WorldWideScience

Sample records for battery investigation quarterly

  1. Investigation of lithium thionyl chloride battery safety hazards. Quarterly technical progress report 1 Jan-31 Mar 82

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.C.

    1982-03-31

    Scanning electron and optical microscopic investigation of an overdischarged cathode from a cathode limited Li/SOCl2 cell reveal a three-dimensional reticulated lithium dendrite structure. Individual dendrites do not grow and longer than about 50 microns or any thicker than about 4 microns in diameter before branching at random angles. E.S.R. spectra of 50% and 100% overdischarged anode limited cells reveal a third chemical species carrying an unpaired electron which is distinct from the two radical species observed during discharge. No significant difference is observed between the Raman spectra of 100% discharged electrolyte and 50% cathode limited overdischarged electrolyte. The same holds true for infrared spectra. The Raman spectra of 90% anode limited overdischarged electrolyte shows most of the peaks occuring at 100% discharge in addition to 687, 727, 819, and 854 per cm. The infrared spectrum of the same solution shows most the the features occuring at 100% discharge in addition to the reduction of 981 cm-1 and growth of peaks at 1397,1085,1070 (shoulder) 661 and 602 cm-1. Peaks at 1070 and 661 always occur weakly in discharged electrolyte spectra and are quite strong in the spectrum of Li/sub 2/S0/sub 4/ saturated electrolyte.

  2. quarters

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2016-10-01

    Full Text Available Are there many words combining both space and time? A quarter is one of such rare words: it means both a part of the city space and a period of the year. A regular city has parts bordered by four streets. For example, Chita is a city with an absolutely orthogonal historical center. This Utopian city was designed by Decembrists in the depth of Siberian ore-mines (120. The 130 Quarter in Irkutsk is irregular from its inception because of its triangular form. Located between two roads, the forked quarter was initially bordered by flows along the west-east axis – the main direction of the country. That is why it appreciated the gift for the 350 anniversary of its transit existence – a promenade for an unhurried flow of pedestrians. The quarter manages this flow quite well, while overcoming the difficulties of new existence and gathering myths (102. Arousing many expectations, the “Irkutsk’s Quarters” project continues the theme that was begun by the 130 Quarter and involved regeneration, revival and search for Genius Loci and the key to each single quarter (74. Beaded on the trading axis, these shabby and unfriendly quarters full of rubbish should be transformed for the good of inhabitants, guests and the small business. The triptych by Lidin, Rappaport and Nevlyutov is about happiness of urbanship and cities for people, too (58. The City Community Forum was also devoted to the urban theme (114. Going through the last quarter of the year, we hope that Irkutsk will keep to the right policy, so that in the near future the wooden downtown quarters will become its pride, and the design, construction and investment complexes will join in desire to increase the number of comfortable and lively quarters in our city. The Baikal Beam will get one more landmark: the Smart School (22 for Irkutsk’s children, including orphans, will be built in several years on the bank of Chertugeevsky Bay.

  3. Nevada nuclear waste storage investigations. Quarterly report, April - June 1980

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-08-01

    Geologic reconnaissance of the Crater Flat tuff and correlations with existing drill hole data revealed at least three ash-flow tuff members. A topographic base map of the southwest quadrant of the NTS was compiled. A major effort was devoted to integrating all electrical traverse data obtained near Yucca Mountain with the mapped geology to produce a map of inferred faulting in the area of interest. The collection, inversion, and analysis of all vertical electrical sounding (VES) data obtained from the Amargosa Desert were completed in support of the NTS regional hydrologic investigations. Precipitation data were analyzed to assess relationships and correlations between the amounts of groundwater recharge from area to area for use in the sensitivity studies. A simplified computer program and mathematical model were completed in a study of erosion rates in the Great Basin. The data obtained on NTS seismicity show diffuse seismicity occurring in an east-west band on the north of the NTS and a U-shaped band of near-quiescence that encompasses the NTS on the south. The Nevada Bureau of Mines completed its literature research and appraisal of the mineral-resource poential of the following granitic sites: Clipper Gap, the Manhatten District, and the Kern Mountains. The In Situ Tuff Water Migration/Heater Experiment was completed and cooldown behavior was monitored; the water generation rates during the experiment were consistent with the values determined previously. Preparations for and loading of the spent fuel canisters into the SFT-C test array were successfully completed without incident; activation of the electrical simulators and guard heaters was accomplished and data collection is in progress. Two new investigative tasks were incorporated into the NNWSI this quarter, Rock Mechanics and Radionuclide Migration; detailed program plans are currently being developed and will be the subject of peer reviews.

  4. Investigating improvements on redox flow batteries

    CSIR Research Space (South Africa)

    Swartbooi, AM

    2006-09-01

    Full Text Available storage devices coupled to most of their applications. Lead-acid batteries have long been used as the most economical option to store electricity in many small scale applications, but lately more interest have been shown in redox flow batteries. The low...

  5. Lithium-thionyl chloride battery. Quarterly report no. 1, 1 October-31 December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Dey, A.N.; Bowden, W.; Miller, J.; Witalis, P.

    1979-04-01

    The Li/SOCl/sup 2/ inorganic electrolyte system is the highest energy density system known to date. It consists of a Li anode, a carbon cathode and SOCl/sup 2/, which acts both as a solvent and as a cathode active material. The electrolyte salt that has been used most extensively is LiAlCl/sup 4/, but salts such as Li/sup 2/B/sup 10/Cl/sup 10/ and Li/sup 2/ (OAlC/sup 3/) /sup 2/ have also been used successfully in this system for improving the shelf-life characteristics. The main objective of this program is to develop high-rate Li/SOCl/sup 2/ cells and batteries for various portable applications of the U. S. Army. The cells and batteries must deliver higher energy densities than are presently available and must be safe to handle under U. S. Army field conditions.

  6. Lithium-thionyl chloride battery. Quarterly report No. 5, 1 November 1979-31 January 1980

    Energy Technology Data Exchange (ETDEWEB)

    Dey, A.N.; Hamilton, N.; Bowden, W.; Witalis, P.; Cubbison, D.

    1980-06-01

    The Li/SOCl2 inorganic electrolyte system is the highest energy density system known to data. It consists of a Li anode, a carbon cathode and SOCl2, which acts both as a solvent and cathode active material. The electrolyte salt that has been used most extensively is LiAlCl4, but salts such as Li2B10Cl10 and Li2O(AlCl3)2 have also been used successfully in this system for improving the shelf life characteristics. The main objective of this program is to develop high rate Li/SOCl2 cells and batteries for portable applications of the U.S. Army. The cells and batteries must deliver higher energy densities than are presently available and must be safe to handle under field conditions.

  7. Investigation of different anode materials for aluminium rechargeable batteries

    Science.gov (United States)

    Muñoz-Torrero, David; Leung, Puiki; García-Quismondo, Enrique; Ventosa, Edgar; Anderson, Marc; Palma, Jesús; Marcilla, Rebeca

    2018-01-01

    In order to shed some light into the importance of the anodic reaction in reversible aluminium batteries, we investigate here the electrodeposition of aluminium in an ionic liquid electrolyte (BMImCl-AlCl3) using different substrates. We explore the influence of the type of anodic material (aluminium, stainless steel and carbon) and its 3D geometry on the reversibility of the anodic reaction by cyclic voltammetry (CV) and galvanostatic charge-discharge. The shape of the CVs confirms that electrodeposition of aluminium was feasible in the three materials but the highest peak currents and smallest peak separation in the CV of the aluminium anode suggested that this material was the most promising. Interestingly, carbon-based substrates appeared as an interesting alternative due to the high peak currents in CV, moderate overpotentials and dual role as anode and cathode. 3D substrates such as fiber-based carbon paper and aluminium mesh showed significantly smaller overpotentials and higher efficiencies for Al reaction suggesting that the use of 3D substrates in full batteries might result in enhanced power. This is corroborated by polarization testing of full Al-batteries.

  8. Using Neutron-based techniques to investigate battery behaviour

    International Nuclear Information System (INIS)

    Pramudita, James C.; Goonetilleke, Damien; Sharma, Neeraj; Peterson, Vanessa K.

    2016-01-01

    The extensive use of portable electronic devices has given rise to increasing demand for reliable high energy density storage in the form of batteries. Today, lithium-ion batteries (LIBs) are the leading technology as they offer high energy density and relatively long lifetimes. Despite their widespread adoption, Li-ion batteries still suffer from significant degradation in their performance over time. The most obvious degradation in lithium-ion battery performance is capacity fade – where the capacity of the battery reduces after extended cycling. This talk will focus on how in situ time-resolved neutron powder diffraction (NPD) can be used to gain a better understanding of the structural changes which contribute to the observed capacity fade. The commercial batteries studied each feature different electrochemical and storage histories that are precisely known, allowing us to elucidate the tell-tale signs of battery degradation using NPD and relate these to battery history. Moreover, this talk will also showcase the diverse use of other neutron-based techniques such as neutron imaging to study electrolyte concentrations in lead-acid batteries, and the use of quasi-elastic neutron scattering to study Na-ion dynamics in sodium-ion batteries.

  9. Batteries

    Directory of Open Access Journals (Sweden)

    Yang Lijuan

    2016-01-01

    Full Text Available Fe3O4/carbon microspheres (Fe3O4/C were prepared by a facile hydrothermal reaction using cellulose and ferric trichloride as precursors. The resultant composite spheres have been investigated as anode materials for the lithium-ion batteries, and they show high capacity and good cycle stability (830mAhg−1 at a current density of 0.1C up to 70 cycles, as well as enhanced rate capability. The excellent electrochemical performance is attributed to the high structural stability and high rate of ionic/electronic conduction arising from the porous character and the synergetic effect of the carbon coated Fe3O4 structure and conductive carbon coating.

  10. Investigation into key interfacial reactions within lithium-ion batteries

    Science.gov (United States)

    Vissers, Daniel Richard

    Given the concern of global climate change and the understanding that carbon dioxide emissions are driving this change, much effort has been invested into lowering carbon dioxide emissions. One approach to reduce carbon dioxide emissions is to curtail the carbon dioxide emissions from vehicles through the introduction of hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. Today, lithium cobalt oxide materials are widely used in consumer electronic applications, yet these materials are cost prohibitive for larger scale vehicle applications. As a result, alternative materials with higher energy densities and lower costs are being investigated. One key alternative to cobalt that has received much attention is manganese. Manganese is of interest for its lower cost and favorable environmental friendliness. The use of manganese has led to numerous cathode materials such as Li 1-deltaMn2O4 (4V spinel), Li1-deltaMn 1.5Ni0.25O4 (5V spinel), Li1-(Mn 1-x-yNiyCox)O2 (layered), Li2MnO 3-Li1-delta(Mn1-x-yNiyCox)O 2 (layered-layered), and Li2MnO3-Li1-delta (Mn1-x-yNiyCox)1O2 -Li1-deltaMn2O4 (layered-layered-spinel). The work disclosed in the dissertation focuses on two topics associated with these manganese based cathodes. The first topic is the exceptional cyclic-ability of a high power, high energy density, 5V spinel cathode material (Li 1-deltaMn1.5Ni0.25O4) with a core-shell architecture, and the second is the severe capacity fade associated with manganese dissolution from cathodes at elevated operating temperatures. Both topics are of interest to the Li-ion battery industry. For instance, a 5V spinel cathode represents a viable path to increase both the power and energy density of Li-ion batteries. As its name implies, the 5V spinel operates at 5V that is higher than the conventional 4V lithium ion batteries. Since power and energy are directly proportional to the potential, moving from an operating potential of 4V to 5V represents an increase

  11. An investigation on the relationship between quarterly earnings adjustment and market value in selected firms listed on TSE Exchange

    Directory of Open Access Journals (Sweden)

    Reza Tehrani

    2013-03-01

    Full Text Available Earning reports are the primary basis of investment decisions among many individuals and fund managers. Any positive/negative adjustment on quarterly financial report could influence investment strategies, which consequently make significant change on market value. In this paper, we present an empirical study on some selected firms on Tehran Stock exchange by looking the effects of quarterly earning adjustment on firm and market’s return. The proposed study selects all firms whose shares were actively and publicly traded over the period 2006-2011. The study investigates whether there is a meaningful relationship between the content of quarterly earnings report and stock price with/without the presence of control variables. The results have concluded that there are some meaningful relationships between change in earning and market value and return on firm with market value but market value seems to have no relationship with market return changes.

  12. Off-grid photovoltaic vehicle charge using second life lithium batteries: An experimental and numerical investigation

    International Nuclear Information System (INIS)

    Tong, Shi Jie; Same, Adam; Kootstra, Mark A.; Park, Jae Wan

    2013-01-01

    Highlights: ► We have examined the feasibility of a second life battery pack for an off-grid photovoltaic vehicle charging system. ► The second life battery successfully achieved the desired function using simple control methods. ► The system has been modeled using equivalent circuit techniques. ► The model can simulate the system’s performance under different application scenarios. - Abstract: Partially degraded lithium batteries from automotive applications, also known as second life batteries, are becoming more available for secondary applications due to the increasing market share of plug-in hybrid and electric vehicles. This study examines the feasibility of installing a second life battery pack in an off-grid photovoltaic vehicle charging system. The system was constructed using a photovoltaic array to charge a battery pack via a maximum power point tracking controller and later charge a vehicle via an inverter. The battery pack was configured using 135 second life LiFePO 4 based battery cells, selected based on remaining capacity, connected to form a nine parallel by 15 serial battery pack with accessible storage capacity of 13.9 kW h. Experimental results show that the proposed second life battery system successfully achieves the desired function with a simple system structure and control methods. A numerical simulation was performed by constructing an equivalent system model, where the photovoltaic array and battery pack were modeled using equivalent circuit techniques. The model was parameterized and validated via testing of the system. Coupled with weather data, the model can simulate the system’s performance under different application scenarios. The numerical investigation reveals that the proposed system, using second life batteries, can achieve similar performance to systems using new lithium batteries, but at a reduced cost

  13. First Principles Investigation of Zinc-anode Dissolution in Zinc-air Batteries

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Tripkovic, Vladimir; Lundgård, Keld Troen

    2013-01-01

    With surging interest in high energy density batteries, much attention has recently been devoted to metal-air batteries. The zinc-air battery has been known for more than hundred years and is commercially available as a primary battery, but recharging has remained elusive; in part because...... the fundamental mechanisms still remain to be fully understood. Here, we present a density functional theory investigation of the zinc dissolution (oxidation) on the anode side in the zinc-air battery. Two models are envisaged, the most stable (0001) surface and a kink surface. The kink model proves to be more....... The applied methodology provides new insight into computational modelling and design of secondary metal-air batteries....

  14. Paraffin Nanocomposites for Heat Management of Lithium-Ion Batteries: A Computational Investigation

    Directory of Open Access Journals (Sweden)

    A. H. N. Shirazi

    2016-01-01

    Full Text Available Lithium-ion (Li-ion batteries are currently considered as vital components for advances in mobile technologies such as those in communications and transport. Nonetheless, Li-ion batteries suffer from temperature rises which sometimes lead to operational damages or may even cause fire. An appropriate solution to control the temperature changes during the operation of Li-ion batteries is to embed batteries inside a paraffin matrix to absorb and dissipate heat. In the present work, we aimed to investigate the possibility of making paraffin nanocomposites for better heat management of a Li-ion battery pack. To fulfill this aim, heat generation during a battery charging/discharging cycles was simulated using Newman’s well established electrochemical pseudo-2D model. We couple this model to a 3D heat transfer model to predict the temperature evolution during the battery operation. In the later model, we considered different paraffin nanocomposites structures made by the addition of graphene, carbon nanotubes, and fullerene by assuming the same thermal conductivity for all fillers. This way, our results mainly correlate with the geometry of the fillers. Our results assess the degree of enhancement in heat dissipation of Li-ion batteries through the use of paraffin nanocomposites. Our results may be used as a guide for experimental set-ups to improve the heat management of Li-ion batteries.

  15. Investigating the variability of active galactic nuclei using combined multi-quarter Kepler data

    Energy Technology Data Exchange (ETDEWEB)

    Revalski, Mitchell; Nowak, Dawid; Wiita, Paul J. [Department of Physics, The College of New Jersey, P.O. Box 7718, Ewing, NJ 08628 (United States); Wehrle, Ann E. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Unwin, Stephen C., E-mail: revalsm1@tcnj.edu [Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 321-100, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2014-04-10

    We used photometry from the Kepler satellite to characterize the variability of four radio-loud active galactic nuclei (AGNs) on timescales from years to minutes. The Kepler satellite produced nearly continuous high precision data sets which provided better temporal coverage than possible with ground based observations. We have now accumulated 11 quarters of data, eight of which were reported in our previous paper. In addition to constructing power spectral densities (PSDs) and characterizing the variability of the last three quarters, we have linked together the individual quarters using a multiplicative scaling process, providing data sets spanning ∼2.8 yr with >98% coverage at a 30 minute sampling rate. We compute PSDs on these connected data sets that yield power law slopes at low frequencies in the approximate range of –1.5 to –2.0, with white noise seen at higher frequencies. These PSDs are similar to those of both the individual quarters and to those of ground-based optical observations of other AGNs. We also have explored a PSD binning method intended to reduce a bias toward shallow slope fits by evenly distributing the points within the PSDs. This tends to steepen the computed PSD slopes, especially when the low frequencies are relatively poorly fit. We detected flares lasting several days in which the brightness increased by ∼15%-20% in one object, as well a smaller flare in another. Two AGNs showed only small, ∼1%-2%, fluctuations in brightness.

  16. Investigation of lithium-thionyl chloride battery safety hazards

    Science.gov (United States)

    Attia, A. I.; Gabriel, K. A.; Burns, R. P.

    1983-01-01

    In the ten years since the feasibility of a lithium-thionyl chloride cell was first recognized (1) remarkable progress has been made in hardware development. Cells as large as 16,000 Ah (2) and batteries of 10.8 MWh (3) have been demonstrated. In a low rate configuration, energy densities of 500 to 600 Wh/kg are easily achieved. Even in the absence of reported explosions, safety would be a concern for such a dense energetic package; the energy density of a lithium-thionyl chloride cell is approaching that of dynamite (924 Wh/kg). In fact explosions have occurred. In general the hazards associated with lithium-thionyl chloride batteries may be divided into four categories: Explosions as a result of an error in battery design. Very large cells were in prototype development prior to a full appreciation of the hazards of the system. It is possible that some of the remaining safety issues are related to cell design; Explosions as a result of external physical abuse such as cell incineration and puncture; Explosions due to short circuiting which could lead to thermal runaway reactions. These problems appear to have been solved by changes in the battery design (4); and Explosions due to abnormal electrical operation (i.e., charging (5) and overdischarging (6) and in partially or fully discharged cells on storage (7 and 8).

  17. Global Precipitation Measurement (GPM) Spacecraft Lithium Ion Battery Micro-Cycling Investigation

    Science.gov (United States)

    Dakermanji, George; Lee, Leonine; Spitzer, Thomas

    2016-01-01

    The Global Precipitation Measurement (GPM) spacecraft was jointly developed by NASA and JAXA. It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The power system is a Direct Energy Transfer (DET) system designed to support 1950 watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s by 84p batteries operated in parallel as a single battery. During instrument integration with the spacecraft, large current transients were observed in the battery. Investigation into the matter traced the cause to the Dual-Frequency Precipitation Radar (DPR) phased array radar which generates cyclical high rate current transients on the spacecraft power bus. The power system electronics interaction with these transients resulted in the current transients in the battery. An accelerated test program was developed to bound the effect, and to assess the impact to the mission.

  18. Experimental Investigation on the Internal Resistance of Lithium Iron Phosphate Battery Cells during Calendar Ageing

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina

    2013-01-01

    Lithium-ion batteries are increasingly considered for a wide area of applications because of their superior characteristics in comparisons to other energy storage technologies. However, at present, Lithium-ion batteries are expensive storage devices and consequently their ageing behavior must...... be known in order to estimate their economic viability in different application. The ageing behavior of Lithium-ion batteries is described by the fade of their discharge capacity and by the decrease of their power capability. The capability of a Lithium-ion battery to deliver or to absorb a certain power...... is directly related to its internal resistance. This work aims to investigate the dependency of the internal resistance of lithium-ion batteries on the storage temperature and on the storage time. For this purpose, accelerated ageing calendar lifetime tests were carried out over a period of one year. Based...

  19. Investigation of nickel hydrogen battery technology for the RADARSAT spacecraft

    Science.gov (United States)

    Mccoy, D. A.; Lackner, J. L.

    1986-01-01

    The low Earth orbit (LEO) operations of the RADARSAT spacecraft require high performance batteries to provide energy to the payload and platform during eclipse period. Nickel Hydrogen cells are currently competing with the more traditional Nickel Cadmium cells for high performance spacecraft applications at geostationary Earth orbit (GEO) and Leo. Nickel Hydrogen cells appear better suited for high power applications where high currents and high Depths of Discharge are required. Although a number of GEO missions have flown with Nickel Hydrogen batteries, it is not readily apparent that the LEO version of the Nickel Hydrogen cell is able to withstand the extended cycle lifetime (5 years) of the RADARSAT mission. The problems associated with Nickel Hydrogen cells are discussed in the contex of RADARSAT mission and a test program designed to characterize cell performance is presented.

  20. Investigation of power battery thermal management by using mini-channel cold plate

    International Nuclear Information System (INIS)

    Huo, Yutao; Rao, Zhonghao; Liu, Xinjian; Zhao, Jiateng

    2015-01-01

    Highlights: • Micro-channel cold plate was used for battery thermal management. • Maximum temperature of battery decreased with the increase of channel number. • Effect of flow direction on cooling performance is smaller with the increase of flow rate. • Cooling performance increased with the increase of inlet flow rate. • The increasing trend become smaller when the flow rate is high enough. - Abstract: In order to guarantee the safety and extend the cycle life of Li-ion power batteries within electric vehicles, a mini-channel cold plate-based battery thermal management system is designed to cool a rectangular Li-ion battery. A three-dimensional thermal model of the cooling system was established and the effects of number of channels, flow direction, inlet mass flow rate and ambient temperature on temperature rise and distribution of the battery during the discharge process were investigated. The results suggest that the maximum temperature of the battery decreases with increases in the number of channels and inlet mass flow rate. The effect of flow direction on cooling performance was smaller after mass flow rate increased. The cooling performance improved with the increase of inlet mass flow rate but the increasing trend became smaller, and the mass flow rate as 5 × 10 −4 kg s −1 was optimal. The simulation results will be useful for the design of mini-channel cold plate-based battery thermal management system

  1. Experimental investigation on EV battery cooling and heating by heat pipes

    International Nuclear Information System (INIS)

    Wang, Q.; Jiang, B.; Xue, Q.F.; Sun, H.L.; Li, B.; Zou, H.M.; Yan, Y.Y.

    2015-01-01

    Enhancing battery safety and thermal behaviour are critical for electric vehicles (EVs) because they affect the durability, energy storage, lifecycle, and efficiency of the battery. Prior studies of using air, liquid or phase change materials (PCM) to manage the battery thermal environment have been investigated over the last few years, but only a few take heat pipes into account. This paper aims to provide a full experimental characterisation of heat pipe battery cooling and heating covering a range of battery ‘off-normal’ conditions. Two representative battery cells and a substitute heat source ranging from 2.5 to 40 W/cell have been constructed. Results show that the proposed method is able to keep the battery surface temperature below 40 °C if the battery generates less than 10 W/cell, and helps reduce the battery temperature down to 70 °C under uncommon thermal abuse conditions (e.g. 20–40 W/cell). Additionally, the feasibility of using sintered copper-water heat pipes under sub-zero temperatures has been assessed experimentally by exposing the test rig to −15 °C/−20 °C for more than 14 h. Data indicates that the heat pipe was able to function immediately after long hours of cold exposure and that sub-zero temperature conditions had little impact on heat pipe performance. We therefore conclude that the proposed method of battery cooling and heating via heat pipes is a viable solution for EVs

  2. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 2: January through March 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

    2011-05-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 2 Milestone was completed on time. The milestone entails an ex situ analysis of the four carbons that have been added to the negative active material of valve-regulated lead-acid (VRLA) batteries for the purposes of this study. The four carbons selected for this study were a graphitic carbon, a carbon black, an activated carbon, and acetylene black. The morphology, crystallinity, and impurity contents of each of the four carbons were analyzed; results were consistent with previous data. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown.

  3. On battery-less autonomous polygeneration microgrids: Investigation of the combined hybrid capacitors/hydrogen alternative

    International Nuclear Information System (INIS)

    Kyriakarakos, George; Piromalis, Dimitrios D.; Arvanitis, Konstantinos G.; Dounis, Anastasios I.; Papadakis, George

    2015-01-01

    Highlights: • A battery-less autonomous polygeneration microgrid is technically feasible. • Laboratory testing of hybrid capacitors. • Investigation of hybrid capacitors utilization along with hydrogen subsystem. - Abstract: The autonomous polygeneration microgrid topology aims to cover holistically the needs in remote areas as far as electrical power, potable water through desalination, fuel for transportation in the form of hydrogen, heating and cooling are concerned. Deep discharge lead acid batteries are mostly used in such systems, associated with specific disadvantages, both technical and environmental. This paper investigated the possibility of replacing the battery bank from a polygeneration microgrid with a hybrid capacitor bank and more intensive utilization of a hydrogen subsystem. Initially commercial hybrid capacitors were tested under laboratory conditions and based on the respective results a case study was performed. The optimized combination of hybrid capacitors and higher hydrogen usage was then investigated through simulations and compared to a polygeneration microgrid featuring deep discharge lead acid batteries. From the results it was clear that it is technically possible to exchange the battery bank with a hybrid capacitor bank and higher hydrogen utilization. From the economic point of view, the current cost of the hybrid capacitors and the hydrogen components is high which leads to higher overall cost in comparison with deep discharge lead acid batteries. Taking into account, though, the decreasing cost prospects and trends of both the hybrid capacitors and the hydrogen components it is expected that this approach will become economically competitive in a few years

  4. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems Program (FY11 Quarter 4: July through September 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-10-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 4 Milestone was completed on time. The milestone entails the initiation of high rate, partial state of charge (HRPSoC) cycling of the carbon enhanced batteries. The morphology, porosity, and porosity distribution within the plates after 1k and 10k cycles were documented, illustrating the changes which take place in the early life of the carbon containing batteries, and as the battery approaches failure due to hard sulfation for the control battery. Longer term cycling on a subset of the received East Penn cells containing different carbons (and a control) continues, and will progress into FY12. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO2) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown in a graph. In addition to the aforementioned hybrid device, carbon has

  5. Chemical Stability Investigations of Polyisobutylene as New Binder for Application in Lithium Air-Batteries

    International Nuclear Information System (INIS)

    Heine, Jennifer; Rodehorst, Uta; Badillo, Juan Pablo; Winter, Martin; Bieker, Peter

    2015-01-01

    ABSTRACT: The side reactions of LiO 2 , Li 2 O 2 and Li 2 O, formed during the discharge process at the cathode/electrolyte interphase, are still a main challenge of lithium-air batteries. During these reactions, polyvinylidene difluoride (PVdF), as the commonly used cathode binder material, is decomposing, leading to a shorter lifetime of the battery. In this paper, we introduced and investigated polyisobutylene (PIB), a chemically and electrochemically inert polymeric material, to substitute PVdF as binder for lithium-air batteries. Results obtained by X-ray diffraction and spectroscopic methods showed, that PIB is far more stable in the presence of O 2 − , O 2 2− as well as O 2− species compared to PVdF. This distinct inertness makes PIB a promising binder for lithium-air batteries

  6. Combined DFT and DEMS investigation of the effect of dopants in secondary zinc‐air batteries

    DEFF Research Database (Denmark)

    Lysgaard, Steen; Christensen, Mathias K.; Hansen, Heine A.

