WorldWideScience

Sample records for battery system quarterly

  1. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 2: January through March 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

    2011-05-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 2 Milestone was completed on time. The milestone entails an ex situ analysis of the four carbons that have been added to the negative active material of valve-regulated lead-acid (VRLA) batteries for the purposes of this study. The four carbons selected for this study were a graphitic carbon, a carbon black, an activated carbon, and acetylene black. The morphology, crystallinity, and impurity contents of each of the four carbons were analyzed; results were consistent with previous data. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown.

  2. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE energy storage systems program (FY11 Quarter 3: April through June 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-09-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 3 Milestone was completed on time. The milestone entails an ex situ analysis of a control as well as three carbon-containing negative plates in the raw, as cast form as well as after formation. The morphology, porosity, and porosity distribution within each plate was evaluated. In addition, baseline electrochemical measurements were performed on each battery to establish their initial performance. These measurements included capacity, internal resistance, and float current. The results obtained for the electrochemical testing were in agreement with previous evaluations performed at East Penn manufacturing. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated.

  3. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  4. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 1: October through December 2010).

    Energy Technology Data Exchange (ETDEWEB)

    Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

    2011-05-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 1 Milestone was completed on time. The milestone entails conducting a thorough literature review to establish the current level of understanding of the mechanisms through which carbon additions to the negative active material improve valve-regulated lead-acid (VRLA) batteries. Most studies have entailed phenomenological research observing that the carbon additions prevent/reduce sulfation of the negative electrode; however, no understanding is available to provide insight into why certain carbons are successful while others are not. Impurities were implicated in one recent review of the electrochemical behavior of carbon additions. Four carbon samples have been received from East Penn Manufacturing and impurity contents have been analyzed. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic

  5. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems Program (FY11 Quarter 4: July through September 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-10-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 4 Milestone was completed on time. The milestone entails the initiation of high rate, partial state of charge (HRPSoC) cycling of the carbon enhanced batteries. The morphology, porosity, and porosity distribution within the plates after 1k and 10k cycles were documented, illustrating the changes which take place in the early life of the carbon containing batteries, and as the battery approaches failure due to hard sulfation for the control battery. Longer term cycling on a subset of the received East Penn cells containing different carbons (and a control) continues, and will progress into FY12. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO2) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown in a graph. In addition to the aforementioned hybrid device, carbon has

  6. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    Science.gov (United States)

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  7. Lithium battery management system

    Science.gov (United States)

    Dougherty, Thomas J [Waukesha, WI

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  8. VRLA automotive batteries for stop&go and dual battery systems

    Science.gov (United States)

    May, G. J.; Calasanzio, D.; Aliberti, R.

    The electrical power requirements for vehicles are continuing to increase and evolve. A substantial amount of effort has been directed towards the development of 36/42 V systems as a route to higher power with reduced current levels but high implementation costs have resulted in the introduction of these systems becoming deferred. In the interim, however, alternator power outputs at 14 V are being increased substantially and at the same time the requirements for batteries are becoming more intensive. In particular, stop&go systems and wire-based vehicle systems are resulting in new demands. For stop&go, the engine is stopped each time the vehicle comes to rest and is restarted when the accelerator is pressed again. This results in an onerous duty cycle with many shallow discharge cycles. Flooded lead-acid batteries cannot meet this duty cycle and valve-regulated lead-acid (VRLA) batteries are needed to meet the demands that are applied. For wire-based systems, such as brake-by-wire or steer-by-wire, electrical power has become more critical and although the alternator and battery provide double redundancy, triple redundancy with a small reserve battery is specified. In this case, a small VRLA battery can be used and is optimised for standby service rather than for repeated discharges. The background to these applications is considered and test results under simulated operating conditions are discussed. Good performance can be obtained in batteries adapted for both applications. Battery management is also critical for both applications: in stop&go service, the state-of-charge (SOC) and state-of-health (SOH) need to be monitored to ensure that the vehicle can be restarted; for reserve or back-up batteries, the SOC and SOH are monitored to verify that the battery is always capable of carrying out the duty cycle if required. Practical methods of battery condition monitoring will be described.

  9. Stand Alone Battery Thermal Management System

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Brad [Denso International America, Incorporated, Southfield, MI (United States)

    2015-09-30

    The objective of this project is research, development and demonstration of innovative thermal management concepts that reduce the cell or battery weight, complexity (component count) and/or cost by at least 20%. The project addresses two issues that are common problems with current state of the art lithium ion battery packs used in vehicles; low power at cold temperatures and reduced battery life when exposed to high temperatures. Typically, battery packs are “oversized” to satisfy the two issues mentioned above. The first phase of the project was spent making a battery pack simulation model using AMEsim software. The battery pack used as a benchmark was from the Fiat 500EV. FCA and NREL provided vehicle data and cell data that allowed an accurate model to be created that matched the electrical and thermal characteristics of the actual battery pack. The second phase involved using the battery model from the first phase and evaluate different thermal management concepts. In the end, a gas injection heat pump system was chosen as the dedicated thermal system to both heat and cool the battery pack. Based on the simulation model. The heat pump system could use 50% less energy to heat the battery pack in -20°C ambient conditions, and by keeping the battery cooler at hot climates, the battery pack size could be reduced by 5% and still meet the warranty requirements. During the final phase, the actual battery pack and heat pump system were installed in a test bench at DENSO to validate the simulation results. Also during this phase, the system was moved to NREL where testing was also done to validate the results. In conclusion, the heat pump system can improve “fuel economy” (for electric vehicle) by 12% average in cold climates. Also, the battery pack size, or capacity, could be reduced 5%, or if pack size is kept constant, the pack life could be increased by two years. Finally, the total battery pack and thermal system cost could be reduced 5% only if the

  10. Modeling aluminum-air battery systems

    Science.gov (United States)

    Savinell, R. F.; Willis, M. S.

    The performance of a complete aluminum-air battery system was studied with a flowsheet model built from unit models of each battery system component. A plug flow model for heat transfer was used to estimate the amount of heat transferred from the electrolyte to the air stream. The effect of shunt currents on battery performance was found to be insignificant. Using the flowsheet simulator to analyze a 100 cell battery system now under development demonstrated that load current, aluminate concentration, and electrolyte temperature are dominant variables controlling system performance. System efficiency was found to decrease as both load current and aluminate concentration increases. The flowsheet model illustrates the interdependence of separate units on overall system performance.

  11. Battery Modeling: A Versatile Tool to Design Advanced Battery Management Systems

    NARCIS (Netherlands)

    Notten, P.H.L.; Danilov, D.L.

    Fundamental physical and (electro) chemical principles of rechargeable battery operation form the basis of the electronic network models developed for Nickel-based aqueous battery systems, including Nickel Metal Hydride (NiMH), and non-aqueous battery systems, such as the well-known Li-ion. Refined

  12. Flow Battery System Design for Manufacturability.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  13. 78 FR 55773 - Fourteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-09-11

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size DATES: The meeting...

  14. 78 FR 16031 - Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-03-13

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...

  15. 77 FR 39321 - Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2012-07-02

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes. SUMMARY... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes. DATES: The meeting will...

  16. 78 FR 6845 - Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-01-31

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...

  17. 77 FR 8325 - Sixth Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-02-14

    ... 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size AGENCY: Federal... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA..., Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. DATES: The meeting will be held...

  18. 77 FR 20688 - Seventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2012-04-05

    ... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size AGENCY: Federal... Committee 225, Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. SUMMARY: The FAA..., Rechargeable Lithium Batteries and Battery Systems, Small and Medium Size. DATES: The meeting will be held May...

  19. Nickel-hydrogen bipolar battery system

    Science.gov (United States)

    Thaller, L. H.

    1982-01-01

    Rechargeable nickel-hydrogen systems are described that more closely resemble a fuel cell system than a traditional nickel-cadmium battery pack. This was stimulated by the currently emerging requirements related to large manned and unmanned low Earth orbit applications. The resultant nickel-hydrogen battery system should have a number of features that would lead to improved reliability, reduced costs as well as superior energy density and cycle lives as compared to battery systems constructed from the current state-of-the-art nickel-hydrogen individual pressure vessel cells.

  20. An Improved Wireless Battery Charging System

    OpenAIRE

    Woo-Seok Lee; Jin-Hak Kim; Shin-Young Cho; Il-Oun Lee

    2018-01-01

    This paper presents a direct wireless battery charging system. The output current of the series-series compensated wireless power transfer (SS-WPT) system is used as a current source, and the output voltage of AC-DC converter controls the current source. Therefore, the proposed wireless battery charging system needs no battery charging circuit to carry out charging profiles, and can solve space constraints and thermal problems in many battery applications. In addition, the proposed wireless b...

  1. Nickel Hydrogen Battery Expert System

    Science.gov (United States)

    Johnson, Yvette B.; Mccall, Kurt E.

    1992-01-01

    The Nickel Cadmium Battery Expert System-2, or 'NICBES-2', which was used by the NASA HST six-battery testbed, was subsequently converted into the Nickel Hydrogen Battery Expert System, or 'NICHES'. Accounts are presently given of this conversion process and future uses being contemplated for NICHES. NICHES will calculate orbital summary data at the end of each orbit, and store these files for trend analyses and rules-generation.

  2. Development of nickel hydrogen battery expert system

    Science.gov (United States)

    Shiva, Sajjan G.

    1990-01-01

    The Hubble Telescope Battery Testbed employs the nickel-cadmium battery expert system (NICBES-2) which supports the evaluation of performances of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 also provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort to modify NICBES-2 to accommodate nickel-hydrogen battery environment in testbed is described.

  3. 77 FR 56253 - Ninth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2012-09-12

    ... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is..., Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting will be held...

  4. 77 FR 66084 - Tenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2012-11-01

    ... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is..., Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting will be held...

  5. Optimised battery capacity utilisation within battery management systems

    NARCIS (Netherlands)

    Wilkins, S.; Rosca, B. (Bogdan); Jacob, J.; Hoedmaekers, E.

    2015-01-01

    Battery Management Systems (BMSs) play a key role in the performance of both hybrid and fully electric vehicles. Typically, the role of the BMS is to help maintain safety, performance, and overall efficiency of the battery pack. One important aspect of its operation is the estimation of the state of

  6. 76 FR 6180 - First Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-02-03

    ... 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  7. 76 FR 22161 - Second Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-04-20

    ... Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  8. 76 FR 38741 - Third Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-07-01

    ... 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  9. 76 FR 54527 - Fourth Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Science.gov (United States)

    2011-09-01

    ... Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal... Lithium Batteries and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery...

  10. Impact resistant battery enclosure systems

    Science.gov (United States)

    Tsutsui, Waterloo; Feng, Yuezhong; Chen, Weinong Wayne; Siegmund, Thomas Heinrich

    2017-10-31

    Battery enclosure arrangements for a vehicular battery system. The arrangements, capable of impact resistance include plurality of battery cells and a plurality of kinetic energy absorbing elements. The arrangements further include a frame configured to encase the plurality of the kinetic energy absorbing elements and the battery cells. In some arrangements the frame and/or the kinetic energy absorbing elements can be made of topologically interlocked materials.

  11. Battery-powered transport systems. Possible methods of automatically charging drive batteries

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    In modern driverless transport systems, not only easy maintenance of the drive battery is important but also automatic charging during times of standstill. Some systems are presented; one system is pointed out in particular in which 100 batteries can be charged at the same time.

  12. Battery system with temperature sensors

    Science.gov (United States)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  13. Assessment of high-temperature battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Sen, R K

    1989-02-01

    Three classes of high-temperature batteries are being developed internationally with transportation and stationary energy storage applications in mind: sodium/sulfur, lithium/metal sulfide, and sodium/metal chloride. Most attention is being given to the sodium/sulfur system. The Office of Energy Storage and Distribution (OESD) and the Office of Transportation Systems (OTS) of the US Department of Energy (DOE) are actively supporting the development of this battery system. It is anticipated that pilot-scale production facilities for sodium/sulfur batteries will be in operation in the next couple of years. The lithium/metal sulfide and the sodium/metal chloride systems are not receiving the same level of attention as the sodium/sulfur battery. Both of these systems are in an earlier stage of development than sodium/sulfur. OTS and OESD are supporting work on the lithium/iron sulfide battery in collaboration with the Electric Power Research Institute (EPRI); the work is being carried out at Argonne National Laboratory (ANL). The sodium/metal chloride battery, the newest member of the group, is being developed by a Consortium of South African and British companies. Very little DOE funds are presently allocated for research on this battery. The purpose of this assessment is to evaluate the present status of the three technologies and to identify for each technology a prioritized list of R and D issues. Finally, the assessment includes recommendations to DOE for a proposed high-temperature battery research and development program. 18 figs., 21 tabs.

  14. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  15. Battery Cell Balancing System and Method

    Science.gov (United States)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  16. Efficient and powerful batteries for driverless transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    1986-11-01

    In driverless transportation systems batteries are playing an essential role. The capacitive operation or cycling of driverless systems require the use of different battery systems. Energy supply concepts have to be based on the perspective functional descriptions. The required data comprise full details on discharging processes (temporal current flows), intermediate and complete charging, ambient temperature ranges (which determine the type of battery to be used), and the minimum discharge voltage. Data on the exchange of batteries as well as on the maximum weight and volume of batteries complete the list of data. Any systems evaluation of the batteries to be used has to take account of the operating conditions.

  17. Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Danilov, D.; Regtien, Paulus P.L.; Notten, P.H.L.

    2008-01-01

    Battery Management Systems – Universal State-of-Charge indication for portable applications describes the field of State-of-Charge (SoC) indication for rechargeable batteries. With the emergence of battery-powered devices with an increasing number of power-hungry features, accurately estimating the

  18. 76 FR 70531 - Fifth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2011-11-14

    ... 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation..., Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 225, Rechargeable Lithium Battery and...

  19. Lithium-thionyl chloride battery. Quarterly report no. 1, 1 October-31 December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Dey, A.N.; Bowden, W.; Miller, J.; Witalis, P.

    1979-04-01

    The Li/SOCl/sup 2/ inorganic electrolyte system is the highest energy density system known to date. It consists of a Li anode, a carbon cathode and SOCl/sup 2/, which acts both as a solvent and as a cathode active material. The electrolyte salt that has been used most extensively is LiAlCl/sup 4/, but salts such as Li/sup 2/B/sup 10/Cl/sup 10/ and Li/sup 2/ (OAlC/sup 3/) /sup 2/ have also been used successfully in this system for improving the shelf-life characteristics. The main objective of this program is to develop high-rate Li/SOCl/sup 2/ cells and batteries for various portable applications of the U. S. Army. The cells and batteries must deliver higher energy densities than are presently available and must be safe to handle under U. S. Army field conditions.

  20. An Advanced HIL Simulation Battery Model for Battery Management System Testing

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela; Fleischer, Christian; Christensen, Andreas Elkjær

    2016-01-01

    Developers and manufacturers of battery management systems (BMSs) require extensive testing of controller Hardware (HW) and Software (SW), such as analog front-end and performance of generated control code. In comparison with the tests conducted on real batteries, tests conducted on a state......-of-the-art hardware-in-the-loop (HIL) simulator can be more cost and time effective, easier to reproduce, and safer beyond the normal range of operation, especially at early stages in the development process or during fault insertion. In this paper, an HIL simulation battery model is developed for purposes of BMS...... testing on a commercial HIL simulator. A multicell electrothermal Li-ion battery (LIB) model is integrated in a system-level simulation. Then, the LIB system model is converted to C code and run in real time with the HIL simulator. Finally, in order to demonstrate the capabilities of the setup...

  1. Automatic Battery Swap System for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2012-12-01

    Full Text Available This paper presents the design and implementation of an automatic battery swap system for the prolonged activities of home robots. A battery swap station is proposed to implement battery off-line recharging and on-line exchanging functions. It consists of a loading and unloading mechanism, a shifting mechanism, a locking device and a shell. The home robot is a palm-sized wheeled robot with an onboard camera and a removable battery case in the front. It communicates with the battery swap station wirelessly through ZigBee. The influences of battery case deflection and robot docking deflection on the battery swap operations have been investigated. The experimental results show that it takes an average time of 84.2s to complete the battery swap operations. The home robot does not have to wait several hours for the batteries to be fully charged. The proposed battery swap system is proved to be efficient in home robot applications that need the robots to work continuously over a long period.

  2. Energy analysis of batteries in photovoltaic systems. Part II: Energy return factors and overall battery efficiencies

    International Nuclear Information System (INIS)

    Rydh, Carl Johan; Sanden, Bjoern A.

    2005-01-01

    Energy return factors and overall energy efficiencies are calculated for a stand-alone photovoltaic (PV)-battery system. Eight battery technologies are evaluated: lithium-ion (nickel), sodium-sulphur, nickel-cadmium, nickel-metal hydride, lead-acid, vanadium-redox, zinc-bromine and polysulphide-bromide. With a battery energy storage capacity three times higher than the daily energy output, the energy return factor for the PV-battery system ranges from 2.2 to 10 in our reference case. For a PV-battery system with a service life of 30 yr, this corresponds to energy payback times between 2.5 and 13 yr. The energy payback time is 1.8-3.3 yr for the PV array and 0.72-10 yr for the battery, showing the energy related significance of batteries and the large variation between different technologies. In extreme cases, energy return factors below one occur, implying no net energy output. The overall battery efficiency, including not only direct energy losses during operation but also energy requirements for production and transport of the charger, the battery and the inverter, is 0.41-0.80. For some batteries, the overall battery efficiency is significantly lower than the direct efficiency of the charger, the battery and the inverter (0.50-0.85). The ranking order of batteries in terms of energy efficiency, the relative importance of different battery parameters and the optimal system design and operation (e.g. the use of air conditioning) are, in many cases, dependent on the characterisation of the energy background system and on which type of energy efficiency measure is used (energy return factor or overall battery efficiency)

  3. Develop improved battery charger (Turbo-Z Battery Charging System). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

  4. Wireless battery management control and monitoring system

    Science.gov (United States)

    Zumstein, James M.; Chang, John T.; Farmer, Joseph C.; Kovotsky, Jack; Lavietes, Anthony; Trebes, James Edward

    2018-01-16

    A battery management system using a sensor inside of the battery that sensor enables monitoring and detection of various events in the battery and transmission of a signal from the sensor through the battery casing to a control and data acquisition module by wireless transmission. The detection of threshold events in the battery enables remedial action to be taken to avoid catastrophic events.

  5. Lithium-thionyl chloride battery. Quarterly report No. 5, 1 November 1979-31 January 1980

    Energy Technology Data Exchange (ETDEWEB)

    Dey, A.N.; Hamilton, N.; Bowden, W.; Witalis, P.; Cubbison, D.

    1980-06-01

    The Li/SOCl2 inorganic electrolyte system is the highest energy density system known to data. It consists of a Li anode, a carbon cathode and SOCl2, which acts both as a solvent and cathode active material. The electrolyte salt that has been used most extensively is LiAlCl4, but salts such as Li2B10Cl10 and Li2O(AlCl3)2 have also been used successfully in this system for improving the shelf life characteristics. The main objective of this program is to develop high rate Li/SOCl2 cells and batteries for portable applications of the U.S. Army. The cells and batteries must deliver higher energy densities than are presently available and must be safe to handle under field conditions.

  6. Nickel-cadmium battery system for electric vehicles

    Science.gov (United States)

    Klein, M.; Charkey, A.

    A nickel-cadmium battery system has been developed and is being evaluated for electric vehicle propulsion applications. The battery system design features include: (1) air circulation through gaps between cells for thermal management, (2) a metal-gas coulometric fuel gauge for state-of-charge and charge control, and (3) a modified constant current ac/dc power supply for the charger. The battery delivers one and a half to two times the energy density of comparable lead-acid batteries depending on operating conditions.

  7. Wireless Battery Management System of Electric Transport

    Science.gov (United States)

    Rahman, Ataur; Rahman, Mizanur; Rashid, Mahbubur

    2017-11-01

    Electric vehicles (EVs) are being developed and considered as the future transportation to reduce emission of toxic gas, cost and weight. The battery pack is one of the main crucial parts of the electric vehicle. The power optimization of the battery pack has been maintained by developing a two phase evaporative thermal management system which operation has been controlled by using a wireless battery management system. A large number of individual cells in a battery pack have many wire terminations that are liable for safety failure. To reduce the wiring problem, a wireless battery management system based on ZigBee communication protocol and point-to-point wireless topology has been presented. Microcontrollers and wireless modules are employed to process the information from several sensors (voltage, temperature and SOC) and transmit to the display devices respectively. The WBMS multistage charge balancing system offering more effective and efficient responses for several numbers of series connected battery cells. The concept of double tier switched capacitor converter and resonant switched capacitor converter is used for reducing the charge balancing time of the cells. The balancing result for 2 cells and 16 cells are improved by 15.12% and 25.3% respectively. The balancing results are poised to become better when the battery cells are increased.

  8. Diagnosing battery behavior with an expert system in Prolog

    International Nuclear Information System (INIS)

    Kirkwood, N.; Weeks, D.J.

    1986-01-01

    Power for the Hubble Space Telescope comes from a system of 20 solar panel assemblies (SPAs) and six nickel-cadmium batteries. The HST battery system is simulated by the HST Electrical Power System (EPS) testbed at Marshall Space Flight Center. The Nickel Cadmium Battery Expert System (NICBES) is being used to diagnose faults of the testbed system, evaluate battery status and provide decision support for the engineer. Extensive telemetry of system operating conditions is relayed through a DEC LSI-11, and sent on to an IBM PC-AT. A BASIC program running on the PC monitors the flow of data, figures cell divergence and recharge ratio and stores these values, along with other selected data, for use by the expert system. The expert system is implemented in the logic programming language Prolog. It has three modes of operation: fault diagnosis, status and advice, and decision support. An alert or failure of the system will trigger a diagnosis by the system to assist the operator. The operator can also request battery status information as well as a number of plots and histograms of recent battery behavior. Trends in EOC and EOD voltage, recharge ratio and divergence are used by the expert system in its analysis of battery status. A future enhancement to the system includes the statistical prediction of battery life. Incorporating learning into the expert system is another possible enhancement; This is a difficult task, but one which could promise great rewards in improved battery performance

  9. Lithium batteries and other electrochemical storage systems

    CERN Document Server

    Glaize, Christian

    2013-01-01

    Lithium batteries were introduced relatively recently in comparison to lead- or nickel-based batteries, which have been around for over 100 years. Nevertheless, in the space of 20 years, they have acquired a considerable market share - particularly for the supply of mobile devices. We are still a long way from exhausting the possibilities that they offer. Numerous projects will undoubtedly further improve their performances in the years to come. For large-scale storage systems, other types of batteries are also worthy of consideration: hot batteries and redox flow systems, for example.

  10. Battery storage for PV power systems: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Chaurey, A; Deambi, S [Tata Energy Research Inst., New Delhi (India)

    1992-06-01

    Batteries used in photovoltaic applications are required to have particular properties in order to minimize the system cost, in addition to meeting stringent reliability requirements associated with PV system installations. The battery sizing, installations, operation and maintenance, thus, are fundamentally different from those used in several other energy storage applications. The current paper gives an overview of battery systems commonly used in PV installation, as well as several new options which are found suitable or have been modified suitably to meet PV energy storage requirements. The systems are discussed briefly with respect to their construction, performance characteristics and compatibility with PV systems. The battery sizing procedures are also reviewed. (Author).

  11. Intelligent automotive battery systems

    Science.gov (United States)

    Witehira, P.

    A single power-supply battery is incompatible with modern vehicles. A one-cmbination 12 cell/12 V battery, developed by Power Beat International Limited (PBIL), is described. The battery is designed to be a 'drop in' replacement for existing batteries. The cell structures, however, are designed according to load function, i.e., high-current shallow-discharge cycles and low-current deep-discharge cycles. The preferred energy discharge management logic and integration into the power distribution network of the vehicle to provide safe user-friendly usage is described. The system is designed to operate transparent to the vehicle user. The integrity of the volatile high-current cells is maintained by temperature-sensitive voltage control and discharge management. The deep-cycle cells can be fully utilized without affecting startability under extreme conditions. Electric energy management synchronization with engine starting will provide at least 6% overall reduction in hydrocarbon emissions using an intelligent on-board power-supply technology developed by PBIL.

  12. (Shippingport Atomic Power Station). Quarterly operating report, third quarter 1980

    Energy Technology Data Exchange (ETDEWEB)

    Zagorski, J. F.

    1980-01-01

    At the beginning of the third quarter of 1980, the Shippingport Atomic Power Station was operating with the 1A, 1B, 1C, and 1D reactor coolant loops and the 1AC and 1BD purification loops in service. During the quarter, the Station was operated for Duquesne Light Company System grid including base load and swing load operation. Twelve (12) planned swing load operations were performed on the LWBR Core this quarter to complete the LWBR operating plan of fifty (50) during this operating phase. The Station was shutdown on September 12 for the Fall 1980 Shutdown and remained in this mode through the end of the quarter. The LWBR Core has generated 18,297.98 EFPH from start-up through the end of the quarter. There were no radioactive liquid discharges from the Radioactive Waste Processing System to the river this quarter. The radioactive liquid waste effluent line to the river remained blanked off to prevent inadvertent radioactive liquid waste discharges. During the quarter, approximately 0.001 curies of Xe 133 activity were released from the station. The radioactivity released from Shippingport Station is far too small to have any measurable effect on the general background environmental radioactivity outside the plant.

  13. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    Science.gov (United States)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  14. Environmental consequences of the use of batteries in low carbon systems: The impact of battery production

    International Nuclear Information System (INIS)

    McManus, M.C.

    2012-01-01

    Highlights: ► Lithium based batteries show the most significant GHG and metal depletion impacts. ► Nickel metal hydride batteries perform worst in terms of cumulative energy demand. ► Charge and discharge cycles will have significant effect on the environmental impact. ► Limited data on the life cycle impacts of some types of batteries is available. - Abstract: Adoption of small scale micro-generation is sometimes coupled with the use of batteries in order to overcome daily variability in the supply and demand of energy. For example, photovoltaic cells and small wind turbines can be coupled with energy storage systems such as batteries. When used effectively with renewable energy production, batteries can increase the versatility of an energy system by providing energy storage that enables the systems to satisfy the highly variable electrical load of an individual dwelling, therefore changing usage patterns on the national grid. A significant shift towards electric or hybrid cars would also increase the number of batteries required. However, batteries can be inefficient and comprise of materials that have high environmental and energy impacts. In addition, some materials, such as lithium, are scarce natural resources. As a result, the overall impact of increasing our reliance on such “sustainable or “low carbon” systems may in fact have an additional detrimental impact. This paper reviews the currently available data and calculated and highlights the impact of the production of several types of battery in terms of energy, raw materials and greenhouse gases. The impact of the production of batteries is examined and presented in order that future studies may be able to include the impact of batteries more easily within any system. It is shown that lithium based batteries have the most significant impact in many environmental areas in terms of production. As the use phases of batteries are extremely variable within different situations this has not been

  15. Multiscale simulation approach for battery production systems

    CERN Document Server

    Schönemann, Malte

    2017-01-01

    Addressing the challenge of improving battery quality while reducing high costs and environmental impacts of the production, this book presents a multiscale simulation approach for battery production systems along with a software environment and an application procedure. Battery systems are among the most important technologies of the 21st century since they are enablers for the market success of electric vehicles and stationary energy storage solutions. However, the performance of batteries so far has limited possible applications. Addressing this challenge requires an interdisciplinary understanding of dynamic cause-effect relationships between processes, equipment, materials, and environmental conditions. The approach in this book supports the integrated evaluation of improvement measures and is usable for different planning horizons. It is applied to an exemplary battery cell production and module assembly in order to demonstrate the effectiveness and potential benefits of the simulation.

  16. Battery model for electrical power system energy balance

    Science.gov (United States)

    Hafen, D. P.

    1983-01-01

    A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.

  17. Advances in battery manufacturing, service, and management systems

    CERN Document Server

    Zhou, Shiyu; Han, Yehui

    2016-01-01

    This book brings together experts in the field to highlight the cutting edge research advances in BM2S2 and to promote an innovative integrated research framework responding to the challenges. There are three major parts included in this book: manufacturing, service, and management. The first part focuses on battery manufacturing systems, including modeling, analysis, design and control, as well as economic and risk analyses. The second part focuses on information technology’s impact on service systems, such as data-driven reliability modeling, failure prognosis, and service decision making methodologies for battery services. The third part addresses battery management systems (BMS) for control and optimization of battery cells, opera ions, and hybrid storage systems to ensure overall performance and safety, as well as EV management.

  18. Remote monitoring of VRLA batteries for telecommunications systems

    Energy Technology Data Exchange (ETDEWEB)

    Tsujikawa, Tomonobu; Matsushima, Toshio [NTT Facilities Inc., G.H.Y. Building, 2-13-1 Kita-Otsuka, Toshima-ku, Tokyo 170-0004 (Japan)

    2007-05-25

    This paper describes a remote monitoring system that can be set up in an operating center to monitor the state of valve regulated lead acid batteries (VRLA) used as a backup power supply for telecommunications. This system has a battery voltage monitoring function, a lifetime prediction function based on ambient temperature, and a discharge circuit diagnosis function. In addition, the system can be equipped with an internal resistance measurement function and an electrolyte leakage detection function to further insure power-supply reliability. Various states of batteries observed with the system are transmitted to the remote operating center by a remote monitoring function. This function enables obtaining immediate information about the condition of batteries and helps to avoid unexpected failures. (author)

  19. Idaho National Laboratory Quarterly Occurrence Analysis 4th Quarter FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System, as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 84 reportable events (29 from the 4th quarter fiscal year 2016 and 55 from the prior three reporting quarters), as well as 39 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (two from this quarter and 37 from the prior three quarters).

  20. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...... suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications....

  1. The Earth Observing System (EOS) nickel-hydrogen battery

    Science.gov (United States)

    Bennett, Charles W.

    1992-01-01

    Information is given in viewgraph form on the Earth Observing System (EOS) nickel hydrogen battery. Information is given on the life evaluation test, cell characteristics, acceptance and characterization tests, and the battery system description.

  2. Electric vehicles batteries thermal management systems employing phase change materials

    Science.gov (United States)

    Ianniciello, Lucia; Biwolé, Pascal Henry; Achard, Patrick

    2018-02-01

    Battery thermal management is necessary for electric vehicles (EVs), especially for Li-ion batteries, due to the heat dissipation effects on those batteries. Usually, air or coolant circuits are employed as thermal management systems in Li-ion batteries. However, those systems are expensive in terms of investment and operating costs. Phase change materials (PCMs) may represent an alternative which could be cheaper and easier to operate. In fact, PCMs can be used as passive or semi-passive systems, enabling the global system to sustain near-autonomous operations. This article presents the previous developments introducing PCMs for EVs battery cooling. Different systems are reviewed and solutions are proposed to enhance PCMs efficiency in those systems.

  3. Lead/acid batteries in systems to improve power quality

    Science.gov (United States)

    Taylor, P.; Butler, P.; Nerbun, W.

    Increasing dependence on computer technology is driving needs for extremely high-quality power to prevent loss of information, material, and workers' time that represent billions of dollars annually. This cost has motivated commercial and Federal research and development of energy storage systems that detect and respond to power-quality failures in milliseconds. Electrochemical batteries are among the storage media under investigation for these systems. Battery energy storage systems that employ either flooded lead/acid or valve-regulated lead/acid battery technologies are becoming commercially available to capture a share of this emerging market. Cooperative research and development between the US Department of Energy and private industry have led to installations of lead/acid-based battery energy storage systems to improve power quality at utility and industrial sites and commercial development of fully integrated, modular battery energy storage system products for power quality. One such system by AC Battery Corporation, called the PQ2000, is installed at a test site at Pacific Gas and Electric Company (San Ramon, CA, USA) and at a customer site at Oglethorpe Power Corporation (Tucker, GA, USA). The PQ2000 employs off-the-shelf power electronics in an integrated methodology to control the factors that affect the performance and service life of production-model, low-maintenance, flooded lead/acid batteries. This system, and other members of this first generation of lead/acid-based energy storage systems, will need to compete vigorously for a share of an expanding, yet very aggressive, power quality market.

  4. Systems and methods for distributing power using photovoltaic resources and a shifting battery system

    Science.gov (United States)

    Mammoli, Andrea A.; Lavrova, Olga; Arellano, Brian; Cheng, Feng; Greenwood, Wesley; Hawkins, Jonathan; Willard, Steve

    2017-06-27

    The present invention is an apparatus and method for delivering energy using a renewable resource. The method includes providing a photovoltaic energy source and applying energy storage to the photovoltaic energy source via a battery storage unit. The energy output from the photovoltaic energy source and the battery system is controlled using a battery control system. The battery control system predicts peak load, develops a schedule that includes when to begin discharging power and when to stop discharging power, shifts power to the battery storage unit when excess power is available, and prioritizes the functionality of the battery storage unit and the photovoltaic energy source.

  5. Battery sizing and rule-based operation of grid-connected photovoltaic-battery system: A case study in Sweden

    International Nuclear Information System (INIS)

    Zhang, Yang; Lundblad, Anders; Campana, Pietro Elia; Benavente, F.; Yan, Jinyue

    2017-01-01

    Highlights: • Battery sizing and rule-based operation are achieved concurrently. • Hybrid operation strategy that combines different strategies is proposed. • Three operation strategies are compared through multi-objective optimization. • High Net Present Value and Self Sufficiency Ratio are achieved at the same time. - Abstract: The optimal components design for grid-connected photovoltaic-battery systems should be determined with consideration of system operation. This study proposes a method to simultaneously optimize the battery capacity and rule-based operation strategy. The investigated photovoltaic-battery system is modeled using single diode photovoltaic model and Improved Shepherd battery model. Three rule-based operation strategies—including the conventional operation strategy, the dynamic price load shifting strategy, and the hybrid operation strategy—are designed and evaluated. The rule-based operation strategies introduce different operation parameters to run the system operation. multi-objective Genetic Algorithm is employed to optimize the decisional variables, including battery capacity and operation parameters, towards maximizing the system’s Self Sufficiency Ratio and Net Present Value. The results indicate that employing battery with the conventional operation strategy is not profitable, although it increases Self Sufficiency Ratio. The dynamic price load shifting strategy has similar performance with the conventional operation strategy because the electricity price variation is not large enough. The proposed hybrid operation strategy outperforms other investigated strategies. When the battery capacity is lower than 72 kW h, Self Sufficiency Ratio and Net Present Value increase simultaneously with the battery capacity.

  6. Physical Integration of a Photovoltaic-Battery System : A Thermal Analysis

    NARCIS (Netherlands)

    Vega Garita, V.E.; Ramirez Elizondo, L.M.; Bauer, P.

    2017-01-01

    Solar-battery systems are still expensive, bulky, and space consuming. To tackle these issues, we propose a novel device that combines all the components of a solar-battery system in one device. This device might help reduce installation cost compared to the current solar-battery systems as well as

  7. Idaho National Laboratory Quarterly Occurrence Analysis - 3rd Quarter FY-2016

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 73 reportable events (23 from the 3rd Qtr FY-16 and 50 from the prior three reporting quarters), as well as 45 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (16 from this quarter and 29 from the prior three quarters).

  8. Idaho National Laboratory Quarterly Occurrence Analysis - 1st Quarter FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 74 reportable events (16 from the 1st Qtr FY-16 and 58 from the prior three reporting quarters), as well as 35 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (15 from this quarter and 20 from the prior three quarters).

  9. Studies on Equalization Strategy of Battery Management System for Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nan Jinrui

    2013-02-01

    Full Text Available Battery management system is one of the key technologies strengthening practical utilization and industrialization of electric vehicles. As an integral part of the battery management system, equalization system played an important role in development of electric vehicles. Based on the analysis of the key technologies of electric vehicle and the development trend of battery management system, a systematic method for bi-directional equalization of lithium ion battery pack is presented in this paper. The basic principle utilizes a Flyback Converter with a multiwinding transformer. Equalization with voltage is employed to balance the cell voltage of battery pack. In order to ensure the accuracy requirements of the cell voltage, a voltage measurement scheme based on analog multiplexers using photoelectric relay was adopted in this unit to detect the voltage of battery one by one. Experimental results show that the proposed battery equalization scheme can not only enhance the uniformity of power battery pack, but also improve the life of the battery as a whole.

  10. Optimization analysis of thermal management system for electric vehicle battery pack

    Science.gov (United States)

    Gong, Huiqi; Zheng, Minxin; Jin, Peng; Feng, Dong

    2018-04-01

    Electric vehicle battery pack can increase the temperature to affect the power battery system cycle life, charge-ability, power, energy, security and reliability. The Computational Fluid Dynamics simulation and experiment of the charging and discharging process of the battery pack were carried out for the thermal management system of the battery pack under the continuous charging of the battery. The simulation result and the experimental data were used to verify the rationality of the Computational Fluid Dynamics calculation model. In view of the large temperature difference of the battery module in high temperature environment, three optimization methods of the existing thermal management system of the battery pack were put forward: adjusting the installation position of the fan, optimizing the arrangement of the battery pack and reducing the fan opening temperature threshold. The feasibility of the optimization method is proved by simulation and experiment of the thermal management system of the optimized battery pack.

  11. Short-term energy outlook. Quarterly projections, first quarter 1995

    International Nuclear Information System (INIS)

    1995-02-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). The forecast period for this issue of the Outlook extends from the first quarter of 1995 through the fourth quarter of 1996. Values for the fourth quarter of 1994, however, are preliminary EIA estimates or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the first quarter 1995 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The cases are produced using the Short-Term Integrated Forecasting System (STIFS). The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. The EIA model is available on computer tape from the National Technical Information Service

  12. Improving compliance in remote healthcare systems through smartphone battery optimization.

    Science.gov (United States)

    Alshurafa, Nabil; Eastwood, Jo-Ann; Nyamathi, Suneil; Liu, Jason J; Xu, Wenyao; Ghasemzadeh, Hassan; Pourhomayoun, Mohammad; Sarrafzadeh, Majid

    2015-01-01

    Remote health monitoring (RHM) has emerged as a solution to help reduce the cost burden of unhealthy lifestyles and aging populations. Enhancing compliance to prescribed medical regimens is an essential challenge to many systems, even those using smartphone technology. In this paper, we provide a technique to improve smartphone battery consumption and examine the effects of smartphone battery lifetime on compliance, in an attempt to enhance users' adherence to remote monitoring systems. We deploy WANDA-CVD, an RHM system for patients at risk of cardiovascular disease (CVD), using a wearable smartphone for detection of physical activity. We tested the battery optimization technique in an in-lab pilot study and validated its effects on compliance in the Women's Heart Health Study. The battery optimization technique enhanced the battery lifetime by 192% on average, resulting in a 53% increase in compliance in the study. A system like WANDA-CVD can help increase smartphone battery lifetime for RHM systems monitoring physical activity.

  13. Hubble Space Telescope nickel hydrogen battery system briefing

    Science.gov (United States)

    Nawrocki, David; Saldana, David; Rao, Gopal

    1993-01-01

    The topics covered are presented in viewgraph form and include the following: the Hubble Space Telescope (HST) Mission; system constraints; battery specification; battery module; simplified block diagram; cell design summary; present status; voltage decay; system depth of discharge; pressure since launch; system capacity; eclipse time vs. trickle charge; capacity test objectives; and capacity during tests.

  14. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  15. System state estimation and optimal energy control framework for multicell lithium-ion battery system

    International Nuclear Information System (INIS)

    Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai; Kang, Yu

    2017-01-01

    Highlights: • Employed a dual-scale EKF based estimator for in-pack cells’ SOC values. • Proposed a two-stage hybrid state-feedback and output-feedback equalization algorithm. • A switchable balance current mode is designed in the equalization topology. • Verified the performance of proposed method under two conditions. - Abstract: Cell variations caused by the inevitable inconsistency during manufacture and use of battery cells have significant impacts on battery capacity, security and durability for battery energy storage systems. Thus, the battery equalization systems are essentially required to reduce variations of in-pack cells and increase battery pack capability. In order to protect all in-pack cells from damaging, estimate battery state and reduce variations, a system state estimation and energy optimal control framework for multicell lithium-ion battery system is proposed. The state-of-charge (SOC) values of all in-pack cells are firstly estimated using a dual-scale extended Kalman filtering (EKF) to improve estimation accuracy and reduce computation simultaneously. These estimated SOC values provide specific details of battery system, which cannot only be used to protect cells from over-charging/over-discharging, but also be employed to design state-feedback controller for battery equalization system. A two-stage hybrid state-feedback and output-feedback equalization algorithm is proposed. The state-feedback controller is firstly employed for coarse-grained adjustment to reduce equalization time cost with large current. However, due to the inevitable SOC estimation errors, the output-feedback controller is then used for fine-grained adjustment with trickle current. Experimental results show that the proposed framework can provide an effectively estimation and energy control for multicell battery systems. Finally, the implementation of the proposed method is further discussed for the real applications.

  16. Design and simulation of liquid cooled system for power battery of PHEV

    Science.gov (United States)

    Wang, Jianpeng; Xu, Haijun; Xu, Xiaojun; Pan, Cunyun

    2017-09-01

    Various battery chemistries have different responses to failure, but the most common failure mode of a cell under abusive conditions is the generation of heat and gas. To prevent battery thermal abuse, a battery thermal management system is essential. An excellent design of battery thermal management system can ensure that the battery is working at a suitable temperature and keeps the battery temperature diffenence at 2-3 °C. This paper presents a thermal-elcetric coupling model for a 37Ah lithium battery using AMESim. A liquid cooled system of hybrid electric vehicle power battery is designed to control the battery temperature.A liquid cooled model of thermal management system is built using AMESim, the simulation results showed that the temperature difference within 3°C of cell in the pack.

  17. Methods and systems for thermodynamic evaluation of battery state of health

    Science.gov (United States)

    Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T

    2014-12-02

    Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.

  18. Utility battery storage systems. Program report for FY95

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1996-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

  19. Utility battery storage systems program report for FY 94

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  20. A Novel Electric Bicycle Battery Monitoring System Based on Android Client

    Directory of Open Access Journals (Sweden)

    Chuanxue Song

    2017-01-01

    Full Text Available The battery monitoring system (BMS plays a crucial role in maintaining the safe operation of the lithium battery electric bicycle and prolonging the life of the battery pack. This paper designed a set of new battery monitoring systems based on the Android system and ARM single-chip microcomputer to enable direct management of the lithium battery pack and convenient monitoring of the state of the battery pack. The BMS realizes the goal of monitoring the voltage, current, and ambient temperature of lithium batteries, estimating the state of charge (SOC and state of health (SOH, protecting the battery from abuse during charging or discharging, and ensuring the consistency of the batteries by integrating the passive equalization circuit. The BMS was proven effective and feasible through several tests, including charging/discharging, estimation accuracy, and communication tests. The results indicated that the BMS could be used in the design and application of the electric bicycle.

  1. Analysis of batteries for use in photovoltaic systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Podder, A; Kapner, M

    1981-02-01

    An evaluation of 11 types of secondary batteries for energy storage in photovoltaic electric power systems is given. The evaluation was based on six specific application scenarios which were selected to represent the diverse requirements of various photovoltaic systems. Electrical load characteristics and solar insulation data were first obtained for each application scenario. A computer-based simulation program, SOLSIM, was then developed to determine optimal sizes for battery, solar array, and power conditioning systems. Projected service lives and battery costs were used to estimate life-cycle costs for each candidate battery type. The evaluation considered battery life-cycle cost, safety and health effects associated with battery operation, and reliability/maintainability. The 11 battery types were: lead-acid, nickel-zinc, nickel-iron, nickel-hydrogen, lithium-iron sulfide, calcium-iron sulfide, sodium-sulfur, zinc-chlorine, zinc-bromine, Redox, and zinc-ferricyanide. The six application scenarios were: (1) a single-family house in Denver, Colorado (photovoltaic system connected to the utility line); (2) a remote village in equatorial Africa (stand-alone power system); (3) a dairy farm in Howard County, Maryland (onsite generator for backup power); (4) a 50,000 square foot office building in Washington, DC (onsite generator backup); (5) a community in central Arizona with a population of 10,000 (battery to be used for dedicated energy storage for a utility grid-connected photovoltaic power plant); and (6) a military field telephone office with a constant 300 W load (trailer-mounted auxiliary generator backup). Recommendations for a research and development program on battery energy storage for photovoltaic applications are given, and a discussion of electrical interfacing problems for utility line-connected photovoltaic power systems is included. (WHK)

  2. Environmental assessment of batteries for photovoltaic systems

    International Nuclear Information System (INIS)

    Brouwer, J.M.; Lindeijer, E.W.

    1993-10-01

    A life cycle analysis (LCA) on 4 types of batteries for PV systems has been performed. in order to assess the environmental impacts of the various battery types, leading to recommendations for improvements in the production and use of batteries. The different battery types are compared on the basis of a functional unit: 240 kWh electric energy from PV modules delivered for household applications by one flat-plate lead-acid battery. An important product characteristic is the performance; in the study a Ni-Cd battery is taken to deliver 4 times as much energy as a flat plate battery (Pb-flat), a rod plate battery (Pb-rod) 3.4 times as much and a tubular plate battery (Pb-tube) 2.8 times as much. Environmental data was gathered from recent primary and secondary data in a database under internal quality control. Calculations were performed with an updated version of SIMAKOZA, a programme developed by the Centre of Environmental Science (CML), University of Leiden, Leiden, Netherlands. Of the types investigated, the Pb tube battery is to be preferred environmentally. Using one allocation method for recycling, the NiCd battery scores best on ozone depletion since no PVC is used (PVC production demands cooling with CFCs), on non-toxic waste and on disruption of ecosystems. The lead-bearing batteries score better on other aspects due to lower energy consumption during production and no emissions of cadmium. Using another allocation method for recycling the NiCd battery scores best on almost all environmental topics. Both allocation methods supplement each other. For resource depletion, regarding cadmium as an unavoidable by-product of zinc production renders NiCd batteries as much less problematic than lead/acid batteries, but taking account of the physical resources available would make the use of cadmium much more problematic than the use of lead. 37 figs., 20 tabs., 8 appendices, 109 refs

  3. Idaho National Laboratory Quarterly Occurrence Analysis for the 1st Quarter FY2017

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 82 reportable events (13 from the 1st quarter (Qtr) of fiscal year (FY) 2017 and 68 from the prior three reporting quarters), as well as 31 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (seven from this quarter and 24 from the prior three quarters).

  4. System and Battery Charge Control for PV-Powered AC Lighting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kern, G.

