a new method for battery degradation estimation using a power-energy (PE function in a battery/ultracapacitor hybrid energy storage system (HESS, and the integrated optimization which concerns both parameters matching and control for HESS has been done as well. A semiactive topology of HESS with double-layer capacitor (EDLC coupled directly with DC-link is adopted for a hybrid electric city bus (HECB. In the purpose of presenting the quantitative relationship between system parameters and battery serving life, the data during a 37-minute driving cycle has been collected and decomposed into discharging/charging fragments firstly, and then the optimal control strategy which is supposed to maximally use the available EDLC energy is presented to decompose the power between battery and EDLC. Furthermore, based on a battery degradation model, the conversion of power demand by PE function and PE matrix is applied to evaluate the relationship between the available energy stored in HESS and the serving life of battery pack. Therefore, according to the approach which could decouple parameters matching and optimal control of the HESS, the process of battery degradation and its serving life estimation for HESS has been summed up.

  4. Energy management strategy for a parallel hybrid electric vehicle equipped with a battery/ultra-capacitor hybrid energy storage system

    Institute of Scientific and Technical Information of China (English)

    Jun-yi LIANG; Jian-long ZHANG; Xi ZHANG; Shi-fei YUAN; Cheng-liang YIN

    2013-01-01

    To solve the low power density issue of hybrid electric vehicular batteries,a combination of batteries and ultracapacitors(UCs)could be a solution.The high power density feature of UCs can improve the performance of battery/UC hybrid energy storage systems(HESSs).This paper presents a parallel hybrid electric vehicle(HEV)equipped with an internal combustion engine and an HESS.An advanced energy management strategy(EMS),mainly based on fuzzy logic,is proposed to improve the fuel economy of the HEV and the endurance of the HESS.The EMS is capable of determining the ideal distribution of output power among the internal combustion engine,battery,and UC according to the propelling power or regenerative braking power of the vehicle.To validate the effectiveness of the EMS,numerical simulation and experimental validations are carried out.The results indicate that EMS can effectively control the power sources to work within their respective efficient areas.The battery load can be mitigated and prolonged battery life can be expected.The electrical energy consumption in the HESS is reduced by 3.91%compared with that in the battery only system.Fuel consumption of the HEV is reduced by 24.3% compared with that of the same class conventional vehicles under Economic Commission of Europe driving cycle.

  5. Verification of Safety Margins of Battery Banks Capacity of Class 1E DC System in a Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lukman, Abdulrauf [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Zhu, Oon-Pyo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    According to Ref 'Station blackout (SBO) is generally a plant condition with complete loss of all alternating current (AC) power from off-site sources, from the main generator and from standby AC power sources important to safety to the essential and nonessential switchgear buses. Direct current (DC) power supplies and uninterruptible AC power supplies may be available as long as batteries can supply the loads, alternate AC power supplies are available'. The above IAEA document indicated the importance of batteries during SBO. Prior to the Fukushima accident, most batteries might be designed with coping capability of four hours. However, the accident showed the need for the coping capability to be increased to at least eight hours. The purpose of this research is to verify the safety capacity margin of the nuclear qualified battery banks of class 1E DC system and test the response to SBO using the load profile of a Korean design nuclear power plant (NPP). The capacity margins of class 1E batteries of DC power system batteries in a nuclear power plant were determined using the load profile of the plant. It was observed that if appropriate manufacturer Kt data are not available, the accuracy of the battery capacity might not be accurately calculated. The result obtained shows that the batteries have the coping capability of two hours for channel A and B, and eight hours for channel C and D. Also capacity margin as show in figure show a reasonable margin for each batteries of the DC system.

  6. An Energy Management System of a Fuel Cell/Battery Hybrid Boat

    Directory of Open Access Journals (Sweden)

    Jingang Han

    2014-04-01

    Full Text Available All-electric ships are now a standard offering for energy/propulsion systems in boats. In this context, integrating fuel cells (FCs as power sources in hybrid energy systems can be an interesting solution because of their high efficiency and low emission. The energy management strategy for different power sources has a great influence on the fuel consumption, dynamic performance and service life of these power sources. This paper presents a hybrid FC/battery power system for a low power boat. The hybrid system consists of the association of a proton exchange membrane fuel cell (PEMFC and battery bank. The mathematical models for the components of the hybrid system are presented. These models are implemented in Matlab/Simulink environment. Simulations allow analyzing the dynamic performance and power allocation according to a typical driving cycle. In this system, an efficient energy management system (EMS based on operation states is proposed. This EMS strategy determines the operating point of each component of the system in order to maximize the system efficiency. Simulation results validate the adequacy of the hybrid power system and the proposed EMS for real ship driving cycles.

  7. Experimental testing procedures and dynamic model validation for vanadium redox flow battery storage system

    Science.gov (United States)

    Baccino, Francesco; Marinelli, Mattia; Nørgård, Per; Silvestro, Federico

    2014-05-01

    The paper aims at characterizing the electrochemical and thermal parameters of a 15 kW/320 kWh vanadium redox flow battery (VRB) installed in the SYSLAB test facility of the DTU Risø Campus and experimentally validating the proposed dynamic model realized in Matlab-Simulink. The adopted testing procedure consists of analyzing the voltage and current values during a power reference step-response and evaluating the relevant electrochemical parameters such as the internal resistance. The results of different tests are presented and used to define the electrical characteristics and the overall efficiency of the battery system. The test procedure has general validity and could also be used for other storage technologies. The storage model proposed and described is suitable for electrical studies and can represent a general model in terms of validity. Finally, the model simulation outputs are compared with experimental measurements during a discharge-charge sequence.

  8. Overview of basic and applied research on battery systems at Argonne

    Energy Technology Data Exchange (ETDEWEB)

    Nevitt, M. V.

    1979-01-01

    The need for a basic understanding of the ion transport and related effects that are observed under the unique physical and electrochemical conditions occurring in high-temperature, high-performance batteries is pointed out. Such effects include those that are typical of transport in bulk materials such as liquid and solid electrolytes and the less well understood effects observed in migration in and across the interfacial zones existing around electrodes. The basic and applied studies at Argonne National Laboratory, centered in part around the development of a Li(alloy)/iron sulfide battery system for energy storage, are briefly described as an example of the way that such an understanding is being sought by coordinated interdisciplinary research. 3 figures.

  9. Evaluation of Advanced Control for Li-ion Battery Balancing Systems using Convex Optimization

    DEFF Research Database (Denmark)

    Pinto, Claudio; Barreras, Jorge Varela; Schaltz, Erik;

    2016-01-01

    Typically, the unique objective pursued in either active or passive balancing is equalization of single cell charge. However, a balancing circuit may offer more control features, like virtual equalization of single cell internal resistance or thermal balancing. Such control features for balancing...... systems are evaluated in this paper by means of convex optimization. More than one hundred cases in a pure EV application are evaluated. Balancing circuits' efficiency models are implemented and realistic cell-to-cell parameter distributions are considered based on experimental data. Different battery...... of energy losses, available capacity or temperature are obtained for the last three categories, even for moderate balancing currents. In particular, remarkable improvements are observed under conditions of high power demand with high variability, i.e., smaller battery sizes and more demanding driving cycles....

  10. Micro-battery Development for Juvenile Salmon Acoustic Telemetry System Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Honghao; Cartmell, Samuel S.; Wang, Qiang; Lozano, Terence J.; Deng, Zhiqun; Li, Huidong; Chen, Xilin; Yuan, Yong; Gross, Mark E.; Carlson, Thomas J.; Xiao, Jie

    2014-01-21

    The Juvenile Salmon Acoustic Telemetry System (JSATS) project supported by the U.S. Army Corps of Engineers, Portland District, has yielded the smallest acoustic fish tag transmitter commercially available to date. In order to study even smaller fish populations and make the transmitter injectable by needles, the JSATS acoustic micro transmitter needs to be further downsized. This study focuses on the optimization of microbattery design based on Li/CFx chemistry. Through appropriate modifications, a steady high-rate pulse current with desirable life time has been achieved while the weight and volume of the battery is largely reduced. The impedance variation in as-designed microbatteries is systematically compared with that of currently used watch batteries in JSATS with an attempt to understand the intrinsic factors that control the performances of microbatteries under the real testing environments.

  11. A high EMS daisy-chain SPI interface for battery monitor system

    Science.gov (United States)

    Zhang, Qidong; Yang, Yintang; Chai, Changchun

    2017-03-01

    A high EMS current-mode SPI interface for battery monitor IC (BMIC) is presented to form a daisychain bus configuration for the cascaded BMICs and the communication between the MCU and master BMIC. Based on analog and digital mixed filtering technique, the proposed daisy-chain can avoid the isolated communication issue in electromagnetic interference environment, and reduce the extensively required I/O ports of MCU, at the same time reduce the system cost. The proposed daisy-chain interface was introduced in a 6-ch battery monitor IC which was fabricated with 0.35 μm 30 V BCD process. The measurement result shows that the presented daisy-chain SPI interface achieves better EMS performance with different EMI injection while just consuming a total operation current up to 1 mA. Project supported by the National Natural Science Foundation of China (No. 61334003).

  12. Coated magnetic particles in electrochemical systems: Synthesis, modified electrodes, alkaline batteries, and paste electrodes

    Science.gov (United States)

    Unlu, Murat

    Magnetic field effects on electrochemical reactions have been studied and shown to influence kinetics and dynamics. Recently, our group has introduced a novel method to establish magnetic field effects by incorporating inert, magnetic microparticles onto the electrode structure. This modification improved several electrochemical systems including modified electrodes, alkaline batteries, and fuel cells. This dissertation describes the applicability of magnetic microparticles and the understanding of magnetic field effects in modified electrodes, alkaline batteries, and paste electrodes. Magnetic effects are studied on electrodes that are coated with an ion exchange polymer that embeds chemically inert, commercial, magnetic microparticles. The flux (electrolysis current) of redox probe to the magnetically modified system is compared to a similar non-magnetic electrode. Flux enhancements of 60% are achieved at magnetically modified electrode as compared to non-magnetic controls. In addition to modifying electrode surfaces, the incorporation of magnetic microparticles into the electrode material itself establishes a 20% increase in flux. Possible magnetic field effects are evaluated. Study of samarium cobalt modified electrolytic manganese dioxide, EMD electrodes further establish a magnetic effect on alkaline cathode performance. Magnetic modification improves alkaline battery performance in primary and secondary applications. The reaction mechanism is examined through voltammetric methods. This work also includes coating protocols to produce inert magnetic microparticles with high magnetic content. Magnetite powders are encapsulated in a polymer matrix by dispersion polymerization. Composite particles are examined in proton exchange membrane fuel cells to study carbon monoxide tolerance.

  13. Optimal operation strategy of battery energy storage system to real-time electricity price in Denmark

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    Since the hourly spot market price is available one day ahead, the price could be transferred to the consumers and they may have some motivations to install an energy storage system in order to save their energy costs. This paper presents an optimal operation strategy for a battery energy storage...... system (BESS) in relation to the real-time electricity price in order to achieve the maximum profits of the BESS. The western Danish power system, which is currently the grid area in the world that has the largest share of wind power in its generation profiles and may represent the future of electricity...

  14. Analysis of a battery management system (BMS) control strategy for vibration aged nickel manganese cobalt oxide (NMC) Lithium-Ion 18650 battery cells

    OpenAIRE

    2016-01-01

    Electric vehicle (EV) manufacturers are using cylindrical format cells as part of the vehicle’s rechargeable energy storage system (RESS). In a recent study focused at determining the ageing behavior of 2.2 Ah Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion 18650 battery cells, significant increases in the ohmic resistance (RO) were observed post vibration testing. Typically a reduction in capacity was also noted. The vibration was representative of an automotive service life of 100,000 miles...

  15. Analysis of a Battery Management System (BMS) Control Strategy for Vibration Aged Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion 18650 Battery Cells

    OpenAIRE

    2016-01-01

    Electric vehicle (EV) manufacturers are using cylindrical format cells as part of the vehicle’s rechargeable energy storage system (RESS). In a recent study focused at determining the ageing behavior of 2.2 Ah Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion 18650 battery cells, significant increases in the ohmic resistance (RO) were observed post vibration testing. Typically a reduction in capacity was also noted. The vibration was representative of an automotive service life of 100,000 miles...

  16. 磷酸铁锂电池与铅酸蓄电池混合系统研究%Studies of Hybrid Energy System of Lithium Iron Phosphate Battery and Lead-acid Battery

    Institute of Scientific and Technical Information of China (English)

    袁好; 衣守忠; 王先友

    2016-01-01

    By utilizing the differences of the charging and discharging characteristics between lithium iron phosphate batteries and lead-acid batteries,a new parallel hybrid power battery system with lithium iron phosphate batteries and lead-acid batteries and new charge/discharge system are developed.When charging, the lead-acid batteries attain the priority,so that lead-acid batteries can avoid to be charged less.When dis-charging,lithium iron phosphate batteries discharge with priority,while the lead-acid batteries are on the contrary,so lead-acid batteries can work in a state of shallow cycle,which can prolong the service life of the lead-acid batteries in the hybrid system.The hybrid battery system can effectively combine the advantages of both lithium iron phosphate batteries and lead-acid batteries,such as excellent discharge rate perform-ance,long cycle life and low cost et al,which make the system suitable for the application in the field of power batteries.%利用磷酸铁锂电池与铅酸蓄电池不同的充放电特点,开发了基于磷酸铁锂电池与铅酸蓄电池并联的混合动力电源系统,并设计了新型充放电制度。充电时铅酸蓄电池优先充电,使其免于欠充电;放电时磷酸铁锂电池电优先放电,铅酸蓄电池后放电,使铅酸蓄电池处于浅循环。这种充放电制度可以明显延长混合系统中铅酸蓄电池使用寿命,并且混合动力电源系统同时具有磷酸铁锂电池倍率性能优、循环寿命长及铅酸蓄电池价格低廉等特点,在动力电池领域有巨大的应用前景。

  17. The concentration gradient flow battery as electricity storage system

    NARCIS (Netherlands)

    Egmond, Van W.J.; Saakes, M.; Porada, S.; Meuwissen, T.; Buisman, C.J.N.; Hamelers, H.V.M.

    2016-01-01

    Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable e

  18. Development and validation of chemistry agnostic flow battery cost performance model and application to nonaqueous electrolyte systems: Chemistry agnostic flow battery cost performance model

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Alasdair [Pacific Northwest National Laboratory (PNNL), 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Thomsen, Edwin [Pacific Northwest National Laboratory (PNNL), 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Reed, David [Pacific Northwest National Laboratory (PNNL), 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Stephenson, David [Pacific Northwest National Laboratory (PNNL), 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Sprenkle, Vincent [Pacific Northwest National Laboratory (PNNL), 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Liu, Jun [Pacific Northwest National Laboratory (PNNL), 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Viswanathan, Vilayanur [Pacific Northwest National Laboratory (PNNL), 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA

    2016-01-01

    A chemistry agnostic cost performance model is described for a nonaqueous flow battery. The model predicts flow battery performance by estimating the active reaction zone thickness at each electrode as a function of current density, state of charge, and flow rate using measured data for electrode kinetics, electrolyte conductivity, and electrode-specific surface area. Validation of the model is conducted using a 4kW stack data at various current densities and flow rates. This model is used to estimate the performance of a nonaqueous flow battery with electrode and electrolyte properties used from the literature. The optimized cost for this system is estimated for various power and energy levels using component costs provided by vendors. The model allows optimization of design parameters such as electrode thickness, area, flow path design, and operating parameters such as power density, flow rate, and operating SOC range for various application duty cycles. A parametric analysis is done to identify components and electrode/electrolyte properties with the highest impact on system cost for various application durations. A pathway to 100$kWh-1 for the storage system is identified.

  19. Different energy management strategies of Hybrid Energy Storage System (HESS) using batteries and supercapacitors for vehicular applications

    OpenAIRE

    ALLEGRE, Anne-Laure; TRIGUI, Rochdi; Bouscayrol, Alain

    2010-01-01

    The energy storage is a key issue for traction applications like Electric Vehicles (EVs) or Hybrid Electric Vehicles (HEVs). Indeed, it needs a higher power and energy density, a right size, a long lifetime and a low cost. A Hybrid Energy Storage System (HESS) using batteries and supercapacitors seems to be an appropriate device to fulfill these constraints. The objective of the paper is to propose different energy management strategies of HESS using batteries and supercapacitors. Four elabor...

  20. A Novel Degradation Estimation Method for a Hybrid Energy Storage System Consisting of Battery and Double-Layer Capacitor

    OpenAIRE

    Yuanbin Yu; Dongdong Zhang; Haitao Min; Yi Tang; Tao Zhu(GCAP-CASPER, Physics Department, Baylor University, One Bear Place, # 97316, Waco, TX 76798-7316, U.S.A.)

    2016-01-01

    This paper presents a new method for battery degradation estimation using a power-energy (PE) function in a battery/ultracapacitor hybrid energy storage system (HESS), and the integrated optimization which concerns both parameters matching and control for HESS has been done as well. A semiactive topology of HESS with double-layer capacitor (EDLC) coupled directly with DC-link is adopted for a hybrid electric city bus (HECB). In the purpose of presenting the quantitative relationship between s...

  1. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System.

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Hager, Martin D; Schubert, Ulrich S

    2016-11-07

    Redox-flow batteries (RFB) can easily store large amounts of electric energy and thereby mitigate the fluctuating output of renewable power plants. They are widely discussed as energy-storage solutions for wind and solar farms to improve the stability of the electrical grid. Most common RFB concepts are based on strongly acidic metal-salt solutions or poorly performing organics. Herein we present a battery which employs the highly soluble N,N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride (TEMPTMA) and the viologen derivative N,N'-dimethyl-4,4-bipyridinium dichloride (MV) in a simple and safe aqueous solution as redox-active materials. The resulting battery using these electrolyte solutions has capacities of 54 Ah L(-1) , giving a total energy density of 38 Wh L(-1) at a cell voltage of 1.4 V. With peak current densities of up to 200 mA cm(-2) the TEMPTMA/MV system is a suitable candidate for compact high-capacity and high-power applications.

  2. Modeling of battery energy storage in the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Flynn, W.T.; Sen, R.K. [Sentech, Inc., Bethesda, MD (United States)

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  3. Spinel electrodes from the Li-Mn-O system for rechargeable lithium battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Thackeray, M.M.; de Kock, A.; Rossouw, M.H.; Liles, D. (Div. of Materials Science and Technology, CSIR, Pretoria 0001 (ZA)); Bittihn, R.; Hoge, D. (VARTA Batterie AG Research Center, D-6233 Kelkheim (DE))

    1992-02-01

    The electrochemical and structural properties of spinel phases in the Li-Mn-O system are discussed as insertion electrodes for rechargeable lithium batteries. In this paper the performance of button-type cells containing electrodes from the Li{sub 2}O yMnO{sub 2} system, e.g., the stoichiometric spinel Li{sub 4}Mn{sup 5}O{sub 12}(y = 2.5) and the defect spinel Li{sub 2}Mn{sub 4}O{sub 9}(y = 4.0), is highlighted and compared with a cell containing a standard LiMn{sub 2}O{sub 4} spinel electrode.

  4. Sesame: Self-Constructive Energy Modeling for Battery-Powered Mobile Systems

    CERN Document Server

    Dong, Mian

    2010-01-01

    System energy models are important for energy opti-mization and management in mobile systems. However, existing system energy models are built in lab with the help from a second computer. Not only are they labor-intensive; but also they will not adequately account for the great diversity in the hardware and usage of mobile systems. Moreover, existing system energy models are intended for energy estimation for time intervals of one second or longer; they do not provide the required rate for fine-grain use such as per-application energy accounting. In this work, we study a self-modeling paradigm in which a mobile system automatically generates its energy model without any external assistance. Our solution, Se-same, leverages the possibility of self power measurement through the smart battery interface and employs a suite of novel techniques to achieve accuracy and rate much higher than that of the smart battery interface. We report the implementation and evaluation of Se-same on a laptop and a smartphone. The e...

  5. Optimal Planning Strategy for Large PV/Battery System Based on Long-Term Insolation Forecasting

    Science.gov (United States)

    Yona, Atsushi; Uchida, Kosuke; Senjyu, Tomonobu; Funabashi, Toshihisa

    Photovoltaic (PV) systems are rapidly gaining acceptance as some of the best alternative energy sources. Usually the power output of PV system fluctuates depending on weather conditions. In order to control the fluctuating power output for PV system, it requires control method of energy storage system. This paper proposes an optimization approach to determine the operational planning of power output for PV system with battery energy storage system (BESS). This approach aims to obtain more benefit for electrical power selling and to smooth the fluctuating power output for PV system. The optimization method applies genetic algorithm (GA) considering PV power output forecast error. The forecast error is based on our previous works with the insolation forecasting at one day ahead by using weather reported data, fuzzy theory and neural network(NN). The validity of the proposed method is confirmed by the computer simulations.

  6. Decontamination systems information and research programs. Quarterly report, July 1--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The US contains numerous hazardous waste sites. Many sites are on private land near operating units of various companies. An effort is being made to determine the conditions under which such sites can be remediated voluntarily. The objective of the project will be to first assess the interest and willingness of industry in the Kanawha River Valley, WV to participate in discussions that would lead toward voluntary cleanup activities. The second will be to implement the activities agreed upon by the interested parties. The project will first involve individual discussions with the industrial, government, and other organized groups in the area. These discussions will help determine the feasibility of organizing voluntary efforts. If the discussions indicate that conditions may be favorable for developing individual or group voluntary cleanup projects, a working group will be convened to establish the environmental goals of the project as well as the technical approach for achieving those goals. The projects for the 1996 WVU Cooperative Agreement are categorized into three task focus areas: Task 1.0 Contaminant Plume Containment and Remediation, Task 2.0 Cross Cutting Innovative Technologies, and Task 3.0 Small Business Support Program. Summaries of the accomplishments for the subtasks reporting under these categories during the third quarter, 1 July 96 through 30 September 96, are presented.

  7. Battery powered portable vapor compression cycle system with PCM condenser

    Science.gov (United States)

    DeNardo, Nicholas M.

    Additive manufacturing, or 3D printing, encompasses manufacturing processes that construct a geometry by depositing or solidifying material only where it is needed in the absence of a mold. The ability to manufacture complex geometries on demand directly from a digital file, as well as the decreasing equipment costs due to increased competition in the market, have resulted in the AM industry experiencing rapid growth in the past decade. Many companies have emerged with novel technologies well suited to improve products and/or save costs in various industries. Until recently, the applications of polymer additive manufacturing have been mainly limited to prototyping. This can be attributed to multiple factors, namely the high cost of the machines and materials, long print times, and anisotropy of printed parts. In addition, the low unit cost and cycle time of competing processes such as injection molding further skew the economics in favor of other processes. The addition of fiber-reinforcement into polymers used in additive manufacturing processes significantly increases the strength of parts, and also allows larger parts to be manufactured. In 2014, large-scale additive manufacturing of fiber-reinforced polymers was pioneered, and has generated significant attention from both academia and industry. Commercial machines that incorporate high throughput extruders on gantry systems are now available. New applications that require high temperature polymers with low coefficients of thermal expansion and high stiffness are being targeted, for example tooling used in the manufacturing of composite components. The state of the art of this new paradigm in additive manufacturing as well as the target applications will be discussed in detail. Many new challenges arise as AM scales and reinforced polymers are incorporated. One of the most notable challenges is the presence of large temperature gradients induced in parts during the manufacturing process, which lead to residual

  8. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, K.; Zhang, J.; Horie, H.; Tanaka, K. [Department of Technology Management for Innovation, Graduate School of Engineering, The University of Tokyo (Japan); Akimoto, H. [Korea Advanced Institute of Science and Technology (Korea, Republic of)

    2013-12-10

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  9. Simulation-based design of energy management system with storage battery for a refugee shelter in Japan

    Science.gov (United States)

    Kaji, K.; Zhang, J.; Horie, H.; Akimoto, H.; Tanaka, K.