    2018-01-01

    Zinc‐air batteries offer the potential of low cost energy storage with high energy density, but at present secondary batteries suffer from poor cyclability. To develop secondary Zn‐air batteries, several challenges need to be overcome: choking of the cathode, catalyzing the oxygen evolution...... and reduction reactions, limiting dendrite formation and the hydrogen evolution reaction (HER). Understanding and alleviating HER at the anode is a challenge, where it is necessary to involve computational as well as experimental research. Here, we combine Differential Electrochemical Mass Spectrometry (DEMS......) and density functional theory calculations to investigate the fundamental role and stability over cycling of possible additives such as In, Bi and Ag. We show that both In and Bi have the desired property for a secondary battery that upon recharging, they will remain in the surface, thereby retaining...

  7. Investigation on a radiation tolerant betavoltaic battery based on Schottky barrier diode

    International Nuclear Information System (INIS)

    Liu Yebing; Hu Rui; Yang Yuqing; Wang Guanquan; Luo Shunzhong; Liu Ning

    2012-01-01

    An Au–Si Schottky barrier diode was studied as the energy conversion device of betavoltaic batteries. Its electrical performance under radiation of Ni-63 and H-3 sources and radiation degradation under Am-241 were investigated and compared with those of the p–n junction. The results show that the Schottky diode had a higher I sc and harder radiation tolerance but lower V oc than the p–n junction. The results indicated that the Schottky diode can be a promising candidate for energy conversion of betavoltaic batteries. - Highlights: ► The Schottky diode was used as the converter of the betavoltaic battery. ► The radiation damage of converter was accelerated by using alpha particles. ► The Schottky diode has higher radiation resistance than that of the p–n junction. ► The Schottky diode could still be a promising converter of the betavoltaic battery.

  8. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE energy storage systems program (FY11 Quarter 3: April through June 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Summer Rhodes; Shane, Rodney (East Penn Manufacturing, Lyon Station, PA); Enos, David George

    2011-09-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 3 Milestone was completed on time. The milestone entails an ex situ analysis of a control as well as three carbon-containing negative plates in the raw, as cast form as well as after formation. The morphology, porosity, and porosity distribution within each plate was evaluated. In addition, baseline electrochemical measurements were performed on each battery to establish their initial performance. These measurements included capacity, internal resistance, and float current. The results obtained for the electrochemical testing were in agreement with previous evaluations performed at East Penn manufacturing. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated.

  9. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 1: October through December 2010).

    Energy Technology Data Exchange (ETDEWEB)

    Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

    2011-05-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 1 Milestone was completed on time. The milestone entails conducting a thorough literature review to establish the current level of understanding of the mechanisms through which carbon additions to the negative active material improve valve-regulated lead-acid (VRLA) batteries. Most studies have entailed phenomenological research observing that the carbon additions prevent/reduce sulfation of the negative electrode; however, no understanding is available to provide insight into why certain carbons are successful while others are not. Impurities were implicated in one recent review of the electrochemical behavior of carbon additions. Four carbon samples have been received from East Penn Manufacturing and impurity contents have been analyzed. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic

  10. Numerical investigation of thermal behaviors in lithium-ion battery stack discharge

    International Nuclear Information System (INIS)

    Liu, Rui; Chen, Jixin; Xun, Jingzhi; Jiao, Kui; Du, Qing

    2014-01-01

    Highlights: • The thermal behaviors of a Li-ion battery stack have been investigated by modeling. • Parametric studies have been performed focusing on three different cooling materials. • Effects of discharge rate, ambient temperature and Reynolds number are examined. • General guidelines are proposed for the thermal management of a Li-ion battery stack. - Abstract: Thermal management is critically important to maintain the performance and prolong the lifetime of a lithium-ion (Li-ion) battery. In this paper, a two-dimensional and transient model has been developed for the thermal management of a 20-flat-plate-battery stack, followed by comprehensive numerical simulations to study the influences of ambient temperature, Reynolds number, and discharge rate on the temperature distribution in the stack with different cooling materials. The simulation results indicate that liquid cooling is generally more effective in reducing temperature compared to phase-change material, while the latter can lead to more homogeneous temperature distribution. Fast and deep discharge should be avoided, which generally yields high temperature beyond the acceptable range regardless of cooling materials. At low or even subzero ambient temperatures, air cooling is preferred over liquid cooling because heat needs to be retained rather than removed. Such difference becomes small when the ambient temperature increases to a mild level. The effects of Reynolds number are apparent in liquid cooling but negligible in air cooling. Choosing appropriate cooling material and strategy is particularly important in low ambient temperature and fast discharge cases. These findings improve the understanding of battery stack thermal behaviors and provide the general guidelines for thermal management system. The present model can also be used in developing control system to optimize battery stack thermal behaviors

  11. In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Wei, L.; Zhao, T.S.; Xu, Q.; Zhou, X.L.; Zhang, Z.H.

    2017-01-01

    Highlights: • An in-situ method to investigate hydrogen evolution in VRFBs is developed. • The rate of hydrogen evolution during battery operation is quantified. • The gas evolution behaviors in the charge process of VRFBs are observed. - Abstract: In this work, we conceived and fabricated a three-electrode electrochemical cell and transparent vanadium redox flow battery to in-situ investigate the hydrogen evolution reaction during battery operation. Experimental results show that operating temperature has a strong influence on the HER rate. In particular, compared with V"3"+ reduction reaction, HER is more sensitive to temperature variation. It is also found that, contrary to the conventional wisdom that side reactions occur at the late stage of the charge process, H_2 evolves at a relatively low SOC. About 0.26 and 1.94 mL H_2 were collected at an early (SOC lower than 20%) and end of the charge process, respectively, suggesting that attention to the hydrogen formation at the negative electrode in the early charge process should also be paid to during long-term battery operations. Moreover, the produced hydrogen gas at the negative side prefers to form macroscopically observable bubbles onto the electrode surface, covering the active sites for vanadium redox reactions, while oxygen evolution (including CO_2 production) at the positive side corrodes electrode surface and introduces certain oxygen-containing functional groups.

  12. Investigation of lithium thionyl chloride battery safety hazards

    Science.gov (United States)

    McDonald, R. C.; Dampier, F. W.; Wang, P.; Bennett, J. M.

    1983-01-01

    The chemistry of discharge and overdischarge in Li/SOCl2 cells has been examined with Raman emission, Fourier transform infrared, and electron spin resonance spectroscopies to determine if any hazardous reactions can occur. Under moderate discharge rate at room temperature, the electrolyte from discharged and cathode limited overdischarged cells contains primarily LiAlCl4.3 SO2, LiAlCl.2 SOCl2, and perhaps LiAlCl4.SOCl2.SO2; traces of SO3 are indicated. Three free radicals are present at low concentrations on discharge and cathode limited overdischarged with two additional radicals appearing on extended anode limited overdischarge. At least one of these is cationic polymeric sulfur. Both FTIR and ESR suggest intermediates exist with lifetimes on the order of days from discharge and overcharge. No hazardous reactions were observed at anytime. Pressure from SO2, a principal result of discharge, remains low due to the LiAlCl4.3 SO2, complex in solution. Scanning electron and optical microscopic investigations lithium dendrite structure. Individual dendrites do not grow any longer than about 50 microns or any thicker that about four microns in diameter before branching at random angles. The extent of dendritic growth and the fate of the dentrites depends on the discharge conditions. No overcharged hazards were encountered in this study though several hazard scenarios suggested themselves.

  13. Investigation of the perspectives for lightweight pressure vesselsand batteries. Onderzoek naar de perspectieven van lichtgewicht drukvaten enaccumulatoren

    Energy Technology Data Exchange (ETDEWEB)

    De Waal Malefijt, J.A.

    1988-08-01

    Attention is paid to the storage of gaseous fuels in pressurevessels and energy storage in hydropneumatic batteries. Possibilitiesto reduce the weight of lightweight pressure vessels for small scaleenergy storage in mobile applications were investigated. The data forthis research are collected from January to August 1988 from aliterature study and from interviews with several manufacturers ofbatteries and natural gas pressure vessels. For both systems (vesselsand batteries) results of marketing research, application criteria anddescriptions are given and discussed. Bottlenecks for the availablevessels and batteries are considered as well. Finally a description ispresented of the ideal pressure vessel and hydropneumatic battery. 32figs., 38 refs., 6 tabs.

  14. Nevada Nuclear-Waste-Storage Investigations. Quarterly report, April-June 1982

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-09-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) are studying the Nevada Test Site (NTS) area to establish whether it would qualify as a licensable location for a commercial nuclear waste repository; determining whether specific underground rock masses in the NTS area are technically acceptable for permanently disposing of highly radioactive solid wastes; and developing and demonstrating the capability to safely handle and store commercial spent reactor fuel and high-level waste. Progress reports for the following eight tasks are presented: systems; waste package; site; repository; regulatory and institutional; test facilities; land acquisition; and program management. Some of the highlights are: A code library was established to provide a central location for documentation of repository performance assessment codes. A two-dimensional finite element code, SAGUARO, was developed for modeling saturated/unsaturated groundwater flow. The results of an initial experiment to determine canister penetration rates due to corrosion indicate the expected strong effect of toxic environmental conditions on the corrosion rate of carbon steel in tuff-conditioned water. Wells USW-H3 and USW-H4 at Yucca Mountain have been sampled for groundwater analysis. A summary characterizing and relating the mineralogy and petrology of Yucca Mountain tuffs was compiled from the findings of studies of core samples from five drill holes.

  15. Investigation of Novel Electrolytes for Use in Lithium-Ion Batteries and Direct Methanol Fuel Cells

    Science.gov (United States)

    Pilar, Kartik

    Energy storage and conversion plays a critical role in the efficient use of available energy and is crucial for the utilization of renewable energy sources. To achieve maximum efficiency of renewable energy sources, improvements to energy storage materials must be developed. In this work, novel electrolytes for secondary batteries and fuel cells have been studied using nuclear magnetic resonance and high pressure x-ray scattering techniques to form a better understanding of dynamic and structural properties of these materials. Ionic liquids have been studied due to their potential as a safer alternative to organic solvent-based electrolytes in lithium-ion batteries and composite sulfonated polyetheretherketone (sPEEK) membranes have been investigated for their potential use as a proton exchange membrane electrolyte in direct methanol fuel cells. The characterization of these novel electrolytes is a step towards the development of the next generation of improved energy storage and energy conversion devices.

  16. Investigation into the traction system of battery-driven vehicle (electric motorcar) with super capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kuzomin, Oleksandr; Gurtovyi, Mykhailo; Kirylyuk, Artur; Pismenckiy, Viktor; Slipchenko, Mykola [Kharkiv National Univ. of Radio Electronics, Kharkiv (Ukraine)

    2012-11-01

    The results of investigations into the main characteristics of the traction system of the electric motorcar (EM) with application of super capacitors (SC) to the EM starting and acceleration regimes are given. Dynamics of the consumed power at the EM starting and acceleration up to the specified speed, taking into account its mass, acceleration time and aerodynamic characteristics, is investigated. The authors have developed the microcontroller device ensuring the decrease in the peak load on the accumulator battery (AB) at the moment of the EM starting and acceleration, as well as the automatic redistribution of the electric motor electrical supply between the SC and AB. (orig.)

  17. Investigation on the Self-discharge of the LiFePO4/C nanophosphate battery chemistry at different conditions

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2014-01-01

    Lithium ion batteries with iron phosphate cathodes are gradually improving in their performance and gaining importance, and are more and more considered for new applications. Different aspects of this chemistry were studied in numerous publications; however, very little research was devoted...... to detailed empirical investigations in order to find out how self-discharge of this chemistry depends on different storing conditions. Precise knowledge about the level of the self-discharge of lithium ion battery cells is very important for improving the performance of the battery management system since...... it allows also for more precise determination of the actual battery SOC after prolonged storage. In this paper the self-discharge of the nanophosphate LiFePO4/C is studied at different temperature, SOC conditions and at different SOH levels of the battery. Moreover, cell to cell differences in self...

  18. Investigation of Impedance-Based Parameters in Metal-O2 Batteries for Next Generation of Battery Management Systems

    DEFF Research Database (Denmark)

    Christensen, Andreas Elkjær; Højberg, Jonathan

    2015-01-01

    -of-health of lithium-ion batteries. Applied Energy, 86(9), 1506–1511. doi:10.1016/j.apenergy.2008.11.021 [4] McCloskey, B. D., Garcia, J. M., & Luntz, A. C. (2014). Chemical and Electrochemical Differences in Nonaqueous Li–O 2and Na–O2 Batteries. The Journal of Physical Chemistry Letters, 5(7), 1230–1235. doi:10...... electrolyte. Journal of Power Sources, 272(c), 415–421. doi:10.1016/j.jpowsour.2014.08.056 [Figure]...

  19. Investigation of lithium thionyl chloride battery safety hazards. Quarterly technical progress report 1 Apr 82-30 Jun 82

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.C.

    1982-06-30

    Storage of discharged electrolyte in AgCl cells for infrared analysis leads to artifactual absorbances. However, there are real changes in discharge and overcharge intermediates as shown by changes in infrared spectra of electrolyte stored in glass. Debye-Scherrer examination of cathodes overdischarged in cathode limited cells indicates the presence of both LiCl and LI/sub 2/O/sub 2/ as well as at least one other solid.

  20. Investigation of lithium thionyl chloride battery safety hazards. Quarterly technical progress report 29 Sep-31 Dec 81

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.C.

    1981-12-31

    Glass Li/SOCl2 cells have been designed and built which will be used to discharge and overdischarge flat electrodes in sufficient but not excess electrolyte. The cells will be used for generation of electrolyte samples for chemical spectroscopy and overdischarged cathodes for morphological studies. A metal cell has been designed and built for overdischarge of flat electrodes. E.S.R., Raman, FTIR, and UV/VIS fluorescence spectra have been taken of electrolyte at various stages of discharge and overdischarge. Two chemical species detectable with ESR are generated on discharge. The first resonance found also in electrolyte solutions saturated with sulfur, develops uniformly through discharge. The second as yet unidentified species becomes evident towards the second half of discharge increasing species becomes evident towards the second half of discharge increasing in concentration faster than sulfur. Following removal from the cell, the second species disappears as visible fluorescence increases in intensity the sulfur related peak remains. Raman and FTIR spectra show a profusion of emission and absorption peaks respectively. Analysis of this data is still in process. Preliminary optical studies of overdischarged cathode studies in cathode limited cells show that lithium dendrites do grow on the surface of carbon.

  1. High-volume, high-value usage of Flue Gas Desulfurization (FGD) by-products in underground mines Phase 1: Laboratory investigations. Quarterly report, July 1994--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    During the quarter a second series of samples were collected and partially characterized chemically and mineralogically. The samples were collected at the disposal site operated by Freeman United Coal Co. The second collection was necessary because of deterioration due to hydration of the original samples. A study of the hydration characteristics was completed during the quarter. Important reactions included the immediate formation of ettringite and portlandite. The hydration and transformation was found to be a slow process. A second phase of gypsum formation from ettringite deterioration was identified. The slow hydration of anhydrite with its resultant swell is a potential problem which will be addressed further. Geotechnical characterization, during the quarter included completion of the preliminary characterization, analysis of the findings, experimentation with sample preparation for the final characterization/mix design, and design of the final experimental program. The analysis of the coals collected during the core drilling and hydrologic planning were completed. Also during the quarter a meeting was held with representatives of the shotcrete industry to discuss transport systems for emplacement. The pros and cons of pneumatic and hydraulic systems were discussed and plans formulated for further investigations.

  2. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies

    International Nuclear Information System (INIS)

    Wang, Tao; Tseng, K.J.; Zhao, Jiyun; Wei, Zhongbao

    2014-01-01

    Highlights: • Three-dimensional CFD model with forced air cooling are developed for battery modules. • Impact of different air cooling strategies on module thermal characteristics are investigated. • Impact of different model structures on module thermal responses are investigated. • Effect of inter-cell spacing on cell thermal characteristics are also studied. • The optimal battery module structure and air cooling strategy is recommended. - Abstract: Thermal management needs to be carefully considered in the lithium-ion battery module design to guarantee the temperature of batteries in operation within a narrow optimal range. This article firstly explores the thermal performance of battery module under different cell arrangement structures, which includes: 1 × 24, 3 × 8 and 5 × 5 arrays rectangular arrangement, 19 cells hexagonal arrangement and 28 cells circular arrangement. In addition, air-cooling strategies are also investigated by installing the fans in the different locations of the battery module to improve the temperature uniformity. Factors that influence the cooling capability of forced air cooling are discussed based on the simulations. The three-dimensional computational fluid dynamics (CFD) method and lumped model of single cell have been applied in the simulation. The temperature distributions of batteries are quantitatively described based on different module patterns, fan locations as well as inter-cell distance, and the conclusions are arrived as follows: when the fan locates on top of the module, the best cooling performance is achieved; the most desired structure with forced air cooling is cubic arrangement concerning the cooling effect and cost, while hexagonal structure is optimal when focus on the space utilization of battery module. Besides, the optimized inter-cell distance in battery module structure has been recommended

  3. Wind-tunnel investigation of aerodynamic efficiency of three planar elliptical wings with curvature of quarter-chord line

    Science.gov (United States)

    Mineck, Raymond E.; Vijgen, Paul M. H. W.

    1993-01-01

    Three planar, untwisted wings with the same elliptical chord distribution but with different curvatures of the quarter-chord line were tested in the Langley 8-Foot Transonic Pressure Tunnel (8-ft TPT) and the Langley 7- by 10-Foot High-Speed Tunnel (7 x 10 HST). A fourth wing with a rectangular planform and the same projected area and span was also tested. Force and moment measurements from the 8-ft TPT tests are presented for Mach numbers from 0.3 to 0.5 and angles of attack from -4 degrees to 7 degrees. Sketches of the oil-flow patterns on the upper surfaces of the wings and some force and moment measurements from the 7 x 10 HST tests are presented at a Mach number of 0.5. Increasing the curvature of the quarter-chord line makes the angle of zero lift more negative but has little effect on the drag coefficient at zero lift. The changes in lift-curve slope and in the Oswald efficiency factor with the change in curvature of the quarter-chord line (wingtip location) indicate that the elliptical wing with the unswept quarter-chord line has the lowest lifting efficiency and the elliptical wing with the unswept trailing edge has the highest lifting efficiency; the crescent-shaped planform wing has an efficiency in between.

  4. NST Quarterly

    International Nuclear Information System (INIS)

    1995-01-01

    NST Quarterly reports current development in nuclear science and technology in Malaysia. It keeps readers informed on the progress of research, services, application of nuclear science and technology, and other technical news. It highlights MINT activities and also announces coming events

  5. NST Quarterly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    NST Quarterly reports current development in nuclear science and technology in Malaysia. It keeps readers informed on the progress of research, services, application of nuclear science and technology, and other technical news. It highlights MINT activities and also announces coming events.

  6. Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Di Blasi, O.; Briguglio, N.; Busacca, C.; Ferraro, M.; Antonucci, V.; Di Blasi, A.

    2015-01-01

    Highlights: • Graphene oxide is synthesized at high temperatures in a reducing environment. • Treated graphene oxide-based electrodes are prepared by the wet impregnation method. • Electrochemical performance is evaluated as a function of the physico-chemical properties. - Abstract: Thermically treated graphene oxides (TT-GOs) are synthesized at different temperatures, 100 °C, 150 °C, 200 °C and 300 °C in a reducing environment (20% H 2 /He) and investigated as electrode materials for vanadium redox flow battery (VRFB) applications. The treated graphene oxide-based electrodes are prepared by the wet impregnation method using carbon felt (CF) as support. The main aim is to achieve a suitable distribution of the dispersed graphene oxides on the CF surface in order to investigate the electrocatalytic activity for the VO 2+ /VO 2 + and V 2+ /V 3+ redox reactions in the perspective of a feasible large area electrodes scale-up for battery configuration of practical interest. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are carried out in a three electrode half-cell to characterize the electrochemical properties of the TT-GO-based electrodes. Physico-chemical characterizations are carried out to corroborate the electrochemical results. The TT-GO sample treated at 100 °C (TT-GO-100) shows the highest electrocatalytic activity in terms of peak to peak separation (ΔE = 0.03 V) and current density intensity (∼0.24 A cm −2 at 30 mV/s) both toward the VO 2+ /VO 2 + and V 2+ /V 3+ redox reactions. This result is correlated to the presence of hydroxyl (−OH) and carboxyl (−COOH) species that act as active sites. A valid candidate is individuated as effective anode and cathode electrode in the perspective of electrodes scale-up for battery configuration of practical interest

  7. Theoretical investigation of the use of nanocages with an adsorbed halogen atom as anode materials in metal-ion batteries.

    Science.gov (United States)

    Razavi, Razieh; Abrishamifar, Seyyed Milad; Rajaei, Gholamreza Ebrahimzadeh; Kahkha, Mohammad Reza Rezaei; Najafi, Meysam

    2018-02-21

    The applicability of C 44 , B 22 N 22 , Ge 44 , and Al 22 P 22 nanocages, as well as variants of those nanocages with an adsorbed halogen atom, as high-performance anode materials in Li-ion, Na-ion, and K-ion batteries was investigated theoretically via density functional theory. The results obtained indicate that, among the nanocages with no adsorbed halogen atom, Al 22 P 22 would be the best candidate for a novel anode material for use in metal-ion batteries. Calculations also suggest that K-ion batteries which utilize these nanocages as anode materials would give better performance and would yield higher cell voltages than the corresponding Li-ion and Na-ion batteries with nanocage-based anodes. Also, the results for the nanocages with an adsorbed halogen atom imply that employing them as anode materials would lead to higher cell voltages and better metal-ion battery performance than if the nanocages with no adsorbed halogen atom were to be used as anode materials instead. Results further implied that nanocages with an adsorbed F atom would give higher cell voltages and better battery performance than nanocages with an adsorbed Cl or Br atom. We were ultimately able to conclude that a K-ion battery that utilized Al 21 P 22 with an adsorbed F atom as its anode material would afford the best metal-ion battery performance; we therefore propose this as a novel highly efficient metal-ion battery. Graphical abstract The results of a theoretical investigation indicated that Al 22 P 22 is a better candidate for a high-performance anode material in metal-ion batteries than Ge 44 is. Calculations also showed that K-ion batteries with nanocage-based anodes would produce higher cell voltages and perform better than the equivalent Li-ion and Na-ion batteries with nanocage-based anodes, and that anodes based on nanocages with an adsorbed F atom would perform better than anodes based on nanocages with an adsorbed Cl or Br atom.

  8. A first Experimental Investigation of the Practical Efficiency of Battery Scheduling

    NARCIS (Netherlands)

    Miliche, Damien; de Graaf, Maurits; Hoekstra, Gerard; Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    Nowadays, mobile devices are used more and more, and their battery lifetime is a key concern. In this paper, we concentrate on a method called battery scheduling with the aim to optimize the battery lifetime of mobile devices. This technique has already been largely theoretically studied in other

  9. Non-steady experimental investigation on an integrated thermal management system for power battery with phase change materials

    International Nuclear Information System (INIS)

    Shi, Shang; Xie, Yongqi; Li, Ming; Yuan, Yanping; Yu, Jianzu; Wu, Hongwei; Liu, Bin; Liu, Nan

    2017-01-01

    Highlights: • An integrated thermal management system for power battery is designed. • The battery temperature rise is a non-steady process for charge and discharge. • A mathematical model can accurately represent temperature rise characteristics. • The heat generation power of the battery is calculated theoretically. • The excess temperatures and thermal resistances affect the system performance. - Abstract: A large amount of heat inside the power battery must be dissipated to maintain the temperature in a safe range for the hybrid power train during high-current charging/discharging processes. In this article, a combined experimental and theoretical study has been conducted to investigate a newly designed thermal management system integrating phase change material with air cooling. An unsteady mathematical model was developed for the battery with the integrated thermal management system. Meanwhile, the heat generation power, thermal resistance, and time constant were calculated. The effect of several control parameters, such as thermal resistance, initial temperature, melting temperature and ambient temperature, on the performance of the integrated thermal management system were analyzed. The results indicated that: (1) the calculated temperature rise of the battery was in good agreement with the experimental data. The appropriate operation temperature of the battery was attained by the action of the phase change storage energy unit which is composed of copper foam and n-Eicosane, (2) the remarkable decrease of the battery temperature can be achieved by reducing the convection thermal resistance or increasing the conductivity of the phase change storage energy unit, where the latter could be the better option due to no additional energy consumption. When convective resistance and thermal resistance between the battery surface and the phase change storage energy unit are less than 2.03 K/W and 1.85 K/W, respectively, the battery will not exceed the

  10. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  11. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    International Nuclear Information System (INIS)

    Miller, John; Sibley Lewis, B.; Wohlgemuth, John

    1999-01-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs

  12. Electrochemical investigation of uranium β-diketonates for all-uranium redox flow battery

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Shiokawa, Yoshinobu; Yamana, Hajimu; Moriyama, Hirotake

    2002-01-01

    The redox flow battery using uranium as the negative and the positive active materials in polar aprotic solvents was proposed. In order to establish the guiding principle for the uranium compounds as the active materials, the investigation of uranium β-diketonate complexes was conducted on (i) the solubility of active materials, (ii) the electrode reaction of U(VI) and U(IV) β-diketonate complexes and (iii) the estimation of the open circuit voltage of the battery. The solubilities of higher than 0.8 mol dm -3 of U(VI) complexes and higher than 0.4 mol dm -3 of a U(IV) complex were obtained in the solvents. The electrode reactions of U(pta) 4 , UO 2 (dpm) 2 , UO 2 (fod) 2 and UO 2 (pta) 2 were first studied and the redox potentials of uranium β-diketonates were thermodynamically discussed. The open circuit voltage is estimated more than 1 V by using Hacac or Hdpm. The larger open circuit voltage is expected when a ligand with the larger basicity is used

  13. Synthesis and investigation of novel cathode materials for sodium ion batteries

    Science.gov (United States)

    Sawicki, Monica

    Environmental pollution and eventual depletion of fossil fuels and lithium has increased the need for research towards alternative electrical energy storage systems. In this context, research in sodium ion batteries (NIBs) has become more prevalent since the price in lithium has increased due to its demand and reserve location. Sodium is an abundant resource that is low cost, and safe; plus its chemical properties are similar to that of Li which makes the transition into using Na chemistry for ion battery systems feasible. In this study, we report the effects of processing conditions on the electrochemical properties of Na-ion batteries made of the NaCrO2 cathode. NaCrO2 is synthesized via solid state reactions. The as-synthesized powder is then subjected to high-energy ball milling under different conditions which reduces particle size drastically and causes significant degradation of the specific capacity for NaCrO2. X-ray diffraction reveals that lattice distortion has taken place during high-energy ball milling and in turn affects the electrochemical performance of the cathode material. This study shows that a balance between reducing particle size and maintaining the layered structure is essential to obtain high specific capacity for the NaCrO2 cathode. In light of the requirements for grid scale energy storage: ultra-long cycle life (> 20,000 cycles and calendar life of 15 to 20 years), high round trip efficiency (> 90%), low cost, sufficient power capability, and safety; the need for a suitable cathode materials with excellent capacity retention such as Na2MnFe(CN)6 and K2MnFe(CN)6 will be investigated. Prussian blue (A[FeIIIFeII (CN)6]•xH2O, A=Na+ or K+ ) and its analogues have been investigated as an alkali ion host for use as a cathode material. Their structure (FCC) provides large ionic channels along the direction enabling facile insertion and extraction of alkali ions. This material is also capable of more than one Na ion insertion per unit formula

  14. Phytotoxicology section investigation in the vicinity of Johnson Controls Inc., Battery Group (formerly Varta Battery Ltd.) St. Thomas, 1990

    International Nuclear Information System (INIS)

    Jones, R.D.