    1999-04-01

    This report reviews a number of issues specific to stand-alone AC lighting systems. A review of AC lighting technology is presented, which discusses the advantages and disadvantages of various lamps. The best lamps for small lighting systems are compact fluorescent. The best lamps for intermediate-size systems are high- or low-pressure sodium. Specifications for battery charging and load control are provided with the goal of achieving lamp lifetimes on the order of 16,000 to 24,000 hours and battery lifetimes of 4 to 5 years. A rough estimate of the potential domestic and global markets for stand-alone AC lighting systems is presented. DC current injection tests were performed on high-pressure sodium lamps and the test results are presented. Finally, a prototype system was designed and a prototype system controller (with battery charger and DC/AC inverter) was developed and built.

  5. Economic Optimization of Component Sizing for Residential Battery Storage Systems

    Directory of Open Access Journals (Sweden)

    Holger C. Hesse

    2017-06-01

    Full Text Available Battery energy storage systems (BESS coupled with rooftop-mounted residential photovoltaic (PV generation, designated as PV-BESS, draw increasing attention and market penetration as more and more such systems become available. The manifold BESS deployed to date rely on a variety of different battery technologies, show a great variation of battery size, and power electronics dimensioning. However, given today’s high investment costs of BESS, a well-matched design and adequate sizing of the storage systems are prerequisites to allow profitability for the end-user. The economic viability of a PV-BESS depends also on the battery operation, storage technology, and aging of the system. In this paper, a general method for comprehensive PV-BESS techno-economic analysis and optimization is presented and applied to the state-of-art PV-BESS to determine its optimal parameters. Using a linear optimization method, a cost-optimal sizing of the battery and power electronics is derived based on solar energy availability and local demand. At the same time, the power flow optimization reveals the best storage operation patterns considering a trade-off between energy purchase, feed-in remuneration, and battery aging. Using up to date technology-specific aging information and the investment cost of battery and inverter systems, three mature battery chemistries are compared; a lead-acid (PbA system and two lithium-ion systems, one with lithium-iron-phosphate (LFP and another with lithium-nickel-manganese-cobalt (NMC cathode. The results show that different storage technology and component sizing provide the best economic performances, depending on the scenario of load demand and PV generation.

  6. Battery-Aware Scheduling of Mixed Criticality Systems

    DEFF Research Database (Denmark)

    Wognsen, Erik Ramsgaard; Hansen, Rene Rydhof; Larsen, Kim Guldstrand

    2014-01-01

    . Mixed criticality and soft real-time systems may accept deadline violations and therefore enable trade-offs and evaluation of performance by criteria such as the number of tasks that can be completed with a given battery. We model a task set in combination with the kinetic battery model as a stochastic...

  7. Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Weiping Diao

    2016-06-01

    Full Text Available As a critical subsystem in electric vehicles and smart grids, a battery energy storage system plays an essential role in enhancement of reliable operation and system performance. In such applications, a battery energy storage system is required to provide high energy utilization efficiency, as well as reliability. However, capacity inconsistency of batteries affects energy utilization efficiency dramatically; and the situation becomes more severe after hundreds of cycles because battery capacities change randomly due to non-uniform aging. Capacity mismatch can be solved by decomposing a cluster of batteries in series into several low voltage battery packs. This paper introduces a new analysis method to optimize energy utilization efficiency by finding the best number of batteries in a pack, based on capacity distribution, order statistics, central limit theorem, and converter efficiency. Considering both battery energy utilization and power electronics efficiency, it establishes that there is a maximum energy utilization efficiency under a given capacity distribution among a certain number of batteries, which provides a basic analysis for system-level optimization of a battery system throughout its life cycle. Quantitative analysis results based on aging data are illustrated, and a prototype of flexible energy storage systems is built to verify this analysis.

  8. Battery Management System Hardware Concepts: An Overview

    Directory of Open Access Journals (Sweden)

    Markus Lelie

    2018-03-01

    Full Text Available This paper focuses on the hardware aspects of battery management systems (BMS for electric vehicle and stationary applications. The purpose is giving an overview on existing concepts in state-of-the-art systems and enabling the reader to estimate what has to be considered when designing a BMS for a given application. After a short analysis of general requirements, several possible topologies for battery packs and their consequences for the BMS’ complexity are examined. Four battery packs that were taken from commercially available electric vehicles are shown as examples. Later, implementation aspects regarding measurement of needed physical variables (voltage, current, temperature, etc. are discussed, as well as balancing issues and strategies. Finally, safety considerations and reliability aspects are investigated.

  9. Hybrid battery/supercapacitor energy storage system for the electric vehicles

    Science.gov (United States)

    Kouchachvili, Lia; Yaïci, Wahiba; Entchev, Evgueniy

    2018-01-01

    Electric vehicles (EVs) have recently attracted considerable attention and so did the development of the battery technologies. Although the battery technology has been significantly advanced, the available batteries do not entirely meet the energy demands of the EV power consumption. One of the key issues is non-monotonic consumption of energy accompanied by frequent changes during the battery discharging process. This is very harmful to the electrochemical process of the battery. A practical solution is to couple the battery with a supercapacitor, which is basically an electrochemical cell with a similar architecture, but with a higher rate capability and better cyclability. In this design, the supercapacitor can provide the excess energy required while the battery fails to do so. In addition to the battery and supercapacitor as the individual units, designing the architecture of the corresponding hybrid system from an electrical engineering point of view is of utmost importance. The present manuscript reviews the recent works devoted to the application of various battery/supercapacitor hybrid systems in EVs.

  10. Neural Network Modeling of the Lithium/Thionyl Chloride Battery System

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.; Jungst, R.G.; O' Gorman, C.C.; Paez, T.L.

    1998-10-29

    Battery systems have traditionally relied on extensive build and test procedures for product realization. Analytical models have been developed to diminish this reliance, but have only been partially successful in consistently predicting the performance of battery systems. The complex set of interacting physical and chemical processes within battery systems has made the development of analytical models a significant challenge. Advanced simulation tools are needed to more accurately model battery systems which will reduce the time and cost required for product realization. Sandia has initiated an advanced model-based design strategy to battery systems, beginning with the performance of lithiumhhionyl chloride cells. As an alternative approach, we have begun development of cell performance modeling using non-phenomenological models for battery systems based on artificial neural networks (ANNs). ANNs are inductive models for simulating input/output mappings with certain advantages over phenomenological models, particularly for complex systems. Among these advantages is the ability to avoid making measurements of hard to determine physical parameters or having to understand cell processes sufficiently to write mathematical functions describing their behavior. For example, ANN models are also being studied for simulating complex physical processes within the Li/SOC12 cell, such as the time and temperature dependence of the anode interracial resistance. ANNs have been shown to provide a very robust and computationally efficient simulation tool for predicting voltage and capacity output for Li/SOC12 cells under a variety of operating conditions. The ANN modeling approach should be applicable to a wide variety of battery chemistries, including rechargeable systems.

  11. Shippingport Atomic Power Station. Quarterly operating report, third quarter 1978

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T. D.

    1978-01-01

    A loss of ac power to the station occurred on July 28, 1978 caused by an interaction between Beaver Valley Power Station and Shippingport Atomic Power Station when the main transformer of Unit No. 1 of the Beaver Valley Power Station developed an internal failure and tripped the BVPS. Two environmental studies were continued this quarter. The first involves reduction of main unit condenser chlorination and the second, river intake screen fish impingement sampling. There were no radioactive liquid discharges from the Radioactive Waste Processing System to the river this quarter. During the third quarter of 1978, 874 cubic feet of radioactive solid waste was shipped out of state for burial. At the end of the quarter, the Fall shutdown continued with the plant heated up, the main turbine on turning gear and plant testing in progress prior to Station startup.

  12. Battery system including batteries that have a plurality of positive terminals and a plurality of negative terminals

    Science.gov (United States)

    Dougherty, Thomas J; Symanski, James S; Kuempers, Joerg A; Miles, Ronald C; Hansen, Scott A; Smith, Nels R; Taghikhani, Majid; Mrotek, Edward N; Andrew, Michael G

    2014-01-21

    A lithium battery for use in a vehicle includes a container, a plurality of positive terminals extending from a first end of the lithium battery, and a plurality of negative terminals extending from a second end of the lithium battery. The plurality of positive terminals are provided in a first configuration and the plurality of negative terminals are provided in a second configuration, the first configuration differing from the second configuration. A battery system for use in a vehicle may include a plurality of electrically connected lithium cells or batteries.

  13. The new coke oven battery heating control system at Rautaruukki Steel

    Energy Technology Data Exchange (ETDEWEB)

    Palmu, P.; Swanljung, J. [Rautaruukki Steel, Raahe (Finland)

    1998-07-01

    The heating control system of the coke oven batteries has been developed strongly during the existence of the coke oven plant. The first step of the heating control was a statistical model which had a good monitoring system. This was enough in those days due to bigger problems elsewhere. The second generation heating control system is designed for irregular coke oven battery operation. Coke production in Rautaruukki Steel is based on one coke-oven plant consisting of two batteries and a by-product plant. The whole coke production is cooled by three dry quenching units. The first coke-oven battery was taken into operation in October 1987 and the second in November 1992. Originally the plant was mainly designed and equipped by Ukrainian Giprokoks except Finnish CDQ-boilers, German ammonia recovery process and electric and automation designed by Rautaruukki. Before building of the second coke oven battery, there was a huge amount of development and modification work to do, to ensure the proper function of the coke production. For example all electronic and hydraulic systems of the Russian supplier were replaced by systems designed by Rautaruukki's own personnel. When the coke production capacity was doubled, the only design by Gibrokoks related to the battery and one additional dry quenching chamber. The expansion project itself was managed and executed by Rautaruukki. The expansion project consisted of: the second battery, third CDQ-unit, Desulphurization and Benzol plants for the by-product plant and upgrading of automation system. Battery and CDQ chamber refractory materials were Russian origin and all other main equipment were purchased by Rautaruukki from western and domestic manufacturers based on the operation difficulties and experience of coke oven battery No. 1. These modification practices made a good basis for later development in the field of coke oven battery automation. The hierarchy of the coke oven battery automation at Rautaruukki Steel consist

  14. Battery Management Systems in Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Michael Pecht

    2011-10-01

    Full Text Available The battery management system (BMS is a critical component of electric and hybrid electric vehicles. The purpose of the BMS is to guarantee safe and reliable battery operation. To maintain the safety and reliability of the battery, state monitoring and evaluation, charge control, and cell balancing are functionalities that have been implemented in BMS. As an electrochemical product, a battery acts differently under different operational and environmental conditions. The uncertainty of a battery’s performance poses a challenge to the implementation of these functions. This paper addresses concerns for current BMSs. State evaluation of a battery, including state of charge, state of health, and state of life, is a critical task for a BMS. Through reviewing the latest methodologies for the state evaluation of batteries, the future challenges for BMSs are presented and possible solutions are proposed as well.

  15. The Mechanical Response of Multifunctional Battery Systems

    Science.gov (United States)

    Tsutsui, Waterloo

    The current state of the art in the field of the mechanical behavior of electric vehicle (EV) battery cells is limited to quasi-static analysis. The lack of published data in the dynamic mechanical behavior of EV battery cells blinds engineers and scientists with the uncertainty of what to expect when EVs experience such unexpected events as intrusions to their battery systems. To this end, the recent occurrences of several EVs catching fire after hitting road debris even make this topic timelier. In order to ensure the safety of EV battery, it is critical to develop quantitative understanding of battery cell mechanical behavior under dynamic compressive loadings. Specifically, the research focuses on the dynamic mechanical loading effect on the standard "18650" cylindrical lithium-ion battery cells. In the study, the force-displacement and voltage-displacement behavior of the battery cells were analyzed experimentally at two strain rates, two state-of-charges, and two unit-cell configurations. The results revealed the strain rate sensitivity of their mechanical responses with the solid sacrificial elements. When the hollow sacrificial cells are used, on the other hand, effect was negligible up to the point of densification strength. Also, the high state-of-charge appeared to increase the stiffness of the battery cells. The research also revealed the effectiveness of the sacrificial elements on the mechanical behavior of a unit cell that consists of one battery cell and six sacrificial elements. The use of the sacrificial elements resulted in the delayed initiation of electric short circuit. Based on the analysis of battery behavior at the cell level, granular battery assembly, a battery pack, was designed and fabricated. The behavior of the granular battery assembly was analyzed both quasistatically and dynamically. Building on the results of the research, various research plans were proposed. Through conducting the research, we sought to answer the following

  16. Cascade redox flow battery systems

    Science.gov (United States)

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  17. Developments of Electrolyte Systems for Lithium–Sulfur Batteries: A Review

    International Nuclear Information System (INIS)

    Li, Gaoran; Li, Zhoupeng; Zhang, Bin; Lin, Zhan

    2015-01-01

    With a theoretical specific energy five times higher than that of lithium–ion batteries (2,600 vs. ~500 Wh kg −1 ), lithium–sulfur (Li–S) batteries have been considered as one of the most promising energy storage systems for the electrification of vehicles. However, both the polysulfide shuttle effects of the sulfur cathode and dendrite formation of the lithium anode are still key limitations to practical use of traditional Li–S batteries. In this review, we focus on the recent developments in electrolyte systems. First, we start with a brief discussion on fundamentals of Li–S batteries and key challenges associated with traditional liquid cells. We then introduce the most recent progresses in liquid systems, including ether-based, carbonate-based, and ionic liquid-based electrolytes. And then we move on to the advances in solid systems, including polymer and non-polymer electrolytes. Finally, the opportunities and perspectives for future research in both the liquid and solid Li–S batteries are presented.

  18. Developments of Electrolyte Systems for Lithium–Sulfur Batteries: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gaoran; Li, Zhoupeng [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang (China); Zhang, Bin [Anhui Academy for Environmental Science Research, Hefei, Anhui (China); Lin, Zhan, E-mail: zhanlin@zju.edu.cn [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang (China)

    2015-02-11

    With a theoretical specific energy five times higher than that of lithium–ion batteries (2,600 vs. ~500 Wh kg{sup −1}), lithium–sulfur (Li–S) batteries have been considered as one of the most promising energy storage systems for the electrification of vehicles. However, both the polysulfide shuttle effects of the sulfur cathode and dendrite formation of the lithium anode are still key limitations to practical use of traditional Li–S batteries. In this review, we focus on the recent developments in electrolyte systems. First, we start with a brief discussion on fundamentals of Li–S batteries and key challenges associated with traditional liquid cells. We then introduce the most recent progresses in liquid systems, including ether-based, carbonate-based, and ionic liquid-based electrolytes. And then we move on to the advances in solid systems, including polymer and non-polymer electrolytes. Finally, the opportunities and perspectives for future research in both the liquid and solid Li–S batteries are presented.

  19. Developments of Electrolyte Systems for Lithium-Sulfur Batteries: A Review

    Directory of Open Access Journals (Sweden)

    Zhan eLin

    2015-02-01

    Full Text Available With a theoretical specific energy 5 times higher than that of lithium-ion (Li-ion batteries (2,600 vs. ~500 Wh kg-1, lithium-sulfur (Li-S batteries have been considered as one of the most promising energy storage systems for the electrification of vehicles. However, both the polysulfide shuttle effects of the sulfur cathode and dendrite formation of the lithium anode are still key limitations to practical use of traditional Li-S batteries. In this review, we focus on the recent developments in electrolyte systems. First we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with traditional liquid cells. We then introduce the most recent progresses in liquid systems, including ether-based, carbonate-based, and ionic liquid-based electrolytes. And then we move on to the advances in solid systems, including polymer and non-polymer electrolytes. Finally, the opportunities and perspectives for future research in both the liquid and solid Li-S batteries are presented.

  20. Toyota Prius Hybrid Plug-in Conversation and Battery Monitoring system

    Science.gov (United States)

    Unnikannan, Krishnanunni; McIntyre, Michael; Harper, Doug; Kessinger, Robert; Young, Megan; Lantham, Joseph

    2012-03-01

    The objective of the project was to analyze the performance of a Toyota Hybrid. We started off with a stock Toyota Prius and taking data by driving it in city and on the highway in a mixed pre-determined route. The batteries can be charged using standard 120V AC outlets. First phase of the project was to increase the performance of the car by installing 20 Lead (Pb) batteries in a plug-in kit. To improve the performance of the kit, a centralized battery monitoring system was installed. The battery monitoring system has two components, a custom data modules and a National Instruments CompactRIO. Each Pb battery has its own data module and all the data module are connected to the CompactRIO. The CompactRIO records differential voltage, current and temperature from all the 20 batteries. The LabVIEW software is dynamic and can be reconfigured to any number of batteries and real time data from the batteries can be monitored on a LabVIEW enabled machine.

  1. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Beaty, Kevin D [Kalamazoo, MI; Zou, Zhanijang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-07-21

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  2. The impact of the new 36 V lead-acid battery systems on lead consumption

    Science.gov (United States)

    Prengaman, R. David

    The production of vehicles utilizing 36 V battery systems has begun with the introduction of the Toyota Crown. Other vehicles with 36 V batteries are in the near horizon. These vehicles may contain single or dual battery systems. These vehicles will most likely contain valve-regulated lead-acid (VRLA) batteries. The battery systems developed to date utilize significantly more lead than conventional 12 V batteries. This paper will evaluate the different proposed 36 V battery systems and estimate the lead requirements for each of the competing systems. It will also project the penetration of and resultant increased lead usage of these new batteries into the future.

  3. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    Science.gov (United States)

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

  4. Model-Based Battery Management Systems: From Theory to Practice

    Science.gov (United States)

    Pathak, Manan

    Lithium-ion batteries are now extensively being used as the primary storage source. Capacity and power fade, and slow recharging times are key issues that restrict its use in many applications. Battery management systems are critical to address these issues, along with ensuring its safety. This dissertation focuses on exploring various control strategies using detailed physics-based electrochemical models developed previously for lithium-ion batteries, which could be used in advanced battery management systems. Optimal charging profiles for minimizing capacity fade based on SEI-layer formation are derived and the benefits of using such control strategies are shown by experimentally testing them on a 16 Ah NMC-based pouch cell. This dissertation also explores different time-discretization strategies for non-linear models, which gives an improved order of convergence for optimal control problems. Lastly, this dissertation also explores a physics-based model for predicting the linear impedance of a battery, and develops a freeware that is extremely robust and computationally fast. Such a code could be used for estimating transport, kinetic and material properties of the battery based on the linear impedance spectra.

  5. Techno-Economic Modeling and Analysis of Redox Flow Battery Systems

    Directory of Open Access Journals (Sweden)

    Jens Noack

    2016-08-01

    Full Text Available A techno-economic model was developed to investigate the influence of components on the system costs of redox flow batteries. Sensitivity analyses were carried out based on an example of a 10 kW/120 kWh vanadium redox flow battery system, and the costs of the individual components were analyzed. Particular consideration was given to the influence of the material costs and resistances of bipolar plates and energy storage media as well as voltages and electric currents. Based on the developed model, it was possible to formulate statements about the targeted optimization of a developed non-commercial vanadium redox flow battery system and general aspects for future developments of redox flow batteries.

  6. Design method for photovoltaics-battery storage systems under tropical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Salem, A I.E.; Bassyouni, A H; Al-Motawakel, M K

    1989-01-01

    A very limited number of the available design methods can be used with confidence in sizing and costing the stand-alone photovoltaic-battery storage systems operating under the weather conditions of the tropical countries located between 0 and 30/sup 0/N. For this reason we investigated the performance and economics of various photovoltaic-battery storage system configurations. The aim was to prepare a number of sizing and costing design diagrams which detail the effect of climatic, social, and economics parameters on the choice of the stand-alone photovoltaic-battery storage systems. Our strategy was to guide designers, particularly those trying to utilize the stand-alone photovoltaic-battery storage systems in Sana'a (15/sup 0/N) and Cairo (30/sup 0/N), to the logic for selecting a system that physically and economically matches the site potential and the user's electrical needs. Considered here are the relatively small stand-alone photovoltaic-battery storage systems that can be purchased by individuals or commercial and governmental firms to supply all or part of the electrical needs consumed in residence, farms, remote rural communities, or small factories.

  7. Smart Power Supply for Battery-Powered Systems

    Science.gov (United States)

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have

  8. Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Daniel Akinyele

    2017-11-01

    Full Text Available Batteries are promising storage technologies for stationary applications because of their maturity, and the ease with which they are designed and installed compared to other technologies. However, they pose threats to the environment and human health. Several studies have discussed the various battery technologies and applications, but evaluating the environmental impact of batteries in electrical systems remains a gap that requires concerted research efforts. This study first presents an overview of batteries and compares their technical properties such as the cycle life, power and energy densities, efficiencies and the costs. It proposes an optimal battery technology sizing and selection strategy, and then assesses the environmental impact of batteries in a typical renewable energy application by using a stand-alone photovoltaic (PV system as a case study. The greenhouse gas (GHG impact of the batteries is evaluated based on the life cycle emission rate parameter. Results reveal that the battery has a significant impact in the energy system, with a GHG impact of about 36–68% in a 1.5 kW PV system for different locations. The paper discusses new batteries, strategies to minimize battery impact and provides insights into the selection of batteries with improved cycling capacity, higher lifespan and lower cost that can achieve lower environmental impacts for future applications.

  9. System dynamic model and charging control of lead-acid battery for stand-alone solar PV system

    KAUST Repository

    Huang, B.J.

    2010-05-01

    The lead-acid battery which is widely used in stand-alone solar system is easily damaged by a poor charging control which causes overcharging. The battery charging control is thus usually designed to stop charging after the overcharge point. This will reduce the storage energy capacity and reduce the service time in electricity supply. The design of charging control system however requires a good understanding of the system dynamic behaviour of the battery first. In the present study, a first-order system dynamics model of lead-acid battery at different operating points near the overcharge voltage was derived experimentally, from which a charging control system based on PI algorithm was developed using PWM charging technique. The feedback control system for battery charging after the overcharge point (14 V) was designed to compromise between the set-point response and the disturbance rejection. The experimental results show that the control system can suppress the battery voltage overshoot within 0.1 V when the solar irradiation is suddenly changed from 337 to 843 W/m2. A long-term outdoor test for a solar LED lighting system shows that the battery voltage never exceeded 14.1 V for the set point 14 V and the control system can prevent the battery from overcharging. The test result also indicates that the control system is able to increase the charged energy by 78%, as compared to the case that the charging stops after the overcharge point (14 V). © 2010 Elsevier Ltd. All rights reserved.

  10. Global Positioning System: Observations on Quarterly Reports from the Air Force

    Science.gov (United States)

    2016-10-17

    Positioning System : Observations on Quarterly Reports from the Air Force The satellite-based Global Positioning System (GPS) provides positioning , navigation...infrastructure, and transportation safety. The Department of Defense (DOD)—specifically, the Air Force—develops and operates the GPS system , which...programs, including the most recent detailed assessment of the next generation operational control system (OCX)

  11. Modular battery design for reliable, flexible and multi-technology energy storage systems

    International Nuclear Information System (INIS)

    Rothgang, Susanne; Baumhöfer, Thorsten; Hoek, Hauke van; Lange, Tobias; De Doncker, Rik W.; Sauer, Dirk Uwe

    2015-01-01

    Highlights: • Collection of existing battery topologies in electric vehicles. • Analysis of load profiles and the power consumption for electric vehicles. • Composition of battery packs and their passive components. • Modular, hybrid battery architecture with a dc-link. - Abstract: With large scale battery systems being more and more used in demanding applications regarding lifetime, performance and safety, it is of great importance to utilize not only cells with a high cyclic and calendric lifetime but also to optimize the whole system architecture. The aim of this work is therefore, to highlight the benefits of a modular system architecture allowing the use of hybrid battery systems combining high power and high energy cells in a multi-technology system. To achieve an optimized performance, efficiency and lifetime for an electric vehicle the complete drive train topology has to be taken into account instead of optimizing one of the components individually. Consequently, the topic will be analyzed from the system’s point of view, addressing in particular the modularization of the battery as well as the power electronics needed to do so. It will be shown that a highly flexible battery system can be realized by dc-to-dc converters between a modular, hybrid battery system and the drive inverter. By the dc-to-dc converters the battery output voltages and the inverter input voltages are decoupled. Hence, the battery’s topology can be chosen unrestrictedly within a wide range and easily be interconnected to a common dc-link of a different voltage. The benefits of this flexibility will be analyzed in detail showing especially how the lifetime of the battery system can be improved and the impact on system weight

  12. Probabilistic Analysis of Rechargeable Batteries in a Photovoltaic Power Supply System

    Energy Technology Data Exchange (ETDEWEB)

    Barney, P.; Ingersoll, D.; Jungst, R.; O' Gorman, C.; Paez, T.L.; Urbina, A.

    1998-11-24

    We developed a model for the probabilistic behavior of a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. Stochastic and deterministic models are created to simulate the behavior of the system component;. The components are the solar resource, the photovoltaic power supply system, the rechargeable battery, and a load. Artificial neural networks are incorporated into the model of the rechargeable battery to simulate damage that occurs during deep discharge cycles. The equations governing system behavior are combined into one set and solved simultaneously in the Monte Carlo framework to evaluate the probabilistic character of measures of battery behavior.

  13. Rebalancing electrolytes in redox flow battery systems

    Science.gov (United States)

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  14. Second life battery energy storage system for residential demand response service

    DEFF Research Database (Denmark)

    Saez-de-Ibarra, Andoni; Martinez-Laserna, Egoitz; Koch-Ciobotaru, Cosmin

    2015-01-01

    vehicles, during their main first life application, for providing residential demand response service. The paper considers the decayed characteristics of these batteries and optimizes the rating of such a second life battery energy storage system (SLBESS) for maximizing the economic benefits of the user......The integration of renewable energies and the usage of battery energy storage systems (BESS) into the residential buildings opens the possibility for minimizing the electricity bill for the end-user. This paper proposes the use of batteries that have already been aged while powering electric......'s energy consumption during a period of one year. Furthermore, simulations were performed considering real data of PV generation, consumption, prices taken from the Spanish market and costs of battery and photovoltaic systems....

  15. From battery modeling to battery management

    NARCIS (Netherlands)

    Notten, P.H.L.; Danilov, D.

    2011-01-01

    The principles of rechargeable battery operation form the basis of the electronic network models developed for Nickel-based aqueous battery systems, including Nickel Metal Hydride (NiMH), and non-aqueous battery systems, such as the well-known Li-ion. These electronic network models are based on

  16. Research on Battery Energy Storage System Based on User Side

    Science.gov (United States)

    Wang, Qian; Zhang, Yichi; Yun, Zejian; Wang, Xuguang; Zhang, Dong; Bian, Di

    2018-01-01

    This paper introduces the effect of user side energy storage on the user side and the network side, a battery energy storage system for the user side is designed. The main circuit topology of the battery energy storage system based on the user side is given, the structure is mainly composed of two parts: DC-DC two-way half bridge converter and DC-AC two-way converter, a control strategy combining battery charging and discharging characteristics is proposed to decouple the grid side and the energy storage side, and the block diagram of the charging and discharging control of the energy storage system is given. The simulation results show that the battery energy storage system of the user side can not only realize reactive power compensation of low-voltage distribution network, but also improve the power quality of the users.

  17. State of health detection for Lithium ion batteries in photovoltaic system

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2013-01-01

    Highlights: ► DC resistances of batteries. ► Fuzzy logic inference. ► SOH detection for battery. - Abstract: In many photovoltaic systems, rechargeable batteries are required to even out irregularities in solar irradiation. However, the health conditions of the batteries are crucial for the reliability of the overall system. In this paper, the equivalent DC resistances of Lithium ion battery cells of various health conditions during charging under different temperatures have been collected and the relationships between equivalent DC resistance, health condition and working temperature have been identified. The equivalent DC resistance can easily be obtained during the charging period of a battery by switching off the charging current periodically for a very short duration of time. A simple and effective battery charger with state of health (SOH) detection for Lithium ion battery cell has been developed based on the identified equivalent DC resistance. Experimental results are included to demonstrate the effectiveness of the proposed SOH determination scheme.

  18. Operating conditions of batteries in off-grid renewable energy systems

    DEFF Research Database (Denmark)

    Svoboda, V.; Wenzl, H.; Kaiser, R.

    2007-01-01

    for batteries. Categories are defined in such a way that batteries belonging to the same category are subjected to similar operating conditions and a similar combination of stress factors. The results provide a comprehensive overview of battery operating conditions in existing off-grid renewable energy systems...

  19. Comparative analysis of aluminum-air battery propulsion systems for passenger vehicles

    Science.gov (United States)

    Salisbury, J. D.; Behrin, E.; Kong, M. K.; Whisler, D. J.

    1980-02-01

    Three electric propulsion systems using an aluminum air battery were analyzed and compared to the internal combustion engine (ICE) vehicle. The engine and fuel systems of a representative five passenger highway vehicle were replaced conceptually by each of the three electric propulsion systems. The electrical vehicles were constrained by the computer simulation to be equivalent to the ICE vehicle in range and acceleration performance. The vehicle masses and aluminum consumption rates were then calculated for the electric vehicles and these data were used as figures of merit. The Al-air vehicles analyzed were (1) an Al-air battery only electric vehicle; (2) an Al-air battery combined with a nickel zinc secondary battery for power leveling and regenerative braking; and (3) an Al-air battery combined with a flywheel for power leveling and regenerative braking. All three electric systems compared favorably with the ICE vehicle.

  20. Application of battery-based storage systems in household-demand smoothening in electricity-distribution grids

    International Nuclear Information System (INIS)

    Purvins, Arturs; Papaioannou, Ioulia T.; Debarberis, Luigi

    2013-01-01

    Highlights: ► Battery system application in demand smoothening in distribution grids is analysed. ► Five European countries are studied with and without high photovoltaic deployment. ► A sensitivity analysis for different battery system parameters is performed. ► A simple battery system management is sufficient for low demand smoothening. ► More elaborate management is required for high demand smoothening. - Abstract: This article analyses in technical terms the application of battery-based storage systems for household-demand smoothening in electricity-distribution grids. The analysis includes case studies of Denmark, Portugal, Greece, France and Italy. A high penetration of photovoltaic systems in distribution grids is considered as an additional scenario. A sensitivity analysis is performed in order to examine the smoothening effect of daily demand profiles for different configurations of the battery system. In general, battery-storage systems with low rated power and low battery capacity can smooth the demand sufficiently with the aid of a simple management process. For example, with 1 kW of peak demand, a 30–45% decrease in the variability of the daily demand profile can be achieved with a battery system of 0.1 kW rated power and up to 0.6 kW h battery capacity. However, further smoothening requires higher battery-system capacity and power. In this case, more elaborate management is also needed to use the battery system efficiently.

  1. Classification of robotic battery service systems for unmanned aerial vehicles

    Directory of Open Access Journals (Sweden)

    Ngo Tien

    2018-01-01

    Full Text Available Existing examples of prototypes of ground-based robotic platforms used as a landing site for unmanned aerial vehicles are considered. In some cases, they are equipped with a maintenance mechanism for the power supply module. The main requirements for robotic multi-copter battery maintenance systems depending on operating conditions, required processing speed, operator experience and other parameters are analyzed. The key issues remain questions of the autonomous landing of the unmanned aerial vehicles on the platform and approach to servicing battery. The existing prototypes of service robotic platforms are differed in the complexity of internal mechanisms, speed of service, algorithms of joint work of the platform and unmanned aerial vehicles during the landing and maintenance of the battery. The classification of robotic systems for servicing the power supply of multi-copter batteries criteria is presented using the following: the type of basing, the method of navigation during landing, the shape of the landing pad, the method of restoring the power supply module. The proposed algorithmic model of the operation of battery power maintenance system of the multi-copter on ground-based robotic platform during solving the target agrarian problem is described. Wireless methods of battery recovery are most promising, so further development and prototyping of a wireless charging station for multi-copter batteries will be developed.

  2. Optimization of an off-grid hybrid PV-wind-diesel-battery system

    Energy Technology Data Exchange (ETDEWEB)

    Merei, Ghada [RWTH Aachen Univ. (Germany). Electrochemical Energy Conversion and Storage Systems Group; Juelich Aachen Research Alliance, JARA-Energy (Germany); Sauer, Dirk Uwe [RWTH Aachen Univ. (Germany). Electrochemical Energy Conversion and Storage Systems Group; Juelich Aachen Research Alliance, JARA-Energy (Germany); RWTH Aachen Univ. (Germany). Inst. for Power Generation and Storage Systems (PGS)

    2012-07-01

    The power supply of remote sites and applications at minimal cost and with low emissions is an important issue when discussing future energy concepts. This paper presents the modelling and optimisation of a stand-alone hybrid energy system. The system consists of photovoltaic (PV) panels and a wind turbine as renewable power sources, a diesel generator for back-up power and batteries to store excess energy and to improve the system reliability. For storage the technologies of lithium-ion, lead-acid, vanadium redox-flow or a combination thereof are considered. In order to use different battery technologies at once, a battery management system (BMS) is needed. The presented BMS minimises operation cost while taking into account different battery operating points and ageing mechanisms. The system is modelled and implemented in Matlab/Simulink. As input, the model uses data of the irradiation, wind speed and air temperature measured in ten minute intervals for ten years in Aachen, Germany. The load is assumed to be that of a rural UMTS/GSM base station for telecommunication. For a timeframe of 20 years, the performance is evaluated and the total costs are determined. Using a genetic algorithm, component sizes and settings are then varied and the system re-evaluated to minimise the overall cost. The optimisation results show that using batteries in combination with the renewables is economic and ecologic. However, the best solution is to combine redox-flow batteries with the renewables. In addition, a power supply system consisting only of batteries, PV and wind generators can satisfy the power demand.

  3. Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids

    Directory of Open Access Journals (Sweden)

    Holger C. Hesse

    2017-12-01

    Full Text Available Battery energy storage systems have gained increasing interest for serving grid support in various application tasks. In particular, systems based on lithium-ion batteries have evolved rapidly with a wide range of cell technologies and system architectures available on the market. On the application side, different tasks for storage deployment demand distinct properties of the storage system. This review aims to serve as a guideline for best choice of battery technology, system design and operation for lithium-ion based storage systems to match a specific system application. Starting with an overview to lithium-ion battery technologies and their characteristics with respect to performance and aging, the storage system design is analyzed in detail based on an evaluation of real-world projects. Typical storage system applications are grouped and classified with respect to the challenges posed to the battery system. Publicly available modeling tools for technical and economic analysis are presented. A brief analysis of optimization approaches aims to point out challenges and potential solution techniques for system sizing, positioning and dispatch operation. For all areas reviewed herein, expected improvements and possible future developments are highlighted. In order to extract the full potential of stationary battery storage systems and to enable increased profitability of systems, future research should aim to a holistic system level approach combining not only performance tuning on a battery cell level and careful analysis of the application requirements, but also consider a proper selection of storage sub-components as well as an optimized system operation strategy.

  4. An electric vehicle propulsion system's impact on battery performance: An overview

    Science.gov (United States)

    Bozek, J. M.; Smithrick, J. J.; Cataldo, R. C.; Ewashinka, J. G.

    1980-01-01

    The performance of two types of batteries, lead-acid and nickel-zinc, was measured as a function of the charging and discharging demands anticipated from electric vehicle propulsion systems. The benefits of rapid high current charging were mixed: although it allowed quick charges, the energy efficiency was reduced. For low power (overnight) charging the current wave shapes delivered by the charger to the battery tended to have no effect on the battery cycle life. The use of chopper speed controllers with series traction motors resulted in a significant reduction in the energy available from a battery whenever the motor operates at part load. The demand placed on a battery by an electric vehicle propulsion system containing electrical regenerative braking confirmed significant improvment in short term performance of the battery.

  5. Development of an Experimental Testbed for Research in Lithium-Ion Battery Management Systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ferdowsi

    2013-10-01

    Full Text Available Advanced electrochemical batteries are becoming an integral part of a wide range of applications from household and commercial to smart grid, transportation, and aerospace applications. Among different battery technologies, lithium-ion (Li-ion batteries are growing more and more popular due to their high energy density, high galvanic potential, low self-discharge, low weight, and the fact that they have almost no memory effect. However, one of the main obstacles facing the widespread commercialization of Li-ion batteries is the design of reliable battery management systems (BMSs. An efficient BMS ensures electrical safety during operation, while increasing battery lifetime, capacity and thermal stability. Despite the need for extensive research in this field, the majority of research conducted on Li-ion battery packs and BMS are proprietary works conducted by manufacturers. The available literature, however, provides either general descriptions or detailed analysis of individual components of the battery system, and ignores addressing details of the overall system development. This paper addresses the development of an experimental research testbed for studying Li-ion batteries and their BMS design. The testbed can be configured in a variety of cell and pack architectures, allowing for a wide range of BMS monitoring, diagnostics, and control technologies to be tested and analyzed. General considerations that should be taken into account while designing Li-ion battery systems are reviewed and different technologies and challenges commonly encountered in Li-ion battery systems are investigated. This testbed facilitates future development of more practical and improved BMS technologies with the aim of increasing the safety, reliability, and efficiency of existing Li-ion battery systems. Experimental results of initial tests performed on the system are used to demonstrate some of the capabilities of the developed research testbed. To the authors

  6. Multi-channel temperature measurement system for automotive battery stack

    Science.gov (United States)

    Lewczuk, Radoslaw; Wojtkowski, Wojciech

    2017-08-01

    A multi-channel temperature measurement system for monitoring of automotive battery stack is presented in the paper. The presented system is a complete battery temperature measuring system for hybrid / electric vehicles that incorporates multi-channel temperature measurements with digital temperature sensors communicating through 1-Wire buses, individual 1-Wire bus for each sensor for parallel computing (parallel measurements instead of sequential), FPGA device which collects data from sensors and translates it for CAN bus frames. CAN bus is incorporated for communication with car Battery Management System and uses additional CAN bus controller which communicates with FPGA device through SPI bus. The described system can parallel measure up to 12 temperatures but can be easily extended in the future in case of additional needs. The structure of the system as well as particular devices are described in the paper. Selected results of experimental investigations which show proper operation of the system are presented as well.

  7. Battery systems. State of the art; Batteriesysteme. Stand der Technik

    Energy Technology Data Exchange (ETDEWEB)

    Jossen, Andreas; Doering, Harry [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung, Ulm (Germany)

    2009-07-01

    Due to the emergence of electromobility and the increase in the fluctuating supply of renewable energy (wind and PV) electrical storage systems are gaining in importance again. In the area of electromobility they have even become a key technology. In the electromobile sector a clear decision in favour of Li ion batteries has already been evident for some time. None of the other technologies are being discussed any longer with regard to this application. Hybrid vehicles today mostly use NiMH storages, but this area too will see the entry of Li ion batteries. In the microhybrid area the improvements achieved with lead batteries will play an important role. Regarding stationary systems there is as yet no such clear-cut focus on any single technology to be observed, but rather a number of technologies being developed and tested concurrently. Redox flow batteries and high temperature batteries will play an important role here. However, lithium ion systems will try to get a foot in the door in this area as well.

  8. Idaho National Laboratory Quarterly Performance Analysis - 1st Quarter FY2015

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 73 reportable events (27 from the 1St Qtr FY-15 and 46 from the prior three reporting quarters), as well as 38 other issue reports (including nine not reportable events and Significant Category A and B conditions reported during the1st Qtr FY-15) identified at INL during the past 12 months.

  9. Design and Implementation of the Battery Energy Storage System in DC Micro-Grid Systems

    Directory of Open Access Journals (Sweden)

    Yuan-Chih Chang

    2018-06-01

    Full Text Available The design and implementation of the battery energy storage system in DC micro-grid systems is demonstrated in this paper. The battery energy storage system (BESS is an important part of a DC micro-grid because renewable energy generation sources are fluctuating. The BESS can provide energy while the renewable energy is absent in the DC micro-grid. The circuit topology of the proposed BESS will be introduced. The design of the voltage controller and the current controller for the battery charger/discharger are also illustrated. Finally, experimental results are provided to validate the performance of the BESS.

  10. Lessons Learned from the Puerto Rico Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

    1999-09-01

    The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.

  11. Short-term energy outlook: Quarterly projections, fourth quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-14

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections for printed publication in January, April, July, and October in the Short-Term Energy Outlook. The details of these projections, as well as monthly updates on or about the 6th of each interim month, are available on the internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The forecast period for this issue of the Outlook extends from the fourth quarter of 1997 through the fourth quarter of 1998. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the fourth quarter 1997 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. 19 tabs.

  12. Environmental sizing of smartphone batteries

    OpenAIRE

    Flipsen, S.F.J.; Geraedts, J.M.P.; Reinders, A.H.M.E.; Bakker, C.A.; Dafnomilis, I.; Gudadhe, A.

    2012-01-01

    Smartphone use has increased at a phenomenal pace worldwide. In 2011 more smartphones have been sold than desktop pc’s, notebooks, netbooks and tablets together. The total worldwide smartphone sales reached 472 million units in 2011, and 149 million of them were sold in the fourth quarter of 2011. The smartphone is, like almost every other mobile device, powered by batteries, limited in size and therefore capacity, which makes energy management paramount. While global demand and use of mobile...

  13. Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-12-31

    HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, including commercial and residential buildings, data centers, and telecom facilities.

  14. Quarterly environmental data summary for third quarter 1999

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, Stephen H. [Weldon Spring Site, St. Charles, MO (United States)

    1999-11-05

    A copy of the quarterly Environmental Data Summary (QEDS) for the third quarter of 1999 is enclosed. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the WSSRAP verification group and merged into the data base during the third quarter of 1999. Selected KPA results for on-site total uranium analyses performed during the quarter are also included. Air monitoring data presented are the most recent complete sets of quarterly data.

  15. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter 1999

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1999-12-01

    Quarterly reports on the operation of Finnish NPPs describe events and observations relating to nuclear and radiation safety that the Finnish Radiation and Nuclear Safety Authority (STUK) considers safety significant. Safety improvements at the plants are also described. The report includes a summary of the radiation safety of plant personnel and the environment and tabulated data on the plants' production and load factors. All Finnish NPP units were in power operation for the whole second quarter of 1999, with the exception of the annual maintenance outages of the Olkiluoto plant units. The load factor average of the plant units in this quarter was 93.1%. Two events in this quarter were classified Level 1 on the INKS Scale. At Olkiluoto 1, a valve of the containment gas treatment system had been in an incorrect position for almost a month, owing to which the system would not have been available as planned in an accident. At Olkiluoto 2, main circulation pump work was done during the annual maintenance outage and a containment personnel air lock was briefly open in violation of the Technical Specifications. Water leaking out of the reactor in an accident could not have been directed to the emergency cooling system because it would have leaked out from the containment via the open personnel air lock. Other events in this quarter had no bearing on the nuclear or radiation safety of the plant units. The individual doses of NPP personnel and also radioactive releases off-site were well below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  16. Road Transportable Analytical Laboratory (RTAL) system. Quarterly progress report, May 1994--July 1994

    International Nuclear Information System (INIS)

    1994-01-01

    Progress achieved on the development of the RTAL system during the quarter, May 1 through July 31, 1994 is reported. The work included NEPA analysis, drawings, prototype system construction, and on-site prototype demonstration

  17. Towards an Ultimate Battery Thermal Management System

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    The prevailing standards and scientific literature offer a wide range of options for the construction of a battery thermal management system (BTMS). The design of an innovative yet well-functioning BTMS requires strict supervision, quality audit and continuous improvement of the whole process....... It must address all the current quality and safety (Q&S) standards. In this review article, an effective battery thermal management is sought considering the existing battery Q&S standards and scientific literature. The article contains a broad overview of the current existing standards and literature...... on a generic compliant BTMS. The aim is to assist in the design of a novel compatible BTMS. Additionally, the article delivers a set of recommendations to make an effective BTMS....

  18. Battery management systems with thermally integrated fire suppression

    Science.gov (United States)

    Bandhauer, Todd M.; Farmer, Joseph C.

    2017-07-11

    A thermal management system is integral to a battery pack and/or individual cells. It relies on passive liquid-vapor phase change heat removal to provide enhanced thermal protection via rapid expulsion of inert high pressure refrigerant during abnormal abuse events and can be integrated with a cooling system that operates during normal operation. When a thermal runaway event occurs and sensed by either active or passive sensors, the high pressure refrigerant is preferentially ejected through strategically placed passages within the pack to rapidly quench the battery.

  19. Optimal Sizing of Vanadium Redox Flow Battery Systems for Residential Applications Based on Battery Electrochemical Characteristics

    Directory of Open Access Journals (Sweden)

    Xinan Zhang

    2016-10-01

    Full Text Available The penetration of solar photovoltaic (PV systems in residential areas contributes to the generation and usage of renewable energy. Despite its advantages, the PV system also creates problems caused by the intermittency of renewable energy. As suggested by researchers, such problems deteriorate the applicability of the PV system and have to be resolved by employing a battery energy storage system (BESS. With concern for the high investment cost, the choice of a cost-effective BESS with proper sizing is necessary. To this end, this paper proposes the employment of a vanadium redox flow battery (VRB, which possesses a long cycle life and high energy efficiency, for residential users with PV systems. It further proposes methods of computing the capital and maintenance cost of VRB systems and evaluating battery efficiency based on VRB electrochemical characteristics. Furthermore, by considering the cost and efficiency of VRB, the prevalent time-of-use electricity price, the solar feed-in tariff, the solar power profile and the user load pattern, an optimal sizing algorithm for VRB systems is proposed. Simulation studies are carried out to show the effectiveness of the proposed methods.

  20. quarters

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2016-10-01

    Full Text Available Are there many words combining both space and time? A quarter is one of such rare words: it means both a part of the city space and a period of the year. A regular city has parts bordered by four streets. For example, Chita is a city with an absolutely orthogonal historical center. This Utopian city was designed by Decembrists in the depth of Siberian ore-mines (120. The 130 Quarter in Irkutsk is irregular from its inception because of its triangular form. Located between two roads, the forked quarter was initially bordered by flows along the west-east axis – the main direction of the country. That is why it appreciated the gift for the 350 anniversary of its transit existence – a promenade for an unhurried flow of pedestrians. The quarter manages this flow quite well, while overcoming the difficulties of new existence and gathering myths (102. Arousing many expectations, the “Irkutsk’s Quarters” project continues the theme that was begun by the 130 Quarter and involved regeneration, revival and search for Genius Loci and the key to each single quarter (74. Beaded on the trading axis, these shabby and unfriendly quarters full of rubbish should be transformed for the good of inhabitants, guests and the small business. The triptych by Lidin, Rappaport and Nevlyutov is about happiness of urbanship and cities for people, too (58. The City Community Forum was also devoted to the urban theme (114. Going through the last quarter of the year, we hope that Irkutsk will keep to the right policy, so that in the near future the wooden downtown quarters will become its pride, and the design, construction and investment complexes will join in desire to increase the number of comfortable and lively quarters in our city. The Baikal Beam will get one more landmark: the Smart School (22 for Irkutsk’s children, including orphans, will be built in several years on the bank of Chertugeevsky Bay.