    2013-12-01

    Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

  10. Real-Time Dynamic Simulation of Korean Power Grid for Frequency Regulation Control by MW Battery Energy Storage System

    Directory of Open Access Journals (Sweden)

    Tae-Hwan Jin

    2016-12-01

    Full Text Available The aim of this study was to develop a real-time dynamic simulator of a power grid with power plant and battery model. The simulator was used to investigate the frequency control characteristics of a megawatt-scale high-capacity energy storage system connected to the electric power grid. In this study, a lithium-ion secondary battery was chosen as one of the batteries for a grid-connected model. The dynamics of the model was analysed in both steady and transient states. The frequency control system of the battery model plays a role in regulating the grid frequency by controlling the power of energy storage systems according to process variables and grid frequencies. The power grid model based on the current power network of South Korea, included power plants, substations and power demands. The power supply is classified by the type of turbine generator as thermal, nuclear, hydro power, pumped power storage, combined power plants, and batteries, including high-capacity energy storage systems rated for a maximum of 500 MW. This study deals with an installed capacity of 87.17 GW and peak load of 77.30 GW in the Korean power grid. For 24 hours of operation, the maximum and minimum power outputs were simulated as 61.59 GW and 46.32 GW, respectively. The commercialized real-time dynamic simulation software ProTRAX was used. The simulation was conducted to observe the operation characteristics of the frequency control system during a breakdown of power plants, as well as under governor-free operation, auto generation control operation, and with the battery energy storage system connected. The results show that the model is valid for each power plant breakdown simulation. They also confirm that the output power and frequency controls of the battery operated well during simulations.

  11. Standardization of a neuromotor test battery: the CATSYS system.

    Science.gov (United States)

    Després, C; Lamoureux, D; Beuter, A

    2000-10-01

    Interindividual and intraindividual variability in neuromotor behaviors is expected and normal. Early changes in neuromotor behaviors associated with neurodegenerative disorders or neurotoxic effects are often subtle and fluctuating in their characteristics. Therefore, their detection at an early stage is particularly difficult without precise recording instruments. The CATSYS system developed by Danish Product Development (DPD) is a portable device recording four measures of neuromotor control including tremor, reaction time, hand coordination and postural sway. The aim of this study is to develop a set of normative data. One hundred and fifty healthy men and women were divided into five age groups: (1) 20 to 29 years (n=30); (2) 30 to 39 years (n=30); (3) 40 to 49 years (n=30); (4) 50 to 59 years (n=30); (5) 60 to 70 years (n=30). All participants were free of neurological deficits at the time of testing and they were tested individually for approximately 30 min. Hand coordination was measured with prono-supination and finger-tapping movements executed at constant and accelerated rhythms. Reaction time was assessed in both hands using a hand held switch activated by the thumb. Postural tremor was quantified in both hands during 24.6 sec. by asking the subject to hold a stylus horizontally at 10 cm in front of his/her navel. The stylus contained a biaxial accelerometer. Postural sway was tested by asking the subject to stand on a force platform for 75 sec. under four conditions: (1) eyes open; (2) eyes closed; (3) eyes open standing on a foam pad; and (4) eyes closed standing on a foam pad. ANOVAs and multiple comparison tests were performed and the results were examined taking into account age, gender and experimental condition effects.

  12. An Assessment of Grid-Charged Inverter-Battery Systems for Domestic Applications in Ghana

    Directory of Open Access Journals (Sweden)

    David A. Quansah

    2016-01-01

    Full Text Available Ghana, like many African countries, is currently facing power supply shortage, which has led to load shedding. To minimize the impact of the power crisis, options such as diesel and petrol generators, grid-charged battery-inverter systems (GBIS, and solar PV with battery storage (SPVS have been used in residential and nonresidential contexts. In this paper, we develop analytical models to conduct a technical and economic comparison of GBIS and SPVS systems. Using average electricity tariff of $0.186 for residential sector (excluding lifeline customers we show that although initial cost of SPVS is higher, it costs 30% less than GBIS. We also show that losses associated with the GBIS are as high as 42% when viewed from a systems perspective and that some of its costs are externalized. We conclude by commending the Ghana Government’s initiative of rolling out 200,000 residential rooftop solar systems and recommend an increase in system capacities as well as a similar programme for nonresidential facilities.

  13. Power Management Based Current Control Technique for Photovoltaic-Battery Assisted Wind-Hydro Hybrid System

    Science.gov (United States)

    Ram Prabhakar, J.; Ragavan, K.

    2013-07-01

    This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.

  14. Using Atmospheric Pressure Tendency to Optimise Battery Charging in Off-Grid Hybrid Wind-Diesel Systems for Telecoms

    Directory of Open Access Journals (Sweden)

    Stephen Daniels

    2013-06-01

    Full Text Available Off grid telecom base stations in developing nations are powered by diesel generators. They are typically oversized and run at a fraction of their rated load for most of their operating lifetime. Running generators at partial load is inefficient and, over time, physically damages the engine. A hybrid configuration uses a battery bank, which powers the telecoms’ load for a portion of the time. The generator only operates when the battery bank needs to be charged. Adding a wind turbine further reduces the generator run hours and saves fuel. The generator is oblivious to the current wind conditions, which leads to simultaneous generator-wind power production. As the batteries become charged by the generator, the wind turbine controller is forced to dump surplus power as heat through a resistive load. This paper details how the relationship between barometric pressure and wind speed can be used to add intelligence to the battery charger. A Simulink model of the system is developed to test the different battery charging configurations. This paper demonstrates that if the battery charger is aware of upcoming wind conditions, it will provide modest fuel savings and reduce generator run hours in small-scale hybrid energy systems.

  15. Average Behavior of Battery - Electric Vehicles for Distributed Energy System Studies

    DEFF Research Database (Denmark)

    Marra, Francesco; Træholt, Chresten; Larsen, Esben;

    2010-01-01

    The increase of focus on electric vehicles (EVs) as distributed energy resources calls for new concepts of aggregated models of batteries. Despite the developed battery models for EVs applications, when looking at energy storage scenarios using EVs, both geographical-temporal aspects and battery...... use conditions cannot be neglected for a proper estimation of available fleet energy. In this paper we describe an average behavior of battery-EVs. Main points of this concept include the definition of the energy window and lifetime of the batteries, in relation to existing models and battery use...

  16. Stand-alone wind system with Vanadium Redox Battery energy storage

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Barote, L.; Weissbach, R.

    2008-01-01

    Energy storage devices are required for power balance and power quality in stand alone wind energy systems. A Vanadium Redox Flow Battery (VRB) system has many features which make its integration with a stand-alone wind energy system attractive. This paper proposes the integration of a VRB system...... with a typical stand-alone wind energy system during wind speed variation as well as transient performance under variable load. The investigated system consists of a variable speed wind turbine with permanent magnet synchronous generator (PMSG), diode rectifier bridge, buck-boost converter, bidirectional charge...... controller, transformer, inverter, ac loads and VRB (to store a surplus of wind energy and to supply power during a wind power shortage). The main purpose is to supply domestic appliances through a single phase 230V, 50Hz inverter. Simulations are accomplished in order to validate the stability of the supply....

  17. Intelligent uninterruptible power supply system with back-up fuel cell/battery hybrid power source

    Science.gov (United States)

    Zhan, Yuedong; Guo, Youguang; Zhu, Jianguo; Wang, Hua

    2008-05-01

    This paper presents the development of an intelligent uninterruptible power supply (UPS) system with a hybrid power source that comprises a proton-exchange membrane fuel cell (PEMFC) and a battery. Attention is focused on the architecture of the UPS hybrid system and the data acquisition and control of the PEMFC. Specifically, the hybrid UPS system consists of a low-cost 60-cell 300 W PEMFC stack, a 3-cell lead-acid battery, an active power factor correction ac-dc rectifier, a half-bridge dc-ac inverter, a dc-dc converter, an ac-dc charger and their control units based on a digital signal processor TMS320F240, other integrated circuit chips, and a simple network management protocol adapter. Experimental tests and theoretical studies are conducted. First, the major parameters of the PEMFC are experimentally obtained and evaluated. Then an intelligent control strategy for the PEMFC stack is proposed and implemented. Finally, the performance of the hybrid UPS system is measured and analyzed.

  18. A Novel Series Connected Batteries State of High Voltage Safety Monitor System for Electric Vehicle Application

    Directory of Open Access Journals (Sweden)

    Qiang Jiaxi

    2013-01-01

    Full Text Available Batteries, as the main or assistant power source of EV (Electric Vehicle, are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS, the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  19. Design construction and analysis of solar ridge concentrator photovoltaic (PV) system to improve battery charging performance.

    Science.gov (United States)

    Narasimman, Kalaiselvan; Selvarasan, Iniyan

    2016-05-01

    A ridge concentrator photovoltaic system for a 10W multi-crystalline solar panel was designed with the concentration ratios of 1X and 2X. The ray tracing model of ridge concentrator photovoltaic system was carried out using Trace-Pro simulation. The optimum tilt angle for the concentrator PV system throughout the year was computed. The electrical parameters of the 3 panels were analyzed. The effect of temperature on the electrical performance of the panel was also studied. The reduction of voltage due to increasing panel temperature was managed by MPES type Charge controller. Glass reflector with reflectivity 0.95 was chosen as the ridge wall for the concentrator system. The maximum power outputs for the 1X and 2X panel reached were 9W and 10.5W with glass reflector. The percentage of power improvement for 1X and 2X concentrations were 22.3% and 45.8% respectively. The 2X concentrated panel connected battery takes lower time to charge compared with normal panel connected battery.

  20. A comprehensive equivalent circuit model of all-vanadium redox flow battery for power system analysis

    Science.gov (United States)

    Zhang, Yu; Zhao, Jiyun; Wang, Peng; Skyllas-Kazacos, Maria; Xiong, Binyu; Badrinarayanan, Rajagopalan

    2015-09-01

    Electrical equivalent circuit models demonstrate excellent adaptability and simplicity in predicting the electrical dynamic response of the all-vanadium redox flow battery (VRB) system. However, only a few publications that focus on this topic are available. The paper presents a comprehensive equivalent circuit model of VRB for system level analysis. The least square method is used to identify both steady-state and dynamic characteristics of VRB. The inherent features of the flow battery such as shunt current, ion diffusion and pumping energy consumption are also considered. The proposed model consists of an open-circuit voltage source, two parasitic shunt bypass circuits, a 1st order resistor-capacitor network and a hydraulic circuit model. Validated with experimental data, the proposed model demonstrates excellent accuracy. The mean-error of terminal voltage and pump consumption are 0.09 V and 0.49 W respectively. Based on the proposed model, self-discharge and system efficiency are studied. An optimal flow rate which maximizes the system efficiency is identified. Finally, the dynamic responses of the proposed VRB model under step current profiles are presented. Variables such as SOC and stack terminal voltage can be provided.

  1. The Selection of a Marine Artillery Battery Fire Direction Computer System.

    Science.gov (United States)

    1982-12-01

    movement, lone gun operations, hi shoots), the calcu- lator can provide -he primary sour z-e i cf: data.. It also expedites and simolifies HS/ MPI :eg...readiness of battery owned F7ADAC.- i53 percent. The averags FADA- lownt:4me zs reaz’r !a- sixty days. This is consi- stent wit the data lprovi ed ly...marner that is cons stent with other 3ystem re-quir-ements and by minim- K -zing support resources required. 152 addresses the system’s ability to

  2. Battery energy storage systems for electric utility, industrial and commercial applications

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N.W.; Zrebiec, R.S.; Delmerico, R.W. [GE Power Systems Engineering, Schenectady, NY (United States); Hunt, G. [GNB Industrial Battery, Lombard, IL (United States)

    1996-11-01

    Voltage depressions and power interruptions are rapidly becoming two of the hottest topics in the field of power quality. Of particular interest is the need to supply a dependable, efficient and controllable source of real and reactive power, which is available instantly to support a large (> .5 MVA) load, even if the utility connection is lost. This paper describes a versatile solution to this problem for utility, industrial and commercial applications using battery energy storage systems (BESS). BESS has the potential to provide other substantial benefits in terms of improved voltage and energy management in conjunction with this protection from interruptions.

  3. Optimized Sizing, Selection, and Economic Analysis of Battery Energy Storage for Grid-Connected Wind-PV Hybrid System

    Directory of Open Access Journals (Sweden)

    Hina Fathima

    2015-01-01

    Full Text Available Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The integrated system is then tested with an efficient battery management strategy which prevents overcharging/discharging of the battery. In the study, five major types of battery systems are considered and analyzed. They are evaluated and compared based on technoeconomic and environmental metrics as per Indian power market scenario. Technoeconomic analysis of the battery is validated by simulations, on a proposed wind-photovoltaic system in a wind site in Southern India. Environmental analysis is performed by evaluating the avoided cost of emissions.

  4. Advanced Space Power Systems (ASPS): High Specific Energy Li-ion Battery Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the High Specific Energy Battery project element is to develop high specific energy battery technologies that enable new capabilities for future...

  5. A bi-directional DC/DC converter for hybrid wind generator/battery system with state machine control

    Energy Technology Data Exchange (ETDEWEB)

    Hua, C.C.; Liao, Y.C. [National Yunlin Univ. of Science and Technology, Yunlin, Taiwan (China). Dept. of Electrical Engineering

    2008-07-01

    A bi-directional DC to DC converter used in a hybrid wind generator/lead-acid battery power system was presented. A state machine control strategy was used to control both the system power flow and load distribution. It was also used to increase the power capacity of the system. The battery was also charged or discharged through the bi-directional DC to DC converter. Multi-stage current charging control of the batteries was accomplished by adjusting the duty cycle of the power converter. This also improved the charging efficiency by the maximum power point tracking algorithm. It was concluded that the proposed control method can be readily extended to other renewable energy conversion systems. 6 refs., 13 figs.

  6. A Distributed Control Strategy Based on DC Bus Signaling for Modular Photovoltaic Generation Systems With Battery Energy Storage

    DEFF Research Database (Denmark)

    Sun, Kai; Zhang, Li; Xing, Yan

    2011-01-01

    Modular generation system, which consists of modular power conditioning converters, is an effective solution to integrate renewable energy sources with conventional utility grid to improve reliability and efficiency, especially for photovoltaic generation. A distributed control strategy based...... on improved dc bus signaling is proposed for a modular photovoltaic (PV) generation system with battery energy storage elements. In this paper, the modular PV generation system is composed of three modular dc/dc converters for PV arrays, two grid-connected dc/ac converters, and one dc/dc converter for battery......, grid-connected inversion, and islanding with constant voltage (CV) generation.The power balance of the system under extreme conditions such as the islanding operation with a full-charged battery is taken into account in this control strategy. The dc bus voltage level is employed as an information...

  7. Synthesis of CaCrO{sub 4} powders for the cathode material of the thermal battery by GNP and electrochemical characteristics of Ca/LiCl-KCl/CaCrO{sub 4} thermal battery system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe

    2000-04-01

    Thermal batteries are one of the devices employing solid electrolyte that are not nonconductive at ambient temperature, and activated by electrochemical reaction when the sufficient heat is supplied to electrolyte to melt. The demand of thermal batteries would be increased because it is cost effective and highly reliable in that no maintenance is necessary, electric power can be generated as necessary and no self discharge unlike the other primary batteries. These thermal batteries are used to the military purposes and satellite communication systems and as an emergency power sources, applied to the important places where power supply should not be interrupted, such as hospital, powder plants, ships and portable communication devices. Therefore, the purpose of this study was focused to obtain the manufacturing technologies of thermal battery on our own, after manufacturing the CaCrO{sub 4} produced by GNP and investigating the electrochemical characteristics of Ca/LiCl-KCl+CaCrO{sub 4}/Ni.

  8. Fuzzy logic control of stand-alone photovoltaic system with battery storage

    Science.gov (United States)

    Lalouni, S.; Rekioua, D.; Rekioua, T.; Matagne, E.

    Photovoltaic energy has nowadays an increased importance in electrical power applications, since it is considered as an essentially inexhaustible and broadly available energy resource. However, the output power provided via the photovoltaic conversion process depends on solar irradiation and temperature. Therefore, to maximize the efficiency of the photovoltaic energy system, it is necessary to track the maximum power point of the PV array. The present paper proposes a maximum power point tracker (MPPT) method, based on fuzzy logic controller (FLC), applied to a stand-alone photovoltaic system. It uses a sampling measure of the PV array power and voltage then determines an optimal increment required to have the optimal operating voltage which permits maximum power tracking. This method carries high accuracy around the optimum point when compared to the conventional one. The stand-alone photovoltaic system used in this paper includes two bi-directional DC/DC converters and a lead-acid battery bank to overcome the scare periods. One converter works as an MPP tracker, while the other regulates the batteries state of charge and compensates the power deficit to provide a continuous delivery of energy to the load. The Obtained simulation results show the effectiveness of the proposed fuzzy logic controller.

  9. Optimization of Performance Characteristics of Hybrid Wind Photovoltaic System with Battery Storage

    Directory of Open Access Journals (Sweden)

    C. Kathirvel

    2014-03-01

    Full Text Available This study concentrates on the Design and Implementation of a multi source hybrid Wind-Photovoltaic stand alone system with proposed energy management strategy. The method of investigation concerned with the definition of the system topology, interconnection of the various sources with maximum energy transfer, optimum control and energy management in order to maintain the DC bus voltage into a fixed value. An Energy management strategy was proposed using the Fuzzy logic controller such that enhancement in the performance of the system and optimization can be done. The Fuzzy logic controller takes the input from Solar (irradiation, Wind (speed, Power demand and the battery voltage which controls the respective subsystem and formulates into different operational modes of energy management. The role of Fuzzy threshold controller is to adjust continuously the threshold value for optimal performance based on expected wind, solar conditions, battery voltage and power demand. It is shown that when the fuzzy logic controller is used, the proposed DC bus voltage regulation strategy with different modes of operation have fast response and efficient operation which leads to a reduced operating cost.

  10. Avian Test Battery for the Evaluation of Developmental Abnormalities of Neuro- and Reproductive Systems

    Science.gov (United States)

    Kawashima, Takaharu; Ahmed, Walaa M. S.; Nagino, Koki; Ubuka, Takayoshi; Tsutsui, Kazuyoshi

    2016-01-01

    Most of the currently used toxicity assays for environmental chemicals use acute or chronic systemic or reproductive toxicity endpoints rather than neurobehavioral endpoints. In addition, the current standard approaches to assess reproductive toxicity are time-consuming. Therefore, with increasing numbers of chemicals being developed with potentially harmful neurobehavioral effects in higher vertebrates, including humans, more efficient means of assessing neuro- and reproductive toxicity are required. Here we discuss the use of a Galliformes-based avian test battery in which developmental toxicity is assessed by means of a combination of chemical exposure during early embryonic development using an embryo culture system followed by analyses after hatching of sociosexual behaviors such as aggression and mating and of visual memory via filial imprinting. This Galliformes-based avian test battery shows promise as a sophisticated means not only of assessing chemical toxicity in avian species but also of assessing the risks posed to higher vertebrates, including humans, which are markedly sensitive to nervous or neuroendocrine system dysfunction. PMID:27445667

  11. ACTIVE CONTROL OF QUARTER-CAR SUSPENSION SYSTEM USING LINEAR QUADRATIC REGULATOR

    OpenAIRE

    V M NANDEDKAR; K.R. Borole; G.J Vikhe; M.P. Nagarkar

    2011-01-01

    The automobile is composed of many systems. One of these is the suspension system. The main functions of the automotive suspension system are to provide vehicle support, stability and directional control during handling manoeuvres and to provide effective isolation from road disturbances. The suspension system has to balance the tradeoff between ride comfort and handling performance. This paper analyses the passive suspension system and active suspension system using a Linear Quadratic Regula...

  12. Systems studies of coal conversion processes using a reference simulator. Quarterly report, April 1--June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, G.V.; Sood, M.K.; Raghavan, S.; Soni, Y.; Overturf, B.W.; Ford, J.R.; Buchanan, P.; Weide, W. Jr.; Wilkinson, C.R.; Boo, J.

    1978-08-01

    In this reporting period work has been completed on the simulation model of the hydrotreating process section. This model successfully tested the integrated operation of the Simulation System including the physical properties subsystems and involving pseudo-components and solids stream flows. The hydrotreating reactor model was modified to include improved temperature profile predictions. The plant capital cost estimation subsystem has been redesigned to allow use as a stand alone package. The revised package will include a redesigned cost data bank, equipment costing programs, factored plant and auxiliary equipment programs as well as a profitability analysis routine. Implementation of the revised economics package is expected to be completed during the third quarter of 1978. The physical properties package has been updated by the addition of routines for the accurate estimation of the thermodynamic properties of steam. A steady state model of the methanation section has been assembled. Scrubber, multi-phase separator, and turbine models have been developed for the vapor recovery and heat recovery process sections. Work is in progress on a detailed model of the char lift leg and the steam reformer. progress has been delayed but work is continuing on the hierarchical process calculation system outlined in Fe--2275-7.

  13. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin.

    Science.gov (United States)

    Kim, Jeonghyun; Salvatore, Giovanni A; Araki, Hitoshi; Chiarelli, Antonio M; Xie, Zhaoqian; Banks, Anthony; Sheng, Xing; Liu, Yuhao; Lee, Jung Woo; Jang, Kyung-In; Heo, Seung Yun; Cho, Kyoungyeon; Luo, Hongying; Zimmerman, Benjamin; Kim, Joonhee; Yan, Lingqing; Feng, Xue; Xu, Sheng; Fabiani, Monica; Gratton, Gabriele; Huang, Yonggang; Paik, Ungyu; Rogers, John A

    2016-08-01

    Recent advances in materials, mechanics, and electronic device design are rapidly establishing the foundations for health monitoring technologies that have "skin-like" properties, with options in chronic (weeks) integration with the epidermis. The resulting capabilities in physiological sensing greatly exceed those possible with conventional hard electronic systems, such as those found in wrist-mounted wearables, because of the intimate skin interface. However, most examples of such emerging classes of devices require batteries and/or hard-wired connections to enable operation. The work reported here introduces active optoelectronic systems that function without batteries and in an entirely wireless mode, with examples in thin, stretchable platforms designed for multiwavelength optical characterization of the skin. Magnetic inductive coupling and near-field communication (NFC) schemes deliver power to multicolored light-emitting diodes and extract digital data from integrated photodetectors in ways that are compatible with standard NFC-enabled platforms, such as smartphones and tablet computers. Examples in the monitoring of heart rate and temporal dynamics of arterial blood flow, in quantifying tissue oxygenation and ultraviolet dosimetry, and in performing four-color spectroscopic evaluation of the skin demonstrate the versatility of these concepts. The results have potential relevance in both hospital care and at-home diagnostics.

  14. Analysis and Design of CLL Resonant Converter for Solar Panel-battery Systems

    Directory of Open Access Journals (Sweden)

    D.Ramasubramanian

    2012-12-01

    Full Text Available This paper presents a CLL resonant converter with DSP based Fuzzy Logic Controller (FLC for solar panel to battery charging system. The mathematical model of the converters has been developed and simulated using MATLAB. The state space model of the converter is developed; it is used to analysis the steady state stability of the system. The aim of the proposed converter is to regulate and control of the output voltage from the solar panel voltage. The performance of the proposed converter is validated through experiments with a 75-Watt solar panel. The effectiveness of the controller is verified for supply change and load disturbance. The converter is implemented on a TMS320F2407 Digital Signal Processor with 75-Watt PV system. Comparison between experimental and simulations show a very good agreement and the reliability of fuzzy controller.