    1992-04-01

    The Johnson Controls Inc. Battery Group (formerly Varta Battery Ltd.) began operation in St. Thomas, Ontario in 1981. Vegetation surveys have been conducted around the plant since 1980, and soil surveys were conducted in 1980-82. The Group is primarily a source of lead emissions, although smaller amounts of antimony are emitted. Elevated concentrations of Pb and Sb have been detected in vegetation in the immediate vicinity of the plant. Moss bag surveys have shown a pattern of accumulation of Pb and Sb downwind from the plant to a distance of ca 0.5 km. The concentrations of Pb and Sb in vegetation and moss bags have been gradually increasing since the survey started, reaching their highest levels in 1986. In summer 1986, the company reported that a potential source for the emissions had been found and abatement action was being taken to correct the problem. The 1987 survey showed a significant decrease in Pb levels, and 1989 was the first year since 1982 when concentrations of Pb and Sb in tree foliage did not exceed environmental guidelines. In 1990, the levels of Pb and Sb in vegetation near the plant declined compared to levels in 1989. The decline in Sb levels was the first significant decline observed since the company started operations. In 1990, as in previous years, upper normal limits were exceeded for Cu, Ni, and Zn in moss bags near the plant but corresponding levels were not observed in vegetation. 10 refs., 3 figs., 5 tabs

  15. Experimental and numerical investigation on thermal management of an outdoor battery cabinet

    International Nuclear Information System (INIS)

    Meng, X.Z.; Lu, Z.; Jin, L.W.; Zhang, L.Y.; Hu, W.Y.; Wei, L.C.; Chai, J.C.

    2015-01-01

    Many forms of electronic equipment such as battery packs and telecom equipment must be stored in harsh outdoor environment. It is essential that these facilities be protected from a wide range of ambient temperatures and solar radiation. Temperature extremes greatly reduce lead-acid based battery performance and shorten battery life. Therefore, it is important to maintain the cabinet temperature within the optimal values between 20 °C and 30 °C to ensure battery stability and to extend battery lifespan. To this end, cabinet enclosures with proper thermal management have been developed to house such electronic equipment in a highly weather tight manner, especially for battery cabinet. In this paper, the flow field and temperature distribution inside an outdoor cabinet are studied experimentally and numerically. The battery cabinets house 24 batteries in two configurations namely, two-layer configuration and six-layer configuration respectively. The cabinet walls are maintained at a constant temperature by a refrigeration system. The cabinet's ability to protect the batteries from an ambient temperature as high as 50 °C is studied. An experimental facility is developed to measure the battery surface temperatures and to validate the numerical simulations. The differences between the experimental and computational fluid dynamic (CFD) results are within 5%. - Highlights: • Battery placement has significant effect on temperature field in battery cabinet. • The six-layer configuration achieves better temperature uniformity. • Internal air circulation depends on battery configuration. • Natural convection could be an effective solution satisfying safety concerns.

  16. Investigation into levels of dioxins, furans and PCBs in battery, free range, barn and organic eggs

    Energy Technology Data Exchange (ETDEWEB)

    Tlustos, C.; Pratt, I. [Food Safety Authority of Ireland, Dublin (Ireland); Moylan, R.; Neilan, R. [Dept. of Agriculture and Food, Maynooth (Ireland); White, S.; Fernandes, A.; Rose, M. [Central Science Lab., York (United Kingdom)

    2004-09-15

    The Food Safety Authority of Ireland (FSAI) has a statutory responsibility to assure the safety of food consumed, distributed, produced and sold on the Irish market. The results of a targeted surveillance study on levels of dioxins, furans and polychlorinated biphenyls (PCBs) in battery, free-range, barn and organic eggs are presented here. The study was undertaken against the background of increased awareness in the European Union of the possible health risks posed by dioxins, furans and polychlorinated biphenyls (PCBs) in the food chain, and builds on previous studies undertaken by FSAI into levels of these contaminants in milk, fish and fish oils. The opportunity was taken at the same time to investigate the levels of a number of metals in these eggs, and results of the full study are available on the FSAI website.

  17. Investigation of positive electrode materials based on MnO2 for lithium batteries

    International Nuclear Information System (INIS)

    Le, My Loan Phung; Lam, Thi Xuan Binh; Pham, Quoc Trung; Nguyen, Thi Phuong Thoa

    2011-01-01

    Various composite materials of MnO 2 /C have been synthesized by electrochemical deposition and then used for the synthesis of lithium manganese oxide (LiMn 2 O 4 ) spinel as a cathode material for lithium ion batteries. The structure and electrochemical properties of electrode materials based on MnO 2 /C, spinel LiMn 2 O 4 and doped spinel LiNi 0.5 Mn 1.5 O 4 have been studied. The influence of synthesis conditions on the structural and electrochemical properties of synthesized materials was investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electronic microscopy (TEM) and charge–discharge experiments. Some of the studied materials exhibit good performance of cycling and discharge capacity

  18. Investigations of the Electrochemical Stability of Aqueous Electrolytes for Lithium Battery Applications

    KAUST Repository

    Wessells, Colin

    2010-01-01

    The electrolytic stability windows of several aqueous electrolytes were investigated by a constant current method. The electrode potential range depended upon the value of the imposed current. The magnitude of this behavior varied with the salt solution, its concentration, and pH of the electrolyte. At a leakage current density of 50 μA/cm2, a 5 M solution of LiNO3 had an electrolytic window of 2.3 V, spanning from -0.55 to 1.75 V with respect to the standard hydrogen electrode. These results demonstrate the feasibility of operating lithium batteries at voltages appreciably above the theoretical decomposition voltage of water. © 2010 The Electrochemical Society.

  19. Electrochemical Investigation of Carbon as Additive to the Negative Electrode of Lead-Acid Battery

    Directory of Open Access Journals (Sweden)

    Fernandez Matthew M.

    2015-01-01

    Full Text Available The increasing demand of cycle life performance of Pb-acid batteries requires the improvement of the negative Pb electrode’s charge capacity. Electrochemical investigations were performed on Pb electrode and Pb+Carbon (Carbon black and Graphite electrodes to evaluate the ability of the additives to enhance the electrochemical faradaic reactions that occur during the cycle of Pb-acid battery negative electrode. The electrodes were characterized through Cyclic Voltammetry (CV, Potentiodynamic Polarization (PP, and Electrochemical Impedance Spectroscopy (EIS. CV revealed that the addition of carbon on the Pb electrode increased anodic and cathodicreactions by tenfold. The kinetics of PbSO4 passivation measured through PPrevealed that the addition of Carbon on the Pb electrode accelerated the oxide formation by tenfold magnitude. The Nyquist plot measured through EIS suggest that the electrochemical mechanism and reaction kinetics is under charge-transfer. From the equivalent circuit and physical model, Pb+CB1 electrode has the lowest EIS parameters while Pb+G has the highest which is attributed to faster faradaic reaction.The Nyquist plot of the passivated Pb+CB1 electrode showed double semicircular shape. The first layer represents to the bulk passive PbSO4 layer and the second layer represents the Carbon+PbSO4 layer. The enhancements upon addition of carbon on the Pb electrode were attributed to the additive’s electrical conductivity and total surface area. The electrochemical active sites for the PbSO4 to nucleate and spread increases upon addition of electrical conductive and high surface area carbon additives.

  20. Investigation of concept of efficient short wavelength laser. Quarterly progress report, 1 May 1978-31 July 1978

    Energy Technology Data Exchange (ETDEWEB)

    Piper, L.G.; Krech, R.H.; Pugh, E.R.; Kothandaraman, G.; Taylor, R.L.

    1978-08-01

    Emphasis on this program has shifted to the design and construction of two proof-of-concept laser device experiments based on azide chemistry. The laser concepts and the resulting experiments are briefly described in this quarterly report. Preliminary shake-down of the apparatus is now underway. In addition, measurements to provide critical kinetic and spectroscopic data in support of these laser-demonstration experiments have continued at a reduced level of effort. In particular, the solid azide pyrolysis experiment has been reactivated to obtain more quantitative data on branching ratios of certain critical processes. Finally, design and construction has begun on a system to provide 4.9 ..mu.. radiation to explore multiphoton dissociation of C1N/sub 3/ as an initiation technique.

  1. Investigation of Battery/Ultracapacitor Energy Storage Rating for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Khaligh, A.; Rasmussen, Peter Omand

    2008-01-01

    Combining high energy density batteries and high power density ultracapacitors in Fuel Cell Hybrid Electric Vehicles (FCHEV) results in a high efficient, high performance, low size, and light system. Often the batteries are rated with respect to their energy requirement in order to reduce...

  2. Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product

    International Nuclear Information System (INIS)

    Tan, Peng; Ni, Meng; Shao, Zongping; Chen, Bin; Kong, Wei

    2017-01-01

    Highlights: •A macroscopic model for Li-O 2 batteries based on LiO 2 is developed. •The electrode and electrolyte properties on discharge behaviors are investigated. •A thin cathode with a large porosity is favorable for a high specific capacity. •A high catalytic activity can lead to a high discharge voltage. •The oxygen solubility has larger impacts on the discharge performance. -- Abstract: It is reported lithium superoxide as the discharge product can largely decrease the charge voltage and enable a high round-trip efficiency of lithium-oxygen (Li-O 2 ) batteries. Here, we conduct a numerical investigation of the discharge behaviors of such batteries with LiO 2 as the discharge product. A mathematical model considering the mass transport and electrochemical reaction processes is first developed, which gives good agreement of the simulated discharge voltage with the experimental data. Then, with this model, the effects of electrode and electrolyte properties on the discharge performance are detailedly investigated. It is found that a thin cathode with a large porosity is favorable for a high specific capacity, and a high catalytic activity can lead to a high discharge voltage. For the cathode with different geometrical properties, it is found that the oxygen solubility and diffusivity have similar impacts on discharge capacities, but the oxygen solubility has a larger impact on energy densities. Besides, the limitations and further developments of the present model are also discussed. The results obtained from this work may give useful guidance for the discharge performance improvements of non-aqueous Li-O 2 batteries, and provide implications for other energy storage systems with solid product formation such as Na-O 2 batteries and Li-S batteries.

  3. Investigating the stability of cathode materials for rechargeable lithium ion batteries

    Science.gov (United States)

    Huang, Yiqing

    Lithium ion batteries are widely used in portable electronic devices and electric vehicles. However, safety is one of the most important issues for the Li-ion batteries' use. Some cathode materials, such as LiCoO 2, are thermally unstable in the charged state. Upon decomposition these cathode materials release O2, which could react with organic electrolyte, leading to a thermal runaway. Thus understanding the stability of the cathode materials is critical to the safety of lithium ion batteries. Olivine-type LiMnPO4 is a promising cathode material for lithium ion batteries because of its high energy density. We have revealed the critical role of carbon in the stability and thermal behaviour of olivine MnPO 4 obtained by chemical delithiation of LiMnPO4. (Li)MnPO 4 samples with various particle sizes and carbon contents were studied. Carbon-free LiMnPO4 obtained by solid state synthesis in O 2 becomes amorphous upon delithiation. Small amounts of carbon (0.3 wt.%) help to stabilize the olivine structure, so that completely delithiated crystalline olivine MnPO4 can be obtained. Larger amount of carbon (2 wt.%) prevents full delithiation. Heating in air, O2, or N 2 results in structural disorder (cathode materials and the electrolyte. The thermal stability of electrochemically delithiated Li0.1N 0.8C0.15Al0.05O2 (NCA), FePO4 (FP), Mn0.8Fe0.2PO4 (MFP), hydrothermally synthesized VOPO4, LiVOPO4 and electrochemically lithiated Li2VOPO4 is investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis, coupled with mass spectrometry (TGA-MS). The thermal stability is found in the order: NCA< VOPO4< MFP< FP=LiVOPO4=Li2VOPO4. Sealed capsule high pressure experiments show a phase transformation of VOPO4 → HVOPO4 → H2VOPO4 when VOPO4 reacts with electrolyte (1 M LiPF6 in EC: DMC=1:1) between 200 and 300 °C. Finally, we characterize the lithium storage and release mechanism of V2O5 aerogels by x-ray photoelectron spectroscopy (XPS). We study the

  4. Investigating the Theoretical Structure of the DAS-II Core Battery at School Age Using Bayesian Structural Equation Modeling

    Science.gov (United States)

    Dombrowski, Stefan C.; Golay, Philippe; McGill, Ryan J.; Canivez, Gary L.

    2018-01-01

    Bayesian structural equation modeling (BSEM) was used to investigate the latent structure of the Differential Ability Scales-Second Edition core battery using the standardization sample normative data for ages 7-17. Results revealed plausibility of a three-factor model, consistent with publisher theory, expressed as either a higher-order (HO) or a…

  5. Investigations of oxygen reduction reactions in non-aqueous electrolytes and the lithium-air battery

    Science.gov (United States)

    O'Laoire, Cormac Micheal

    -air battery. Towards this end, using either tetrabutylammonium hexafluorophosphate (TBAPF6) or lithium hexafluorophosphate (LiPF6) electrolyte solutions in four different solvents, namely, dimethyl sulfoxide (DMSO), acetonitrile (MeCN), dimethoxyethane (DME), and tetraethylene glycol dimethyl ether (TEGDME), possessing a range of properties, we have determined that the solvent and the supporting electrolyte cations in the solution act in concert to influence the nature of reduction products and their rechargeability. In solutions containing TBA +, O2 reduction is a highly reversible one-electron process involving the O2/O2- couple in all of the electrolytes examined with little effect on the nature of the solvent. On the other hand, in Li+-containing electrolytes relevant to the Li-air battery, O2 reduction proceeds in a stepwise fashion to form O2-, O22- and O2- as products. These reactions in presence of Li+ are irreversible or quasi-reversible electrochemical processes and the solvents have significant influence on the kinetics, and reversibility or lack thereof, of the different reduction products. Reversible reduction of O2 to long-lived superoxide in a Li+-conducting electrolyte in DMSO has been shown for the first time here. Chapter 5 is the culmination of the thesis where the practical application of the work is demonstrated. We designed electrolytes that facilitate Li-Air rechargeability, by applying the knowledge gained from chapters 2-4. A rechargeable Li-air cell utilizing an electrolyte composed of a solution of LiPF6 in tetraethylene glycol dimethyl ether, CH3O(CH2CH 2O)4CH3 was designed, built and its performance studied. It was shown that the cell yields high capacity and can be recharged in spite the absence of catalyst in the carbon cathode. The application of X-ray diffraction to identify these products formed in a porous carbon electrode is shown here for the first time. The rechargeability of the cell was investigated by repeated charge/discharge cycling

  6. Investigations of Si Thin Films as Anode of Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingliu [Department of Chemical; Shi, Bing; Bareño, Javier; Liu, Yuzi; Maroni, Victor A.; Zhai, Dengyun; Dees, Dennis W.; Lu, Wenquan

    2018-01-22

    Amorphous silicon thin films having various thicknesses were investigated as a negative electrode material for lithium-ion batteries. Electrochemical characterization of the 20 nm thick thin silicon film revealed a very low first cycle Coulombic efficiency, which can be attributed to the silicon oxide layer formed on both the surface of the as-deposited Si thin film and the interface between the Si and the substrate. Among the investigated films, the 100 nm Si thin film demonstrated the best performance in terms of first cycle efficiency and cycle life. Observations from scanning electron microscopy demonstrated that the generation of cracks was inevitable in the cycled Si thin films, even as the thickness of the film was as little as 20 nm, which was not predicted by previous modeling work. However, the cycling performance of the 20 and 100 nm silicon thin films was not detrimentally affected by these cracks. The poor capacity retention of the 1 mu m silicon thin film was attributed to the delamination.

  7. Investigation on a hydrogel based passive thermal management system for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Sijie; Zhao, Rui; Liu, Jie; Gu, Junjie

    2014-01-01

    An appropriate operating temperature range is critical for the overall performance and safety of lithium-ion batteries. Considering the excellent performance of water in heat dissipation in industrial applications, in this paper, a water based PAAS (sodium polyacrylate) hydrogel thermal management system has been proposed to handle the heat surge during the operation of a Li-ion battery pack. A thermal model with constant heat generation rate is employed to simulate the high current discharge process (i.e., 10 A) on a 4S1P battery pack, which shows a good consistence with the corresponding experimental results. Further experiments on 4S1P and 5S1P battery packs validate the effectiveness of the hydrogel thermal management system in lowering the temperature increase rate of battery packs at different discharge rates and minimizing the temperature difference inside battery packs during operation, thereby enhancing the stability and safety in continuous charge and discharge process and decreasing the capacity fading rate during life cycle tests. This novel hydrogel based cooling system also possesses the characteristics of high energy efficiency, easy manufacturing process, compactness, and low cost. - Highlights: • A hydrogel thermal management system (TMS) is proposed for Li-ion battery. • It is found that the heat from internal resistance predominates at high discharge rate. • Effectiveness of hydrogel in controlling cell temperature is proved. • Battery equipped with hydrogel TMS is safer at continuous high rate cycle test. • The capacity fading rate of battery pack decreases when hydrogel TMS is implemented

  8. Investigation of the Self-Discharge Behavior of Lithium-Sulfur Batteries

    DEFF Research Database (Denmark)

    Knap, Vaclav; Stroe, Daniel Loan; Swierczynski, Maciej Jozef

    2016-01-01

    Lithium-Sulfur (Li-S) batteries represent a perspective energy storage technology, which reaches very high theoretical limits in terms of specific capacity, specific energy, and energy density. However, Li-S batteries are governed by the polysulfide shuttle mechanism, which causes fast capacity...... fade, low coulombic efficiency, and high self-discharge rate. The self-discharge is an important characteristic of Li-S batteries for both practical applications and laboratory testing, which is highly dependent on the operating conditions. Thus, to map and to understand the Li-S self...

  9. X-Ray Absorption Structural and Electrochemical Investigations of Novel Materials for Advanced Batteries and Ultracapacitors

    National Research Council Canada - National Science Library

    Mansour, Azzam

    1998-01-01

    The program objectives are as follows: Synthesize and characterize the chemistry and structure of a new class of tin-based amorphous oxides suitable for use as anode material in rechargeable Li-ion batteries...

  10. Investigation of Physical Phenomena and Cutting Efficiency for Laser Cutting on Anode for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Dongkyoung Lee

    2018-02-01

    Full Text Available Lithium-ion batteries have a higher energy density than other secondary batteries. Among the lithium-ion battery manufacturing process, electrode cutting is one of the most important processes since poor cut quality leads to performance degradation, separator protrusion, and local electric stress concentration. This may, eventually, lead to malfunction of lithium-ion batteries or explosion. The current mechanical cutting technology uses a contact process and this may lead to process instability. Furthermore, there are additional costs if the tools and cell design are changed. To solve these issues, laser cutting has been used. Conventional dependent parameters have limitations in investigating and explaining many physical phenomena during the laser cutting of electrodes. Therefore, this study proposes specific widths such as melting, top, and kerf width. Moreover, the relationship between laser parameters and multiphysical phenomena with the proposed widths are investigated. Five types of classification with regard to physical phenomena are presented and explained with SEM images. Cutting efficiency is estimated with the proposed widths. The proposed specific cutting widths, five types of geometrical classification, and cutting efficiency can be used as standardized parameters to evaluate the cutting quality.

  11. Experimental investigation on thermal management of electric vehicle battery with heat pipe

    International Nuclear Information System (INIS)

    Rao Zhonghao; Wang Shuangfeng; Wu Maochun; Lin Zirong; Li Fuhuo

    2013-01-01

    Highlights: ► The thermal management system of electric vehicle battery with heat pipes was designed. ► Temperature rise is a key factor for the design of power battery thermal management system. ► Temperature distribution is inevitable to reference for better design of heat pipes used for heat dissipation. ► Heat pipes are effective for power batteries thermal management within electric vehicles. - Abstract: In order to increase the cycle time of power batteries and decrease the overall cost of electric vehicles, the thermal management system equipped with heat pipes was designed according to the heat generated character of power batteries. The experimental result showed that the maximum temperature could be controlled below 50 °C when the heat generation rate was lower than 50 W. Coupled with the desired temperature difference, the heat generation rate should not exceed 30 W. The maximum temperature and temperature difference are kept within desired rang under unsteady operating conditions and cycle testing conditions. Applying heat pipes based power batteries thermal management is an effective method for energy saving in electric vehicles.

  12. Electrochemical investigations of activation and degradation of hydrogen storage alloy electrodes in sealed Ni/MH battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.X.; Xu, Z.D. [Zhejiang University, Hangzhou (China). Dept. of Chemistry; Tu, J.P. [Zhejiang University, Hangzhou (China). Dept. of Materials Science and Engineering

    2002-04-01

    The M1Ni{sub 0.4}Co{sub 0.6}Al{sub 0.4} alloy was treated with hot alkaline solution containing a small amount of KBH{sub 4} and its effect on the activation and degradation behaviors of the hydrogen storage alloy electrodes in sealed Ni/MH batteries was investigated. It was found that the treated alloy electrode exhibited a better activation property than the untreated one in the sealed battery as well as in open cell. For the treated alloy electrode activating, the polarization resistance in the sealed battery was almost equal to that in the open cell. But in the case of the untreated alloy electrode activating, the polarization resistance in the sealed battery was larger than that in the open cell. The reason is that the oxide film on the untreated alloy surface suppressed the combination of the oxygen evolved on the positive electrode with hydrogen on the negative alloy surface. In addition, the decaying of capacity of the untreated alloy electrode was much faster than that of the treated one. The reasons were, that after surface treatment, the Ni-rich and Al-poor layer on the alloy surface not only had a high electrocatalytic activity for hydrogen electrode reaction, but also facilitated the combination of the oxygen with hydrogen and hydrogen adsorption on the alloy surface. (author)

  13. Thermal transport in lithium ion batteries: An experimental investigation of interfaces and granular materials

    Science.gov (United States)

    Gaitonde, Aalok Jaisheela Uday

    Increasing usage and recent accidents due to lithium-ion (Li-ion) batteries exploding or catching on fire has inspired research on the characterization and thermal management of these batteries. In cylindrical 18650 cells, heat generated during the battery's charge/discharge cycle is poorly dissipated to the surrounding through its metallic case due to the poor thermal conductivity of the jelly roll, which is spirally wound with many interfaces between electrodes and the polymeric separator. This work presents a technique to measure the thermal conduction across the metallic case-plastic separator interface, which ultimately limits heat transfer out of the jelly roll. The polymeric separator and metallic case are harvested from discharged commercial 18650 battery cells for thermal testing. A miniaturized version of the reference bar method enables measurements of the interface resistance between the case and the separator by establishing a temperature gradient across a multilayer stack consisting of two reference layers of known thermal conductivity and the case-separator sample. The case-separator interfacial conductance is reported for a range of case temperatures and interface pressures. The mean thermal conductance across the case-separator interface is 670 +/- 275 W/(m2K) and no significant temperature or pressure dependence is observed. The effective thermal conductivity of the battery stack is measured to be 0.27 W/m/K and 0.32 W/m/K in linear and radial configurations, respectively. Many techniques for fabricating battery electrodes involve coating particles of the active materials on metallic current collectors. The impact of mechanical shearing on the resultant thermal properties of these packed particle beds during the fabrication process has not yet been studied. Thus, the final portion of this thesis designs and validates a measurement system to measure the effects of mechanical shearing on the thermal conductivity of packed granular beds. This system

  14. Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery

    International Nuclear Information System (INIS)

    Xue Fangqin; Wang Yongliang; Wang Wenhong; Wang Xindong

    2008-01-01

    The Mn(II)/Mn(III) couple has been recognized as a potential anode for redox flow batteries to take the place of the V(IV)/V(V) in all-vanadium redox battery (VRB) and the Br 2 /Br - in sodium polysulfide/bromine (PSB) because it has higher standard electrode potential. In this study, the electrochemical behavior of the Mn(II)/Mn(III) couple on carbon felt and spectral pure graphite were investigated by cyclic voltammetry, steady polarization curve, electrochemical impedance spectroscopy, transient potential-step experiment, X-ray diffraction and charge-discharge experiments. Results show that the Mn(III) disproportionation reaction phenomena is obvious on the carbon felt electrode while it is weak on the graphite electrode owing to its fewer active sites. The reaction mechanism on carbon felt was discussed in detail. The reversibility of Mn(II)/Mn(III) is best when the sulfuric acid concentration is 5 M on the graphite electrode. Performance of a RFB employing Mn(II)/Mn(III) couple as anolyte active species and V(III)/V(II) as catholyte ones was evaluated with constant-current charge-discharge tests. The average columbic efficiency is 69.4% and the voltage efficiency is 90.4% at a current density of 20 mA cm -2 . The whole energy efficiency is 62.7% close to that of the all-vanadium battery and the average discharge voltage is about 14% higher than that of an all-vanadium battery. The preliminary exploration shows that the Mn(II)/Mn(III) couple is electrochemically promising for redox flow battery

  15. Investigation of physico-chemical processes in lithium-ion batteries by deconvolution of electrochemical impedance spectra

    Science.gov (United States)

    Manikandan, Balasundaram; Ramar, Vishwanathan; Yap, Christopher; Balaya, Palani

    2017-09-01

    The individual physico-chemical processes in lithium-ion batteries namely solid-state diffusion and charge transfer polarization are difficult to be tracked by impedance spectroscopy due to simultaneous contributions from cathode and anode. A deeper understanding of various polarization processes in lithium-ion batteries is important to enhance storage performance and cycle life. In this context, the polarization processes occurring in cylindrical 18650 cells comprising different cathodes against graphite anode (LiNi0.2Mn0.2Co0.6O2vs. graphite; LiNi0.6Mn0.2Co0.2O2vs. graphite; LiNi0.8Co0.15Al0.05O2vs. graphite and LiFePO4vs. graphite) are investigated by deconvolution of impedance spectra across various states of charge. Further, cathodes and anodes are extracted from the investigated 18650-type cells and tested in half-cells against Li-metal as well as in symmetric cell configurations to understand the contribution of cathode and anode to the full cells of various battery chemistries studied. Except for the LiFePO4vs. graphite cell, the polarization resistance in graphite of other cells are found to be higher than those of the investigated cathodes, proving that the polarization in lithium-ion battery is largely influenced by the graphitic anode. Furthermore, the charge transfer polarization resistance encountered by the cathodes investigated in this work is found to be a strong function of the states of charge.