  1. Idaho National Laboratory Quarterly Performance Analysis - 3rd Quarter FY2014

    Energy Technology Data Exchange (ETDEWEB)

    Lisbeth A. Mitchell

    2014-09-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other non-reportable issues identified at INL from July 2013 through June 2014.

  2. Comparative techno-economic analysis of hybrid micro-grid systems utilizing different battery types

    International Nuclear Information System (INIS)

    Ciez, Rebecca E.; Whitacre, J.F.

    2016-01-01

    Highlights: • Comparative analysis of 3 battery chemistries in microgrid storage application. • At discount rates >1%, diesel-only generation still cheapest electricity option. • Optimal battery chemistry highly dependent on discount rate. • For discount rates <4%, lead acid is the cheapest storage options. • High energy density li-ion the cheapest storage option for discount rates >4%. - Abstract: A systems-level lifetime cost-of-use optimization model was applied to a hypothetical hybrid off-grid power system to compare the impacts of different battery technologies. Specifically, a time-step battery degradation model was used to account for unit degradation over a 20-year system lifetime for three different batteries. Variables examined included: battery type, allowed state of charge swing during cycling, number of battery replacements, fractional renewable energy requirements, and applied discount rate. Our analyses show that storage packs with high energy, low cost lithium-ion cells have the potential to compete with a non-renewable solution in some cases. The discount rate also proves to be significant in determining the cost competitiveness of the hybrid systems: at low discount rates, the levelized cost of electricity (LCOE) is only slightly higher than diesel generation, with costs diverging as the discount rate increases. The discount rate also determines which battery technology delivers the lowest cost of electricity: lead acid batteries are favorable at low rates, while high-energy lithium-ion batteries deliver lower cost electricity at higher rates. Similarly, market forces, like fuel or battery price changes, feed-in tariffs, or carbon taxes, required to trigger a switch to a hybrid system vary substantially with the discount rate.

  3. Short-term energy outlook, quarterly projections, first quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The forecast period for this issue of the Outlook extends from the first quarter of 1998 through the fourth quarter of 1999. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the first quarter 1998 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are adjusted by EIA to reflect EIA assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 24 figs., 19 tabs.

  4. Design and Implementation of Battery Management System for Electric Bicycle

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Today the electric vehicle (EV has been developed in such a way that electronic motor, battery, and charger replace the engine, tank and gasoline pump of the conventional gasoline-powered [1]. In other word, instead of using fossil fuel to move the vehicle, in this case we used a pack of batteries to move it. The global climate change and the abnormal rising international crude oil prices call for the development of EV [2]. To solve these problems, a new energy needs to be developed or optimized in order to replace the current energy which is fossil fuel. A clean and green energy [2]. Because of this, it is very important to make sure that the battery that being used is reliable as the fossil fuel. Thus, the design of the battery management system plays an important role on battery life preservation and performance improvement of EV [3]. The BMS also performs many tasks including the measurement of system voltage, current and temperature, the cells’ state of charge (SOC, state of health (SOH, remaining useful life (RUL determination, controlling and monitoring the charge / discharge characteristics and cell balancing [3]. For this project, 18650 Lithium-Ion battery is used to develop battery management for 144V 50Ah. As lithium-ion batteries have high value of specific energy, high energy density, high open circuit voltage, and low self-discharge, they are a proper candidate for EVs among other cell chemistries [4].

  5. Systems and methods for rebalancing redox flow battery electrolytes

    Science.gov (United States)

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  6. Mathematical modeling of the nickel/metal hydride battery system

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Blaine Kermit [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  7. Control system considerations for an aluminum-air battery powered electric vehicle

    Science.gov (United States)

    Cox, L. E.; Hassman, G. V.; Post, S. F.

    1980-05-01

    Basic motor controller requirements and tradeoffs between 30 cell and 60 cell aluminum air battery systems were established. A sample controller design was evolved and basic characteristics were evaluated. Advantages of a 60 cell battery system over a 30 cell were found in the areas of control system costs, weights, and efficiency.

  8. Idaho National Laboratory Quarterly Performance Analysis - 2nd Quarter FY2014

    Energy Technology Data Exchange (ETDEWEB)

    Lisbeth A. Mitchell

    2014-06-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other deficiency reports (including not reportable events) identified at INL from January 2014 through March 2014.

  9. SUNRAYCE 95: Working safely with lead-acid batteries and photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    DePhillips, M.P.; Moskowitz, P.D.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States). Biomedical and Environmental Assessment Group

    1994-05-27

    This document is a power system and battery safety handbook for participants in the SUNRAYCE 95 solar powered electric vehicle program. The topics of the handbook include batteries, photovoltaic modules, safety equipment needed for working with sulfuric acid electrolyte and batteries, battery transport, accident response, battery recharging and ventilation, electrical risks on-board vehicle, external electrical risks, electrical risk management strategies, and general maintenance including troubleshooting, hydrometer check and voltmeter check.

  10. Decentralized control of a scalable photovoltaic (PV)-battery hybrid power system

    International Nuclear Information System (INIS)

    Kim, Myungchin; Bae, Sungwoo

    2017-01-01

    Highlights: • This paper introduces the design and control of a PV-battery hybrid power system. • Reliable and scalable operation of hybrid power systems is achieved. • System and power control are performed without a centralized controller. • Reliability and scalability characteristics are studied in a quantitative manner. • The system control performance is verified using realistic solar irradiation data. - Abstract: This paper presents the design and control of a sustainable standalone photovoltaic (PV)-battery hybrid power system (HPS). The research aims to develop an approach that contributes to increased level of reliability and scalability for an HPS. To achieve such objectives, a PV-battery HPS with a passively connected battery was studied. A quantitative hardware reliability analysis was performed to assess the effect of energy storage configuration to the overall system reliability. Instead of requiring the feedback control information of load power through a centralized supervisory controller, the power flow in the proposed HPS is managed by a decentralized control approach that takes advantage of the system architecture. Reliable system operation of an HPS is achieved through the proposed control approach by not requiring a separate supervisory controller. Furthermore, performance degradation of energy storage can be prevented by selecting the controller gains such that the charge rate does not exceed operational requirements. The performance of the proposed system architecture with the control strategy was verified by simulation results using realistic irradiance data and a battery model in which its temperature effect was considered. With an objective to support scalable operation, details on how the proposed design could be applied were also studied so that the HPS could satisfy potential system growth requirements. Such scalability was verified by simulating various cases that involve connection and disconnection of sources and loads. The

  11. Idaho National Laboratory Quarterly Occurrence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 85 reportable events (18 from the 4th Qtr FY-15 and 67 from the prior three reporting quarters), as well as 25 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (8 from this quarter and 17 from the prior three quarters).

  12. Two novel techniques for increasing energy efficiency of photovoltaic-battery systems

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2015-01-01

    Highlights: • Two novel techniques for increasing the energy efficiency of PV-battery systems. • Practically, 27% increase in the energy efficiency of PV-battery systems. • Novel proposed DC/PWM inverter for substituting conventional primary DC/DC converters. • Presenting theoretical, simulation & experimental results to verify the above claims. - Abstract: A photovoltaic (PV)-battery power source consists of a PV panel, a primary DC/DC converter, and a battery or a batteries bank. It is generally used to provide electric energy for local consumers such as buildings. Maximum power point tracking (MPPT) schemes cannot be applied to it because the PV panel output current is only determined by the state of charge (SOC) of the battery. In this study, two novel techniques are proposed to increase the energy efficiency of PV-battery power sources. Replacing the primary DC/DC converter with a novel proposed DC/PWM inverter, and decomposing the PV panel into a set of parallel homogenous configured PV modules are the two proposed techniques. It is shown that the implementation of each technique effectively increases the energy efficiency of PV-battery power sources. The two techniques are combined to each other to implement a new PV-battery power source. It is proved that the energy efficiency of the new version is significantly more than conventional version. Simulated results performed in MATLAB/Proteus 6 verify an increase of 29% in the energy efficiency. Four PV-battery power sources have been built, and comparative experimental results are presented that verify an increase of 27% in the energy efficiency.

  13. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications

  14. Decontamination Systems Information and Research Program: Quarterly report, July--September 1994

    International Nuclear Information System (INIS)

    1994-11-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ''Decontamination Systems Information and Research Programs'' (DOE Instrument No.: DE-FC21-92MC29467). Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Reports on a quarterly basis. This report comprises the eighth Quarterly Technical Progress Report for the Agreement. This report reflects the progress and/or efforts performed on the 16 technical projects encompassed by the Agreement for the period of July 1 through September 30, 1994. These projects focus on the following: Bio-remediation of organic compounds, heavy metals, and radionuclides; miscellaneous remediation technologies; instrumentation; and technology assessments

  15. Hybrid systems with lead-acid battery and proton-exchange membrane fuel cell

    Science.gov (United States)

    Jossen, Andreas; Garche, Juergen; Doering, Harry; Goetz, Markus; Knaupp, Werner; Joerissen, Ludwig

    Hybrid systems, based on a lead-acid battery and a proton-exchange membrane fuel cell (PEMFC) give the possibility to combine the advantages of both technologies. The benefits for different applications are discussed and the practical realisation of such systems is shown. Furthermore a numerical model for such a hybrid system is described and results are shown and discussed. The results show that the combination of lead-acid batteries and PEMFC shows advantages in case of applications with high peak power requirements (i.e. electric scooter) and applications where the fuel cell is used as auxiliary power supply to recharge the battery. The high efficiency of fuel cells at partial load operation results in a good fuel economy for recharging of lead-acid batteries with a fuel cell system.

  16. Short-term energy outlook. Quarterly projections, 2nd quarter 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. The forecast period for this issue of the Outlook extends from the second quarter of 1994 through the fourth quarter of 1995. Values for the first quarter of 1994, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available. The historical energy data, compiled into the second quarter 1994 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The cases are produced using the STIFS. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. The EIA model is available on computer tape from the National Technical Information Service.

  17. Optimal sizing of a lithium battery energy storage system for grid-connected photovoltaic systems

    OpenAIRE

    Dulout , Jérémy; Anvari-Moghaddam , Amjad ,; Luna , Adriana; Jammes , Bruno; Alonso , Corinne; Guerrero , Josep ,

    2017-01-01

    International audience; This paper proposes a system analysis focused on finding the optimal operating conditions (nominal capacity, cycle depth, current rate, state of charge level) of a lithium battery energy storage system. The purpose of this work is to minimize the cost of the storage system in a renewable DC microgrid. Thus, main stress factors influencing both battery lifetime (calendar and cycling) and performances are described and modelled. Power and energy requirements are also dis...

  18. Maximizing System Lifetime by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.; Bohnenkamp, H.C.; Katoen, Joost P.

    2009-01-01

    The use of mobile devices is limited by the battery lifetime. Some devices have the option to connect an extra battery, or to use smart battery-packs with multiple cells to extend the lifetime. In these cases, scheduling the batteries over the load to exploit recovery properties usually extends the

  19. Nickel - iron battery. Nikkel - jern batteri

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H. A.

    1989-03-15

    A newer type of nickel-iron battery, (SAFT 6v 230 Ah monobloc), which could possibly be used in relation to electrically driven light road vehicles, was tested. The same test methods used for lead batteries were utilized and results compared favourably with those reached during other testings carried out, abroad, on a SAFT nickle-iron battery and a SAB-NIFE nickel-iron battery. Description (in English) of the latter-named tests are included in the publication as is also a presentation of the SAFT battery. Testing showed that this type of battery did not last as long as had been expected, but the density of energy and effect was superior to lead batteries. However energy efficiency was rather poor in comparison to lead batteries and it was concluded that nickel-iron batteries are not suitable for stationary systems where recharging under a constant voltage is necessary. (AB).

  20. Generic modelling framework for economic analysis of battery systems

    DEFF Research Database (Denmark)

    You, Shi; Rasmussen, Claus Nygaard

    2011-01-01

    opportunities, a generic modelling framework is proposed to handle this task. This framework outlines a set of building blocks which are necessary for carrying out the economic analysis of various BS applications. Further, special focus is given on describing how to use the rainflow cycle counting algorithm...... for battery cycle life estimation, since the cycle life plays a central role in the economic analysis of BS. To illustrate the modelling framework, a case study using a Sodium Sulfur Battery (NAS) system with 5-minute regulating service is performed. The economic performances of two dispatch scenarios, a so......Deregulated electricity markets provide opportunities for Battery Systems (BS) to participate in energy arbitrage and ancillary services (regulation, operating reserves, contingency reserves, voltage regulation, power quality etc.). To evaluate the economic viability of BS with different business...

  1. High Performance Cathodes for Li-Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  2. Numerical Analysis and Design of Thermal Management System for Lithium Ion Battery Pack Using Thermoelectric Coolers

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2014-08-01

    Full Text Available A new design of thermal management system for lithium ion battery pack using thermoelectric coolers (TECs is proposed. Firstly, the 3D thermal model of a high power lithium ion battery and the TEC is elaborated. Then the model is calibrated with experiment results. Finally, the calibrated model is applied to investigate the performance of a thermal management system for a lithium ion battery pack. The results show that battery thermal management system (BTMS with TEC can cool the battery in very high ambient temperature. It can also keep a more uniform temperature distribution in the battery pack than common BTMS, which will extend the life of the battery pack and may save the expensive battery equalization system.

  3. Identifying Potential Markets for Behind-the-Meter Battery Energy Storage: A Survey of U.S. Demand Charges

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mullendore, Seth [Clean Energy Group, Montpelier, Vermont

    2017-08-07

    This paper presents the first publicly available comprehensive survey of the magnitude of demand charges for commercial customers across the United States -- a key predictor of the financial performance of behind-the-meter battery storage systems. Notably, the analysis estimates that there are nearly 5 million commercial customers in the United States who can subscribe to retail electricity tariffs that have demand charges in excess of $15 per kilowatt (kW), over a quarter of the 18 million commercial customers in total in the United States. While the economic viability of installing battery energy storage must be determined on a case-by-case basis, high demand charges are often cited as a critical factor in battery project economics. Increasing use of demand charges in utility tariffs and anticipated future declines in storage costs will only serve to unlock additional markets and strengthen existing ones.

  4. Advanced Modular "All in One" Battery System with Intelligent Autonomous Cell Balancing Management

    Science.gov (United States)

    Petitdidier, X.; Pasquier, E.; Defer, M.; Koch, M.; Knorr, W.

    2008-09-01

    A new generation of energy storage systems based on Li-ion technology emerged at the end of the last century.To perform the first tests in safe conditions, Saft designed a simple electronic.Today, all Li-ion batteries for autonomous applications such as drones, launchers, missiles, torpedoes and "human" applications such as cellular, laptop, hybrid vehicle and nearly sub-marines need a Battery Management System.The minimum in terms of functions is the overcharge and over-discharge protections.For a battery made of 2 cells connected in series or more, a balancing system is added to maintain the available energy during all the life of the battery. For stringent/demanding applications, the state of charge and state of health are calculated by one or more computers.It is now time to take benefit of the past 10 years of Saft's experience in the domain to re-evaluate the constraints of Li-ion batteries and provide customers with improved products by optimizing the battery management.Benefits of electronic for satellite applications:• Full control over battery.• Confidence whatever the possible change of conditions in environment.• The battery system can resist long exposure to gradient conditions with mitigated and stabilized impact on performances.• The balancing function allow to use all the energy of all the cells: optimize of installed energy (compact design, mass saving). It started out with the basic fact that electrochemists are not intended to be space rated electronic experts and vice versa, even if Saft has a good heritage in the electronic battery management system. Consequently, considering heritage and expertise in their respective core businesses, Saft and ASP teamed up.It became necessary to provide an "all in one" modular energy storage system with intelligent autonomous cell balancing management.

  5. Mathematical analysis and coordinated current allocation control in battery power module systems

    Science.gov (United States)

    Han, Weiji; Zhang, Liang

    2017-12-01

    As the major energy storage device and power supply source in numerous energy applications, such as solar panels, wind plants, and electric vehicles, battery systems often face the issue of charge imbalance among battery cells/modules, which can accelerate battery degradation, cause more energy loss, and even incur fire hazard. To tackle this issue, various circuit designs have been developed to enable charge equalization among battery cells/modules. Recently, the battery power module (BPM) design has emerged to be one of the promising solutions for its capability of independent control of individual battery cells/modules. In this paper, we propose a new current allocation method based on charging/discharging space (CDS) for performance control in BPM systems. Based on the proposed method, the properties of CDS-based current allocation with constant parameters are analyzed. Then, real-time external total power requirement is taken into account and an algorithm is developed for coordinated system performance control. By choosing appropriate control parameters, the desired system performance can be achieved by coordinating the module charge balance and total power efficiency. Besides, the proposed algorithm has complete analytical solutions, and thus is very computationally efficient. Finally, the efficacy of the proposed algorithm is demonstrated using simulations.

  6. A multifunctional energy-storage system with high-power lead-acid batteries

    Science.gov (United States)

    Wagner, R.; Schroeder, M.; Stephanblome, T.; Handschin, E.

    A multifunctional energy storage system is presented which is used to improve the utilization of renewable energy supplies. This system includes three different functions: (i) uninterruptible power supply (UPS); (ii) improvement of power quality; (iii) peak-load shaving. The UPS application has a long tradition and is used whenever a reliable power supply is needed. Additionally, nowadays, there is a growing demand for high quality power arising from an increase of system perturbation of electric grids. Peak-load shaving means in this case the use of renewable energy stored in a battery for high peak-load periods. For such a multifunctional application large lead-acid batteries with high power and good charge acceptance, as well as good cycle life are needed. OCSM batteries as with positive tubular plates and negative copper grids have been used successfully for a multitude of utility applications. This paper gives two examples where multifunctional energy storage systems have started operation recently in Germany. One system was installed in combination with a 1 MW solar plant in Herne and another one was installed in combination with a 2 MW wind farm in Bocholt. At each place, a 1.2 MW h (1 h-rate) lead-acid battery has been installed. The batteries consist of OCSM cells with the standard design but modified according to the special demand of a multifunctional application.

  7. Autonomous wind/solar power systems with battery storage

    Energy Technology Data Exchange (ETDEWEB)

    Protogeropoulos, C I

    1993-12-31

    The performance of an autonomous hybrid renewable energy system consisting of combined photovoltaic/wind power generation with battery storage is under evaluation in this thesis. Detailed mathematical analysis of the renewable components and the battery was necessary in order to establish the theoretical background for accurate simulation results. Model validation was achieved through experimentation. The lack of a sizing method to combine both hybrid system total cost and long-term reliability level was the result of an extended literature survey. The new achievements which are described in this research work refer to: - simplified modelling for the performance of amorphous-silicon photovoltaic panels for all solar irradiance levels. -development of a new current-voltage expression with respect to wind speed for wind turbine performance simulation. -establishment of the battery storage state of voltage, SOV, simulation algorithm for long-term dynamic operational conditions. The proposed methodology takes into account 8 distinct cases covering steady state and transient effects and can be used for autonomous system reliability calculations. -techno-economic evaluation of the size of the hybrid system components by considering both reliability and economic criteria as design parameters. Two sizing scenarios for the renewable components are examined : the average year method and the ``worst renewable`` month method. (Author)

  8. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-08

    The operating temperature is critical in achieving the right balance between performance, cost, and life for both Li-ion batteries and ultracapacitors. The chemistries of advanced energy-storage devices - such as lithium-based batteries - are very sensitive to operating temperature. High temperatures degrade batteries faster while low temperatures decrease their power and capacity, affecting vehicle range, performance, and cost. Understanding heat generation in battery systems - from the individual cells within a module, to the inter-connects between the cells, and across the entire battery system - is imperative for designing effective thermal-management systems and battery packs. At NREL, we have developed unique capabilities to measure the thermal properties of cells and evaluate thermal performance of battery packs (air or liquid cooled). We also use our electro-thermal finite element models to analyze the thermal performance of battery systems in order to aid battery developers with improved thermal designs. NREL's tools are used to meet the weight, life, cost, and volume goals set by the U.S. Department of Energy for electric drive vehicles.

  9. Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System

    Directory of Open Access Journals (Sweden)

    Farouk Odeim

    2015-06-01

    Full Text Available In this paper, an experimental fuel cell/battery/supercapacitor hybrid system is investigated in terms of modeling and power management design and optimization. The power management strategy is designed based on the role that should be played by each component of the hybrid power source. The supercapacitor is responsible for the peak power demands. The battery assists the supercapacitor in fulfilling the transient power demand by controlling its state-of-energy, whereas the fuel cell system, with its slow dynamics, controls the state-of-charge of the battery. The parameters of the power management strategy are optimized by a genetic algorithm and Pareto front analysis in a framework of multi-objective optimization, taking into account the hydrogen consumption, the battery loading and the acceleration performance. The optimization results are validated on a test bench composed of a fuel cell system (1.2 kW, 26 V, lithium polymer battery (30 Ah, 37 V, and a supercapacitor (167 F, 48 V.

  10. Battery storage for supplementing renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  11. Prototype Solar Domestic Hot Water Systems (A collation of Quarterly Reports)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    This report is a collection of quarterly reports from Solar Engineering and Manufacturing Company (SEMCO) covering the period from November 1976 through September 1977. SEMCO, under NASA/MSFC Contract NAS8-32248, is developing two prototype solar domestic hot water systems consisting of the following subsystems: collector, storage, control, transport, and auxiliary energy. These two systems are being installed at sites in Loxahatchee, Florida (OTS-27) and Macon, Georgia (OTS-28).

  12. Development of battery management systems (BMS) for electric vehicles (EVs) in Malaysia

    OpenAIRE

    Salehen P.M.W.; Su’ait M.S.; Razali H.; Sopian K.

    2017-01-01

    Battery Management Systems (BMS) is an electronic devices component, which is a vital fundamental device connected between the charger and the battery of the hybrid or electric vehicle (EV) systems. Thus, BMS significantly enable for safety protection and reliable battery management by performing of monitoring charge control, state evaluation, reporting the data and functionalities cell balancing. To date, 97.1% of Malaysian CO2 emissions are mainly caused by transportation activities and the...

  13. How the system approach is determining automotive battery design and use

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, J [Delco Remy Div., General Motors Co., Automotive Components Group, Technical Centre, Luxembourg (Luxembourg); Stephany, J M [Delco Remy Div., General Motors Co., Automotive Components Group, Technical Centre, Luxembourg (Luxembourg); Sheppelman, T [Delco Remy Div., General Motors Co., Automotive Components Group, Technical Centre, Luxembourg (Luxembourg)

    1993-01-29

    Today, the battery in a vehicle system is specific and designed as a single, stand-alone vehicle product. Traditionally, customer specifications were the driving force behind battery design and application requirements. This method is not able to comprehend the fluctuating requirements of real-time, vehicle systems. Growing competition in the automotive market is increasing customer needs and expectations in regards to cost, weight, size efficiency, time-to-market, and quality of the products and systems. System engineering is a service that Delco Remy, as an electrical power system supplier, offers to help their customers secure gains in the market place. System development and application engineering is essential for the development of performance-optimized components that meet the systems and total vehicle cost, reliability and timing objectives. The battery integration must be managed through the electrical power system during the complete vehicle development process in order to increase ultimately customer satisfaction. (orig.)

  14. How the systems approach is determining automotive battery design and use

    Science.gov (United States)

    Bonnet, Jean; Stephany, Jean-Marie; Sheppelman, Todd

    Today, the battery in a vehicle system is specific and designed as a single, stand-alone vehicle product. Traditionally, customer specifications were the driving force behind battery design and application requirements. This method is not able to comprehend the fluctuating requirements of real-time, vehicle systems. Growing competition in the automotive market is increasing customer needs and expectations in regards to cost, weight, size efficiency, time-to-market, and quality of the products and systems. System engineering is a service that Delco Remy, as an electrical power system supplier, offers to help their customers secure gains in the market place. System development and application engineering is essential for the development of performance-optimized components that meet the systems and total vehicle cost, reliability and timing objectives. The battery integration must be managed through the electrical power system during the complete vehicle development process in order to increase ultimately customer satisfaction.

  15. Lessons Learned from the Puerto Rico Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Boyes, John D.; De Anda, Mindi Farber; Torres, Wenceslao

    1999-08-11

    The Puerto Rico Electric Power Authority (PREPA) installed a battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The Puerto Rico facility is presently the largest operating battery storage system in the world and has successfully provided frequency control, voltage regulation, and spinning reseme to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. However, the facility has suffered accelerated cell failures in the past year and PREPA is committed to restoring the plant to full capacity. This represents the first repowering of a large utility battery facility. PREPA and its vendors and contractors learned many valuable lessons during all phases of project development and operation, which are summarized in this paper.

  16. Idaho National Laboratory Quarterly Performance Analysis for the 2nd Quarter FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of events for the 2nd Qtr FY-15.

  17. Investigation on a hydrogel based passive thermal management system for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Sijie; Zhao, Rui; Liu, Jie; Gu, Junjie

    2014-01-01

    An appropriate operating temperature range is critical for the overall performance and safety of lithium-ion batteries. Considering the excellent performance of water in heat dissipation in industrial applications, in this paper, a water based PAAS (sodium polyacrylate) hydrogel thermal management system has been proposed to handle the heat surge during the operation of a Li-ion battery pack. A thermal model with constant heat generation rate is employed to simulate the high current discharge process (i.e., 10 A) on a 4S1P battery pack, which shows a good consistence with the corresponding experimental results. Further experiments on 4S1P and 5S1P battery packs validate the effectiveness of the hydrogel thermal management system in lowering the temperature increase rate of battery packs at different discharge rates and minimizing the temperature difference inside battery packs during operation, thereby enhancing the stability and safety in continuous charge and discharge process and decreasing the capacity fading rate during life cycle tests. This novel hydrogel based cooling system also possesses the characteristics of high energy efficiency, easy manufacturing process, compactness, and low cost. - Highlights: • A hydrogel thermal management system (TMS) is proposed for Li-ion battery. • It is found that the heat from internal resistance predominates at high discharge rate. • Effectiveness of hydrogel in controlling cell temperature is proved. • Battery equipped with hydrogel TMS is safer at continuous high rate cycle test. • The capacity fading rate of battery pack decreases when hydrogel TMS is implemented

  18. Decontamination systems information and research program. Quarterly report, October 1995--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    West Virginia University (WVU) and the U.S. Department of Energy Morgantown Energy Technology Center (DOE/METC) entered into a Cooperative Agreement on August 29, 1992 titled {open_quotes}Decontamination Systems Information and Research programs{close_quotes} (DOE Instrument No. DE-FC21-92MC29467) This report contains the efforts of the research projects comprising the Agreement for the 4th calendar quarter of 1995, and is the final quarterly report deliverable required for the period ending 31 December 1995. The projects reported for the WVU Cooperative Agreement are categorized into the following three areas: 1.0 In Situ Remediation Process Development, 2.0 Advanced Product Applications Testing, and 3.0 Information Systems, Public Policy, Community Outreach, and Economics. Summaries of the significant accomplishments for the projects reported during the period 1 October 95 through 31 December 95 are presented in the following discussions.

  19. Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.

  20. Battery Recharging Issue for a Two-Power-Level Flywheel System

    Directory of Open Access Journals (Sweden)

    Janaína Gonçalves de Oliveira

    2010-01-01

    Full Text Available A novel battery recharging system for an all-electric driveline comprising a flywheel with a permanent magnet double wound synchronous machine (motor/generator is presented. The double winding enables two voltage levels and two different power levels. This topology supersedes other all-electric drivelines. The battery operates in a low-power regime supplying the average power whereas the flywheel delivers and absorbs power peaks, which are up to a higher order of magnitude. The topology presents new challenges for the power conversion system, which is the focus of this investigation. The main challenge is the control of the power flow to the battery when the vehicle is parked despite the decay of the flywheel machine voltage; which is dependent on its charge state, that is, rotational speed. The design and simulation of an unidirectional DC/DC buck/boost converter for a variable rotational speed flywheel is presented. Conventional power electronic converters are used in a new application, which can maintain a constant current or voltage on the battery side. Successful PI current control has been implemented and simulated, together with the complete closed loop system.

  1. Li-ion battery thermal runaway suppression system using microchannel coolers and refrigerant injections

    Science.gov (United States)

    Bandhauer, Todd M.; Farmer, Joseph C.

    2016-11-08

    A battery management system with thermally integrated fire suppression includes a multiplicity of individual battery cells in a housing; a multiplicity of cooling passages in the housing within or between the multiplicity of individual battery cells; a multiplicity of sensors operably connected to the individual battery cells, the sensors adapted to detect a thermal runaway event related to one or more of the multiplicity of individual battery cells; and a management system adapted to inject coolant into at least one of the multiplicity of cooling passages upon the detection of the thermal runaway event by the any one of the multiplicity of sensors, so that the thermal runaway event is rapidly quenched.

  2. [Geothermal system temperature-depth database and model for data analysis]. 5. quarterly technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, D.D.

    1998-04-25

    During this first quarter of the second year of the contract activity has involved several different tasks. The author has continued to work on three tasks most intensively during this quarter: the task of implementing the data base for geothermal system temperature-depth, the maintenance of the WWW site with the heat flow and gradient data base, and finally the development of a modeling capability for analysis of the geothermal system exploration data. The author has completed the task of developing a data base template for geothermal system temperature-depth data that can be used in conjunction with the regional data base that he had already developed and is now implementing it. Progress is described.

  3. Effect of tariffs on the performance and economic benefits of PV-coupled battery systems

    International Nuclear Information System (INIS)

    Parra, David; Patel, Martin K.

    2016-01-01

    Highlights: • Pb-acid and Li-ion batteries are compared under three different retail tariffs. • The battery ageing, i.e. capacity and discharge capability reduction is simulated. • A dynamic tariff (1-h resolution) increases the battery discharge value up to 28%. • A Li-ion cost of 375 CHF/kW h is required for Geneva for PV energy time-shift. • This requirement becomes 500 CHF/kW h if demand peak-shaving is also performed. - Abstract: The use of batteries in combination with PV systems in single homes is expected to become a widely applied energy storage solution. Since PV system cost is decreasing and the electricity market is constantly evolving there is marked interest in understanding the performance and economic benefits of adding battery systems to PV generation under different retail tariffs. The performance of lead-acid (PbA) and lithium-ion (Li-ion) battery systems in combination with PV generation for a single home in Switzerland is studied using a time-dependant analysis. Firstly, the economic benefits of the two battery types are analysed for three different types of tariffs, i.e. a dynamic tariff based on the wholesale market (one price per hour for every day of the year), a flat rate and time-of-use tariff with two periods. Secondly, the reduction of battery capacity and annual discharge throughout the battery lifetime are simulated for PbA and Li-ion batteries. It was found that despite the levelised value of battery systems reaches up to 28% higher values with the dynamic tariff compared to the flat rate tariff, the levelised cost increases by 94% for the dynamic tariff, resulting in lower profitability. The main reason for this is the reduction of equivalent full cycles performed with by battery systems with the dynamic tariff. Economic benefits also depend on the regulatory context and Li-ion battery systems were able to achieve internal rate of return (IRR) up to 0.8% and 4.3% in the region of Jura (Switzerland) and Germany due to

  4. Control strategies and cycling demands for Li-ion storage batteries in residential micro-cogeneration systems

    International Nuclear Information System (INIS)

    Darcovich, K.; Kenney, B.; MacNeil, D.D.; Armstrong, M.M.

    2015-01-01

    Highlights: • Canadian home energy system modeled with PV, ICE CHP, battery and power grid. • Battery function is modeled on fundamental electrochemical principles. • Techno-economics of control strategies assessed. • Impact of control strategies battery cycles is developed for wear analysis. • Non-monotonic nature of battery cycles with transient renewables is discussed. - Abstract: Energy storage units have become important components in residential micro-cogeneration (MCG) systems. As MCG systems are often connected to single residences or buildings in a wide variety of settings, they are frequently unique and highly customized. Lithium-ion batteries have recently gained some profile as energy storage units of choice, because of their good capacity, high efficiency, robustness and ability to meet the demands of typical residential electrical loads. In the present work, modeled scenarios are explored which examine the performance of a MCG system with an internal combustion engine, photovoltaic input and a Li-ion storage battery. An electricity demand profile from new data collected in Ottawa, Canada is used to provide a full year energy use context for the analyses. The demands placed on the battery are examined to assess the suitability of the battery size and performance, as well as control related functionalities which reveal significantly varying battery use, and led to a quantitative expression for equivalent cycles. The energy use simulations are derived from electrochemical fundamentals adapted for a larger battery pack. Simulation output provides the basis for techno-economic commentary on how to assess large-scale Li-ion batteries for effective electrical storage purposes in MCG systems, and the impact of the nature of the control strategy on the battery service life

  5. Estimating the system price of redox flow batteries for grid storage

    Science.gov (United States)

    Ha, Seungbum; Gallagher, Kevin G.

    2015-11-01

    Low-cost energy storage systems are required to support extensive deployment of intermittent renewable energy on the electricity grid. Redox flow batteries have potential advantages to meet the stringent cost target for grid applications as compared to more traditional batteries based on an enclosed architecture. However, the manufacturing process and therefore potential high-volume production price of redox flow batteries is largely unquantified. We present a comprehensive assessment of a prospective production process for aqueous all vanadium flow battery and nonaqueous lithium polysulfide flow battery. The estimated investment and variable costs are translated to fixed expenses, profit, and warranty as a function of production volume. When compared to lithium-ion batteries, redox flow batteries are estimated to exhibit lower costs of manufacture, here calculated as the unit price less materials costs, owing to their simpler reactor (cell) design, lower required area, and thus simpler manufacturing process. Redox flow batteries are also projected to achieve the majority of manufacturing scale benefits at lower production volumes as compared to lithium-ion. However, this advantage is offset due to the dramatically lower present production volume of flow batteries compared to competitive technologies such as lithium-ion.

  6. Comparative study of a small size wind generation system efficiency for battery charging

    Directory of Open Access Journals (Sweden)

    Mayouf Messaoud

    2013-01-01

    Full Text Available This paper presents an energetic comparison between two control strategies of a small size wind generation system for battery charging. The output voltage of the direct drive PMSG is connected to the battery through a switch mode rectifier. A DC-DC boost converter is used to regulate the battery bank current in order to achieve maximum power from the wind. A maximum powertracking algorithm calculates the current command that corresponds to maximum power output of the turbine. The DC-DC converter uses this current to calculate the duty cycle witch is necessary to control the pulse width modulated (PWM active switching device (IGPT. The system overview and modeling are presented including characteristics of wind turbine, generator, batteries, power converter, control system, and supervisory system. A simulation of the system is performed using MATLAB/SIMULINK.

  7. Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods

    International Nuclear Information System (INIS)

    Xia, Bing; Zhao, Xin; Callafon, Raymond de; Garnier, Hugues; Nguyen, Truong; Mi, Chris

    2016-01-01

    Highlights: • Continuous-time system identification is applied in Lithium-ion battery modeling. • Continuous-time and discrete-time identification methods are compared in detail. • The instrumental variable method is employed to further improve the estimation. • Simulations and experiments validate the advantages of continuous-time methods. - Abstract: The modeling of Lithium-ion batteries usually utilizes discrete-time system identification methods to estimate parameters of discrete models. However, in real applications, there is a fundamental limitation of the discrete-time methods in dealing with sensitivity when the system is stiff and the storage resolutions are limited. To overcome this problem, this paper adopts direct continuous-time system identification methods to estimate the parameters of equivalent circuit models for Lithium-ion batteries. Compared with discrete-time system identification methods, the continuous-time system identification methods provide more accurate estimates to both fast and slow dynamics in battery systems and are less sensitive to disturbances. A case of a 2"n"d-order equivalent circuit model is studied which shows that the continuous-time estimates are more robust to high sampling rates, measurement noises and rounding errors. In addition, the estimation by the conventional continuous-time least squares method is further improved in the case of noisy output measurement by introducing the instrumental variable method. Simulation and experiment results validate the analysis and demonstrate the advantages of the continuous-time system identification methods in battery applications.

  8. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    Science.gov (United States)

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Optimum sizing of wind-battery systems incorporating resource uncertainty

    International Nuclear Information System (INIS)

    Roy, Anindita; Kedare, Shireesh B.; Bandyopadhyay, Santanu

    2010-01-01

    The inherent uncertainty of the wind is a major impediment for successful implementation of wind based power generation technology. A methodology has been proposed in this paper to incorporate wind speed uncertainty in sizing wind-battery system for isolated applications. The uncertainty associated with the wind speed is incorporated using chance constraint programming approach. For a pre-specified reliability requirement, a deterministic equivalent energy balance equation may be derived from the chance constraint that allows time series simulation of the entire system. This results in a generation of the entire set of feasible design options, satisfying different system level constraints, on a battery capacity vs. generator rating diagram, also known as the design space. The proposed methodology highlights the trade-offs between the wind turbine rating, rotor diameter and the battery size for a given reliability of power supply. The optimum configuration is chosen on the basis of the minimum cost of energy (US$/kWh). It is shown with the help of illustrative examples that the proposed methodology is generic and flexible to incorporate alternate sub-component models. (author)

  10. Battery Monitoring and Charging System

    National Research Council Canada - National Science Library

    Thivierge, Daniel P

    2007-01-01

    A battery monitoring device for a battery having cells grouped in modules. The device includes a monitoring circuit for each module which monitors the voltage in each cell and the overall module voltage...

  11. Optimal Sizing of a Lithium Battery Energy Storage System for Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Dulout, Jeremy; Jammes, Bruno; Alonso, Corinne

    2017-01-01

    This paper proposes a system analysis focused on finding the optimal operating conditions (nominal capacity, cycle depth, current rate, state of charge level) of a lithium battery energy storage system. The purpose of this work is to minimize the cost of the storage system in a renewable DC...... microgrid. Thus, main stress factors influencing both battery lifetime (calendar and cycling) and performances are described and modelled. Power and energy requirements are also discussed through a probabilistic analysis on some years of real data from the ADREAM photovoltaic building of the LAAS...

  12. Towards Robust Predictive Fault–Tolerant Control for a Battery Assembly System

    Directory of Open Access Journals (Sweden)

    Seybold Lothar

    2015-12-01

    Full Text Available The paper deals with the modeling and fault-tolerant control of a real battery assembly system which is under implementation at the RAFI GmbH company (one of the leading electronic manufacturing service providers in Germany. To model and control the battery assembly system, a unified max-plus algebra and model predictive control framework is introduced. Subsequently, the control strategy is enhanced with fault-tolerance features that increase the overall performance of the production system being considered. In particular, it enables tolerating (up to some degree mobile robot, processing and transportation faults. The paper discusses also robustness issues, which are inevitable in real production systems. As a result, a novel robust predictive fault-tolerant strategy is developed that is applied to the battery assembly system. The last part of the paper shows illustrative examples, which clearly exhibit the performance of the proposed approach.

  13. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles

    Science.gov (United States)

    Choi, Yong Seok; Kang, Dal Mo

    2014-12-01

    Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

  14. Decontamination systems information and research program. Quarterly report, January 1996--March 1996

    International Nuclear Information System (INIS)

    1996-04-01

    West Virginia University (WVU) and the US Department of Energy, Morgantown Energy Technology Center (DOE/METC) entered into a Cooperative Agreement in August 1992 titled open-quotes Decontamination Systems Information and Research Programsclose quotes (DOE Instrument No.: DE-FC21-92MC29467). Requirements stipulated by the Agreement require WVU to submit quarterly Technical Progress reports. This report contains the efforts of the research projects comprising the Agreement for the 1st calendar quarter of 1996. For the period January 1 through December 31, 1996 twelve projects have been selected for funding, and the Kanawha Valley will continue under a no-cost extension. Three new projects have also been added to the program. This document describes these projects involving decontamination, decommissioning and remedial action issues and technologies

  15. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad

    2015-09-14

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.

  16. Quarterly report for the electricity market. 2. quarter of 2012; Kvartalsrapport for kraftmarknaden. 2. kvartal 2012

    Energy Technology Data Exchange (ETDEWEB)

    Eliston, Anton Jaynand; Holmqvist, Erik; Lund, Per Tore Jensen; Magnussen, Ingrid; Viggen, Kjerstin Dahl; Willumsen, Mats Oeivind; Guren, Ingrid; Ulriksen, Margit Iren

    2012-07-01

    Fourth quarter of 2011 was unusually mild and wet, resulting in high energy inflow to the Norwegian reservoirs. Total inflow for the year was 149.2 TWh, 26.7 TWh more than normal. This ensured record-high 80.3 percent load factor at the end of the quarter.The stored energy amount in the reservoirs was thus 29.5 TWh greater than at the end of 2010/2011. Norway had a power consumption of 34.1 TWh in the fourth quarter. Compared with the same quarter of 2010, a decrease of 4.2 TWh, which can be connected to the mild weather development. The total Norwegian electricity consumption in 2011 was 125.1 TWh, or 6.9 TWh less than in 2010. Electricity production in the fourth quarter of 2011 was 38.3 GWh, an increase of 3.7 TWh from the same quarter the year before. The production increase were a result of the large volume of water in the system. Power production for the year 2011 was 128.1 TWh, an increase of 3.7 TWh from 2010. Kraft surplus was therefore large, and it was Norwegian net export of 4.2 TWh in the fourth quarter, and 3.0 TWh total for the year. In comparison, in the fourth quarter of 2010 Norwegian net import of 0.8 TWh and 7.5 TWh annually. The good resource combined with the low consumption gave a unusually low price levels in the wholesale market for electricity. On average for fourth quarter, the price of power in the East and South-East Norway Nok 264 / MWh, in western Norway Nok 260 / MWh, in Central Norway Nok 270 / MWh (eb)

  17. A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered

    Science.gov (United States)

    Chao, Chung-Hsing; Shieh, Jenn-Jong

    Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of combining the benefit of both technologies. The merits of high energy density and power density for different applications are discussed in this paper in recognition of the practical realization of such hybrid power systems. Furthermore, experimental data for such a hybrid system is described and the results are shown and discussed. The results show that the combination of lead-acid batteries or lithium-ion batteries and PEMFCs shows advantages in cases of applications with high peak power requirements, such as electric scooters and applications where the fuel cell (FC) is used as an auxiliary power-supply to recharge the battery. The high efficiency of FCs operating with a partial load results in a good fuel economy for the purpose of recharging batteries within a FC system.

  18. Design of Parallel Air-Cooled Battery Thermal Management System through Numerical Study

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2017-10-01

    Full Text Available In electric vehicles, the battery pack is one of the most important components that strongly influence the system performance. The battery thermal management system (BTMS is critical to remove the heat generated by the battery pack, which guarantees the appropriate working temperature for the battery pack. Air cooling is one of the most commonly-used solutions among various battery thermal management technologies. In this paper, the cooling performance of the parallel air-cooled BTMS is improved through choosing appropriate system parameters. The flow field and the temperature field of the system are calculated using the computational fluid dynamics method. Typical numerical cases are introduced to study the influences of the operation parameters and the structure parameters on the performance of the BTMS. The operation parameters include the discharge rate of the battery pack, the inlet air temperature and the inlet airflow rate. The structure parameters include the cell spacing and the angles of the divergence plenum and the convergence plenum. The results show that the temperature rise and the temperature difference of the batter pack are not affected by the inlet air flow temperature and are increased as the discharge rate increases. Increasing the inlet airflow rate can reduce the maximum temperature, but meanwhile significantly increase the power consumption for driving the airflow. Adopting smaller cell spacing can reduce the temperature and the temperature difference of the battery pack, but it consumes much more power. Designing the angles of the divergence plenum and the convergence plenum is an effective way to improve the performance of the BTMS without occupying more system volume. An optimization strategy is used to obtain the optimal values of the plenum angles. For the numerical cases with fixed power consumption, the maximum temperature and the maximum temperature difference at the end of the five-current discharge process for

  19. Towards an Ultimate Battery Thermal Management System

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    The prevailing standards and scientific literature offer a wide range of options for the construction of a battery thermal management system (BTMS). The design of an innovative yet well-functioning BTMS requires strict supervision, quality audit and continuous improvement of the whole process...

  20. Solar Powered Aircraft, Photovoltaic Array/Battery System Tabletop Demonstration: Design and Operation Manual

    Science.gov (United States)

    Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)

    2000-01-01

    A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.

  1. Second life battery energy storage system for enhancing renewable energy grid integration

    DEFF Research Database (Denmark)

    Koch-Ciobotaru, C.; Saez-de-Ibarra, A.; Martinez-Laserna, E.

    2015-01-01

    of a second life battery energy storage system (SLBESS) and secondly, to obtain the power exchange and battery state of charge profiles during the operation. These will constitute the cycling patterns for testing batteries and studying the ageing effect of this specific application. Real data from the Spanish...... electricity market for a whole year are used for validating the results....

  2. Electric Vehicle Based Battery Storages for Future Power System Regulation Services

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    supplying the reserve power requirements. This limited regulation services from conventional generators in the future power system calls for other new reserve power solutions like Electric Vehicle (EV) based battery storages. A generic aggregated EV based battery storage for long-term dynamic load frequency...

  3. Power Systems Development Facility. Quarterly report, July 1--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This quarterly technical progress report summarizes the work completed during the third quarter of a project entitled Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion. The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phase expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  4. Performance Characterization of a Lithium-ion Gel Polymer Battery Power Supply System for an Unmanned Aerial Vehicle

    Science.gov (United States)

    Reid, Concha M.; Manzo, Michelle A.; Logan, Michael J.

    2004-01-01

    Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed. Due to the strict mass limitations and wide operating temperature requirements of small UAVs, the only viable cell chemistries were determined to be lithium-ion liquid electrolyte systems and lithium-ion gel polymer electrolyte systems. Two lithium-ion gel polymer cell designs were selected as candidates and were tested using potential load profiles for UAV applications. Because lithium primary batteries have a higher specific energy and energy density, for the same mass and volume allocation, the secondary batteries resulted in shorter flight times than the primary batteries typically provide. When the batteries were operated at lower ambient temperatures (0 to -20 C), flight times were even further reduced. Despite the reduced flight times demonstrated, for certain UAV applications, the secondary batteries operated within the acceptable range of flight times at room temperature and above. The results of this testing indicate that a secondary battery power supply system can provide some benefits over the primary battery power supply system. A UAV can be operated for hundreds of flights using a secondary battery power supply system that provides the combined benefits of rechargeability and an inherently safer

  5. (Shippingport Atomic Power Station). Quarterly operating report, fourth quarter 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    At the beginning of the fourth quarter of 1980, the Shippingport Atomic Power Station remained shutdown for the normally planned semiannual maintenance and testing program, initiated September 12, 1980. Operational testing began on November 7. Maximum power was achieved November 28 and was maintained throughout the remainder of the quarter except as noted. The LWBR Core has generated 19,046.07 EFPH from start-up through the end of the quarter. During this quarter, approximately 0.000025 curies of Xe 133 activity were released from the station. During the fourth quarter of 1980, 1081 cubic feet of radioactive solid waste was shipped out of state for burial. These shipments contained 0.037 curies of radioactivity.