  15. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  16. The Integration and Control of Multifunctional Stationary PV-Battery Systems in Smart Distribution Grid

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Mulder, Grietus; Van Mierlo, Joeri

    2013-01-01

    . The objective of this paper is to develop and detail the method of optimum sizing energy storage for grid connected distribution systems using newly devised BESS control protocol and investigate its sensitivity to factors which are known to influence energy system performance and hence storage requirements......The paper investigates the potential of using lumped stationary battery energy storage systems (BESS) in the public low-voltage distribution grid in order to defer upgrades needed in case of large penetration of electric vehicle (EV), electrified heat pump (HP) in presence of photovoltaic (PV......) panel on the view of techno economic optimal sizing taking the consideration of season-based diurnal dynamics. The BESS is primarily dimensioned for the peak shaving operation targeted for the counterbalance of overloading of transformer; BESS also participates in arbitrage (buy low, sell high...

  17. Design Considerations for Wireless Charging Systems with an Analysis of Batteries

    Directory of Open Access Journals (Sweden)

    Zhenshi Wang

    2015-09-01

    Full Text Available Three criteria, including charging time, effective charging capacity and charging energy efficiency, are introduced to evaluate the CC (constant current and CC/CV (constant current/constant voltage charging strategies. Because the CC strategy presents a better performance and most resonant topologies have the CC characteristic, the CC strategy is more suitable for the design of wireless charging systems than the CC/CV strategy. Then, the state space model of the receiver is built to study the system dynamic characteristics, and the design of nonuse output filter capacitors is proposed, which can improve the system power density and avoid the drop in efficiency caused by capacitor degradation. At last, an electrochemical impedance spectrum (EIS based analysis method is introduced to validate that the design without output filter capacitors has no effects on the battery characteristics when the charging frequency is higher than 460 Hz. A prototype is fabricated to verify our research results.

  18. Coordinated Control Scheme of Battery Energy Storage System (BESS) and Distributed Generations (DGs) for Electric Distribution Grid Operation

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Zhao, Haoran; Wu, Qiuwei

    2012-01-01

    This paper describes a coordinated control scheme of battery energy storage system (BESS) and distributed generations (DGs) for electric distribution grid operation. The BESS is designed to stabilize frequency and voltages as a primary control after the electric distribution system enters...

  19. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  20. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  1. Electronically configured battery pack

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, D.

    1997-03-01

    Battery packs for portable equipment must sometimes accommodate conflicting requirements to meet application needs. An electronically configurable battery pack was developed to support two highly different operating modes, one requiring very low power consumption at a low voltage and the other requiring high power consumption at a higher voltage. The configurable battery pack optimizes the lifetime and performance of the system by making the best use of all available energy thus enabling the system to meet its goals of operation, volume, and lifetime. This paper describes the cell chemistry chosen, the battery pack electronics, and tradeoffs made during the evolution of its design.

  2. Integration of Lithium-Ion Battery Storage Systems in Hydroelectric Plants for Supplying Primary Control Reserve

    Directory of Open Access Journals (Sweden)

    Fabio Bignucolo

    2017-01-01

    Full Text Available The ever-growing diffusion of renewables as electrical generation sources is forcing the electrical power system to face new and challenging regulation problems to preserve grid stability. Among these, the primary control reserve is reckoned to be one of the most important issues, since the introduction of generators based on renewable energies and interconnected through static converters, if relieved from the primary reserve contribution, reduces both the system inertia and the available power reserve in case of network events involving frequency perturbations. In this scenario, renewable plants such as hydroelectric run-of-river generators could be required to provide the primary control reserve ancillary service. In this paper, the integration between a multi-unit run-of-river power plant and a lithium-ion based battery storage system is investigated, suitably accounting for the ancillary service characteristics as required by present grid codes. The storage system is studied in terms of maximum economic profitability, taking into account its operating constraints. Dynamic simulations are carried out within the DIgSILENT PowerFactory 2016 software environment in order to analyse the plant response in case of network frequency contingencies, comparing the pure hydroelectric plant with the hybrid one, in which the primary reserve is partially or completely supplied by the storage system. Results confirm that the battery storage system response to frequency perturbations is clearly faster and more accurate during the transient phase compared to a traditional plant, since time delays due to hydraulic and mechanical regulations are overpassed. A case study, based on data from an existing hydropower plant and referring to the Italian context in terms of operational constraints and ancillary service remuneration, is presented.

  3. Control design for robust tracking and smooth transition in power systems with battery/supercapacitor hybrid energy storage devices

    Science.gov (United States)

    Jung, Hoeguk; Wang, Haifeng; Hu, Tingshu

    2014-12-01

    This paper considers some control design problems in a power system driven by battery/supercapacitor hybrid energy storage devices. The currents in the battery and the supercapacitor are actively controlled by two bidirectional buck-boost converters. Two control objectives are addressed in this paper: one is to achieve robust tracking of two reference variables, the battery current and the load voltage, the other is to achieve smooth transition of these variables during load switch. Based on the state-space averaged model we newly developed, the control design problems are converted into numerically efficient optimization problems with linear matrix inequality (LMI) constraints. An experimental system is constructed to validate the control design methods.

  4. Systems studies of coal conversion processes using a reference simulator. Quarterly report, October 1, 1978--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, G.V.; Sood, M.K.; Soni, Y.; Overturf, B.W.; Buchanan, P.; Wiede, W. Jr.; Wilkinson, C.R.; Boo, J.

    1979-02-01

    Work was completed on the coding and testing of the plant cost estimation package PCOST. Significant effort was expended in adapting the ORNL PRP evaluation program to make it compatible with PCOST. Continuing efforts include completion of the user's manual and rechecking of the cost data base entries. Continued miscellaneous revisions and additions arising from user suggestions were made to the S4 and PPROPS packages. The two phase flash routine was modified to more efficiently accommodate single components. The three phase flash routine was revised to include generation of sharper initial estimates and phase stability tests. A versatile process utilities section model was implemented and tested. This program will perform the balance calculations, will select turbine design conditions, and will determine required auxiliary boiler loads for a plant steam system containing multiple steam pressure levels. Integrated simulations of the hydrogen and vapor recovery sections have been assembled and design case studies are in progress. The integrated simulation of the hydrotreating, acid gas removal, and hydrogen plant sections is being prepared for combined execution using the hierchiacal strategy tested in the previous quarter. Alternate numerical methods are being tested for accommodating the severe stiffness which has been encountered in the differential equations of the lift tube model.

  5. A comparative work on vibration control of a quarter car suspension system with two different magneto-rheological dampers

    Science.gov (United States)

    Park, Jhin Ha; Kim, Wan Ho; Shin, Cheol Soo; Choi, Seung-Bok

    2017-01-01

    This work compares the ride comfort of a passenger vehicle whose suspension system is equipped with two different magneto-rheological (MR) dampers: with and without bypass holes in the piston. In order to achieve this goal, two cylindrical type MR dampers, which otherwise have the same such geometrical dimensions as radius of piston, length of pole and distance between two poles, are designed based on a mathematical model and subsequently manufactured. One of MR dampers is then modified by making bypass holes in the piston bobbin structure to obtain a relatively low slope of damping force in the pre-yield region. The field-dependent damping force characteristics are investigated through both simulation and experiment. After characterizing the field-dependent damping force of the two MR dampers, a quarter car model is established to evaluate the ride comfort. In this work, a simple but very effective sky-hook controller is adopted, and vibration control performance is evaluated under two road profiles: bump and random road excitations. It is demonstrated through simulation and experiment that the MR damper with bypass holes provides better ride comfort to the car so equipped than that without.

  6. LiPo battery energy studies for improved flight performance of unmanned aerial systems

    Science.gov (United States)

    Chang, K.; Rammos, P.; Wilkerson, S. A.; Bundy, M.; Gadsden, S. Andrew

    2016-05-01

    Energy storage is one of the most important determinants of how long and far a small electric powered unmanned aerial system (UAS) can fly. For years, most hobby and experimentalists used heavy fuels to power small drone-like systems. Electric motors and battery storage prior to the turn of the century were either too heavy or too inefficient for flight times of any usable duration. However, with the availability of brushless electric motors and lithium-based batteries everything has changed. Systems like the Dragon Eye, Pointer, and Raven are in service performing reconnaissance, intelligence, surveillance, and target acquisition (RISTA) for more than an hour at a time. More recently, multi-rotor vehicles have expanded small UAS capabilities to include activities with hovering and persistent surveillance. Moreover, these systems coupled with the surge of small, low-cost electronics can perform autonomous and semi-autonomous missions not possible just ten years ago. This paper addresses flight time limitation issues by proposing an experimental method with procedures for system identification that may lead to modeling of energy storage in electric UAS'. Consequently, this will allow for energy storage to be used more effectively in planning autonomous missions. To achieve this, a set of baseline experiments were designed to measure the energy consumption of a mid-size UAS multi-rotor. Several different flight maneuvers were considered to include different lateral velocities, climbing, and hovering. Therefore, the goal of this paper is to create baseline flight data for each maneuver to be characterized with a certain rate of energy usage. Experimental results demonstrate the feasibility and robustness of the proposed approach. Future work will include the development of mission planning algorithms that provide realistic estimates of possible mission flight times and distances given specific mission parameters.

  7. Inverse opal-inspired, nanoscaffold battery separators: a new membrane opportunity for high-performance energy storage systems.

    Science.gov (United States)

    Kim, Jung-Hwan; Kim, Jeong-Hoon; Choi, Keun-Ho; Yu, Hyung Kyun; Kim, Jong Hun; Lee, Joo Sung; Lee, Sang-Young

    2014-08-13

    The facilitation of ion/electron transport, along with ever-increasing demand for high-energy density, is a key to boosting the development of energy storage systems such as lithium-ion batteries. Among major battery components, separator membranes have not been the center of attention compared to other electrochemically active materials, despite their important roles in allowing ionic flow and preventing electrical contact between electrodes. Here, we present a new class of battery separator based on inverse opal-inspired, seamless nanoscaffold structure ("IO separator"), as an unprecedented membrane opportunity to enable remarkable advances in cell performance far beyond those accessible with conventional battery separators. The IO separator is easily fabricated through one-pot, evaporation-induced self-assembly of colloidal silica nanoparticles in the presence of ultraviolet (UV)-curable triacrylate monomer inside a nonwoven substrate, followed by UV-cross-linking and selective removal of the silica nanoparticle superlattices. The precisely ordered/well-reticulated nanoporous structure of IO separator allows significant improvement in ion transfer toward electrodes. The IO separator-driven facilitation of the ion transport phenomena is expected to play a critical role in the realization of high-performance batteries (in particular, under harsh conditions such as high-mass-loading electrodes, fast charging/discharging, and highly polar liquid electrolyte). Moreover, the IO separator enables the movement of the Ragone plot curves to a more desirable position representing high-energy/high-power density, without tailoring other battery materials and configurations. This study provides a new perspective on battery separators: a paradigm shift from plain porous films to pseudoelectrochemically active nanomembranes that can influence the charge/discharge reaction.

  8. Behaviour and reliability of lead-acid batteries in stand-alone photovoltaic systems; Comportamiento y durabilidad de baterias de plomo-acido en sistemas fotovoltaicos autonomos

    Energy Technology Data Exchange (ETDEWEB)

    Vela Barrionuevo, N.

    2007-07-01

    Vented stationary lead-acid batteries are currently the most commonly used type of accumulator in stand-alone PV systems. The state-of the art of the technology suggests that lead-acid batteries will maintain a predominant position in the PV market for the next years. Additionally to the specific operating requirements of batteries in PV systems, there are other questions not completely solved related to battery characterisation and testing methods for this type of application. The objective of this work is to contribute to the operational optimisation and reliability improvement of lead-acid batteries operating in stand-alone PV systems. This objective has been approached by means of eminently experimental works. These works are focused firstly on functional characterisation of batteries, with special emphasis on capacity and characteristic voltages study and secondly on degradation analysis of these batteries taking into account the specific working conditions of stand-alone PV systems which main characteristic is its wide variability of operational conditions (current rates, temperature and state of charge). In relation with battery characterisation, a procedure for the determination of the usable capacity of lead-acid batteries has been established and applied to a set of commercial batteries at different current rate and temperature conditions. From each battery experimental data and using a model equation describing the battery capacity as function of current rate and temperature, the corresponding parameters for each battery have been obtained. A comparative analysis of the model application to experimental data and data supplied by the manufacturer is included. Also, initial gassing voltage and end-of-charge voltage values have been measured at different current rate and temperature conditions for the whole set of batteries. Experimental values of voltage from each battery have been fitted with high degree of accuracy to simple mathematical expressions for

  9. Short-term energy outlook: Quarterly projections, fourth quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-14

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections for printed publication in January, April, July, and October in the Short-Term Energy Outlook. The details of these projections, as well as monthly updates on or about the 6th of each interim month, are available on the internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The forecast period for this issue of the Outlook extends from the fourth quarter of 1997 through the fourth quarter of 1998. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the fourth quarter 1997 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. 19 tabs.

  10. Containment system and thermal conduction in lithium electric batteries energy modules 2 kWh with polymeric electrolytes; Sviluppo del sistema di contenimento e del condizionamento termico di moduli da 2 kWh di batterie al litio ad elettrolita polimerico

    Energy Technology Data Exchange (ETDEWEB)

    Ciancia, A.; Alessandrini, F. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Energia Divisione Tecnologie Energetiche Avanzate

    1997-06-01

    In this work are presented some technical specifications regarding lithium electric batteries with polymeric electrolytes, in particular the design of electrodes container efficient and reliable and thermal management system oriented to safety, performances and battery life.

  11. Integrated computer-enhanced remote viewing system. Quarterly report No. 2, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-03

    The Interactive, Computer-Enhanced, Remote Viewing System (ICERVS) is a system designed to provide a reliable geometric description of a robotic task space in a fashion that enables robotic remediation to be carried out more efficiently and economically than with present systems. The key elements are a faithful way to store empirical data and a friendly user interface that provides an operator with timely access to all that is known about a scene.

  12. Optimal AGC with redox flow batteries in multi-area restructured power systems

    Directory of Open Access Journals (Sweden)

    Yogendra Arya

    2016-09-01

    Full Text Available This paper attempts to investigate the effect of Redox flow batteries (RFB in Automatic Generation Control (AGC of multi-area restructured power systems. Initially, a two-area restructured thermal power system is investigated. For the analysis, optimal AGC regulators (OARs are designed employing performance index minimization criterion. The advantages of the OARs are shown by comparing the results with Genetic Algorithm (GA based integral controllers for the same restructured system. MATLAB simulation results further demonstrate significant improvements in the dynamic performance of the system with RFB. System stability enhancement with OARs/RFB is outlined by conducting the system modes study. The study is additionally extended to a more realistic two-area multi-source thermal–hydro–gas restructured system with/without RFB. To add nonlinearities, appropriate generation rate constraints (GRCs are considered for the thermal, hydro and gas plants. Results verify that OARs are able to satisfy the AGC requirement under varied power transactions taking place in an open power market. The robustness of OARs is demonstrated by sensitivity analysis, which is carried out with wide variation in initial loading, system parameters and magnitude/position of the uncontracted power demands. Finally, the study is extended to a two-area multi-source thermal–hydro power system with/without considering RFB.

  13. Enhanced representations of lithium-ion batteries in power systems models and their effect on the valuation of energy arbitrage applications

    Science.gov (United States)

    Sakti, Apurba; Gallagher, Kevin G.; Sepulveda, Nestor; Uckun, Canan; Vergara, Claudio; de Sisternes, Fernando J.; Dees, Dennis W.; Botterud, Audun

    2017-02-01

    We develop three novel enhanced mixed integer-linear representations of the power limit of the battery and its efficiency as a function of the charge and discharge power and the state of charge of the battery, which can be directly implemented in large-scale power systems models and solved with commercial optimization solvers. Using these battery representations, we conduct a techno-economic analysis of the performance of a 10 MWh lithium-ion battery system testing the effect of a 5-min vs. a 60-min price signal on profits using real time prices from a selected node in the MISO electricity market. Results show that models of lithium-ion batteries where the power limits and efficiency are held constant overestimate profits by 10% compared to those obtained from an enhanced representation that more closely matches the real behavior of the battery. When the battery system is exposed to a 5-min price signal, the energy arbitrage profitability improves by 60% compared to that from hourly price exposure. These results indicate that a more accurate representation of li-ion batteries as well as the market rules that govern the frequency of electricity prices can play a major role on the estimation of the value of battery technologies for power grid applications.

  14. Improving reservoir conformance using gelled polymer systems. Eleventh quarterly report, April 1, 1995--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; Buller, C.; McCool, S.; Vossoughi, S.; Michnick, M.

    1995-07-24

    The general objectives are to (1) to identify and develop gelled polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) to determine the performance of these systems in bulk and in porous media, and (3) to develop methods to predict the capability of these systems to recover oil from petroleum reservoirs. This work focuses on three types of gel systems -- an aqueous polysaccharide (KUSP1) system that gels as a function of pH, the chromium(III)-polyacrylamide system and the aluminum citrate-polyacrylamide system. Laboratory research is directed at the fundamental understanding of the physics and chemistry of the gelation process in bulk form and in porous media. This knowledge will be used to develop conceptual and mathematical models of the gelation process. Mathematical models will then be extended to predict the performance of gelled polymer treatments in oil reservoirs. Technical progress is described for the following tasks: physical and chemical characterization of gel systems; mechanisms of in situ gelation; and mathematical modelling of the gel systems.

  15. Coal-fired high performance power generating system. Quarterly progress report, October 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This report covers work carried out under Task 3, Preliminary R and D, under contract DE-AC22-92PC91155, {open_quotes}Engineering Development of a Coal-Fired High Performance Power Generation System{close_quotes} between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of (1) > 47% thermal efficiency; (2) NO{sub x}, SO{sub x} and particulates {<=}25% NSPS; (3) cost {>=}65% of heat input; (4) all solid wastes benign. In our design consideration, we have tried to render all waste streams benign and if possible convert them to a commercial product. It appears that vitrified slag has commercial values. If the flyash is reinjected through the furnace, along with the dry bottom ash, then the amount of the less valuable solid waste stream (ash) can be minimized. A limitation on this procedure arises if it results in the buildup of toxic metal concentrations in either the slag, the flyash or other APCD components. We have assembled analytical tools to describe the progress of specific toxic metals in our system. The outline of the analytical procedure is presented in the first section of this report. The strengths and corrosion resistance of five candidate refractories have been studied in this quarter. Some of the results are presented and compared for selected preparation conditions (mixing, drying time and drying temperatures). A 100 hour pilot-scale stagging combustor test of the prototype radiant panel is being planned. Several potential refractory brick materials are under review and five will be selected for the first 100 hour test. The design of the prototype panel is presented along with some of the test requirements.

  16. Analysis of a Battery Management System (BMS Control Strategy for Vibration Aged Nickel Manganese Cobalt Oxide (NMC Lithium-Ion 18650 Battery Cells

    Directory of Open Access Journals (Sweden)

    Thomas Bruen

    2016-04-01

    Full Text Available Electric vehicle (EV manufacturers are using cylindrical format cells as part of the vehicle’s rechargeable energy storage system (RESS. In a recent study focused at determining the ageing behavior of 2.2 Ah Nickel Manganese Cobalt Oxide (NMC Lithium-Ion 18650 battery cells, significant increases in the ohmic resistance (RO were observed post vibration testing. Typically a reduction in capacity was also noted. The vibration was representative of an automotive service life of 100,000 miles of European and North American customer operation. This paper presents a study which defines the effect that the change in electrical properties of vibration aged 18650 NMC cells can have on the control strategy employed by the battery management system (BMS of a hybrid electric vehicle (HEV. It also proposes various cell balancing strategies to manage these changes in electrical properties. Subsequently this study recommends that EV manufacturers conduct vibration testing as part of their cell selection and development activities so that electrical ageing characteristics associated with road induced vibration phenomena are incorporated to ensure effective BMS and RESS performance throughout the life of the vehicle.

  17. A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system

    Science.gov (United States)

    Zhao, Rui; Zhang, Sijie; Liu, Jie; Gu, Junjie

    2015-12-01

    Lithium ion (Li-ion) battery has emerged as an important power source for portable devices and electric vehicles due to its superiority over other energy storage technologies. A mild temperature variation as well as a proper operating temperature range are essential for a Li-ion battery to perform soundly and have a long service life. In this review paper, the heat generation and dissipation of Li-ion battery are firstly analyzed based on the energy conservation equations, followed by an examination of the hazardous effects of an above normal operating temperature. Then, advanced techniques in respect of electrode modification and systematic battery thermal management are inspected in detail as solutions in terms of reducing internal heat production and accelerating external heat dissipation, respectively. Specifically, variable parameters like electrode thickness and particle size of active material, along with optimization methods such as coating, doping, and adding conductive media are discussed in the electrode modification section, while the current development in air cooling, liquid cooling, heat pipe cooling, and phase change material cooling systems are reviewed in the thermal management part as different ways to improve the thermal performance of Li-ion batteries.

  18. Technical development of power storage system. Situation and problems of technical development of new battery in Meidensha

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    The prototype of a 1 kW-zinc bromide battery constructed in FY 1983 comprises the laminated battery stacks in the upper part and two pumps and two tanks for positive and negative electrodes in the lower part and these apparatuses are connected with piping. Two stacks (approx. 25 V x 10 A each) are connected in parallel to obtain a capacity of 1 kW (25 V x 40 A). The energy efficiency is 80% or more. The battery was scaled up to 10 kW in FY 1984 to 1986 and to 60 kW in FY 1987. The area of electrode in the 60 kW-battery was doubled to 1600 cm. Thirty cells are laminated in a stack. The voltage is 50 V. The stacks are piled up in two layers of 24 cells each which are connected in parallel to make a submodule. Two submodules connected in series show 50 kW (100 V x 500 A). A half part of the battery system was installed in a pit to prevent the electrolyte solution from flowing out of the building. The energy efficiency in daily operation reaches 78.2% and the transient response to the stepwise changing instruction of D.C. power reached approximately 0.6 seconds. (6 figs, 4 tabs, 3 photos)

  19. Application of valve-regulated lead-acid batteries for storage of solar electricity in stand-alone photovoltaic systems in the northwest areas of China

    Science.gov (United States)

    Hua, Shounan; Zhou, Qingshen; Kong, Delong; Ma, Jianping

    Photovoltaic (PV) installations for solar electric power generation are being established rapidly in the northwest areas of China, and it is increasingly important for these power systems to have reliable and cost effective energy storage. The lead-acid battery is the more commonly used storage technology for PV systems due to its low cost and its wide availability. However, analysis shows that it is the weakest component of PV power systems. Because the batteries can be over discharged, or operated under partial state of charge (PSOC), their service life in PV systems is shorter than could be expected. The working conditions of batteries in remote area installations are worse than those in situations where technical support is readily available. Capacity-loss in lead-acid batteries operated in remote locations often occurs through sulfation of electrodes and stratification of electrolyte. In northwest China, Shandong Sacred Sun Power Sources Industry Co. Ltd. type GFMU valve-regulated lead-acid (VRLA) batteries are being used in PV power stations. These batteries have an advanced grid structure, superior leady paste, and are manufactured using improved plate formation methods. Their characteristics, and their performance in PV systems, are discussed in this paper. The testing results of GFMU VRLA batteries in the laboratory have shown that the batteries could satisfy the demands of the International Electrotechnical Commission (IEC) standards for PV systems.