  16. Investigation of Battery Heat Generation and Key Performance Indicator Efficiency Using Isothermal Calorimeter

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Kær, Søren Knudsen

    2016-01-01

    In this experiment-based research, the performance and behaviour of a pouch type Li-ion battery cell are reported. The commercial test cell has a Lithium Titanate Oxide (LTO) based anode with 13Ah capacity. It is accomplished by measuring the evolution of surface temperature distribution, and the...

  17. Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application

    International Nuclear Information System (INIS)

    Tang, Yong; Yuan, Wei; Pan, Minqiang; Wan, Zhenping

    2011-01-01

    A hybrid system combining a 2 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack and a lead-acid battery pack is developed for a lightweight cruising vehicle. The dynamic performances of this PEMFC system with and without the assistance of the batteries are systematically investigated in a series of laboratory and road tests. The stack current and voltage have timely dynamic responses to the load variations. Particularly, the current overshoot and voltage undershoot both happen during the step-up load tests. These phenomena are closely related to the charge double-layer effect and the mass transfer mechanisms such as the water and gas transport and distribution in the fuel cell. When the external load is beyond the range of the fuel cell system, the battery immediately participates in power output with a higher transient discharging current especially in the accelerating and climbing processes. The DC-DC converter exhibits a satisfying performance in adaptive modulation. It helps rectify the voltage output in a rigid manner and prevent the fuel cell system from being overloaded. The dynamic responses of other operating parameters such as the anodic operating pressure and the inlet and outlet temperatures are also investigated. The results show that such a hybrid system is able to dynamically satisfy the vehicular power demand.

  18. Investigation of low-cost oligoanthraquinones for alkaline, aqueous rechargeable batteries with cell potential up to 1.13 V

    Science.gov (United States)

    Dražević, Emil; Andersen, Anders Søndergaard; Wedege, Kristina; Henriksen, Martin Lahn; Hinge, Mogens; Bentien, Anders

    2018-03-01

    The transition to renewable energy sources has created need for stationary, low-cost electrical energy storage. A possible technology to address both cost and environmental concerns are batteries based on organic materials. The use of oligoanthraquinones as a replacement for metal hydrides or cadmium in nickel hydroxide rechargeable batteries is investigated in detail regarding polymer composition, electrochemical reversibility and electroactive species cost. Two different oligoanthraquinones are paired with a nickel hydroxide cathode and demonstrate cycling stability dependent on parameters such as supporting electrolyte strength, C-rate, and anode swelling. The energy efficiencies are up to 75% and the cell potential up to 1.13 V. Simple functionalization of the basic structure increases the cell potential by 100 mV.

  19. Electrochemical investigation of tetravalent uranium β-diketones for active materials of all-uranium redox flow battery

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Shiokawa, Yoshinobu; Ikeda, Yasuhisa

    2002-01-01

    For active materials of the all-uranium redox flow battery for the power storage, tetravalent uranium β-diketones were investigated. The electrode reactions of U(ba) 4 and U(btfa) 4 were examined in comparison with that of U(acac) 4 , where ba denotes benzoylacetone, btfa benzoyltrifluoroacetone and acac acetylacetone. The cyclic voltammograms of U(ba) 4 and U(btfa) 4 solutions indicate that there are two series of redox reactions corresponding to the complexes with different coordination numbers of four and three. The electrode kinetics of the U(IV)/U(III) redox reactions for btfa complexes is examined. The obtained result supports that the uranium β-diketone complexes examined in the present study will serve as excellent active materials for negative electrolyte in the redox flow battery. (author)

  20. In Situ Radiographic Investigation of (De)Lithiation Mechanisms in a Tin-Electrode Lithium-Ion Battery.

    Science.gov (United States)

    Sun, Fu; Markötter, Henning; Zhou, Dong; Alrwashdeh, Saad Sabe Sulaiman; Hilger, Andre; Kardjilov, Nikolay; Manke, Ingo; Banhart, John

    2016-05-10

    The lithiation and delithiation mechanisms of multiple-Sn particles in a customized flat radiography cell were investigated by in situ synchrotron radiography. For the first time, four (de)lithiation phenomena in a Sn-electrode battery system are highlighted: 1) the (de)lithiation behavior varies between different Sn particles, 2) the time required to lithiate individual Sn particles is markedly different from the time needed to discharge the complete battery, 3) electrochemical deactivation of originally electrochemically active particles is reported, and 4) a change of electrochemical behavior of individual particles during cycling is found and explained by dynamic changes of (de)lithiation pathways amongst particles within the electrode. These unexpected findings fundamentaly expand the understanding of the underlying (de)lithiation mechanisms inside commercial lithium-ion batteries (LIBs) and would open new design principles for high-performance next-generation LIBs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Phase diagram, thermodynamic investigations, and modelling of systems relevant to lithium-ion batteries

    International Nuclear Information System (INIS)

    Fuertauer, Siegfried; Beutl, Alexander; Flanorfer, Hans; Henriques, David; Giel, Hans; Markus, Thorsten

    2017-01-01

    This article reports on two consecutive joint projects titled ''Experimental Thermodynamics and Phase Relations of New Electrode Materials for Lithium-Ion Batteries'', which were performed in the framework of the WenDeLIB 1473 priority program ''Materials with new Design for Lithium Ion Batteries''. Hundreds of samples were synthesized using experimental techniques specifically developed to deal with highly reactive lithium and lithium-containing compounds to generate electrochemical, phase diagram and crystal structure data in the Cu-Li, Li-Sn, Li-Sb, Cu-Li-Sn, Cu-Li-Sb and selected oxide systems. The thermochemical and phase diagram data were subsequently used to develop self-consistent thermodynamic descriptions of several binary systems. In the present contribution, the experimental techniques, working procedures, results and their relevance to the development of new electrode materials for lithium ion batteries are discussed and summarized. The collaboration between the three groups has resulted in more than fifteen (15) published articles during the six-year funding period.

  2. Phase diagram, thermodynamic investigations, and modelling of systems relevant to lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fuertauer, Siegfried; Beutl, Alexander; Flanorfer, Hans [Vienna Univ. (Austria). Dept. of Inorganic Chemistry - Functional Materials; Li, Dajian; Cupid, Damian [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics (IAM-AWP); Henriques, David; Giel, Hans; Markus, Thorsten [Mannheim Univ. of Applied Sciences (Germany). Inst. for Thermo- and Fluiddynamics

    2017-11-15

    This article reports on two consecutive joint projects titled ''Experimental Thermodynamics and Phase Relations of New Electrode Materials for Lithium-Ion Batteries'', which were performed in the framework of the WenDeLIB 1473 priority program ''Materials with new Design for Lithium Ion Batteries''. Hundreds of samples were synthesized using experimental techniques specifically developed to deal with highly reactive lithium and lithium-containing compounds to generate electrochemical, phase diagram and crystal structure data in the Cu-Li, Li-Sn, Li-Sb, Cu-Li-Sn, Cu-Li-Sb and selected oxide systems. The thermochemical and phase diagram data were subsequently used to develop self-consistent thermodynamic descriptions of several binary systems. In the present contribution, the experimental techniques, working procedures, results and their relevance to the development of new electrode materials for lithium ion batteries are discussed and summarized. The collaboration between the three groups has resulted in more than fifteen (15) published articles during the six-year funding period.

  3. Investigation of zinc recovery by hydrogen reduction assisted pyrolysis of alkaline and zinc-carbon battery waste.

    Science.gov (United States)

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2017-10-01

    Zinc (Zn) recovery from alkaline and zinc-carbon (Zn-C) battery waste were studied by a laboratory scale pyrolysis process at a reaction temperature of 950°C for 15-60min residence time using 5%H 2(g) -N 2(g) mixture at 1.0L/min gas flow rate. The effect of different cooling rates on the properties of pyrolysis residue, manganese oxide particles, were also investigated. Morphological and structural characterization of the produced Zn particles were performed. The battery black mass was characterized with respect to the properties and chemical composition of the waste battery particles. The thermodynamics of the pyrolysis process was studied using the HSC Chemistry 5.11 software. A hydrogen reduction reaction of the battery black mass (washed with Milli-Q water) takes place at the chosen temperature and makes it possible to produce fine Zn particles by rapid condensation following the evaporation of Zn from the pyrolysis batch. The amount of Zn that can be separated from the black mass increases by extending the residence time. Recovery of 99.8% of the Zn was achieved at 950°C for 60min residence time using 1.0L/min gas flow rate. The pyrolysis residue contains MnO and Mn 2 O 3 compounds, and the oxidation state of manganese can be controlled by cooling rate and atmosphere. The Zn particles exhibit spherical and hexagonal particle morphology with a particle size varying between 200nm and 3µm. However the particles were formed by aggregation of nanoparticles which are primarily nucleated from the gas phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery

    International Nuclear Information System (INIS)

    Tran, Thanh-Ha; Harmand, Souad; Desmet, Bernard; Filangi, Sebastien

    2014-01-01

    In this paper, the use of flat heat pipe as an effective and low-energy device to mitigate the temperature of a battery module designed for a HEV application was investigated. For this purpose, nominal heat flux generated by a battery module was reproduced and applied to a flat heat pipe cooling system. The thermal performance of the flat heat pipe cooling system was compared with that of a conventional heat sink under various cooling conditions and under several inclined positions. The results show that adding heat pipe reduced the thermal resistance of a common heat sink of 30% under natural convection and 20% under low air velocity cooling. Consequently, the cell temperature was kept below 50 °C, which cannot be achieved using heat sink. According to the space allocated for the battery pack in the vehicle, flat heat pipe can be used in vertical or horizontal position. Furthermore, flat heat pipe works efficiently under different grade road conditions. The transient behaviour of the flat heat pipe was also studied under high frequency and large amplitude variable input power. The flat heat pipe was found to handle more efficiently instant increases of the heat flux than the conventional heat sink. -- Highlights: • Constant heat flux was applied to a flat heat pipe cooling system. • Its thermal performance was compared with that of a heat sink under several cooling conditions. • The influence of the inclination was evaluated. • The heat pipe transient behaviour was also studied under variable input power. • Heat pipe was found to be an effective and low-energy solution for HEV/EV battery cooling

  5. Investigation of concept of efficient short wavelength laser. Quarterly progress report, 1 November 1978-31 January 1979

    Energy Technology Data Exchange (ETDEWEB)

    Krech, R.H.; Piper, L.G.; Pugh, E.R.; Taylor, R.L.

    1979-03-01

    A concept for the development of an efficient short wavelength laser based on a class of endoergic molecules-azides is being investigated. The first of two laser-device experiments involves generating high concentrations of azide radicals in the thermal pyrolysis of solid, ionic azides, with the subsequent excitation of the N/sub 2/(B/sup 3/..pi../sub g/) state from azide-radical recombination. Laser action would then take place upon the N/sub 2/(B/sup 3/..pi../sub g/-A/sup 3/..sigma../sup +//sub u/), first-positive transition. The second laser-demonstration experiment involves creating a high density of NCl(b/sup 1/..sigma../sup +/) state by uv photolysis of ClN/sub 3/. In this case laser emission is expected on the NCl(b/sup 1/..sigma../sup +/..-->..X/sup 3/..sigma../sup -/) transition at 665 nm.

  6. Experimental investigation of internal short circuits in lithium-ion batteries

    Science.gov (United States)

    Poramapojana, Poowanart

    With outstanding performance of Lithium-ion batteries, they have been widely used in many applications. For hybrid electric vehicles and electric vehicles, customer concerns of battery safety have been raised as a number of car accidents were reported. To evaluate safety performance of these batteries, a nail penetration test is used to simulate and induce internal short circuits instantaneously. Efforts to explain failure mechanisms of the penetration using electrochemical-thermal coupled models have been proposed. However, there is no experimental validation because researchers lack of a diagnostic tool to acquire important cell characteristics at a shorting location, such as shorting current and temperature. In this present work, diagnostic nails have been developed to acquire nail center temperatures and shorting current flow through the nails during nail penetration tests. Two types of cylindrical wall structures are used to construct the nails: a double-layered stainless steel wall and a composite cylindrical wall. An inner hollow cylinder functions as a sensor holder where two wires and one thermocouple are installed. To study experimental reproducibility and repeatability of experimental results, two nail penetration tests are conducted using two diagnostic nails with the double-layered wall. Experimental data shows that the shorting resistance at the initial stage is a critical parameter to obtain repeatable results. The average shorting current for both tests is approximately 40 C-rate. The fluctuation of the shorting current is due to random sparks and fire caused loose contacts between the nail and the cell components. Moreover, comparative experimental results between the two wall structures reveal that the wall structure does not affect the cell characteristics and Ohmic heat generation of the nail. The wall structure effects to current measurements inside the nail. With the composite wall, the actual current redistribution into the inner wall is

  7. Neutron imaging methods for the investigation of energy related materials. Fuel cells, battery, hydrogen storage and nuclear fuel

    Science.gov (United States)

    Lehmann, Eberhard H.; Boillat, Pierre; Kaestner, Anders; Vontobel, Peter; Mannes, David

    2015-10-01

    After a short explanation of the state-of-the-art in the field of neutron imaging we give some examples how energy related materials can be studied successfully. These are in particular fuel cell studies, battery research approaches, the storage of hydrogen, but also some investigations with nuclear fuel components. The high contrast for light isotopes like H-1, Li-6 or B-10 are used to trace low amounts of material even within compact sealing of metals which are relatively transparent for neutrons at the same time.

  8. Investigation of pyrite as a contributor to slagging in eastern bituminous coals. Quarterly progress report 9, October 1-December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Bryers, R.W.

    1984-06-01

    The objective of this program is to examine slags formed as a result of firing coals with varying concentration levels, size distribution, and orientation of pyrite with regard to mineral matter in the coal in a laboratory furnace. The program tasks are: (1) selection of eight candidate coals; (2) chemical characterization of the coal samples and identification of the pyrite size, distribution, and orientation with respect to other mineral matter and concentration levels; (3) testing of the candidate coals in a laboratory furnace; (4) chemical and physical characterization of the slag and fly ash samples created by the impurities in the coal sample; (5) influence of coal beneficiation on furnace slagging; and (6) analysis of data and identification of parameters influencing the contribution of pyrite to slagging problems. Washing of the Upper Freeport coal from Indiana County, Pennsylvania, was completed by the last quarter of 1983. The washed product was characterized for mineral content, and a combustion test was performed. Kentucky No. 9 from Henderson County, Kentucky, selected as the sixth coal to be investigated, was characterized using size and gravity fractionation techniques and was combusted in the laboratory furnace to evaluate its slagging and fouling potential. The remaining two coals to be characterized and combusted were identified as Illinois No. 5 and Lower Kittanning from Clarion County, Pennsylvania. 80 figures, 27 tables.

  9. An Electrochemical Impedance Spectroscopy Investigation of the Overpotentials in Li−O2 Batteries

    DEFF Research Database (Denmark)

    Højberg, Jonathan; McCloskey, Bryan D.; Hjelm, Johan

    2015-01-01

    death”) is explained by an increase in the charge transport resistance. The findings confirm that our theory and conclusions in ref 1, based on experiments on smooth small-area glassy carbon cathodes, are equally valid in real Li−O2 batteries with porous cathodes. The parameter variations performed...... that the increase in charge potential is not caused by an increase in the internal resistance. It is proposed that the potential shift is instead dictated by a mixed potential of parasitic reactions and Li2O2 oxidation. The measurements also confirm that the rapid potential loss near the end of discharge (“sudden...

  10. In Situ Investigations of Li-MoS2 with Planar Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Jiayu [Univ. of Maryland, College Park, MD (United States). Dept. of Materials Science and Engineering; Bao, Wenzhong [Univ. of Maryland, College Park, MD (United States). Dept. of Materials Science and Engineering and Dept. of Physics; Liu, Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies (CINT); Dai, Jiaqi [Univ. of Maryland, College Park, MD (United States). Dept. of Materials Science and Engineering; Shen, Fei [Univ. of Maryland, College Park, MD (United States). Dept. of Materials Science and Engineering; Zhou, Lihui [Univ. of Maryland, College Park, MD (United States). Dept. of Materials Science and Engineering; Cai, Xinghan [Univ. of Maryland, College Park, MD (United States). Dept. of Physics; Urban, Daniel [Univ. of Maryland, College Park, MD (United States). Dept. of Materials Science and Engineering; Li, Yuanyuan [Univ. of Maryland, College Park, MD (United States). Dept. of Materials Science and Engineering; Jungjohann, Katherine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies (CINT); Fuhrer, Michael S. [Univ. of Maryland, College Park, MD (United States). Dept. of Physics; Monash Univ., Melbourne, VIC (Australia). School of Physics; Hu, Liangbing [Univ. of Maryland, College Park, MD (United States). Dept. of Materials Science and Engineering

    2014-11-25

    For this study, a planar microbattery that enables various in situ measurements of lithiation of 2D materials on the individual-flake scale is developed. A large conductivity increase of thick MoS2 crystallite lithiation due to the formation of a percolative Mo nanoparticle network embedded in a Li2S matrix is observed. The nanoscale study leads to the development of a novel charging strategy for batteries that largely improves the capacity and cycling performance confirmed in bulk MoS2/Li coin cells.

  11. Investigation into the role of silica in lithium polysulfide adsorption for lithium sulfur battery

    International Nuclear Information System (INIS)

    Kim, Miso; Kang, Sung-Hwan; Manuel, James; Zhao, Xiaohui; Cho, Kwon Koo; Ahn, Jou Hyeon

    2015-01-01

    Highlights: • Amine functionalized silica nanoparticles (AFSN) were prepared. • Polysulfide adsorption studies were carried out with silica nanoparticles and AFSN. • Sulfur cathodes were prepared with SN and AFSN for Li–S batteries. • AFSN showed excellent polysulfide adsorption. - Abstract: A new type of sulfur electrodes with the ability for polysulfide adsorption was prepared by incorporating silica nanoparticles (SN) or amine functionalized silica nanoparticles (AFSN). AFSN was synthesized by a simple and cost-effective method. The functionalization and surface morphology of silica were confirmed with Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), respectively. Polysulfide adsorption studies were carried out using UV–vis spectrometer, which confirmed the excellent adsorption of polysulfides by AFSN. Interaction of polysulfides with SN or AFSN was studied using FTIR and FT-Raman spectroscopy. The effective polysulfide adsorption by SN and AFSN leads to good and stable cycle performance of lithium sulfur cells. The results show that the incorporation of SN or AFSN with sulfur is a promising method to prepare cathode material for lithium sulfur batteries

  12. Systematic investigations on acyclic organic carbonate solvents for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, J.; Peter, S.; Novak, P.

    2003-03-01

    Electrochemical cycling tests on cells with graphite electrodes and several alkyl methyl carbonates were performed. Experiments with mixed binary solvent electrolytes with ethylene carbonate (EC) showed that the alkyl methyl carbonates H{sub 3}CO(CO)O(CH{sub 2}){sub n}H (n = 3-5) are suitable as co-solvents in lithium-ion batteries. Ternary mixtures of EC, BMC, and propylene carbonate (PC) showed better overall performances than EC/PC electrolytes. The branched isobutyl methyl carbonate (i-BMC) outperforms its linear isomer (BMC) in terms of electrochemical performance. LiPF{sub 6} is superior to LiClO{sub 4} as conducting salt in both EC/BMC and EC/i-BMC mixtures in terms of electrolyte conductivity, rate capability, and cycling stability. (author)

  13. Button batteries

    Science.gov (United States)

    Swallowing batteries ... These devices use button batteries: Calculators Cameras Hearing aids Penlights Watches ... If a person puts the battery up their nose and breathes it further in, ... problems Cough Pneumonia (if the battery goes unnoticed) ...

  14. Effect of energy-regenerative braking on electric vehicle battery thermal management and control method based on simulation investigation

    International Nuclear Information System (INIS)

    Huang, Jingying; Qin, Datong; Peng, Zhiyuan

    2015-01-01

    Highlights: • A two-degree-of-freedom lumped thermal model is developed for battery. • The battery thermal model is integrated with vehicle driving model. • Real-time battery thermal responses is obtained. • Active control of current by regenerative braking ratio adjustment is proposed. • More energy is recovered with smaller battery temperature rise. - Abstract: Battery thermal management is important for the safety and reliability of electric vehicle. Based on the parameters obtained from battery hybrid pulse power characterization test, a two-degree-of-freedom lumped thermal model is established. The battery model is then integrated with vehicle driving model to simulate real-time battery thermal responses. An active control method is proposed to reduce heat generation due to regenerative braking. The proposed control method not only subjects to the braking safety regulation, but also adjusts the regenerative braking ratio through a fuzzy controller. By comparing with other regenerative braking scenarios, the effectiveness of the proposed strategy has been validated. According to the results, the proposed control strategy suppresses battery temperature rise by modifying the charge current due to regenerative braking. The overlarge components of current are filtered out whereas the small ones are magnified. Therefore, with smaller battery temperature rise, more energy is recovered. Compared to the traditional passive heat dissipating, the proposed active methodology is feasible and provides a novel solution for electric vehicle battery thermal management.

  15. Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite

    International Nuclear Information System (INIS)

    Hussain, Abid; Tso, C.Y.; Chao, Christopher Y.H.

    2016-01-01

    It is necessary for electric vehicles (EVs) and hybrid electric vehicles (HEVs) to have a highly efficient thermal management system to maintain high powered lithium ion batteries within permissible temperature limits. In this study, an efficient thermal management system for high powered lithium ion batteries using a novel composite (nickel foam-paraffin wax) is designed and investigated experimentally. The results have been compared with two other cases: a natural air cooling mode and a cooling mode with pure phase change materials (PCM). The results indicate that the safety demands of lithium ion batteries cannot be fulfilled using natural air convection as the thermal management mode. The use of PCM can dramatically reduce the surface temperature within the permissible range due to heat absorption by the PCM undergoing phase change. This effect can be further enlarged by using the nickel foam-paraffin composite, showing a temperature reduction of 31% and 24% compared to natural air convection and pure PCM, respectively under 2 C discharge rate. The effect of the geometric parameters of the foam on the battery surface temperature has also been studied. The battery surface temperature decreases with the decrease of porosity and the pore density of the metal foam. On the other hand, the discharge capacity increases with the increase in porosity, but decreases with pore density. - Highlights: • Thermal management for Li-ion batteries using nickel-paraffin is studied. • The temperature is reduced by 31% as compared to natural air cooling mode. • The temperature increases with increase of porosity and pore density of metal foam. • Battery discharge capacity increases with the increase in porosity. • Battery discharge capacity increases with the decreases in pore density.

  16. Aging investigations of a lithium-ion battery electrolyte from a field-tested hybrid electric vehicle

    Science.gov (United States)

    Grützke, Martin; Kraft, Vadim; Hoffmann, Björn; Klamor, Sebastian; Diekmann, Jan; Kwade, Arno; Winter, Martin; Nowak, Sascha

    2015-01-01

    The electrolyte of a used lithium-ion battery from a hybrid electric vehicle (HEV) was investigated. The liquid electrolyte was collected through the pressure valve of these 5 Ah cells. It consists of (29.8 ± 0.2) wt.% dimethyl carbonate (DMC), (21.7 ± 0.1) wt.% ethyl methyl carbonate (EMC), (30.3 ± 0.3) wt.% ethylene carbonate (EC) and (2.2 ± 0.1) wt.% cyclohexyl benzene (CHB) which were identified with GC-MS and quantified with GC-FID. Li+ (1.29 ± 0.04) mol L-1 and PF6- were determined with IC as the main ionic species in the solution. Furthermore, BF4- was clearly identified with IC-ESI-MS, IC-ICP-MS and 11B NMR and quantified to a concentration of (120.8 ± 8.3) mg L-1 with ICP-OES. The presence of POF3 (detected with GC-MS), F-, PO2F2-, HPO3F- and H2PO4- (determined with IC-ESI-MS) can be attributed to the reaction of the conducting salt LiPF6 via PF5 with traces of water. HPO3F- and H2PO4- could only be observed in cells which were opened in a laboratory hood under exposure of air humidity. This experiment was done to simulate escaping electrolyte from an HEV battery pack. Furthermore, several alkyl phosphates (identified with GC-MS and IC-ESI-MS) are present in the solution due to further reaction of the different fluorinated phosphates with organic carbonates.

  17. Progress in aqueous rechargeable batteries

    OpenAIRE

    Jilei Liu; Chaohe Xu; Zhen Chen; Shibing Ni; Ze Xiang Shen

    2018-01-01

    Over the past decades, a series of aqueous rechargeable batteries (ARBs) were explored, investigated and demonstrated. Among them, aqueous rechargeable alkali-metal ion (Li+, Na+, K+) batteries, aqueous rechargeable-metal ion (Zn2+, Mg2+, Ca2+, Al3+) batteries and aqueous rechargeable hybrid batteries are standing out due to peculiar properties. In this review, we focus on the fundamental basics of these batteries, and discuss the scientific and/or technological achievements and challenges. B...