  6. Minimization of Construction Costs for an All Battery-Swapping Electric-Bus Transportation System: Comparison with an All Plug-In System

    Directory of Open Access Journals (Sweden)

    Shyang-Chyuan Fang

    2017-06-01

    Full Text Available The greenhouse gases and air pollution generated by extensive energy use have exacerbated climate change. Electric-bus (e-bus transportation systems help reduce pollution and carbon emissions. This study analyzed the minimization of construction costs for an all battery-swapping public e-bus transportation system. A simulation was conducted according to existing timetables and routes. Daytime charging was incorporated during the hours of operation; the two parameters of the daytime charging scheme were the residual battery capacity and battery-charging energy during various intervals of daytime peak electricity hours. The parameters were optimized using three algorithms: particle swarm optimization (PSO, a genetic algorithm (GA, and a PSO–GA. This study observed the effects of optimization on cost changes (e.g., number of e-buses, on-board battery capacity, number of extra batteries, charging facilities, and energy consumption and compared the plug-in and battery-swapping e-bus systems. The results revealed that daytime charging can reduce the construction costs of both systems. In contrast to the other two algorithms, the PSO–GA yielded the most favorable optimization results for the charging scheme. Finally, according to the cases investigated and the parameters of this study, the construction cost of the plug-in e-bus system was shown to be lower than that of the battery-swapping e-bus system.

  7. Photovoltaic Power System with an Interleaving Boost Converter for Battery Charger Applications

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Tseng

    2012-01-01

    Full Text Available This paper proposes a photovoltaic (PV power system for battery charger applications. The charger uses an interleaving boost converter with a single-capacitor turn-off snubber to reduce voltage stresses of active switches at turn-off transition. Therefore, active switches of the charger can be operated with zero-voltage transition (ZVT to decrease switching losses and increase conversion efficiency. In order to draw the maximum power from PV arrays and obtain the optimal power control of the battery charger, a perturbation-and-observation method and microchip are incorporated to implement maximum power point tracking (MPPT algorithm and power management. Finally, a prototype battery charger is built and implemented. Experimental results have verified the performance and feasibility of the proposed PV power system for battery charger applications.

  8. Multikilowatt hydrogen-nickel oxide battery system

    Science.gov (United States)

    Dunlop, J. D.

    1985-01-01

    The potential of the H2-NiO battery for terrestrial applications was assessed. A multicell design approach that differs significantly from the aerospace individual pressure vessel was used. A number of experimental 100-Ah cells were built to evaluate the new design concepts and components. The experimental cells provided the input needed for a multicell battery design. It is found that new multicell H2-NiO battery has a number of potential advantages for aerospace applications such as the manned space station. The advantages are discussed, and a design concept is presented for a multikilowatt battery in a lightweight pressure vessel.

  9. Fuzzy energy management for hybrid fuel cell/battery systems for more electric aircraft

    Science.gov (United States)

    Corcau, Jenica-Ileana; Dinca, Liviu; Grigorie, Teodor Lucian; Tudosie, Alexandru-Nicolae

    2017-06-01

    In this paper is presented the simulation and analysis of a Fuzzy Energy Management for Hybrid Fuel cell/Battery Systems used for More Electric Aircraft. The fuel cell hybrid system contains of fuel cell, lithium-ion batteries along with associated dc to dc boost converters. In this configuration the battery has a dc to dc converter, because it is an active in the system. The energy management scheme includes the rule based fuzzy logic strategy. This scheme has a faster response to load change and is more robust to measurement imprecisions. Simulation will be provided using Matlab/Simulink based models. Simulation results are given to show the overall system performance.

  10. Two-stage energy storage equalization system for lithium-ion battery pack

    Science.gov (United States)

    Chen, W.; Yang, Z. X.; Dong, G. Q.; Li, Y. B.; He, Q. Y.

    2017-11-01

    How to raise the efficiency of energy storage and maximize storage capacity is a core problem in current energy storage management. For that, two-stage energy storage equalization system which contains two-stage equalization topology and control strategy based on a symmetric multi-winding transformer and DC-DC (direct current-direct current) converter is proposed with bidirectional active equalization theory, in order to realize the objectives of consistent lithium-ion battery packs voltages and cells voltages inside packs by using a method of the Range. Modeling analysis demonstrates that the voltage dispersion of lithium-ion battery packs and cells inside packs can be kept within 2 percent during charging and discharging. Equalization time was 0.5 ms, which shortened equalization time of 33.3 percent compared with DC-DC converter. Therefore, the proposed two-stage lithium-ion battery equalization system can achieve maximum storage capacity between lithium-ion battery packs and cells inside packs, meanwhile efficiency of energy storage is significantly improved.

  11. Quarterly overviews of thermal solar energy systems 1993

    International Nuclear Information System (INIS)

    Warmerdam, J.M.; Stap, C.A.M.

    1994-08-01

    The title overviews were compiled to support the market introduction campaign for solar water heaters in the Netherlands. Use has been made of the data-banks of the Dutch subsidy administrator 'Senter'. 88% of the 1,883 systems, that were installed in 1993, are solar water heaters. Considering the solar collector surface the largest contribution is from the use of mainly uncovered collectors in swimming pools: 51% (37% for the collector surface of solar water heaters). Energy utilities are involved in the installation of 70% of the solar heating systems (even 77% for the solar water heaters). Next to the quarterly overviews, the subsidy data for the period 1988 up to and including 1993 are analyzed. 70% of the installed systems has been purchased and 30% was rented. At the end of 1993 preparations were made to install more than 3,000 solar boilers in 1994 and 1995. 3 figs., 21 tabs

  12. Decontamination systems information and research program. Quarterly report, January 1996--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    West Virginia University (WVU) and the US Department of Energy, Morgantown Energy Technology Center (DOE/METC) entered into a Cooperative Agreement in August 1992 titled {open_quotes}Decontamination Systems Information and Research Programs{close_quotes} (DOE Instrument No.: DE-FC21-92MC29467). Requirements stipulated by the Agreement require WVU to submit quarterly Technical Progress reports. This report contains the efforts of the research projects comprising the Agreement for the 1st calendar quarter of 1996. For the period January 1 through December 31, 1996 twelve projects have been selected for funding, and the Kanawha Valley will continue under a no-cost extension. Three new projects have also been added to the program. This document describes these projects involving decontamination, decommissioning and remedial action issues and technologies.

  13. Model Predictive Control for Distributed Microgrid Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Morstyn, Thomas; Hredzak, Branislav; Aguilera, Ricardo P.

    2018-01-01

    , and converter current constraints to be addressed. In addition, nonlinear variations in the charge and discharge efficiencies of lithium ion batteries are analyzed and included in the control strategy. Real-time digital simulations were carried out for an islanded microgrid based on the IEEE 13 bus prototypical......This brief proposes a new convex model predictive control (MPC) strategy for dynamic optimal power flow between battery energy storage (ES) systems distributed in an ac microgrid. The proposed control strategy uses a new problem formulation, based on a linear $d$ – $q$ reference frame voltage...... feeder, with distributed battery ES systems and intermittent photovoltaic generation. It is shown that the proposed control strategy approaches the performance of a strategy based on nonconvex optimization, while reducing the required computation time by a factor of 1000, making it suitable for a real...

  14. A brief review on key technologies in the battery management system of electric vehicles

    Science.gov (United States)

    Liu, Kailong; Li, Kang; Peng, Qiao; Zhang, Cheng

    2018-04-01

    Batteries have been widely applied in many high-power applications, such as electric vehicles (EVs) and hybrid electric vehicles, where a suitable battery management system (BMS) is vital in ensuring safe and reliable operation of batteries. This paper aims to give a brief review on several key technologies of BMS, including battery modelling, state estimation and battery charging. First, popular battery types used in EVs are surveyed, followed by the introduction of key technologies used in BMS. Various battery models, including the electric model, thermal model and coupled electro-thermal model are reviewed. Then, battery state estimations for the state of charge, state of health and internal temperature are comprehensively surveyed. Finally, several key and traditional battery charging approaches with associated optimization methods are discussed.

  15. Power systems development facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This quarterly technical progress report summarizes work completed during the last quarter of the Second Budget Period, January 1 through March 31, 1994, entitled {open_quotes}Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.{close_quotes} The objective of this project is to evaluate hot gas particulate control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

  16. Development of automotive battery systems capable of surviving modern underhood environments

    Science.gov (United States)

    Pierson, John R.; Johnson, Richard T.

    The starting, lighting, and ignition (SLI) battery in today's automobile typically finds itself in an engine compartment that is jammed with mechanical, electrical, and electronic devices. The spacing of these devices precludes air movement and, thus, heat transfer out of the compartment. Furthermore, many of the devices, in addition to the internal combustion engine, actually generate heat. The resulting underhood environment is extremely hostile to thermally-sensitive components, especially the battery. All indications point to a continuation of this trend towards higher engine-compartment temperatures as future vehicles evolve. The impact of ambient temperature on battery life is clearly demonstrated in the failure-mode analysis conducted by the Battery Council International in 1990. This study, when combined with additional failure-mode analyses, vehicle systems simulation, and elevated temperature life testing, provides insight into the potential for extension of life of batteries. Controlled fleet and field tests are used to document and quantify improvements in product design. Three approaches to battery life extension under adverse thermal conditions are assessed, namely: (i) battery design; (ii) thermal management, and (iii) alternative battery locations. The advantages and disadvantages of these approaches (both individually and in combination) for original equipment and aftermarket applications are explored.

  17. Lithium ion battery energy storage system for augmented wind power plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef

    with Battery Energy Storage Systems (BESSs) into the so called Virtual Power Plants (VPP). Relatively new energy storage technologies based on Lithium ion (Li-ion) batteries are constantly improving their performance and are becoming attractive for stationary energy storage applications due...... to their characteristics such as high power, high efficiency, low self-discharge, and long lifetime. The family of the Li-ion batteries is wide and the selection of the most appropriate Liion chemistries for VPPs is one of the topics of this thesis, where different chemistries are compared and the most suitable ones...... if the batteries are able to meet several performance requirements, which are application dependent. Furthermore, for the VPP, the degradation or failure of the interconnected BESS can lead to costly downtime. Thus, an accurate estimation of the battery cells lifetime becomes mandatory. However, lifetime...

  18. Trend chart: biogas. Forth quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2017-02-01

    This publication presents the biogas industry situation of continental France and overseas territories during the forth quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  19. Trend chart: biogas. Second quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2016-08-01

    This publication presents the biogas industry situation of continental France and overseas territories during the Second quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  20. Trend chart: biogas. Third quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2016-11-01

    This publication presents the biogas industry situation of continental France and overseas territories during the third quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  1. Trend chart: biogas. First quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2016-05-01

    This publication presents the biogas industry situation of continental France and overseas territories during the first quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  2. Operation of Grid -Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2017-01-01

    Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...... there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re...

  3. Suggested Operation Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2015-01-01

    Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...... there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re...

  4. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles

    Science.gov (United States)

    Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.

    2017-09-01

    A thermal management system is necessary to control the operating temperature of the lithium ion batteries in battery packs for electrical and hybrid electrical vehicles. This paper proposes a new battery thermal management system based on one type of phase change material for the battery packs in hybrid electrical vehicles and develops a three dimensional electrochemical thermal model. The temperature distributions of the batteries are investigated under various operating conditions for comparative evaluations. The proposed system boils liquid propane to remove the heat generated by the batteries, and the propane vapor is used to cool the part of the battery that is not covered with liquid propane. The effect on the thermal behavior of the battery pack of the height of the liquid propane inside the battery pack, relative to the height of the battery, is analyzed. The results show that the propane based thermal management system provides good cooling control of the temperature of the batteries under high and continuous charge and discharge cycles at 7.5C.

  5. Average Behavior of Battery - Electric Vehicles for Distributed Energy System Studies

    DEFF Research Database (Denmark)

    Marra, Francesco; Træholt, Chresten; Larsen, Esben

    2010-01-01

    The increase of focus on electric vehicles (EVs) as distributed energy resources calls for new concepts of aggregated models of batteries. Despite the developed battery models for EVs applications, when looking at energy storage scenarios using EVs, both geographical-temporal aspects and battery...... conditions. The obtained results show that EV fleets are non-linear time-variant systems which however can be described with good approximation taking into account a number of variables such as number of cycles, temperature, depth-of-discharge and current rates....

  6. Quarterly environmental data summary for fourth quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1997 is prepared in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data presented constitute the QEDS. The data were received from the contract laboratories, verified by the Weldon Spring Site verification group and, except for air monitoring data and site KPA generated data (uranium analyses), merged into the data base during the fourth quarter of 1997. Air monitoring data presented are the most recent complete sets of quarterly data. Air data are not stored in the data base and KPA data are not merged into the regular data base. Significant data, defined as data values that have exceeded defined ``above normal`` level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal level 2 values are based, in ES and H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits and other guidelines. The procedures also establish actions to be taken in response to such data. Data received and verified during the fourth quarter were within a permissible range of variability except for those which are detailed.

  7. Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems

    OpenAIRE

    Daniel Akinyele; Juri Belikov; Yoash Levron

    2017-01-01

    Batteries are promising storage technologies for stationary applications because of their maturity, and the ease with which they are designed and installed compared to other technologies. However, they pose threats to the environment and human health. Several studies have discussed the various battery technologies and applications, but evaluating the environmental impact of batteries in electrical systems remains a gap that requires concerted research efforts. This study first presents an ove...

  8. Optimization of a PEMFC/battery pack power system for a bus application

    International Nuclear Information System (INIS)

    Barelli, Linda; Bidini, Gianni; Ottaviano, Andrea

    2012-01-01

    Highlights: ► A dynamic model of a PEMFC/battery system for bus traction has been developed. ► The model incorporates the dynamics of the fuel cell and the state of charge (SOC) of the battery pack. ► The system output power have been determined according to the real driving load demand of a bus during 12 h. ► The model has allowed the sizing of the fuel cell and the hydrogen tank with the SOC control strategy optimization. ► The PEMFC power that allows to optimize the operation in terms of both SOC control strategy and consumption is 33 kW e . -- Abstract: In a global environment context in which the urgent need to reduce pollutant emissions is of central relevance, it is becoming increasingly important the research for solutions, concerning the vehicular transport sector with low environmental impact. Fuel cell technology is expected to become a viable solution for these applications due to its environmental friendly characteristics. The present study concerns the traction system of a bus considering the case of hybrid solutions consisting of a proton exchange membrane fuel cell (PEMFC) in parallel with a battery pack. In particular, a dynamic model of a PEMFC/battery system is presented for the application under study. The model incorporates the dynamics of the fuel cell and the state of charge (SOC) of the battery pack. The fuel cell and the battery output power have been determined according to the real driving load demand of a bus taking into consideration a daily operation of 12 h. Such a model has allowed the correct dimensioning of the hybrid power system (giving a particular attention to the fuel cell and the hydrogen tank) together with the optimization of the SOC control strategy.

  9. Thermal management of EV battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Birch, P.K.

    1984-01-01

    The thermal limitations of the actual design and the benefits of more extensive thermal management of electric vehicle systems are described. During this work a number of practical limitations in vehicle design, which has to be frozen relatively early in the project, made it impossible to take advantage of the benefits of thermal management in connection with the design of the modular battery system. This study, therfore, deals only very briefly with the actual project. The aim has been to show the possibilities of improvement based on traditional electrochemical systems (e.g., all lead-acid) by means of thermal management.

  10. Electrically rechargeable zinc/air battery: a high specific energy system

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, F; Sauter, J -C; Masanz, G; Mueller, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    This contribution describes our research and development efforts towards the demonstration of a light-weight, low-cost 12 V/20 Ah electrically rechargeable Zn/air battery. We successfully developed electrodes having active areas of up to 200 cm{sup 2}. Deep discharge cycles at different currents as well as current-voltage curves are reported for a 10 cell Zn/air battery (serial connection) with a rated capacity of 20 Ah. Based on the discharge cycle at a power of 19 W, and the weight of the battery, a specific energy of more than 90 Wh/kg could be evaluated for the whole system. (author) 4 figs., 1 tab., 5 refs.

  11. Technical Issues Map for the NHI System Interface and Support Systems Area: 2nd Quarter FY07

    International Nuclear Information System (INIS)

    Steven R. Sherman

    2007-01-01

    This document provides a mapping of technical issues associated with development of the Next Generation Nuclear Plant (NGNP) intermediate heat transport loop and nuclear hydrogen plant support systems to the work that has been accomplished or is currently underway in the 2nd quarter of FY07

  12. Charactrization of a Li-ion battery based stand-alone a-Si photovoltaic system

    International Nuclear Information System (INIS)

    Hamid Vishkasougheh, Mehdi; Tunaboylu, Bahadir

    2014-01-01

    Highlights: • An Li-ion battery based stand-alone a-Si PV was designed. The system composed of three a-Si panels with an efficiency of 7% and 40 cells of LFP batteries. • Effects of solar radiation and environmental temperature for three cities, Istanbul, Ankara, and Adana, have been investigated on a-Si panels. • Using transition formulas BSPV outputs are predictable for any location out of standard test condition. - Abstract: The number of photovoltaic (PV) system installations is increasing rapidly. As more people learn about this versatile and often cost-effective power option, this trend will accelerate. This document presents a recommended design for a battery based stand-alone photovoltaic system (BSPV). BSPV system has the ability to be applied in different areas, including warning signals, lighting, refrigeration, communication, residential water pumping, remote sensing, and cathodic protection. The presented calculation method gives a proper idea for a system sizing technique. Based on application load, different scenarios are possible for designing a BSPV system. In this study, a battery based stand-alone system was designed. The electricity generation part is three a-Si panels, which are connected in parallel, and for the storage part LFP (lithium iron phosphate) battery was used. The high power LFP battery packs are 40 cells each 8S5P (configured 8 series 5 parallel). Each individual pack weighs 0.5 kg and is 25.6 V. In order to evaluate the efficiency of a-Si panels with respect to the temperature and the solar irradiation, cities of Istanbul, Ankara and Adana in Turkey were selected. Temperature and solar irradiation were gathered from reliable sources and by using translation equations, current and voltage output of panels were calculated. As a result of these calculations, current and energy outputs were computed by considering an average efficient solar irradiation time value per day in Turkey. The calculated power values were inserted to a

  13. Charactrization of a Li-ion battery based stand-alone a-Si photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Vishkasougheh, Mehdi, E-mail: mehdi.hamid2@gmail.com [Istanbul Sehir University, Kubakisi Caddesi, No: 27, Altunizade, Uskudar, Istanbul 34662 (Turkey); Tunaboylu, Bahadir [Istanbul Sehir University, Kubakisi Caddesi, No: 27, Altunizade, Uskudar, Istanbul 34662 (Turkey); Marmara Research Center, Materials Institute, PO Box 21, Gebze, Kocaeli 41470 (Turkey)

    2014-11-01

    Highlights: • An Li-ion battery based stand-alone a-Si PV was designed. The system composed of three a-Si panels with an efficiency of 7% and 40 cells of LFP batteries. • Effects of solar radiation and environmental temperature for three cities, Istanbul, Ankara, and Adana, have been investigated on a-Si panels. • Using transition formulas BSPV outputs are predictable for any location out of standard test condition. - Abstract: The number of photovoltaic (PV) system installations is increasing rapidly. As more people learn about this versatile and often cost-effective power option, this trend will accelerate. This document presents a recommended design for a battery based stand-alone photovoltaic system (BSPV). BSPV system has the ability to be applied in different areas, including warning signals, lighting, refrigeration, communication, residential water pumping, remote sensing, and cathodic protection. The presented calculation method gives a proper idea for a system sizing technique. Based on application load, different scenarios are possible for designing a BSPV system. In this study, a battery based stand-alone system was designed. The electricity generation part is three a-Si panels, which are connected in parallel, and for the storage part LFP (lithium iron phosphate) battery was used. The high power LFP battery packs are 40 cells each 8S5P (configured 8 series 5 parallel). Each individual pack weighs 0.5 kg and is 25.6 V. In order to evaluate the efficiency of a-Si panels with respect to the temperature and the solar irradiation, cities of Istanbul, Ankara and Adana in Turkey were selected. Temperature and solar irradiation were gathered from reliable sources and by using translation equations, current and voltage output of panels were calculated. As a result of these calculations, current and energy outputs were computed by considering an average efficient solar irradiation time value per day in Turkey. The calculated power values were inserted to a

  14. Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, R.L.; Turpin, J.F.; Corey, G.P. [and others

    1996-12-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PV market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.

  15. Model-Based Design and Integration of Large Li-ion Battery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler; Kim, Gi-Heon; Santhanagopalan, Shriram; Shi, Ying; Pesaran, Ahmad; Mukherjee, Partha; Barai, Pallab; Maute, Kurt; Behrou, Reza; Patil, Chinmaya

    2015-11-17

    This presentation introduces physics-based models of batteries and software toolsets, including those developed by the U.S. Department of Energy's (DOE) Computer-Aided Engineering for Electric-Drive Vehicle Batteries Program (CAEBAT). The presentation highlights achievements and gaps in model-based tools for materials-to-systems design, lifetime prediction and control.

  16. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system

    International Nuclear Information System (INIS)

    Basu, Suman; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Sohn, Dong Kee; Yeo, Taejung

    2016-01-01

    Highlights: • Three-dimensional electrochemical thermal model of Li-ion battery pack using computational fluid dynamics (CFD). • Novel pack design for compact liquid cooling based thermal management system. • Simple temperature estimation algorithm for the cells in the pack using the results from the model. • Sensitivity of the thermal performance to contact resistance has been investigated. - Abstract: Thermal management system is of critical importance for a Li-ion battery pack, as high performance and long battery pack life can be simultaneously achieved when operated within a narrow range of temperature around the room temperature. An efficient thermal management system is required to keep the battery temperature in this range, despite widely varying operating conditions. A novel liquid coolant based thermal management system, for 18,650 battery pack has been introduced herein. This system is designed to be compact and economical without compromising safety. A coupled three-dimensional (3D) electrochemical thermal model is constructed for the proposed Li-ion battery pack. The model is used to evaluate the effects of different operating conditions like coolant flow-rate and discharge current on the pack temperature. Contact resistance is found to have the strongest impact on the thermal performance of the pack. From the numerical solution, a simple and novel temperature correlation of predicting the temperatures of all the individual cells given the temperature measurement of one cell is devised and validated with experimental results. Such coefficients have great potential of reducing the sensor requirement and complexity in a large Li-ion battery pack, typical of an electric vehicle.

  17. Model-based energy analysis of battery powered systems

    NARCIS (Netherlands)

    Jongerden, M.R.

    2010-01-01

    The use of mobile devices is often limited by the lifetime of the included batteries. This lifetime naturally depends on the battery's capacity and on the rate at which the battery is discharged. However, it also depends on the usage pattern, i.e., the workload, of the battery. When a battery is

  18. Functional Analysis of Battery Management Systems using Multi-Cell HIL Simulator

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela; Swierczynski, Maciej Jozef; Schaltz, Erik

    2015-01-01

    Developers and manufacturers of Battery Management Systems (BMSs) require extensive testing of controller HW and SW, such as analog front-end (AFE) and performance of generated control code. In comparison with tests conducted on real batteries, tests conducted on hardware-in-the-loop (HIL......) simulator may be more costant time effective, easier to reproduce and safer beyond the normal range of operation, especially at early stages in the development process or during fault simulation. In this paper a li-ion battery (LIB) electro-thermal multicell model coupled with an aging model is designed......, characterized and validated based on experimental data, converted to C code and emulated in real-time with a dSpace HIL simulator. The BMS to be tested interacts with the emulated battery pack as if it was managing a real battery pack. BMS functions such as protection, measuring of current, voltage...

  19. 12 CFR 630.40 - Contents of the quarterly report to investors.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Contents of the quarterly report to investors... INVESTORS IN SYSTEMWIDE AND CONSOLIDATED BANK DEBT OBLIGATIONS OF THE FARM CREDIT SYSTEM Quarterly Reports to Investors § 630.40 Contents of the quarterly report to investors. (a) General. The quarterly...

  20. An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs

    International Nuclear Information System (INIS)

    Pesaran, Ahmad A.; Keyser, Matthew; Burch, Steve

    1999-01-01

    If battery packs for electric vehicles (EVs) and hybrid electric vehicles (HEVs) are to operate effectively in all climates, thermal management of the packs is essential. In this paper, we will review a systematic approach for designing and evaluating battery pack thermal management systems. A thermal management system using air as the heat transfer medium is less complicated than a system using liquid cooling/heating. Generally, for parallel HEVs, an air thermal management system is adequate, whereas for EVs and series HEVs, liquid-based systems may be required for optimum thermal performance. Further information on battery thermal management can be found on the Web site www.ctts.nrel.gov/BTM

  1. EMSL Quarterly Highlights Report: FY 2008, 3rd Quarter

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-09-16

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  2. EMSL Quarterly Highlights Report: 1st Quarter, FY08

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-01-28

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  3. Development of battery management systems (BMS for electric vehicles (EVs in Malaysia

    Directory of Open Access Journals (Sweden)

    Salehen P.M.W.

    2017-01-01

    Full Text Available Battery Management Systems (BMS is an electronic devices component, which is a vital fundamental device connected between the charger and the battery of the hybrid or electric vehicle (EV systems. Thus, BMS significantly enable for safety protection and reliable battery management by performing of monitoring charge control, state evaluation, reporting the data and functionalities cell balancing. To date, 97.1% of Malaysian CO2 emissions are mainly caused by transportation activities and the numbers will keep rising as numbers of registered car increase close up to 1 million yearly; double the amounts in the last two decades. The uncertainty of a battery’s performance poses a challenge to predict the extended range of EVs, which need BMS implementation of optimization of optimum power management. Hence, using MATLAB/SIMULINK software is one of the potential methods of BMS optimization with power generated by Hybrid Energy Storage system of lithium-ion battery. Therefore, this paper address through reviewing previous literatures initially focuses on the BMS optimization for EVs (car in Malaysia as prognostic technology model improvement on performance management of EVs.

  4. Impact Safety Control Strategy for the Battery System of an Example Electric Bus

    Directory of Open Access Journals (Sweden)

    Zhen-po Wang

    2015-01-01

    Full Text Available This paper proposes a side impact safety control strategy for the battery system, aiming at defusing the hazards of unacceptable behaviors of the battery system such as high-voltage hazards. Based on some collision identification metrics, a side impact discrimination algorithm and a side impact severity algorithm are developed for electric buses. Based on the study on the time to break for power battery, the side impact discrimination algorithm response time is about 20 ms posing a great challenge to the side impact discrimination algorithm. At the same time, the reliability of the impact safety control strategy developed in this paper is evaluated for other plausible side impact signals generated by finite element analysis. The results verify that the impact safety control strategy exhibits robust performance and is able to trigger a breaking signal for power battery system promptly and accurately.

  5. Grid Inertial Response with Lithium-ion Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Knap, Vaclav; Sinha, Rakesh; Swierczynski, Maciej Jozef

    2014-01-01

    of this paper is to evaluate the technical viability of utilizing energy storage systems based on Lithium-ion batteries for providing inertial response in grids with high penetration levels of wind power. In order to perform this evaluation, the 12-bus system grid model was used; the inertia of the grid...... was varied by decreasing the number of conventional power plants in the studied grid model while in the same time increasing the load and the wind power penetration levels. Moreover, in order to perform a realistic investigation, a dynamic model of the Lithium-ion battery was considered and parameterized...

  6. Fundamentals of Using Battery Energy Storage Systems to Provide Primary Control Reserves in Germany

    Directory of Open Access Journals (Sweden)

    Alexander Zeh

    2016-09-01

    Full Text Available The application of stationary battery storage systems to German electrical grids can help with various storage services. This application requires controlling the charge and discharge power of such a system. For example, photovoltaic (PV home storage, uninterruptible power supply, and storage systems for providing ancillary services such as primary control reserves (PCRs represent battery applications with positive profitability. Because PCRs are essential for stabilizing grid frequency and maintaining a robust electrical grid, German transmission system operators (TSOs released strict regulations in August 2015 for providing PCRs with battery storage systems as part of regulating the International Grid Control Cooperation (IGCC region in Europe. These regulations focused on the permissible state of charge (SoC of the battery during nominal and extreme conditions. The concomitant increased capacity demand oversizing may result in a significant profitability reduction, which can be attenuated only by using an optimal parameterization of the control algorithm for energy management of the storage systems. In this paper, the sizing optimization is achieved and a recommendation for a control algorithm that includes the appropriate parameters for the requirements in the German market is given. Furthermore, the storage cost is estimated, including battery aging simulations for different aging parameter sets to allow for a realistic profitability calculation.

  7. Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Yong-Song Chen

    2013-12-01

    Full Text Available A laboratory-scale passive hybrid power system for transportation applications is constructed and tested in this study. The hybrid power system consists of a fuel cell stack connected with a diode, a lithium-ion battery pack connected with a DC/DC power converter and another diode. The power converter is employed to regulate the output voltage of the battery pack. The dynamic responses of current and voltage of the stack to the start-up and acceleration of the load are experimentally investigated at two different selected output voltages of the DC/DC converter in the battery line. The power sharing of each power source and efficiency are also analyzed and discussed. Experimental results show that the battery can compensate for the shortage of supplied power for the load demand during the start-up and acceleration. The lowest operating voltage of the fuel cell stack is limited by the regulated output voltage of the DC/DC converter. The major power loss in the hybrid power system is attributed to the diodes. The power train efficiency can be improved by lowering the ratio of forward voltage drop of the diode to the operating voltage of the fuel cell stack.

  8. Design of a Reliable Hybrid (PV/Diesel Power System with Energy Storage in Batteries for Remote Residential Home

    Directory of Open Access Journals (Sweden)

    Vincent Anayochukwu Ani

    2016-01-01

    Full Text Available This paper reports the experience acquired with a photovoltaic (PV hybrid system simulated as an alternative to diesel system for a residential home located in Southern Nigeria. The hybrid system was designed to overcome the problem of climate change, to ensure a reliable supply without interruption, and to improve the overall system efficiency (by the integration of the battery bank. The system design philosophy was to maximize simplicity; hence, the system was sized using conventional simulation tool and representative insolation data. The system includes a 15 kW PV array, 21.6 kWh (3600 Ah worth of battery storage, and a 5.4 kW (6.8 kVA generator. The paper features a detailed analysis of the energy flows through the system and quantifies all losses caused by PV charge controller, battery storage round-trip, rectifier, and inverter conversions. In addition, simulation was run to compare PV/diesel/battery with diesel/battery and the results show that the capital cost of a PV/diesel hybrid solution with batteries is nearly three times higher than that of a generator and battery combination, but the net present cost, representing cost over the lifetime of the system, is less than one-half of the generator and battery combination.

  9. A comparative study and validation of state estimation algorithms for Li-ion batteries in battery management systems

    International Nuclear Information System (INIS)

    Klee Barillas, Joaquín; Li, Jiahao; Günther, Clemens; Danzer, Michael A.

    2015-01-01

    Highlights: • Description of state observers for estimating the battery’s SOC. • Implementation of four estimation algorithms in a BMS. • Reliability and performance study of BMS regarding the estimation algorithms. • Analysis of the robustness and code properties of the estimation approaches. • Guide to evaluate estimation algorithms to improve the BMS performance. - Abstract: To increase lifetime, safety, and energy usage battery management systems (BMS) for Li-ion batteries have to be capable of estimating the state of charge (SOC) of the battery cells with a very low estimation error. The accurate SOC estimation and the real time reliability are critical issues for a BMS. In general an increasing complexity of the estimation methods leads to higher accuracy. On the other hand it also leads to a higher computational load and may exceed the BMS limitations or increase its costs. An approach to evaluate and verify estimation algorithms is presented as a requisite prior the release of the battery system. The approach consists of an analysis concerning the SOC estimation accuracy, the code properties, complexity, the computation time, and the memory usage. Furthermore, a study for estimation methods is proposed for their evaluation and validation with respect to convergence behavior, parameter sensitivity, initialization error, and performance. In this work, the introduced analysis is demonstrated with four of the most published model-based estimation algorithms including Luenberger observer, sliding-mode observer, Extended Kalman Filter and Sigma-point Kalman Filter. The experiments under dynamic current conditions are used to verify the real time functionality of the BMS. The results show that a simple estimation method like the sliding-mode observer can compete with the Kalman-based methods presenting less computational time and memory usage. Depending on the battery system’s application the estimation algorithm has to be selected to fulfill the

  10. Design options for automotive batteries in advanced car electrical systems

    Science.gov (United States)

    Peters, K.

    The need to reduce fuel consumption, minimize emissions, and improve levels of safety, comfort and reliability is expected to result in a much higher demand for electric power in cars within the next 5 years. Forecasts vary, but a fourfold increase in starting power to 20 kW is possible, particularly if automatic stop/start features are adopted to significantly reduce fuel consumption and exhaust emissions. Increases in the low-rate energy demand are also forecast, but the use of larger alternators may avoid unacceptable high battery weights. It is also suggested from operational models that the battery will be cycled more deeply. In examining possible designs, the beneficial features of valve-regulated lead-acid batteries made with compressed absorbent separators are apparent. Several of their attributes are considered. They offer higher specific power, improved cycling capability and greater vibration resistance, as well as more flexibility in packaging and installation. Optional circuits considered for dual-voltage supplies are separate batteries for engine starting (36 V) and low-power duties (12 V), and a universal battery (36 V) coupled to a d.c.-d.c. converter for a 12-V equipment. Battery designs, which can be made on commercially available equipment with similar manufacturing costs (per W h and per W) to current products, are discussed. The 36-V battery, made with 0.7 mm thick plates, in the dual-battery system weighs 18.5 kg and has a cold-cranking amp (CCA) rating of 790 A at -18°C to 21.6 V (1080 W kg -1 at a mean voltage of 25.4 V). The associated, cycleable 12-V battery, provides 1.5 kW h and weighs 24.6 kg. Thus, the combined battery weight is 43.1 kg. The single universal battery, with cycling capability, weighs 45.4 kg, has a CCA rating of 810 A (441 W kg -1 at a mean voltage of 24.7 V), and when connected to the d.c.-d.c. converter at 75% efficiency provides a low-power capacity of 1.5 kW h.

  11. Operation of Finnish nuclear power plants. Quarterly report, 4th quarter 1996

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1997-05-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants's production and load factors. In the fourth quarter of 1996, the Finnish nuclear power plant units were in power operation except for the annual maintenance outage of Loviisa 2 and a shutdown at Olkiluoto 1 to repair a condensate system stop valve. The load factor average of all plant units was 96.5%. Events in the fourth quarter of 1996 were level 0 on the International Nuclear Event Scale. Occupational doses and radioactive releases off-site were below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  12. Technical model for optimising PV/diesel/battery hybrid power systems

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-08-31

    Full Text Available A solar-based power supply system, such as a photovoltaic (PV)-diesel-battery system, is a particularly attractive option for decentralised power supply in southern Africa where solar radiation is ubiquitous in most countries. Such systems can make...

  13. Public Land Survey System (PLSS) Quarter Section Polygons, Arizona, 2014, Bureau of Land Management

    Data.gov (United States)

    U.S. Environmental Protection Agency — The second division of the PLSS is quarter, quarter-quarter, sixteenth or government lot division of the PLSS. The second and third divisions are combined into this...

  14. Modeling, Design and Simulation of Stand-Alone Photovoltaic Power Systems with Battery Storage

    Directory of Open Access Journals (Sweden)

    Abd Essalam BADOUD

    2013-06-01

    Full Text Available Stand alone renewable energy based on photovoltaic systems accompanied with battery storage system are beginning to play an important role over the world to supply power to remote areas. The objective of the study reported in this paper is to elaborate and design a bond graphs model for sizing stand-alone domestic solar photovoltaic electricity systems and simulating the performance of the systems in a tropical climate. The systems modelled consist of an array of PV modules, a lead-acid battery, and a number of direct current appliances. This paper proposes the combination of lead acid battery system with a typical stand alone photovoltaic energy system under variable loads. The main activities of this work purpose to establish library graphical models for each individual component of standalone photovoltaic system. Control strategy has been considered to achieve permanent power supply to the load via photovoltaic/battery based on the power available from the sun. The complete model was simulated under two testing including sunny and cloudy conditions. Simulation of the system using Symbols software was performed and the results of simulation show the superior stable control system and high efficiency. These results have been contrasted with real measured data from a measurement campaign plant carried on electrical engineering laboratory of Grenoble using various interconnection schemes are presented.

  15. Influence of Adhesive System on Performance of SiO/C Lithium-ion Battery

    Directory of Open Access Journals (Sweden)

    Teng Xin

    2015-01-01

    Full Text Available Silicon based anode material is turning into the research hot point of lithium-ion battery material field due to Si inside supporting higher capacity. Furthermore binder applied as major accessory material of anode system could bring anode material & current collector together, thus the influence given by binder system to battery performance becomes the key point. The paper describes the procedure of adopting commercial LiCoO2 SiO/C as composite material & electrolyte, with using styrene butadiene rubber and acrylic acid copolymer as binder to figure out lithium-ion battery with 2.5Ah, which is testified to present better performance on cold temperature & cycle life plus having a little bit swelling compared with the lithium-ion battery using only styrene butadiene rubber as binder.

  16. Development of a Microcontroller-based Battery Charge Controller for an Off-grid Photovoltaic System

    Science.gov (United States)

    Rina, Z. S.; Amin, N. A. M.; Hashim, M. S. M.; Majid, M. S. A.; Rojan, M. A.; Zaman, I.

    2017-08-01

    A development of a microcontroller-based charge controller for a 12V battery has been explained in this paper. The system is designed based on a novel algorithm to couple existing solar photovoltaic (PV) charging and main grid supply charging power source. One of the main purposes of the hybrid charge controller is to supply a continuous charging power source to the battery. Furthermore, the hybrid charge controller was developed to shorten the battery charging time taken. The algorithm is programmed in an Arduino Uno R3 microcontroller that monitors the battery voltage and generates appropriate commands for the charging power source selection. The solar energy is utilized whenever the solar irradiation is high. The main grid supply will be only consumed whenever the solar irradiation is low. This system ensures continuous charging power supply and faster charging of the battery.

  17. H2-O2 fuel cell and advanced battery power systems for autonomous underwater vehicles: performance envelope comparisons

    International Nuclear Information System (INIS)

    Schubak, G.E.; Scott, D.S.

    1993-01-01

    Autonomous underwater vehicles have traditionally been powered by low energy density lead-acid batteries. Recently, advanced battery technologies and H 2 -O 2 fuel cells have become available, offering significant improvements in performance. This paper compares the solid polymer fuel cell to the lithium-thionyl chloride primary battery, sodium-sulfur battery, and lead acid battery for a variety of missions. The power system performance is simulated using computer modelling techniques. Performance envelopes are constructed, indicating domains of preference for competing power system technologies. For most mission scenarios, the solid polymer fuel cell using liquid reactant storage is the preferred system. Nevertheless, the advanced battery systems are competitive with the fuel cell systems using gaseous hydrogen storage, and they illustrate preferred performance for missions requiring high power density. 11 figs., 4 tabs., 15 refs

  18. Comparison of Battery-Powered and Manual Bone Biopsy Systems for Core Needle Biopsy of Sclerotic Bone Lesions.

    Science.gov (United States)

    Cohen, Micah G; McMahon, Colm J; Kung, Justin W; Wu, Jim S

    2016-05-01

    The purpose of this study was to compare manual and battery-powered bone biopsy systems for diagnostic yield and procedural factors during core needle biopsy of sclerotic bone lesions. A total of 155 consecutive CT-guided core needle biopsies of sclerotic bone lesions were performed at one institution from January 2006 to November 2014. Before March 2012, lesions were biopsied with manual bone drill systems. After March 2012, most biopsies were performed with a battery-powered system and either noncoaxial or coaxial biopsy needles. Diagnostic yield, crush artifact, CT procedure time, procedure radiation dose, conscious sedation dose, and complications were compared between the manual and battery-powered core needle biopsy systems by Fisher exact test and t test. One-way ANOVA was used for subgroup analysis of the two battery-powered systems for procedure time and radiation dose. The diagnostic yield for all sclerotic lesions was 60.0% (93/155) and was significantly higher with the battery-powered system (73.0% [27/37]) than with the manual systems (55.9% [66/118]) (p = 0.047). There was no significant difference between the two systems in terms of crush artifact, procedure time, radiation dose, conscious sedation administered, or complications. In subgroup analysis, the coaxial battery-powered biopsies had shorter procedure times (p = 0.01) and lower radiation doses (p = 0.002) than the coaxial manual systems, but the noncoaxial battery-powered biopsies had longer average procedure times and higher radiation doses than the coaxial manual systems. In biopsy of sclerotic bone lesions, use of a battery-powered bone drill system improves diagnostic yield over use of a manual system.

  19. A new battery capacity indicator for nickel-metal hydride battery powered electric vehicles using adaptive neuro-fuzzy inference system

    International Nuclear Information System (INIS)

    Chau, K.T.; Wu, K.C.; Chan, C.C.; Shen, W.X.

    2003-01-01

    This paper describes a new approach to estimate accurately the battery residual capacity (BRC) of the nickel-metal hydride (Ni-MH) battery for modern electric vehicles (EVs). The key to this approach is to model the Ni-MH battery in EVs by using the adaptive neuro-fuzzy inference system (ANFIS) with newly defined inputs and output. The inputs are the temperature and the discharged capacity distribution describing the discharge current profile, while the output is the state of available capacity (SOAC) representing the BRC. The estimated SOAC from ANFIS model and the measured SOAC from experiments are compared, and the results confirm that the proposed approach can provide an accurate estimation of the SOAC under variable discharge currents

  20. Study on a Battery Thermal Management System Based on a Thermoelectric Effect

    Directory of Open Access Journals (Sweden)

    Chuan-Wei Zhang

    2018-01-01

    Full Text Available As is known to all, a battery pack is significantly important for electric vehicles. However, its performance is easily affected by temperature. In order to address this problem, an enhanced battery thermal management system is proposed, which includes two parts: a modified cooling structure and a control unit. In this paper, more attention has been paid to the structure part. According to the heat generation mechanism of a battery and a thermoelectric chip, a simplified heat generation model for a single cell and a special cooling model were created in ANSYS 17.0. The effects of inlet velocity on the performance of different heat exchanger structures were studied. The results show that the U loop structure is more reasonable and the flow field distribution is the most uniform at the inlet velocity of 1.0 m/s. Then, on the basis of the above heat exchanger and the liquid flow velocity, the cooling effect of the improved battery temperature adjustment structure and the traditional liquid temperature regulating structure were analyzed. It can be seen that the liquid cooling structure combined with thermoelectric cooling demonstrates a better performance. With respect to the control system, the corresponding hardware and software were also developed. In general, the design process for this enhanced battery thermal management system can provide a wealth of guidelines for solving similar problems. The H commutation circuit, matrix switch circuit, temperature measurement circuit, and wireless communication modules were designed in the control system and the temperature control strategy was also developed.

  1. Stochastic Optimisation of Battery System Operation Strategy under different Utility Tariff Structures

    OpenAIRE

    Erdal, Jørgen Sørgård

    2017-01-01

    This master thesis develops a stochastic optimisation software for household grid-connected batteries combined with PV-systems. The objective of the optimisation is to operate the battery system in order to minimise the costs of the consumer, and it was implemented in MATLAB using a self-written stochastic dynamic programming algorithm. Load was considered as a stochastic variable and modelled as a Markov Chain. Transition probabilities between time steps were calculated using historic load p...

  2. Field Trial on a Rack-mounted DC Power Supply System with 80-Ah Lithium-ion Batteries

    Science.gov (United States)

    Matsushima, Toshio

    Using an industrial lithium-ion battery that has higher energy density than conventional valve-regulated lead-acid batteries, a rack-mounted DC-power-supply system was assembled and tested at a base transceiver station (BTS) offering actual services. A nominal output voltage and maximum output current of the system is 53.5V and 20A, respectively. An 80-Ah lithium-ion battery composed of 13 cells connected in series was applied in the system and maintained in a floating charge method. The DC-power-supply system was installed in a 19-inch power rack in the telecommunications equipment box at BTS. The characteristics of the 80Ah lithium-ion battery, specifications of the DC-power-supply system and field-test results were shown in this paper.

  3. Integration Strategy for Free-form Lithium Ion Battery: Material, Design to System level Applications

    KAUST Repository

    Kutbee, Arwa T.

    2017-10-31

    Power supply in any electronic system is a crucial necessity. Especially so in fully compliant personalized advanced healthcare electronic self-powered systems where we envision seamless integration of sensors and actuators with data management components in a single freeform platform to augment the quality of our healthcare, smart living and sustainable future. However, the status-quo energy storage (battery) options require packaging to protect the indwelling toxic materials against harsh physiological environment and vice versa, compromising its mechanical flexibility, conformability and wearability at the highest electrochemical performance. Therefore, clean and safe energy storage solutions for wearable and implantable electronics are needed to replace the commercially used unsafe lithium-ion batteries. This dissertation discusses a highly manufacturable integration strategy for a free-form lithium-ion battery towards a genuine mechanically compliant wearable system. We sequentially start with the optimization process for the preparation of all solid-state material comprising a ‘’Lithium-free’’ lithium-ion microbattery with a focus on thin film texture optimization of the cathode material. State of the art complementary metal oxide semiconductor technology was used for the thin film based battery. Additionally, this thesis reports successful development of a transfer-less scheme for a flexible battery with small footprint and free form factor in a high yield production process. The reliable process for the flexible lithium-ion battery achieves an enhanced energy density by three orders of magnitude compared to the available rigid ones. Interconnection and bonding procedures of the developed batteries are discussed for a reliable back end of line process flexible, stretchable and stackable modules. Special attention is paid to the advanced bonding, handling and packaging strategies of flexible batteries towards system-level applications. Finally, this

  4. Intelligent Energy Management System for PV-Battery-based Microgrids in Future DC Homes

    Science.gov (United States)

    Chauhan, R. K.; Rajpurohit, B. S.; Gonzalez-Longatt, F. M.; Singh, S. N.