  20. 12 CFR 620.10 - Preparing the quarterly report.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Preparing the quarterly report. 620.10 Section 620.10 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM DISCLOSURE TO SHAREHOLDERS Quarterly Report § 620.10 Preparing the quarterly report. (a) Each institution of the Farm Credit...

  1. Development of 100-W High-Efficiency MPPT Power Conditioner and Evaluation of TEG System with Battery Load

    Science.gov (United States)

    Nagayoshi, Hiroshi; Nakabayashi, Tatsuya; Maiwa, Hiroshi; Kajikawa, Takenobu

    2011-05-01

    This paper describes a practical high-efficiency thermoelectric (TE) power conditioner with maximum power point tracking (MPPT) control for thermoelectric generators and the operation results for a battery load system. This power conditioner comprises a high-frequency step-up/step-down switching converter and a microcontroller; a synchronized switching circuit is introduced to achieve high conversion efficiency. Furthermore, it is equipped with a battery charge control program and has a maximum conversion efficiency of 96.7%. An impedance matching method developed for MPPT control showed excellent response against a change in the TEG output, making it suitable for solar TEGs as well as general applications.

  2. 一种新型蓄电池均衡充电系统的设计%Design of A New Type of Battery Equalization Charging System

    Institute of Scientific and Technical Information of China (English)

    马文静

    2014-01-01

    The battery is more and more widely used in various production areas ,the application and management of battery has be-come a key technology in the development of various equipment .Based on the research of battery technology ,a new type of battery equalization charging system was designed ,the implementation method of its hardware and software was introduced .%通过对蓄电池技术的研究,设计了一种新型蓄电池均衡充电系统,并介绍了其硬件和软件的实现方法。

  3. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew; Saxon, Aron; Powell, Mitchell; Shi, Ying

    2016-06-07

    This poster shows the progress in battery thermal characterization over the previous year. NREL collaborated with U.S. DRIVE and USABC battery developers to obtain thermal properties of their batteries, obtained heat capacity and heat generation of cells under various power profiles, obtained thermal images of the cells under various drive cycles, and used the measured results to validate thermal models. Thermal properties are used for the thermal analysis and design of improved battery thermal management systems to support achieve life and performance targets.

  4. Short-term energy outlook: Quarterly projections, second quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections for publication in January, April, July, and October in the Outlook. The forecast period for this issue of the Outlook extends from the second quarter of 1997 through the fourth quarter of 1998. Values for the first quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the second quarter 1997 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the Short-Term Integrated Forecasting System (STIFS). 34 figs., 19 tabs.

  5. Institutional applications of solar total energy systems. First quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    The meteorology followed to develop a data base for assessing market potential in the eight institutional subsectors is described. The subsectors are: elementary and high schools, colleges and universities, hospitals, military installations, public administration buildings, post offices, airports, and prisons. The market characteristics to be studied in detail are defined, and the methodology to be followed in assessing the relative economic performance of representative STE systems is given. The generic STE conceptual system design is introduced. (MHR)

  6. The STABALID project: Risk analysis of stationary Li-ion batteries for power system applications

    OpenAIRE

    2015-01-01

    This work presents a risk analysis performed to stationary Li-ion batteries within the framework of the STABALID project. The risk analysis had as main objective analysing the variety of hazards and dangerous situations that might be experienced by the battery during its life cycle and providing useful information on how to prevent or manage those undesired events. The first task of the risk analysis was the identification of all the hazards (or risks) that may arise during the battery life c...

  7. Development of an Experimental Testbed for Research in Lithium-Ion Battery Management Systems

    OpenAIRE

    Mehdi Ferdowsi; Landers, Robert G.; Samuel Novosad; Jack Savage; Poria Fajri; Nima Lotfi

    2013-01-01

    Advanced electrochemical batteries are becoming an integral part of a wide range of applications from household and commercial to smart grid, transportation, and aerospace applications. Among different battery technologies, lithium-ion (Li-ion) batteries are growing more and more popular due to their high energy density, high galvanic potential, low self-discharge, low weight, and the fact that they have almost no memory effect. However, one of the main obstacles facing the widespread commerc...

  8. Improving the aluminum-air battery system for use in electrical vehicles

    Science.gov (United States)

    Yang, Shaohua

    The objectives of this study include improvement of the efficiency of the aluminum/air battery system and demonstration of its ability for vehicle applications. The aluminum/air battery system can generate enough energy and power for driving ranges and acceleration similar to that of gasoline powered cars. Therefore has the potential to be a power source for electrical vehicles. Aluminum/air battery vehicle life cycle analysis was conducted and compared to that of lead/acid and nickel-metal hydride vehicles. Only the aluminum/air vehicles can be projected to have a travel range comparable to that of internal combustion engine vehicles (ICE). From this analysis, an aluminum/air vehicle is a promising candidate compared to ICE vehicles in terms of travel range, purchase price, fuel cost, and life cycle cost. We have chosen two grades of Al alloys (Al alloy 1350, 99.5% and Al alloy 1199, 99.99%) in our study. Only Al 1199 was studied extensively using Na 2SnO3 as an electrolyte additive. We then varied concentration and temperature, and determined the effects on the parasitic (corrosion) current density and open circuit potential. We also determined cell performance and selectivity curves. To optimize the performance of the cell based on our experiments, the recommended operating conditions are: 3--4 N NaOH, about 55°C, and a current density of 150--300 mA/cm2. We have modeled the cell performance using the equations we developed. The model prediction of cell performance shows good agreement with experimental data. For better cell performance, our model studies suggest use of higher electrolyte flow rate, smaller cell gap, higher conductivity and lower parasitic current density. We have analyzed the secondary current density distributions in a two plane, parallel Al/air cell and a wedge-type Al/air cell. The activity of the cathode has a large effect on the local current density. With increases in the cell gap, the local current density increases, but the increase is

  9. Power systems development facility. Quarterly technical progress report, July 1, 1994--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. (2) Hot Gas Cleanup Units to mate to all gas streams. (3) Combustion Gas Turbine. (4) Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  10. Optimal Power Scheduling for a Grid-Connected Hybrid PV-Wind-Battery Microgrid System

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Savaghebi, Mehdi

    2016-01-01

    In this paper, a lineal mathematical model is proposed to schedule optimally the power references of the distributed energy resources in a grid-connected hybrid PVwind-battery microgrid. The optimization of the short term scheduling problem is addressed through a mixed-integer linear programming...... mathematical model, wherein the cost of energy purchased from the main grid is minimized and profits for selling energy generated by photovoltaic arrays are maximized by considering both physical constraints and requirements for a feasible deployment in the real system. The optimization model is tested...... by using a real-time simulation of the model and uploaded it in a digital control platform. The results show the economic benefit of the proposed optimal scheduling approach in two different scenarios....

  11. Decontamination systems information and research program. Quarterly report, January--March 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The projects reported during this period are categorized into the following three areas: 1.0 Site Remediation Technologies, 2.0 Advanced Product Applications Testing, and 3.0 Information Systems, Public Policy, Community Outreach, and Economics. Summaries of the significant accomplishments for the projects reported during this period, are presented.

  12. Advanced gas turbine systems research. Quarterly report, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report summarizes the major accomplishments and reports issued by Advanced Gas Turbine Systems Research (AGTSR) during October 1, 1995 to December 31, 1995, reports on changes in the AGTSR membership, describes 1993, 1994 and 1995 subcontract progress, third combustion workshop, first combustion specialty meeting, materials workshop, industrial internship, research topics highlighted, and seminar sponsorship.

  13. Decontamination systems information and research program. Quarterly report, July--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The projects reported for the WVU Cooperative Agreement are categorized into the following three areas: (1) in situ remediation process development; (2) advanced product applications testing; and (3) information systems, public policy, community outreach, and economics. Summaries of the significant accomplishments for the projects reported during the period 1 July 1995 through 30 September 1995 are presented.

  14. Conceptual Inflatable Fabric Structures for Protective Crew Quarters Systems in Space Vehicles and Space Habitat Structures

    Science.gov (United States)

    2015-11-30

    13 18 Air Volumes as a Function of Inflation Pressure for the Cylindrical PCQS Concept .......14 19 Definitions of Ergonomic (a...experimental and computational mechanics research involving air-inflated woven fabric beams and drop-stitch fabric panels. SYSTEM CONCEPT DESCRIPTIONS...concept, however, had significant structural and ergonomic drawbacks. The major structural drawback was its inability to properly develop tension along

  15. Battery Energy Storage Systems to Mitigate the Variability of Photovoltaic Power Generation

    Science.gov (United States)

    Gurganus, Heath Alan

    Methods of generating renewable energy such as through solar photovoltaic (PV) cells and wind turbines offer great promise in terms of a reduced carbon footprint and overall impact on the environment. However, these methods also share the attribute of being highly stochastic, meaning they are variable in such a way that is difficult to forecast with sufficient accuracy. While solar power currently constitutes a small amount of generating potential in most regions, the cost of photovoltaics continues to decline and a trend has emerged to build larger PV plants than was once feasible. This has brought the matter of increased variability to the forefront of research in the industry. Energy storage has been proposed as a means of mitigating this increased variability --- and thus reducing the need to utilize traditional spinning reserves --- as well as offering auxiliary grid services such as peak-shifting and frequency control. This thesis addresses the feasibility of using electrochemical storage methods (i.e. batteries) to decrease the ramp rates of PV power plants. By building a simulation of a grid-connected PV array and a typical Battery Energy Storage System (BESS) in the NetLogo simulation environment, I have created a parameterized tool that can be tailored to describe almost any potential PV setup. This thesis describes the design and function of this model, and makes a case for the accuracy of its measurements by comparing its simulated output to that of well-documented real world sites. Finally, a set of recommendations for the design and operational parameters of such a system are then put forth based on the results of several experiments performed using this model.

  16. Advanced turbine systems program conceptual design and product development: Quarterly report, November 1993--January 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    This report describes progress made in the advanced turbine systems program conceptual design and product development. The topics of the report include selection of the Allison GFATS, castcool technology development for industrial engines test plan and schedule, code development and background gathering phase for the ultra low NOx combustion technology task, active turbine clearance task, and water vapor/air mixture cooling of turbine vanes task.

  17. E-SMART system for in-situ detection of environmental contaminants. Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) is a comprehensive, fully-integrated approach to in-situ, real-time detection and monitoring of environmental contaminants. E-SMART will provide new class of smart, highly sensitive, chemically-specific, in-situ, multichannel microsensors utilizing integrated optical interferometry technology, large, commercially viable set of E-SMART-compatible sensors, samplers, and network management components, and user-friendly graphical user interface for data evaluation and visualization.

  18. Computing Battery Lifetime Distributions

    NARCIS (Netherlands)

    Cloth, Lucia; Jongerden, Marijn R.; Haverkort, Boudewijn R.

    2007-01-01

    The usage of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  19. A DSP based power electronics interface for alternate/renewable energy systems. Quarterly report 3.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-31

    This report is an update on the research project involving the implementation of a DSP based power electronics interface for alternate/renewable energy systems that was funded by the Department of Energy under the Inventions and Innovations program 1998. The objective of this research is to develop a utility interface (dc to ac converter) suitable to interconnect alternate/renewable energy sources to the utility system. The DSP based power electronics interface in comparison with existing methods will excel in terms of efficiency, reliability and cost. Moreover DSP-based control provides the flexibility to upgrade/modify control algorithms to meet specific system requirements. The proposed interface will be capable of maintaining stiffness of the ac voltages at the point of common coupling regardless of variation in the input dc bus voltage. This will be achieved without the addition of any extra components to the basic interface topology but by inherently controlling the inverter switching strategy in accordance to the input voltage variation.

  20. Ballistic negatron battery

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.S.R. [Koneru Lakshmiah Univ.. Dept. of Electrical and Electronics Engineering, Green fields, Vaddeswaram (India)

    2012-07-01

    If we consider the Statistics there is drastic increase in dependence of batteries from year to year, due to necessity of power storage equipment at homes, power generating off grid and on grid Wind, PV systems, etc.. Where wind power is leading in renewable sector, there is a need to look at its development. Considering the scenario in India, most of the wind resource areas are far away from grid and the remaining areas which are near to grid are of low wind currents which is of no use connecting these equipment directly to grid. So, there is a need for a power storage utility to be integrated, such as the BNB (Ballistic Negatron Battery). In this situation a country like India need a battery which should be reliable, cheap and which can be industrialized. So this paper presents the concept of working, design, operation, adaptability of a Ballistic Negatron Battery. Unlike present batteries with low energy density, huge size, more weight, more charging time and low resistant to wear level, this Ballistic Negatron Battery comes with, 1) High energy storage capability (many multiples more than the present most advanced battery). 2) Very compact in size. 3) Almost negligible in weight compared to present batteries. 4) Charges with in very less time. 5) Never exhibits a wear level greater than zero. Seems like inconceivable but adoptable with simple physics. This paper will explains in detail the principle, model, design, construction and practical considerations considered in making this battery. (Author)

  1. Decontamination Systems Information and Research Program. Quarterly technical progress report, July 1--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    Progress reports are presented for the following projects: systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies--drain-enhanced soil flushing (DESF) for organic contaminants removal; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors--monolayer and multilayer self-assembled films for chemical sensors; Winfield Lock and Dam remediation; Winfield cleanup survey; assessment of technologies for hazardous waste site remediation--non-treatment technologies and pilot scale test facility implementation; assessment of environmental remediation storage technology; assessment of environmental remediation excavation technology; assessment of environmental remediation monitoring technology; and remediation of hazardous sites with steam reforming.

  2. Decontamination Systems Information and Research Program. Quarterly technical progress report, January 1--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This reports reports the progress/efforts performed on six technical projects: 1. systematic assessment of the state of hazardous waste clean-up technologies; 2. site remediation technologies (SRT):drain- enhanced soil flushing for organic contaminants removal; 3. SRT: in situ bio-remediation of organic contaminants; 4. excavation systems for hazardous waste sites: dust control methods for in-situ nuclear waste handling; 5. chemical destruction of polychlorinated biphenyls; and 6. development of organic sensors: monolayer and multilayer self-assembled films for chemical sensors.

  3. Decontamination systems information and research program. Quarterly report, April--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This report contains separate reports on the following subtasks: analysis of the Vortec cyclone melting system for remediation of PCB contaminated soils using CFD; drain enhanced soil flushing using prefabricated vertical drains; performance and characteristics evaluation of acrylates as grout barriers; development of standard test protocol barrier design models for desiccation barriers, and for in-situ formed barriers; in-situ bioremediation of chlorinated solvents at Portsmouth Gaseous Diffusion Plant; development of a decision support system and a prototype database for management of the EM50 technology development program; GIS-based infrastructure for site characterization and remediation; treatment of mixed wastes via fluidized bed steam reforming; use of centrifugal membrane technology to treat hazardous/radioactive waste; environmental pollution control devices based on novel forms of carbon; development of instrumental methods for analysis of nuclear wastes and environmental materials; production and testing of biosorbents and cleaning solutions for D and D; use of SpinTek centrifugal membrane and sorbents/cleaning solutions for D and D; West Virginia High Tech Consortium Foundation--Environmental support program; small business interaction opportunities; and approach for assessing potential voluntary environmental protection.

  4. Decontamination systems information and research program. Quarterly report, January 1--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Progress reports are given on the following projects: (A) Subsurface contaminants, containment and remediation: 1.1 Characteristic evaluation of grout barriers in grout testing chamber; 1.2 Development of standard test protocols and barrier design models for desiccation barriers; 1.3 Development of standard test protocols and barrier design models for in-situ formed barriers -- technical support; 1.4 Laboratory studies and field testing at the DOE/RMI Extrusion Plant (Ashtabula, Ohio); 1.5 Use of drained enhanced soil flushing for contaminants removal; (B) Mixed waste characterization, treatment and disposal: Analysis of the Vortec cyclone melting system for remediation of PCB contaminated soils using computational fluid dynamics; (C) Decontamination and decommissioning: 3.1 Production and evaluation of biosorbents and cleaning solutions for use in D and D; 3.2 Use of Spintek centrifugal membrane technology and sorbents/cleaning solutions in the D and D of DOE facilities; (D) Cross-cutting innovative technologies: 4.1 Use of centrifugal membrane technology with novel membranes to treat hazardous/radioactive wastes; 4.2 Environmental pollution control devices based on novel forms of carbon; 4.3 Design of rotating membrane filtration system for remediation technologies; and (E) Outreach: Small business technical based support.

  5. Idaho National Laboratory Quarterly Occurrence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 85 reportable events (18 from the 4th Qtr FY-15 and 67 from the prior three reporting quarters), as well as 25 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (8 from this quarter and 17 from the prior three quarters).

  6. Impedance-Based Battery Management for Metal-O2 Systems

    DEFF Research Database (Denmark)

    Christensen, Andreas Elkjær; Højberg, Jonathan; Norby, Poul

    2015-01-01

    In electric vehicles, reliable estimation of the state-of-charge (SoC) is crucial to determine the remaining capacity, but the electrochemical processes in metal-O2 batteries are very different to the Li-ion batteries used today, and current SoC-estimation methods prove insufficient. In Li-O2 bat...

  7. SiC-based High Efficiency Bidirectional Battery Converter for Smart PV Residential Systems

    DEFF Research Database (Denmark)

    Pham, Cam; Biris, Valeriu-Ciprian; Teodorescu, Remus;

    2013-01-01

    -DC converter for the battery storage is necessary, as energy will be processed twice. Realisation of the battery converter with silicon carbide (SiC) semiconductors offers many advantages compared to Silicon (Si), included higher power density and higher efficiency. In this paper the design of a simple high...

  8. Airborne Multisensor Pod System, Arms control and nonproliferation technologies: Second quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    Alonzo, G M; Sanford, N M [eds.

    1995-01-01

    This issue focuses on the Airborne Multisensor Pod System (AMPS) which is a collaboration of many of the DOE national laboratories to provide a scientific environment to research multiple sensors and the new information that can be derived from them. The bulk of the research has been directed at nonproliferation applications, but it has also proven useful in environmental monitoring and assessment, and land/water management. The contents of this issue are: using AMPS technology to detect proliferation and monitor resources; combining multisensor data to monitor facilities and natural resources; planning a AMPS mission; SAR pod produces images day or night, rain or shine; MSI pod combines data from multiple sensors; ESI pod will analyze emissions and effluents; and accessing AMPS information on the Internet.

  9. Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Luis M., E-mail: luis.fernandez@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Pablo, E-mail: pablo.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Carlos Andres, E-mail: carlosandres.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Jurado, Francisco, E-mail: fjurado@ujaen.e [Department of Electrical Engineering, EPS Linares, University of Jaen, C/Alfonso X, No. 28. 23700 Linares (Jaen) (Spain)

    2011-05-15

    Research highlights: {yields} Hybrid electric power system for a real surface tramway. {yields} Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. {yields} New control strategy for the energy management of the tramway. {yields} Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.

  10. Capacity optimization of battery-generator hybrid power system: Toward minimizing maintenance cost in expeditionary basecamp/operational energy applications

    Science.gov (United States)

    Onwuanumkpe, Jude C.

    Low and transient load condition are known to have deleterious impact on the efficiency and health of diesel generators (DGs). Extensive operation under such loads reduces fuel consumption and energy conversion efficiency, and contribute to diesel engine degradation, damage, or catastrophic failure. Non-ideal loads are prevalent in expeditionary base camps that support contingency operations in austere environments or remote locations where grid electricity is either non-existent or inaccessible. The impact of such loads on DGs exacerbates already overburdened basecamp energy logistics requirements. There is a need, therefore, to eliminate or prevent the occurrence of non-ideal loads. Although advances in diesel engine technologies have improved their performance, DGs remain vulnerable to the consequences of non-ideal loads and inherent inefficiencies of combustion. The mechanisms through which DGs respond to and mitigate non-ideal loads are also mechanically stressful and energy-intensive. Thus, this research investigated the idea of using batteries to prevent DGs from encountering non-ideal loads, as a way to reduce basecamp energy logistics requirements. Using a simple semi-empirical approach, the study modeled and simulated a battery-DG hybrid system under various load conditions. The simulation allowed for synthesis of design space in which specified battery and generator capacity can achieve optimal savings in fuel consumption and maintenance cost. Results show that a right-sized battery-diesel generator system allows for more than 50% cost savings relative to a standalone generator.

  11. Power control for direct-driven permanent magnet wind generator system with battery storage.

    Science.gov (United States)

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.

  12. Power Control for Direct-Driven Permanent Magnet Wind Generator System with Battery Storage

    Science.gov (United States)

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient. PMID:25050405

  13. Decontamination Systems Information and Research Program. Quarterly report, October--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is a summary of the work conducted for the period of October--December 1993 by the West Virginia University for the US DOE Morgantown Energy Technology Center. Research under the program focuses on pertinent technology for hazardous waste clean-up. This report reflects the progress performed on sixteen technical projects encompassed by this program: Systematic assessment of the state of hazardous waste clean-up technologies; Site remediation technologies: (a) Drain-enhanced soil flushing and (b) In situ bio-remediation of organic contaminants; Excavation systems for hazardous waste sites: Dust control methods for in-situ nuclear waste handling; Chemical destruction of polychlorinated biphenyls; Development of organic sensors: Monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale test facility implementation; Remediation of hazardous sites with steam reforming; Microbial enrichment for enhancing biodegradation of hazardous organic wastes in soil; Soil decontamination with a packed flotation column; Treatment of volatile organic compounds using biofilters; Use of granular activated carbon columns for the simultaneous removal of organic, heavy metals, and radionuclides; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; and Improved socio-economic assessment of alternative environmental restoration techniques.

  14. The Outer Solar System Origins Survey: I. Design and First-Quarter Discoveries

    CERN Document Server

    Bannister, Michele T; Petit, Jean-Marc; Gladman, Brett J; Gwyn, Stephen D J; Chen, Ying-Tung; Volk, Kathryn; Alexandersen, Mike; Benecchi, Susan; Delsanti, Audrey; Fraser, Wesley; Granvik, Mikael; Grundy, Will M; Guilbert-Lepoutre, Aurelie; Hestroffer, Daniel; Ip, Wing-Huen; Jakubik, Marian; Jones, Lynne; Kaib, Nathan; Lacerda, Pedro; Lawler, Samantha; Lehner, Matthew J; Lin, Hsing Wen; Lister, Tim; Lykawka, Patryk Sofia; Monty, Stephanie; Marsset, Michael; Murray-Clay, Ruth; Noll, Keith; Parker, Alex; Pike, Rosemary E; Rousselot, Philippe; Rusk, David; Schwamb, Megan E; Shankman, Cory; Sicardy, Bruno; Vernazza, Pierre; Wang, Shiang-Yu

    2015-01-01

    We report 85 trans-Neptunian objects (TNOs) from the first 42 deg$^{2}$ of the Outer Solar System Origins Survey (OSSOS), an ongoing $r$-band survey with the 0.9 deg$^{2}$ field-of-view MegaPrime camera on the 3.6 m Canada-France-Hawaii Telescope. A dense observing cadence and our innovative astrometric technique produced survey-measured orbital elements for these TNOs precise to a fractional semi-major axis uncertainty $<0.1\\%$ in two sequential years, instead of the 3-5 years needed with sparser observing strategies. These discoveries are free of ephemeris bias, a first for large Kuiper belt surveys. The survey's simulator provides full characterization, including calibrated detection efficiency functions, for debiasing the discovery sample. We confirm the existence of a cold "kernel" of objects within the main cold classical Kuiper belt, and imply the existence of an extension of the "stirred" cold classical Kuiper belt to at least several AU beyond the 2:1 mean motion resonance with Neptune. The popula...