  18. Investigations of the Electrochemical Stability of Aqueous Electrolytes for Lithium Battery Applications

    KAUST Repository

    Wessells, Colin; Ruffο, Riccardo; Huggins, Robert A.; Cui, Yi

    2010-01-01

    The electrolytic stability windows of several aqueous electrolytes were investigated by a constant current method. The electrode potential range depended upon the value of the imposed current. The magnitude of this behavior varied with the salt

  19. Quarterly Financial Report

    International Development Research Centre (IDRC) Digital Library (Canada)

    acray

    2011-06-30

    Jun 30, 2011 ... 2 IDRC QUARTERLY FINANCIAL REPORT JUNE 2011. Consolidated .... spending on capacity-building projects as well as to management's decision to restrict capacity- building ...... The investments in financial institutions.

  20. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can

  1. Rechargable Lithium-Air Batteries: Investigation of Redox Mediators Using DEMS

    DEFF Research Database (Denmark)

    Christensen, Mathias Kjærgård; Storm, Mie Møller; Norby, Poul

    2016-01-01

    material or electrolyte is being decomposed. This is also seen with Thermally reduced Graphene Oxide (TrGO). The graphene based cathode is interesting as it exhibits a high surface area which in turn increases capacity. Using the additive LiI, functioning as a redox mediator, the discharge curve remains...... is observed without the redox mediator [2]. This results in higher energy densities and ideally higher cyclability due to the lower over-potentials. Using DEMS we have investigated the gas evolved in the process to determine the electron to oxygen ratio using both cathode materials mentioned. As has been...

  2. Energy Consumption in Smartphones: An Investigation of Battery and Energy Consumption of Media Related Applications on Android Smartphones

    OpenAIRE

    Elliott, J; Kor, A; Omotosho, OA

    2017-01-01

    Modern smartphones have become indispensable for many people around the world as they continue to evolve and introduce newer functions and operations. Battery capacity has however failed to keep up with the rate at which smartphones have evolved in recent years, which has led to rapid battery drain and the need for users to discard and replace them very frequently. This inevitably leads to increased greenhouse gas emissions and harmful consequences the world over due to poor disposal and reus...

  3. Experimental investigation on lithium-ion battery thermal management based on flow boiling in mini-channel

    International Nuclear Information System (INIS)

    An, Zhoujian; Jia, Li; Li, Xuejiao; Ding, Yong

    2017-01-01

    Highlights: • A new type of BTM system based on flow boiling in mini-channel are presented. • Uniform temperature and volume distribution of battery module are obtained. • The temperatures of battery cell are maintained around 40 °C. • There exists an appropriate Re number range for boiling heat transfer in mini-channel. - Abstract: In order to guarantee the safety and prolong the lifetime of lithium-ion power battery within electric vehicles, thermal management system is essential. A new type of thermal management system based on flow boiling in mini-channel utilizing dielectric hydrofluoroether liquid which boiling point is 34 °C is proposed. The cooling experiments for battery module are carried out at different discharge rates and flow Re number. The cooling effect and the influence of battery cooling on the electrochemical characteristics are concerned. The experimental results show that the thermal management can efficiently reduce maximum temperature of battery module and surface maximum temperature difference. A relatively uniform temperature and voltage distributions are provided within the battery module at higher discharge rate benefit from the advantage of boiling heat transfer with uniform temperature distribution on cold plate. It is shown that the voltage decreases with the increase of Re number of fluid due to the reducing of temperature. There exist slight fluctuations of voltage distribution because of the non-uniformity of temperature distribution within the battery module at higher discharge rates. For different discharge rate, there also exists an appropriate Re number range during which the mode of heat transfer is mainly in boiling heat transfer mode and the cooling result can be greatly improved.

  4. Investigation of the Storage Behavior of Shredded Lithium-Ion Batteries from Electric Vehicles for Recycling Purposes.

    Science.gov (United States)

    Grützke, Martin; Krüger, Steffen; Kraft, Vadim; Vortmann, Britta; Rothermel, Sergej; Winter, Martin; Nowak, Sascha

    2015-10-26

    Shredding of the cells is often the first step in lithium-ion battery (LIB) recycling. Thus, LiNi1/3 Mn1/3 Co1/3 O2 (NMC)/graphite lithium-ion cells from a field-tested electric vehicle were shredded and transferred to tinplate or plastic storage containers. The formation of hazardous compounds within, and being released from, these containers was monitored over 20 months. The tinplate cans underwent fast corrosion as a result of either residual charge in the active battery material, which could not fully be discharged because of contact loss to the current collector, or redox reactions between the tinplate surface and metal parts of the shredded material. The headspace compositions of the containers were investigated at room temperature and 150 °C using headspace-gas chromatography-mass spectrometry (HS-GC-MS). Samples of the waste material were also collected using microwave-assisted extraction and the extracts were analyzed over a period of 20 months using ion chromatography-electrospray ionization-mass spectrometry (IC-ESI-MS). LiPF6 was identified as a conducting salt, whereas dimethyl carbonate, ethyl methyl carbonate, and ethylene carbonate were the main solvent components. Cyclohexylbenzene was also detected, which is an additive for overcharge protection. Diethyl carbonate, fluoride, difluorophosphate and several ionic and non-ionic alkyl (fluoro)phosphates were also identified. Importantly, dimethyl fluorophosphate (DMFP) and diethyl fluorophosphate (DEFP) were quantified using HS-GC-MS through the use of an internal standard. DMFP, DEFP, and related compounds are known as chemical warfare agents, and the presence of these materials is of great interest. In the case of this study, these hazardous materials are present but in manageable low concentrations. Nonetheless, the presence of such compounds and their potential release during an accident that may occur during shredding or recycling of large amounts of LIB waste should be considered. © 2015

  5. Investigation of novel cobalt–boron–carbon system as negative material for secondary alkaline battery

    International Nuclear Information System (INIS)

    Wang Qinghong; Jiao Lifang; Du Hongmei; Huan Qingna; Peng Wenxiu; Song Dawei; Wang Yijing; Yua, Huatang

    2011-01-01

    A series of novel cobalt–boron–carbon systems have been successfully synthesized by a chemical reduction method with subsequent heat-treatment in the presence of various contents of glucose. The products thus obtained have been investigated as negative electrode materials in KOH aqueous solution. The as-prepared samples are characterized by XRD, ICP, TEM and BET method. It is found that the samples are composed of Co–B particles coated by carbon nanoflakes, which significantly improve their BET surface areas. Electrochemical measurements showed that the Co–B–C electrodes display high discharge capacity, excellent cycle stability and outstanding rate capability. The discharge capacity of the Co–B–C electrode reaches 430.1 mAh g −1 at the current density of 500 mA g −1 and it still remains 401.6 mAh g −1 after 100 cycles, which is attractive compared with other Co-based materials reported before. CV and XRD measurements reveal that the reversible faradic reaction between highly dispersed Co and Co(OH) 2 is dominant for the Co–B–C composites.

  6. Investigation on the determining factor in the performance of in situ fabricated lithium polymer secondary battery

    International Nuclear Information System (INIS)

    Kong Lingbo; Zhan Hui; Li Yajuan; Zhou Yunhong

    2008-01-01

    In our preliminary research, an in situ fabrication of the lithium polymer cell starting from Li/1 M LiTFSI in DOL + DME (2:1 by weight)/LiCoO 2 cell is successfully achieved owing to the electro-polymerization of DOL solvent. Basing on previous work, a comprehensive investigation on the new technology is conducted and some significant result is presented in this paper. The influence of three leading factors such as: current rate, upper limit voltage and temperature are laid a heavy emphasis. It is found that upper limit voltage is a prerequisite to the initiation of DOL polymerization as long as the operating temperature is kept far below the temperature limit for the occurrence of thermal-initiated polymerization. Once this requirement is satisfied, the current rate exerts a positive influence on DOL's electro-polymerization and helps to the formation of a conductive polymer electrolyte, but as another two factors are concerned, the case is just the reverse. And besides, benefiting from the 'regulation' effect of current rate, the lack of capacity retentivity that is encountered during the high-temperature or high-voltage cycling can be compensated by an electrochemical pretreatment. And finally, it is indicated that all the influential mechanism tightly related to the variation in the cell internal resistance

  7. Investigation of lithium thionyl chloride battery safety hazards. Final technical report Sep 81-Nov 82

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.C.; Dampier, F.W.; Wang, P.; Bennett, J.M.

    1983-01-01

    The chemistry of discharge and overdischarge in Li/SOCl/sub 2/ cells has been examined with Raman emission, Fourier transform infrared, and electron spin resonance spectroscopies to determine if any hazardous reactions can occur. Under moderate discharge rate at room temperature, the electrolyte from discharged and cathode limited overdischarged cells contains primarily LiAlCl/sub 4/.3 SO/sub 2/, LiAlCl.2 SOCl/sub 2/, and perhaps LiAlCl/sub 4/.SOCl/sub 2/.SO/sub 2/; traces of SO/sub 3/ are indicated. Three free radicals are present at low concentrations on discharge and cathode limited overdischarged with two additional radicals appearing on extended anode limited overdischarge. At least one of these is cationic polymeric sulfur. Both FTIR and ESR suggest intermediates exist with lifetimes on the order of days from discharge and overcharge. No hazardous reactions were observed at anytime. Pressure from SO/sub 2/, a principal result of discharge, remains low due to the LiAlCl/sub 4/.3 SO/sub 2/, complex in solution. Scanning electron and optical microscopic investigations lithium dendrite structure. Individual dendrites do not grow any longer than about 50 microns or any thicker that about four microns in diameter before branching at random angles. The extent of dendritic growth and the fate of the dentrites depends on the discharge conditions. No overcharged hazards were encountered in this study though several hazard scenarios suggested themselves.

  8. Quarterly oil statistics. First quarter 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The aim of this report is to provide rapid, accurate and detailed statistics on oil supply and demand in the OECD area. Main components of the system are: complete balances of production, trade, refinery intake and output, final consumption, stock levels and changes; separate data for crude oil, NGL, feedstocks and nine product groups; separate trade data for main product groups, LPG and naphtha; imports for 41 origins; exports for 29 destinations; marine bunkers and deliveries to international civil aviation by product group; aggregates of quarterly data to annual totals; and natural gas supply and consumption.

  9. Battery Modeling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2008-01-01

    The use of mobile devices is often limited by the capacity of the employed batteries. The battery lifetime determines how long one can use a device. Battery modeling can help to predict, and possibly extend this lifetime. Many different battery models have been developed over the years. However,

  10. Lithium Batteries

    Science.gov (United States)

    National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional thin-film lithium batteries for a variety of technological applications. These batteries have high essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for

  11. Investigations in French battery and recycling plants; Traitement des dechets des piles et accumulateurs usages. Enquete dans des entreprises specialisees

    Energy Technology Data Exchange (ETDEWEB)

    Peltier, A.; Elcabache, J.M. [Institut National de Recherche et de Securite -INRS, Lab. de Chimie Analytique Minerale, Dept. Metrologie des Polluants, Centre de Lorraine, 54 - Vandoeuvre (France)

    2003-07-01

    The Analytical Chemistry laboratory of INRS assessed the occupational exposure of 380 employees in 15 enterprises specialized in the reprocessing of electrochemical generators accepting to take part in this study (2 firms sorting and preparing batteries for shipment to reprocessing centres, 7 recycling plants for alkaline, nickel-cadmium and zinc-carbon batteries, 5 spent lead accumulator processing plants). Assessments were also carried out in an enterprise with a workforce of 180 producing 'mercury free' zinc-carbon batteries. These assessments highlighted: - a high potential risk of lead impregnation in the milling and fusion phases of spent lead accumulator processing; - a potential risk of mercury intoxication during the use of pyrometallurgical processes allowing other mercury waste products to be processed simultaneously to spent batteries; - that during the processing of nickel-cadmium batteries the air cleaning systems of the workshops are largely inefficient and must be improved. The constant wearing of filtering respirators is a solution that must remain temporary, the prevention measure to be applied as early as possible being the capture of the cadmium dust fume emissions at source. (authors)

  12. Investigation and Evaluation of Children’s Blood Lead Levels around a Lead Battery Factory and Influencing Factors

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2016-05-01

    Full Text Available Lead pollution incidents have occurred frequently in mainland China, which has caused many lead poisoning incidents. This paper took a battery recycling factory as the subject, and focused on measuring the blood lead levels of environmental samples and all the children living around the factory, and analyzed the relationship between them. We collected blood samples from the surrounding residential area, as well as soil, water, vegetables. The atomic absorption method was applied to measure the lead content in these samples. The basic information of the generation procedure, operation type, habit and personal protect equipment was collected by an occupational hygiene investigation. Blood lead levels in 43.12% of the subjects exceeded 100 μg/L. The 50th and the 95th percentiles were 89 μg/L and 232 μg/L for blood lead levels in children, respectively, and the geometric mean was 94 μg/L. Children were stratified into groups by age, gender, parents’ occupation, distance and direction from the recycling plant. The difference of blood lead levels between groups was significant (p < 0.05. Four risk factors for elevated blood lead levels were found by logistic regression analysis, including younger age, male, shorter distance from the recycling plant, and parents with at least one working in the recycling plant. The rate of excess lead concentration in water was 6.25%, 6.06% in soil and 44.44% in leaf vegetables, which were all higher than the Chinese environment standards. The shorter the distance to the factory, the higher the value of BLL and lead levels in vegetable and environment samples. The lead level in the environmental samples was higher downwind of the recycling plant.

  13. EMSL Quarterly Highlights Report: FY 2008, 3rd Quarter

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-09-16

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  14. EMSL Quarterly Highlights Report: 1st Quarter, FY08

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-01-28

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  15. EMSL Quarterly Highlights Report: 1st Quarter, Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.

    2009-02-02

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2008 - December 2008) of Fiscal Year 2009.

  16. South African Crime Quarterly

    African Journals Online (AJOL)

    South African Crime Quarterly is an inter-disciplinary peer-reviewed journal that promotes professional discourse and the publication of research on the subjects of crime, criminal justice, crime prevention, and related matters including state and non-state responses to crime and violence. South Africa is the primary focus for ...

  17. English Leadership Quarterly, 1993.

    Science.gov (United States)

    Strickland, James, Ed.

    1993-01-01

    These four issues of the English Leadership Quarterly represent those published during 1993. Articles in number 1 deal with parent involvement and participation, and include: "Opening the Doors to Open House" (Jolene A. Borgese); "Parent/Teacher Conferences: Avoiding the Collision Course" (Robert Perrin); "Expanding Human…

  18. Quarterly fiscal policy

    NARCIS (Netherlands)

    Kendrick, D.A.; Amman, H.M.

    2014-01-01

    Monetary policy is altered once a month. Fiscal policy is altered once a year. As a potential improvement this article examines the use of feedback control rules for fiscal policy that is altered quarterly. Following the work of Blinder and Orszag, modifications are discussed in Congressional

  19. Investigation of local environments in Nafion-SiO(2) composite membranes used in vanadium redox flow batteries.

    Science.gov (United States)

    Vijayakumar, M; Schwenzer, Birgit; Kim, Soowhan; Yang, Zhenguo; Thevuthasan, S; Liu, Jun; Graff, Gordon L; Hu, Jianzhi

    2012-04-01

    Proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, polymer composite membranes, such as SiO(2) incorporated Nafion membranes, are recently reported as highly promising for the use in redox flow batteries. However, there is conflicting reports regarding the performance of this type of Nafion-SiO(2) composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO(2) composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transform Infra Red (FTIR) spectroscopy, and ultraviolet-visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the (19)F and (29)Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The (29)Si NMR shows that the silica particles interact via hydrogen bonds with the sulfonic groups of Nafion and the diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO(2) composite membrane materials in vanadium redox flow batteries. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Investigation of lithium-thionyl chloride battery safety hazards. Final report 28 Sep 81-31 Dec 82

    Energy Technology Data Exchange (ETDEWEB)

    Attia, A.I.; Gabriel, K.A.; Burns, R.P.

    1983-01-01

    In the ten years since the feasibility of a lithium-thionyl chloride cell was first recognized (1) remarkable progress has been made in hardware development. Cells as large as 16,000 Ah (2) and batteries of 10.8 MWh (3) have been demonstrated. In a low rate configuration, energy densities of 500 to 600 Wh/kg are easily achieved. Even in the absence of reported explosions, safety would be a concern for such a dense energetic package; the energy density of a lithium-thionyl chloride cell is approaching that of dynamite (924 Wh/kg). In fact explosions have occurred. In general the hazards associated with lithium-thionyl chloride batteries may be divided into four categories: Explosions as a result of an error in battery design. Very large cells were in prototype development prior to a full appreciation of the hazards of the system. It is possible that some of the remaining safety issues are related to cell design; Explosions as a result of external physical abuse such as cell incineration and puncture; Explosions due to short circuiting which could lead to thermal runaway reactions. These problems appear to have been solved by changes in the battery design (4); and Expolsions due to abnormal electrical operation (i.e., charging (5) and overdischarging (6) and in partially or fully discharged cells on storage (7 and 8).

  1. Identification of alkylated phosphates by gas chromatography-mass spectrometric investigations with different ionization principles of a thermally aged commercial lithium ion battery electrolyte.

    Science.gov (United States)

    Weber, Waldemar; Kraft, Vadim; Grützke, Martin; Wagner, Ralf; Winter, Martin; Nowak, Sascha

    2015-05-15

    The thermal aging process of a commercial LiPF6 based lithium ion battery electrolyte has been investigated in view of the formation of volatile phosphorus-containing degradation products. Aging products were analyzed by GC-MS. Structure determination of the products was performed by support of chemical ionization MS in positive and negative modes. A fraction of the discovered compounds belongs to the group of fluorophosphates (phosphorofluoridates) which are in suspect of potential toxicity. This is well known for relative derivatives, e.g. diisopropyl fluorophosphate. Another fraction of the identified compounds belongs to the group of trialkyl phosphates. These compounds may provide a positive impact on the thermal and electrochemical performance of Li-based batteries as repeatedly described in the literature. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Quarterly environmental data summary for third quarter 1999

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, Stephen H. [Weldon Spring Site, St. Charles, MO (United States)

    1999-11-05

    A copy of the quarterly Environmental Data Summary (QEDS) for the third quarter of 1999 is enclosed. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the WSSRAP verification group and merged into the data base during the third quarter of 1999. Selected KPA results for on-site total uranium analyses performed during the quarter are also included. Air monitoring data presented are the most recent complete sets of quarterly data.

  3. Environmental sizing of smartphone batteries

    OpenAIRE

    Flipsen, S.F.J.; Geraedts, J.M.P.; Reinders, A.H.M.E.; Bakker, C.A.; Dafnomilis, I.; Gudadhe, A.

    2012-01-01

    Smartphone use has increased at a phenomenal pace worldwide. In 2011 more smartphones have been sold than desktop pc’s, notebooks, netbooks and tablets together. The total worldwide smartphone sales reached 472 million units in 2011, and 149 million of them were sold in the fourth quarter of 2011. The smartphone is, like almost every other mobile device, powered by batteries, limited in size and therefore capacity, which makes energy management paramount. While global demand and use of mobile...

  4. Subsurface investigation on Quarter 27 of May 15th city, Cairo, Egypt using electrical resistivity tomography and shallow seismic refraction techniques

    Directory of Open Access Journals (Sweden)

    Sultan Awad Sultan Araffa

    2014-12-01

    Full Text Available Geophysical tools such as electrical resistivity tomography (ERT and shallow seismic (both P-wave seismic refraction and Multi-channel Analysis of Surface Waves (MASW are interesting techniques for delineating the subsurface configurations as stratigraphy, structural elements, caves and water saturated zones. The ERT technique is used to delineate the contamination, to detect the buried objects, and to quantify some aquifer properties. Eight 2-D (two dimensional electrical resistivity sections were measured using two different configurations (dipole–dipole and Wenner. The spread length is of 96 m and the electrodes spacing are 2, 4 and 6 m, respectively to reach a depth ranging from 13 to 17 m. The results indicate that, the subsurface section is divided into main three geo-electrical units, the first is fractured marl and limestone which exhibits high resistivity values ranging from 40 to 300 ohm m. The second unit is corresponding to marl of moderate resistivity values and the third unit, which is the deeper unit, exhibits very low resistivity values corresponding to clayey marl. The fourth layer is marly clay with water. The presence of clay causes the most geotechnical problems. Fourteen shallow seismic sections (both for P-wave and MASW were carried out using spread of 94 m and geophone spacing of 2 m for each P-wave section. The results demonstrate that the deduced subsurface section consists of four layers, the first layer exhibits very low P-wave velocity ranging from 280 to 420 m/s, the second layer reveals P-wave velocity ranging from 400 to 1200 m/s, the third layer has P-wave velocity ranging from 970 to 2000 m/s and the fourth layer exhibits high velocity ranging from 1900 to 3600 m/s. The ERT and shallow seismic results, reflect the presence of two parallel faults passing through Quarter 27 and trending NW-SE.

  5. EDF - Quarterly Financial Information

    International Nuclear Information System (INIS)

    Trivi, Carole; Boissezon, Carine de; Hidra, Kader

    2014-01-01

    EDF's sales in the first quarter of 2014 were euro 21.2 billion, down 3.9% from the first quarter of 2013. At constant scope and exchange rates, sales were down 4.2% due to mild weather conditions, which impacted sales of electricity in France, gas sales abroad and trading activities in Europe. UK sales were nonetheless sustained by B2B sales due to higher realised wholesale market prices. In Italy, sales growth was driven by an increase in electricity volumes sold. The first quarter of 2014 also saw the strengthening of the Group's financial structure with the second phase of its multi-annual hybrid funding programme (nearly euro 4 billion equivalent) as well as the issue of two 100-year bonds in dollars and sterling aimed at significantly lengthening average debt maturity. 2014 outlook and 2014-2018 vision: - EDF Group has confirmed its financial objectives for 2014; - Group EBITDA excluding Edison: organic growth of at least 3%; - Edison EBITDA: recurring EBITDA target of euro 1 billion and at least euro 600 million in 2014 before effects of gas contract re-negotiations; - Net financial debt / EBITDA: between 2x and 2.5x; - Pay-out ratio of net income excluding non-recurring items post-hybrid: 55% to 65%. The Group has reaffirmed its goal of achieving positive cash flow after dividends, excluding Linky, in 2018

  6. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system

    International Nuclear Information System (INIS)

    Wu, Weixiong; Yang, Xiaoqing; Zhang, Guoqing; Chen, Kai; Wang, Shuangfeng

    2017-01-01

    Highlights: • A heat pipe assisted phase change material based battery thermal management system is proposed. • The proposed system is compact and efficient from a view of practical application. • Cycling conditions are experimentally simulated for practical working environment. • The proposed system presents better thermal performance in comparison to other systems. • Combining forced air convection with heat pipe further enhances the cooling effect. - Abstract: In this paper, a heat pipe-assisted phase change material (PCM) based battery thermal management (BTM) system is designed to fulfill the comprehensive energy utilization for electric vehicles and hybrid electric vehicles. Combining the large heat storage capacity of the PCM with the excellent cooling effect of heat pipe, the as-constructed heat pipe-assisted PCM based BTM is feasible and effective with a relatively longer operation time and more suitable temperature. The experimental results show that the temperature maldistribution of battery module can be influenced by heat pipes when they are activated under high discharge rates of the batteries. Moreover, with forced air convection, the highest temperature could be controlled below 50 °C even under the highest discharge rate of 5C and a more stable and lower temperature fluctuation is obtained under cycling conditions. Meanwhile, the effectiveness of further increasing air velocity (i.e., more fan power consumption) is limited when the highest temperature continues to reduce at a lower rate due to the phase transition process of PCM. These results are expected to provide insights into the design and optimization of BTM systems.

  7. Investigation of Thermal Stability of P2-NaxCoO2 Cathode Materials for Sodium Ion Batteries Using Real-Time Electron Microscopy.

    Science.gov (United States)

    Hwang, Sooyeon; Lee, Yongho; Jo, Eunmi; Chung, Kyung Yoon; Choi, Wonchang; Kim, Seung Min; Chang, Wonyoung

    2017-06-07

    Here, we take advantage of in situ transmission electron microscopy (TEM) to investigate the thermal stability of P2-type Na x CoO 2 cathode materials for sodium ion batteries, which are promising candidates for next-generation lithium ion batteries. A double-tilt TEM heating holder was used to directly characterize the changes in the morphology and the crystallographic and electronic structures of the materials with increase in temperature. The electron diffraction patterns and the electron energy loss spectra demonstrated the presence of cobalt oxides (Co 3 O 4 , CoO) and even metallic cobalt (Co) at higher temperatures as a result of reduction of Co ions and loss of oxygen. The bright-field TEM images revealed that the surface of Na x CoO 2 becomes porous at high temperatures. Higher cutoff voltages result in degrading thermal stability of Na x CoO 2 . The observations herein provide a valuable insight that thermal stability is one of the important factors to be considered in addition to the electrochemical properties when developing new electrode materials for novel battery systems.

  8. Investigation of the temperature effect on electrochemical behaviors of TiO2 for gel type valve regulated lead-acid batteries

    Directory of Open Access Journals (Sweden)

    Metin GENÇTEN

    2016-12-01

    Full Text Available In this study, the effect of temperature on the electrochemical behaviors of gel electrolyte systems was investigated for valve regulated lead-acid battery at 0≤ T ≤50 oC. Fumed silica and mixture of fumed silica and TiO2 were used as gel electrolytes. TiO2 has a good combination with fumed silica. They were characterized by cyclic voltammetry, electrochemical impedance spectroscopy and battery tests. The anodic peak currents and redox capacities of the gel electrolytes increased with increasing of temperature. The highest anodic peak current and redox capacity were observed at 30 oC in fumed silica and at 40 oC in fumed silica:TiO2 based gel systems. The solution and charge transfer resistance values decreased in fumed silica:TiO2 gel system by increasing temperature. In battery tests, discharge curves were obtained for each gel system at 0, 25 and 50 oC. The discharge time of mixture gel electrolyte system was higher than that of fumed silica based gel electrolyte at low (0 oC and high (50 oC temperatures. The best performance was obtained in fumed silica based gel electrolyte at 25 oC.

  9. Degradation of all-vanadium redox flow batteries (VRFB) investigated by electrochemical impedance and X-ray photoelectron spectroscopy: Part 2 electrochemical degradation

    Science.gov (United States)

    Derr, Igor; Bruns, Michael; Langner, Joachim; Fetyan, Abdulmonem; Melke, Julia; Roth, Christina

    2016-09-01

    Electrochemical degradation (ED) of carbon felt electrodes was investigated by cycling of a flow through all-vanadium redox flow battery (VRFB) and conducting half-cell measurements with two reference electrodes inside the test bench. ED was detected using half-cell and full-cell electrochemical impedance spectroscopy (EIS) at different states of charge (SOC). Reversing the polarity of the battery to recover cell performance was performed with little success. Renewing the electrolyte after a certain amount of cycles restored the capacity of the battery. X-ray photoelectron spectroscopy (XPS) reveals that the amount of surface functional increases by more than a factor of 3 for the negative side as well as for the positive side. Scanning electron microscope (SEM) images show a peeling of the fiber surface after cycling the felts, which leads to a loss of electrochemically active surface area (ECSA). Long term cycling shows that ED has a stronger impact on the negative half-cell [V(II)/V(III)] than the positive half-cell [V(IV)/V(V)] and that the negative half-cell is the rate-determining half-cell for the VRFB.