    2016-06-01

    This paper presents a novel intelligent energy management system (IEMS) for a DC microgrid connected to the public utility (PU), photovoltaic (PV) and multi-battery bank (BB). The control objectives of the proposed IEMS system are: (i) to ensure the load sharing (according to the source capacity) among sources, (ii) to reduce the power loss (high efficient) in the system, and (iii) to enhance the system reliability and power quality. The proposed IEMS is novel because it follows the ideal characteristics of the battery (with some assumptions) for the power sharing and the selection of the closest source to minimize the power losses. The IEMS allows continuous and accurate monitoring with intelligent control of distribution system operations such as battery bank energy storage (BBES) system, PV system and customer utilization of electric power. The proposed IEMS gives the better operational performance for operating conditions in terms of load sharing, loss minimization, and reliability enhancement of the DC microgrid.

  5. Optimal Dispatch of Unreliable Electric Grid-Connected Diesel Generator-Battery Power Systems

    Science.gov (United States)

    Xu, D.; Kang, L.

    2015-06-01

    Diesel generator (DG)-battery power systems are often adopted by telecom operators, especially in semi-urban and rural areas of developing countries. Unreliable electric grids (UEG), which have frequent and lengthy outages, are peculiar to these regions. DG-UEG-battery power system is an important kind of hybrid power system. System dispatch is one of the key factors to hybrid power system integration. In this paper, the system dispatch of a DG-UEG-lead acid battery power system is studied with the UEG of relatively ample electricity in Central African Republic (CAR) and UEG of poor electricity in Congo Republic (CR). The mathematical models of the power system and the UEG are studied for completing the system operation simulation program. The net present cost (NPC) of the power system is the main evaluation index. The state of charge (SOC) set points and battery bank charging current are the optimization variables. For the UEG in CAR, the optimal dispatch solution is SOC start and stop points 0.4 and 0.5 that belong to the Micro-Cycling strategy and charging current 0.1 C. For the UEG in CR, the optimal dispatch solution is of 0.1 and 0.8 that belongs to the Cycle-Charging strategy and 0.1 C. Charging current 0.1 C is suitable for both grid scenarios compared to 0.2 C. It makes the dispatch strategy design easier in commercial practices that there are a few very good candidate dispatch solutions with system NPC values close to that of the optimal solution for both UEG scenarios in CAR and CR.

  6. Model-based energy analysis of battery powered systems

    NARCIS (Netherlands)

    Jongerden, M.R.

    2010-01-01

    The use of mobile devices is often limited by the lifetime of the included batteries. This lifetime naturally depends on the battery’s capacity and on the rate at which the battery is discharged. However, it also depends on the usage pattern, i.e., the workload, of the battery. When a battery is

  7. Aging studies of batteries and transformers in class IE power systems

    International Nuclear Information System (INIS)

    Edson, J.L.; Roberts, E.W.

    1992-01-01

    A Phase I aging study of batteries used in 1E Power Systems of nuclear power plants concluded that significant aging effects for aged batteries are growth of positive plants, loosening of active material in plates that have grown, loss of active material caused by gassing and corrosion, and embrittlement of the lead grids and straps. These effects contribute to decreased electrical capacity and decreased seismic ruggedness which, during a seismic event, can lead to decreased electrical performance or complete failure. Subsequently a Phase II test program was conducted to determine if seismic ruggedness of aged batteries can be inadequate even if the electrical capacity is satisfactory, as determined by tests recommended by IEEE Std 450-1987, open-quote IEEE Recommended Practice for Maintenance, Testing, and Replacement of Large Storage Batteries for Generating Stations and Substations.close quotes In addition, a Phase I aging study of transformers in 1E Power Systems was performed to identify stressors and failure mechanisms, investigate whether transformers are showing the effects of aging as they grow older, and to determine if current surveillance methods are effective in mitigating aging effects. This paper presents the results of these studies

  8. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lundstrom, Blake R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cao, Ziwei [SunPower Corporation; Roc, Albert [SunPower Corp.

    2017-08-25

    Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4 percent RMS error and resistance growth with 15 percent RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.

  9. Operation of Finnish nuclear power plants. Quarterly report, 3rd quarter 1997

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1998-04-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety that the Radiation and Nuclear Safety Authority of Finland (STUK) considers safety significant. Safety improvements at the plants are also described. The Report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. The Finnish nuclear power plant units were in power operation in the third quarter of 1997, except for the annual maintenance outages of Loviisa plant units which lasted well over a month in all. There was also a brief interruption in electricity generation at Olkiluoto 1 for repairs and at Olkiluoto 2 due to a disturbance at the turbine plant. All plant units were in long-term test operation at upgraded reactor power level approved by STUK. The load factor average of all plant units was 87.6 %. One event in the third quarter was classified level 1 on the International Nuclear Event Scale (INES). It was noted at Loviisa 2 that one of four pressurized water tanks in the plant unit's emergency cooling system had been inoperable for a year. Other events in this quarter were INES level 0. Occupational doses and radioactive releases off-site were below authorized limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  10. Large-Scale Battery System Development and User-Specific Driving Behavior Analysis for Emerging Electric-Drive Vehicles

    Directory of Open Access Journals (Sweden)

    Yihe Sun

    2011-04-01

    Full Text Available Emerging green-energy transportation, such as hybrid electric vehicles (HEVs and plug-in HEVs (PHEVs, has a great potential for reduction of fuel consumption and greenhouse emissions. The lithium-ion battery system used in these vehicles, however, is bulky, expensive and unreliable, and has been the primary roadblock for transportation electrification. Meanwhile, few studies have considered user-specific driving behavior and its significant impact on (PHEV fuel efficiency, battery system lifetime, and the environment. This paper presents a detailed investigation of battery system modeling and real-world user-specific driving behavior analysis for emerging electric-drive vehicles. The proposed model is fast to compute and accurate for analyzing battery system run-time and long-term cycle life with a focus on temperature dependent battery system capacity fading and variation. The proposed solution is validated against physical measurement using real-world user driving studies, and has been adopted to facilitate battery system design and optimization. Using the collected real-world hybrid vehicle and run-time driving data, we have also conducted detailed analytical studies of users’ specific driving patterns and their impacts on hybrid vehicle electric energy and fuel efficiency. This work provides a solid foundation for future energy control with emerging electric-drive applications.

  11. All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries

    Science.gov (United States)

    Kim, Haegyeom; Park, Kyu-Young; Hong, Jihyun; Kang, Kisuk

    2014-06-01

    Herein, we propose an advanced energy-storage system: all-graphene-battery. It operates based on fast surface-reactions in both electrodes, thus delivering a remarkably high power density of 6,450 W kg-1total electrode while also retaining a high energy density of 225 Wh kg-1total electrode, which is comparable to that of conventional lithium ion battery. The performance and operating mechanism of all-graphene-battery resemble those of both supercapacitors and batteries, thereby blurring the conventional distinction between supercapacitors and batteries. This work demonstrates that the energy storage system made with carbonaceous materials in both the anode and cathode are promising alternative energy-storage devices.

  12. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    Science.gov (United States)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  13. Electronic nicotine delivery system (ENDS) battery-related burns presenting to US emergency departments, 2016.

    Science.gov (United States)

    Corey, Catherine G; Chang, Joanne T; Rostron, Brian L

    2018-03-05

    Currently, an estimated 7.9 million US adults use electronic nicotine delivery systems (ENDS). Although published reports have identified fires and explosions related to use of ENDS since 2009, these reports do not provide national estimates of burn injuries associated with ENDS batteries in the US. We analyzed nationally representative data provided in the National Electronic Injury Surveillance System (NEISS) to estimate the number of US emergency department (ED) visits for burn injuries associated with ENDS batteries. We reviewed the case narrative field to gain additional insights into the circumstances of the burn injury. In 2016, 26 ENDS battery-related burn cases were captured by NEISS, which translates to a national estimate of 1007 (95%CI: 357-1657) injuries presenting in US EDs. Most of the burns were thermal burns (80.4%) and occurred to the upper leg/lower trunk (77.3%). Examination of the case narrative field indicated that at least 20 of the burn injuries occurred while ENDS batteries were in the user's pocket. Our study provides valuable information for understanding the current burden of ENDS battery-related burn injuries treated in US EDs. The nature and circumstances of the injuries suggest these incidents were unintentional and would potentially be prevented through battery design requirements, battery testing standards and public education related to ENDS battery safety.

  14. EMSL Quarterly Highlights Report: 1st Quarter, Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.

    2009-02-02

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2008 - December 2008) of Fiscal Year 2009.

  15. Quarterly oil statistics. First quarter 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The aim of this report is to provide rapid, accurate and detailed statistics on oil supply and demand in the OECD area. Main components of the system are: complete balances of production, trade, refinery intake and output, final consumption, stock levels and changes; separate data for crude oil, NGL, feedstocks and nine product groups; separate trade data for main product groups, LPG and naphtha; imports for 41 origins; exports for 29 destinations; marine bunkers and deliveries to international civil aviation by product group; aggregates of quarterly data to annual totals; and natural gas supply and consumption.

  16. Entropy-Based Voltage Fault Diagnosis of Battery Systems for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2018-01-01

    Full Text Available The battery is a key component and the major fault source in electric vehicles (EVs. Ensuring power battery safety is of great significance to make the diagnosis more effective and predict the occurrence of faults, for the power battery is one of the core technologies of EVs. This paper proposes a voltage fault diagnosis detection mechanism using entropy theory which is demonstrated in an EV with a multiple-cell battery system during an actual operation situation. The preliminary analysis, after collecting and preprocessing the typical data periods from Operation Service and Management Center for Electric Vehicle (OSMC-EV in Beijing, shows that overvoltage fault for Li-ion batteries cell can be observed from the voltage curves. To further locate abnormal cells and predict faults, an entropy weight method is established to calculate the objective weight, which reduces the subjectivity and improves the reliability. The result clearly identifies the abnormity of cell voltage. The proposed diagnostic model can be used for EV real-time diagnosis without laboratory testing methods. It is more effective than traditional methods based on contrastive analysis.

  17. Operation strategy for a lab-scale grid-connected photovoltaic generation system integrated with battery energy storage

    International Nuclear Information System (INIS)

    Jou, Hurng-Liahng; Chang, Yi-Hao; Wu, Jinn-Chang; Wu, Kuen-Der

    2015-01-01

    Highlights: • The operation strategy for grid-connected PV generation system integrated with battery energy storage is proposed. • The PV system is composed of an inverter and two DC-DC converter. • The negative impact of grid-connected PV generation systems on the grid can be alleviated by integrating a battery. • The operation of the developed system can be divided into nine modes. - Abstract: The operation strategy for a lab-scale grid-connected photovoltaic generation system integrated with battery energy storage is proposed in this paper. The photovoltaic generation system is composed of a full-bridge inverter, a DC–DC boost converter, an isolated bidirectional DC–DC converter, a solar cell array and a battery set. Since the battery set acts as an energy buffer to adjust the power generation of the solar cell array, the negative impact on power quality caused by the intermittent and unstable output power from a solar cell array is alleviated, so the penetration rate of the grid-connected photovoltaic generation system is increased. A lab-scale prototype is developed to verify the performance of the system. The experimental results show that it achieves the expected performance

  18. Idaho National Laboratory Quarterly Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INL from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.

  19. High Efficient Bidirectional Battery Converter for residential PV Systems

    DEFF Research Database (Denmark)

    Pham, Cam; Kerekes, Tamas; Teodorescu, Remus

    2012-01-01

    Photovoltaic (PV) installation is suited for the residential environment and the generation pattern follows the distribution of residential power consumption in daylight hours. In the cases of unbalance between generation and demand, the Smart PV with its battery storage can absorb or inject...... the power to balance it. High efficient bidirectional converter for the battery storage is required due high system cost and because the power is processed twice. A 1.5kW prototype is designed and built with CoolMOS and SiC diodes, >;95% efficiency has been obtained with 200 kHz hard switching....

  20. SUNRAYCE 1993: Working safely with lead-acid batteries and photovoltaic power systems

    Science.gov (United States)

    Dephillips, M. P.; Moskowitz, P. D.; Fthenakis, V. M.

    1992-11-01

    The US Department of Energy (DOE) is sponsoring SUNRAYCE 93 to advance tile technology and use of photovoltaics and electric vehicles. Participants will use cars powered by photovoltaic modules and lead-acid storage batteries. This brochure, prepared for students and faculty participating in this race, outlines the health hazards presented by these electrical systems and gives guidance on strategies for their safe usage. At the outset, it should be noted that working with photovoltaic systems and batteries requires electric vehicle drivers and technicians to have 'hands-on' contact with the car on a daily basis. It is important that no one work near a photovoltaic energy system or battery, either in a vehicle or on the bench, unless they familiarize themselves with the components in use and know and observe safe work practices including the safety precautions described in the manuals provided by the various equipment vendors and this document.

  1. Advanced state prediction of lithium-ion traction batteries in hybrid and battery electric vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Jadidi, Yasser

    2011-07-01

    Automotive power trains with high energy efficiencies - particularly to be found in battery and hybrid electric vehicles - find increasing attention in the focus of reduction of exhaust emissions and increase of mileage. The underlying concept, the electrification of the power train, is subject to the traction battery and its battery management system since the capability of the battery permits and restricts electric propulsion. Consequently, the overall vehicle efficiency and in particular the operation strategy performance strongly depends on the quality of information about the battery. Besides battery technology, the key challenges are given by both the accurate prediction of battery behaviour and the electrochemical battery degradation that leads to power and capacity fade of the traction battery. This book provides the methodology for development of a battery state monitoring and prediction algorithm for application in a battery management system that accounts for the effects of electrochemical degradation. (orig.)

  2. Practical Methods in Li-ion Batteries

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela

    This thesis presents, as a collection of papers, practical methods in Li-ion batteries for simplified modeling (Manuscript I and II), battery electric vehicle design (III), battery management system testing (IV and V) and balancing system control (VI and VII). • Manuscript I tackles methodologies...... to parameterize battery models based solely on manufacturer’s datasheets • Manuscript II presents a parameterization method for battery models based on the notion of direct current resistance • Manuscript III proposes a battery electric vehicle design that combines fixed and swappable packs • Manuscript IV...... develops a battery system model for battery management system testing on a hardware-in-the-loop simulator • Manuscript V extends the previous work, introducing theoretical principles and presenting a practical method to develop ad hoc software and strategies for testing • Manuscript VI presents...

  3. Optimal Sizing of Vanadium Redox Flow Battery Systems for Residential Applications Based on Battery Electrochemical Characteristics

    OpenAIRE

    Xinan Zhang; Yifeng Li; Maria Skyllas-Kazacos; Jie Bao

    2016-01-01

    The penetration of solar photovoltaic (PV) systems in residential areas contributes to the generation and usage of renewable energy. Despite its advantages, the PV system also creates problems caused by the intermittency of renewable energy. As suggested by researchers, such problems deteriorate the applicability of the PV system and have to be resolved by employing a battery energy storage system (BESS). With concern for the high investment cost, the choice of a cost-effective BESS with prop...

  4. Charging system and method for multicell storage batteries

    Science.gov (United States)

    Cox, Jay A.

    1978-01-01

    A battery-charging system includes a first charging circuit connected in series with a plurality of battery cells for controlled current charging. A second charging circuit applies a controlled voltage across each individual cell for equalization of the cells to the fully charged condition. This controlled voltage is determined at a level above the fully charged open-circuit voltage but at a sufficiently low level to prevent corrosion of cell components by electrochemical reaction. In this second circuit for cell equalization, a transformer primary receives closely regulated, square-wave voltage which is coupled to a plurality of equal secondary coil windings. Each secondary winding is connected in parallel to each cell of a series-connected pair of cells through half-wave rectifiers and a shared, intermediate conductor.

  5. Non-steady experimental investigation on an integrated thermal management system for power battery with phase change materials

    International Nuclear Information System (INIS)

    Shi, Shang; Xie, Yongqi; Li, Ming; Yuan, Yanping; Yu, Jianzu; Wu, Hongwei; Liu, Bin; Liu, Nan

    2017-01-01

    Highlights: • An integrated thermal management system for power battery is designed. • The battery temperature rise is a non-steady process for charge and discharge. • A mathematical model can accurately represent temperature rise characteristics. • The heat generation power of the battery is calculated theoretically. • The excess temperatures and thermal resistances affect the system performance. - Abstract: A large amount of heat inside the power battery must be dissipated to maintain the temperature in a safe range for the hybrid power train during high-current charging/discharging processes. In this article, a combined experimental and theoretical study has been conducted to investigate a newly designed thermal management system integrating phase change material with air cooling. An unsteady mathematical model was developed for the battery with the integrated thermal management system. Meanwhile, the heat generation power, thermal resistance, and time constant were calculated. The effect of several control parameters, such as thermal resistance, initial temperature, melting temperature and ambient temperature, on the performance of the integrated thermal management system were analyzed. The results indicated that: (1) the calculated temperature rise of the battery was in good agreement with the experimental data. The appropriate operation temperature of the battery was attained by the action of the phase change storage energy unit which is composed of copper foam and n-Eicosane, (2) the remarkable decrease of the battery temperature can be achieved by reducing the convection thermal resistance or increasing the conductivity of the phase change storage energy unit, where the latter could be the better option due to no additional energy consumption. When convective resistance and thermal resistance between the battery surface and the phase change storage energy unit are less than 2.03 K/W and 1.85 K/W, respectively, the battery will not exceed the

  6. Behavior Patterns, Origin of Problems and Solutions Regarding Hysteresis Phenomena in Complex Battery Systems

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Barreras, Jorge Varela; Stan, Ana-Irina

    2014-01-01

    . Therefore, an accurate knowledge of the hysteresis of OCV is vital for various applications and battery models. This is because currently Battery Management Systems (BMS) use the well-defined OCV-SoC representative curve for SoC estimation and power prediction. Particularly lithium-ion batteries with iron......One of the common phenomenona for most of the battery cell chemistries is hysteresis. Since an open circuit voltage (OCV) path is not identical for the charge and discharge of the battery cell at different states of charge (SoC) level, the battery cells show the hysteresis effect. Usually, the OCV...... i.e. voltage with zero current after previous charge is higher than the OCV after discharge at the same SoC level. It embodies the hysteresis of the battery cell. The OCV is principally subjected to previous operating condition and cannot be taken as self-regulating from the operating history...

  7. An adaptive state of charge estimation approach for lithium-ion series-connected battery system

    Science.gov (United States)

    Peng, Simin; Zhu, Xuelai; Xing, Yinjiao; Shi, Hongbing; Cai, Xu; Pecht, Michael

    2018-07-01

    Due to the incorrect or unknown noise statistics of a battery system and its cell-to-cell variations, state of charge (SOC) estimation of a lithium-ion series-connected battery system is usually inaccurate or even divergent using model-based methods, such as extended Kalman filter (EKF) and unscented Kalman filter (UKF). To resolve this problem, an adaptive unscented Kalman filter (AUKF) based on a noise statistics estimator and a model parameter regulator is developed to accurately estimate the SOC of a series-connected battery system. An equivalent circuit model is first built based on the model parameter regulator that illustrates the influence of cell-to-cell variation on the battery system. A noise statistics estimator is then used to attain adaptively the estimated noise statistics for the AUKF when its prior noise statistics are not accurate or exactly Gaussian. The accuracy and effectiveness of the SOC estimation method is validated by comparing the developed AUKF and UKF when model and measurement statistics noises are inaccurate, respectively. Compared with the UKF and EKF, the developed method shows the highest SOC estimation accuracy.

  8. Study on optimal configuration of the grid-connected wind-solar-battery hybrid power system

    Science.gov (United States)

    Ma, Gang; Xu, Guchao; Ju, Rong; Wu, Tiantian

    2017-08-01

    The capacity allocation of each energy unit in the grid-connected wind-solar-battery hybrid power system is a significant segment in system design. In this paper, taking power grid dispatching into account, the research priorities are as follows: (1) We establish the mathematic models of each energy unit in the hybrid power system. (2) Based on dispatching of the power grid, energy surplus rate, system energy volatility and total cost, we establish the evaluation system for the wind-solar-battery power system and use a number of different devices as the constraint condition. (3) Based on an improved Genetic algorithm, we put forward a multi-objective optimisation algorithm to solve the optimal configuration problem in the hybrid power system, so we can achieve the high efficiency and economy of the grid-connected hybrid power system. The simulation result shows that the grid-connected wind-solar-battery hybrid power system has a higher comprehensive performance; the method of optimal configuration in this paper is useful and reasonable.

  9. Computational models of an inductive power transfer system for electric vehicle battery charge

    Science.gov (United States)

    Anele, A. O.; Hamam, Y.; Chassagne, L.; Linares, J.; Alayli, Y.; Djouani, K.

    2015-09-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV.

  10. Computational models of an inductive power transfer system for electric vehicle battery charge

    International Nuclear Information System (INIS)

    Anele, A O; Hamam, Y; Djouani, K; Chassagne, L; Alayli, Y; Linares, J

    2015-01-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV. (paper)

  11. Applied Meteorology Unit (AMU) Quarterly Report - Fourth Quarter FY-09

    Science.gov (United States)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2009-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the fourth quarter of Fiscal Year 2009 (July - September 2009). Tasks reports include: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Objective Lightning Probability Tool. Phase III, (3) Peak Wind Tool for General Forecasting. Phase II, (4) Update and Maintain Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS), (5) Verify MesoNAM Performance (6) develop a Graphical User Interface to update selected parameters for the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLlT)

  12. SUNRAYCE 93: Working safely with lead-acid batteries and photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    DePhillips, M.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-11-03

    The US Department of Energy (DOE) is sponsoring SUNRAYCE 93 to advance tile technology and use of photovoltaics and electric vehicles. Participants will use cars powered by photovoltaic modules and lead-acid storage batteries. This brochure, prepared for students and faculty participating in this race, outlines the health hazards presented by these electrical systems, and gives guidance on strategies for their safe usage. At the outset, it should be noted that working with photovoltaic systems and batteries requires electric vehicle drivers and technicians to have {open_quotes}hands-on{close_quotes} contact with the car on a daily basis. It is important that no one work near a photovoltaic energy system or battery, either in a vehicle or on the bench, unless they familiarize themselves with the components in use, and know and observe safe work practices including the safety precautions described in the manuals provided by the various equipment vendors and this document.

  13. Battery energy storage systems: Assessment for small-scale renewable energy integration

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Nirmal-Kumar C.; Garimella, Niraj [Power Systems Group, Department of Electrical and Computer Engineering, The University of Auckland, 38 Princes Street, Science Centre, Auckland 1142 (New Zealand)

    2010-11-15

    Concerns arising due to the variability and intermittency of renewable energy sources while integrating with the power grid can be mitigated to an extent by incorporating a storage element within the renewable energy harnessing system. Thus, battery energy storage systems (BESS) are likely to have a significant impact in the small-scale integration of renewable energy sources into commercial building and residential dwelling. These storage technologies not only enable improvements in consumption levels from renewable energy sources but also provide a range of technical and monetary benefits. This paper provides a modelling framework to be able to quantify the associated benefits of renewable resource integration followed by an overview of various small-scale energy storage technologies. A simple, practical and comprehensive assessment of battery energy storage technologies for small-scale renewable applications based on their technical merit and economic feasibility is presented. Software such as Simulink and HOMER provides the platforms for technical and economic assessments of the battery technologies respectively. (author)

  14. A new paradigm on battery powered embedded system design based on User-Experience-Oriented method

    International Nuclear Information System (INIS)

    Wang, Zhuoran; Wu, Yue

    2014-01-01

    The battery sustainable time has been an active research topic recently for the development of battery powered embedded products such as tablets and smart phones, which are determined by the battery capacity and power consumption. Despite numerous efforts on the improvement of battery capacity in the field of material engineering, the power consumption also plays an important role and easier to ameliorate in delivering a desirable user-experience, especially considering the moderate advancement on batteries for decades. In this study, a new Top-Down modelling method, User-Experience-Oriented Battery Powered Embedded System Design Paradigm, is proposed to estimate the target average power consumption, to guide the hardware and software design, and eventually to approach the theoretical lowest power consumption that the application is still able to provide the full functionality. Starting from the 10-hour sustainable time standard, average working current is defined with battery design capacity and set as a target. Then an implementation is illustrated from both hardware perspective, which is summarized as Auto-Gating power management, and from software perspective, which introduces a new algorithm, SleepVote, to guide the system task design and scheduling

  15. A new paradigm on battery powered embedded system design based on User-Experience-Oriented method

    Science.gov (United States)

    Wang, Zhuoran; Wu, Yue

    2014-03-01

    The battery sustainable time has been an active research topic recently for the development of battery powered embedded products such as tablets and smart phones, which are determined by the battery capacity and power consumption. Despite numerous efforts on the improvement of battery capacity in the field of material engineering, the power consumption also plays an important role and easier to ameliorate in delivering a desirable user-experience, especially considering the moderate advancement on batteries for decades. In this study, a new Top-Down modelling method, User-Experience-Oriented Battery Powered Embedded System Design Paradigm, is proposed to estimate the target average power consumption, to guide the hardware and software design, and eventually to approach the theoretical lowest power consumption that the application is still able to provide the full functionality. Starting from the 10-hour sustainable time standard, average working current is defined with battery design capacity and set as a target. Then an implementation is illustrated from both hardware perspective, which is summarized as Auto-Gating power management, and from software perspective, which introduces a new algorithm, SleepVote, to guide the system task design and scheduling.

  16. [Redesign of the Spacesuit Long Life Battery and the Personal Life Support System Battery

    Science.gov (United States)

    Scharf, Stephanie

    2015-01-01

    This fall I was working on two different projects that culminated into a redesign of the spacesuit LLB (long life battery). I also did some work on the PLSS (personal life support system) battery with EC. My first project was redlining the work instruction for completing DPAs (destructive physical analysis) on battery cells in the department. The purpose of this document is to create a standard process and ensure that the data in the same way no matter who carries out the analysis. I observed three DPAs, conducted one with help, and conducted two on my own all while taking notes on the procedure. These notes were used to write the final work instruction that will become is the department standard. My second project continued the work of the summer co-op before me. I was testing aluminum heat sinks for their ability to provide good thermal conduction and structural support during a thermal runaway event. The heat sinks were designed by the summer intern but there was not much time for testing before he left. We ran tests with a heater on the bottom of a trigger cell to try to drive thermal runaway and ensure that it will not propagate to adjacent cells. We also ran heat-to-vent tests in an oven to see if the assembly provided structural support and prevented sidewall rupture during thermal runaway. These tests were carried out at ESTA (energy systems test area) and are providing very promising results that safe, high performing (greater than 180 Wh/kg) designs are possible. My main project was a redesign of the LLB battery. Another summer intern did some testing and concluded that there was no simple fix to mitigate thermal runaway propagation hazards in the current design. The only option was a clean sheet redesign of the battery. I was given a volume and ideal energy density and the rest of the design was up to me. First, I created new heat sink banks in Creo using the information gathered in the metal heat sink tests from the summer intern. After this, I made

  17. Engine Tune-Up Service. Unit 1: Battery and Cranking System. Posttests. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Goodson-Roberts, Ludy; And Others

    This book of posttests is designed to accompany the Engine Tune-Up Service Student Guide for Unit 1, Battery and Cranking System. Focus of the posttests is the testing of the battery and cranking system. Four multiple choice posttests are provided, one for each of the performance objectives contained in the unit. (No answer keys are provided.)…

  18. Optimized Sizing, Selection, and Economic Analysis of Battery Energy Storage for Grid-Connected Wind-PV Hybrid System

    Directory of Open Access Journals (Sweden)

    Hina Fathima

    2015-01-01

    Full Text Available Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The integrated system is then tested with an efficient battery management strategy which prevents overcharging/discharging of the battery. In the study, five major types of battery systems are considered and analyzed. They are evaluated and compared based on technoeconomic and environmental metrics as per Indian power market scenario. Technoeconomic analysis of the battery is validated by simulations, on a proposed wind-photovoltaic system in a wind site in Southern India. Environmental analysis is performed by evaluating the avoided cost of emissions.

  19. Structures of battery- and energy management systems using lead-acid batteries and ultracaps; Strukturen von Batterie- und Energiemanagementsystemen mit Bleibatterien und Ultracaps

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, D.

    2007-07-01

    The publication presents methods of damage-free operation of lead batteries in electric road vehicles. The original charging method used in the citySTROMer car was based on the total voltage, causing permanent overload and fast ageing of modules. The charge state of the vehicle is defined on the basis of the residual charge state, a charge balance, and an evaluation of the temperature-compensated minimum module voltage. The time when current limiting is necessary is recognized reliably, and the charge state indicator works reliably soon after starting. The vehicle has an integrated power-assist store. Ultracap modules of various capacities were characterized in the laboratory. A variant was constructed in which the battery is discharged permanently with average driving current while the ultracap is used for making up the difference to the load at a given moment. The load cases for power-assist were identified on the basis of real driving cycles. The system can be described as an onboard dual-voltage system. The higher voltage of the ultracap provides higher power for acceleration. The availability of the ultracap is ensured in 90 percent of all accelerations. The first battery set installed in the car is now in its fourth winter, with a mileage of nearly 7000 km. In March 2006, 63 Ah were recorded in battery driving cycle in urban traffic at temperatures below freezing point. After commissioning in May 2002, 71 Ah were recorded. [German] Die vorliegende Arbeit entwickelt Verfahren zum schaedigungsfreien Betrieb von Bleibatterien in elektrischen Strassenfahrzeugen. Das urspruenglich im untersuchten citySTROMer eingesetzte Ladeverfahren war an der Gesamtspannung orientiert und hat Module hoeherer Spannungslage ueberladen. Die permanente Ueberladung fuehrt zu einem sehr schnellen Alterungsprozess. Die Ladezustandsbestimmung im Fahrzeug erfolgt ueber die Bestimmung des Restladegrades, eine Ladungsbilanzierung und die Auswertung der temperaturkompensierten

  20. Electrochemical modeling and performance evaluation of a new ammonia-based battery thermal management system for electric and hybrid electric vehicles

    International Nuclear Information System (INIS)

    Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.

    2017-01-01

    The operating temperatures of lithium ion battery packs in electrical vehicles and hybrid electrical vehicles need to be maintained in an optimum range for better performance and longer battery life. This paper proposes a new battery pack cooling system that utilizes the low saturation temperature of the fuel in ammonia based future hybrid electric vehicles. In the proposed cooling system, the batteries are partially submerged in to the liquid ammonia, and the liquid ammonia cools the battery by absorbing the heat and evaporating and the ammonia vapor cools the part of the battery not covered by liquid ammonia. The relationships between the performance of the battery cooling system and the maximum temperature (and the temperature distribution) in the battery are investigated for practical applications. The effect of the length of the battery that is submerged in to the liquid ammonia on the thermal performance of battery is studied and evaluated. The present results show that the proposed ammonia based cooling system offers a unique opportunity to maintain the operating temperature of the battery in an optimum range for consecutive charging and discharging phases at a high rate of 7.5C.

  1. Lifetime Improvement by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Schmitt, Jens B.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of their batteries. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to

  2. Identification of lead acid battery parameters using kalman filtering in photovoltaic system

    International Nuclear Information System (INIS)

    Boutte, Aissa

    2006-01-01

    The conventional methods of battery identification parameters consist in estimating the state of charge (SOC), and in establishing a command adapted to charge or to discharge the battery, based on electrical model developed with fixed parameters, These methods are inefficient. The causes of this ineffectiveness are different: In the first place model does not adapt itself with the battery (fixed parameters, lack of modulated parameters, a big non-linearity ...).Secondly, the impossibility for the developed algorithms, to adapt itself with the change of the battery's parameters. New models of identification are used by combining the conventional methods with adaptive and dynamic techniques. They already used in other domains where they have proved a good efficiency and a robustness. Taking into consideration the problems mentioned, and trying to resolve them, we have chosen among the various methods of estimation, Kalman filter (KF) known for its efficiency, in the field of tracking parameters. In this work we try tp represent new ideas, to identify battery parameters using KF method and make an experimental analysis of the performance of this method by using Lead Acid Battery, which is a part of a photovoltaic system (PV).(Author)

  3. 75 FR 63 - Hazardous Materials: Revision to Requirements for the Transportation of Batteries and Battery...

    Science.gov (United States)

    2010-01-04

    ... contained in equipment, fuel cell systems must not charge batteries during transport; (3) For transportation... 2137-AE54 Hazardous Materials: Revision to Requirements for the Transportation of Batteries and Battery... batteries and battery-powered devices. This final rule corrects several errors in the January 14, 2009 final...

  4. Characterization of vanadium flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Ekman, C.; Gehrke, O.; Isleifsson, F.

    2010-10-15

    This report summarizes the work done at Risoe DTU testing a vanadium flow battery as part of the project 'Characterisation of Vanadium Batteries' (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risoe DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses are power conversion in cell stacks/electrolyte, power converter, and auxiliary power consumption from pumps and controller. The response time for the battery is limited at 20kW/s by the ramp rate of the power converter. The battery can thus provide power and frequency support for the power system. Vanadium battery is a potential technology for storage based services to the power system provided investment and O and M cost are low enough and long term operation is documented. (Author)

  5. Primary frequency regulation with Li-ion battery energy storage system: A case study for Denmark

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2013-01-01

    Meeting ambitious goals of transition to distributed and environmentally-friendly renewable energy generation can be difficult to achieve without energy storage systems due to technical and economical challenges. Moreover, energy storage systems have a high potential of not only smoothing and imp...... electricity market. Moreover, in this paper a possible improvement of the Li-ion BESS energy management strategy is shown, which allows for obtaining the higher NPV....... lifetime, which introduces significant risk into the business model. This paper deals with the investigation of the lifetime of LiFeP04/C battery systems when they are used to provide primary frequency regulation service. A semi-empirical lifetime model for these battery cells was developed based...... on the results obtained from accelerated lifetime testing. The developed Li­-ion battery lifetime model is later a base for the analyses of the economic profitability of the investment in the Li-ion battery energy storage system (BESS), which delivers the primary frequency regulation service on the Danish...

  6. Emergency power supply with batteries. Notstromversorgung mit Batterien

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The proceedings volume contains the wording of the following 15 papers presented at the symposium: 'The physical chemistry of power sources'; 'Conventional and sealed maintenance-free Pb batteries'; 'Open and gas-tight Ni/Cd batteries'; 'Advances in the development and acceptance of primary and secondary lithium systems'; 'Metal-hydrogen, especially nickel oxide-hydrogen, a new battery system'; 'The storage systems zinc-bromine and zinc-chlorine'; 'High temperature batteries'; 'Material problems of lead batteries and fuel cells'; 'DIN/VDE 0510, safety specifications for batteries and battery systems'; 'Frequency control, immediate reserve and peak load compensation with large battery systems in electric utilities'; 'Versatile emergency power supply at the Bundesanstalt fuer Flugsicherung'; 'Batteries used by the Bundeswehr'; 'Batteries in the service of the Deutsche Bundesbahn'; 'State of the art and development of opto- and micro-electronics and their power supply'; 'Experience and requirements of the Deutsche Bundespost on central and decentralized battery systems'. The proceedings also contain the wording of the discussions following the papers.

  7. Power Constrained High-Level Synthesis of Battery Powered Digital Systems

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard; Madsen, Jan

    2003-01-01

    We present a high-level synthesis algorithm solving the combined scheduling, allocation and binding problem minimizing area under both latency and maximum power per clock-cycle constraints. Our approach eliminates the large power spikes, resulting in an increased battery lifetime, a property...... of utmost importance for battery powered embedded systems. Our approach extends the partial-clique partitioning algorithm by introducing power awareness through a heuristic algorithm which bounds the design space to those of power feasible schedules. We have applied our algorithm on a set of dataflow graphs...

  8. Trend chart: bio-methane injected in gas distribution systems. Third quarter 2017

    International Nuclear Information System (INIS)

    Moreau, Sylvain

    2017-11-01

    This publication presents the bio-methane industry situation of continental France and overseas territories during the third quarter 2017: bio-methane production facilities, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus capacity and type, evolution forecasts of bio-methane production, detailed regional results

  9. Trend chart: bio-methane injected in gas distribution systems. Second quarter 2017

    International Nuclear Information System (INIS)

    2017-08-01

    This publication presents the bio-methane industry situation of continental France and overseas territories during the first quarter 2017: bio-methane production facilities, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus capacity and type, evolution forecasts of bio-methane production, detailed regional results

  10. Trend chart: bio-methane injected in gas distribution systems. Fourth quarter 2017

    International Nuclear Information System (INIS)

    Moreau, Sylvain

    2018-02-01

    This publication presents the bio-methane industry situation of continental France and overseas territories during the fourth quarter 2017: bio-methane production facilities, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus capacity and type, evolution forecasts of bio-methane production, detailed regional results

  11. Optimization of self-consumption and techno-economic analysis of PV-battery systems in commercial applications

    International Nuclear Information System (INIS)

    Merei, Ghada; Moshövel, Janina; Magnor, Dirk; Sauer, Dirk Uwe

    2016-01-01

    Highlights: • Optimization of self-consumption and the degree of self-sufficiency in commercial applications. • Technical and economic analyses for a PV-battery system. • Sensitivity analysis considering different sizes and prices of PV and battery systems. • Investigation of batteries to increase self-consumption today is not economic in the considered applications. - Abstract: Increasing costs of electricity supply from the local grid, the decreasing photovoltaic (PV) technology costs and the decreasing PV feed-in-tariff according to the current German Renewable Energy Sources Act (EEG) will in the future raise the monetary incentives to increase the self-consumption of PV energy. This is of great interest in commercial buildings as there mostly is sufficient place to install high capacities of photovoltaic panels on their own roofs. Furthermore, the electricity purchase price from the local grid for commercial consumers nowadays is about 20 €ct/kW h, which is higher than the cost of generation of electricity from solar panels (about 8–12 €ct/kW h). Additionally, the load profiles in commercial applications have a high correlation with the generated solar energy. Hence, there is a great opportunity for economic savings. This paper presents optimization results with respect to self-consumption and degree of self-sufficiency for a supermarket in Aachen, Germany. The optimization is achieved using real measurement data of load profile and solar radiation. Besides, techno-economic analyses and sensitivity analyses have been carried out to demonstrate the influence of different PV system sizes, PV system costs and interest rates. Moreover, to raise self-consumption different battery sizes with different battery system costs have been investigated and analysed for 2015 and 2025 scenarios as well. The results show that the installation of a PV system can reduce the electricity costs through self-consumption of self-generated PV energy. Also, applying

  12. A Score Function for Optimizing the Cycle-Life of Battery-Powered Embedded Systems

    NARCIS (Netherlands)

    Wognsen, Erik Ramsgaard; Haverkort, Boudewijn R.H.M.; Jongerden, M.R.; Hansen, René Rydhof; Larsen, K.G.; Sankaranarayanan, Sriram; Vicario, Enrico

    An ever increasing share of embedded systems is powered by rechargeable batteries. These batteries deteriorate with the number of charge/discharge cycles they are subjected to, the so-called cycle life. In this paper, we propose the wear score function to compare and evaluate the relative impact of

  13. Lifetime improvement by battery scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of its battery. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to the

  14. Gelled-electrolyte batteries for electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tuphorn, H. (Accumulatorenfabrik Sonnenschein GmbH, Buedingen (Germany))

    1992-09-15

    Increasing problems of air pollution have pushed activities of electric vehicle projects world-wide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles. (orig.).

  15. Gelled-electrolyte batteries for electric vehicles

    Science.gov (United States)

    Tuphorn, Hans

    Increasing problems of air pollution have pushed activities of electric vehicle projects worldwide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead/acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles.

  16. Short-Term Energy Outlook: Quarterly projections. Fourth quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-05

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the fourth quarter of 1993 through the fourth quarter of 1994. Values for the third quarter of 1993, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications.

  17. A Review on Battery Charging and Discharging Control Strategies: Application to Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Edison Banguero

    2018-04-01

    Full Text Available Energy storage has become a fundamental component in renewable energy systems, especially those including batteries. However, in charging and discharging processes, some of the parameters are not controlled by the battery’s user. That uncontrolled working leads to aging of the batteries and a reduction of their life cycle. Therefore, it causes an early replacement. Development of control methods seeks battery protection and a longer life expectancy, thus the constant-current–constant-voltage method is mostly used. However, several studies show that charging time can be reduced by using fuzzy logic control or model predictive control. Another benefit is temperature control. This paper reviews the existing control methods used to control charging and discharging processes, focusing on their impacts on battery life. Classical and modern methods are studied together in order to find the best approach to real systems.

  18. Trend chart: bio-methane injected in gas distribution systems. First quarter 2017

    International Nuclear Information System (INIS)

    2017-05-01

    This publication presents the bio-methane industry situation of continental France and overseas territories during the first quarter 2017: bio-methane production facilities, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus capacity and type, evolution forecasts of bio-methane production, detailed regional results, methodology used

  19. Primary frequency regulation supported by battery storage systems in power systems dominated by renewable energy sources

    DEFF Research Database (Denmark)

    Turk, Ana; Sandelic, Monika; Noto, Giancarlo

    2018-01-01

    replaced by intermittent renewable generators. Therefore, maintaining system quality and stability in terms of power system frequency control is one of the major challenges that requires new resources and their system integration. Battery energy storage systems (BESS), as fast-acting energy storage systems...

  20. California community water systems quarterly indicators dataset, 1999-2008

    Data.gov (United States)

    California Environmental Health Tracking Program — This data set contains quarterly measures of arsenic and nitrates in public drinking water supplies. Data are derived from California Office of Drinking Water (ODW)...

  1. Grid-tied photovoltaic and battery storage systems with Malaysian electricity tariff

    DEFF Research Database (Denmark)

    Subramani, Gopinath; Ramachandaramurthy, Vigna K.; Padmanaban, Sanjeevikumar

    2017-01-01

    Under the current energy sector framework of electricity tariff in Malaysia, commercial and industrial customers are required to pay the maximum demand (MD) charge apart from the net consumption charges every month. The maximum demand charge will contribute up to 20% of the electricity bill......, and will hence result in commercial and industrial customers focussing on alternative energy supply to minimize the billing cost. This paper aims to review the technical assessment methods of a grid-connected solar photovoltaic (PV)-battery storage system-with respect to maximum demand shaving. An effective......, technical, and economic aspects of the solar PV-battery system and the Malaysian electricity tariff for commercial and industrial customers....

  2. A Battery Power Bank with Series-Connected Buck–Boost-Type Battery Power Modules

    Directory of Open Access Journals (Sweden)

    Tsung-Hsi Wu

    2017-05-01

    Full Text Available The operation of a battery power bank with series-connected buck–boost-type battery power modules (BPMs was investigated in this study. Each BPM consisted of a battery pack with an associated buck–boost converter for individually controlling battery currents. With a proposed discharging scenario, load voltage regulation with charge equalization among batteries was performed by controlling the battery currents in accordance with their state-of-charges (SOCs estimated by real-time battery-loaded voltages detected under the same operating condition. In addition, the fault tolerance was executed to isolate exhausted or faulty batteries from the battery power bank without interrupting the system operation. Experiments were conducted to verify the effectiveness of the discharging scenario for a laboratory battery power bank with four series buck–boost BPMs.

  3. Kalman filtering state of charge estimation for battery management system based on a stochastic fuzzy neural network battery model

    International Nuclear Information System (INIS)

    Xu Long; Wang Junping; Chen Quanshi

    2012-01-01

    Highlights: ► A novel extended Kalman Filtering SOC estimation method based on a stochastic fuzzy neural network (SFNN) battery model is proposed. ► The SFNN which has filtering effect on noisy input can model the battery nonlinear dynamic with high accuracy. ► A robust parameter learning algorithm for SFNN is studied so that the parameters can converge to its true value with noisy data. ► The maximum SOC estimation error based on the proposed method is 0.6%. - Abstract: Extended Kalman filtering is an intelligent and optimal means for estimating the state of a dynamic system. In order to use extended Kalman filtering to estimate the state of charge (SOC), we require a mathematical model that can accurately capture the dynamics of battery pack. In this paper, we propose a stochastic fuzzy neural network (SFNN) instead of the traditional neural network that has filtering effect on noisy input to model the battery nonlinear dynamic. Then, the paper studies the extended Kalman filtering SOC estimation method based on a SFNN model. The modeling test is realized on an 80 Ah Ni/MH battery pack and the Federal Urban Driving Schedule (FUDS) cycle is used to verify the SOC estimation method. The maximum SOC estimation error is 0.6% compared with the real SOC obtained from the discharging test.

  4. Optimal control of photovoltaic systems by a new battery state-of-charge observer

    Energy Technology Data Exchange (ETDEWEB)

    Giglioli, R; Zini, G; Conte, M; Raugi, M

    1988-06-01

    In photovoltaic power plants, the ability to accurately determine battery state-of-charge at any given time can reduce the risk of curtailed energy and allow more precise and less costly battery sizing. In this paper, a new state-of-charge observer, based on an original equivalent electric network of the lead-acid battery, is shown and used to develop an optimal control of the system. Hence, a management plan for a complete photovoltaic system is studied. Finally, a comparison between a simulation of the proposed plan and experimental data from a monitored photovoltaic plant, with very simple management requirements, is made and discussed. The present work was carried out within the framework of the Italian Finalized Energy Project-2.

  5. Functional Analysis of Battery Management Systems using Multi-Cell HIL Simulator

    OpenAIRE

    Barreras, Jorge Varela; Swierczynski, Maciej Jozef; Schaltz, Erik; Andreasen, Søren Juhl; Fleischer, Christian; Sauer, Dirk Uwe; Christensen, Andreas Elkjær

    2015-01-01

    Developers and manufacturers of Battery Management Systems (BMSs) require extensive testing of controller HW and SW, such as analog front-end (AFE) and performance of generated control code. In comparison with tests conducted on real batteries, tests conducted on hardware-in-the-loop (HIL) simulator may be more costant time effective, easier to reproduce and safer beyond the normal range of operation, especially at early stages in the development process or during fault simulation. In this pa...

  6. A low-level rf control system for a quarter-wave resonator

    Science.gov (United States)

    Kim, Jongwon; Hwang, Churlkew

    2012-06-01

    A low-level rf control system was designed and built for an rf deflector, which is a quarter wave resonator, and was designed to deflect a secondary electron beam to measure the bunch length of an ion beam. The deflector has a resonance frequency near 88 MHz, its required phase stability is approximately ±1° and its amplitude stability is less than ±1%. The control system consists of analog input and output components and a digital system based on a field-programmable gate array for signal processing. The system is cost effective, while meeting the stability requirements. Some basic properties of the control system were measured. Then, the capability of the rf control was tested using a mechanical vibrator made of a dielectric rod attached to an audio speaker system, which could induce regulated perturbations in the electric fields of the resonator. The control system was flexible so that its parameters could be easily configured to compensate for the disturbance induced in the resonator.