  15. Battery Pack Thermal Design

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-14

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.

  16. Final report on the development of a 2 MW/10 second battery energy storage system for power disturbance protection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-11

    Voltage sags, swells and momentary power interruptions lasting a few cycles to several seconds are common disturbances on utility power distribution systems. These disturbances are a result of normal utility recloser switching activity due in part to distribution system short circuits from natural causes such as lightning, rodents, traffic accidents, and current overloads. Power disturbances pose serious problems for many customers with critical, voltage sensitive equipment. Faults can interrupt a manufacturing process, cause PLC`s to initialize their programmed logic and restart equipment out of sequence, create computer data errors, interrupt communications, lockup PC keyboards and cause equipment to malfunction. These momentary disturbances result in billions of dollars of lost productivity annually due to downtime, cleanup, lost production and the loss of customer confidence in the business. This report describes prototype development work for a factory assembled 2 MW/10 Second Battery Energy Storage System. The system design includes (1) a modular battery energy storage system comprised of several strings of batteries-each string provided with an integral Power Conversion System (PCS), (2) an Electronic Selector Device (ESD) comprised of a solid state static switch with sensing and power switching controls, and utility interconnection termination bus bars, and (3) a separate isolation transformer to step-up PCS output voltage to interface directly with the distribution transformer serving the industrial or commercial customer. The system monitors the utility distribution system voltage for voltage sags, swells, and interruptions, switches the customer`s critical loads from utility power to the energy stored in the systems batteries and provides up to 2 MVA until the disturbance clears or up to 10 seconds. Once the ESD sensing circuits have confirmed that the utility is again stable, it seamlessly returns the critical load to the utility. 22 figs., 1 tab.

  17. Instrumentation of dynamic gas pulse loading system. Technical progress report, first quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Mohaupt, H.

    1992-04-14

    The overall goal of this work is to further develop and field test a system of stimulating oil and gas wells, which increases the effective radius of the well bore so that more oil can flow into it, by recording pressure during the gas generation phase in real time so that fractures can be induced more predictably in the producing formation. Task 1: Complete the laboratory studies currently underway with the prototype model of the instrumentation currently being studied. Task 2: Perform field tests of the model in the Taft/Bakersfield area, utilizing operations closest to the engineers working on the project, and optimize the unit for various conditions encountered there. Task 3: Perform field test of the model in DGPL jobs which are scheduled in the mid-continent area, and optimize the unit for downhole conditions encountered there. Task 4: Analyze and summarize the results achieved during the complete test series, documenting the steps for usage of downhole instrumentation in the field, and compile data specifying use of the technology by others. Task 5: Prepare final report for DOE, and include also a report on the field tests completed. Describe and estimate the probability of the technology being commercialized and in what time span. The project has made substantial technical progress, though we are running about a month behind schedule. Expenditures are in line with the schedule. Increased widespread interest in the use of DGPL stimulation has kept us very busy. The computer modeling and test instrumentation developed under this program is already being applied to commercial operations.

  18. Modeling and simulation of battery in electric vehicle battery test system%电动汽车电池测试系统建模与仿真

    Institute of Scientific and Technical Information of China (English)

    俞聪; 姚维; 王子敬

    2013-01-01

    Aiming at the problems of unbalanced battery discharge and battery life shortened caused by the harmonic generated when electric vehicle is running,in order to test the harmonic of the DC current with different inductors and capacitors quickly,a test system model based on battery model was established in Simulink.Three kinds of popular equivalent circuit model of battery were introduced and compared,the second-order RC model was analyzed.The effect of each part of the second-order RC model based on test data was described,and the curve fitting of the nonlinear relationship between OCV and SOC by the method of least squares was presented in detail.The RC parameters in the equivalent circuit were identified.Vector control algorithm was introduced,which was used in the modeling of motor drive system.At last,the model of the whole system was established,and two tests were designed.The results indicate that the data obtained by the model is quite near to the real system,so it can be used to simulate the resistance and inductance value of real circuit.%针对电动汽车运行过程中产生的谐波会造成电池放电不均匀及导致电池使用寿命减短的问题,为了快速地测试不同电感电容对直流母线谐波的抑制效果,在Simulink下搭建了以电池模型为核心的电池测试系统模型.通过对现有3种常用电池等效电路模型的对比和二阶RC模型的分析,详细描述了电池二阶RC模型中各个部分的作用.采用电池实际放电时采集到的数据,通过最小二乘法对电池开路电压与SOC之间非线性关系进行了曲线拟合,同时对等效电路中的电阻电容参数进行了辨识;介绍了矢量控制算法的原理并采用该控制算法对电机驱动系统进行了建模;最后,建立了整个系统的模型,并设计了两个实验进行了验证.实验结果表明,从所建立的电池测试系统模型得到的数据与实际系统得到的数据相似,该模型可以用来仿真电动汽车运行实际电路.

  19. Grid-connected photovoltaic (PV) systems with batteries storage as solution to electrical grid outages in Burkina Faso

    Science.gov (United States)

    Abdoulaye, D.; Koalaga, Z.; Zougmore, F.

    2012-02-01

    This paper deals with a key solution for power outages problem experienced by many African countries and this through grid-connected photovoltaic (PV) systems with batteries storage. African grids are characterized by an insufficient power supply and frequent interruptions. Due to this fact, users who especially use classical grid-connected photovoltaic systems are unable to profit from their installation even if there is sun. In this study, we suggest the using of a grid-connected photovoltaic system with batteries storage as a solution to these problems. This photovoltaic system works by injecting the surplus of electricity production into grid and can also deliver electricity as a stand-alone system with all security needed. To achieve our study objectives, firstly we conducted a survey of a real situation of one African electrical grid, the case of Burkina Faso (SONABEL: National Electricity Company of Burkina). Secondly, as study case, we undertake a sizing, a modeling and a simulation of a grid-connected PV system with batteries storage for the LAME laboratory at the University of Ouagadougou. The simulation shows that the proposed grid-connected system allows users to profit from their photovoltaic installation at any time even if the public electrical grid has some failures either during the day or at night.

  20. Study of a solar PV-diesel-battery hybrid power system for a remotely located population near Rafha, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Shafiqur; Al-Hadhrami, Luai M. [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, KFUPM Box 767, Dhahran-31261 (Saudi Arabia)

    2010-12-15

    This study presents a PV-diesel hybrid power system with battery backup for a village being fed with diesel generated electricity to displace part of the diesel by solar. The hourly solar radiation data measured at the site along with PV modules mounted on fixed foundations, four generators of different rated powers, diesel prices of 0.2-1.2US$/l, different sizes of batteries and converters were used to find an optimal power system for the village. It was found that a PV array of 2000 kW and four generators of 1250, 750, 2250 and 250 kW; operating at a load factor of 70% required to run for 3317 h/yr, 4242 h/yr, 2820 h/yr and 3150 h/yr, respectively; to produce a mix of 17,640 MWh of electricity annually and 48.33 MWh per day. The cost of energy (COE) of diesel only and PV/diesel/battery power system with 21% solar penetration was found to be 0.190$/kWh and 0.219$/kWh respectively for a diesel price of 0.2$/l. The sensitivity analysis showed that at a diesel price of 0.6$/l the COE from hybrid system become almost the same as that of the diesel only system and above it, the hybrid system become more economical than the diesel only system. (author)

  1. Control of a Multi-Functional Inverter for Grid Integration of PV and Battery Energy Storage System

    DEFF Research Database (Denmark)

    Mousazadeh, Seyyed Yousef; Firoozabadi, Mehdi Savaghebi; Beirami, A.

    2015-01-01

    This paper presents a multi-functional control of a DC/AC inverter for Power Quality compensation of nonlinear and unequal local loads and grid integration of hybrid photovoltaic (PV) and battery energy storage systems. Multi-layer neural network estimator and a DC/DC converter are used for maximum...... and nonlinear local loads. The simulation results which implemented in MATLAB/SIMULINK software verify the effectiveness of the system....

  2. Design methodologies for sizing a battery bank devoted to a stand-alone and electronically passive wind turbine system

    OpenAIRE

    Belouda, Malek; Jaafar, Amine; Sareni, Bruno; Roboam, Xavier; Belhadj, Jamel

    2016-01-01

    International audience; In this paper, the authors investigate four original methodologies for sizing a battery bank inside a passive wind turbine system. This device interacts with wind and load cycles, especially for a stand-alone application. Generally, actual wind speed measurements are of long duration which leads to extensive processing time in a global optimization context requiring a wide number of system simulations. The first part of this article outlines two sizing methodologies bas...

  3. Optimized Sizing, Selection, and Economic Analysis of Battery Energy Storage for Grid-Connected Wind-PV Hybrid System

    OpenAIRE

    Hina Fathima; K. Palanisamy

    2015-01-01

    Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The ...

  4. An Optimal Control Strategy for DC Bus Voltage Regulation in Photovoltaic System with Battery Energy Storage

    Directory of Open Access Journals (Sweden)

    Muhamad Zalani Daud

    2014-01-01

    Full Text Available This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV system with battery energy storage (BES. The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC. For the grid side VSC (G-VSC, two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.

  5. An optimal control strategy for DC bus voltage regulation in photovoltaic system with battery energy storage.

    Science.gov (United States)

    Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M A

    2014-01-01

    This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.

  6. Prospects of Wind-Diesel Generator-Battery Hybrid Power System: A Feasibility Study in Algeria

    Directory of Open Access Journals (Sweden)

    Djohra Saheb-Koussa

    2013-01-01

    Full Text Available The present work analyses the feasibility of a wind-diesel generator-battery hybrid system. The wind energy resource data are collected from the weather station at the Renewable Energy Development Center of Bouzareah in Algeria. The recorded values vary from 5.5 m/s to 7 m/s at 25 m. The hybrid system analysis has shown that for a household consuming 1,270 kWh/yr, the cost of energy is 1.205 USD/kWh and produces 2,493 kWh/yr in which 93% of electricity comes from wind energy. From this study, it is clear that the optimized hybrid system is more cost effective compared to the diesel generator system alone where the NPC and COE are equal, respectively, to 19,561 USD and 1.205 USD/kWh and 47,932 USD and 2.952 USD/kWh. The sensitivity analysis predicts that the grid extension distance varies from 1.25 to 1.85 km depending on wind speed and fuel price which indicate a positive result to implement a stand-alone hybrid power system as an alternative to grid extension. In addition to the feasibility of this system, it can reduce the emission of the CO2, SO2, and NOx, respectively, from 4758 to 147, from 9.45 to 0.294, and from 105 to 3.23 kg/yr. Investments in autonomous renewable energy systems should be considered particularly in remote areas. They can be financed in the framework of the National Energy Action Plan of Algeria.

  7. Short-term energy outlook, quarterly projections, first quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The forecast period for this issue of the Outlook extends from the first quarter of 1998 through the fourth quarter of 1999. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the first quarter 1998 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are adjusted by EIA to reflect EIA assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 24 figs., 19 tabs.

  8. Electrochemical behavior of PEDOT/Lignin in Ionic Liquid Electrolytes: Suitable Cathode/Electrolyte System for Sodium Batteries.

    Science.gov (United States)

    Casado, Nerea; Hilder, Matthias; Pozo-Gonzalo, Cristina; Forsyth, Maria; Mecerreyes, David

    2017-02-15

    Biomass derived polymers, such as lignin, contain redox quinone/hydroquinone redox moieties that can be used to store charge. Composites based on the biopolymer lignin and several conjugated polymers have shown good charge storage properties. However, their performance has been just studied in acidic aqueous media limiting the applications mainly to supercapacitors. Here we show that PEDOT/Lignin biopolymers are electroactive in aprotic ionic liquids and we move a step further by assembling sodium full cell batteries using PEDOT/Lignin as electrode material and ionic liquid electrolytes. Thus, the electrochemical activity and cycling of PEDOT/Lignin electrodes is investigated in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPyrTFSI), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (BMPyrFSI), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMImTFSI) and 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMImFSI) ionic liquid electrolytes. The effects of water and sodium salt addition to the ionic liquids are investigated in order to obtain optimum electrolyte systems for sodium batteries. Finally, sodium batteries based on PEDOT/Lignin cathode with imidazolium based ionic liquid electrolyte showed higher capacity values than pyrrolidinium ones, reaching 70 mAhg-1. Our results demonstrate that PEDOT/Lignin composites can serve as low cost and sustainable cathode materials for sodium batteries.

  9. A Wind Power and Load Prediction Based Frequency Control Approach for Wind-Diesel-Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Chao Peng

    2015-01-01

    Full Text Available A frequency control approach based on wind power and load power prediction information is proposed for wind-diesel-battery hybrid power system (WDBHPS. To maintain the frequency stability by wind power and diesel generation as much as possible, a fuzzy control theory based wind and diesel power control module is designed according to wind power and load prediction information. To compensate frequency fluctuation in real time and enhance system disturbance rejection ability, a battery energy storage system real-time control module is designed based on ADRC (active disturbance rejection control. The simulation experiment results demonstrate that the proposed approach has a better disturbance rejection ability and frequency control performance compared with the traditional droop control approach.

  10. Influence of state of charge in lead-acid batteries operating in PV systems; Comportamiento no repetitivo de las baterias de plomo-acido operando en sistemas FV.

    Energy Technology Data Exchange (ETDEWEB)

    Vela, N.; Chenlo, F.

    2004-07-01

    Correct determination of the overcharge cut-off voltage is a key point for both the optimal operation and maximum life-time of batteries in photovoltaic (PV) systems. This work presents the results of analysing the influence on charge voltage of different operation conditions, mainly current rate, temperature and state of charge (SOC). From the results obtained we have observed that voltage evolution during a charge process depends on its activation degree of the battery. The battery activation is reached when battery was previously fully charged. So, we can conclude that variation of the charge voltage with time as function of starting point (fully charged or fully discharged) together with current rate and temperature should be taking into account in the battery SOC determination and in the design of charge controllers. (Author)

  11. Ecotoxicological assessment of bromobenzene using a test battery with five model systems.

    Science.gov (United States)

    Zurita, Jorge L; Jos, Angeles; del Peso, Ana; Salguero, Manuel; López-Artíguez, Miguel; Repetto, Guillermo

    2007-04-01

    Bromobenzene (BrB) is used as a solvent for crystallization and as an additive to motor oils and may be released into the environment through various waste streams. However, there is limited available information about the toxic hazard of BrB in the aquatic environment. Consequently, the ecotoxicological effects induced by BrB were investigated using five model systems with representants from four trophic levels. The battery included bioluminescence inhibition of the bacterium Vibrio fischeri, growth inhibition of the alga Chlorella vulgaris and immobilization of the cladoceran Daphnia magna. Total protein content, neutral red uptake and MTS metabolization were reduced, while lysosomal function, succinate dehydrogenase activity, G6PDH activity and leakage, metallothionein levels and EROD activity were stimulated in PLHC-1 and RTG-2 fish cell lines. The most sensitive bioindicator was the bioluminiscence of V. fischeri, with an EC(50) of 0.04mM BrB at 15min and a non-observed adverse effect level of 0.02 mM BrB. There is a large difference in sensitivity to BrB among the model systems probably due to the metabolic capacity of the different species. PLHC-1 cells were more sensitive to BrB than RTG-2 cells. The most prominent morphological effects observed were hydropic degeneration, loss of cells and of the perinuclear pattern of distribution of lysosomes. Therefore, BrB should be classified as toxic to aquatic organisms.

  12. A battery-free multichannel digital neural/EMG telemetry system for flying insects.

    Science.gov (United States)

    Thomas, Stewart J; Harrison, Reid R; Leonardo, Anthony; Reynolds, Matthew S

    2012-10-01

    This paper presents a digital neural/EMG telemetry system small enough and lightweight enough to permit recording from insects in flight. It has a measured flight package mass of only 38 mg. This system includes a single-chip telemetry integrated circuit (IC) employing RF power harvesting for battery-free operation, with communication via modulated backscatter in the UHF (902-928 MHz) band. An on-chip 11-bit ADC digitizes 10 neural channels with a sampling rate of 26.1 kSps and 4 EMG channels at 1.63 kSps, and telemeters this data wirelessly to a base station. The companion base station transceiver includes an RF transmitter of +36 dBm (4 W) output power to wirelessly power the telemetry IC, and a digital receiver with a sensitivity of -70 dBm for 10⁻⁵ BER at 5.0 Mbps to receive the data stream from the telemetry IC. The telemetry chip was fabricated in a commercial 0.35 μ m 4M1P (4 metal, 1 poly) CMOS process. The die measures 2.36 × 1.88 mm, is 250 μm thick, and is wire bonded into a flex circuit assembly measuring 4.6 × 6.8 mm.

  13. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems

    Science.gov (United States)

    Chalk, Steven G.; Miller, James F.

    Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center

  14. Battery thermal management unit

    Science.gov (United States)

    Sanders, Nicholas A.

    1989-03-01

    A battery warming device has been designed which uses waste heat from an operating internal combustion engine to warm a battery. A portion of the waste heat is stored in the sensible and latent heat of a phase change type material for use in maintaining the battery temperature after the engine is shut off. The basic design of the device consists of a Phase Change Material (PCM) reservoir and a simple heat exchanger connected to the engineer's cooling system. Two types of units were built, tested and field trialed. A strap-on type which was strapped to the side of an automotive battery and was intended for the automotive after-market and a tray type on which a battery or batteries sat. This unit was intended for the heavy duty truck market. It was determined that both types of units increased the average cranking power of the batteries they were applied to. Although there were several design problems with the units such as the need for an automatic thermostatically controlled bypass valve, the overall feeling is that there is a market opportunity for both the strap-on and tray type battery warming units.

  15. High Efficiency Space Power Systems Project Advanced Space-Rated Batteries

    Science.gov (United States)

    Reid, Concha M.

    2011-01-01

    Case Western Reserve University (CWRU) has an agreement with China National Offshore Oil Corporation New Energy Investment Company, Ltd. (CNOOC), under the United States-China EcoPartnerships Framework, to create a bi-national entity seeking to develop technically feasible and economically viable solutions to energy and environmental issues. Advanced batteries have been identified as one of the initial areas targeted for collaborations. CWRU invited NASA Glenn Research Center (GRC) personnel from the Electrochemistry Branch to CWRU to discuss various aspects of advanced battery development as they might apply to this partnership. Topics discussed included: the process for the selection of a battery chemistry; the establishment of an integrated development program; project management/technical interactions; new technology developments; and synergies between batteries for automotive and space operations. Additional collaborations between CWRU and NASA GRC's Electrochemistry Branch were also discussed.

  16. Magnet Design and Analysis of a 40 Tesla Long Pulse System Energized by a Battery Bank

    Science.gov (United States)

    Lv, Y. L.; Peng, T.; Wang, G. B.; Ding, T. H.; Han, X. T.; Pan, Y.; Li, L.

    2013-03-01

    A 40 tesla long pulse magnet and a battery bank as the power supply have been designed. This is now under construction at the Wuhan National High Magnetic Field Center. The 22 mm bore magnet will generate smooth pulses with duration 1 s and rise time 0.5 s. The battery bank consists of 945 12V/200 Ah lead-acid battery cells. The magnet and battery bank were optimized by codes developed in-house and by ANSYS. The coil was made from soft copper with internal reinforcement by fiber-epoxy composite; it is divided into two sections connected in series. The inner section consists of helix coils with each layer reinforced by Zylon composite. The outer section will be wound from copper sheet and externally reinforced by carbon fiber composite.

  17. Micro controlled system used in the control and in the monitoring of batteries bank; Sistema microcontrolado usado no controle e monitoracao de banco de baterias

    Energy Technology Data Exchange (ETDEWEB)

    Bonacorso, Nelso Gauze

    1991-09-01

    The development of a closed loop micro controlled based system for battery charging, monitoring charge and discharge, and even more, detecting structure failures is presented. The control algorithm is emphasized, being applied a charging method which uses voltage, current and temperature information. The objective of using this control technique is the design of a high performance battery charger, allowing the longest battery life possible, in reliable UPS applications. A prototype has been built and laboratory tested. Experimental results, developed program routines and the system circuits are included. (author)

  18. SIMULATING MODEL OF SYSTEM FOR MAXIMUM OUTPUT POWER OF SOLAR BATTERY

    Directory of Open Access Journals (Sweden)

    Abdul Majid Al-Khatib

    2005-01-01

    Full Text Available Simulating model and algorithm for control of electric power converter of a solar battery are proposed in the paper. Control device of D.C. step-down converter with pulse-width modulation is designed on microprocessor basis. Simulating model permits to investigate various operational modes of a solar battery, demonstrates a process with maximum power mode and is characterized by convenient user’s interface.

  19. Design, Operation, Control, and Economics of a Photovoltaic/Fuel Cell/Battery Hybrid Renewable Energy System for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Zachary S. Whiteman

    2015-06-01

    Full Text Available Meeting rapidly growing global energy demand—without producing greenhouse gases or further diminishing the availability of non-renewable resources—requires the development of affordable low-emission renewable energy systems. Here, we develop a hybrid renewable energy system (HRES for automotive applications—specifically, a roof-installed photovoltaic (PV array combined with a PEM fuel cell/NiCd battery bus currently operating shuttle routes on the University of Delaware campus. The system’s overall operating objectives—meeting the total power demand of the bus and maintaining the desired state of charge (SOC of the NiCd battery—are achieved with appropriately designed controllers: a logic-based “algebraic controller” and a standard PI controller. The design, implementation, and performance of the hybrid system are demonstrated via simulation of real shuttle runs under various operating conditions. The results show that both control strategies perform equally well in enabling the HRES to meet its objectives under typical operating conditions, and under sudden cloud cover conditions; however, at consistently high bus speeds, battery SOC maintenance is better, and the system consumes less hydrogen, with PI control. An economic analysis of the PV investment necessary to realize the HRES design objectives indicates a return on investment of approximately 30% (a slight, but nonetheless positive, ~$550 profit over the bus lifetime in Newark, DE, establishing the economic viability of the proposed addition of a PV array to the existing University of Delaware fuel cell/battery bus.

  20. Battery monitoring in Mexican hybrid power systems; Monitoreo de las baterias en sistemas de potencia hibridos Mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J. Roberto; Agredano, Jaime [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    Hybrid power systems for an autonomous power supply are based on different renewable and fossil energy sources. They are considered as a good option for the power supply of remote areas. In these systems an energy storage is a vital necessity and very often this storage will consist of batteries which are generally connected in series and parallel arrays, or both. In Mexico as in other countries, the most extensively use batteries used for this application are the stationary and electric car type deep cycle batteries. However the experience with them in these systems is generally not very good. One way to overcome this problem is to maintain a regular monitoring of installing monitoring equipment, in order to make preventive actions before a developing fault can have serious consequences and in this manner increase the practical lifetime of the batteries. Unfortunately, battery monitoring is not easy task because most of the hybrid power systems are installed in remote areas which makes it difficult and expensive. In Mexico it has been not possible to maintain a regular monitoring of all hybrid power systems installed, due to the high cost of this work and the lack of founds. The hybrid power systems installed in the state of Quintana Roo are the only systems that have been continuously monitored since their installation. This paper gives an overview of the hybrid power systems installed in Mexico, focusing in the battery banks, the way they are being monitored, the main parameters used to detect possible premature problems and the method used to evaluate the battery bank conditions. Finally some results from the battery banks monitoring activities are presented. [Espanol] Los sistemas de potencia hibridos para un suministro autonomo de energia a regiones remotas, estan basados en diferentes fuentes de energia fosiles y renovables. Estos son considerados como una buena opcion para el suministro de energia a areas remotas. En estos sistemas es una necesidad vital el

  1. Research, development and demonstration of a fuel cell/battery powered bus system. Phase 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-02-28

    Purpose of the Phase I effort was to demonstrate feasibility of the fuel cell/battery system for powering a small bus (under 30 ft or 9 m) on an urban bus route. A brassboard powerplant was specified, designed, fabricated, and tested to demonstrate feasibility in the laboratory. The proof-of-concept bus, with a powerplant scaled up from the brassboard, will be demonstrated under Phase II.