  10. Atomic to Nanoscale Investigation of Functionalities of Al2O3 Coating Layer on Cathode for Enhanced Battery Performance

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei; Zheng, Jianming; Zhang, Xiaofeng; Xu, Rui; Amine, Khalil; Xiao, Jie; Zhang, Jiguang; Wang, Chong M.

    2016-01-06

    Surface coating of cathode has been identified as an effective approach for enhancing the capacity retention of layered structure cathode. However, the underlying operating mechanism of such a thin layer of coating, in terms of surface chemical functionality and capacity retention, remains unclear. In this work, we use aberration corrected scanning transmission electron microscopy and high efficient spectroscopy to probe the delicate functioning mechanism of Al2O3 coating layer on Li1.2Ni0.2Mn0.6O2 cathode. We discovered that in terms of surface chemical function, the Al2O3 coating suppresses the side reaction between cathode and the electrolyte upon the battery cycling. At the same time, the Al2O3 coating layer also eliminates the chemical reduction of Mn from the cathode particle surface, therefore avoiding the dissolution of the reduced Mn into the electrolyte. In terms of structural stability, we found that the Al2O3 coating layer can mitigate the layer to spinel phase transformation, which otherwise will initiate from the particle surface and propagate towards the interior of the particle with the progression of the battery cycling. The atomic to nanoscale effects of the coating layer observed here provide insight for optimized design of coating layer on cathode to enhance the battery properties.

  11. Electrochemical investigation of MoTe2/rGO composite materials for sodium-ion battery application

    Science.gov (United States)

    Panda, Manas Ranjan; Anish Raj, K.; Sarkar, Ananta; Bao, Qiaoliang; Mitra, Sagar

    2018-05-01

    2D layered materials are found to be promising anode materials for renewable energy storage devices like sodium and Li-ion batteries and have become attractive options due to their high specific capacity, abundance and low cost. In this work, we synthesized 2D MoTe2 layers embedded in reduced graphene oxide (rGO) anode material for sodium-ion battery applications. 2D MoTe2 was prepared by a solid-state reaction in vacuum at a temperature of 800 °C. The prepared composite material MoTe2/rGO showed excellent electrochemical performance against the sodium metal. The discharge capacity of MoTe2/rGO was observed to be 280 mAh g-1 at a current rate of 1.0 A g-1 for 100 cycles. rGO plays an important role in embedding the MoTe2 structure, thus improving the electrical and mechanical properties, leading to a superior cycling stability and excellent electrochemical performances of MoTe2 for sodium-ion battery applications.

  12. Experimental Investigation on Thermal Management of Electric Vehicle Battery Module with Paraffin/Expanded Graphite Composite Phase Change Material

    Directory of Open Access Journals (Sweden)

    Jiangyun Zhang

    2017-01-01

    Full Text Available The temperature has to be controlled adequately to maintain the electric vehicles (EVs within a safety range. Using paraffin as the heat dissipation source to control the temperature rise is developed. And the expanded graphite (EG is applied to improve the thermal conductivity. In this study, the paraffin and EG composite phase change material (PCM was prepared and characterized. And then, the composite PCM have been applied in the 42110 LiFePO4 battery module (48 V/10 Ah for experimental research. Different discharge rate and pulse experiments were carried out at various working conditions, including room temperature (25°C, high temperature (35°C, and low temperature (−20°C. Furthermore, in order to obtain the practical loading test data, a battery pack with the similar specifications by 2S∗2P with PCM-based modules were installed in the EVs for various practical road experiments including the flat ground, 5°, 10°, and 20° slope. Testing results indicated that the PCM cooling system can control the peak temperature under 42°C and balance the maximum temperature difference within 5°C. Even in extreme high-discharge pulse current process, peak temperature can be controlled within 50°C. The aforementioned results exhibit that PCM cooling in battery thermal management has promising advantages over traditional air cooling.

  13. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  14. In situ57Fe Moessbauer Investigation of Solid-State Redox Reactions of Lithium Insertion Electrodes for Advanced Batteries

    International Nuclear Information System (INIS)

    Sakai, Yoichi; Ariyoshi, Kingo; Ohzuku, Tsutomu

    2002-01-01

    A novel in situ electrochemical cell for 57 Fe Moessbauer measurements was developed in order to clarify the mechanisms of solid-state redox reactions in lithium insertion materials containing iron. Our in situ Moessbauer technique was successfully applied to the determination as to which transition metal ion was a redox center in the insertion electrodes, such as LiFe 0.5 Mn 1.5 O 4 , LiFeTiO 4 , or LiFe 0.25 Ni 0.75 O 2 , for the lithium-ion batteries.

  15. Structural and Electrochemical Investigation during the First Charging Cycles of Silicon Microwire Array Anodes for High Capacity Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2013-02-01

    Full Text Available Silicon microwire arrays embedded in Cu present exceptional performance as anode material in Li ion batteries. The processes occurring during the first charging cycles of batteries with this anode are essential for good performance. This paper sheds light on the electrochemical and structural properties of the anodes during the first charging cycles. Scanning Electron Microscopy, X-ray diffractommetry, and fast Fourier transformation impedance spectroscopy are used for the characterization. It was found that crystalline phases with high Li content are obtained after the first lithiation cycle, while for the second lithiation just crystalline phases with less Li are observable, indicating that the lithiated wires become amorphous upon cycling. The formation of a solid electrolyte interface of around 250 nm during the first lithiation cycle is evidenced, and is considered a necessary component for the good cycling performance of the wires. Analog to voltammetric techniques, impedance spectroscopy is confirmed as a powerful tool to identify the formation of the different Si-Li phases.

  16. Investigation into diffusion induced plastic deformation behavior in hollow lithium ion battery electrode revealed by analytical model and atomistic simulation

    International Nuclear Information System (INIS)

    Li, Jia; Fang, Qihong; Wu, Hong; Liu, Youwen; Wen, Pihua

    2015-01-01

    Highlights: • Diffusion induced stress is established. • Yield stress is dependent upon concentration. • Plastic deformation induced stress lowers tensile stress. • Plastic deformation suppresses crack nucleation. • Plastic deformation occurs not only at lithiated phase but also at electrode interior. - Abstract: This paper is theoretically suggested to describe diffusion induced stress in the elastoplastic hollow spherical silicon electrode for plastic deformation using both analytical model and molecular simulation. Based on the plastic deformation and the yield criterion, we develop this model accounting for the lithium-ion diffusion effect in hollow electrode, focusing on the concentration and stress distributions undergoing lithium-ion insertion. The results show that the two ways, applied compressive stress to inner surface or limited inner surface with higher concentration using biological membranes maintaining concentration difference, lead to the compressive stress induced by the lithium-ion diffusion effect. Hollow spherical electrode reduces effectively diffusion induced stress through controlling and tuning electrode parameters to obtain the reasonably low yield strength. According to MD simulations, plastic deformation phenomenon not only occurs at interface layer of lithiated phase, but also penetrates at electrode interior owning to confinement imposed by lithiated phase. These criteria that radial and hoop stresses reduce dramatically when plastic deformation occurs near the end faces of hollow electrode, may help guide development of new materials for lithium-ion batteries with enhanced mechanical durability, by means of reasonable designing yield strength to maintain mechanical stress below fracture strength, thereby increasing battery life.

  17. Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles

    Science.gov (United States)

    Zheng, Yuejiu; Ouyang, Minggao; Han, Xuebing; Lu, Languang; Li, Jianqiu

    2018-02-01

    Sate of charge (SOC) estimation is generally acknowledged as one of the most important functions in battery management system for lithium-ion batteries in new energy vehicles. Though every effort is made for various online SOC estimation methods to reliably increase the estimation accuracy as much as possible within the limited on-chip resources, little literature discusses the error sources for those SOC estimation methods. This paper firstly reviews the commonly studied SOC estimation methods from a conventional classification. A novel perspective focusing on the error analysis of the SOC estimation methods is proposed. SOC estimation methods are analyzed from the views of the measured values, models, algorithms and state parameters. Subsequently, the error flow charts are proposed to analyze the error sources from the signal measurement to the models and algorithms for the widely used online SOC estimation methods in new energy vehicles. Finally, with the consideration of the working conditions, choosing more reliable and applicable SOC estimation methods is discussed, and the future development of the promising online SOC estimation methods is suggested.

  18. Thermal aging of electrolytes used in lithium-ion batteries - An investigation of the impact of protic impurities and different housing materials

    Science.gov (United States)

    Handel, Patricia; Fauler, Gisela; Kapper, Katja; Schmuck, Martin; Stangl, Christoph; Fischer, Roland; Uhlig, Frank; Koller, Stefan

    2014-12-01

    Thermal degradation products in lithium-ion batteries result mainly from hydrolysis sensitivity of lithium hexafluorophosphate (LiPF6). As organic carbonate solvents contain traces of protic impurities, the thermal decomposition of electrolytes is enhanced. Therefore, resulting degradation products are studied with nuclear magnetic resonance spectroscopy (NMR) and gas chromatography mass spectrometry (GC-MS). The electrolyte contains 1 M LiPF6 in a binary mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) in a ratio of 1:2 (v/v) and is aged at ambient and elevated temperature. The impact of protic impurities, either added as deionized water or incorporated in positive electrode material, upon aging is investigated. Further, the influence of different housing materials on the electrolyte degradation is shown. Difluorophosphoric acid is identified as main decomposition product by NMR-spectroscopy. Traces of other decomposition products are determined by headspace GC-MS. Acid-base and coulometric titration are used to determine the total amount of acid and water content upon aging, respectively. The aim of this investigation is to achieve profound understanding about the thermal decomposition of one most common used electrolyte in a battery-like housing material.

  19. Electrochemical and ab initio investigations to design a new phenothiazine based organic redox polymeric material for metal-ion battery cathodes.

    Science.gov (United States)

    Godet-Bar, T; Leprêtre, J-C; Le Bacq, O; Sanchez, J-Y; Deronzier, A; Pasturel, A

    2015-10-14

    Different N-substituted phenothiazines have been synthesized and their electrochemical behavior has been investigated in CH3CN in order to design the best polyphenothiazine based cathodic material candidate for lithium batteries. These compounds exhibit two successive reversible one-electron oxidation processes. Ab initio calculations demonstrate that the potential of the first process is a result of both the hybridization effects between the substituent and the phenothiazine unit as well as the change of conformation of the phenothiazine heterocycle during the oxidation process. More specifically, we show that an asymmetric molecular orbital spreading throughout an external cycle of the phenothiazine unit and the alkyl fragment is formed only if the alkyl fragment is long enough (from the methyl moiety onwards) and is at the origin of the bent conformation for N-substituted phenothiazines during oxidation. Electrochemical investigations supported by ab initio calculations allow the selection of a phenothiazinyl unit which is then polymerized by a Suzuki coupling strategy to avoid the common solubilization issue in carbonate-based liquid electrolytes of lithium cells. The first electrochemical measurements performed show that phenothiazine derivatives pave the way for a promising family of redox polymers intended to be used as organic positives for lithium batteries.

  20. (Shippingport Atomic Power Station). Quarterly operating report, fourth quarter 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    At the beginning of the fourth quarter of 1980, the Shippingport Atomic Power Station remained shutdown for the normally planned semiannual maintenance and testing program, initiated September 12, 1980. Operational testing began on November 7. Maximum power was achieved November 28 and was maintained throughout the remainder of the quarter except as noted. The LWBR Core has generated 19,046.07 EFPH from start-up through the end of the quarter. During this quarter, approximately 0.000025 curies of Xe 133 activity were released from the station. During the fourth quarter of 1980, 1081 cubic feet of radioactive solid waste was shipped out of state for burial. These shipments contained 0.037 curies of radioactivity.

  1. NRC quarterly [status] report

    International Nuclear Information System (INIS)

    1987-01-01

    This report covers the third quarter of calendar year 1987. The NRC licensing activity during the period of this report included the issuance of a full-power license for Beaver Valley 2 on August 14, 1987, and operating license restricted to five percent power for South Texas Unit 1 on August 21, 1987. Additional licensing delay for Shoreham is projected due to complex litigation. Also, licensing delay may occur for Comanche Peak Unit 1, because the duration of the hearing is uncertain. Although a license authorizing fuel loading and precriticality testing for Seabrook Unit 1 has been issued, there is a projected delay for low-power licensing. Full-power licensing for Seabrook Unit 1 will be delayed due to offsite emergency preparedness issues. The length of the delay is not known at this time. With the exception of Seabrook and Shoreham, regulatory delays in this report are not impacted by the schedules for resolving off-site emergency preparedness issues

  2. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, July 1, 1996--September 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, T.; Sjostrom, S.; Smith, J. [and others

    1996-11-06

    The overall objective of this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase I, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed, built and integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will be injected into the flue gas stream upstream of the test device to and mercury concentration measurements will be made to determine the mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology shall be tested at the 5000 acfm pilot-scale.

  3. (Shippingport Atomic Power Station). Quarterly operating report, third quarter 1980

    Energy Technology Data Exchange (ETDEWEB)

    Zagorski, J. F.

    1980-01-01

    At the beginning of the third quarter of 1980, the Shippingport Atomic Power Station was operating with the 1A, 1B, 1C, and 1D reactor coolant loops and the 1AC and 1BD purification loops in service. During the quarter, the Station was operated for Duquesne Light Company System grid including base load and swing load operation. Twelve (12) planned swing load operations were performed on the LWBR Core this quarter to complete the LWBR operating plan of fifty (50) during this operating phase. The Station was shutdown on September 12 for the Fall 1980 Shutdown and remained in this mode through the end of the quarter. The LWBR Core has generated 18,297.98 EFPH from start-up through the end of the quarter. There were no radioactive liquid discharges from the Radioactive Waste Processing System to the river this quarter. The radioactive liquid waste effluent line to the river remained blanked off to prevent inadvertent radioactive liquid waste discharges. During the quarter, approximately 0.001 curies of Xe 133 activity were released from the station. The radioactivity released from Shippingport Station is far too small to have any measurable effect on the general background environmental radioactivity outside the plant.

  4. Investigation of hydrogen content in chemically delithiated lithium-ion battery cathodes using prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Aghara, S.K.; Alvarez II, E.; Venkatraman, S.; Manthiram, A.

    2005-01-01

    Lithium-ion batteries are widely used as a power source for portable electronic devices. Currently, only 50-70% of the theoretical capacity of the layered oxide cathode (positive electrode) materials could be reversibly used. The reason for this limitation is not fully understood in the literature. Recent structural and chemical characterizations of chemically delithiated (charged) cathodes suggest that loss of oxygen from the lattice may play a role in this regard. However, during the chemical delithiation process any proton inserted from the solvent could adversely affect the oxygen content analysis data. The challenge in addressing this issue is to detect and determine precisely the proton content in the chemically delithiated samples. The prompt gamma-ray activation analysis (PGAA) facility at the Nuclear Engineering Teaching Laboratory (NETL) is used to determine the proton content in the layered oxide cathode LiNi 0.5 Mn 0.5 O 2 before and after chemical delithiation. The data are compared with those obtained with Fourier transform infrared (FTIR) spectroscopy, which can provide mainly qualitative analysis. The technique has proved to be promising for these compounds and will be applied to characterize several other chemically delithiated Li 1-x Co 1-y M y O 2 (M = Cr, Mn, Fe, Ni, Cu, Mg, and Al) cathodes. (author)

  5. Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Wang, W.H.; Wang, X.D.

    2007-01-01

    Porous graphite felts have been used as electrode materials for all-vanadium redox flow batteries due to their wide operating potential range, stability as both an anode and a cathode, and availability in high surface area. In this paper, the carbon felt was modified by pyrolysis of Ir reduced from H 2 IrCl 6 . ac impedance and steady-state polarization measurements showed that the Ir-modified materials have improved activity and lowered overpotential of the desired V(IV)/V(V) redox process. Ir-modification of carbon felt enhanced the electro-conductivity of electrode materials. The Ir-material, when coated on the graphite felt electrode surface, lowered the cell internal resistance. A test cell was assembled with the Ir-modified carbon felt as the activation layer of the positive electrode, the unmodified raw felt as the activation layer of the negative electrode. At an operating current density of 20 mA cm -2 , a voltage efficiency of 87.5% was achieved. The resistance of the cell using Ir-modified felt decreased 25% compared to the cell using non-modified felt

  6. Shippingport Atomic Power Station. Quarterly operating report, third quarter 1978

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T. D.

    1978-01-01

    A loss of ac power to the station occurred on July 28, 1978 caused by an interaction between Beaver Valley Power Station and Shippingport Atomic Power Station when the main transformer of Unit No. 1 of the Beaver Valley Power Station developed an internal failure and tripped the BVPS. Two environmental studies were continued this quarter. The first involves reduction of main unit condenser chlorination and the second, river intake screen fish impingement sampling. There were no radioactive liquid discharges from the Radioactive Waste Processing System to the river this quarter. During the third quarter of 1978, 874 cubic feet of radioactive solid waste was shipped out of state for burial. At the end of the quarter, the Fall shutdown continued with the plant heated up, the main turbine on turning gear and plant testing in progress prior to Station startup.

  7. Analytical investigation of AlCl[3]/SO[2]Cl[2] catholyte materials for secondary fuze reserve batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Paul Charles; Rodriguez, Mark Andrew; Segall, Judith M.; Malizia, Louis A., Jr.; Cherry, Brian Ray; Andrews, Nicholas L.; Clark, Nancy H.; Alam, Todd Michael; Ingersoll, David T.; Tallant, David Robert; Simpson, Regina Lynn; Boyle, Timothy J.; Garcia, Manuel Joseph

    2004-05-01

    Exploration of the fundamental chemical behavior of the AlCl{sub 3}/SO{sub 2}Cl{sub 2} catholyte system for the ARDEC Self-Destruct Fuze Reserve Battery Project under accelerated aging conditions was completed using a variety of analytical tools. Four different molecular species were identified in this solution, three of which are major. The relative concentrations of the molecular species formed were found to depend on aging time, initial concentrations, and storage temperature, with each variable affecting the kinetics and thermodynamics of this complex reaction system. We also evaluated the effect of water on the system, and determined that it does not play a role in dictating the observed molecular species present in solution. The first Al-containing species formed was identified as the dimer [Al({mu}-Cl)Cl{sub 2}]{sub 2}, and was found to be in equilibrium with the monomer, AlCl{sub 3}. The second species formed in the reaction scheme was identified by single crystal X-ray diffraction studies as [Cl{sub 2}Al({mu}-O{sub 2}SCl)]{sub 2} (I), a scrambled AlCl{sub 3}{center_dot}SO{sub 2} adduct. The SO{sub 2}(g) present, as well as CL{sub 2}(g), was formed through decomposition of SO{sub 2}CL{sub 2}. The SO{sub 2}(g) generated was readily consumed by AlCl{sub 3} to form the adduct 1 which was experimentally verified when 1 was also isolated from the reaction of SO{sub 2}(g) and AlCl {sub 3}. The third species found was tentatively identified as a compound having the general formula {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2}]{r_brace}{sub n}. This was based on {sup 27}Al NMR data that revealed a species with tetrahedrally coordinated Al metal centers with increased oxygen coordination and the fact that the precipitate, or gel, that forms over time was shown by Raman spectroscopic studies to possess a component that is consistent with SOCl{sub 2}. The precursor to the precipitate should have similar constituents, thus the assignment of {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2

  8. A Battery Power Bank with Series-Connected Buck–Boost-Type Battery Power Modules

    Directory of Open Access Journals (Sweden)

    Tsung-Hsi Wu

    2017-05-01

    Full Text Available The operation of a battery power bank with series-connected buck–boost-type battery power modules (BPMs was investigated in this study. Each BPM consisted of a battery pack with an associated buck–boost converter for individually controlling battery currents. With a proposed discharging scenario, load voltage regulation with charge equalization among batteries was performed by controlling the battery currents in accordance with their state-of-charges (SOCs estimated by real-time battery-loaded voltages detected under the same operating condition. In addition, the fault tolerance was executed to isolate exhausted or faulty batteries from the battery power bank without interrupting the system operation. Experiments were conducted to verify the effectiveness of the discharging scenario for a laboratory battery power bank with four series buck–boost BPMs.

  9. Accurate Online Full Charge Capacity Modeling of Smartphone Batteries

    OpenAIRE

    Hoque, Mohammad A.; Siekkinen, Matti; Koo, Jonghoe; Tarkoma, Sasu

    2016-01-01

    Full charge capacity (FCC) refers to the amount of energy a battery can hold. It is the fundamental property of smartphone batteries that diminishes as the battery ages and is charged/discharged. We investigate the behavior of smartphone batteries while charging and demonstrate that the battery voltage and charging rate information can together characterize the FCC of a battery. We propose a new method for accurately estimating FCC without exposing low-level system details or introducing new ...

  10. A behavioural test battery to investigate tic-like symptoms, stereotypies, attentional capabilities, and spontaneous locomotion in different mouse strains.

    Science.gov (United States)

    Proietti Onori, Martina; Ceci, Chiara; Laviola, Giovanni; Macrì, Simone

    2014-07-01

    The preclinical study of human disorders associated with comorbidities and for which the aetiology is still unclear may substantially benefit from multi-strain studies conducted in mice. The latter can help isolating experimental populations (strains) exhibiting distinct facets in the parameters isomorphic to the symptoms of a given disorder. Through a reverse-translation approach, multi-strain studies can inform both natural predisposing factors and environmental modulators. Thus, mouse strains selected for a particular trait may be leveraged to generate hypothesis-driven studies aimed at clarifying the potential role played by the environment in modulating the exhibition of the symptoms of interest. Tourette's syndrome (TS) constitutes a paradigmatic example whereby: it is characterized by a core symptom (tics) often associated with comorbidities (attention-deficit-hyperactivity and obsessive-compulsive symptoms); it has a clear genetic origin though specific genes are, as yet, unidentified; its course (exacerbations and remissions) is under the influence of environmental factors. Based on these considerations, we tested four mouse strains (ABH, C57, CD1, and SJL) - varying along a plethora of behavioural, neurochemical, and immunological parameters - on a test battery tailored to address the following domains: tics (through the i.p. administration of the selective 5-HT2 receptor agonist DOI, 5mg/kg); locomotion (spontaneous locomotion in the home-cage); perseverative responding in an attentional set shifting task; and behavioural stereotypies in response to a single amphetamine (10mg/kg, i.p.) injection. Present data demonstrate that while ABH and SJL mice respectively exhibit selective increments in amphetamine-induced sniffing behaviour and DOI-induced tic-like behaviours, C57 and CD1 mice show a distinct phenotype, compared to other strains, in several parameters. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Joint Force Quarterly. Issue 41, 2nd Quarter, April 2006

    Science.gov (United States)

    2006-04-01

    companies participated, a million more people would be actively looking for threats. Aguas de Amazonas, a subsidiary of Suez Environnement, a...9 Richard B. Myers, “A Word from the Chair- man,” Joint Force Quarterly 37 (2d Quarter 2005), 5. 10 Wald, 26. 11 “Suez— Aguas de Amazonas Water for...humanitarian duties. They have overseen over 130 humani- tarian projects worth in excess of $7.6 million and ranging from a medical center, to potable

  12. NST Quarterly. July 1996 issue

    International Nuclear Information System (INIS)

    1996-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in in-vitro mutagenesis of ornamental plants, soil erosion studies and animal feed production from agricultural waste

  13. NST Quarterly - January 1998 issue

    International Nuclear Information System (INIS)

    1998-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in proposal of national networking for biotechnology culture collection centre (NNBCCC)

  14. NST Quarterly. October 1996 issue

    International Nuclear Information System (INIS)

    1996-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in latex vulcanization (first RVNRL-based rubber gloves produced in Malaysia), tank floor scanning system (TAFLOSS), incineration and radiotherapeutic agent

  15. NST Quarterly - issue January 2002

    International Nuclear Information System (INIS)

    2002-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. The subjects discussed are i. food and drinking water which are the major pathways of radionuclides to man and ii. nuclear techniques help to monitor sedimentation in reservoir

  16. NST Quarterly - April 1998 issue

    International Nuclear Information System (INIS)

    1998-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in ionizing radiation as an alternative method for sanitization of herbs and spices

  17. Using the Cognitive Abilities Test (CogAT) 7 Nonverbal Battery to Identify the Gifted/Talented: An Investigation of Demographic Effects and Norming Plans

    Science.gov (United States)

    Carman, Carol A.; Walther, Christine A. P.; Bartsch, Robert A.

    2018-01-01

    The nonverbal battery of the Cognitive Abilities Test (CogAT) is one of the two most common nonverbal measures used in gifted identification, yet the relationships between demographic variables and CogAT7 performance has not yet been fully examined. Additionally, the effect of using the CogAT7 nonverbal battery on the identification of diverse…

  18. Quarterly environmental data summary for fourth quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1997 is prepared in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data presented constitute the QEDS. The data were received from the contract laboratories, verified by the Weldon Spring Site verification group and, except for air monitoring data and site KPA generated data (uranium analyses), merged into the data base during the fourth quarter of 1997. Air monitoring data presented are the most recent complete sets of quarterly data. Air data are not stored in the data base and KPA data are not merged into the regular data base. Significant data, defined as data values that have exceeded defined ``above normal`` level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal level 2 values are based, in ES and H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits and other guidelines. The procedures also establish actions to be taken in response to such data. Data received and verified during the fourth quarter were within a permissible range of variability except for those which are detailed.

  19. Short-term energy outlook: Quarterly projections, fourth quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-14

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections for printed publication in January, April, July, and October in the Short-Term Energy Outlook. The details of these projections, as well as monthly updates on or about the 6th of each interim month, are available on the internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The forecast period for this issue of the Outlook extends from the fourth quarter of 1997 through the fourth quarter of 1998. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the fourth quarter 1997 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. 19 tabs.