  7. Design of Efficient Sound Systems for Low Voltage Battery Driven Applications

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Oortgiesen, Rien; Knott, Arnold

    2016-01-01

    The efficiency of portable battery driven sound systems is crucial as it relates to both the playback time and cost of the system. This paper presents design considerations when designing such systems. This include loudspeaker and amplifier design. Using a low resistance voice coil realized...

  8. Natural gas consumption for GRTgaz areas: 1. Quarter of 2015, 2. Quarter of 2015, 3. Quarter of 2015, 4. Quarter of 2015

    International Nuclear Information System (INIS)

    2016-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents the quarterly key figures of GRTgaz activity in 2015: gross consumption, climate corrected consumption, quantities of natural gas transported

  9. Natural gas consumption for GRTgaz areas: 1. Quarter of 2014, 2. Quarter of 2014, 3. Quarter of 2014, 4. Quarter of 2014

    International Nuclear Information System (INIS)

    2015-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents the quarterly key figures of GRTgaz activity in 2014: gross consumption, climate corrected consumption, quantities of natural gas transported

  10. Natural gas consumption for GRTgaz areas: 1. Quarter of 2011, 2. Quarter of 2011, 3. Quarter of 2011, 4. Quarter of 2011

    International Nuclear Information System (INIS)

    2012-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents the quarterly key figures of GRTgaz activity in 2011: gross consumption, climate corrected consumption, quantities of natural gas transported

  11. Advanced solid state batteries

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, A; Delmas, C; Menetrier, M; Hagenmuller, P

    1984-01-01

    Direct electrochemical storage of electricity is attractive because of its adaptability to vehicle traction as well as to stationary applications. Important advancements are necessary to improve primary or secondary batteries so far used. The aim of this study was to develop and to characterize materials for the next generation of advanced, rechargeable solid state batteries for vehicle transport and stationary storage applications. One of the best electricity storage systems was the lithium/intercalation compound secondary battery, though up to now the behavior of liquid organic electrolytes did not allow for good recycling in such systems. The research program for these batteries is described.

  12. NST Quarterly. October 1996 issue

    International Nuclear Information System (INIS)

    1996-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in latex vulcanization (first RVNRL-based rubber gloves produced in Malaysia), tank floor scanning system (TAFLOSS), incineration and radiotherapeutic agent

  13. Performance of U.S. hybrid distributed energy systems: Solar photovoltaic, battery and combined heat and power

    International Nuclear Information System (INIS)

    Shah, Kunal K.; Mundada, Aishwarya S.; Pearce, J.M.

    2015-01-01

    Highlights: • Simulated PV + battery + CHP hybrid systems deployed in three U.S. regions. • Used hybrid optimization model for electric renewable pro microgrid analysis. • Limited size of each sub-module to singe family house size. • Results show that the electricity generated meets residential load demand. • Hybrid systems are technically viable in hot, moderate and cold climates in U.S. - Abstract: Until recently, the relatively high levelized cost of electricity from solar photovoltaic (PV) technology limited deployment; however, recent cost reductions, combined with various financial incentives and innovative financing techniques, have made PV fully competitive with conventional sources in many American regions. In addition, the costs of electrical storage have also declined enough to make PV + battery systems potentially economically viable for a mass-scale off-grid low-emission transition. However, many regions in the U.S. (e.g. Northern areas) cannot have off-grid PV systems without prohibitively large battery systems. Small-scale combined heat and power (CHP) systems provide a potential solution for off-grid power backup of residential-scale PV + battery arrays, while also minimizing emissions from conventional sources. Thus, an opportunity is now available to maximize the use of solar energy and gain the improved efficiencies possible with CHPs to deploy PV + battery + CHP systems throughout the U.S. The aim of this study is to determine the technical viability of such systems by simulating PV + battery + CHP hybrid systems deployed in three representative regions in the U.S., using the Hybrid Optimization Model for Electric Renewable (HOMER) Pro Microgrid Analysis tool. The results show that the electricity generated by each component of the hybrid system can be coupled to fulfill the residential load demand. A sensitivity analysis of these hybrid off grid systems is carried out as a function capacity factor of both the PV and CHP units. The

  14. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging

    International Nuclear Information System (INIS)

    Ye, Yonghuang; Saw, Lip Huat; Shi, Yixiang; Tay, Andrew A.O.

    2015-01-01

    Thermal management is crucial for the operation of electric vehicles because lithium ion batteries are vulnerable to excessive heat generation during fast charging or other severe scenarios. In this work, an optimized heat pipe thermal management system (HPTMS) is proposed for fast charging lithium ion battery cell/pack. A numerical model is developed and comprehensively validated with experimental results. This model is then employed to investigate the thermal performance of the HPTMS under steady state and transient conditions. It is found that a cylinder vortex generator placed in front of the heat pipe condensers in the coolant stream improves the temperature uniformity. The uses of cooper heat spreaders and cooling fins greatly improve the performance of the thermal management system. Experiments and transient simulations of heat pipe thermal management system integrated with batteries prove that the improved HPTMS is capable for thermal management of batteries during fast charging. The air-cooled HPTMS is infeasible for thermal management of batteries during fast charging at the pack level due to the limitation of low specific heat capacity. - Highlights: • We develop a numerical model for optimizing a heat pipe thermal management system for fast charging batteries. • The numerical model is comprehensively validated with experimental data. • A cylinder vortex generator is placed at the inlet of the cooling stream to improve the temperature uniformity. • We validate the effectiveness of the optimized system with integration of prismatic batteries

  15. Optimization of Utility-Scale Wind-Hydrogen-Battery Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Fingersh, L. J.

    2004-07-01

    Traditional utility-scale wind energy systems are not dispatchable; that is, the utility cannot instantaneously control their power output. Energy storage, which can come in many forms, is needed to add dispatchability to a wind farm. This study investigates two options: batteries and hydrogen.

  16. A VRLA battery simulation model

    International Nuclear Information System (INIS)

    Pascoe, Phillip E.; Anbuky, Adnan H.

    2004-01-01

    A valve regulated lead acid (VRLA) battery simulation model is an invaluable tool for the standby power system engineer. The obvious use for such a model is to allow the assessment of battery performance. This may involve determining the influence of cells suffering from state of health (SOH) degradation on the performance of the entire string, or the running of test scenarios to ascertain the most suitable battery size for the application. In addition, it enables the engineer to assess the performance of the overall power system. This includes, for example, running test scenarios to determine the benefits of various load shedding schemes. It also allows the assessment of other power system components, either for determining their requirements and/or vulnerabilities. Finally, a VRLA battery simulation model is vital as a stand alone tool for educational purposes. Despite the fundamentals of the VRLA battery having been established for over 100 years, its operating behaviour is often poorly understood. An accurate simulation model enables the engineer to gain a better understanding of VRLA battery behaviour. A system level multipurpose VRLA battery simulation model is presented. It allows an arbitrary battery (capacity, SOH, number of cells and number of strings) to be simulated under arbitrary operating conditions (discharge rate, ambient temperature, end voltage, charge rate and initial state of charge). The model accurately reflects the VRLA battery discharge and recharge behaviour. This includes the complex start of discharge region known as the coup de fouet

  17. Ocean energy systems. Quarterly report, October-December 1982

    Energy Technology Data Exchange (ETDEWEB)

    1982-12-01

    Research progress is reported on developing Ocean Thermal Energy Conversion (OTEC) systems that will provide synthetic fuels (e.g., methanol), energy-intensive products such as ammonia (for fertilizers and chemicals), and aluminum. The work also includes assessment and design concepts for hybrid plants, such as geothermal-OTEC (GEOTEC) plants. Another effort that began in the spring of 1982 is a technical advisory role to DOE with respect to their management of the conceptual design activity of the two industry teams that are designing offshore OTEC pilot plants that could deliver power to Oahu, Hawaii. In addition, a program is underway in which tests of a different kind of ocean-energy device, a turbine that is air-driven as a result of wave action in a chamber, are being planned. This Quarterly Report summarizes the work on the various tasks as of 31 December 1982.

  18. 46 CFR 190.15-15 - Ventilation for living spaces and quarters.

    Science.gov (United States)

    2010-10-01

    ... mechanical system unless it can be shown that a natural system will provide adequate ventilation. By a... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation for living spaces and quarters. 190.15-15... VESSELS CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-15 Ventilation for living spaces and quarters...

  19. Commercial LFCM vitrification technology. Quarterly progress report, October-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, H.C.; Jarrett, J.H. (comps.)

    1985-07-01

    This report is the first in a series of quarterly reports compiled by the Nuclear Waste Treatment Program Office at Pacific Northwest Laboratory to document progress on commercial liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the first quarter of FY 1985 is discussed: pretreatment systems, melting process chemistry, glass development and characterization, feed preparation and transfer systems, melter systems, canister filling and handling systems, off-gas systems, process/product modeling and control, and supporting studies. 33 figs., 12 tabs.

  20. Powering-up Wireless Sensor Nodes Utilizing Rechargeable Batteries and an Electromagnetic Vibration Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Salar Chamanian

    2014-10-01

    Full Text Available This paper presents a wireless sensor node (WSN system where an electromagnetic (EM energy harvester is utilized for charging its rechargeable batteries while the system is operational. The capability and the performance of an in-house low-frequency EM energy harvester for charging rechargeable NiMH batteries were experimentally verified in comparison to a regular battery charger. Furthermore, the power consumption of MicaZ motes, used as the WSN, was evaluated in detail for different operation conditions. The battery voltage and current were experimentally monitored during the operation of the MicaZ sensor node equipped with the EM vibration energy harvester. A compact (24.5 cm3 in-house EM energy harvester provides approximately 65 µA charging current to the batteries when excited by 0.4 g acceleration at 7.4 Hz. It has been shown that the current demand of the MicaZ mote can be compensated for by the energy harvester for a specific low-power operation scenario, with more than a 10-fold increase in the battery lifetime. The presented results demonstrate the autonomous operation of the WSN, with the utilization of a vibration-based energy harvester.

  1. Weldon Spring Site Remedial Action Project quarterly environmental data summary (QEDS) for fourth quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    This report contains the Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1998 in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data, except for air monitoring data and site KPA generated data (uranium analyses) were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the fourth quarter of 1998. KPA results for on-site total uranium analyses performed during fourth quarter 1998 are included. Air monitoring data presented are the most recent complete sets of quarterly data.

  2. Analysis of battery behavior in small photovoltaic systems; Analise do comportamento da bateria utilizada em sistemas fotovoltaicos de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Jose Renato Castro Pompeia; Cagnon, Jose Angelo [Programa de Pos-Graduacao em Agronomia - Energia na Agricultura - FCA/UNESP, Botucatu, SP (Brazil); Dept. de Engenharia Eletrica - FEB/UNESP, Bauru, SP (Brazil)], e-mails: jrfraga@feb.unesp.br, jacagnon@feb.unesp.br

    2011-07-01

    This work aimed to analyze the electric energy storage system generated from a photovoltaic system with lead-acid batteries. The increasing claim for energy in the world in addition to the need of using renewable energy sources in order to preserve the environment makes necessary the development of efficient techniques of power supply and control. Two photovoltaic systems were used in this work, a conventional one with stationary solar panel and another with automatic solar position system. The comparative analysis has allowed assessing the advantages of both systems. The following characteristics were obtained during the development of this work: charge, discharge, battery capacity, operating time rate, auto-discharge reaction (through fluctuation state), among other important information that allows an extended life to the stationary battery studied. The obtained results indicate that the battery connected to the mobile system provides 36% of additional energy compared to the fixed system. When the battery was unable to provide energy to the load, the battery connected to the mobile system consumed about 33% less energy than that one connected to the fixed system (author)

  3. Novel Battery Thermal Management System for Greater Lifetime Ratifying Current Quality and Safety Standard

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2014-01-01

    Temperature excursions and non-uniformity of the temperature inside the battery systems are the main concern and drawback for any attempt to scale-up battery cells to the larger sizes as required for high power applications. The applications may include electric generating stations, substations, ...

  4. Battery Pack Thermal Design

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-14

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.

  5. Cost reductions in nickel-hydrogen battery

    Science.gov (United States)

    Beauchamp, Richard L.; Sindorf, Jack F.

    1987-01-01

    Significant progress was made toward the development of a commercially marketable hydrogen nickel oxide battery. The costs projected for this battery are remarkably low when one considers where the learning curve is for commercialization of this system. Further developmental efforts on this project are warranted as the H2/NiO battery is already cost competitive with other battery systems.

  6. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 2, Part 1

    Science.gov (United States)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This report contains the Appendices to the findings from the first year of the program's operations.

  7. Characterization of vanadium flow battery. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Ekman, C.; Gehrke, O.; Isleifsson, F.

    2011-02-15

    This report summarizes the work done at Risoe-DTU testing a vanadium flow battery as part of the project ''Characterisation of Vanadium Batteries'' (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risoe DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses are power conversion in cell stacks/electrolyte, power converter, and auxiliary power consumption from pumps and controller. The efficiency was not influenced by the cycling of the battery. The response time for the battery is limited at 20kW/s by the ramp rate of the power converter. The battery can thus provide power and frequency support for the power system. The battery was operated together with a 11kW stall-regulated Gaia wind turbine to smooth the output of the wind turbine and during the tests the battery proved capable of firming the output of the wind turbine. Vanadium battery is a potential technology for storage based services to the power system provided investment and O and M cost are low enough and long term operation is documented. (Author)

  8. Analysis of the economics of photovoltaic-diesel-battery energy systems for remote applications

    Science.gov (United States)

    Brainard, W. A.

    1983-01-01

    Computer simulations were conducted to analyze the performance and operating cost of a photovoltaic energy source combined with a diesel generator system and battery storage. The simulations were based on the load demand profiles used for the design of an all photovoltaic energy system installed in the remote Papago Indian Village of Schuchuli, Arizona. Twenty year simulations were run using solar insolation data from Phoenix SOLMET tapes. Total energy produced, energy consumed, operation and maintenance costs were calculated. The life cycle and levelized energy costs were determined for a variety of system configurations (i.e., varying amounts of photovoltaic array and battery storage).

  9. HST Replacement Battery Initial Performance

    Science.gov (United States)

    Krol, Stan; Waldo, Greg; Hollandsworth, Roger

    2009-01-01

    The Hubble Space Telescope (HST) original Nickel-Hydrogen (NiH2) batteries were replaced during the Servicing Mission 4 (SM4) after 19 years and one month on orbit.The purpose of this presentation is to highlight the findings from the assessment of the initial sm4 replacement battery performance. The batteries are described, the 0 C capacity is reviewed, descriptions, charts and tables reviewing the State Of Charge (SOC) Performance, the Battery Voltage Performance, the battery impedance, the minimum voltage performance, the thermal performance, the battery current, and the battery system recharge ratio,

  10. Flexible and biocompatible high-performance solid-state micro-battery for implantable orthodontic system

    KAUST Repository

    Kutbee, Arwa T.

    2017-09-25

    To augment the quality of our life, fully compliant personalized advanced health-care electronic system is pivotal. One of the major requirements to implement such systems is a physically flexible high-performance biocompatible energy storage (battery). However, the status-quo options do not match all of these attributes simultaneously and we also lack in an effective integration strategy to integrate them in complex architecture such as orthodontic domain in human body. Here we show, a physically complaint lithium-ion micro-battery (236 μg) with an unprecedented volumetric energy (the ratio of energy to device geometrical size) of 200 mWh/cm3 after 120 cycles of continuous operation. Our results of 90% viability test confirmed the battery’s biocompatibility. We also show seamless integration of the developed battery in an optoelectronic system embedded in a three-dimensional printed smart dental brace. We foresee the resultant orthodontic system as a personalized advanced health-care application, which could serve in faster bone regeneration and enhanced enamel health-care protection and subsequently reducing the overall health-care cost.

  11. Energy Management and Simulation of Photovoltaic/Hydrogen /Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Tariq Kamal

    2016-06-01

    Full Text Available This manuscript focuses on a hybrid power system combining a solar photovoltaic array and energy storage system based on hydrogen technology (fuel cell, hydrogen tank and electrolyzer and battery. The complete architecture is connected to the national grid through power converters to increase the continuity of power. The proposed a hybrid power system is designed to work under classical-based energy management algorithm. According to the proposed algorithm, the PV has the priority in meeting the load demands. The hydrogen technology is utilized to ensure long-term energy balance. The battery is used as a backup and/or high power device to take care of the load following problems of hydrogen technology during transient. The dynamic performance of a hybrid power system is tested under different solar radiation, temperature and load conditions for the simulation of 24 Hrs. The effectiveness of the proposed system in terms of power sharing, grid stability, power quality and voltage regulation is verified by Matlab simulation results.

  12. Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jichao Hong

    2017-07-01

    Full Text Available A thermal runaway prognosis scheme for battery systems in electric vehicles is proposed based on the big data platform and entropy method. It realizes the diagnosis and prognosis of thermal runaway simultaneously, which is caused by the temperature fault through monitoring battery temperature during vehicular operations. A vast quantity of real-time voltage monitoring data is derived from the National Service and Management Center for Electric Vehicles (NSMC-EV in Beijing. Furthermore, a thermal security management strategy for thermal runaway is presented under the Z-score approach. The abnormity coefficient is introduced to present real-time precautions of temperature abnormity. The results illustrated that the proposed method can accurately forecast both the time and location of the temperature fault within battery packs. The presented method is flexible in all disorder systems and possesses widespread application potential in not only electric vehicles, but also other areas with complex abnormal fluctuating environments.

  13. Load leveling by a battery system in an electric power system with a photovoltaic system; Taiyoko hatsuden system ga donyusareta denryoku keito no chikudenchi ni yoru fuka heijunka

    Energy Technology Data Exchange (ETDEWEB)

    Kenmoku, Y.; Sakakibara, T. [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S. [Maizuru College of Technology, Kyoto (Japan); Kawamoto, T. [Shizuoka University, Shizuoka (Japan)

    1997-11-25

    Storage battery-aided load leveling system is introduced into a power system having a photovoltaic power generation (PV) system, and the effect of the introduction is examined. For this purpose, the resultant improvement on the load factor and reduction in the annual cost are evaluated. Used as the load factor in the studies are the hourly records of power transmitted and received by Chubu Electric Power Co., Inc., in 1995. The output of the PV system is calculated using weather data collected in Nagoya City in the same year. Findings as the result of the studies are stated below. The maximum power is suppressed but a little if it is only the PV system that is introduced into the system. That is, a 2GW PV system introduced into the system suppresses the maximum power only by 0.5GW or less. The maximum power is suppressed more effectively when a storage battery is added, and it decreases linearly with an increase in the storage battery capacity. As for reduction in the cost, the reducing effect is higher when the rate of storage battery capacity/introduced PV capacity is higher in the presence of an introduced PV capacity of 0.8GW or more. 2 refs., 7 figs., 3 tabs.

  14. Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom

    International Nuclear Information System (INIS)

    Uddin, Kotub; Gough, Rebecca; Radcliffe, Jonathan; Marco, James; Jennings, Paul

    2017-01-01

    Highlights: •Commercially available PV-battery system is installed in mid-sized UK home. •PV generation and household electricity demand recorded for one year. •More than fifty long-term ageing experiments on commercial batteries undertaken. •Comprehensive battery degradation model based on long-term ageing data validated. •PV-Battery system is shown not be economically viable. -- Abstract: Rooftop photovoltaic systems integrated with lithium-ion battery storage are a promising route for the decarbonisation of the UK’s power sector. From a consumer perspective, the financial benefits of lower utility costs and the potential of a financial return through providing grid services is a strong incentive to invest in PV-battery systems. Although battery storage is generally considered an effective means for reducing the energy mismatch between photovoltaic supply and building demand, it remains unclear when and under which conditions battery storage can be profitably operated within residential photovoltaic systems. This fact is particularly pertinent when battery degradation is considered within the decision framework. In this work, a commercially available coupled photovoltaic lithium-ion battery system is installed within a mid-sized UK family home. Photovoltaic energy generation and household electricity demand is recorded for more than one year. A comprehensive battery degradation model based on long-term ageing data collected from more than fifty long-term degradation experiments on commercial Lithium-ion batteries is developed. The comprehensive model accounts for all established modes of degradation including calendar ageing, capacity throughput, ambient temperature, state of charge, depth of discharge and current rate. The model is validated using cycling data and exhibited an average maximum transient error of 7.4% in capacity loss estimates and 7.3% in resistance rise estimates for over a year of cycling. The battery ageing model is used to

  15. Biomedical applications of batteries

    Energy Technology Data Exchange (ETDEWEB)

    Latham, Roger [Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Linford, Roger [The Research Office, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Schlindwein, Walkiria [School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom)

    2004-08-31

    An overview is presented of the many ways in which batteries and battery materials are used in medicine and in biomedical studies. These include the use of batteries as power sources for motorised wheelchairs, surgical tools, cardiac pacemakers and defibrillators, dynamic prostheses, sensors and monitors for physiological parameters, neurostimulators, devices for pain relief, and iontophoretic, electroporative and related devices for drug administration. The various types of battery and fuel cell used for this wide range of applications will be considered, together with the potential harmful side effects, including accidental ingestion of batteries and the explosive nature of some of the early cardiac pacemaker battery systems.

  16. Strain measurement based battery testing

    Science.gov (United States)

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  17. Influence of Li-ion Battery Models in the Sizing of Hybrid Storage Systems with Supercapacitors

    DEFF Research Database (Denmark)

    Pinto, Claudio; Barreras, Jorge Varela; de Castro, Ricardo

    2014-01-01

    This paper presents a comparative study of the influence of different aggregated electrical circuit battery models in the sizing process of a hybrid energy storage system (ESS), composed by Li-ion batteries and supercapacitors (SCs). The aim is to find the number of cells required to propel...... a certain vehicle over a predefined driving cycle. During this process, three battery models will be considered. The first consists in a linear static zeroeth order battery model over a restricted operating window. The second is a non-linear static model, while the third takes into account first......-order dynamics of the battery. Simulation results demonstrate that the adoption of a more accurate battery model in the sizing of hybrid ESSs prevents over-sizing, leading to a reduction in the number of cells of up to 29%, and a cost decrease of up to 10%....

  18. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lundstrom, Blake R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cao, Ziwei [SunPower Corporation; Roc, Albert [SunPower Corporation

    2017-09-06

    Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4% RMS error and resistance growth with 15% RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.

  19. Thermal Characteristics of an Oscillating Heat Pipe Cooling System for Electric Vehicle Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Ri-Guang Chi

    2018-03-01

    Full Text Available The heat generation of lithium ion batteries in electric vehicles (EVs leads to a degradation of energy capacity and lifetime. To solve this problem, a new cooling concept using an oscillating heat pipe (OHP is proposed. In the present study, an OHP has been adopted for Li-ion battery cooling. Due to the limited space in EVs, the cooling channel is installed on the bottom of the battery module. In the bottom cooling method with an OHP, generated heat can be dissipated easily and conveniently. However, most studies on heat pipes have used bottom heating and top or side cooling methods, so we investigate the various effects of parameters with a top heating/bottom cooling mode with the OHP, i.e., the inclination angle of the system, amount of working fluid charged, the heating amount, and the cold plate temperature with ethanol as a working fluid. The experimental results show that the thermal resistance (0.6 °C/W and uneven pulsating features influence the heat transfer performance. A heater used as a simulated battery was sustained under 60 °C under 10 W and 14 W heating conditions. This indicates that the proposed cooling system with the bottom cooling is feasible for use as an EV’s battery cooling system.

  20. Short-term energy outlook: Quarterly projections, Third quarter 1992

    International Nuclear Information System (INIS)

    1992-08-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The principal users of the Outlook are managers and energy analysts in private industry and government. The forecast period for this issue of the Outlook extends from the third quarter of 1992 through the fourth quarter of 1993. Values for the second quarter of 1992, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding

  1. A Score Function for Optimizing the Cycle-Life of Battery-Powered Embedded Systems

    DEFF Research Database (Denmark)

    Wognsen, Erik Ramsgaard; Haverkort, Boudewijn; Jongerden, Marijn

    2015-01-01

    An ever increasing share of embedded systems is powered by rechargeable batteries. These batteries deteriorate with the number of charge/discharge cycles they are subjected to, the so-called cycle life. In this paper, we propose the wear score function to compare and evaluate the relative impact...... of usage (charge and discharge) profiles on cycle life. The wear score function can not only be used to rank different usage profiles, these rankings can also be used as a criterion for optimizing the overall lifetime of a battery-powered system. We perform such an optimization on a nano-satellite case...... checking and reinforcement learning to synthesize near-optimal scheduling strategies subject to possible hard timing-constaints. We use this to study the trade-off between optimal short-term dynamic payload selection and the operational life of the satellite....

  2. Quarterly coal report, July--September 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks. Coke production consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1997 and aggregated quarterly historical data for 1991 through the second quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. 72 tabs.

  3. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  4. A novel thermal management system for improving discharge/charge performance of Li-ion battery packs under abuse

    Science.gov (United States)

    Arora, Shashank; Kapoor, Ajay; Shen, Weixiang

    2018-02-01

    Parasitic load, which describes electrical energy consumed by battery thermal management system (TMS), is an important design criterion for battery packs. Passive TMSs using phase change materials (PCMs) are thus generating much interest. However, PCMs suffer from low thermal conductivities. Most current thermal conductivity enhancement techniques involve addition of foreign particles to PCMs. Adding foreign particles increases effective thermal conductivity of PCM-systems but at expense of their latent heat capacity. This paper presents an alternate approach for improving thermal performance of PCM-based TMSs. The introduced technique involves placing battery cells in a vertically inverted position within the battery-pack. It is demonstrated through experiments that inverted cell-layout facilitates build-up of convection current in the pack, which in turn minimises thermal variations within the PCM matrix by enabling PCM mass transfer between the top and the bottom regions of the battery pack. The proposed system is found capable of maintaining tight control over battery cell temperature even during abusive usage, defined as high-rate repetitive cycling with minimal rest periods. In addition, this novel TMS can recover waste heat from PCM-matrix through thermoelectric devices, thereby resulting in a negative parasitic load for TMS.

  5. Electric batteries and the environment. Die Batterie und die Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, F; Hartinger, L; Kiehne, H A; Niklas, H; Schiele, R; Steil, H U

    1987-01-01

    The book deals with the production, use and waste management of batteries (accumulators and primary batteries), with regard to protection of the environment. Legal, technical and medical aspects are shown. There are numerous electro-chemical systems, but only few proved to be really good in practice. Most batteries contain lead, cadmium or mercury and must therefore be eliminated in a way doing no harm to the environment. Large quantities of the above named heavy metals are today already being recovered by means of appropriate procedures. The reduction of these heavy metals in batteries is also described to be a contribution to the protection of the environment. (orig.) With 67 figs.

  6. Thermal management of batteries

    Science.gov (United States)

    Gibbard, H. F.; Chen, C.-C.

    Control of the internal temperature during high rate discharge or charge can be a major design problem for large, high energy density battery systems. A systematic approach to the thermal management of such systems is described for different load profiles based on: thermodynamic calculations of internal heat generation; calorimetric measurements of heat flux; analytical and finite difference calculations of the internal temperature distribution; appropriate system designs for heat removal and temperature control. Examples are presented of thermal studies on large lead-acid batteries for electrical utility load levelling and nickel-zinc and lithium-iron sulphide batteries for electric vehicle propulsion.

  7. Battery Management System—Balancing Modularization Based on a Single Switched Capacitor and Bi-Directional DC/DC Converter with the Auxiliary Battery

    Directory of Open Access Journals (Sweden)

    Mohamed Daowd

    2014-04-01

    Full Text Available Lithium-based batteries are considered as the most advanced batteries technology, which can be designed for high energy or high power storage systems. However, the battery cells are never fully identical due to the fabrication process, surrounding environment factors and differences between the cells tend to grow if no measures are taken. In order to have a high performance battery system, the battery cells should be continuously balanced for maintain the variation between the cells as small as possible. Without an appropriate balancing system, the individual cell voltages will differ over time and battery system capacity will decrease quickly. These issues will limit the electric range of the electric vehicle (EV and some cells will undergo higher stress, whereby the cycle life of these cells will be shorter. Quite a lot of cell balancing/equalization topologies have been previously proposed. These balancing topologies can be categorized into passive and active balancing. Active topologies are categorized according to the active element used for storing the energy such as capacitor and/or inductive component as well as controlling switches or converters. This paper proposes an intelligent battery management system (BMS including a battery pack charging and discharging control with a battery pack thermal management system. The BMS user input/output interfacing. The battery balancing system is based on battery pack modularization architecture. The proposed modularized balancing system has different equalization systems that operate inside and outside the modules. Innovative single switched capacitor (SSC control strategy is proposed to balance between the battery cells in the module (inside module balancing, IMB. Novel utilization of isolated bidirectional DC/DC converter (IBC is proposed to balance between the modules with the aid of the EV auxiliary battery (AB. Finally an experimental step-up has been implemented for the validation of the

  8. Sulfation in lead-acid batteries

    Science.gov (United States)

    Catherino, Henry A.; Feres, Fred F.; Trinidad, Francisco

    Virtually, all military land vehicle systems use a lead-acid battery to initiate an engine start. The maintainability of these batteries and as a consequence, system readiness, has suffered from a lack of understanding of the reasons for battery failure. Often, the term most commonly heard for explaining the performance degradation of lead-acid batteries is the word, sulfation. Sulfation is a residual term that came into existence during the early days of lead-acid battery development. The usage is part of the legend that persists as a means for interpreting and justifying the eventual performance deterioration and failure of lead-acid batteries. The usage of this term is confined to the greater user community and, over time, has encouraged a myriad of remedies for solving sulfation problems. One can avoid the connotations associated with the all-inclusive word, sulfation by visualizing the general "sulfation" effect in terms of specific mechanistic models. Also, the mechanistic models are essential for properly understanding the operation and making proper use this battery system. It is evident that the better the model, the better the level of understanding.

  9. Natural gas consumption within GRTgaz's territory: 1. Quarter of 2008, 2. Quarter of 2008, 3. Quarter of 2008, 4. Quarter of 2008

    International Nuclear Information System (INIS)

    2009-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents the quarterly key figures of GRTgaz activity in 2008: gross consumption, climate corrected consumption, quantities of natural gas transported

  10. Lifetime modelling of lead acid batteries

    DEFF Research Database (Denmark)

    Bindner, H.; Cronin, T.; Lundsager, P.

    2005-01-01

    The performance and lifetime of energy storage in batteries are an important part of many renewable based energy systems. Not only do batteries impact on the system performance but they are also a significant expenditure when considering the whole lifecycle costs. Poor prediction of lifetime can......, therefore, lead to uncertainty in the viability of the system in the long term. This report details the work undertaken to investigate and develop two different battery life prediction methodologies withspecific reference to their use in hybrid renewable energy systems. Alongside this, results from battery...... tests designed to exercise batteries in similar modes to those that they experience in hybrid systems have also been analysed. These have yieldedbattery specific parameters for use in the prediction software and the first results in the validation process of the software are also given. This work has...

  11. Adaptive State of Charge Estimation for Li-Ion Batteries Based on an Unscented Kalman Filter with an Enhanced Battery Model

    Directory of Open Access Journals (Sweden)

    Yuanyuan Liu

    2013-08-01

    Full Text Available Accurate estimation of the state of charge (SOC of batteries is one of the key problems in a battery management system. This paper proposes an adaptive SOC estimation method based on unscented Kalman filter algorithms for lithium (Li-ion batteries. First, an enhanced battery model is proposed to include the impacts due to different discharge rates and temperatures. An adaptive joint estimation of the battery SOC and battery internal resistance is then presented to enhance system robustness with battery aging. The SOC estimation algorithm has been developed and verified through experiments on different types of Li-ion batteries. The results indicate that the proposed method provides an accurate SOC estimation and is computationally efficient, making it suitable for embedded system implementation.

  12. An Energy Management System of a Fuel Cell/Battery Hybrid Boat

    Directory of Open Access Journals (Sweden)

    Jingang Han

    2014-04-01

    Full Text Available All-electric ships are now a standard offering for energy/propulsion systems in boats. In this context, integrating fuel cells (FCs as power sources in hybrid energy systems can be an interesting solution because of their high efficiency and low emission. The energy management strategy for different power sources has a great influence on the fuel consumption, dynamic performance and service life of these power sources. This paper presents a hybrid FC/battery power system for a low power boat. The hybrid system consists of the association of a proton exchange membrane fuel cell (PEMFC and battery bank. The mathematical models for the components of the hybrid system are presented. These models are implemented in Matlab/Simulink environment. Simulations allow analyzing the dynamic performance and power allocation according to a typical driving cycle. In this system, an efficient energy management system (EMS based on operation states is proposed. This EMS strategy determines the operating point of each component of the system in order to maximize the system efficiency. Simulation results validate the adequacy of the hybrid power system and the proposed EMS for real ship driving cycles.

  13. Experimental study on the application of phase change material in the dynamic cycling of battery pack system

    International Nuclear Information System (INIS)

    Yan, Jiajia; Li, Ke; Chen, Haodong; Wang, Qingsong; Sun, Jinhua

    2016-01-01

    Highlights: • Two temperature peaks are observed in the single battery during the dynamic cycling. • The cooling performance of PCM system is superior to the natural convection system. • Increasing the laying-aside time is beneficial to the cooling performance of PCM system. • The optimal phase change temperature of PCM is recommended as 45 °C. - Abstract: The thermal performance of phase change material (PCM) based battery thermal management system in dynamic cycling is investigated, and several factors influencing the PCM system are discussed in detail. It is established that the surface temperature of a single battery has two temperature peaks during one charge/discharge cycle, while it disappears in the PCM system for the temperature buffering of PCM. In addition, the cooling performance of the PCM system is superior to that of natural convection system especially at a high current rate. Moreover, increasing the laying-aside time properly between each cycling step is beneficial to the cooling performance of the PCM system. Additionally, PCM with a phase change temperature of 45 °C is recommended to be used in the real battery pack system.

  14. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    Science.gov (United States)

    Ustinov, A.; Khayrullina, A.; Borzenko, V.; Khmelik, M.; Sveshnikova, A.

    2016-09-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia.

  15. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    International Nuclear Information System (INIS)

    Ustinov, A; Khayrullina, A; Khmelik, M; Sveshnikova, A; Borzenko, V

    2016-01-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia. (paper)

  16. Power systems development facility. Quarterly technical progress report, July 1--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, July 1 through September 30, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. Hot Gas Cleanup Units to mate to all gas streams; Combustion Gas Turbine; and Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility.

  17. Optimal sizing of grid-independent hybrid photovoltaic–battery power systems for household sector

    International Nuclear Information System (INIS)

    Bianchi, M.; Branchini, L.; Ferrari, C.; Melino, F.

    2014-01-01

    Highlights: • A feasibility study on a stand-alone solar–battery power generation system is carried out. • An in-house developed calculation code able to estimate photovoltaic panels behaviour is described. • The feasibility of replacing grid electricity with hybrid system is examined. • Guidelines for optimal photovoltaic design are given. • Guidelines for optimal storage sizing in terms of batteries number and capacity are given. - Abstract: The penetration of renewable sources into the grid, particularly wind and solar, have been increasing in recent years. As a consequence, there have been serious concerns over reliable and safety operation of power systems. One possible solution, to improve grid stability, is to integrate energy storage devices into power system network: storing energy produced in periods of low demand to later use, ensuring full exploitation of intermittent available sources. Focusing on stand-alone photovoltaic (PV) energy system, energy storage is needed with the purpose of ensuring continuous power flow, to minimize or, if anything, to neglect electrical grid supply. A comprehensive study on a hybrid stand-alone photovoltaic power system using two different energy storage technologies has been performed. The study examines the feasibility of replacing electricity provided by the grid with hybrid system to meet household demand. In particular, this paper presents first results for photovoltaic (PV)/battery (B) hybrid configuration. The main objective of this paper is focused on PV/B system, to recommend hybrid system optimal design in terms of PV module number, PV module tilt, number and capacity of batteries to minimize or, if possible, to neglect grid supply. This paper is the early stage of a theoretical and experimental study in which two different hybrid power system configurations will be evaluated and compared: (i) PV/B system and (ii) PV/B/fuel cell (FC) system. The aim of the overall study will be the definition of the

  18. Rechargeable MnO/sub 2/ battery systems

    International Nuclear Information System (INIS)

    Wroblowa, H.S.

    1987-01-01

    Sixty years after Volta used for the first time (1800) zinc as an electrode, Leclanche patented a MnO/sub 2/NH/sub 4/Cl/Zn cell with a zinc rod negative, which was then shortly replaced by the amalgamated zinc can. Although the original patents for wet and dry alkaline systems were filed already towards the end of 19th and during the first two decades of the 20th century, the first alkaline commercial battery (Herbert's crown cell), appeared only in the early fifties. Since then the introduction of large area zinc electrodes and voluminous work leading to the development of positive electrodes with highest possible reactivity, i.e., capable of releasing a maximum charge at a maximum voltage difference between terminals over longest periods of time, coupled with growing demands of the electronic industries led to the emergence of a several billion dollar primary cell market of which alkaline MnO/sub 2//Zn cells are capturing a rapidly increasing share and are expected to fully dominate the dry cell market. Their better performance/cost ratio compensates for a cost higher than that of their Leclanche type counterparts. The prospects of better utilization of this more expensive system, problems of energy wste4 and of waste disposal of the ever increasing numbers of throw-away batteries, prompted numerous attempts to produce a rechargeable MnO/sub 2//Zn system capable not only of high reactivity, i.e., high power drains, but also applicable for several commercial uses

  19. Fuel cell/back-up battery hybrid energy conversion systems: Dynamic modeling and harmonic considerations

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2015-01-01

    Highlights: • Novel technique to completely eliminate the harmful harmonics of fuel cell system. • Presenting a novel high accurate detailed electrochemical dynamic model of fuel cells. • Back-up battery system to compensate the slow dynamic response of fuel cell system. • Exact analysis of real electrochemical reactions occurring inside fuel cells. - Abstract: In this study, a novel dynamic model of fuel cells is presented. High accurate static and dynamic responses of the proposed model are experimentally validated by comparing simulated results with real experimental data. The obtained model together with theoretical results shows that a fuel cell or a fuel cell stack has very slow dynamic response, so that, it cannot adapt itself to the fast variations in load demand. It is shown that for adapting well a fuel cell stack to the load demand, the stack should be equipped with a proposed back-up battery system which compensates the slow dynamic response of the stack by providing a bidirectional path to transmit/absorb the extra instant power. It is proved that the conventional switching waveforms used in the converters of the stacks and back-up systems produce an enormous amount of harmful harmonics. Then, a novel technique is proposed to completely eliminate main harmful harmonics. It is worthwhile to note that all the other techniques only reduce the harmful harmonics. Simulated results verify that the back-up battery system together with applying the proposed technique provide a fast dynamic response for the fuel cell/back-up battery system, and also completely eliminate the main harmful harmonics

  20. Requirements for future automotive batteries - a snapshot

    Science.gov (United States)

    Karden, Eckhard; Shinn, Paul; Bostock, Paul; Cunningham, James; Schoultz, Evan; Kok, Daniel

    Introduction of new fuel economy, performance, safety, and comfort features in future automobiles will bring up many new, power-hungry electrical systems. As a consequence, demands on automotive batteries will grow substantially, e.g. regarding reliability, energy throughput (shallow-cycle life), charge acceptance, and high-rate partial state-of-charge (HRPSOC) operation. As higher voltage levels are mostly not an economically feasible alternative for the short term, the existing 14 V electrical system will have to fulfil these new demands, utilizing advanced 12 V energy storage devices. The well-established lead-acid battery technology is expected to keep playing a key role in this application. Compared to traditional starting-lighting-ignition (SLI) batteries, significant technological progress has been achieved or can be expected, which improve both performance and service life. System integration of the storage device into the vehicle will become increasingly important. Battery monitoring systems (BMS) are expected to become a commodity, penetrating the automotive volume market from both highly equipped premium cars and dedicated fuel-economy vehicles (e.g. stop/start). Battery monitoring systems will allow for more aggressive battery operating strategies, at the same time improving the reliability of the power supply system. Where a single lead-acid battery cannot fulfil the increasing demands, dual-storage systems may form a cost-efficient extension. They consist either of two lead-acid batteries or of a lead-acid battery plus another storage device.

  1. Exploding the Black Box: Personal Computing, the Notebook Battery Crisis, and Postindustrial Systems Thinking.

    Science.gov (United States)

    Eisler, Matthew N

    Historians of science and technology have generally ignored the role of power sources in the development of consumer electronics. In this they have followed the predilections of historical actors. Research, development, and manufacturing of batteries has historically occurred at a social and intellectual distance from the research, development, and manufacturing of the devices they power. Nevertheless, power source technoscience should properly be understood as an allied yet estranged field of electronics. The separation between the fields has had important consequences for the design and manufacturing of mobile consumer electronics. This paper explores these dynamics in the co-construction of notebook batteries and computers. In so doing, it challenges assumptions of historians and industrial engineers and planners about the nature of computer systems in particular and the development of technological systems. The co-construction of notebook computers and batteries, and the occasional catastrophic failure of their compatibility, challenges systems thinking more generally.

  2. System dynamic model and charging control of lead-acid battery for stand-alone solar PV system

    KAUST Repository

    Huang, B.J.; Hsu, P.C.; Wu, M.S.; Ho, P.Y.

    2010-01-01

    . This will reduce the storage energy capacity and reduce the service time in electricity supply. The design of charging control system however requires a good understanding of the system dynamic behaviour of the battery first. In the present study, a first

  3. Quarterly coal report, April--June 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for April through June 1997 and aggregated quarterly historical data for 1991 through the first quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

  4. 32 CFR 643.127 - Quarters.

    Science.gov (United States)

    2010-07-01

    ... Additional Authority of Commanders § 643.127 Quarters. The assignment and rental of quarters to civilian employees and other nonmilitary personnel will be accomplished in accordance with AR 210-50. Responsibility of the Corps of Engineers for the establishment of rental rates for quarters rented to civilian and...

  5. Approach to Hybrid Energy Storage Systems Dimensioning for Urban Electric Buses Regarding Efficiency and Battery Aging

    Directory of Open Access Journals (Sweden)

    Jorge Nájera

    2017-10-01

    Full Text Available This paper focuses on Hybrid Energy Storage Systems (HESS, consisting of a combination of batteries and Electric Double Layer Capacitors (EDLC, for electric urban busses. The aim of the paper is to develop a methodology to determine the hybridization percentage that allows the electric bus to work with the highest efficiency while reducing battery aging, depending on the chosen topology, control strategy, and driving cycle. Three power electronic topologies are qualitatively analyzed based on different criteria, with the topology selected as the favorite being analyzed in detail. The whole system under study is comprised of the following elements: a battery pack (LiFePO4 batteries, an EDLC pack, up to two DC-DC converters (depending on the topology, and an equivalent load, which behaves as an electric bus drive (including motion resistances and inertia. Mathematical models for the battery, EDLCs, DC-DC converter, and the vehicle itself are developed for this analysis. The methodology presented in this work, as the main scientific contribution, considers performance variation (energy efficiency and battery aging and hybridization percentage (ratio between batteries and EDLCs, defined in terms of mass, using a power load profile based on standard driving cycles. The results state that there is a hybridization percentage that increases energy efficiency and reduces battery aging, maximizing the economic benefits of the vehicle, for every combination of topology, type of storage device, control strategy, and driving cycle.

  6. Knowledge management system for risk mitigation in supply chain uncertainty: case from automotive battery supply chain

    Science.gov (United States)

    Marie, I. A.; Sugiarto, D.; Surjasa, D.; Witonohadi, A.

    2018-01-01

    Automotive battery supply chain include battery manufacturer, sulphuric acid suppliers, polypropylene suppliers, lead suppliers, transportation service providers, warehouses, retailers and even customers. Due to the increasingly dynamic condition of the environment, supply chain actors were required to improve their ability to overcome various uncertainty issues in the environment. This paper aims to describe the process of designing a knowledge management system for risk mitigation in supply chain uncertainty. The design methodology began with the identification of the knowledge needed to solve the problems associated with uncertainty and analysis of system requirements. The design of the knowledge management system was described in the form of a data flow diagram. The results of the study indicated that key knowledge area that needs to be managed were the knowledge to maintain the stability of process in sulphuric acid process and knowledge to overcome the wastes in battery manufacturing process. The system was expected to be a media acquisition, dissemination and storage of knowledge associated with the uncertainty in the battery supply chain and increase the supply chain performance.

  7. International Space Station Lithium-Ion Battery

    Science.gov (United States)

    Dalton, Penni J.; Schwanbeck, Eugene; North, Tim; Balcer, Sonia

    2016-01-01

    The International Space Station (ISS) primary Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-Ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. When deployed, they will be the largest Li-Ion batteries ever utilized for a human-rated spacecraft. This paper will include an overview of the ISS Li-Ion battery system architecture, the Li-Ion battery design and development, controls to limit potential hazards from the batteries, and the status of the Li-Ion cell and ORU life cycle testing.

  8. Lifetime modelling of lead acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Cronin, T.; Lundsager, P.

    2005-04-01

    The performance and lifetime of energy storage in batteries are an important part of many renewable based energy systems. Not only do batteries impact on the system performance but they are also a significant expenditure when considering the whole life cycle costs. Poor prediction of lifetime can, therefore, lead to uncertainty in the viability of the system in the long term. This report details the work undertaken to investigate and develop two different battery life prediction methodologies with specific reference to their use in hybrid renewable energy systems. Alongside this, results from battery tests designed to exercise batteries in similar modes to those that they experience in hybrid systems have also been analysed. These have yielded battery specific parameters for use in the prediction software and the first results in the validation process of the software are also given. This work has been part of the European Union Benchmarking research project (ENK6-CT-2001-80576), funded by the European Union, the United States and Australian governments together with other European states and other public and private financing bodies. The project has concentrated on lead acid batteries as this technology is the most commonly used. Through this work the project partner institutions have intended to provide useful tools to improve the design capabilities of organizations, private and public, in remote power systems. (au)

  9. Quarter 9 Mercury information clearinghouse final report

    Energy Technology Data Exchange (ETDEWEB)

    Laudal, D.L.; Miller, S.; Pflughoeft-Hassett, D.; Ralston, N.; Dunham, G.; Weber, G.