  2. A New Supercapacitor and Li-ion Battery Hybrid System for Electric Vehicle in ADVISOR

    Science.gov (United States)

    Peng, Xiao; Shuhai, Quan; Changjun, Xie

    2017-02-01

    The supercapacitor (SC) and Li-ion battery(BT) hybrid energy storage system(HESS) electric vehicle(EV) is gaining universal attention. The topology is of importance for the SC/BT HESS. A new SC/BT topology HESS with a rule-based energy management strategy for EV was proposed. The BT pack is connected directly to the DC link via a controlled switch. The SC pack is connected to the DC link via a controlled switch. A uni-directional DC/DC converter is connected between the SC pack and the BT pack. The braking regeneration energy is all harvested by the SC pack. The output power of BT pack is limited. The different SC/BT configurations with varied BT maximum Ah capacity factor and SC maximum capacity factor are simulated in ADVISOR. Simulation results show that BT maximum Ah capacity factor has little impact on vehicle acceleration performance and maximum speed. SC maximum capacity factor has significant impact on vehicle acceleration performance and maximum speed. The fuel economy isn’t affected.

  3. Outbreaks of Virulent Infectious Bursal Disease in Flocks of Battery Cage Brooding System of Commercial Chickens

    Directory of Open Access Journals (Sweden)

    H. B. Aliyu

    2016-01-01

    Full Text Available Clinical and pathological investigations were conducted on outbreaks of infectious bursal disease (IBD in pullets under brooding using the battery cage system in a commercial poultry farm in Kaduna, Nigeria. Two consecutive outbreaks of IBD on the same farm were studied. The onset of the disease and morbidity and mortality rates were recorded. Postmortem examinations were conducted and gross lesions recorded. Tissues were collected and fixed in 10% buffered formalin and processed for histopathological examinations. In the first outbreak, 80 to 100% of the chicks were affected at the age of 4 to 5 weeks and mortality rate was 95.8% and lasted for 9 days. In the second outbreak, the mortality rate was 43.3% and it also lasted for 9 days. At the onset of the disease, the birds were also 4-week-old like in case 1. The disease was diagnosed based on clinical signs, pathology, and agar gel immunodiffusion test (AGID. Clinical signs, gross lesions, and histopathological findings were characteristic of virulent infectious bursal disease. After the first outbreak (case 1 the house was disinfected using polidine® (iodophor compound, V-ox® (inorganic peroxygen compounds, CID20® (quaternary ammonium chloride, aldehydes, and alcohol, terminator III® (phenols, and glutasan® (aldehyde and quaternary ammonium chloride. But they failed to eliminate the IBD virus from the poultry pen.

  4. Decreasing vitamin premix on chicken carcass composition and blood chemistry in floor and battery cage systems

    Directory of Open Access Journals (Sweden)

    Mahmood Shivazad

    2012-01-01

    Full Text Available Two experiments were conducted the to compare the effect of a decreasing amount of vitamin premix in diets inbroilers from 29 to 42 days of age on carcass composition and blood chemistry in floor (Experiment 1 and battery cage (Experiment 2 systems. At 35 and 42 days of ages, one bird of each replicate was slaughtered and carcass composition was measured. Blood concentrations of alkaline phosphatase (ALP and Ca were used to diagnose vitamin D3 deficiency and enzymes aspartate amino transferase (AST to identify vitamin E deficiency. Floor raised birds showed that vitamin premix reduction/withdrawal at 29 days of age did not impair body weight (BW, carcass composition, ALP and Ca during the final rearing period. However, diet without vitamin premix (T1 had a higher AST at 42 days of age than the other diets. Birds reared in cages were slightly more sensitive to vitamin premix reduction/withdrawal, probably due to the impracticality of performing coprophagy. Diet without vitamin premix (T1 had a lower BW, carcass breast and thigh yield at 42 days of age; also serum ALP, AST and Ca were impaired. In conclusion, the withdrawal of vitamins is not a reasonable option but it is possible to reduce vitamin premix in finisher broilers’ diets without negative effects on performance and on some metabolic traits during the finisher period with both methods of rearing.

  5. Bifunctional redox flow battery - 2. V(III)/V(II)-L-cystine(O{sub 2}) system

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Y.H.; Xun, Y. [Research Institute of Chemical Defense, Beijing 100083 (China); Cheng, J.; Yang, Y.S. [Research Institute of Chemical Defense, Beijing 100083 (China); Beijing Science and Technology University, Beijing 100083 (China); Ma, P.H. [Full Cell R and D Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China)

    2008-08-20

    A new bifunctional redox flow battery (BRFB) system, V(III)/V(II) - L-cystine(O{sub 2}), was systematically investigated by using different separators. It is shown that during charge, water transfer is significantly restricted with increasing the concentration of HBr when the Nafion 115 cation exchange membrane is employed. The same result can be obtained when the gas diffusion layer (GDL) hot-pressed separator is used. The organic electro-synthesis is directly correlated with the crossover of vanadium. When employing the anion exchange membrane, the electro-synthesis efficiency is over 96% due to a minimal crossover of vanadium. When the GDL hot-pressed separator is applied, the crossover of vanadium and water transfer are noticeably prevented and the electro-synthesis efficiency of over 99% is obtained. Those impurities such as vanadium ions and bromine can be eliminated through the purification of organic electro-synthesized products. The purified product is identified to be L-cysteic acid by IR spectrum. The BRFB shows a favorable discharge performance at a current density of 20 mA cm{sup -2}. Best discharge performance is achieved by using the GDL hot-pressed separator. The coulombic efficiency of 87% and energy efficiency of about 58% can be obtained. The cause of major energy losses is mainly associated with the cross-contamination of anodic and cathodic active electrolytes. (author)

  6. Reference compensation method for enabling dispatchability of the wind power generation using battery energy storage system

    Directory of Open Access Journals (Sweden)

    Youngho Cho

    2016-01-01

    Full Text Available Due to intermittent characteristics of wind power generation, battery energy storage system (BESS has been exploited for decreasing the adverse impact of wind power output on the grid. This paper focuses on the BESS operation strategy called reference compensation for dispatchable wind. By adaptively compensating a reference signal that is typically set to be an average forecasted wind power for certain duration, the BESS maintains its SOC within a proper range, avoiding the non-compliant BESS when it is required to be charged or discharged because it is already fully charged or discharged, respectively, due to the unavoidable forecast errors. The proposed method has been applied to the real world wind farm data which is scaled down for the simulation in order to demonstrate its effectiveness of the proposed method. Simulation results demonstrate that the proposed method can decrease the operation suspension due to non-functioning BESS and keep the BESS on, and help thus enable the wind dispatchability.

  7. Polyvinylidene fluoride membrane by novel electrospinning system for separator of Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Cuiru [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Jia, Zhidong; Guan, Zhicheng; Wang, Liming [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2009-04-01

    The remarkable characteristics of nanofibers mats electrospun are large surface area to volume ratio and high porosity, which are crucial to increase the ionic conductivity of membrane full of liquid electrolyte, in this aspect, electrospinning is prior to the other methods, such as dry method, wet method, etc. Therefore, fabricating the separator of Li-ion batteries by electrospinning is potential and promising. The PVDF membranes were fabricated by electrospinning. The experiment demonstrated that the main deficiency in the fabricating separators process by electrospinning was low mechanical property, which induced partial short circuits inside the cells. Several methods were presented to enhance the mechanical strength. The experiments demonstrated that the higher the solution concentration was, the stronger the mechanical strength was, and the higher the voltage was, the stronger the mechanical strength was. Additionally, the spherical hat collection target instead of conditional plane target was applied in the electrospinning system, as a result, the thickness of the membrane was more uniform and the fiber diameter was also more uniform. Therefore, the charge and discharge capacity of the coin type cell composed of the separator collected by spherical hat target exceeded the plane target, and the electrospinning separators exceeded the commercial polypropylene separator. (author)

  8. Polyvinylidene fluoride membrane by novel electrospinning system for separator of Li-ion batteries

    Science.gov (United States)

    Yang, Cuiru; Jia, Zhidong; Guan, Zhicheng; Wang, Liming

    The remarkable characteristics of nanofibers mats electrospun are large surface area to volume ratio and high porosity, which are crucial to increase the ionic conductivity of membrane full of liquid electrolyte, in this aspect, electrospinning is prior to the other methods, such as dry method, wet method, etc. Therefore, fabricating the separator of Li-ion batteries by electrospinning is potential and promising. The PVDF membranes were fabricated by electrospinning. The experiment demonstrated that the main deficiency in the fabricating separators process by electrospinning was low mechanical property, which induced partial short circuits inside the cells. Several methods were presented to enhance the mechanical strength. The experiments demonstrated that the higher the solution concentration was, the stronger the mechanical strength was, and the higher the voltage was, the stronger the mechanical strength was. Additionally, the spherical hat collection target instead of conditional plane target was applied in the electrospinning system, as a result, the thickness of the membrane was more uniform and the fiber diameter was also more uniform. Therefore, the charge and discharge capacity of the coin type cell composed of the separator collected by spherical hat target exceeded the plane target, and the electrospinning separators exceeded the commercial polypropylene separator.

  9. Joint Force Quarterly. Issue 73, 2nd Quarter 2014

    Science.gov (United States)

    2014-04-01

    For example, if missile defense is a priority then perhaps the Ballistic Missile Defense System (BMDS) is key cyber terrain. Step two in this...better forensics , and trustworthy computing platforms—is crucial. While one of the principal advantages to cyberspace is the ability to share...Silent Watch JFQ 73, 2nd Quarter 2014 capabilities to defeat a wide range of stressing ballistic missiles in either the exoatmosphere (outer space) or

  10. Optimization of FACTS and battery systems for supporting wind integration; Einsatzoptimierung von FACTS und Batterieanlagen zur Unterstuetzung der Windintegration

    Energy Technology Data Exchange (ETDEWEB)

    Danesh Shakib, Arefeh

    2012-07-01

    In the future an increase of wind energy contribution for electricity generation in Germany is expected, especially regarding to the development of offshore wind farms. The fundamental difficulty lies in the optimum transfer of power for long distances using existing 380-kV voltage level. With the help of modern power electronics (FACTS) it is principally possible to influence the active power flow as well as the voltage stability. Another problem of using wind energy is the unpredictable character of the wind, which leads to a higher requirement of control power from the adjustable traditional power plants. Here, the application of modern high energy battery systems seems to be a meaningful possibility, in the case of the wind farms with a DC transmission concept. In this case, the existent voltage level can be used for the battery connection too. The present study considers the issues of the wind energy applications. The wind integration in the north and east regions requires a connection to the high voltage grid, but the number of available connection points in these regions is extremely low. The network topology of the German 380-kV grid will be simulated with the help of existing documents. For determining the optimal connection points of the planed offshore wind farms voltage stability analyses will be performed based on the simulated network. Thus, it is possible to compare the voltage behaviors of the available connection points with each other and to estimate the amount of the maximum active power injection, respectively. Furthermore, according to the network analysis with an additional wind injection, placement technologies of the FACTS devices will be developed and presented. Although the focus the studies is on static var compensators (SVC) and thyristor controlled compensators (TCSC), the methods can be used for other FACTS devices. To determine the optimum setting values of FACTS an optimal power flow problem will be formulated. Sensitivity analyses

  11. Battery energy storage technologies

    Science.gov (United States)

    Anderson, Max D.; Carr, Dodd S.

    1993-03-01

    Battery energy storage systems, comprising lead-acid batteries, power conversion systems, and control systems, are used by three main groups: power generating utilities, power distributing utilities, and major power consumers (such as electric furnace foundries). The principal advantages of battery energy storage systems to generating utilities include load leveling, frequency control, spinning reserve, modular construction, convenient siting, no emissions, and investment deferral for new generation and transmission equipment. Power distributing utilities and major power consumers can avoid costly demand changes by discharging their batteries at peak periods and then recharging with lower cost off-peak power (say, at night). Battery energy storage systems are most cost effective when designed for discharge periods of less than 5 h; other systems (for example, pumped water storage) are better suited for longer discharges. It is estimated that by the year 2000 there will be a potential need for 4000 MW of battery energy storage. New construction of five plants totaling 100 MW is presently scheduled for completion by the Puerto Rico Electric Power Authority between 1992 and 1995.

  12. Water soluble graphene as electrolyte additive in magnesium-air battery system

    Science.gov (United States)

    Saminathan, K.; Mayilvel Dinesh, M.; Selvam, M.; Srither, S. R.; Rajendran, V.; Kaler, Karan V. I. S.

    2015-02-01

    Magnesium-air (Mg-air) batteries are an important energy source used to power electronic equipment and automobiles. Metal-air batteries give more energy density due to surplus air involved in reduction reaction at air cathode. In this study, the scope of improvements in the efficiency of Metal-air batteries is investigated through addition of water soluble graphene (WSG) as inhibitor in NaCl electrolyte. The discharge performance, corrosion behaviour and electrochemical impedance are studied for (i) the conventional Mg-air battery using 3.5% NaCl and (ii) Mg-air battery with WSG-based 3.5% NaCl electrolyte. X-ray diffraction analysis for WSG is carried out and it shows the crystalline nature of WSG by an intense sharp peak at 26.3°. Scanning electron microscope study is also performed and shows the flake-like structure of WSG denoted by thin layers of carbon. The immersion of WSG in 3.5% NaCl electrolyte increased the current density from 13.24 to 19.33 mA cm-2. Meanwhile, the WSG-based Mg-air battery was found to hold specific discharge capacity of 1030.71 mAh g-1, which was higher than that obtained in 3.5% NaCl electrolyte (i.e., 822.85 mAh g-1). The WSG-based Mg-air battery shows good self-discharge capacity and higher electrochemical activity during discharge.

  13. Idaho National Laboratory Quarterly Occurrence Analysis - 1st Quarter FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 74 reportable events (16 from the 1st Qtr FY-16 and 58 from the prior three reporting quarters), as well as 35 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (15 from this quarter and 20 from the prior three quarters).

  14. Tuning of Kalman Filter Parameters via Genetic Algorithm for State-of-Charge Estimation in Battery Management System

    Directory of Open Access Journals (Sweden)

    T. O. Ting

    2014-01-01

    Full Text Available In this work, a state-space battery model is derived mathematically to estimate the state-of-charge (SoC of a battery system. Subsequently, Kalman filter (KF is applied to predict the dynamical behavior of the battery model. Results show an accurate prediction as the accumulated error, in terms of root-mean-square (RMS, is a very small value. From this work, it is found that different sets of Q and R values (KF’s parameters can be applied for better performance and hence lower RMS error. This is the motivation for the application of a metaheuristic algorithm. Hence, the result is further improved by applying a genetic algorithm (GA to tune Q and R parameters of the KF. In an online application, a GA can be applied to obtain the optimal parameters of the KF before its application to a real plant (system. This simply means that the instantaneous response of the KF is not affected by the time consuming GA as this approach is applied only once to obtain the optimal parameters. The relevant workable MATLAB source codes are given in the appendix to ease future work and analysis in this area.

  15. Tuning of Kalman filter parameters via genetic algorithm for state-of-charge estimation in battery management system.

    Science.gov (United States)

    Ting, T O; Man, Ka Lok; Lim, Eng Gee; Leach, Mark

    2014-01-01

    In this work, a state-space battery model is derived mathematically to estimate the state-of-charge (SoC) of a battery system. Subsequently, Kalman filter (KF) is applied to predict the dynamical behavior of the battery model. Results show an accurate prediction as the accumulated error, in terms of root-mean-square (RMS), is a very small value. From this work, it is found that different sets of Q and R values (KF's parameters) can be applied for better performance and hence lower RMS error. This is the motivation for the application of a metaheuristic algorithm. Hence, the result is further improved by applying a genetic algorithm (GA) to tune Q and R parameters of the KF. In an online application, a GA can be applied to obtain the optimal parameters of the KF before its application to a real plant (system). This simply means that the instantaneous response of the KF is not affected by the time consuming GA as this approach is applied only once to obtain the optimal parameters. The relevant workable MATLAB source codes are given in the appendix to ease future work and analysis in this area.

  16. In-Orbit Earth Radiation Budget Satellite (ERBS) Battery Switch

    Science.gov (United States)

    Ahmad, Anisa; Enciso, Marlon; Rao, Gopalakrishna

    2000-01-01

    A viewgraph presentation outlines the Earth Radiation Budget Satellite (ERBS) power system and battery history. ERBS spacecraft and battery cell failures are listed with the reasons for failure. The battery management decision and stabilization of the batteries is discussed. Present battery operations are shown to be successful.

  17. 46 CFR 112.55-10 - Storage battery charging.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storage battery charging. 112.55-10 Section 112.55-10... AND POWER SYSTEMS Storage Battery Installation § 112.55-10 Storage battery charging. (a) Each storage battery installation for emergency lighting and power, and starting batteries for an emergency diesel...

  18. Comparative life cycle assessment of battery storage systems for stationary applications.

    Science.gov (United States)

    Hiremath, Mitavachan; Derendorf, Karen; Vogt, Thomas

    2015-04-21

    This paper presents a comparative life cycle assessment of cumulative energy demand (CED) and global warming potential (GWP) of four stationary battery technologies: lithium-ion, lead-acid, sodium-sulfur, and vanadium-redox-flow. The analyses were carried out for a complete utilization of their cycle life and for six different stationary applications. Due to its lower CED and GWP impacts, a qualitative analysis of lithium-ion was carried out to assess the impacts of its process chains on 17 midpoint impact categories using ReCiPe-2008 methodology. It was found that in general the use stage of batteries dominates their life cycle impacts significantly. It is therefore misleading to compare the environmental performance of batteries only on a mass or capacity basis at the manufacturing outlet ("cradle-to-gate analyses") while neglecting their use stage impacts, especially when they have different characteristic parameters. Furthermore, the relative ranking of batteries does not show a significant dependency on the investigated stationary application scenarios in most cases. Based on the results obtained, the authors go on to recommend the deployment of batteries with higher round-trip efficiency, such as lithium-ion, for stationary grid operation in the first instance.

  19. Charging operation with high energy efficiency for electric vehicle valve-regulated lead-acid battery system

    Energy Technology Data Exchange (ETDEWEB)

    Ikeya, Tomohiko; Mita, Yuichi; Ishihara, Kaoru [Central Research Inst. of Electric Power Industry (CRIEPI), Komae Res. Lab., Lithium Battery Project, Tokyo (Japan); Sawada, Nobuyuki [Hokkaido Electric Power Co., Sapporo (Japan); Takagi, Sakae; Murakami, Jun-ichi [Tohoku Electric Power Co. Inc., Sendai (Japan); Kobayashi, Kazuyuki [Tokyo Electric Power Co., Yokohama (Japan); Sakabe, Tetsuya [Chubu Electric Power Co., Nagoya (Japan); Kousaka, Eiichi [Hokuriku Electric Power Co., Toyama (Japan); Yoshioka, Haruki [The Kansai Electric Power Co., Osaka (Japan); Kato, Satoru [The Chugoku Electric Power Co., Hiroshima (Japan); Yamashita, Masanori [Shikoku Research Inst. Inc., Takamatsu (Japan); Narisoko, Hayato [The Okinawa Electric Power Co., Naha (Japan); Nishiyama, Kazuo [The Central Electric Power Council, Tokyo (Japan); Adachi, Kazuyuki [Kyushu Electric Power Co., Fukuoka (Japan)

    2000-12-01

    A new, high-energy-efficiency charging operation with as little amount of overcharge as possible is proposed to improve the energy efficiency and the cycle life for an EV valve-regulated lead-acid battery. Under this operation, the EV battery system is charged with 105% of amount of the preceding discharge five out of six times and once with 115% in order that it is fully charged. The cycle lives were estimated using a valve-regulated lead-acid battery system of 12 modules connected in series, by SFUDS79 pattern discharging and measurement of the amount of discharge every 50 cycles. Three-step constant current charging with 115% of amount of the preceding discharge required more than 5 h with the final charging step of more than 210 min, with coulomb efficiency of only 87% and energy efficiency of 74%. On the other hand, under the high-energy-efficiency charging operation, three-step charging with 105% shortens the final charging time to 132 min. It was completed in less than 4 h with coulomb and energy efficiency of 95% and 84%, respectively. This operation increased the energy efficiency from 74% to 83% on average in six charging, and extended the cycle life by about 30% to more than 400 cycles. Decreasing the amount of charge by as much as possible suppressed the corrosion of the grids in the positive plate and the heat evolution in batteries due to shortening of the final charging step. Although the high-energy-efficiency charging operation led to the accumulation of inactive PbSO{sub 4} at the upper part of the negative plate, possibly due to the decreasing amount of overcharge, this operation could prolong the cycle life. Full charging once every six times is though to be effective in suppressing degradation caused by the accumulation of inactive PbSO{sub 4} in the negative plate due to the shortage of charge. (orig.)

  20. Modelling and experimental evaluation of parallel connected lithium ion cells for an electric vehicle battery system

    Science.gov (United States)

    Bruen, Thomas; Marco, James

    2016-04-01

    Variations in cell properties are unavoidable and can be caused by manufacturing tolerances and usage conditions. As a result of this, cells connected in series may have different voltages and states of charge that limit the energy and power capability of the complete battery pack. Methods of removing this energy imbalance have been extensively reported within literature. However, there has been little discussion around the effect that such variation has when cells are connected electrically in parallel. This work aims to explore the impact of connecting cells, with varied properties, in parallel and the issues regarding energy imbalance and battery management that may arise. This has been achieved through analysing experimental data and a validated model. The main results from this study highlight that significant differences in current flow can occur between cells within a parallel stack that will affect how the cells age and the temperature distribution within the battery assembly.

  1. Quarterly Research Performance Progress Report (2015 Q3). Ultrasonic Phased Arrays and Interactive Reflectivity Tomography for Nondestructive Inspection of Injection and Production Wells in Geothermal Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Villalobos, Hector J [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Polsky, Yarom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Christi R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Collins, Case [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bouman, Charles [Purdue Univ., West Lafayette, IN (United States); Abdulrahman, Hani [Purdue Univ., West Lafayette, IN (United States); Foster, Benjamin [Purdue Univ., West Lafayette, IN (United States)

    2015-09-01

    For the past quarter, we have placed our effort in implementing the first version of the ModelBased Iterative Reconstruction (MBIR) algorithm, assembling and testing the electronics, designing transducers mounts, and defining our laboratory test samples. We have successfully developed the first implementation of MBIR for ultrasound imaging. The current algorithm was tested with synthetic data and we are currently making new modifications for the reconstruction of real ultrasound data. Beside assembling and testing the electronics, we developed a LabView graphic user interface (GUI) to fully control the ultrasonic phased array, adjust the time-delays of the transducers, and store the measured reflections. As part of preparing for a laboratory-scale demonstration, the design and fabrication of the laboratory samples has begun. Three cement blocks with embedded objects will be fabricated, characterized, and used to demonstrate the capabilities of the system. During the next quarter, we will continue to improve the current MBIR forward model and integrate the reconstruction code with the LabView GUI. In addition, we will define focal laws for the ultrasonic phased array and perform the laboratory demonstration. We expect to perform laboratory demonstration by the end of October 2015.