  20. Electrochemical investigations and characterization of a metal hydride alloy (MmNi3.6Al0.4Co0.7Mn0.3) for nickel metal hydride batteries

    International Nuclear Information System (INIS)

    Begum, S. Nathira; Muralidharan, V.S.; Basha, C. Ahmed

    2009-01-01

    The use of new hydrogen absorbing alloys as negative electrodes in rechargeable batteries has allowed the consideration of nickel/metal hydride (Ni/MH) batteries to replace the conventional nickel cadmium alkaline or lead acid batteries. In this study the performance of trisubstituted hydrogen storage alloy (MmNi 3.6 Al 0.4 Co 0.7 Mn 0.3 ) electrodes used as anodes in Ni/MH secondary batteries were evaluated. MH electrodes were prepared and the electrochemical utilization of the active material was investigated. Cyclic voltammetric technique was used to analyze the beneficial effect of the alloy by various substitutions. The electrochemical impedance spectroscopic measurements of the Ni/MH battery were made at various states of depth of discharge. The effect of temperature on specific capacity is studied and specific capacity as a function of discharge current density was also studied and the results were analyzed. The alloy metal hydride electrode was subjected to charge/discharge cycle for more than 200 cycles. The discharge capacities of the alloy remains at 250 mAh/g with a nominal fading in capacity (to the extent of ∼20 mAh/g) on prolonged cycling

  1. Quarterly coal report, July--September 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks. Coke production consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1997 and aggregated quarterly historical data for 1991 through the second quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. 72 tabs.

  2. Short-term energy outlook. Quarterly projections, first quarter 1995

    International Nuclear Information System (INIS)

    1995-02-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). The forecast period for this issue of the Outlook extends from the first quarter of 1995 through the fourth quarter of 1996. Values for the fourth quarter of 1994, however, are preliminary EIA estimates or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the first quarter 1995 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The cases are produced using the Short-Term Integrated Forecasting System (STIFS). The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. The EIA model is available on computer tape from the National Technical Information Service

  3. Investigation on a-C:H:Me coated substrates as an alternative bipolar plate material in all-vanadium redox-flow batteries

    International Nuclear Information System (INIS)

    Richards, Justin Frederick

    2015-01-01

    A crucial aspect of advancing in renewable energies is the development of affordable decentralized storage systems for the local or regional distribution grid. A technology with great potential is the all-vanadium redox-flow battery (VRFB) with the distinct feature of individual scalable power and capacity. The present work focusses on one of the essential parts in the redox-flow cell; the bipolar plates. By the application of metallic substrates instead of state-of-the-arte graphite composite plates, the design of the cell isn't limited anymore to the mechanical properties or fabrication process of the material. Although metals possess high ductility, which eases the production of such plates, they are prone to corrosion in the high acidic environment of the battery electrolyte. Therefore in this study amorphous carbon coatings (a-C:H) are investigated for corrosion protection. To attain the need of high electrical conductivity the carbon matrices is doped with a metallic element. Preferably refractory metals such as titanium, vanadium, chromium and tungsten were investigated as possible dopants. The electrochemical tests of the samples revealed less degradation the higher the coating thickness was. This can be found on all metallic substrates (material number: 1.4301, 3.7165 and 3.3535). Regarding the hydrogen overpotential, which is an essential value for the suppression of side reactions on the anode, the dominating factor was found to be the sort of doping material as well as the composition of the metallic adhesive layer between coating and substrate. Pores in the coating originate from defects in the substrates as well as from contaminations during the coating process. To understand the degradation mechanism an in-situ-corrosion cell was developed. By the means of these results, delamination could be found to be the predominant factor concerning degradation mechanisms at cathodic potentials. The degradation is initialized at the defects or at the edges

  4. Multi-Electrode Resistivity Probe for Investigation of Local Temperature Inside Metal Shell Battery Cells via Resistivity: Experiments and Evaluation of Electrical Resistance Tomography

    Directory of Open Access Journals (Sweden)

    Xiaobin Hong

    2015-01-01

    Full Text Available Direct Current (DC electrical resistivity is a material property that is sensitive to temperature changes. In this paper, the relationship between resistivity and local temperature inside steel shell battery cells (two commercial 10 Ah and 4.5 Ah lithium-ion cells is innovatively studied by Electrical Resistance Tomography (ERT. The Schlumberger configuration in ERT is applied to divide the cell body into several blocks distributed in different levels, where the apparent resistivities are measured by multi-electrode surface probes. The investigated temperature ranges from −20 to 80 °C. Experimental results have shown that the resistivities mainly depend on temperature changes in each block of the two cells used and the function of the resistivity and temperature can be fitted to the ERT-measurement results in the logistical-plot. Subsequently, the dependence of resistivity on the state of charge (SOC is investigated, and the SOC range of 70%–100% has a remarkable impact on the resistivity at low temperatures. The proposed approach under a thermal cool down regime is demonstrated to monitor the local transient temperature.

  5. Investigation of olive mill wastewater (OMW) ozonation efficiency with the use of a battery of selected ecotoxicity and human toxicity assays

    Energy Technology Data Exchange (ETDEWEB)

    Siorou, Sofia [Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500 Patras (Greece); Vgenis, Theodoros T.; Dareioti, Margarita A. [Laboratory of Biochemical Engineering and Environmental Technology, Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, GR-26500 Patras (Greece); Vidali, Maria-Sophia; Efthimiou, Ioanna [Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi Str., GR-30100 Agrinio (Greece); Kornaros, Michael [Laboratory of Biochemical Engineering and Environmental Technology, Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, GR-26500 Patras (Greece); Vlastos, Dimitris [Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi Str., GR-30100 Agrinio (Greece); Dailianis, Stefanos, E-mail: sdailianis@upatras.gr [Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500 Patras (Greece)

    2015-07-15

    Highlights: • Raw- and ozonated-olive mill wastewater (OMW) toxic effects were investigated. • A battery of biological assays and toxic endpoints were used. • Ozonation for up to 300 min attenuates OMW toxicity, following phenols’ reduction. • Further OMW ozonation (>300 min) could enhance OMW toxicity. • OMW ozonation efficacy depends on OMW-derived intermediates and high NO{sub 3}{sup −}–N levels. - Abstract: The effects of olive mill wastewater (OMW) on a battery of biological assays, before and during the ozonation process, were investigated in order to assess ozone’s efficiency in removing phenolic compounds from OMW and decreasing the concomitant OMW toxicity. Specifically, ozonated-OMW held for 0, 60, 120, 300, 420, 540 min in a glass bubble reactor, showed a drastic reduction of OMW total phenols (almost 50%) after 300 min of ozonation with a concomitant decrease of OMW toxicity. In particular, the acute toxicity test primarily performed in the fairy shrimp Thamnocephalus platyurus (Thamnotoxkit F™ screening toxicity test) showed a significant attenuation of OMW-induced toxic effects, after ozonation for a period of 120 and in a lesser extent 300 min, while further treatment resulted in a significant enhancement of ozonated-OMW toxic effects. Furthermore, ozonated-OMW-treated mussel hemocytes showed a significant attenuation of the ability of OMW to cause cytotoxic (obtained by the use of NRRT assay) effects already after an ozonation period of 120 and to a lesser extent 300 min. In accordance with the latter, OMW-mediated oxidative (enhanced levels of superoxide anions and lipid peroxidation by-products) and genotoxic (induction of DNA damage) effects were diminished after OMW ozonation for the aforementioned periods of time. The latter was also revealed by the use of cytokinesis block micronucleus (CBMN) assay in human lymphocytes exposed to different concentrations of both raw- and ozonated-OMW for 60, 120 and 300 min. Those findings

  6. Progress in aqueous rechargeable batteries

    Directory of Open Access Journals (Sweden)

    Jilei Liu

    2018-01-01

    Full Text Available Over the past decades, a series of aqueous rechargeable batteries (ARBs were explored, investigated and demonstrated. Among them, aqueous rechargeable alkali-metal ion (Li+, Na+, K+ batteries, aqueous rechargeable-metal ion (Zn2+, Mg2+, Ca2+, Al3+ batteries and aqueous rechargeable hybrid batteries are standing out due to peculiar properties. In this review, we focus on the fundamental basics of these batteries, and discuss the scientific and/or technological achievements and challenges. By critically reviewing state-of-the-art technologies and the most promising results so far, we aim to analyze the benefits of ARBs and the critical issues to be addressed, and to promote better development of ARBs.

  7. First quarter 2005 sales data

    International Nuclear Information System (INIS)

    2005-04-01

    This press release brings information on the AREVA group sales data. First quarter 2005 sales for the group were 2,496 millions of euros, up 3,6% year-on-year from 2,41 millions. The change in foreign exchange rates between the two periods show a negative impact of 22 millions euros, which is much lower than in the first quarter of 2004. It analyzes also in more details the situation of the front end, the reactors and service division, the back end division, the transmission and distribution division and the connectors division. (A.L.B.)

  8. Short-Term Energy Outlook: Quarterly projections. Fourth quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-05

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the fourth quarter of 1993 through the fourth quarter of 1994. Values for the third quarter of 1993, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications.

  9. Short-term energy outlook: Quarterly projections, Third quarter 1992

    International Nuclear Information System (INIS)

    1992-08-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The principal users of the Outlook are managers and energy analysts in private industry and government. The forecast period for this issue of the Outlook extends from the third quarter of 1992 through the fourth quarter of 1993. Values for the second quarter of 1992, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding

  10. Short-term energy outlook, quarterly projections, first quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The forecast period for this issue of the Outlook extends from the first quarter of 1998 through the fourth quarter of 1999. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the first quarter 1998 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are adjusted by EIA to reflect EIA assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 24 figs., 19 tabs.

  11. Quarterly coal report, April--June 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for April through June 1997 and aggregated quarterly historical data for 1991 through the first quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

  12. First-principles investigation of adsorption and diffusion of Li on doped silicenes: Prospective materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Momeni, Mohammad Jafar; Mousavi-Khoshdel, Morteza; Targholi, Ehsan

    2017-01-01

    In this report, we investigate the adsorption energies and diffusion characteristics of Li atom on doped silicenes using first principles density functional theory (DFT) calculations. Our results show that the Li adsorption energy on doped silicenes is larger than pristine silicene. Based on our calculations, Al- and B-doped silicenes, due to creating an electron-deficient center in silicene, show a stronger interaction with Li atom compared to P- and N-doped silicenes. The obtained data for surface and perpendicular diffusion of Li atom show the easier mobility of Li on some doped silicenes compared to pristine silicene. According to our results, doping silicene with nitrogen and phosphorus atoms facilitates the Li surface mobility (diffusion barrier of 0.05 and 0.11 eV, respectively versus 0.18 eV for pure silicene) while, doping with aluminum, speed Li perpendicular diffusion (1.47 eV versus 1.67 eV for pristine silicene). The adsorption energy and diffusion barrier values, show the advantage of doped silicenes for use in LIBs with respect to pure silicene. - Highlights: • Calculation of adsorption energy of lithium on pristine and doped silicenes. • Surface and perpendicular diffusion barrier of Li on doped silicenes. • Examination of electronic structure of Li adsorbed doped silicenes.

  13. First-principles investigation of adsorption and diffusion of Li on doped silicenes: Prospective materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Mohammad Jafar; Mousavi-Khoshdel, Morteza, E-mail: mmousavi@iust.ac.ir; Targholi, Ehsan

    2017-05-01

    In this report, we investigate the adsorption energies and diffusion characteristics of Li atom on doped silicenes using first principles density functional theory (DFT) calculations. Our results show that the Li adsorption energy on doped silicenes is larger than pristine silicene. Based on our calculations, Al- and B-doped silicenes, due to creating an electron-deficient center in silicene, show a stronger interaction with Li atom compared to P- and N-doped silicenes. The obtained data for surface and perpendicular diffusion of Li atom show the easier mobility of Li on some doped silicenes compared to pristine silicene. According to our results, doping silicene with nitrogen and phosphorus atoms facilitates the Li surface mobility (diffusion barrier of 0.05 and 0.11 eV, respectively versus 0.18 eV for pure silicene) while, doping with aluminum, speed Li perpendicular diffusion (1.47 eV versus 1.67 eV for pristine silicene). The adsorption energy and diffusion barrier values, show the advantage of doped silicenes for use in LIBs with respect to pure silicene. - Highlights: • Calculation of adsorption energy of lithium on pristine and doped silicenes. • Surface and perpendicular diffusion barrier of Li on doped silicenes. • Examination of electronic structure of Li adsorbed doped silicenes.

  14. Energy situation - Fourth quarter 2017

    International Nuclear Information System (INIS)

    Guggemos, Fabien; Misak, Evelyne; Mombel, David; Moreau, Sylvain

    2018-02-01

    This publication presents, first, a quarterly report of the French energy situation: primary energy consumption, energy independence and CO 2 emissions, national production, imports, exports, energy costs, average and spot prices. Data are presented separately for solid mineral fuels, petroleum products, natural gas and electricity. The methodology, the definitions and the corrections used are explained in a second part

  15. 1st quarterly report 1977

    International Nuclear Information System (INIS)

    1977-06-01

    The present report describes the activities carried out in the 1st quarter of 1977 at the Gesellschaft fuer Kernforschung in Karlsruhe or on its behalf in the framework of the fast breeder project (PSB). The problems and main results of the partial projects fuel rod development, materials testing, reactor physics, reactor safety and reactor technology are presented. (RW) [de

  16. NST Quarterly - issue October 2001

    International Nuclear Information System (INIS)

    2001-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it reviews GM technology and GMOs - genetically modified organisms. The topics discussed includes the implication of GM in practice, the controversy and the prospect of GM technology. Radioactive pig - something like a ball or plug which cleanses the inner walls of the pipeline, also briefly presented

  17. NST Quarterly - October 1997 issue

    International Nuclear Information System (INIS)

    1997-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in scientific computer modelling and simulation. A report on 2-nd FAO/IAEA research coordination meeting (RCM) of the coordinated research programme (CRP) on public acceptance of the trade development in irradiated food in Asia and the Pacific (RPFI-IV) also presented

  18. NST Quarterly. January 1996 issue

    International Nuclear Information System (INIS)

    1996-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in nuclear medicine, healthcare products sterilization, industrial irradiation dosimetry and heavy metals determination in food. The Malaysian standard for food irradiation was discussed in this issue

  19. NST Quarterly - April 2000 issue

    International Nuclear Information System (INIS)

    1999-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in genetic engineering. The articles summarized the improvement of orchids and tulips through genetic engineering and generating new varieties for the floriculture industry. It also reported, MINT won gold and silver at the International Invention 2000, 12-16 April 2000, Geneva

  20. Quarter 9 Mercury information clearinghouse final report

    Energy Technology Data Exchange (ETDEWEB)

    Laudal, D.L.; Miller, S.; Pflughoeft-Hassett, D.; Ralston, N.; Dunham, G.; Weber, G.

    2005-12-15

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. A total of eight reports were completed and are summarized and updated in this final CEA quarterly report. Selected topics were discussed in detail in each quarterly report. Issues related to mercury from coal-fired utilities include the general areas of measurement, control, policy, and transformations. Specific topics that have been addressed in previous quarterly reports include the following: Quarterly 1 - Sorbent Control Technologies for Mercury Control; Quarterly 2 - Mercury Measurement; Quarterly 3 - Advanced and Developmental Mercury Control Technologies; Quarterly 4 - Prerelease of Mercury from Coal Combustion By-Products; Quarterly 5 - Mercury Fundamentals; Quarterly 6 - Mercury Control Field Demonstrations; Quarterly 7 - Mercury Regulations in the United States: Federal and State; and Quarterly 8 - Commercialization Aspects of Sorbent Injection Technologies in Canada. In this last of nine quarterly reports, an update of these mercury issues is presented that includes a summary of each topic, with recent information pertinent to advances made since the quarterly reports were originally presented. In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. 86 refs., 11 figs., 8 tabs.

  1. Quarterly, Bi-annual and Annual Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Quarterly, Bi-annual and Annual Reports are periodic reports issued for public release. For the deep set fishery these reports are issued quarterly and anually....

  2. Nigerian Quarterly Journal of Hospital Medicine: Submissions

    African Journals Online (AJOL)

    Nigerian Quarterly Journal of Hospital Medicine: Submissions. Journal Home > About the Journal > Nigerian Quarterly Journal of Hospital Medicine: Submissions. Log in or Register to get access to full text downloads.

  3. Battery Safety Basics

    Science.gov (United States)

    Roy, Ken

    2010-01-01

    Batteries commonly used in flashlights and other household devices produce hydrogen gas as a product of zinc electrode corrosion. The amount of gas produced is affected by the batteries' design and charge rate. Dangerous levels of hydrogen gas can be released if battery types are mixed, batteries are damaged, batteries are of different ages, or…

  4. Batteries for Electric Vehicles

    Science.gov (United States)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  5. Quarterly coal report, July--September 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1998 and aggregated quarterly historical data for 1992 through the second quarter of 1998. 58 tabs.

  6. Environmental assessment of batteries for photovoltaic systems

    International Nuclear Information System (INIS)

    Brouwer, J.M.; Lindeijer, E.W.

    1993-10-01

    A life cycle analysis (LCA) on 4 types of batteries for PV systems has been performed. in order to assess the environmental impacts of the various battery types, leading to recommendations for improvements in the production and use of batteries. The different battery types are compared on the basis of a functional unit: 240 kWh electric energy from PV modules delivered for household applications by one flat-plate lead-acid battery. An important product characteristic is the performance; in the study a Ni-Cd battery is taken to deliver 4 times as much energy as a flat plate battery (Pb-flat), a rod plate battery (Pb-rod) 3.4 times as much and a tubular plate battery (Pb-tube) 2.8 times as much. Environmental data was gathered from recent primary and secondary data in a database under internal quality control. Calculations were performed with an updated version of SIMAKOZA, a programme developed by the Centre of Environmental Science (CML), University of Leiden, Leiden, Netherlands. Of the types investigated, the Pb tube battery is to be preferred environmentally. Using one allocation method for recycling, the NiCd battery scores best on ozone depletion since no PVC is used (PVC production demands cooling with CFCs), on non-toxic waste and on disruption of ecosystems. The lead-bearing batteries score better on other aspects due to lower energy consumption during production and no emissions of cadmium. Using another allocation method for recycling the NiCd battery scores best on almost all environmental topics. Both allocation methods supplement each other. For resource depletion, regarding cadmium as an unavoidable by-product of zinc production renders NiCd batteries as much less problematic than lead/acid batteries, but taking account of the physical resources available would make the use of cadmium much more problematic than the use of lead. 37 figs., 20 tabs., 8 appendices, 109 refs

  7. Current-dependent electrode lattice fluctuations and anode phase evolution in a lithium-ion battery investigated by in situ neutron diffraction

    International Nuclear Information System (INIS)

    Sharma, Neeraj; Peterson, Vanessa K.

    2013-01-01

    Highlights: ► Links between time-dependent structural parameters and battery performance. ► Current-dependent evolution of the anode. ► Direct correlation of LixCoO 2 and LiC 6 structure with battery capacity. -- Abstract: This work uses real-time in situ neutron powder diffraction to study the electrode lattice response and anode phase evolution in a commercial lithium-ion battery. We show that the time-resolved lattice response of the Li x CoO 2 cathode and Li x C 6 anode under non-equilibrium conditions varies proportionally with the applied current, where higher current results in faster structural change. Higher current also reduces the Li x CoO 2 cathode c lattice parameter and the LiC 6 quantity that forms at the charged state of the battery, both of which are related to lower battery capacity. At the anode, we find that the Li x C 6 phase evolution is current-dependent

  8. Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application

    International Nuclear Information System (INIS)

    Putra, Nandy; Ariantara, Bambang; Pamungkas, Rangga Aji

    2016-01-01

    Highlights: • Flat plate loop heat pipe (FPLHP) is studied in the thermal management system for electric vehicle. • Distilled water, alcohol, and acetone on thermal performances of FPLHP were tested. • The FPLHP can start up at fairly low heat load. • Temperature overshoot phenomena were observed during the start-up period. - Abstract: The development of electric vehicle batteries has resulted in very high energy density lithium-ion batteries. However, this growth is accompanied by the risk of thermal runaway, which can cause serious accidents. Heat pipes are heat exchangers that are suitable to be applied in electric vehicle battery thermal management for their lightweight and compact size, and they do not require external power supply. This study examined experimentally a flat plate loop heat pipe (FPLHP) performance as a heat exchanger in the thermal management system of the lithium-ion battery for electric vehicle application. The heat generation of the battery was simulated using a cartridge heater. Stainless steel screen mesh was used as the capillary wick. Distilled water, alcohol, and acetone were used as working fluids with a filling ratio of 60%. It was found that acetone gave the best performance that produces a thermal resistance of 0.22 W/°C with 50 °C evaporator temperature at heat flux load of 1.61 W/cm"2.

  9. Nickel - iron battery. Nikkel - jern batteri

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H. A.

    1989-03-15

    A newer type of nickel-iron battery, (SAFT 6v 230 Ah monobloc), which could possibly be used in relation to electrically driven light road vehicles, was tested. The same test methods used for lead batteries were utilized and results compared favourably with those reached during other testings carried out, abroad, on a SAFT nickle-iron battery and a SAB-NIFE nickel-iron battery. Description (in English) of the latter-named tests are included in the publication as is also a presentation of the SAFT battery. Testing showed that this type of battery did not last as long as had been expected, but the density of energy and effect was superior to lead batteries. However energy efficiency was rather poor in comparison to lead batteries and it was concluded that nickel-iron batteries are not suitable for stationary systems where recharging under a constant voltage is necessary. (AB).

  10. Joint Force Quarterly. Issue 64, 1st Quarter 2012

    Science.gov (United States)

    2012-01-01

    ndupress .ndu.edu issue 64, 1 st quarter 2012 / JFQ 43 experienced in cultural relativism belie the great commonality of moral solidarity in...Politics of Civil-Military Relations (Cambridge: Harvard University Press, 1957), 11. 12 Many people equate cultural relativism and moral relativism ...perhaps reluctantly, his muse was Platonic (the concept of the human for strategy to work in our age, it must possess solid moral and political

  11. Oil, Gas, Coal and Electricity - Quarterly statistics. Second Quarter 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    This publication provides up-to-date and detailed quarterly statistics on oil, coal, natural gas and electricity for the OECD countries. Oil statistics cover production, trade, refinery intake and output, stock changes and consumption for crude oil, NGL and nine selected oil product groups. Statistics for electricity, natural gas, hard coal and brown coal show supply and trade. Import and export data are reported by origin and destination. Moreover, oil and hard coal production are reported on a worldwide basis.

  12. 32 CFR 643.127 - Quarters.

    Science.gov (United States)

    2010-07-01

    ... Additional Authority of Commanders § 643.127 Quarters. The assignment and rental of quarters to civilian employees and other nonmilitary personnel will be accomplished in accordance with AR 210-50. Responsibility of the Corps of Engineers for the establishment of rental rates for quarters rented to civilian and...

  13. 10 CFR 34.29 - Quarterly inventory.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Quarterly inventory. 34.29 Section 34.29 Energy NUCLEAR... RADIOGRAPHIC OPERATIONS Equipment § 34.29 Quarterly inventory. (a) Each licensee shall conduct a quarterly physical inventory to account for all sealed sources and for devices containing depleted uranium received...

  14. Quarterly financial reports | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Quarterly Financial Report for the period ending 31 December 2011 · Quarterly Financial Report for the period ending 30 September 2011 · Quarterly Financial Report for the period ending 30 June 2011 · Summary of Expense Reductions to Accommodate Budget 2012 Appropriation Reduction (PDF) · What we do · Funding ...

  15. Investigation of the Li–S Battery Mechanism by Real-Time Monitoring of the Changes of Sulfur and Polysulfide Species during the Discharge and Charge

    International Nuclear Information System (INIS)

    Zheng, Dong; Liu, Dan; Harris, Joshua B.; Ding, Tianyao; Si, Jingyu

    2016-01-01

    The mechanism of the sulfur cathode in Li-S batteries has been proposed. It was revealed by the real-time quantitative determination of polysulfide species and elemental sulfur by means of the high performance liquid chromatography in the course of the discharge and recharge of a Li-S battery. A three-step reduction mechanism including two chemical equilibrium reactions was proposed for the sulfur cathode discharge. The typical two-plateau discharge curve for sulfur cathode can be explained. A two-step oxidation mechanism for the Li_2S and Li_2S_2 with a single chemical equilibrium among soluble polysulfide ions was proposed. In conclusion, the chemical equilibrium among S_5"2"-, S_6"2"-, S_7"2"- and S_8"2"- throughout the entire oxidation process resulted for the single flat recharge curve in Li-S batteries.

  16. Facile synthesis of low-dimensional SnO2 nanostructures: An investigation of their performance and mechanism of action as anode materials for lithium-ion batteries

    Science.gov (United States)

    Usman Hameed, Muhammad; Ullah Dar, Sami; Ali, Shafqat; Liu, Sitong; Akram, Raheel; Wu, Zhanpeng; Butler, Ian S.

    2017-07-01

    Owing to high-energy density of rechargeable lithium-ion batteries (LIBs), they have been investigated as an efficient electrochemical power sources for various energy applications. High theoretical capacities of tin oxide (SnO2) anodes have led us a path to meet the ever-growing demands in the development of high-performance electrode materials for LIBs. In this paper, a facile approach is described for the synthesis of porous low-dimensional nanoparticles and nanorods of SnO2 for application in LIBs with the help of Tween-80 as a surfactant. The SnO2 samples synthesized at different reaction temperatures produced porous nanoparticles and nanorods with average diameters of 7-10 nm and 70-110 nm, respectively. The SnO2 nanoparticle electrodes exhibit a high reversible charge capacity of 641.1 mAh/g at 200 mA/g after 50 cycles, and a capacity of 340 mAh/g even at a high current density of 1000 mA/g during the rate tests, whereas the porous nanorod electrodes delivers only 526.3 mAh/g at 200 mA/g after 50 cycles and 309.4 mAh/g at 1000 mA/g. It is believed that finer sized SnO2 nanoparticles are much more favorable to trap more Li+ ion during electrochemical cycling, resulting in a large irreversible capacity. In contrast, rapid capacity fading was observed for the porous nanorods, which is the result of their pulverization resulting from repeated cycling.

  17. Environmental Biosciences Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence C. Mohr, M.D.

    2007-01-31

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. The intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems. Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. Work on the trichloroethylene research projects has been slowed as a result of funding uncertainties. The impact of these funding uncertainties has been discussed with the DOE. Plans for restructuring the performance schedule of the trichloroethylene projects have been submitted to the department. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this

  18. NST Quarterly - January 1997 issue

    International Nuclear Information System (INIS)

    1997-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in local heat shrinkable copolymer and electron beam technology for purification of flue gases. It announces an International Nuclear Conference themed ' a new era in nuclear science and technology - the challenge of the 21 century ' will be held in Kuala Lumpur, Malaysia from 29 to 30 Sept 1997

  19. 2. Quarterly progress report, 1983

    International Nuclear Information System (INIS)

    1983-08-01

    This quarterly report of the SCPRI exposes an interpretation of the principal results concerning the surveillance of radioactivity in the environment: atmospheric dusts, rainwater, surface water, underground water, irrigation water, drinking water, food chain, sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables ( 7 Be, 58 Co, 60 Co, 134 Cs, 137 Cs, 90 Sr, 106 Ru, K, 54 Mn, U and T). A bibliographic selection is also presented [fr

  20. 4. Quarterly progress report, 1982

    International Nuclear Information System (INIS)

    1982-01-01

    This quarterly report of the SCPRI exposes an interpretation of the principal results concerning the surveillance of radioactivity in the environment: atmospheric dusts, rainwater, surface water, underground water, irrigation water, drinking water, food chain, sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables ( 7 Be, 58 Co, 60 Co, 134 Cs, 137 Cs, 125 Sb, 90 Sr, 106 Ru, K, 54 Mn, U and T). A bibliographic selection is also presented [fr

  1. NST Quarterly - Oct 2000 issue

    International Nuclear Information System (INIS)

    2000-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights the bioremediation of soils, the use of biological agents to reclaim soils and water polluted by substances hazardous to human health and/or the environment. Integrated waste management and thermal oxidation plant also reported, the topics discussed includes the role of the integrated waste management system, plant description and equipment design

  2. 3. quarter 2006 sales revenue

    International Nuclear Information System (INIS)

    2006-10-01

    This document presents the sales revenue of the 3. quarter 2006 for the Group AREVA. The sales revenues for the first nine months of 2006 are up by 8,1% to 7,556 millions euros; the nuclear operations are up by 5,2% reflecting strong performance in the front end division; the transmission and distribution division is up by 14%. (A.L.B.)