    2005-12-15

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. A total of eight reports were completed and are summarized and updated in this final CEA quarterly report. Selected topics were discussed in detail in each quarterly report. Issues related to mercury from coal-fired utilities include the general areas of measurement, control, policy, and transformations. Specific topics that have been addressed in previous quarterly reports include the following: Quarterly 1 - Sorbent Control Technologies for Mercury Control; Quarterly 2 - Mercury Measurement; Quarterly 3 - Advanced and Developmental Mercury Control Technologies; Quarterly 4 - Prerelease of Mercury from Coal Combustion By-Products; Quarterly 5 - Mercury Fundamentals; Quarterly 6 - Mercury Control Field Demonstrations; Quarterly 7 - Mercury Regulations in the United States: Federal and State; and Quarterly 8 - Commercialization Aspects of Sorbent Injection Technologies in Canada. In this last of nine quarterly reports, an update of these mercury issues is presented that includes a summary of each topic, with recent information pertinent to advances made since the quarterly reports were originally presented. In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. 86 refs., 11 figs., 8 tabs.

  10. Fuzzy logic-based battery charge controller

    International Nuclear Information System (INIS)

    Daoud, A.; Midoun, A.

    2006-01-01

    Photovoltaic power system are generally classified according to their functional and operational requirements, their component configurations, and how the equipment is connected to other power sources and electrical loads, photovoltaic systems can be designed to provide DC and/or AC power service, can operate interconnected with or independent of the utility grid, and can be connected with other energy sources and energy storage systems. Batteries are often used in PV systems for the purpose of storing energy produced by the PV array during the day, and to supply it to electrical loads as needed (during the night and periods of cloudy weather). The lead acid battery, although know for more than one hundred years, has currently offered the best response in terms of price, energetic efficiency and lifetime. The main function of controller or regulator in PV system is too fully charge the battery without permitting overcharge while preventing reverse current flow at night. If a no-self-regulating solar array is connected to lead acid batteries with no overcharge protection, battery life will be compromised. Simple controllers contain a transistor that disconnects or reconnects the PV in the charging circuit once a pre-set voltage is reached. More sophisticated controllers utilize pulse with modulation (PWM) to assure the battery is being fully charged. The first 70% to 80% of battery capacity is easily replaced, but the last 20% to 30% requires more attention and therefore more complexity. This complexity is avoided by using a skilled operators experience in the form of the rules. Thus a fuzzy control system seeks to control the battery that cannot be controlled well by a conventional control such as PID, PD, PI etc., due to the unavailability of an accurate mathematical model of the battery. In this paper design of an intelligent battery charger, in which the control algorithm is implemented with fuzzy logic is discussed. The digital architecture is implemented with

  11. Engine Tune-Up Service. Unit 1: Battery and Cranking System. Review Exercise Book. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Goodson-Roberts, Ludy; And Others

    This book of pretests and review exercises is designed to accompany the Engine Tune-Up Service Student Guide for Unit 1, Battery and Cranking System. Focus of the exercises and pretests is testing the battery and cranking system. Pretests and performance checklists are provided for each of the four performance objectives contained in the unit.…

  12. Environmental characteristics comparison of Li-ion batteries and Ni–MH batteries under the uncertainty of cycle performance

    International Nuclear Information System (INIS)

    Yu, Yajuan; Wang, Xiang; Wang, Dong; Huang, Kai; Wang, Lijing; Bao, Liying; Wu, Feng

    2012-01-01

    An environmental impact assessment model for secondary batteries under uncertainty is proposed, which is a combination of the life cycle assessment (LCA), Eco-indicator 99 system and Monte Carlo simulation (MCS). The LCA can describe the environmental impact mechanism of secondary batteries, whereas the cycle performance was simulated through MCS. The composite LCA–MCS model was then carried out to estimate the environmental impact of two kinds of experimental batteries. Under this kind of standard assessment system, a comparison between different batteries could be accomplished. The following results were found: (1) among the two selected batteries, the environmental impact of the Li-ion battery is lower than the nickel–metal hydride (Ni–MH) battery, especially with regards to resource consumption and (2) the lithium ion (Li-ion) battery is less sensitive to cycle uncertainty, its environmental impact fluctuations are small when compared with the selected Ni–MH battery and it is more environmentally friendly. The assessment methodology and model proposed in this paper can also be used for any other secondary batteries and they can be helpful in the development of environmentally friendly secondary batteries.

  13. Effect of wind speed and solar irradiation on the optimization of a PV-Wind-Battery system to supply a telecommunications station

    Energy Technology Data Exchange (ETDEWEB)

    Dufo-Lopez, Rodolfo; Bernal-Agustin, Jose L.; Lujano, Juan; Zubi, Ghassan [Zaragoza Univ. (Spain). Electrical Engineerign Dept.

    2010-07-01

    This paper shows the optimization of a PV-Wind hybrid system with batteries storage to supply the electrical power to a small telecommunications station. The load demanded by the station is 100 W continuously. We have considered 6 different wind speed profiles, from 2 m/s average speed (low wind speed in many places in Spain) to 8 m/s average (very high wind speed, in few places in Spain) and 3 different irradiation profiles, from the lowest average daily irradiation in Spain, about 2.5 kWh/m{sup 2}/day, to the highest one in Spain, about 5 kWh/m{sup 2}/day. Therefore we have considered 6 x 3 = 18 combinations of wind speed and irradiation profiles. For each combination of wind speed and irradiation profiles, we have optimized the PV-Wind-Battery system to supply the power demand, considering some different PV panels, wind turbines and batteries. We have also considered in the optimization non-hybrid systems (PV-Battery systems and Wind-Battery systems). The simulation of the system performance has been done hourly. The optimal system for each combination of wind speed and irradiation is the one which can supply the whole demand of the telecommunications station with the lowest Net Present Cost of the system. Simulation and optimization has been done using HOGA (Hybrid Optimization by Genetic Algorithms) software, developed by some of the authors. The results show that, with actual prices of PV panels and wind turbines, in 13 of the 18 combinations of wind speed and irradiation profiles the optimal system is a hybrid system (it includes PV panels, wind turbine and batteries). In the other 5 combinations (the ones with lowest wind speed and/or highest irradiation), the optimal system is PV-Battery, i.e., without wind turbine. We conclude that, in most of the places in Spain, the optimal system to supply the demand of a communications station (with continous demand profile) is a hybrid system (PV-Wind-Batteries) instead of a PV-Batteries system or a Wind-Batteries

  14. Quarterly coal report, April--June, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for April through June 1998 and aggregated quarterly historical data for 1992 through the first quarter of 1998. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. 58 tabs.

  15. Quarterly coal report, October--December 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1998 and aggregated quarterly historical data for 1992 through the third quarter of 1998. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. 58 tabs.

  16. NASA Engineering Safety Center NASA Aerospace Flight Battery Systems Working Group 2007 Proactive Task Status

    Science.gov (United States)

    Manzo, Michelle A.

    2007-01-01

    In 2007, the NASA Engineering Safety Center (NESC) chartered the NASA Aerospace Flight Battery Systems Working Group to bring forth and address critical battery-related performance/manufacturing issues for NASA and the aerospace community. A suite of tasks identifying and addressing issues related to Ni-H2 and Li-ion battery chemistries was submitted and selected for implementation. The current NESC funded are: (1) Wet Life of Ni-H2 Batteries (2) Binding Procurement (3) NASA Lithium-Ion Battery Guidelines (3a) Li-Ion Performance Assessment (3b) Li-Ion Guidelines Document (3b-i) Assessment of Applicability of Pouch Cells for Aerospace Missions (3b-ii) High Voltage Risk Assessment (3b-iii) Safe Charge Rates for Li-Ion Cells (4) Availability of Source Material for Li-Ion Cells (5) NASA Aerospace Battery Workshop This presentation provides a brief overview of the tasks in the 2007 plan and serves as an introduction to more detailed discussions on each of the specific tasks.

  17. Remote power supply by wind/diesel/battery systems - operational experience and economy

    International Nuclear Information System (INIS)

    Kniehl, R.; Cramer, G.; Toenges, K.H.

    1995-01-01

    To continuously supply remote villages and settlements not connected to the public grid with electric power is an ambitious technical task considering ecological and economical points of view. The German company SMA has developed a modular supply system as a solution for this task in the range of 30 kW to 5 MW. Meanwhile more than 20 applications of these 'Intelligent Power Systems (IPS)' have proved their technical reliability and economical competitiveness worldwide under different, and also extreme environmental conditions. Actually it is the first commercially available advanced Wind/Diesel/Battery System for remote area electrification. The modular autonomous electric supply systems realized by SMA basically consist of two or more diesel power sets, battery storage with converter, a rotating phaseshifter, and an optional number of wind turbines. All modules are coupled on the 3-phase AC system grid and run in various parallel configurations depending on the wind speed and the consumer power demand. The control system operates fully automatical and offers a very user-friendly graphical interface. This advanced system control also contains a remote control and operating data output via modem and telephone line. SMA and CES have considerable experience with Wind/Diesel/Battery Systems for more than eight years. In many cases wind energy converters in the power range of 30 to 40 kW were used, but it is also possible to use larger wind turbines (e.g. 250 kW). In the following the system technology is described in detail, experience of different system sizes in several countries of application is presented, and economical analyses for power supply by IPS are given in comparison to a conventional fully diesel power supply. (author)

  18. Remote power supply by wind/diesel/battery systems - operational experience and economy

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, R [CES - Consulting and Engineering Services, Heidelberg (Germany); Cramer, G; Toenges, K H [SMA Regelsysteme GmbH, Niestetal (Germany)

    1996-12-31

    To continuously supply remote villages and settlements not connected to the public grid with electric power is an ambitious technical task considering ecological and economical points of view. The German company SMA has developed a modular supply system as a solution for this task in the range of 30 kW to 5 MW. Meanwhile more than 20 applications of these `Intelligent Power Systems (IPS)` have proved their technical reliability and economical competitiveness worldwide under different, and also extreme environmental conditions. Actually it is the first commercially available advanced Wind/Diesel/Battery System for remote area electrification. The modular autonomous electric supply systems realized by SMA basically consist of two or more diesel power sets, battery storage with converter, a rotating phaseshifter, and an optional number of wind turbines. All modules are coupled on the 3-phase AC system grid and run in various parallel configurations depending on the wind speed and the consumer power demand. The control system operates fully automatical and offers a very user-friendly graphical interface. This advanced system control also contains a remote control and operating data output via modem and telephone line. SMA and CES have considerable experience with Wind/Diesel/Battery Systems for more than eight years. In many cases wind energy converters in the power range of 30 to 40 kW were used, but it is also possible to use larger wind turbines (e.g. 250 kW). In the following the system technology is described in detail, experience of different system sizes in several countries of application is presented, and economical analyses for power supply by IPS are given in comparison to a conventional fully diesel power supply. (author)

  19. Remote power supply by wind/diesel/battery systems - operational experience and economy

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, R. [CES - Consulting and Engineering Services, Heidelberg (Germany); Cramer, G.; Toenges, K.H. [SMA Regelsysteme GmbH, Niestetal (Germany)

    1995-12-31

    To continuously supply remote villages and settlements not connected to the public grid with electric power is an ambitious technical task considering ecological and economical points of view. The German company SMA has developed a modular supply system as a solution for this task in the range of 30 kW to 5 MW. Meanwhile more than 20 applications of these `Intelligent Power Systems (IPS)` have proved their technical reliability and economical competitiveness worldwide under different, and also extreme environmental conditions. Actually it is the first commercially available advanced Wind/Diesel/Battery System for remote area electrification. The modular autonomous electric supply systems realized by SMA basically consist of two or more diesel power sets, battery storage with converter, a rotating phaseshifter, and an optional number of wind turbines. All modules are coupled on the 3-phase AC system grid and run in various parallel configurations depending on the wind speed and the consumer power demand. The control system operates fully automatical and offers a very user-friendly graphical interface. This advanced system control also contains a remote control and operating data output via modem and telephone line. SMA and CES have considerable experience with Wind/Diesel/Battery Systems for more than eight years. In many cases wind energy converters in the power range of 30 to 40 kW were used, but it is also possible to use larger wind turbines (e.g. 250 kW). In the following the system technology is described in detail, experience of different system sizes in several countries of application is presented, and economical analyses for power supply by IPS are given in comparison to a conventional fully diesel power supply. (author)

  20. Hybrid Lithium-ion Capacitor / Lithium-ion Battery System for Extended Performance

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed task will involve the design of a hybrid power system with lithium-ion (li-ion) capacitors (LICs), li-ion batteries and solar cells. The challenge in...

  1. Battery- and aging-aware embedded control systems for electric vehicles

    NARCIS (Netherlands)

    Chang, W.; Probstl, A.; Goswami, D.; Zamani, M.; Chakraborty, S.

    2014-01-01

    In this paper, for the first time, we propose a battery- and aging-aware optimization framework for embedded control systems design in electric vehicles (EVs). Performance and reliability of an EV are influenced by feedback control loops implemented into in-vehicle electrical/electronic (E/E)

  2. Optimizing MEMS-Based Storage Devices for Mobile Battery-Powered Systems

    NARCIS (Netherlands)

    Khatib, M.G.; Hartel, Pieter H.

    An emerging storage technology, called MEMS-based storage, promises nonvolatile storage devices with ultrahigh density, high rigidity, a small form factor, and low cost. For these reasons, MEMS-based storage devices are suitable for battery-powered mobile systems such as PDAs. For deployment in such

  3. Aqueous electrolytes for redox flow battery systems

    Science.gov (United States)

    Liu, Tianbiao; Li, Bin; Wei, Xiaoliang; Nie, Zimin; Wang, Wei; Liu, Jun; Sprenkle, Vincent L.

    2017-10-17

    An aqueous redox flow battery system includes an aqueous catholyte and an aqueous anolyte. The aqueous catholyte may comprise (i) an optionally substituted thiourea or a nitroxyl radical compound and (ii) a catholyte aqueous supporting solution. The aqueous anolyte may comprise (i) metal cations or a viologen compound and (ii) an anolyte aqueous supporting solution. The catholyte aqueous supporting solution and the anolyte aqueous supporting solution independently may comprise (i) a proton source, (ii) a halide source, or (iii) a proton source and a halide source.

  4. Control of a lithium-ion battery storage system for microgrid applications

    Science.gov (United States)

    Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol

    2014-12-01

    The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.

  5. Latest position in battery techniques

    Energy Technology Data Exchange (ETDEWEB)

    Staeger, H J

    1960-03-17

    A short survey of the development of electrochemical properties as batteries is followed by an account of the construction, properties, and fields of application of lead, iron--nickel, and silver--zinc batteries, and their more recent developments, such as the hollow-rod plates in lead batteries, sintered plates, and sealed batteries. The work in progress on fuel cells is discussed and different practical cells are compared. There is no battery which is the best for all applications, each system has its own advantages or disadvantages. The lead battery in its different forms still remains the most universally applied.

  6. Thru-life impacts of driver aggression, climate, cabin thermal management, and battery thermal management on battery electric vehicle utility

    Science.gov (United States)

    Neubauer, Jeremy; Wood, Eric

    2014-08-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but have a limited utility that is affected by driver aggression and effects of climate-both directly on battery temperature and indirectly through the loads of cabin and battery thermal management systems. Utility is further affected as the battery wears through life in response to travel patterns, climate, and other factors. In this paper we apply the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V) to examine the sensitivity of BEV utility to driver aggression and climate effects over the life of the vehicle. We find the primary challenge to cold-climate BEV operation to be inefficient cabin heating systems, and to hot-climate BEV operation to be high peak on-road battery temperatures and excessive battery degradation. Active cooling systems appear necessary to manage peak battery temperatures of aggressive, hot-climate drivers, which can then be employed to maximize thru-life vehicle utility.

  7. State of Charge Estimation Using the Extended Kalman Filter for Battery Management Systems Based on the ARX Battery Model

    Directory of Open Access Journals (Sweden)

    Hongjie Wu

    2013-01-01

    Full Text Available State of charge (SOC is a critical factor to guarantee that a battery system is operating in a safe and reliable manner. Many uncertainties and noises, such as fluctuating current, sensor measurement accuracy and bias, temperature effects, calibration errors or even sensor failure, etc. pose a challenge to the accurate estimation of SOC in real applications. This paper adds two contributions to the existing literature. First, the auto regressive exogenous (ARX model is proposed here to simulate the battery nonlinear dynamics. Due to its discrete form and ease of implemention, this straightforward approach could be more suitable for real applications. Second, its order selection principle and parameter identification method is illustrated in detail in this paper. The hybrid pulse power characterization (HPPC cycles are implemented on the 60AH LiFePO4 battery module for the model identification and validation. Based on the proposed ARX model, SOC estimation is pursued using the extended Kalman filter. Evaluation of the adaptability of the battery models and robustness of the SOC estimation algorithm are also verified. The results indicate that the SOC estimation method using the Kalman filter based on the ARX model shows great performance. It increases the model output voltage accuracy, thereby having the potential to be used in real applications, such as EVs and HEVs.

  8. High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    In this study, a novel Li-ion battery pack design including hybrid active–passive thermal management system is presented. The battery pack is suitable for using in hybrid/electric vehicles. Active part of the hybrid thermal management system uses distributed thin ducts, air flow and natural convection as cooling media while the passive part utilizes phase change material/expanded graphite composite (PCM/EG) as cooling/heating component to optimize the thermal performance of the proposed battery pack. High melting enthalpy of PCM/EG composite together with melting of PCM/EG composite at the temperature of 58.9 °C remains the temperature distribution of the battery units in the desired temperature range (below 60 °C). The temperature and voltage distributions in the proposed battery pack design consisting of battery units, distributed thin ducts and PCM/EG composite are calculated by numerical solving of the related partial differential equations. Simulation results obtained by writing M-files code in Matlab environment and plotting the numerical data are presented to validate the theoretical results. A comparison between the thermal and physical characteristics of the proposed battery pack and other latest works is presented that explicitly proves the battery pack performance. - Highlights: • Novel Li-ion battery pack including active and passive thermal management systems. • The battery pack has high thermal performance for ambient temperatures until 55 °C. • Uniform temperature and voltage distributions. • The maximum observed temperature in each battery unit is less than other works. • The maximum temperature dispersion in each battery is less than other works

  9. Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia

    International Nuclear Information System (INIS)

    Halabi, Laith M.; Mekhilef, Saad; Olatomiwa, Lanre; Hazelton, James

    2017-01-01

    Highlights: • The performance of two decentralized power stations in Malaysia has been studied. • All possible scenarios of hybrid PV/diesel/battery system have been analyzed. • A comparison with the optimum design was included in this work using HOMER. • Sensitivity analysis showing the impact of main factors on the system was examined. • The advantages/disadvantages of utilizing each scenario are showed and clarified. - Abstract: This study considered two decentralized power stations in Sabah, Malaysia; each contains different combination of photovoltaic (PV), diesel generators, system converters, and storage batteries. The work was built upon previous related site surveys and data collections from each site. Verification of the site data sets, simulation of different operational scenarios, and a comparison with the optimum design were all considered in the work. This includes all possible standalone diesel generators, hybrid PV/diesel/battery, and 100% PV/battery scenarios for the proposed stations. HOMER software has been used in the modeling entire systems. The operational behaviors of different PV penetration levels were analyzed to accurately quantify the impact of PV integration. The performance of these stations was analyzed based on technical, economic and environmental constraints, besides, placing emphasis on comparative cost analysis between different operational scenarios. The results satisfied the load demand with the minimum total net present cost (NPC) and levelized cost of energy (LCOE). Moreover, sensitivity analysis was carried out to represents the effects of changing main parameters, such as; fuel, PV, battery prices, and load demand (load growth) on the system performance. Comparison of all operational behaviors scenarios was carried out to elucidate the advantages/disadvantages of utilizing each scenario. The impact of different PV penetration levels on the system performance and the generation of harmful emissions is also

  10. Enhanced representations of lithium-ion batteries in power systems models and their effect on the valuation of energy arbitrage applications

    Science.gov (United States)

    Sakti, Apurba; Gallagher, Kevin G.; Sepulveda, Nestor; Uckun, Canan; Vergara, Claudio; de Sisternes, Fernando J.; Dees, Dennis W.; Botterud, Audun

    2017-02-01

    We develop three novel enhanced mixed integer-linear representations of the power limit of the battery and its efficiency as a function of the charge and discharge power and the state of charge of the battery, which can be directly implemented in large-scale power systems models and solved with commercial optimization solvers. Using these battery representations, we conduct a techno-economic analysis of the performance of a 10 MWh lithium-ion battery system testing the effect of a 5-min vs. a 60-min price signal on profits using real time prices from a selected node in the MISO electricity market. Results show that models of lithium-ion batteries where the power limits and efficiency are held constant overestimate profits by 10% compared to those obtained from an enhanced representation that more closely matches the real behavior of the battery. When the battery system is exposed to a 5-min price signal, the energy arbitrage profitability improves by 60% compared to that from hourly price exposure. These results indicate that a more accurate representation of li-ion batteries as well as the market rules that govern the frequency of electricity prices can play a major role on the estimation of the value of battery technologies for power grid applications.

  11. Magnetostrictive patch sensor system for battery-less real-time measurement of torsional vibrations of rotating shafts

    Science.gov (United States)

    Lee, Jun Kyu; Seung, Hong Min; Park, Chung Il; Lee, Joo Kyung; Lim, Do Hyeong; Kim, Yoon Young

    2018-02-01

    Real-time uninterrupted measurement for torsional vibrations of rotating shafts is crucial for permanent health monitoring. So far, strain gauge systems with telemetry units have been used for real-time monitoring. However, they have a critical disadvantage in that shaft operations must be stopped intermittently to replace telemetry unit batteries. To find an alternative method to carry out battery-less real-time measurement for torsional vibrations of rotating shafts, a magnetostrictive patch sensor system was proposed in the present study. Since the proposed sensor does not use any powered telemetry system, no battery is needed and thus there is no need to stop rotating shafts for battery replacement. The proposed sensor consists of magnetostrictive patches and small magnets tightly bonded onto a shaft. A solenoid coil is placed around the shaft to convert magnetostrictive patch deformation by shaft torsional vibration into electric voltage output. For sensor design and characterization, investigations were performed in a laboratory on relatively small-sized stationary solid shaft. A magnetostrictive patch sensor system was then designed and installed on a large rotating propulsion shaft of an LPG carrier ship in operation. Vibration signals were measured using the proposed sensor system and compared to those measured with a telemetry unit-equipped strain gauge system.

  12. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Shi, Ye; Zhou, Xingyi; Yu, Guihua

    2017-01-01

    Developing high-performance battery systems requires the optimization of every battery component, from electrodes and electrolyte to binder systems. However, the conventional strategy to fabricate battery electrodes by casting a mixture of active materials, a nonconductive polymer binder, and a conductive additive onto a metal foil current collector usually leads to electronic or ionic bottlenecks and poor contacts due to the randomly distributed conductive phases. When high-capacity electrode materials are employed, the high stress generated during electrochemical reactions disrupts the mechanical integrity of traditional binder systems, resulting in decreased cycle life of batteries. Thus, it is critical to design novel binder systems that can provide robust, low-resistance, and continuous internal pathways to connect all regions of the electrode. Here in this Account, we review recent progress on material and structural design of novel binder systems. Nonconductive polymers with rich carboxylic groups have been adopted as binders to stabilize ultrahigh-capacity inorganic electrodes that experience large volume or structural change during charge/discharge, due to their strong binding capability to active particles. To enhance the energy density of batteries, different strategies have been adopted to design multifunctional binder systems based on conductive polymers because they can play dual functions of both polymeric binders and conductive additives. We first present that multifunctional binder systems have been designed by tailoring the molecular structures of conductive polymers. Different functional groups are introduced to the polymeric backbone to enable multiple functionalities, allowing separated optimization of the mechanical and swelling properties of the binders without detrimental effect on electronic property. Then, we describe the design of multifunctional binder systems via rationally controlling their nano- and molecular structures, developing

  13. Phase diagram, thermodynamic investigations, and modelling of systems relevant to lithium-ion batteries

    International Nuclear Information System (INIS)

    Fuertauer, Siegfried; Beutl, Alexander; Flanorfer, Hans; Henriques, David; Giel, Hans; Markus, Thorsten

    2017-01-01

    This article reports on two consecutive joint projects titled ''Experimental Thermodynamics and Phase Relations of New Electrode Materials for Lithium-Ion Batteries'', which were performed in the framework of the WenDeLIB 1473 priority program ''Materials with new Design for Lithium Ion Batteries''. Hundreds of samples were synthesized using experimental techniques specifically developed to deal with highly reactive lithium and lithium-containing compounds to generate electrochemical, phase diagram and crystal structure data in the Cu-Li, Li-Sn, Li-Sb, Cu-Li-Sn, Cu-Li-Sb and selected oxide systems. The thermochemical and phase diagram data were subsequently used to develop self-consistent thermodynamic descriptions of several binary systems. In the present contribution, the experimental techniques, working procedures, results and their relevance to the development of new electrode materials for lithium ion batteries are discussed and summarized. The collaboration between the three groups has resulted in more than fifteen (15) published articles during the six-year funding period.

  14. Phase diagram, thermodynamic investigations, and modelling of systems relevant to lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fuertauer, Siegfried; Beutl, Alexander; Flanorfer, Hans [Vienna Univ. (Austria). Dept. of Inorganic Chemistry - Functional Materials; Li, Dajian; Cupid, Damian [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics (IAM-AWP); Henriques, David; Giel, Hans; Markus, Thorsten [Mannheim Univ. of Applied Sciences (Germany). Inst. for Thermo- and Fluiddynamics

    2017-11-15

    This article reports on two consecutive joint projects titled ''Experimental Thermodynamics and Phase Relations of New Electrode Materials for Lithium-Ion Batteries'', which were performed in the framework of the WenDeLIB 1473 priority program ''Materials with new Design for Lithium Ion Batteries''. Hundreds of samples were synthesized using experimental techniques specifically developed to deal with highly reactive lithium and lithium-containing compounds to generate electrochemical, phase diagram and crystal structure data in the Cu-Li, Li-Sn, Li-Sb, Cu-Li-Sn, Cu-Li-Sb and selected oxide systems. The thermochemical and phase diagram data were subsequently used to develop self-consistent thermodynamic descriptions of several binary systems. In the present contribution, the experimental techniques, working procedures, results and their relevance to the development of new electrode materials for lithium ion batteries are discussed and summarized. The collaboration between the three groups has resulted in more than fifteen (15) published articles during the six-year funding period.

  15. Joint optimisation of arbitrage profits and battery life degradation for grid storage application of battery electric vehicles

    Science.gov (United States)

    Kies, Alexander

    2018-02-01

    To meet European decarbonisation targets by 2050, the electrification of the transport sector is mandatory. Most electric vehicles rely on lithium-ion batteries, because they have a higher energy/power density and longer life span compared to other practical batteries such as zinc-carbon batteries. Electric vehicles can thus provide energy storage to support the system integration of generation from highly variable renewable sources, such as wind and photovoltaics (PV). However, charging/discharging causes batteries to degradate progressively with reduced capacity. In this study, we investigate the impact of the joint optimisation of arbitrage revenue and battery degradation of electric vehicle batteries in a simplified setting, where historical prices allow for market participation of battery electric vehicle owners. It is shown that the joint optimisation of both leads to stronger gains then the sum of both optimisation strategies and that including battery degradation into the model avoids state of charges close to the maximum at times. It can be concluded that degradation is an important aspect to consider in power system models, which incorporate any kind of lithium-ion battery storage.

  16. Quarterly coal report, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-20

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada.

  17. Quarterly coal report, January--March 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada

  18. Real-Time Dynamic Simulation of Korean Power Grid for Frequency Regulation Control by MW Battery Energy Storage System

    Directory of Open Access Journals (Sweden)

    Tae-Hwan Jin

    2016-12-01

    Full Text Available The aim of this study was to develop a real-time dynamic simulator of a power grid with power plant and battery model. The simulator was used to investigate the frequency control characteristics of a megawatt-scale high-capacity energy storage system connected to the electric power grid. In this study, a lithium-ion secondary battery was chosen as one of the batteries for a grid-connected model. The dynamics of the model was analysed in both steady and transient states. The frequency control system of the battery model plays a role in regulating the grid frequency by controlling the power of energy storage systems according to process variables and grid frequencies. The power grid model based on the current power network of South Korea, included power plants, substations and power demands. The power supply is classified by the type of turbine generator as thermal, nuclear, hydro power, pumped power storage, combined power plants, and batteries, including high-capacity energy storage systems rated for a maximum of 500 MW. This study deals with an installed capacity of 87.17 GW and peak load of 77.30 GW in the Korean power grid. For 24 hours of operation, the maximum and minimum power outputs were simulated as 61.59 GW and 46.32 GW, respectively. The commercialized real-time dynamic simulation software ProTRAX was used. The simulation was conducted to observe the operation characteristics of the frequency control system during a breakdown of power plants, as well as under governor-free operation, auto generation control operation, and with the battery energy storage system connected. The results show that the model is valid for each power plant breakdown simulation. They also confirm that the output power and frequency controls of the battery operated well during simulations.

  19. Quarterly report for the electricity market. 2. quarter of 2012; Kvartalsrapport for kraftmarknaden. 2. kvartal 2012

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Finn Erik Ljaastad; Eliston, Anton Jayanand; Vaeringstad, Thomas; Lund, Per Tore Jensen; Magnussen, Ingrid; Langseth, Benedicte; Willumsen, Mats Oeivind; Rasmussen, Kristian; Guren, Ingri

    2012-07-01

    Second quarter of 2012 was cold. Total inflow was 47.0 TWh, 8.8 TWh less than normal. At the end of the quarter, the reservoir level 68.4 percent. It is 1.8 percentage points above normal for time of year and 1.2 percentage points higher than the same time last year. Norway had a power consumption of 28.2 TWh in the second quarter, which is 4.2 percent higher than in the same quarter last year. The last 12 months the consumption have been 125.7 TWh, compared with 128.7 TWh the preceding 12 months. The power production in Norway was 33.3 TWh in the second quarter - an increase of 26.1 percent compared with the same quarter last year. The last 12 months the Norwegian production has been 145.8 TWh, compared with 120.9 TWh the preceding 12 months. The production increase is due to that the last year has been much wetter than the preceding. This has also given high export abroad. In the second quarter Norway had a net export of 5.1 TWh, compared with a net import of 0.6 TWh in the second quarter last year. The good resource gave a low price level in the wholesale market for electricity. On average for the second quarter was the average spot price in West, Southwest and Eastern Norway, 201, 202 and 203 Nok / MWh. In Central and Northern Norway, the average price 218 and 213 Nok/ MWh. (eb)

  20. Correlation between quarter-point angle and nuclear radius

    Science.gov (United States)

    Ma, Wei-Hu; Wang, Jian-Song; Mukherjee, S.; Wang, Qi; Patel, D.; Yang, Yan-Yun; Ma, Jun-Bing; Ma, Peng; Jin, Shi-Lun; Bai, Zhen; Liu, Xing-Quan

    2017-04-01

    The correlation between quarter-point angle of elastic scattering and nuclear matter radius is studied systematically. Various phenomenological formulae with parameters for nuclear radius are adopted and compared by fitting the experimental data of quarter point angle extracted from nuclear elastic scattering reaction systems. A parameterized formula related to binding energy is recommended, which gives a good reproduction of nuclear matter radii of halo nuclei. It indicates that the quarter-point angle of elastic scattering is quite sensitive to the nuclear matter radius and can be used to extract the nuclear matter radius. Supported by National Natural Science Foundation of China (U1432247, 11575256), National Basic Research Program of China (973 Program)(2014CB845405 and 2013CB83440x) and (SM) Chinese Academy of Sciences President’s International Fellowship Initiative (2015-FX-04)

  1. PV-Battery Sizing for Stand-Alone Lighting Applications

    OpenAIRE

    Herteleer, Bert; Cappelle, Jan; Appels, Reinhart; Lefevre, Buvana; Driesen, Johan; Catthoor, Francky

    2013-01-01

    This paper presents a follow-up and addition to a system sizing spreadsheet, detailed in [An autonomous photovoltaic system sizing program for office applications in Africa], with a focus on sizing or verifying the employability of an off-grid PV-battery system for night lighting. A dimensionless criterion, the Battery Usable Fraction UF_batt is defined, which aids both the calculations of systems and allows an approximate comparison of batteries, regardless of the employed battery chemistry....

  2. A Novel RFID Sensing System Using Enhanced Surface Wave Technology for Battery Exchange Stations

    Directory of Open Access Journals (Sweden)

    Yeong-Lin Lai

    2014-01-01

    Full Text Available This paper presents a novel radio-frequency identification (RFID sensing system using enhanced surface wave technology for battery exchange stations (BESs of electric motorcycles. Ultrahigh-frequency (UHF RFID technology is utilized to automatically track and manage battery and user information without manual operation. The system includes readers, enhanced surface wave leaky cable antennas (ESWLCAs, coupling cable lines (CCLs, and small radiation patches (SRPs. The RFID sensing system overcomes the electromagnetic interference in the metallic environment of a BES cabinet. The developed RFID sensing system can effectively increase the efficiency of BES operation and promote the development of electric vehicles which solve the problem of air pollution as well as protect the environment of the Earth.

  3. A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island

    International Nuclear Information System (INIS)

    Ma, Tao; Yang, Hongxing; Lu, Lin

    2014-01-01

    Highlights: • A feasibility study of a hybrid solar–wind–battery system is carried out. • Techno-economic evaluation is conducted for this proposed system. • Thousands of cases are simulated to achieve an optimal system configuration. • The performance of the proposed system is analyzed in detail. • A sensitivity analysis on its load and renewable energy resource is performed. - Abstract: This paper presents a detailed feasibility study and techno-economic evaluation of a standalone hybrid solar–wind system with battery energy storage for a remote island. The solar radiation and wind data on this island in 2009 was recorded for this study. The HOMER software was employed to do the simulations and perform the techno-economic evaluation. Thousands of cases have been carried out to achieve an optimal autonomous system configuration, in terms of system net present cost (NPC) and cost of energy (COE). A detailed analysis, description and expected performance of the proposed system were presented. Moreover, the effects of the PV panel sizing, wind turbine sizing and battery bank capacity on the system’s reliability and economic performance were examined. Finally, a sensitivity analysis on its load consumption and renewable energy resource was performed to evaluate the robustness of economic analysis and identify which variable has the greatest impact on the results. The results demonstrate the techno-economic feasibility of implementing the solar–wind–battery system to supply power to this island

  4. 33 CFR 183.420 - Batteries.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Batteries. 183.420 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Electrical Systems Manufacturer Requirements § 183.420 Batteries. (a) Each installed battery must not move more than one inch in any direction when a pulling force of...

  5. Continuous Improvement in Battery Testing at the NASA/JSC Energy System Test Area

    Science.gov (United States)

    Boyd, William; Cook, Joseph

    2003-01-01

    The Energy Systems Test Area (ESTA) at the Lyndon B. Johnson Space Center in Houston, Texas conducts development and qualification tests to fulfill Energy System Division responsibilities relevant to ASA programs and projects. EST A has historically called upon a variety of fluid, mechanical, electrical, environmental, and data system capabilities spread amongst five full-service facilities to test human and human supported spacecraft in the areas of propulsion systems, fluid systems, pyrotechnics, power generation, and power distribution and control systems. Improvements at ESTA are being made in full earnest of offering NASA project offices an option to choose a thorough test regime that is balanced with cost and schedule constraints. In order to continue testing of enabling power-related technologies utilized by the Energy System Division, an especially proactive effort has been made to increase the cost effectiveness and schedule responsiveness for battery testing. This paper describes the continuous improvement in battery testing at the Energy Systems Test Area being made through consolidation, streamlining, and standardization.

  6. A load predictive energy management system for supercapacitor-battery hybrid energy storage system in solar application using the Support Vector Machine

    International Nuclear Information System (INIS)

    Chia, Yen Yee; Lee, Lam Hong; Shafiabady, Niusha; Isa, Dino

    2015-01-01

    Highlights: • A novel energy management system (EMS) for supercapacitor-battery hybrid energy storage system is implemented. • It is a load predictive EMS which is implemented using Support Vector Machine (SVM). • An optimum SVM load prediction model is obtained, which yields 100% accuracy in 0.004866 s of training time. • The implemented load predictive EMS is compared with the conventional sequential programming control. • This methodology reduces the number of power electronics used and prolong battery lifespan. - Abstract: This paper presents the use of a Support Vector Machine load predictive energy management system to control the energy flow between a solar energy source, a supercapacitor-battery hybrid energy storage combination and the load. The supercapacitor-battery hybrid energy storage system is deployed in a solar energy system to improve the reliability of delivered power. The combination of batteries and supercapacitors makes use of complementary characteristic that allow the overlapping of a battery’s high energy density with a supercapacitors’ high power density. This hybrid system produces a straightforward benefit over either individual system, by taking advantage of each characteristic. When the supercapacitor caters for the instantaneous peak power which prolongs the battery lifespan, it also minimizes the system cost and ensures a greener system by reducing the number of batteries. The resulting performance is highly dependent on the energy controls implemented in the system to exploit the strengths of the energy storage devices and minimize its weaknesses. It is crucial to use energy from the supercapacitor and therefore minimize jeopardizing the power system reliability especially when there is a sudden peak power demand. This study has been divided into two stages. The first stage is to obtain the optimum SVM load prediction model, and the second stage carries out the performance comparison of the proposed SVM-load predictive

  7. A Novel Degradation Estimation Method for a Hybrid Energy Storage System Consisting of Battery and Double-Layer Capacitor

    Directory of Open Access Journals (Sweden)

    Yuanbin Yu

    2016-01-01

    Full Text Available This paper presents a new method for battery degradation estimation using a power-energy (PE function in a battery/ultracapacitor hybrid energy storage system (HESS, and the integrated optimization which concerns both parameters matching and control for HESS has been done as well. A semiactive topology of HESS with double-layer capacitor (EDLC coupled directly with DC-link is adopted for a hybrid electric city bus (HECB. In the purpose of presenting the quantitative relationship between system parameters and battery serving life, the data during a 37-minute driving cycle has been collected and decomposed into discharging/charging fragments firstly, and then the optimal control strategy which is supposed to maximally use the available EDLC energy is presented to decompose the power between battery and EDLC. Furthermore, based on a battery degradation model, the conversion of power demand by PE function and PE matrix is applied to evaluate the relationship between the available energy stored in HESS and the serving life of battery pack. Therefore, according to the approach which could decouple parameters matching and optimal control of the HESS, the process of battery degradation and its serving life estimation for HESS has been summed up.

  8. Joint Force Quarterly. Issue 41, 2nd Quarter, April 2006

    Science.gov (United States)

    2006-04-01

    companies participated, a million more people would be actively looking for threats. Aguas de Amazonas, a subsidiary of Suez Environnement, a...9 Richard B. Myers, “A Word from the Chair- man,” Joint Force Quarterly 37 (2d Quarter 2005), 5. 10 Wald, 26. 11 “Suez— Aguas de Amazonas Water for...humanitarian duties. They have overseen over 130 humani- tarian projects worth in excess of $7.6 million and ranging from a medical center, to potable

  9. Quarterly coal report, January--March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.

    1998-08-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for January through March 1998 and aggregated quarterly historical data for 1992 through the fourth quarter of 1997. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the United States, historical information has been integrated in this report. 58 tabs.

  10. Quarterly coal report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.

  11. Esophageal lesions following button-battery ingestion in children: Analysis of causes and proposals for preventive measures.

    Science.gov (United States)

    Lahmar, J; Célérier, C; Garabédian, E N; Couloigner, V; Leboulanger, N; Denoyelle, F

    2018-04-01

    To study recent cases of esophageal injury due to button-battery ingestion in children presenting in pediatric ENT emergency departments of the Paris area of France (Île-de-France region), in order to propose appropriate preventive measures. A retrospective descriptive single-center study included all children under 15 years of age, presenting in pediatric ENT emergency departments between January 2008 and April 2014 for button-battery ingestion with esophageal impaction requiring emergency removal. Twenty-two boys and 4 girls, with a median age of 25 months, were included. Twenty-five of the 26 batteries had diameters of 20mm or more. Median esophageal impaction time was 7 hours 30 minutes (range, 2 to 72 hours). The complications rate was 23%. Mean hospital stay cost was €38,751 (range, €5130-119,737). The origin of the battery was known in 23 of the 26 cases: remote control without screw-secured compartment (42.3%), open battery pack (15.4%), children's toy (15.3%), camera (7.7%), watch (1 case) and hearing aid without screw-secured compartment (1 case). Esophageal lesions due to ingestion of button-batteries in children are almost always due to batteries larger than 20mm in diameter, mostly from devices with a poorly protected compartment, or batteries that are not individually packaged. These lesions cause serious complications in a quarter of cases and their management entails high health costs. Legislation requiring screw-secured compartments and individual blisters for batteries could have prevented 69.2% of the ingestions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Quarterly coal report, July--September 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1998 and aggregated quarterly historical data for 1992 through the second quarter of 1998. 58 tabs.

  13. Batteries and Energy Storage | Argonne National Laboratory

    Science.gov (United States)

    Skip to main content Argonne National Laboratory Toggle Navigation Toggle Search Energy Batteries Security User Facilities Science Work with Us Energy Batteries and Energy Storage Energy Systems Modeling Transportation SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans

  14. Quarterly report for the electricity market. 1. quarter of 2012; Kvartalsrapport for kraftmarknaden. 1. kvartal 2012

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Finn Erik Ljaastad; Eliston, Anton Jaynanand; Guren, Ingri; Homqvist, Erik; Lund, Per Tore Jensen; Magnussen, Ingrid; Rasmussen, Kristian; Ulriksen, Margit Iren

    2012-07-01

    The first quarter of 2012 was unusually mild and wetter than normal. Total inflow was 16.8 TWh, 7.5 TWh more than normal. This ensured a high reservoir levels and at the end of the quarter the filling was 50.5 percent. It is 12.5 percentage points over the normal for the time of year and 32.4 percentage points higher than the same time last year. Norway had a power consumption of 37.5 TWh in the first quarter, which is 2.3 percent less than in the same quarter last year. the past 12 months, consumption has been 124.2 TWh, compared with 129.7 TWh the preceding 12 months. Power production in Norway was 42.3 TWh in the first quarter - an increase of 32.3 percent compared with the same quarter last year. The last 12 months have the Norwegian production been 138.5 TWh compared to 117.7 TWh the the previous 12 months. The production increase is due to milder and wetter weather than normal over the past year. This involvement also high the exports abroad. In the first quarter, Norway had a net export of 4.8 TWh, compared with a net import of 6.4 TWh in the first quarter last year. The good resource, combined with a low consumption gave a low price level in wholesale market for electricity. On average for the fourth quarter was the average spot price in the South and West Norway, Nok 272 and 275 / MWh. In Eastern Norway, the average price of Nok 283 / MWh, while it was Nok 285 / MWh in the Middle and Northern Norway. (Author)

  15. Multi-physics Model for the Aging Prediction of a Vanadium Redox Flow Battery System

    International Nuclear Information System (INIS)

    Merei, Ghada; Adler, Sophie; Magnor, Dirk; Sauer, Dirk Uwe

    2015-01-01

    Highlights: • Present a multi-physics model of vanadium redox-flow battery. • This model is essential for aging prediction. • It is applicable for VRB system of different power and capacity ratings. • Good results comparing with current research in this field. - Abstract: The all-vanadium redox-flow battery is an attractive candidate to compensate the fluctuations of non-dispatchable renewable energy generation. While several models for vanadium redox batteries have been described yet, no model has been published, which is adequate for the aging prediction. Therefore, the present paper presents a multi-physics model which determines all parameters that are essential for an aging prediction. In a following paper, the corresponding aging model of vanadium redox flow battery (VRB) is described. The model combines existing models for the mechanical losses and temperature development with new approaches for the batteries side reactions. The model was implemented in Matlab/Simulink. The modeling results presented in the paper prove to be consistent with the experimental results of other research groups

  16. Verification of Safety Margins of Battery Banks Capacity of Class 1E DC System in a Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lukman, Abdulrauf; Zhu, Oon-Pyo

    2015-01-01

    According to Ref 'Station blackout (SBO) is generally a plant condition with complete loss of all alternating current (AC) power from off-site sources, from the main generator and from standby AC power sources important to safety to the essential and nonessential switchgear buses. Direct current (DC) power supplies and uninterruptible AC power supplies may be available as long as batteries can supply the loads, alternate AC power supplies are available'. The above IAEA document indicated the importance of batteries during SBO. Prior to the Fukushima accident, most batteries might be designed with coping capability of four hours. However, the accident showed the need for the coping capability to be increased to at least eight hours. The purpose of this research is to verify the safety capacity margin of the nuclear qualified battery banks of class 1E DC system and test the response to SBO using the load profile of a Korean design nuclear power plant (NPP). The capacity margins of class 1E batteries of DC power system batteries in a nuclear power plant were determined using the load profile of the plant. It was observed that if appropriate manufacturer Kt data are not available, the accuracy of the battery capacity might not be accurately calculated. The result obtained shows that the batteries have the coping capability of two hours for channel A and B, and eight hours for channel C and D. Also capacity margin as show in figure show a reasonable margin for each batteries of the DC system

  17. Decontamination systems information and research program. Quarterly report, April--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    West Virginia University (WVU) and the US Department of Energy Morgantown Energy Technology Center (DOE/METC) entered into a Cooperative Agreement on August 29, 1992 titled `Decontamination Systems Information and Research Programs`. Requirements stipulated by the Agreement require WVU to submit Technical Progress reports on a quarterly basis. This report contains the efforts of the fourteen research projects comprising the Agreement for the period April 1 to June 30, 1995. During this period three new projects have been funded by the Agreement. These projects are: (1) WERC National Design Contest, (2) Graduate Interns to the Interagency Environmental Technology Office under the National Science and Technology Council, and (3) WV High Tech Consortium.

  18. 12 CFR 997.4 - Calculation of the quarterly present-value determination.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Calculation of the quarterly present-value determination. 997.4 Section 997.4 Banks and Banking FEDERAL HOUSING FINANCE BOARD NON-BANK SYSTEM ENTITIES RESOLUTION FUNDING CORPORATION OBLIGATIONS OF THE BANKS § 997.4 Calculation of the quarterly present-value...

  19. Aluminum-air battery crystallizer

    Science.gov (United States)

    Maimoni, A.

    1987-01-01

    A prototype crystallizer system for the aluminum-air battery operated reliably through simulated startup and shutdown cycles and met its design objectives. The crystallizer system allows for crystallization and removal of the aluminium hydroxide reaction product; it is required to allow steady-state and long-term operation of the aluminum-air battery. The system has to minimize volume and maintain low turbulence and shear to minimize secondary nucleation and energy consumption while enhancing agglomeration. A lamella crystallizer satisfies system constraints.

  20. NASA Aerospace Flight Battery Program: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries. Volume 1, Part 3

    Science.gov (United States)

    Jung, David S.; Lee, Leonine S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 3 - Volume I: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries of the program's operations.