  2. Cell-level battery charge/discharge protection system. [electronic control techniques

    Science.gov (United States)

    Donovan, R. L.; Imamura, M. S.

    1977-01-01

    The paper describes three design approaches to individual cell monitoring and control for sealed secondary battery cells. One technique involves a modular strap-on single cell protector which contains all the electronics required for monitoring cell voltage, responding to external commands, and forming a bypass circuit for the cell. A second technique, the multiplexed cell protector, uses common circuitry to monitor and control each cell in a battery pack. The third technique, the computerized cell protector, by replacing the hard-wired logic of the multiplexed cell protector with a microprocessor, achieves greatest control flexibility and inherent computational capability with a minimum parts count implementation.

  3. 一种太阳能供电的无线传感网小区车位管理系统%A residential quarters parking management system powered by solar energy based on wireless sensor network

    Institute of Scientific and Technical Information of China (English)

    刘保连; 丁祖军

    2012-01-01

    针对小区车位管理混乱,管理水平低下等问题,设计了一种太阳能供电的无线传感网车位管理系统。系统主要由终端节点、路由节点、中心协调器、控制终端以及车牌识别系统构成,网络内的终端节点、路由节点均由太阳能光伏电池板供电。车牌识别系统识别进出车辆牌号并送入控制终端查找确认该车辆对应的车位锁(终端节点),并由中心协调器通过无线传感网络控制该车位锁的升降。实现了小区车位网络化、智能化管理,提高了管理效率和水平,拓展了无线传感网络的应用范围。%To solve the problems of chaos and low level management for residential quarters parking, a parking management system based on wireless sensor network powered by sun energy is designed in this paper. The system consists of end device, router node, coordinator, control terminal anti license plate recognition subsystem. In which, the two formers powered by solar photovoltaic battery plate. The plate recognition system recognizes license plate number and search the corresponding parking lock through control terminal, then the parking lock (end device) is controlled lap of down by the coordinator node through the wireless sensor network. The system realizes network and intelligent parking management, improves the management efficiency and quality, and expands the application range of the wireless sensor network.

  4. Techno-economic analysis of stand-alone photovoltaic/wind/battery/hydrogen systems for very small-scale applications

    Directory of Open Access Journals (Sweden)

    Stojković Saša M.

    2016-01-01

    Full Text Available The paper presents the results of a technical and economic analysis of three stand-alone hybrid power systems based on renewable energy sources which supply a specific group of low-power consumers. This particular case includes measuring sensors and obstacle lights on a meteorological mast for wind measurements requiring an uninterrupted power supply in cold climate conditions. Although these low-power (100 W measuring sensors and obstacle lights use little energy, their energy consumption is not the same as the available solar energy obtained on a daily or seasonal basis. In the paper, complementarity of renewable energy sources was analysed, as well as one of short-term lead-acid battery-based storage and seasonal, hydrogen-based (electrolyser, H2 tank, and fuel cells storage. These relatively complex power systems were proposed earlier for high-power consumers only, while this study specifically highlights the role of the hydrogen system for supplying low-power consumers. The analysis employed a numerical simulation method using the HOMER software tool. The results of the analysis suggest that solar and wind-solar systems, which involve meteorological conditions as referred to in this paper, include a relatively large number of lead-acid batteries. Additionally, the analysis suggests that the use of hydrogen power systems for supplying low power-consumers is entirely justifiable, as it significantly reduces the number of batteries (two at minimum in this particular case. It was shown that the increase in costs induced by the hydrogen system is acceptable.

  5. Fuel cells, batteries and super-capacitors stand-alone power systems management using optimal/flatness based-control

    Science.gov (United States)

    Benaouadj, M.; Aboubou, A.; Ayad, M. Y.; Bahri, M.; Boucetta, A.

    2016-07-01

    In this work, an optimal control (under constraints) based on the Pontryagin's maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane) fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DC-DC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithiumion batteries and supercapacitors. The aim of this paper is to develop an energy management strategy that is able to satisfy the following objectives: - Impose the power requested by a habitat (representing the load) according to a proposed daily consumption profile, - Keep fuel cells working at optimal power delivery conditions, - Maintain constant voltage across the common DC bus, - Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control.Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then, effectiveness and complementarity between the optimal and flatness concepts proposed for energy management. Note that this study is currently in experimentally validation within MSE Laboratory.

  6. Optimal/flatness based-control of stand-alone power systems using fuel cells, batteries and supercapacitors

    Directory of Open Access Journals (Sweden)

    Mahdi Benaouadj

    2017-03-01

    Full Text Available In this work, an optimal control (under constraints based on the Pontryagin’s maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DCDC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithium-ion batteries and supercapacitors. The aim of this paper is to develop an energy management strategy that is able to satisfy the following objectives: - Impose the power requested by a habitat (representing the load according to a proposed daily consumption profile, - Keep fuel cells working at optimal power delivery conditions, - Maintain constant voltage across the common DC bus, - Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control. Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then effectiveness and complementarity between the optimal and flatness concepts proposed for energy management.

  7. Robust PI-based Frequency Control of Isolated Wind-Diesel Power System with Coordinated Governor, Pitch and Battery Controller

    Science.gov (United States)

    Nandar, Cuk Supriyadi Ali; Hashiguchi, Takuhei; Goda, Tadahiro

    A penetration of renewable energy sources such as photovoltaic, wind power etc to prevent global warming is become increasing highly. However, a random unpredictable wind power output may cause frequency fluctuation on isolated hybrid wind-diesel power system. This paper proposes design of coordinated control of governor, pitch and battery to stabilize frequency fluctuation in isolated wind-diesel power system. A well coordinated control between governor, pitch and battery controller are able to improve a performance and also minimize an interaction between the controllers. The structure of the proposed controllers are the first-order PI controller. They are simple and easy to implement in power system utilities. The robustness of the proposed PI controllers are guaranteed by applying an inverse additive perturbation to represent possible unstructured uncertainties in the power system such as variation of system parameters, generating and loading conditions etc. The proposed PI control parameters are optimized and achieved by a genetic algorithm (GA). Simulation studies have been done to show the control effect and robustness of the proposed PI controller in isolated hybrid wind-diesel power system against various disturbances and system uncertainties.

  8. A zinc–iron redox-flow battery under $100 per kW h of system capital cost

    OpenAIRE

    Gong, Ke; Ma, Xiaoya; Kuttler, Kevin J.; Grunewald, Jonathan B.; Yeager, Kelsey L.; Bazant, Martin Z.; Gu, Shuang; Yan, Yushan; Conforti, Kameron Michael

    2015-01-01

    Redox flow batteries (RFBs) are one of the most promising scalable electricity-storage systems to address the intermittency issues of renewable energy sources such as wind and solar. The prerequisite for RFBs to be economically viable and widely employed is their low cost. Here we present a new zinc–iron (Zn–Fe) RFB based on double-membrane triple-electrolyte design that is estimated to have under $100 per kW h system capital cost. Such a low cost is achieved by a combination of inexpensive r...

  9. A Battery Energy Storage Power Conversion System Research%一种电池储能功率转换系统研究

    Institute of Scientific and Technical Information of China (English)

    秦立新

    2013-01-01

    电池储能系统适合于电网调频调峰以及重要负荷应急保障等场合。在电池储能系统中,功率转换系统是储能电池与电网能量交互的接口。研究了一种适合大容量应用的电池储能并网逆变器的电路和控制策略,实现了电池充放电功率控制和电网侧功率四象限控制。构建了电池储能实验平台来验证提出的理论和方法。%A battery energy storage system is suitable for load peak regulation and frequency modulation in the power grid as well as the important load emergency safeguard etc. Power conversion system in battery energy storage systems is the energy interactive interface between storage batteries and power grid. The circuit and control strategy of a battery energy storage grid-connected inverter for larger power applications are researched. The battery charge and discharge power control and grid-side power four-quadrant control are realized. A battery energy storage experiment platform is built to verify the proposed theory and method.

  10. Investigation of battery-charged-capacitor pulsed-power systems for electromagnetic-launcher experiments. Final report, Jan 90-Apr 91

    Energy Technology Data Exchange (ETDEWEB)

    Cornette, J.B.

    1992-02-01

    Candidate pulsed power systems for electromagnetic launchers constitute two broad categories: rotating machinery and non-rotating devices. Rotating machinery for this purpose is under development at several industrial and educational institutions around the world. Non-rotating hardware includes capacitors, batteries, and inductors. These, too, are the subject of research programs, but as yet, are much larger than rotating supplies of equal power and energy capability. In 1988, system studies identified several attractive pulsed power systems for electromagnetic launchers. Battery charged capacitor pulsed power systems were among those identified as promising for electromagnetic launcher systems. The basic equations governing the battery charging capacitor sequence, and the capacitor discharge into an electromagnetic launcher are the subject of this report. A battery charged capacitor system powering an electromagnetic launcher has also been built and tested. This experiment not only validates the system concept with presently available hardware, but can be used to establish a baseline for evaluation of future systems when technology in capacitor and battery power and energy densities improve.

  11. International Space Station Lithium-Ion Battery

    Science.gov (United States)

    Dalton, Penni J.; Balcer, Sonia

    2016-01-01

    The International Space Station (ISS) Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The batteries are charged during insolation and discharged during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-ion cell life testing project. This paper will include an overview of the ISS Li-Ion battery system architecture and the progress of the Li-ion battery design and development.

  12. Characterization of vanadium flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Ekman, C.; Gehrke, O.; Isleifsson, F.

    2010-10-15

    This report summarizes the work done at Risoe DTU testing a vanadium flow battery as part of the project 'Characterisation of Vanadium Batteries' (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risoe DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses are power conversion in cell stacks/electrolyte, power converter, and auxiliary power consumption from pumps and controller. The response time for the battery is limited at 20kW/s by the ramp rate of the power converter. The battery can thus provide power and frequency support for the power system. Vanadium battery is a potential technology for storage based services to the power system provided investment and O and M cost are low enough and long term operation is documented. (Author)

  13. High Energy Density Lithium Battery System with an Integrated Low Cost Heater Sub-System for Missions on Titan. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR project seeks to develop a 500 Wh/kg Lithium primary battery for intended application as the primary power source on landers and probes for future...

  14. Optimal Sizing of a Stand-Alone Hybrid Power System Based on Battery/Hydrogen with an Improved Ant Colony Optimization

    OpenAIRE

    Weiqiang Dong; Yanjun Li; Ji Xiang

    2016-01-01

    A distributed power system with renewable energy sources is very popular in recent years due to the rapid depletion of conventional sources of energy. Reasonable sizing for such power systems could improve the power supply reliability and reduce the annual system cost. The goal of this work is to optimize the size of a stand-alone hybrid photovoltaic (PV)/wind turbine (WT)/battery (B)/hydrogen system (a hybrid system based on battery and hydrogen (HS-BH)) for reliable and economic supply. Two...

  15. Multi-Objective Control of Balancing Systems for Li-Ion Battery Packs

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela; Pinto, Claudio; de Castro, Ricardo;

    2014-01-01

    While a great number of battery balancing circuit topologies have been proposed, the unique control objective typically pursued is equalization of single cell charge. However, a balancing circuit could offer potentially more control features, especially with topologies able to provide bidirection...

  16. An Estimation of Reduction of the Primary Energy and the CO2 Emission in Residential PEFC Co-Generation System with Li-ion Battery Modules

    Science.gov (United States)

    Maeda, Kazushige; Yonemori, Hideto; Yasaka, Yasuyoshi

    This paper presents the effects of introduction of residential polymer electrolyte fuel cell (PEFC) co-generation system with batteries in comparison with conventional systems that consist of a gas boiler and electric power from commercial grid, by computer simulation. The PEFC co-generation system in commercial use provides the average primary energy saving rate of 12.7% and CO2 reduction rate of 15.4% with respect to the conventional system. Addition of 8.0-kWh batteries to the PEFC system results in limited improvements of 0.8 points and 0.9 points in the reduction rates, respectively, yielding 13.5% and 16.3%, when using a conventional operation planning method. A new operation planning method is proposed in order to make a precise control of charging and discharging the batteries. The average primary energy saving rate reaches up to 16.9% by the improvement of 4.2 points, and CO2 reduction rate reaches up to 20.4% by the improvement of 5.0 points in the PEFC co-generation system with 8.0-kWh batteries using the new operation planning method. The new method can thus realize a substantial improvement in reduction rates. Furthermore, it is shown that the suitable battery module capacity for the residential PEFC co-generation system is 4.0kWh.

  17. A VRLA battery simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Pascoe, P.E.; Anbuky, A.H. [Invensys Energy Systems NZ Limited, Christchurch (New Zealand)

    2004-05-01

    A valve regulated lead acid (VRLA) battery simulation model is an invaluable tool for the standby power system engineer. The obvious use for such a model is to allow the assessment of battery performance. This may involve determining the influence of cells suffering from state of health (SOH) degradation on the performance of the entire string, or the running of test scenarios to ascertain the most suitable battery size for the application. In addition, it enables the engineer to assess the performance of the overall power system. This includes, for example, running test scenarios to determine the benefits of various load shedding schemes. It also allows the assessment of other power system components, either for determining their requirements and/or vulnerabilities. Finally, a VRLA battery simulation model is vital as a stand alone tool for educational purposes. Despite the fundamentals of the VRLA battery having been established for over 100 years, its operating behaviour is often poorly understood. An accurate simulation model enables the engineer to gain a better understanding of VRLA battery behaviour. A system level multipurpose VRLA battery simulation model is presented. It allows an arbitrary battery (capacity, SOH, number of cells and number of strings) to be simulated under arbitrary operating conditions (discharge rate, ambient temperature, end voltage, charge rate and initial state of charge). The model accurately reflects the VRLA battery discharge and recharge behaviour. This includes the complex start of discharge region known as the coup de fouet. (author)

  18. A Study on Electric Power Smoothing System for Lead-Acid Battery of Stand-Alone Natural Energy Power System Using EDLC

    Science.gov (United States)

    Jia, Yan; Shibata, Ryosuke; Yamamura, Naoki; Ishida, Muneaki

    To resolve energy shortage and global warming problem, renewable natural resource and its power system has been gradually generalizing. However, the power fluctuation suppressing in short period and the balance control of consumption and supply in long period are two of main problems that need to be resolved urgently in natural energy power system. In Stand-alone Natural Energy Power System (SNEPS) with power energy storage devices, power fluctuation in short period is one of the main reasons that recharge cycle times increase and lead-acid battery early failure. Hence, to prolong the service life of lead-acid battery and improve power quality through suppressing the power fluctuation, we proposed a method of electric power smoothing for lead-acid battery of SNEPS using bi-directional Buck/Boost converter and Electric Double Layer Capacitor (EDLC) in this paper. According to the test data of existing SNEPS, a power fluctuation condition is selected and as an example to analyze the validity of the proposed method. The analysis of frequency characteristics indicates the power fluctuation is suppressed a desired range in the target frequency region. The experimental results of confirmed the feasibility of the proposed system and the results well satisfy the requirement of system design.

  19. Modeling battery cells under discharge using kinetic and stochastic battery models

    OpenAIRE

    Kaj, Ingemar; Konane, Victorien

    2016-01-01

    In this paper we review several approaches to mathematical modeling of simple battery cells and develop these ideas further with emphasis on charge recovery and the response behavior of batteries to given external load. We focus on models which use few parameters and basic battery data, rather than detailed reaction and material characteristics of a specific battery cell chemistry, starting with the coupled ODE linear dynamics of the kinetic battery model. We show that a related system of PDE...

  20. Applied Meteorology Unit (AMU) Quarterly Report - Fourth Quarter FY-09

    Science.gov (United States)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2009-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the fourth quarter of Fiscal Year 2009 (July - September 2009). Tasks reports include: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Objective Lightning Probability Tool. Phase III, (3) Peak Wind Tool for General Forecasting. Phase II, (4) Update and Maintain Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS), (5) Verify MesoNAM Performance (6) develop a Graphical User Interface to update selected parameters for the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLlT)

  1. Dispatching of Wind/Battery Energy Storage Hybrid Systems Using Inner Point Method-Based Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Deyou Yang

    2016-08-01

    Full Text Available The application of large scale energy storage makes wind farms more dispatchable, which lowers operating risks to the grid from interconnected large scale wind farms. In order to make full use of the flexibility and controllability of energy storage to improve the schedulability of wind farms, this paper presents a rolling and dispatching control strategy with a battery energy storage system (BESS based on model predictive control (MPC. The proposed control scheme firstly plans expected output, i.e., dispatching order, of a wind/battery energy storage hybrid system based on the predicted output of the wind farm, then calculates the order in the predictive horizon with the receding horizon optimization and the limitations of energy storage such as state of charge and depth of charge/discharge to maintain the combination of active output of the wind farm and the BESS to track dispatching order at the extreme. The paper shows and analyses the effectiveness of the proposed strategy with different sizes of capacity of the BESS based on the actual output of a certain actual wind farm in the northeast of China. The results show that the proposed strategy that controls the BESS could improve the schedulability of the wind farm and maintain smooth output of wind/battery energy storage hybrid system while tracking the dispatching orders. When the capacity of the BESS is 20% or the rated capacity of the wind farm, the mean dispatching error is only 0.153% of the rated capacity of the wind farm.

  2. Design of a hybrid battery charger system fed by a wind-turbine and photovoltaic power generators

    Science.gov (United States)

    Chang Chien, Jia-Ren; Tseng, Kuo-Ching; Yan, Bo-Yi

    2011-03-01

    This paper is aimed to develop a digital signal processor (DSP) for controlling a solar cell and wind-turbine hybrid charging system. The DSP consists of solar cells, a wind turbine, a lead acid battery, and a buck-boost converter. The solar cells and wind turbine serve as the system's main power sources and the battery as an energy storage element. The output powers of solar cells and wind turbine have large fluctuations with the weather and climate conditions. These unstable powers can be adjusted by a buck-boost converter and thus the most suitable output powers can be obtained. This study designs a booster by using a dsPIC30F4011 digital signal controller as a core processor. The DSP is controlled by the perturbation and observation methods to obtain an effective energy circuit with a full 100 W charging system. Also, this DSP can, day and night, be easily controlled and charged by a simple program, which can change the state of the system to reach a flexible application based on the reading weather conditions.

  3. Design of a hybrid battery charger system fed by a wind-turbine and photovoltaic power generators.

    Science.gov (United States)

    Chang Chien, Jia-Ren; Tseng, Kuo-Ching; Yan, Bo-Yi

    2011-03-01

    This paper is aimed to develop a digital signal processor (DSP) for controlling a solar cell and wind-turbine hybrid charging system. The DSP consists of solar cells, a wind turbine, a lead acid battery, and a buck-boost converter. The solar cells and wind turbine serve as the system's main power sources and the battery as an energy storage element. The output powers of solar cells and wind turbine have large fluctuations with the weather and climate conditions. These unstable powers can be adjusted by a buck-boost converter and thus the most suitable output powers can be obtained. This study designs a booster by using a dsPIC30F4011 digital signal controller as a core processor. The DSP is controlled by the perturbation and observation methods to obtain an effective energy circuit with a full 100 W charging system. Also, this DSP can, day and night, be easily controlled and charged by a simple program, which can change the state of the system to reach a flexible application based on the reading weather conditions.

  4. Electric batteries and the environment. Die Batterie und die Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, F.; Hartinger, L.; Kiehne, H.A.; Niklas, H.; Schiele, R.; Steil, H.U.

    1987-01-01

    The book deals with the production, use and waste management of batteries (accumulators and primary batteries), with regard to protection of the environment. Legal, technical and medical aspects are shown. There are numerous electro-chemical systems, but only few proved to be really good in practice. Most batteries contain lead, cadmium or mercury and must therefore be eliminated in a way doing no harm to the environment. Large quantities of the above named heavy metals are today already being recovered by means of appropriate procedures. The reduction of these heavy metals in batteries is also described to be a contribution to the protection of the environment. (orig.) With 67 figs.

  5. Research and development of a Proton-Exchange-Membrane (PEM) fuel cell system for transportation applications. Progress report for Quarter 8 of the Phase II effort, July 1, 1996--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-08

    This eighth quarterly report summarizes activity from July 1, 1996 through September 30, 1996. The report is organized in sections describing background information and work performed under the main work breakdown structure (WBS) categories. The WBS categories included are fuel processor, fuel cell stack, and system integration and controls. Program scheduling and task progress are presented in the appendix.

  6. Justification of the Impact of the Use PPS (Plasmic Propulsion System) on Li-Ion VES140S/VES180 Batteries

    Science.gov (United States)

    Borthomieu, Yannick; Prevot, Didier

    2014-08-01

    Lithium-ion (Li-ion) battery has been since the beginning of 2000's with the support of ESA, CNES but also the European primes Astrium, (now Airbus Space and Defense) and Thalès Alénia Space. This technology replaced quickly the previous NiH2 system mainly for GEO applications thanks to the numerous advantage brought by this promising technology in terms of technical, industrial and cost aspects.The use of the Plasmic Propulsion System has been considered very early in the VES Saft Li-Ion cell development program, and included in the first life tests that run.The objective of this document is to present the impact of the use of the PPS (plasmic propulsion system also called IPS : ionic propulsion system or XPS : Xenon propulsion system) on the Saft VES140/180 Li-Ion batteries on board GEO telecommunication satellites. The PPS battery impacts have been tested since 2000 on VES140 cells and since 2006 on VES180. More than 12 years feedback on this new type of battery use on- board GEO satellites allows giving significant justification of the use of the PPS power on the battery.

  7. Determination of the lead-acid battery's dynamic response using Butler-Volmer equation for advanced battery management systems in automotive applications

    Science.gov (United States)

    Piłatowicz, Grzegorz; Budde-Meiwes, Heide; Kowal, Julia; Sarfert, Christel; Schoch, Eberhard; Königsmann, Martin; Sauer, Dirk Uwe

    2016-11-01

    Micro-hybrid vehicles (μH) are currently starting to dominate the European market and seize constantly growing share of other leading markets in the world. On the one hand, the additional functionality of μH reduces the CO2 emissions and improves the fuel economy, but, on the other hand, the additional stress imposed on the lead-acid battery reduces significantly its expected service life in comparison to conventional vehicles. Because of that μH require highly accurate battery state detection solutions. They are necessary to ensure the vehicle reliability requirements, prolong service life and reduce warranty costs. This paper presents an electrical model based on Butler-Volmer equation. The main novelty of the presented approach is its ability to predict accurately dynamic response of a battery considering a wide range of discharge current rates, state-of-charges and temperatures. Presented approach is fully implementable and adaptable in state-of-the-art low-cost platforms. Additionally, shown results indicate that it is applicable as a supporting tool for state-of-charge and state-of-health estimation and scalable for the different battery technologies and sizes. Validation using both static pulses and dynamic driving profile resulted in average absolute error of 124 mV regarding cranking current rate of 800 A respectively.