  1. Polymeric membrane systems of potential use for battery separators

    Science.gov (United States)

    Philipp, W. H.

    1977-01-01

    Two membrane systems were investigated that may have potential use as alkaline battery separators. One system comprises two miscible polymers: a support polymer (e.g., polyvinyl formal) and an ion conductor such as polyacrylic acid. The other system involves a film composed of two immiscible polymers: a conducting polymer (e.g., calcium polyacrylate) suspended in an inert polymer support matrix, polyphenylene oxide. Resistivities in 45-percent potassium hydroxide and qualitative mechanical properties are presented for films comprising various proportions of conducting and support polymers. In terms of these parameters, the results are encouraging for optimum ratios of conducting to support polymers.

  2. Crewed Space Vehicle Battery Safety Requirements

    Science.gov (United States)

    Jeevarajan, Judith A.; Darcy, Eric C.

    2014-01-01

    This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.

  3. Second International Conference on Batteries for Utility Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-24

    This is a collection of essays presented at the above-named conference held at New Port Beach, U.S., from July 24 through 28, 1989. At the utility energy storage session, it is found that the 100kW-capable Na-S battery system of the Kansai Electric Power Company, Inc., works effectively in levelling peakloads at storage efficiency of 70%. A Chino lead-acid battery system is also described. A lead-acid battery system of the BEWAG Corporation of Germany equipped with tubular electrodes is described. For application by the consuming party, system behavior relative to duty cycle control, sudden request for energy storage, power factor, and load adjustment is discussed. Use of a valve-controlled lead-acid battery is introduced, which is to be used as a stand-by system (such as an uninterruptible power supply) or for certain types of cyclic duties. At the 4th session, economic and technical models are exhibited. Computer-aided peakload prediction, battery storage system technology, economic parameters, profitability, etc., are explained for use by the consuming party in a peakload shaving battery system. The Zn/Br battery, redox-flow battery, and other advanced technologies are also presented. (NEDO)

  4. New developments in battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J

    1982-01-01

    Practical, high energy density alternatives to the lead-acid battery are considered for both vehicular and utility load-leveling use, in view of year 2000 potential markets. After demonstrating the high costs and low energy densities and life cycles of lead/acid, nickel/iron and nickel/zinc systems, as well as batteries using gaseous electrodes such as the nickel/hydrogen system employed by communication satellites and those taking advantage of light metals like lithium and sodium, a description is given of the design features and operational characteristics of the sodium/sulfur battery. Attention is given to both internal and external sodium volume battery configurations, both of which employ beta alumina as a solid electrolyte with high sodium ion conductivity, and molten sodium and sulfur at 350 C. It is the thermal insulation of the sodium/sulfur battery that makes its application to electric vehicles difficult, despite a very high energy density.

  5. Design, control and power management of a battery/ultra-capacitor hybrid system for small electric vehicles

    DEFF Research Database (Denmark)

    Li, Zhihao; Onar, Omer; Khaligh, Alireza

    2009-01-01

    This paper introduces design, control, and power management of a battery/ultra-capacitor hybrid system, utilized for small electric vehicles (EV). The batteries are designed and controlled to work as the main energy storage source of the vehicle, supplying average power to the load; and the ultra...

  6. Development of a new electric battery electric power storage system. Results of the 12-year R and D; Shingata denchi denryoku chozo system kaihatsu. 12 nenkan no kenkyu kaihatsu no seika

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The paper described the results of the R and D which have been continued for 12 years on a new electric battery electric power storage system (load leveling function). The electric batteries for study were Na-S, Zn-Cl, Zn-Br, and redox type. Charge/discharge operation of 211 times was conducted of a pilot plant with a Na-S battery 1,000kW and 8-hour capacity. The overall efficiency of system was 71.5-76.0%, and the energy efficiency of battery was 86%. As a whole, the performance was able to be confirmed which can fulfil a developmental target. The system overall efficiency of 65.9% and battery efficiency of 76.1% were obtained. The experiment on battery life was carried out at plant together with the pilot operation. The mean life of Na-S battery was estimated at 800 cycles, and that of Zn-Br battery at 500-800 cycles. The effectiveness of the new electric battery electric power storage system was technically verified. For the future commercialization, studies on the following are needed: enhancement of reliability, easiness in maintenance/inspection, size reduction, cost reduction, etc. (NEDO)

  7. Quarterly coal report, January--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-24

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1994 and aggregated quarterly historical data for 1986 through the fourth quarter of 1993. Appendix A displays, from 1986 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  8. Quarterly coal report, October--December 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities. This report presents detailed quarterly data for october through December 1997 and aggregated quarterly historical data for 1991 through the third quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data, as specified in Section 202 of the energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

  9. Quarterly coal report, January--March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience,including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1997 and aggregated quarterly historical data for 1991 through the fourth quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  10. The Study of Operation Modes and Control Strategies of a Multidirectional MC for Battery Based System

    Directory of Open Access Journals (Sweden)

    Saman Toosi

    2015-01-01

    Full Text Available To enhance the performance of stand-alone battery based system and to achieve the continuous power transmission, the behavior of multidirectional matrix converter (MDMC has been analyzed in different operation modes. A systematic method interfacing a renewable source, a storage battery, and a load is proposed for a stand-alone battery based power system (SABBPS to utilize the MDMC as PWM converter, inverter, or PWM converter and inverter in different operation modes. In this study, the Extended Direct Duty Pulse Width Modulation (EDDPWM technique has been applied to control the power flow path between the renewable source, load, and the battery. Corresponding to generator voltage, input frequency, and loads demands, several operating states and control strategies are possible. Therefore, the boundaries and distribution of operation modes are discussed and illustrated to improve the system performance. The mathematical equation of the EDDPWM under different operation modes has been derived to achieve the maximum voltage ratio in each mode. The theoretical and modulation concepts presented have been verified in simulation using MATLAB and experimental testing. Moreover, the THD, ripple, and power flow direction have been analyzed for output current to investigate the behavior of system in each operation mode.

  11. Hierarchically structured materials for lithium batteries

    International Nuclear Information System (INIS)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Ji-Guang

    2013-01-01

    The lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles, including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles. With the increasing demand for devices of high-energy densities (>500 Wh kg −1 ), new energy storage systems, such as lithium–oxygen (Li–O 2 ) batteries and other emerging systems beyond the conventional LIB, have attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performance of these energy storage systems depends not only on the composition of the materials, but also on the structure of the electrode materials used in the batteries. Although the desired performance characteristics of batteries often have conflicting requirements with the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflicting requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li–O 2 batteries. Our goal is to elucidate (1) how to realize the full potential of energy materials through the manipulation of morphologies, and (2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties and prolongs the electrode stability and battery lifetime. (paper)

  12. Ballistic negatron battery

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.S.R. [Koneru Lakshmiah Univ.. Dept. of Electrical and Electronics Engineering, Green fields, Vaddeswaram (India)

    2012-07-01

    If we consider the Statistics there is drastic increase in dependence of batteries from year to year, due to necessity of power storage equipment at homes, power generating off grid and on grid Wind, PV systems, etc.. Where wind power is leading in renewable sector, there is a need to look at its development. Considering the scenario in India, most of the wind resource areas are far away from grid and the remaining areas which are near to grid are of low wind currents which is of no use connecting these equipment directly to grid. So, there is a need for a power storage utility to be integrated, such as the BNB (Ballistic Negatron Battery). In this situation a country like India need a battery which should be reliable, cheap and which can be industrialized. So this paper presents the concept of working, design, operation, adaptability of a Ballistic Negatron Battery. Unlike present batteries with low energy density, huge size, more weight, more charging time and low resistant to wear level, this Ballistic Negatron Battery comes with, 1) High energy storage capability (many multiples more than the present most advanced battery). 2) Very compact in size. 3) Almost negligible in weight compared to present batteries. 4) Charges with in very less time. 5) Never exhibits a wear level greater than zero. Seems like inconceivable but adoptable with simple physics. This paper will explains in detail the principle, model, design, construction and practical considerations considered in making this battery. (Author)

  13. Battery Ownership Model - Medium Duty HEV Battery Leasing & Standardization

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Ken; Smith, Kandler; Cosgrove, Jon; Prohaska, Robert; Pesaran, Ahmad; Paul, James; Wiseman, Marc

    2015-12-01

    Prepared for the U.S. Department of Energy, this milestone report focuses on the economics of leasing versus owning batteries for medium-duty hybrid electric vehicles as well as various battery standardization scenarios. The work described in this report was performed by members of the Energy Storage Team and the Vehicle Simulation Team in NREL's Transportation and Hydrogen Systems Center along with members of the Vehicles Analysis Team at Ricardo.

  14. Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System

    Directory of Open Access Journals (Sweden)

    Michael Schimpe

    2018-03-01

    Full Text Available Utility-scale battery storage systems typically consist of multiple smaller units contributing to the overall power dispatch of the system. Herein, the power distribution among these units is analyzed and optimized to operate the system with increased energy efficiency. To improve the real-life storage operation, a holistic system model for battery storage systems has been developed that enables a calculation of the energy efficiency. A utility-scale Second-Life battery storage system with a capacity of 3.3 MWh/3 MW is operated and evaluated in this work. The system is in operation for the provision of primary control reserve in combination with intraday trading for controlling the battery state of charge. The simulation model is parameterized with the system data. Results show that losses in power electronics dominate. An operational strategy improving the energy efficiency through an optimized power flow distribution within the storage system is developed. The power flow distribution strategy is based on the reduction of the power electronics losses at no-load/partial-load by minimizing their in-operation time. The simulation derived power flow distribution strategy is implemented in the real-life storage system. Field-test measurements and analysis prove the functionality of the power flow distribution strategy and reveal the reduction of the energy throughput of the units by 7%, as well as a significant reduction of energy losses in the units by 24%. The cost savings for electricity over the system’s lifetime are approximated to 4.4% of its investment cost.

  15. 10 CFR 34.29 - Quarterly inventory.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Quarterly inventory. 34.29 Section 34.29 Energy NUCLEAR... RADIOGRAPHIC OPERATIONS Equipment § 34.29 Quarterly inventory. (a) Each licensee shall conduct a quarterly physical inventory to account for all sealed sources and for devices containing depleted uranium received...

  16. On-line self-learning time forward voltage prognosis for lithium-ion batteries using adaptive neuro-fuzzy inference system

    Science.gov (United States)

    Fleischer, Christian; Waag, Wladislaw; Bai, Ziou; Sauer, Dirk Uwe

    2013-12-01

    The battery management system (BMS) of a battery-electric road vehicle must ensure an optimal operation of the electrochemical storage system to guarantee for durability and reliability. In particular, the BMS must provide precise information about the battery's state-of-functionality, i.e. how much dis-/charging power can the battery accept at current state and condition while at the same time preventing it from operating outside its safe operating area. These critical limits have to be calculated in a predictive manner, which serve as a significant input factor for the supervising vehicle energy management (VEM). The VEM must provide enough power to the vehicle's drivetrain for certain tasks and especially in critical driving situations. Therefore, this paper describes a new approach which can be used for state-of-available-power estimation with respect to lowest/highest cell voltage prediction using an adaptive neuro-fuzzy inference system (ANFIS). The estimated voltage for a given time frame in the future is directly compared with the actual voltage, verifying the effectiveness and accuracy of a relative voltage prediction error of less than 1%. Moreover, the real-time operating capability of the proposed algorithm was verified on a battery test bench while running on a real-time system performing voltage prediction.

  17. Micro-battery Development for Juvenile Salmon Acoustic Telemetry System Applications

    Science.gov (United States)

    Chen, Honghao; Cartmell, Samuel; Wang, Qiang; Lozano, Terence; Deng, Z. Daniel; Li, Huidong; Chen, Xilin; Yuan, Yong; Gross, Mark E.; Carlson, Thomas J.; Xiao, Jie

    2014-01-01

    The Endangered Species Act requires actions that improve the passage and survival rates for migrating salmonoids and other fish species that sustain injury and mortality when passing through hydroelectric dams. To develop a low-cost revolutionary acoustic transmitter that may be injected instead of surgically implanted into the fish, one major challenge that needs to be addressed is the micro-battery power source. This work focuses on the design and fabrication of micro-batteries for injectable fish tags. High pulse current and required service life have both been achieved as well as doubling the gravimetric energy density of the battery. The newly designed micro-batteries have intrinsically low impedance, leading to significantly improved electrochemical performances at low temperatures as compared with commercial SR416 batteries. Successful field trial by using the micro-battery powered transmitters injected into fish has been demonstrated, providing an exemplary model of transferring fundamental research into practical devices with controlled qualities.

  18. Methods for thermodynamic evaluation of battery state of health

    Science.gov (United States)

    Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T

    2013-05-21

    Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.

  19. Lithium-ion batteries advances and applications

    CERN Document Server

    Pistoia, Gianfranco

    2014-01-01

    Lithium-Ion Batteries features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. Lithium-Ion Batteries also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwi

  20. Design And Construction Of Microcontroller Based Solar Battery Charger

    Directory of Open Access Journals (Sweden)

    Zar Ni Tun

    2015-08-01

    Full Text Available This research paper describes a microcontroller based battery charger by using solar energy. Solar-powered charging systems are already available in rural as well as urban areas. Solar energy is widely used around the worldwide. This system converts solar energy to electrical energy and stores it in a battery. Photovoltaic panel is used to convert solar energy to electrical energy and stored in a 12V battery. Battery is the main component in solar charging system to store the energy generated from sunlight for various application. This system requires sensor to sense whether the battery is fully charged or not. Microcontroller is the heart of the circuit. Lead-acid batteries are the most commonly used power source for many applications. This system consists of voltage sensing charging controlling and display unit.

  1. Using Atmospheric Pressure Tendency to Optimise Battery Charging in Off-Grid Hybrid Wind-Diesel Systems for Telecoms

    Directory of Open Access Journals (Sweden)

    Stephen Daniels

    2013-06-01

    Full Text Available Off grid telecom base stations in developing nations are powered by diesel generators. They are typically oversized and run at a fraction of their rated load for most of their operating lifetime. Running generators at partial load is inefficient and, over time, physically damages the engine. A hybrid configuration uses a battery bank, which powers the telecoms’ load for a portion of the time. The generator only operates when the battery bank needs to be charged. Adding a wind turbine further reduces the generator run hours and saves fuel. The generator is oblivious to the current wind conditions, which leads to simultaneous generator-wind power production. As the batteries become charged by the generator, the wind turbine controller is forced to dump surplus power as heat through a resistive load. This paper details how the relationship between barometric pressure and wind speed can be used to add intelligence to the battery charger. A Simulink model of the system is developed to test the different battery charging configurations. This paper demonstrates that if the battery charger is aware of upcoming wind conditions, it will provide modest fuel savings and reduce generator run hours in small-scale hybrid energy systems.

  2. Prospects and Limits of Energy Storage in Batteries.

    Science.gov (United States)

    Abraham, K M

    2015-03-05

    Energy densities of Li ion batteries, limited by the capacities of cathode materials, must increase by a factor of 2 or more to give all-electric automobiles a 300 mile driving range on a single charge. Battery chemical couples with very low equivalent weights have to be sought to produce such batteries. Advanced Li ion batteries may not be able to meet this challenge in the near term. The state-of-the-art of Li ion batteries is discussed, and the challenges of developing ultrahigh energy density rechargeable batteries are identified. Examples of ultrahigh energy density battery chemical couples include Li/O2, Li/S, Li/metal halide, and Li/metal oxide systems. Future efforts are also expected to involve all-solid-state batteries with performance similar to their liquid electrolyte counterparts, biodegradable batteries to address environmental challenges, and low-cost long cycle-life batteries for large-scale energy storage. Ultimately, energy densities of electrochemical energy storage systems are limited by chemistry constraints.

  3. Symposium on Electrochemical and Thermal Modeling of Battery, Fuel Cell, and Photoenergy Conversion Systems, San Diego, CA, Oct. 20-22, 1986, Proceedings

    Science.gov (United States)

    Selman, J. Robert; Maru, Hans C.

    Papers are presented on modeling of the zinc chlorine battery, design modeling of zinc/bromine battery systems, the modeling of aluminum-air battery systems, and a point defect model for a nickel electrode structure. Also considered are the impedance of a tubular electrode under laminar flow, mathematical modeling of a LiAl/Cl2 cell with a gas diffusion Cl2 electrode, ultrahigh power batteries, and battery thermal modeling. Other topics include an Na/beta-alumina/NaAlCl4, Cl2/C circulating cell, leakage currents in electrochemical systems having common electrodes, modeling for CO poisoning of a fuel cell anode, electrochemical corrosion of carbonaceous materials, and electrolyte management in molten carbonate fuel cells.

  4. Development of a thin-shaped lightweight MF battery for motorcycles. Nirinshayo usugata keiryo maintenance free battery no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S.; Onozuka, T. (Honda Motor Co. Ltd., Tokyo (Japan)); Uemichi, S. (Yuasa Battery Co. Ltd., Osaka (Japan))

    1992-08-01

    This paper describes a thin-shaped lightweight maintenance free motorcycle battery used in a motor scooter, a new product from Honda Motors launching its sales in 1992, as well as the related structural development thereof. The points aimed at in the development include more utilization of available space in a vehicle, improved maintainability, and adoption of perfect instant activation system (dry-charged system) which makes a battery serviceable upon initial filling of electrolyte. Attentions have been given on reducing the battery volume by 30% and weight by 20% compared with the conventional batteries, and ensuring interchangeability, leakage-free performance, and free and easy replacement. Contrivances for practical application have been given on assuring low-temperature high-rate discharge performance for reliable engine starting. Devised also are the thinner battery plates, better vibration resistance, longer life, uniformed plate thickness, higher separator porosity, and better stability in plate group pressurization. Better performance than the conventional batteries was realized by improving parts construction and mounting systems, including one-touch terminal connection, fast coupling of terminal posts, soldering, and fuse built-in couplers. The battery has superior appearance and design. 18 figs.

  5. Quarterly financial reports | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Quarterly Financial Report for the period ending 31 December 2011 · Quarterly Financial Report for the period ending 30 September 2011 · Quarterly Financial Report for the period ending 30 June 2011 · Summary of Expense Reductions to Accommodate Budget 2012 Appropriation Reduction (PDF) · What we do · Funding ...

  6. A low pressure bipolar nickel-hydrogen battery

    Energy Technology Data Exchange (ETDEWEB)

    Golben, M.; Nechev, K.; DaCosta, D.H.; Rosso, M.J.

    1997-12-01

    Ergenics is developing a low pressure high power rechargeable battery for electric vehicles and other large battery applications. The Hy-Stor{trademark} battery couples a bipolar nickel-hydrogen electrochemical system with the high energy storage density of metal hydride technology. In addition to its long cycle life, high specific power, and energy density, this battery offers safety and economic advantages over other rechargeable batteries. Results from preliminary testing of the first Hy-Stor battery are presented.

  7. Standby battery requirements for telecommunications power

    Energy Technology Data Exchange (ETDEWEB)

    May, G.J. [The Focus Partnership, 126 Main Street, Swithland, Loughborough, Leics LE12 8TJ (United Kingdom)

    2006-08-25

    The requirements for standby power for telecommunications are changing as the network moves from conventional systems to Internet Protocol (IP) telephony. These new systems require higher power levels closer to the user but the level of availability and reliability cannot be compromised if the network is to provide service in the event of a failure of the public utility. Many parts of these new networks are ac rather than dc powered with UPS systems for back-up power. These generally have lower levels of reliability than dc systems and the network needs to be designed such that overall reliability is not reduced through appropriate levels of redundancy. Mobile networks have different power requirements. Where there is a high density of nodes, continuity of service can be reasonably assured with short autonomy times. Furthermore, there is generally no requirement that these networks are the provider of last resort and therefore, specifications for continuity of power are directed towards revenue protection and overall reliability targets. As a result of these changes, battery requirements for reserve power are evolving. Shorter autonomy times are specified for parts of the network although a large part will continue to need support for hours rather minutes. Operational temperatures are increasing and battery solutions that provide longer life in extreme conditions are becoming important. Different battery technologies will be discussed in the context of these requirements. Conventional large flooded lead/acid cells both with pasted and tubular plates are used in larger central office applications but the majority of requirements are met with valve-regulated lead/acid (VRLA) batteries. The different types of VRLA battery will be described and their suitability for various applications outlined. New developments in battery construction and battery materials have improved both performance and reliability in recent years. Alternative technologies are also being proposed

  8. Validation of battery-alternator model against experimental data - a first step towards developing a future power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Boulos, A.M.; Burnham, K.J.; Mahtani, J.L. [Coventry University (United Kingdom). Control Theory and Applications Centre; Pacaud, C. [Jaguar Cars Ltd., Coventry (United Kingdom). Engineering Centre

    2004-01-01

    The electric power system of a modern vehicle has to supply enough electrical energy to drive numerous electrical and electronic systems and components. The electric power system of a vehicle consists of two major components: an alternator and a battery. A detailed understanding of the characteristics of the electric power system, electrical load demands and the operating environment, such as road conditions and vehicle laden weight, is required when the capacities of the generator and the battery are to be determined for a vehicle. In this study, a battery-alternator system has been developed and simulated in MATLAB/Simulink, and data obtained from vehicle tests have been used as a basis for validating the models. This is considered to be a necessary first step in the design and development of a new 42 V power supply system. (author)

  9. Model predictive control for power fluctuation supression in hybrid wind/PV/battery systems

    DEFF Research Database (Denmark)

    You, Shi; Liu, Zongyu; Zong, Yi

    2015-01-01

    A hybrid energy system, the combination of wind turbines, PV panels and battery storage with effective control mechanism, represents a promising solution to the power fluctuation problem when integrating renewable energy resources (RES) into conventional power systems. This paper proposes a model...

  10. Hybrid hydrogen-battery systems for renewable off-grid telecom power

    OpenAIRE

    Scamman, D.; Newborough, M.; Bustamante, H.

    2015-01-01

    Off-grid hybrid systems, based on the integration of hydrogen technologies (electrolysers, hydrogen stores and fuel cells) with battery and wind/solar power technologies, are proposed for satisfying the continuous power demands of telecom remote base stations. A model was developed to investigate the preferred role for electrolytic hydrogen within a hybrid system; the analysis focused on powering a 1 kW telecom load in three locations of distinct wind and solar resource availability. When com...

  11. Enabling fast charging - Battery thermal considerations

    Science.gov (United States)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler; Wood, Eric; Ahmed, Shabbir; Bloom, Ira; Dufek, Eric; Shirk, Matthew; Meintz, Andrew; Kreuzer, Cory; Michelbacher, Christopher; Burnham, Andrew; Stephens, Thomas; Francfort, James; Carlson, Barney; Zhang, Jiucai; Vijayagopal, Ram; Hardy, Keith; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Jansen, Andrew N.; Tanim, Tanvir; Markel, Anthony

    2017-11-01

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  12. 46 CFR 72.15-20 - Ventilation for crew quarters and passenger spaces.

    Science.gov (United States)

    2010-10-01

    ... shown that a natural system will provide adequate ventilation. However, vessels which trade regularly in... 46 Shipping 3 2010-10-01 2010-10-01 false Ventilation for crew quarters and passenger spaces. 72... VESSELS CONSTRUCTION AND ARRANGEMENT Ventilation § 72.15-20 Ventilation for crew quarters and passenger...

  13. Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter

    Science.gov (United States)

    Khateeb, Siddique A.; Farid, Mohammed M.; Selman, J. Robert; Al-Hallaj, Said

    A lithium-ion battery employing a novel phase change material (PCM) thermal management system was designed for an electric scooter. Passive thermal management systems using PCM can control the temperature excursions and maintain temperature uniformity in Li-ion batteries without the use of active cooling components such as a fan, a blower or a pump found in air/liquid-cooling systems. Hence, the advantages of a compact, lightweight, and energy efficient system can be achieved with this novel form of thermal management system. Simulation results are shown for a Li-ion battery sub-module consisting of nine 18650 Li-ion cells surrounded by PCM with a melting point between 41 and 44 °C. The use of aluminum foam within the PCM and fins attached to the battery module were studied to overcome the low thermal conductivity of the PCM and the low natural convection heat transfer coefficient. The comparative results of the PCM performance in the presence of Al-foam and Al-fins are shown. The battery module is also simulated for summer and winter conditions. The effect of air-cooling on the Li-ion battery was also studied. These simulation results demonstrate the successful use of the PCM as a potential candidate for thermal management solution in electric scooter applications and therefore for other electric vehicle applications.

  14. Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the US Department of Energy: Quarter ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Ruhter, W.D.; Strait, R.S.; Mansur, D.L.; Davis, G.

    1993-10-01

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the fourth quarter of Fiscal Year 1993 (July through September, 1993). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in five areas: Safeguards Technology, Safeguard System Studies, Computer Security, DOE Automated Physical Security and DOE Automated Visitor Access Control System. The remainder of this report describes the activities in each of these five areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

  15. Synchronization method for grid integrated battery storage systems during asymmetrical grid faults

    Directory of Open Access Journals (Sweden)

    Popadić Bane

    2017-01-01

    Full Text Available This paper aims at presenting a robust and reliable synchronization method for battery storage systems during asymmetrical grid faults. For this purpose, a Matlab/Simulink based model for testing of the power electronic interface between the grid and the battery storage systems has been developed. The synchronization method proposed in the paper is based on the proportional integral resonant controller with the delay signal cancellation. The validity of the synchronization method has been verified using the advanced laboratory station for the control of grid connected distributed energy sources. The proposed synchronization method has eliminated unfavourable components from the estimated grid angular frequency, leading to the more accurate and reliable tracking of the grid voltage vector positive sequence during both the normal operation and the operation during asymmetrical grid faults. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 042004: Integrated and Interdisciplinary Research entitled: Smart Electricity Distribution Grids Based on Distribution Management System and Distributed Generation

  16. Optimization of station battery replacement

    International Nuclear Information System (INIS)

    Jancauskas, J.R.; Shook, D.A.

    1994-01-01

    During a loss of ac power at a nuclear generating station (including diesel generators), batteries provide the source of power which is required to operate safety-related components. Because traditional lead-acid batteries have a qualified life of 20 years, the batteries must be replaced a minimum of once during a station's lifetime, twice if license extension is pursued, and more often depending on actual in-service dates and the results of surveillance tests. Replacement of batteries often occurs prior to 20 years as a result of systems changes caused by factors such as Station Blackout Regulations, control system upgrades, incremental load growth, and changes in the operating times of existing equipment. Many of these replacement decisions are based on the predictive capabilities of manual design basis calculations. The inherent conservatism of manual calculations may result in battery replacements occurring before actually required. Computerized analysis of batteries can aid in optimizing the timing of replacements as well as in interpreting service test data. Computerized analysis also provides large benefits in maintaining the as-configured load profile and corresponding design margins, while also providing the capability of quickly analyze proposed modifications and response to internal and external audits

  17. Aluminum-air battery: System design alternatives and status of components

    Science.gov (United States)

    Maimoni, A.

    1988-09-01

    This report summarizes the status of the various components of the aluminum-air battery system developed for the U.S. Department of Energy Technology Base Project for Electrochemical Energy Storage from 1978 to mid-1987, and presents results of system analysis. Preliminary information indicated that the concentration of carbon dioxide in the incoming air will need to be reduced to 5--100 ppM. A detailed calculation was performed to predict the performance of a full-size-vehicle system with 6-m air-cathode surface area; results showed that previous estimates of system performance are reasonable and consistent with currently available components.

  18. Data-driven battery product development: Turn battery performance into a competitive advantage.

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal [Voltaiq, Inc.

    2016-04-19

    Poor battery performance is a primary source of user dissatisfaction across a broad range of applications, and is a key bottleneck hindering the growth of mobile technology, wearables, electric vehicles, and grid energy storage. Engineering battery systems is difficult, requiring extensive testing for vendor selection, BMS programming, and application-specific lifetime testing. This work also generates huge quantities of data. This presentation will explain how to leverage this data to help ship quality products faster using fewer resources while ensuring safety and reliability in the field, ultimately turning battery performance into a competitive advantage.

  19. Optimal Sizing and Placement of Battery Energy Storage in Distribution System Based on Solar Size for Voltage Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Nazaripouya, Hamidreza [Univ. of California, Los Angeles, CA (United States); Wang, Yubo [Univ. of California, Los Angeles, CA (United States); Chu, Peter [Univ. of California, Los Angeles, CA (United States); Pota, Hemanshu R. [Univ. of California, Los Angeles, CA (United States); Gadh, Rajit [Univ. of California, Los Angeles, CA (United States)

    2016-07-26

    This paper proposes a new strategy to achieve voltage regulation in distributed power systems in the presence of solar energy sources and battery storage systems. The goal is to find the minimum size of battery storage and its corresponding location in the network based on the size and place of the integrated solar generation. The proposed method formulates the problem by employing the network impedance matrix to obtain an analytical solution instead of using a recursive algorithm such as power flow. The required modifications for modeling the slack and PV buses (generator buses) are utilized to increase the accuracy of the approach. The use of reactive power control to regulate the voltage regulation is not always an optimal solution as in distribution systems R/X is large. In this paper the minimum size and the best place of battery storage is achieved by optimizing the amount of both active and reactive power exchanged by battery storage and its gridtie inverter (GTI) based on the network topology and R/X ratios in the distribution system. Simulation results for the IEEE 14-bus system verify the effectiveness of the proposed approach.

  20. 46 CFR 112.55-15 - Capacity of storage batteries.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close all...

  1. Automotive battery technology

    CERN Document Server

    Watzenig, Daniel

    2014-01-01

    The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.

  2. Systems Maturity Assessment of the Lithium Ion Battery for Extravehicular Mobility Unit Project

    Science.gov (United States)

    Russell, Samuel P.

    2011-01-01

    The Long Life (Lithium Ion) Battery (LLB/LIB) is designed to replace the current Extravehicular Mobility Unit (EMU) Silver/Zinc (Ag/Zn) Increased Capacity Battery (ICB), which is used to provide power to the Primary Life Support Subsystem (PLSS) during Extravehicular Activities (EVAs). The LLB (a battery based on commercial lithium ion cell technology) is designed to have the same electrical and mechanical interfaces as the current ICB. The EMU LIB Charger is designed to charge, discharge, and condition the LLB either in a charger-strapped configuration or in an EMU-mounted configuration. This paper will retroactively apply the principles of Systems Maturity Assessment to the LLB project through use of the Integration Readiness Level and Earned Readiness Management. The viability of this methodology will be considered for application to new and existing technology development projects.

  3. Multiple Electron Charge Transfer Chemistries for Electrochemical Energy Storage Systems: The Metal Boride and Metal Air Battery

    Science.gov (United States)

    Stuart, Jessica F.

    The primary focus of this work has been to develop high-energy capacity batteries capable of undergoing multiple electron charge transfer redox reactions to address the growing demand for improved electrical energy storage systems that can be applied to a range of applications. As the levels of carbon dioxide (CO2) increase in the Earth's atmosphere, the effects on climate change become increasingly apparent. According to the Energy Information Administration (EIA), the U.S. electric power sector is responsible for the release of 2,039 million metric tons of CO2 annually, equating to 39% of total U.S. energy-related CO2 emissions. Both nationally and abroad, there are numerous issues associated with the generation and use of electricity aside from the overwhelming dependence on fossil fuels and the subsequent carbon emissions, including reliability of the grid and the utilization of renewable energies. Renewable energy makes up a relatively small portion of total energy contributions worldwide, accounting for only 13% of the 3,955 billion kilowatt-hours of electricity produced each year, as reported by the EIA. As the demand to reduce our dependence on fossils fuels and transition to renewable energy sources increases, cost effective large-scale electrical energy storage must be established for renewable energy to become a sustainable option for the future. A high capacity energy storage system capable of leveling the intermittent nature of energy sources such as solar, wind, and water into the electric grid and provide electricity at times of high demand will facilitate this transition. In 2008, the Licht Group presented the highest volumetric energy capacity battery, the vanadium diboride (VB2) air battery, exceedingly proficient in transferring eleven electrons per molecule. This body of work focuses on new developments to this early battery such as fundamentally understanding the net discharge mechanism of the system, evaluation of the properties and

  4. Architecture for improved mass transport and system performance in redox flow batteries

    Science.gov (United States)

    Houser, Jacob; Pezeshki, Alan; Clement, Jason T.; Aaron, Douglas; Mench, Matthew M.

    2017-05-01

    In this work, electrochemical performance and parasitic losses are combined in an overall system-level efficiency metric for a high performance, all-vanadium redox flow battery. It was found that pressure drop and parasitic pumping losses are relatively negligible for high performance cells, i.e., those capable of operating at a high current density while at a low flow rate. Through this finding, the Equal Path Length (EPL) flow field architecture was proposed and evaluated. This design has superior mass transport characteristics in comparison with the standard serpentine and interdigitated designs at the expense of increased pressure drop. An Aspect Ratio (AR) design is discussed and evaluated, which demonstrates decreased pressure drop compared to the EPL design, while maintaining similar electrochemical performance under most conditions. This AR design is capable of leading to improved system energy efficiency for flow batteries of all chemistries.

  5. Recent Developments of Photovoltaics Integrated with Battery Storage Systems and Related Feed-In Tariff Policies: A Review

    Directory of Open Access Journals (Sweden)

    Angel A. Bayod-Rújula

    2017-01-01

    Full Text Available The paper presents a review of the recent developments of photovoltaics integrated with battery storage systems (PV-BESs and related to feed-in tariff policies. The integrated photovoltaic battery systems are separately discussed in the regulatory context of Germany, Italy, Spain, United Kingdom, Australia, and Greece; the attention of this paper is focused on those integrated systems subject to incentivisation policies such as feed-in tariff. Most of the contributions reported in this paper consider already existing incentive schemes; the remaining part of the contributions proposes interesting and novel feed-in tariff schemes. All the contributions provide an important resource for carrying out further research on a new era of incentive policies in order to promote storage technologies and integrated photovoltaic battery systems in smart grids and smart cities. Recent incentive policies adopted in Germany, Italy, Spain, and Australia are also discussed.

  6. A Distributed Control Strategy Based on DC Bus Signaling for Modular Photovoltaic Generation Systems With Battery Energy Storage

    DEFF Research Database (Denmark)

    Sun, Kai; Zhang, Li; Xing, Yan

    2011-01-01

    on improved dc bus signaling is proposed for a modular photovoltaic (PV) generation system with battery energy storage elements. In this paper, the modular PV generation system is composed of three modular dc/dc converters for PV arrays, two grid-connected dc/ac converters, and one dc/dc converter for battery......, grid-connected inversion, and islanding with constant voltage (CV) generation.The power balance of the system under extreme conditions such as the islanding operation with a full-charged battery is taken into account in this control strategy. The dc bus voltage level is employed as an information......Modular generation system, which consists of modular power conditioning converters, is an effective solution to integrate renewable energy sources with conventional utility grid to improve reliability and efficiency, especially for photovoltaic generation. A distributed control strategy based...

  7. 46 CFR 129.350 - Batteries-general.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Batteries-general. 129.350 Section 129.350 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.350 Batteries—general. (a) Wherever a battery is charged, there must be natural or induced ventilation to dissipate the gases generated. (b) Each battery...

  8. INL FY2014 1st Quarterly Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kinghorn, Loran [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-07-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 76 occurrence reports and over 16 other deficiency reports (including not reportable events) identified at the INL during the period of October 2013 through December 2013. Battelle Energy Alliance (BEA) operates the INL under contract DE AC 07 051D14517

  9. Lithium batteries: Status, prospects and future

    International Nuclear Information System (INIS)

    Scrosati, Bruno; Garche, Juergen

    2010-01-01

    Lithium batteries are characterized by high specific energy, high efficiency and long life. These unique properties have made lithium batteries the power sources of choice for the consumer electronics market with a production of the order of billions of units per year. These batteries are also expected to find a prominent role as ideal electrochemical storage systems in renewable energy plants, as well as power systems for sustainable vehicles, such as hybrid and electric vehicles. However, scaling up the lithium battery technology for these applications is still problematic since issues such as safety, costs, wide operational temperature and materials availability, are still to be resolved. This review focuses first on the present status of lithium battery technology, then on its near future development and finally it examines important new directions aimed at achieving quantum jumps in energy and power content. (author)

  10. A Study on Electric Power Smoothing System for Lead-Acid Battery of Stand-Alone Natural Energy Power System Using EDLC

    Science.gov (United States)

    Jia, Yan; Shibata, Ryosuke; Yamamura, Naoki; Ishida, Muneaki

    To resolve energy shortage and global warming problem, renewable natural resource and its power system has been gradually generalizing. However, the power fluctuation suppressing in short period and the balance control of consumption and supply in long period are two of main problems that need to be resolved urgently in natural energy power system. In Stand-alone Natural Energy Power System (SNEPS) with power energy storage devices, power fluctuation in short period is one of the main reasons that recharge cycle times increase and lead-acid battery early failure. Hence, to prolong the service life of lead-acid battery and improve power quality through suppressing the power fluctuation, we proposed a method of electric power smoothing for lead-acid battery of SNEPS using bi-directional Buck/Boost converter and Electric Double Layer Capacitor (EDLC) in this paper. According to the test data of existing SNEPS, a power fluctuation condition is selected and as an example to analyze the validity of the proposed method. The analysis of frequency characteristics indicates the power fluctuation is suppressed a desired range in the target frequency region. The experimental results of confirmed the feasibility of the proposed system and the results well satisfy the requirement of system design.

  11. Characterization of lithium batteries for application to photovoltaic systems

    International Nuclear Information System (INIS)

    Guzman Ortiz, S.

    2015-01-01

    This master's thesis addresses the characterization of four different types of Battery technologies; the li-ion, the LiFePO4, the lead crystal and the lead acid. Because these devices are used in electric applications, calculations were made to assess the capacities and energies of the batteries while at different discharges ratios in runs from 5 to 50 hours, which are the most common on the photovoltaic sector. Also, we observed the behavior of the batteries when put through a rise of temperature to measure the fluctuations in the voltage, capacity and energy. Tests were performed at constant power to observe the behavior of the discharge intensity. When making the comparisons of the capacity and the energy, the LiFePO4 battery proved to be the best and better behavior in the tests at constant discharge rates. (Author)

  12. Influence of Battery Parametric Uncertainties on the State-of-Charge Estimation of Lithium Titanate Oxide-Based Batteries

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Meng, Jinhao; Stroe, Daniel-Ioan

    2018-01-01

    to describe the battery dynamics. The SOC estimation method proposed in this paper is based on an Extended Kalman Filter (EKF) and nonlinear battery model which was parameterized using extended laboratory tests performed on several 13 Ah lithium titanate oxide (LTO)-based lithium-ion batteries. The developed......State of charge (SOC) is one of the most important parameters in battery management systems, as it indicates the available battery capacity at every moment. There are numerous battery model-based methods used for SOC estimation, the accuracy of which depends on the accuracy of the model considered...... a sensitivity analysis it was showed that the SOC and voltage estimation error are only slightly dependent on the variation of the battery model parameters with the SOC....

  13. Control and management of energy in a PV system equipped with batteries storage

    Directory of Open Access Journals (Sweden)

    Kamal Hirech

    2016-06-01

    Full Text Available In this paper we present a work concerning the conception, implementation and testing of a photovoltaic system that is equipped with a new concept of control and manage the energy in a PV system with a battery storage. The objective is to exploit the maximum of power using Hill climbing improved algorithm that considers optimal electrical characteristics of PV panels regardless of the system perturbation, to manage the energy between blocs of PV system in order to control the charge/discharge process and inject the energy surplus into the grid and also to estimate the state of charge with precision. Moreover, the system guarantees the acquisition and presentation of results on computer, supervision and so on. The results obtained show the robustness of the PV system, good control and protection of batteries under the maximum of energy provided by the PV panels. The state of charge estimation is evaluated by using measured parameters in real time; it shows an improvement of around 5% compared to the conventional technique.

  14. NASA Aerospace Flight Battery Program: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries. Volume 2, Part 3; Appendices

    Science.gov (United States)

    Jung, David S,; Lee, Leonine S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 3 - Volume II Appendices to Part 3 - Volume I.

  15. Status of the DOE battery and electrochemical technology program. III

    International Nuclear Information System (INIS)

    Roberts, R.

    1982-02-01

    This report reviews the status of the Department of Energy Subelement on Electrochemical Storage Systems. It emphasizes material presented at the Fourth US Department of Energy Battery and Electrochemical Contractors' Conference, held June 2-4, 1981. The conference stressed secondary batteries, however, the aluminum/air mechanically rechargeable battery and selected topics on industrial electrochemical processes were included. The potential contributions of the battery and electrochemical technology efforts to supported technologies: electric vehicles, solar electric systems, and energy conservation in industrial electrochemical processes, are reviewed. The analyses of the potential impact of these systems on energy technologies as the basis for selecting specific battery systems for investigation are noted. The battery systems in the research, development, and demonstration phase discussed include: aqueous mobile batteries (near term) - lead-acid, iron/nickel-oxide, zinc/nickel-oxide; advanced batteries - aluminum/air, iron/air, zinc/bromine, zinc/ferricyanide, chromous/ferric, lithium/metal sulfide, sodium/sulfur; and exploratory batteries - lithium organic electrolyte, lithium/polymer electrolyte, sodium/sulfur (IV) chloroaluminate, calcium/iron disulfide, lithium/solid electrolyte. Supporting research on electrode reactions, cell performance modeling, new battery materials, ionic conducting solid electrolytes, and electrocatalysis is reviewed. Potential energy saving processes for the electrowinning of aluminum and zinc, and for the electrosynthesis of inorganic and organic compounds are included

  16. Operation of Finnish nuclear power plants. Quarterly report, 3rd quarter 1996

    International Nuclear Information System (INIS)

    Sillanpaeae, T.

    1997-02-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The Report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. In the third quarter of 1996, the Finnish nuclear power plant units were in power operation except for the annual maintenance outages of Loviisa plant units and a shutdown at Olkiluoto 1 to identify and repair malfunctions of a high pressure turbine control valve. The load factor average of all plant units was 77.2%. Events in the third quarter of 1996 were classified level 0 on the International Nuclear Event Scale. Occupational doses and radioactive releases off-site were below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. The names of Teollisuuden Voima Oy's plant units have changed. Olkiluoto 1 and Olkiluoto 2 now replace the names TVO I and TVO II previously used in quarterly reports. (orig.)

  17. Control of a Multi-Functional Inverter for Grid Integration of PV and Battery Energy Storage System

    DEFF Research Database (Denmark)

    Mousazadeh, Seyyed Yousef; Firoozabadi, Mehdi Savaghebi; Beirami, A.

    2015-01-01

    This paper presents a multi-functional control of a DC/AC inverter for Power Quality compensation of nonlinear and unequal local loads and grid integration of hybrid photovoltaic (PV) and battery energy storage systems. Multi-layer neural network estimator and a DC/DC converter are used for maximum...... is used for delivering desire power to the grid. For compensation aim, instantaneous active and reactive power theory (p-q) is used. Via the algorithm, the DC/AC inverter not only can be controlled to inject the power of battery and PV, but also it is used as shunt active filter for compensating unequal...... power point tracking (MPPT) of PV array. The power system is 3-phase 4-wires and the DC/AC inverter is chosen 4-leg three phase inverter which has good performance in presence of zero sequence components. Battery energy storage is connected to PV system in common DC bus and a power management strategy...

  18. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter 1996

    International Nuclear Information System (INIS)

    Sillanpaeae, T.

    1996-11-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. In the second quarter of 1996, the Finnish nuclear power plant units were in power operation except for the annual maintenance outages of TVO plant units and the Midsummer shutdown at TVO II which was due to low electricity demand, a turbine generator inspection and repairs. The load factor average of all plant units was 88.9 %. Events in the second quarter of 1996 were classified level 0 on the International Nuclear Event Scale (INES)

  19. Quarterly environmental radiological survey summary - first quarter 1997 100, 200, 300, and 600 areas

    International Nuclear Information System (INIS)

    Mckinney, S.M.

    1997-01-01

    This report provides a summary of the radiological surveys performed in support of near-facility environmental monitoring at the Hanford Site. The First Quarter 1997 survey results and the status of actions required are summarized below: (1) All of the routine environmental radiological surveys scheduled during January, February, and March 1997, were performed as planned. (2) One hundred four environmental radiological surveys were performed during the first quarter 1997, twenty-nine at the active waste sites and seventy-five at the inactive waste sites. Contamination above background levels was found at eight of the active waste sites and seven of the inactive waste sites. Contamination levels as high as >1,000,000 disintegrations per minute (dpm) were reported. Of these contaminated surveys twelve were in Underground Radioactive Material (URM) areas and three were in contamination areas. The contamination found within ten of the URM areas was immediately cleaned up and no further action was required. In the remaining five sites the areas were posted and will require decontamination. Radiological Problem Reports (RPR's) were issued and the sites were turned over to the landlord for further action if required. (3) During the first quarter of 1997, 5.6 hectares (13.8 acres) were stabilized and radiologically down posted from Contamination Area (CA)/Soil Contamination (SC) to URM. (4) During the first quarter of 1997, the size of 216-A-25 Gable Mountain Pond was increased from 30.4 to 34.5 hectares (75.0 to 85.2 acres). This increase in size was due to the correction of the original boundary area by using the advanced technology of a global positioning system (GPS). An area, 1.6 hectares (4.0 acres), east of and adjacent to the 241-S/SX/SY tank farm complex was posted as a contamination/soil contamination area. (5) Five open Surveillance Compliance Inspection Reports (SCIRs) had not been resolved

  20. The performance and efficiency of four motor/controller/battery systems for the simpler electric vehicles

    Science.gov (United States)

    Shipps, P. R.

    1980-01-01

    A test and analysis program performed on four complete propulsion systems for an urban electric vehicle (EV) is described and results given. A dc series motor and a permanent magnet (PM) motor were tested, each powered by an EV battery pack and controlled by (1) a series/parallel voltage-switching (V-switch) system; and (2) a system using a pulse width modulation, 400 Hz transistorized chopper. Dynamometer tests were first performed, followed by eV performance predictions and data correlating road tests. During dynamometer tests using chopper control; current, voltage, and power were measured on both the battery and motor sides of the chopper, using three types of instrumentation. Conventional dc instruments provided adequate accuracy for eV power and energy measurements, when used on the battery side of the controller. When using the chopper controller, the addition of a small choke inductor improved system efficiency in the lower duty cycle range (some 8% increase at 50% duty cycle) with both types of motors. Overall system efficiency rankings during road tests were: (1) series motor with V-switch; (2) PM motor with V-switch; (3) series motor with chopper; and (4) PM motor with chopper. Chopper control of the eV was smoother and required less driver skill than V-switch control.