  8. Quarterly report for the electricity market. 2. quarter of 2012; Kvartalsrapport for kraftmarknaden. 2. kvartal 2012

    Energy Technology Data Exchange (ETDEWEB)

    Eliston, Anton Jaynand; Holmqvist, Erik; Lund, Per Tore Jensen; Magnussen, Ingrid; Viggen, Kjerstin Dahl; Willumsen, Mats Oeivind; Guren, Ingrid; Ulriksen, Margit Iren

    2012-07-01

    Fourth quarter of 2011 was unusually mild and wet, resulting in high energy inflow to the Norwegian reservoirs. Total inflow for the year was 149.2 TWh, 26.7 TWh more than normal. This ensured record-high 80.3 percent load factor at the end of the quarter.The stored energy amount in the reservoirs was thus 29.5 TWh greater than at the end of 2010/2011. Norway had a power consumption of 34.1 TWh in the fourth quarter. Compared with the same quarter of 2010, a decrease of 4.2 TWh, which can be connected to the mild weather development. The total Norwegian electricity consumption in 2011 was 125.1 TWh, or 6.9 TWh less than in 2010. Electricity production in the fourth quarter of 2011 was 38.3 GWh, an increase of 3.7 TWh from the same quarter the year before. The production increase were a result of the large volume of water in the system. Power production for the year 2011 was 128.1 TWh, an increase of 3.7 TWh from 2010. Kraft surplus was therefore large, and it was Norwegian net export of 4.2 TWh in the fourth quarter, and 3.0 TWh total for the year. In comparison, in the fourth quarter of 2010 Norwegian net import of 0.8 TWh and 7.5 TWh annually. The good resource combined with the low consumption gave a unusually low price levels in the wholesale market for electricity. On average for fourth quarter, the price of power in the East and South-East Norway Nok 264 / MWh, in western Norway Nok 260 / MWh, in Central Norway Nok 270 / MWh (eb)

  9. Energy Management of a Hybrid AC–DC Micro-Grid Based on a Battery Testing System

    Directory of Open Access Journals (Sweden)

    Bo Long

    2015-02-01

    Full Text Available Energy Recovery Battery Testing Systems (ERBTS plays an important role in battery manufacture. The conventional ERBTS configuration contains a fundamental transformer, and a bidirectional Direct Current (DC–DC and Alternating Current (AC–DC converter. All ERBTS are connected in parallel, thus constituting a special and complicated AC micro-grid system. Aiming at addressing their low energy recovery efficiency, complex grid-connected control algorithm issues for islanded detection, and complicated power circuit topology issues, a hierarchical DC-link voltage hybrid AC–DC micro-grid that contains composite energy storing devices is proposed. Moreover, an energy management optimal scheme for the proposed scheme is put forward. The system configuration of the proposed scheme is described in detail. Compared to the conventional scheme, the proposed scheme has the merits of simplified power circuit topology, no need for phase synchronous control, and much higher energy recovery efficiency and reliability. The validity and effectiveness of the proposed technique is verified through numerous experimental results.

  10. Automotive battery technology

    CERN Document Server

    Watzenig, Daniel

    2014-01-01

    The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.

  11. Idaho National Laboratory Quarterly Performance Analysis - 3rd Quarter FY2014

    Energy Technology Data Exchange (ETDEWEB)

    Lisbeth A. Mitchell

    2014-09-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other non-reportable issues identified at INL from July 2013 through June 2014.

  12. Idaho National Laboratory Quarterly Performance Analysis for the 2nd Quarter FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of events for the 2nd Qtr FY-15.

  13. EMSL Quarterly Highlights Report: FY 2008, 3rd Quarter

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-09-16

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  14. EMSL Quarterly Highlights Report: 1st Quarter, FY08

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-01-28

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  15. EMSL Quarterly Highlights Report: 1st Quarter, Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.

    2009-02-02

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2008 - December 2008) of Fiscal Year 2009.

  16. A novel coordinated control strategy considering power smoothing for a hybrid photovoltaic/battery energy storage system

    Institute of Scientific and Technical Information of China (English)

    DAUD Muhamad Zalani; MOHAMED Azah; HANNAN M A

    2016-01-01

    This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage (PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.

  17. Decentralized power supply for a single-family house. Power supply by a photovoltaic system, battery and connection to the grid; Dezentrale Stromversorgung eines Einfamilienhauses. Stromversorgung mit Photovoltaik, Batterie und Netzanschluss

    Energy Technology Data Exchange (ETDEWEB)

    Staudacher, Thomas; Eller, Sebastian [Forschungsstelle fuer Energiewirtschaft e.V. (FfE), Muenchen (Germany)

    2012-07-01

    In view of increasing electricity costs and the remuneration by the EEG, systematic measures to enhance the own consumption of photovoltaic power increasingly come to the fore of public discussion - in spite of recent reductions of the remunerations by the EEG. In order to increase own consumption and the rate of self-sufficiency, the so-called own coverage, the first commercial battery storage systems are available. The Research Center for Energy Economics (Forschungsstelle fuer Energiewirtschaft e.V., FfE) developed a model that simulates a decentralized domestic power supply by a photovoltaic system, battery and connection to the grid. This simulation model enables the determination of the rate of own consumption and own coverage for different constellations of the power supply of a household. (orig.)

  18. A Study of Cell-to-Cell Interactions and Degradation in Parallel Strings: Implications for the Battery Management System

    Science.gov (United States)

    Pastor-Fernández, C.; Bruen, T.; Widanage, W. D.; Gama-Valdez, M. A.; Marco, J.

    2016-10-01

    Vehicle battery systems are usually designed with a high number of cells connected in parallel to meet the stringent requirements of power and energy. The self-balancing characteristic of parallel cells allows a battery management system (BMS) to approximate the cells as one equivalent cell with a single state of health (SoH) value, estimated either as capacity fade (SoHE) or resistance increase (SoHP). A single SoH value is however not applicable if the initial SoH of each cell is different, which can occur when cell properties change due to inconsistent manufacturing processes or in-homogeneous operating environments. As such this work quantifies the convergence of SoHE and SoHP due to initial differences in cell SoH and examines the convergence factors. Four 3 Ah 18650 cells connected in parallel at 25 °C are aged by charging and discharging for 500 cycles. For an initial SoHE difference of 40% and SoHP difference of 45%, SoHE converge to 10% and SoHP to 30% by the end of the experiment. From this, a strong linear correlation between ΔSoHE and ΔSoHP is also observed. The results therefore imply that a BMS should consider a calibration strategy to accurately estimate the SoH of parallel cells until convergence is reached.

  19. 46 CFR 112.55-15 - Capacity of storage batteries.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close...

  20. FlexRay总线在电池储能系统中的应用%Application of FlexRay Bus in Battery Energy Storage System

    Institute of Scientific and Technical Information of China (English)

    马建业; 黄梅; 王占国; 刘彪; 盛大双

    2014-01-01

    当前大规模储能电池管理系统内部通信总线普遍采用CAN总线,使用FlexRay总线作为其内部总线替代传统的CAN总线,能较好地满足大规模电池储能系统( BESS)内部通信的要求。分析CAN总线用于大规模储能电池管理系统存在的不足以及FlexRay总线的优势。在BESS通信架构的基础上,介绍储能电池管理系统的通信架构,讨论FlexRay总线在大规模储能电池管理系统中的应用及主要方案。运用Network Designer与CANoe. FlexRay仿真验证FlexRay通信系统在大规模储能电池管理系统中应用的可行性,结果表明,与CAN总线相比,FlexRay总线用于储能电池管理系统中可以取得更好的效果。%CAN bus is normally used as internal bus in the large-scale Battery Energy Storage System ( BESS ) at present. FlexRay used as internal bus replacing CAN bus can well meet the requirements of internal communications in the large-scale battery energy storage system. The shortage of CAN bus which is used in the large-scale battery energy storage system and the superiority of FlexRay bus are analysed. Based on the simple introduction of the communication architecture of battery energy storage system, the communication architecture of energy storage battery management system is introduced by focus, and the feasibility of the application and major scheme of the FlexRay communication protocol in large-scale energy storage battery management system are discussed. Network Designer and CANoe. FlexRay are used to simulate the feasibility of FlexRay communication system used in the large-scale battery energy storage system. Simulation results prove that FlexRay bus used in energy storage battery management system can achieve good effects compared with CAN bus.

  1. Which battery model to use?

    NARCIS (Netherlands)

    Jongerden, Marijn R.; Haverkort, Boudewijn R.

    2009-01-01

    The use of mobile devices like cell phones, navigation systems or laptop computers is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed; however, it also depends on the usage pattern of the battery. Continuous drawing of a high

  2. Application of a LiFePO4 Battery Energy Storage System to Primary Frequency Control: Simulations and Experimental Results

    Directory of Open Access Journals (Sweden)

    Fabio Massimo Gatta

    2016-10-01

    Full Text Available This paper presents an experimental application of LiFePO4 battery energy storage systems (BESSs to primary frequency control, currently being performed by Terna, the Italian transmission system operator (TSO. BESS performance in the primary frequency control role was evaluated by means of a simplified electrical-thermal circuit model, taking into account also the BESS auxiliary consumptions, coupled with a cycle-life model, in order to assess the expected life of the BESS. Numerical simulations have been carried out considering the system response to real frequency measurements taken in Italy, spanning a whole year; a parametric study taking into account different values of governor droop and of BESS charge/discharge rates (C-rates was also performed. Simulations, fully validated by experimental results obtained thus far, evidenced a severe trade-off between expected lifetime and overall efficiency, which significantly restricts the choice of operating parameters for frequency control.

  3. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system in

  4. Analysis of the impact of batteries behaviour on stand-alone photovoltaic systems; Analise do impacto do comportamento de baterias em sistemas fotovoltaicos autonomos

    Energy Technology Data Exchange (ETDEWEB)

    Vera, Luis Horacio

    2009-08-15

    Stand-alone photovoltaic systems are a suitable alternative for rural electrification. However, there are still problems to be solved, mainly related to the system design and the technical quality of the equipment and facilities, which impacts the systems reliability. To determine the factors that affect the reliability of these systems it were studied the most common configurations and associated failures. The Laboratory experimental research, together with an extensive literature review, show the basic technical problems that occur to each of the elements of the installation and the dependence between them. These studies have shown that the storage the system, considering system reliability and economy, is the weakest element due to the decrease of their storage capacity. This led to consider the storage systems as the focus of this study and, through the analysis of their behavior, to develop a procedure to size systems with high reliability, lower cost and appropriate configuration. The impact of batteries on the technical reliability and economic viability of photovoltaic systems is determined. It was achieved through experimental testing and the development and adjustment of mathematical models. These models were implemented to preexisting software called PVSize. The improved software allows the calculation of different configurations of systems and to determine the loss of load probability and the figures of merit associated to the chosen economic-financial project. On this work was installed a photovoltaic system and was developed a battery testing system. The values measured in these systems allow to verify the mathematical models that describe the behavior of each device and characterize the components of the system. Experimental analysis of the behavior of a bank of batteries along a year showed that the connection of batteries in parallel accelerates the batteries degradation process, and this degradation has differentiated impact on the loss of

  5. 33 CFR 183.420 - Batteries.

    Science.gov (United States)

    2010-07-01

    ... battery terminals. (c) Each metallic fuel line and fuel system component within 12 inches and above the... battery must not be directly above or below a fuel tank, fuel filter, or fitting in a fuel line. (e) A... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Batteries. 183.420 Section...

  6. Systems studies of coal coal conversion processes using a reference simulator. Quarterly report, July 1, 1978--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, G.V.; Sood, M.K.; Soni, Y.; Overturf, B.W.; Buchanan, P.; Weide, W. Jr.; Wilkinson, C.R.; Boo, J.

    1978-11-01

    The plant capital cost estimation package has been largely implemented. Testing and documentation is projected to be completed by the end of the next quarter. Additions consisting of the physical properties package of entropy estimation capabilities and of automatic selection of the steam table routines when appropriate were made. Significant progress has been made in developing equipment modules for the pyrolysis vapor recovery, heat recovery, bulk methanation, and H/sub 2/ plant sections. These modules include an ejector model, an electrostatic precipitator model, an alternate three phase column routine, a multiphase heat exchanger design routine, as well as a steam reformer furnace design program. Case studies have been carried out on the heat recovery section. Integrated simulations of the methanation, vapor recovery, and H/sub 2/ plant sections are in various stages of assembly. The hierarchical calculation strategy which is to allow execution of over-all flowsheet simulations in terms of a linked sequence of process section simulations has been demonstrated successfully. An available ethylene oxide/glycol process simulation model was used as a test case. Execution time reductions to 1/3 of the direct simulation time could be shown. Work is in progress in generalizing the interfacing and applying the strategy to portions of the modified COED flowsheet. Successful linkage of the combined pryolysis, gasifier, lift-tube, and combustor models was achieved. These models include detailed kinetics, heat transfer calculations as well as particle balance calculations which allow both particle shrinkage at constant density and reduction of particle density at constant size. Several case studies were run and more are projected.

  7. Principles and applications of lithium secondary batteries

    CERN Document Server

    Park, Jung-Ki

    2012-01-01

    Lithium secondary batteries have been key to mobile electronics since 1990. Large-format batteries typically for electric vehicles and energystorage systems are attracting much attention due to current energy and environmental issues. Lithium batteries are expected to play a centralrole in boosting green technologies. Therefore, a large number of scientists and engineers are carrying out research and development onlithium secondary batteries.The book is written in a straightforward fashion suitable for undergraduate and graduate students, as well as scientists, and engineer

  8. Quarterly environmental data summary for first quarter 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the first quarter of 1999 is enclosed. The data presented in this constitute the QEDS. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the Weldon Spring Site verification group and merged into the database during the first quarter of 1999. KPA results for on-site total uranium analyses performed during first quarter 1999 are included. Air monitoring data presented are the most recent complete sets of quarterly data.

  9. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  10. Capacity determination of a battery energy storage system based on the control performance of load leveling and voltage control

    Directory of Open Access Journals (Sweden)

    Satoru Akagi

    2016-01-01

    Full Text Available This paper proposes a method to determine the combined energy (kWh and power (kW capacity of a battery energy storage system and power conditioning system capacity (kVA based on load leveling and voltage control performances. Through power flow calculations, a relationship between the capacity combination and the control performance is identified and evaluated. A tradeoff relationship between the capacity combination and control performance is confirmed, and the proper capacity combination for operation is determined based on the evaluated relationship. In addition, the control performance of the capacity combination is evaluated through the power flow calculation, confirming that the proposed method is effective for determining the optimized capacity combination.

  11. A mesoporous catalytic membrane architecture for lithium-oxygen battery systems.

    Science.gov (United States)

    Ryu, Won-Hee; Gittleson, Forrest S; Schwab, Mark; Goh, Tenghooi; Taylor, André D

    2015-01-14

    Controlling the mesoscale geometric configuration of catalysts on the oxygen electrode is an effective strategy to achieve high reversibility and efficiency in Li-O2 batteries. Here we introduce a new Li-O2 cell architecture that employs a catalytic polymer-based membrane between the oxygen electrode and the separator. The catalytic membrane was prepared by immobilization of Pd nanoparticles on a polyacrylonitrile (PAN) nanofiber membrane and is adjacent to a carbon nanotube electrode loaded with Ru nanoparticles. During oxide product formation, the insulating PAN polymer scaffold restricts direct electron transfer to the Pd catalyst particles and prevents the direct blockage of Pd catalytic sites. The modified Li-O2 battery with a catalytic membrane showed a stable cyclability for 60 cycles with a capacity of 1000 mAh/g and a reduced degree of polarization (∼ 0.3 V) compared to cells without a catalytic membrane. We demonstrate the effects of a catalytic membrane on the reaction characteristics associated with morphological and structural features of the discharge products via detailed ex situ characterization.

  12. Hybrid Microgrid Model based on Solar Photovoltaics with Batteries and Fuel Cells system for intermittent applications

    Science.gov (United States)

    Patterson, Maxx

    Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security, reliability, and design flexibility. This paper explores the performance and cost viability of a hybrid grid-tied microgrid that utilizes Photovoltaic (PV), batteries, and fuel cell (FC) technology. The concept proposes that each community home is equipped with more PV than is required for normal operation. As the homes are part of a microgrid, excess or unused energy from one home is collected for use elsewhere within the microgrid footprint. The surplus power that would have been discarded becomes a community asset, and is used to run intermittent services. In this paper, the modeled community does not have parking adjacent to each home allowing for the installment of a privately owned slower Level 2 charger, making EV ownership option untenable. A solution is to provide a Level 3 DC Quick Charger (DCQC) as the intermittent service. The addition of batteries and Fuel Cells are meant to increase load leveling, reliability, and instill limited island capability.

  13. Quarterly Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Ayman I. Hawari

    2002-12-30

    This report presents the progress made during the first quarter of phase 2 for the project entitled ''Development and Validation of Thermal Neutron Scattering Laws from Applications and Safety Implications in Generation IV Reactor Designs.'' (B204) THIS IS NOT A FINAL REPORT

  14. Sistemas de salud en condiciones de mercado: las reformas del último cuarto de siglo* / Health systems under market conditions: the reforms carried out during the last quarter century

    Directory of Open Access Journals (Sweden)

    Álvaro Franco-Girald

    2014-01-01

    Full Text Available Objetivo: el ensayo explora los cambios a partir de la introducción de los mecanismos del mercado en las reformas del último cuarto de siglo. Metodología: se toma como eje analítico las condiciones de mercado, determinante de las configuraciones y de los resultados que presentan actualmente los sistemas de salud en la mayoría de los países. Se complementa con el análisis de la presencia o no de mecanismos de regulación que permitan reducir el impacto negativo de las imperfecciones del mercado sobre la salud. Discusión: el artículo parte de caracterizar varios tipos de mercados de servicios de salud y considera, de otro lado, la función estatal, y su articulación en la mezcla público- privado, luego de analizar algunas tipologías de los sistemas de salud relacionadas con los modelos de mercado. Conclusión: los mecanismos del mercado introducidos en las reformas de salud en el último cuarto de siglo en la mayoría de países de América Latina (al han transformado los servicios de salud en favor del mercado financiero transnacional, y han generado inequidad, ineficiencia, corrupción, desequilibrio financiero del sistema de salud, y malogrado las condiciones de salud de la población Objective: the essay explores the changes based on market mechanisms introduced in the reforms of the last quarter century. Methodology: market conditions are taken as an analytical axis determining the configurations and results of health systems seen today in the majority of countries. The analysis is complemented by the presence or absence of regulatory mechanisms which reduce the negative impact of market imperfections on health. Discussion: this paper aims to characterize various health care market types while taking into account the function of the State, and its articulation within the public-private sector after analyzing some of the types of health system that are related to the market models. Conclusion: the market mechanisms introduced in

  15. Energy Transferring Dynamic Equalization for Battery Packs

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The equivalent circuit model of battery and the analytic model of series battery uniformities are setup. The analysis shows that it is the key to maintain small voltage difference between cells in order to improve uniformities. Therefore a new technique combining low voltage difference, big current charging and bi-directional charge equalizer system is put forward and designed. The test shows that the energy transferring dynamic equalization system betters the series battery uniformities and protection during charging and discharging, improves the battery performance and extends the use life of series battery.

  16. Idaho National Laboratory Quarterly Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INL from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.

  17. 电动汽车动力电池组热管理系统研究%Research On Electric Vehicle Battery Thermal Management System

    Institute of Scientific and Technical Information of China (English)

    杨国胜

    2015-01-01

    相比较传统燃油汽车,电动汽车具有更加高效、更加清洁的优点。电动汽车工作性能的好坏很大程度上取决于电池的工作性能。温度作为影响电池工作性能的重要因素,对电动汽车的使用性和安全性有着非常大的影响。在简要归纳动力电池组热管理必要性和系统功能的前提下,从电池最优工作温度范围、热场计算、温度传感器布置、风机功率选择和电池包设计等几个方面介绍了动力电池组热管理系统的设计要点,并对不同冷却方式进行对比分析,为后续研究提供参考。%Compared with the traditional fuel vehicle,electric vehicle had advantages on more effective and more clear.The electric vehicle's performance was mostly decided by battery's performance.As the main influence factor of battery's performance,battery temperature had significant effect on electric vehicle's usability and safety.On the basis of briefly summarizing the necessity and function of power battery thermal management system,this paper introduced the key design points of battery thermal management system from optimum operating temperature range,heat field calculation,temperature sensor decorate,fan power selection and battery pack design.Then analyzed different cooling systems,provided a reference for further research.

  18. Intelligent monitoring system for new energy vehicle lithium ion battery%新能源汽车锂离子电池组智能监控系统

    Institute of Scientific and Technical Information of China (English)

    林可

    2016-01-01

    随着新能源汽车的兴起,锂离子电池作为一种新型的环保电池,被认为是其主要的动力源和储能载体,而电池自燃起火等事故的频发造成极大危害。本文基于锂离子电池的特性,试对新能源汽车中的锂离子电池组智能监控系统进行相关的研究和探索。%With thedevelopment of new energy vehicles, lithium ion battery as a new environmental protection battery,is considered to be the main source of power and energy storage carrier,and frequent accidents such as battery spontaneous combustion fire caused great harm.Try this article on the basis of the characteristics of lithium ion batteries,lithium ion battery of new energy vehicles intelligent monitoring system for the related research and exploration.

  19. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance

    Science.gov (United States)

    Raghavan, Ajay; Kiesel, Peter; Sommer, Lars Wilko; Schwartz, Julian; Lochbaum, Alexander; Hegyi, Alex; Schuh, Andreas; Arakaki, Kyle; Saha, Bhaskar; Ganguli, Anurag; Kim, Kyung Ho; Kim, ChaeAh; Hah, Hoe Jin; Kim, SeokKoo; Hwang, Gyu-Ok; Chung, Geun-Chang; Choi, Bokkyu; Alamgir, Mohamed

    2017-02-01

    A key challenge hindering the mass adoption of Lithium-ion and other next-gen chemistries in advanced battery applications such as hybrid/electric vehicles (xEVs) has been management of their functional performance for more effective battery utilization and control over their life. Contemporary battery management systems (BMS) reliant on monitoring external parameters such as voltage and current to ensure safe battery operation with the required performance usually result in overdesign and inefficient use of capacity. More informative embedded sensors are desirable for internal cell state monitoring, which could provide accurate state-of-charge (SOC) and state-of-health (SOH) estimates and early failure indicators. Here we present a promising new embedded sensing option developed by our team for cell monitoring, fiber-optic sensors. High-performance large-format pouch cells with embedded fiber-optic sensors were fabricated. The first of this two-part paper focuses on the embedding method details and performance of these cells. The seal integrity, capacity retention, cycle life, compatibility with existing module designs, and mass-volume cost estimates indicate their suitability for xEV and other advanced battery applications. The second part of the paper focuses on the internal strain and temperature signals obtained from these sensors under various conditions and their utility for high-accuracy cell state estimation algorithms.

  20. A Flywheel Energy Storage System Based on a Doubly Fed Induction Machine and Battery for Microgrid Control

    Directory of Open Access Journals (Sweden)

    Thai-Thanh Nguyen

    2015-06-01

    Full Text Available Microgrids are eco-friendly power systems because they use renewable sources such as solar and wind power as the main power source. However, the stochastic nature of wind and solar power is a considerable challenge for the efficient operation of microgrids. Microgrid operations have to satisfy quality requirements in terms of the frequency and voltage. To overcome these problems, energy storage systems for short- and long-term storage are used with microgrids. Recently, the use of short-term energy storage systems such as flywheels has attracted significant interest as a potential solution to this problem. Conventional flywheel energy storage systems exhibit only one control mode during operation: either smoothing wind power control or frequency control. In this paper, we propose a new flywheel energy storage system based on a doubly fed induction machine and a battery for use with microgrids. The new flywheel energy storage system can be used not only to mitigate wind power fluctuations, but also to control the frequency as well as the voltage of the microgrid during islanded operation. The performance of the proposed flywheel energy storage system is investigated through various simulations using MATLAB/Simulink software. In addition, a conventional flywheel energy storage system based on a doubly fed induction machine is simulated and its performance compared with that of the proposed one.