  3. Third quarter 2005 sales figures

    International Nuclear Information System (INIS)

    2005-01-01

    With manufacturing facilities in over 40 countries and a sales network in over 100, AREVA offers customers technological solutions for nuclear power generation and electricity transmission and distribution. The group also provides interconnect systems to the telecommunications, computer and automotive markets. This document presents the sales figures of the group for the third quarter of 2005: sales revenues in the front end division, in the reactor and services division, in the back end division and in the transmission and distribution division

  4. 3. Quarterly progress report 1982

    International Nuclear Information System (INIS)

    1982-01-01

    This quarterly report of the SCPRI exposes an interpretation of the principal results concerning the surveillance of radioactivity in the environment: atmospheric dusts, rainwater, surface water, underground water, irrigation water, drinking water, food chain, sea water around nuclear plant sites and other sites. The activities of various radioisotopes are presented in tables ( 7 Be, 58 Co, 60 Co 134 Cs, 137 Cs, 90 Sr, 106 Ru, K, 54 Mn, U and T). A bibliographic selection is also presented [fr

  5. Quarterly coal report, January--March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.

    1998-08-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for January through March 1998 and aggregated quarterly historical data for 1992 through the fourth quarter of 1997. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the United States, historical information has been integrated in this report. 58 tabs.

  6. Quarterly coal report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.

  7. Quarterly coal report, April--June, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for April through June 1998 and aggregated quarterly historical data for 1992 through the first quarter of 1998. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. 58 tabs.

  8. Quarterly coal report, October--December 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1998 and aggregated quarterly historical data for 1992 through the third quarter of 1998. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. 58 tabs.

  9. Radioactive battery

    International Nuclear Information System (INIS)

    Deaton, R.L.; Silver, G.L.

    1975-01-01

    A radioactive battery is described that is comprised of a container housing an electrolyte, two electrodes immersed in the electrolyte and insoluble radioactive material disposed adjacent one electrode. Insoluble radioactive material of different intensity of radioactivity may be disposed adjacent the second electrode. If hydrobromic acid is used as the electrolyte, Br 2 will be generated by the radioactivity and is reduced at the cathode: Br 2 + 2e = 2 Br - . At the anode Br - is oxidized: 2Br - = Br 2 + 2e. (U.S.)

  10. Yucca Mountain Site Characterization Project: Technical Data Catalog quarterly supplement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-31

    The March 21, 1993, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1993, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1994.

  11. Yucca Mountain Site Characterization Project Technical Data Catalog (quarterly supplement)

    International Nuclear Information System (INIS)

    1993-01-01

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated December 31, 1992, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1993

  12. Yucca Mountain Site Characterization Project technical data catalog: Quarterly supplement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where the data may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed-in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and distributed in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1994, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1995.

  13. From battery modeling to battery management

    NARCIS (Netherlands)

    Notten, P.H.L.; Danilov, D.

    2011-01-01

    The principles of rechargeable battery operation form the basis of the electronic network models developed for Nickel-based aqueous battery systems, including Nickel Metal Hydride (NiMH), and non-aqueous battery systems, such as the well-known Li-ion. These electronic network models are based on

  14. On electric vehicle battery charger modeling

    OpenAIRE

    Sainz Sapera, Luis; Mesas García, Juan José; Balcells Sendra, Josep

    2011-01-01

    The increase of electric vehicle (EV) battery chargers connected to electric networks could lead to future harmonic problems in power systems. These loads are nonlinear devices that inject harmonic currents and pollute network voltages. Thus, battery charger modeling must be studied in detail to determine their harmonic emissions and prevent future problems. This paper investigates EV battery charger behavior, analyzes its equivalent circuit and reports a model for each ...

  15. Short-term energy outlook, quarterly projections, second quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections. The details of these projections, as well as monthly updates, are available on the Internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The paper discusses outlook assumptions; US energy prices; world oil supply and the oil production cutback agreement of March 1998; international oil demand and supply; world oil stocks, capacity, and net trade; US oil demand and supply; US natural gas demand and supply; US coal demand and supply; US electricity demand and supply; US renewable energy demand; and US energy demand and supply sensitivities. 29 figs., 19 tabs.

  16. Applied Meteorology Unit (AMU) Quarterly Report - Fourth Quarter FY-09

    Science.gov (United States)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2009-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the fourth quarter of Fiscal Year 2009 (July - September 2009). Tasks reports include: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Objective Lightning Probability Tool. Phase III, (3) Peak Wind Tool for General Forecasting. Phase II, (4) Update and Maintain Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS), (5) Verify MesoNAM Performance (6) develop a Graphical User Interface to update selected parameters for the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLlT)

  17. Quarterly report of Biological and Medical Research Division, April 1955

    Energy Technology Data Exchange (ETDEWEB)

    Brues, A.M.

    1955-04-01

    This report is a compilation of 48 investigator prepared summaries of recent progress in individual research programs of the Biology and Medical Division of the Argonne National Laboratory for the quarterly period ending April,1955. Individual reports are about 3-6 pages in length and often contain research data.

  18. Automatic Battery Swap System for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2012-12-01

    Full Text Available This paper presents the design and implementation of an automatic battery swap system for the prolonged activities of home robots. A battery swap station is proposed to implement battery off-line recharging and on-line exchanging functions. It consists of a loading and unloading mechanism, a shifting mechanism, a locking device and a shell. The home robot is a palm-sized wheeled robot with an onboard camera and a removable battery case in the front. It communicates with the battery swap station wirelessly through ZigBee. The influences of battery case deflection and robot docking deflection on the battery swap operations have been investigated. The experimental results show that it takes an average time of 84.2s to complete the battery swap operations. The home robot does not have to wait several hours for the batteries to be fully charged. The proposed battery swap system is proved to be efficient in home robot applications that need the robots to work continuously over a long period.

  19. Entropy and heat generation of lithium cells/batteries

    International Nuclear Information System (INIS)

    Wang Songrui

    2016-01-01

    The methods and techniques commonly used in investigating the change of entropy and heat generation in Li cells/batteries are introduced, as are the measurements, calculations and purposes. The changes of entropy and heat generation are concomitant with the use of Li cells/batteries. In order to improve the management and the application of Li cells/batteries, especially for large scale power batteries, the quantitative investigations of the change of entropy and heat generating are necessary. (topical review)

  20. Advanced Battery Manufacturing (VA)

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease

  1. (Shippingport Atomic Power Station). Quarterly operating report, third quarter 1979

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T. D.

    1979-01-01

    At the beginning of the third quarter of 1979, the Shippingport Atomic Power Station remained shutdown to complete repairs of the turbine generator hydrogen circulation fan following discovery of a rubbing noise on May 24, 1979. The Station was in a cooldown condition at approximately 180/sup 0/F and 300 psig with a steam bubble in the pressurizer and the reactor coolant pumps in slow speed. The reactor plant cooldown heat exchanger was in service to maintain coolant temperature. The 1A, 1B, 1C, and 1D reactor coolant loops and the 1AC and 1BD purification loops remained in service. All expended PWR Core 2 fuel elements have previously been shipped off-site. The remaining irradiated PWR Core 2 core barrel and miscellaneous refueling tools were in storage under shielding water in the deep pit of the Fuel Handling Building. The LWBR Core has generated 12,111.00 EFPH from startup through the end of the quarter.

  2. Carbon-enhanced VRLA batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

    2010-10-01

    The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

  3. NST Quarterly - January 1999 issue

    International Nuclear Information System (INIS)

    1999-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in radioactive tracer technique and medical services. Special report on the sediment tracing technique to study the sedimentation pattern at the power stations was presented. The syopsis on two new book launched by MINT also were reviewed. The books are Research Highlights on the Use of Induced Mutations for Plant Improvement in Malaysia and Rice Agro-Ecosystem of the Muda Irrigation Scheme, Malaysia. In medical services, MINT has a group, provide medical physics services such as QA checks on the country's diagnostic radiology equipment and related services

  4. Analysis of reaction and transport processes in zinc air batteries

    CERN Document Server

    Schröder, Daniel

    2016-01-01

    This book contains a novel combination of experimental and model-based investigations, elucidating the complex processes inside zinc air batteries. The work presented helps to answer which battery composition and which air-composition should be adjusted to maintain stable and efficient charge/discharge cycling. In detail, electrochemical investigations and X-ray transmission tomography are applied on button cell zinc air batteries and in-house set-ups. Moreover, model-based investigations of the battery anode and the impact of relative humidity, active operation, carbon dioxide and oxygen on zinc air battery operation are presented. The techniques used in this work complement each other well and yield an unprecedented understanding of zinc air batteries. The methods applied are adaptable and can potentially be applied to gain further understanding of other metal air batteries. Contents Introduction on Zinc Air Batteries Characterizing Reaction and Transport Processes Identifying Factors for Long-Term Stable O...

  5. Investigation of interfacial resistance between LiCoO{sub 2} cathode and LiPON electrolyte in the thin film battery

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Eunkyung; Hong, Chan; Tak, Yongsug [Department of Chemical Engineering, Inha University, Inchon 402-751 (Korea, Republic of); Nam, Sang Cheol [Nuricell Inc., Jungrang-Ku, Seoul 131-220 (Korea, Republic of); Cho, Sungbaek [Agency for Defense Development, P.O. Box 35, Daejeon (Korea, Republic of)

    2006-09-13

    All solid-state thin film battery was prepared with conventional sputtering technologies. Low conductivity of lithium phosphorus oxynitride (LiPON) electrolyte and higher resistance at the interface of LiCoO{sub 2}/LiPON was crucial for the development of thin film battery. Presence of thermally treated Al{sub 2}O{sub 3} thin film at the interface of LiCoO{sub 2}/LiPON decreased the interfacial resistance and increased the discharge capacity with the better cycling behaviors. Surface analysis and electrochemical impedance measurement indicate the formation of solid solution LiCo{sub 1-y}Al{sub y}O{sub 2} at the interface of LiCoO{sub 2}/LiPON. (author)

  6. Thermal battery automated assembly station conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, D

    1988-08-01

    Thermal battery assembly involves many operations which are labor- intense. In August 1986, a project team was formed at GE Neutron Devices to investigate and evaluate more efficient and productive battery assembly techniques through the use of automation. The result of this study was the acceptance of a plan to automate the piece part pellet fabrication and battery stacking operations by using computerized pellet presses and robots which would be integrated by a main computer. This report details the conceptual design and development plan to be followed in the fabrication, development, and implementation of a thermal battery automated assembly station. 4 figs., 8 tabs.

  7. Quarterly coal report, October--December 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities. This report presents detailed quarterly data for october through December 1997 and aggregated quarterly historical data for 1991 through the third quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data, as specified in Section 202 of the energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

  8. Quarterly coal report, January--March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience,including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1997 and aggregated quarterly historical data for 1991 through the fourth quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  9. Quarterly coal report, January--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-24

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1994 and aggregated quarterly historical data for 1986 through the fourth quarter of 1993. Appendix A displays, from 1986 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  10. Atomic to Nanoscale Investigation of Functionalities of an Al2O3 Coating Layer on a Cathode for Enhanced Battery Performance

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei; Zheng, Jianming; Zhang, Xiaofeng; Xu, Rui; Amine, Khalil; Xiao, J; Zhang, Ji-Guang; Wang, Chong-Min

    2016-02-09

    Surface coating has been identified as an effective approach for enhancing the capacity retention of layered structure cathode. However, the underlying operating mechanism of such a thin coating layer, in terms of surface chemical functionality and capacity retention, remains unclear. In this work, we use aberration-corrected scanning transmission electron microscopy and high-efficiency spectroscopy to probe the delicate functioning mechanism of an Al2O3 coating layer on a Li1.2Ni0.2Mn0.6O2 cathode. We discovered that in terms of surface chemical function, the Al2O3 coating suppresses the side reaction between the cathode and the electrolyte during battery cycling. At the same time, the Al2O3 coating layer also eliminates the chemical reduction of Mn from the cathode particle surface, therefore preventing the dissolution of the reduced Mn into the electrolyte. In terms of structural stability, we found that the Al2O3 coating layer can mitigate the layer to spinel phase transformation, which otherwise will be initiated from the particle surface and propagate toward the interior of the particle with the progression of battery cycling. The atomic to nanoscale effects of the coating layer observed here provide insight into the optimized design of a coating layer on a cathode to enhance the battery properties.

  11. Battery waste management status

    International Nuclear Information System (INIS)

    Barnett, B.M.; Sabatini, J.C.; Wolsky, S.

    1993-01-01

    The paper consists of a series of slides used in the conference presentation. The topics outlined in the slides are: an overview of battery waste management; waste management of lead acid batteries; lead acid recycling; typical legislation for battery waste; regulatory status in European countries; mercury use in cells; recent trends in Hg and Cd use; impact of batteries to air quality at MSW incinerators; impact of electric vehicles; new battery technologies; and unresolved issues

  12. Applied Meteorology Unit (AMU) Quarterly Report - Fourth Quarter FY-10

    Science.gov (United States)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2010-01-01

    Three AMU tasks were completed in this Quarter, each resulting in a forecast tool now being used in operations and a final report documenting how the work was done. AMU personnel completed the following tasks (1) Phase II of the Peak Wind Tool for General Forecasting task by delivering an improved wind forecasting tool to operations and providing training on its use; (2) a graphical user interface (GUI) she updated with new scripts to complete the ADAS Update and Maintainability task, and delivered the scripts to the Spaceflight Meteorology Group on Johnson Space Center, Texas and National Weather Service in Melbourne, Fla.; and (3) the Verify MesoNAM Performance task after we created and delivered a GUI that forecasters will use to determine the performance of the operational MesoNAM weather model forecast.

  13. The battery market

    International Nuclear Information System (INIS)

    Deshpande, S.L.

    1991-01-01

    The worldwide battery market is estimated to be $21 billion annually at present. The geographical distribution of this market is shown in this paper. The American (North and South), Western Europe and Africa, and Asian and Australia represent equal markets of $6 billion each. The communist block countries (including Russia and China) are estimated to represent a $3 billion market. Automotive and consumer batteries constitute more than 80% of the world battery market. Industrial batteries make up the rest. Secondary (rechargeable) batteries (automotive, for example) have only 60% share of the world battery consumption. Primary batteries (most toy batteries that are the throw away type) exceed rechargeables by far in units. However, the larger size of rechargeable batteries makes their total value larger despite the small number of units

  14. Quarterly coal report, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-20

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada.

  15. Quarterly coal report, January--March 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada

  16. Quick charge battery

    Energy Technology Data Exchange (ETDEWEB)

    Parise, R.J.

    1998-07-01

    Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

  17. Biomedical applications of batteries

    Energy Technology Data Exchange (ETDEWEB)

    Latham, Roger [Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Linford, Roger [The Research Office, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Schlindwein, Walkiria [School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom)

    2004-08-31

    An overview is presented of the many ways in which batteries and battery materials are used in medicine and in biomedical studies. These include the use of batteries as power sources for motorised wheelchairs, surgical tools, cardiac pacemakers and defibrillators, dynamic prostheses, sensors and monitors for physiological parameters, neurostimulators, devices for pain relief, and iontophoretic, electroporative and related devices for drug administration. The various types of battery and fuel cell used for this wide range of applications will be considered, together with the potential harmful side effects, including accidental ingestion of batteries and the explosive nature of some of the early cardiac pacemaker battery systems.

  18. Trend chart: wind power. Forth quarter 2016

    International Nuclear Information System (INIS)

    Coltier, Yves

    2017-02-01

    This publication presents the wind energy situation of continental France and overseas territories during the forth quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  19. Trend chart: wind power. First quarter 2016

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-05-01

    This publication presents the wind energy situation of continental France and overseas territories during the first quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  20. Trend chart: wind power. Second quarter 2017

    International Nuclear Information System (INIS)

    2017-08-01

    This publication presents the wind energy situation of continental France and overseas territories during the second quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, revision of results

  1. Trend chart: wind power. Fourth quarter 2017

    International Nuclear Information System (INIS)

    Moreau, Sylvain

    2018-02-01

    This publication presents the wind energy situation of continental France and overseas territories during the fourth quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, revision of results

  2. Trend chart: biogas. Forth quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2017-02-01

    This publication presents the biogas industry situation of continental France and overseas territories during the forth quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  3. Trend chart: biogas. Second quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2016-08-01

    This publication presents the biogas industry situation of continental France and overseas territories during the Second quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  4. Trend chart: wind power. Third quarter 2016

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-11-01

    This publication presents the wind energy situation of continental France and overseas territories during the third quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  5. Trend chart: wind power. Second quarter 2016

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-08-01

    This publication presents the wind energy situation of continental France and overseas territories during the second quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  6. Trend chart: biogas. Third quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2016-11-01

    This publication presents the biogas industry situation of continental France and overseas territories during the third quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  7. Trend chart: wind power. Third quarter 2017

    International Nuclear Information System (INIS)

    2017-11-01

    This publication presents the wind energy situation of continental France and overseas territories during the third quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, revision of results

  8. Trend chart: wind power. First quarter 2017

    International Nuclear Information System (INIS)

    2017-05-01

    This publication presents the wind energy situation of continental France and overseas territories during the first quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  9. Trend chart: wind power. Forth quarter 2015

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-02-01

    This publication presents the wind energy situation of continental France and overseas territories during the forth quarter 2015: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  10. Trend chart: biogas. First quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2016-05-01

    This publication presents the biogas industry situation of continental France and overseas territories during the first quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  11. Trend chart: wind power. Third quarter 2015

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2015-11-01

    This publication presents the wind energy situation of continental France and overseas territories during the third quarter 2015: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  12. United States housing, second quarter 2013

    Science.gov (United States)

    Delton Alderman

    2017-01-01

    The U.S. housing market’s quarter two results were disap¬pointing compared with the first quarter. Although overall expected gains did not materialize, certain sectors improved slightly. Housing under construction, completions, and new and existing home sales exhibited slight increases. Overall permit data declined, and the decrease in starts was due primarily to a...

  13. Weldon Spring Site Remedial Action Project quarterly environmental data summary (QEDS) for fourth quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    This report contains the Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1998 in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data, except for air monitoring data and site KPA generated data (uranium analyses) were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the fourth quarter of 1998. KPA results for on-site total uranium analyses performed during fourth quarter 1998 are included. Air monitoring data presented are the most recent complete sets of quarterly data.

  14. Idaho National Laboratory Quarterly Occurrence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 85 reportable events (18 from the 4th Qtr FY-15 and 67 from the prior three reporting quarters), as well as 25 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (8 from this quarter and 17 from the prior three quarters).

  15. Laser cutting of graphite anodes for automotive lithium-ion secondary batteries: investigations in the edge geometry and heat-affected zone

    Science.gov (United States)

    Schmieder, Benjamin

    2012-03-01

    To serve the high need of lithium-ion secondary batteries of the automobile industry in the next ten years it is necessary to establish highly reliable, fast and non abrasive machining processes. In previous works [1] it was shown that high cutting speeds with several meters per second are achievable. For this, mainly high power single mode fibre lasers with up to several kilo watts were used. Since lithium-ion batteries are very fragile electro chemical systems, the cutting speed is not the only thing important. To guarantee a high cycling stability and a long calendrical life time the edge quality and the heat affected zone (HAZ) are equally important. Therefore, this paper tries to establish an analytical model for the geometry of the cutting edge based on the ablation thresholds of the different materials. It also deals with the composition of the HAZ in dependence of the pulse length, generated by laser remote cutting with pulsed fibre laser. The characterisation of the HAZ was done by optical microscopy, SEM, EDX and Raman microscopy.

  16. First-Principles Investigations of the Working Mechanism of 2D h-BN as an Interfacial Layer for the Anode of Lithium Metal Batteries.

    Science.gov (United States)

    Shi, Le; Xu, Ao; Zhao, Tianshou

    2017-01-18

    An issue with the use of metallic lithium as an anode material for lithium-based batteries is dendrite growth, causing a periodic breaking and repair of the solid electrolyte interphase (SEI) layer. Adding 2D atomic crystals, such as h-BN, as an interfacial layer between the lithium metal anode and liquid electrolyte has been demonstrated to be effective to mitigate dendrite growth, thereby enhancing the Columbic efficiency of lithium metal batteries. But the underlying mechanism leading to the reduced dendrite growth remains unknown. In this work, with the aid of first-principle calculations, we find that the interaction between the h-BN and lithium metal layers is a weak van der Waals force, and two atomic layers of h-BN are thick enough to block the electron tunneling from lithium metal to electrolyte, thus prohibiting the decomposition of electrolyte. The interlayer spacing between the h-BN and lithium metal layers can provide larger adsorption energies toward lithium atoms than that provided by bare lithium or h-BN, making lithium atoms prefer to intercalate under the cover of h-BN during the plating process. The combined high stiffness of h-BN and the low diffusion energy barriers of lithium at the Li/h-BN interfaces induce a uniform distribution of lithium under h-BN, therefore effectively suppressing dendrite growth.

  17. Investigation of the heat generation of a commercial 2032 (LiCoO2) coin cell with a novel differential scanning battery calorimeter

    Science.gov (United States)

    Giel, Hans; Henriques, David; Bourne, George; Markus, Torsten

    2018-06-01

    Research on the thermal behavior of Li-ion batteries fosters the understanding of heat generating effects and the dimensioning of battery thermal management systems (TMS). First comprehensive studies with a new DSC-like calorimeter for coin-cells are performed to determine thermal properties of a LiCoO2-graphite cell. The high precision and accuracy of the measurements are obtained by calibrating the signals using melting point standards in properly prepared coin-cell cases. The heat flow is measured during cycling with different C-rates between 0.23 C and 0.9 C under isothermal conditions at temperatures between 30 °C and 50 °C in steps of 5 K. Chemical and physical changes are identified in the measured heat flow signal and are discussed taking into account phase diagram information. Energetic efficiencies are calculated in dependence of temperature and C-rates by integrating the measured electrical power and heat values. The influence of cell aging on heat generation and usable capacity under operating conditions is shown. Considering the measured heat generation in a wide temperature range at different C-rates will make a valuable contribution to the understanding of material properties. This fundamental data is essential to improve thermal models to simulate spatially resolved heat dissipation in the electrodes to prevent over-heating.

  18. Detailed investigation of Na2.24FePO4CO3 as a cathode material for Na-ion batteries

    Science.gov (United States)

    Huang, Weifeng; Zhou, Jing; Li, Biao; Ma, Jin; Tao, Shi; Xia, Dingguo; Chu, Wangsheng; Wu, Ziyu

    2014-01-01

    Na-ion batteries are gaining an increased recognition as the next generation low cost energy storage devices. Here, we present a characterization of Na3FePO4CO3 nanoplates as a novel cathode material for sodium ion batteries. First-principles calculations reveal that there are two paths for Na ion migration along b and c axis. In-situ and ex-situ Fe K-edge X-ray absorption near edge structure (XANES) point out that in Na3FePO4CO3 both Fe2+/Fe3+ and Fe3+/Fe4+ redox couples are electrochemically active, suggesting also the existence of a two-electron intercalation reaction. Ex-situ X-ray powder diffraction data demonstrates that the crystalline structure of Na3FePO4CO3 remains stable during the charging/discharging process within the range 2.0–4.55 V. PMID:24595232

  19. Testing activities at the National Battery Test Laboratory

    Science.gov (United States)

    Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.

    The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.

  20. High Performance Cathodes for Li-Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  1. Rechargeable batteries applications handbook

    CERN Document Server

    1998-01-01

    Represents the first widely available compendium of the information needed by those design professionals responsible for using rechargeable batteries. This handbook introduces the most common forms of rechargeable batteries, including their history, the basic chemistry that governs their operation, and common design approaches. The introduction also exposes reader to common battery design terms and concepts.Two sections of the handbook provide performance information on two principal types of rechargeable batteries commonly found in consumer and industrial products: sealed nickel-cad

  2. Micro Calorimeter for Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    As battery technology forges ahead and consumer demand for safer, more affordable, high-performance batteries grows, the National Renewable Energy Laboratory (NREL) has added a patented Micro Calorimeter to its existing family of R&D 100 Award-winning Isothermal Battery Calorimeters (IBCs). The Micro Calorimeter examines the thermal signature of battery chemistries early on in the design cycle using popular coin cell and small pouch cell designs, which are simple to fabricate and study.

  3. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  4. Battery Aging and the Kinetic Battery Model

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2016-01-01

    Batteries are omnipresent, and with the uprise of the electrical vehicles will their use will grow even more. However, the batteries can deliver their required power for a limited time span. They slowly degrade with every charge-discharge cycle. This degradation needs to be taken into account when

  5. Bioassay battery interlaboratory investigation of emerging contaminants in spiked water extracts - Towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring.

    Science.gov (United States)

    Di Paolo, Carolina; Ottermanns, Richard; Keiter, Steffen; Ait-Aissa, Selim; Bluhm, Kerstin; Brack, Werner; Breitholtz, Magnus; Buchinger, Sebastian; Carere, Mario; Chalon, Carole; Cousin, Xavier; Dulio, Valeria; Escher, Beate I; Hamers, Timo; Hilscherová, Klára; Jarque, Sergio; Jonas, Adam; Maillot-Marechal, Emmanuelle; Marneffe, Yves; Nguyen, Mai Thao; Pandard, Pascal; Schifferli, Andrea; Schulze, Tobias; Seidensticker, Sven; Seiler, Thomas-Benjamin; Tang, Janet; van der Oost, Ron; Vermeirssen, Etienne; Zounková, Radka; Zwart, Nick; Hollert, Henner

    2016-11-01

    Bioassays are particularly useful tools to link the chemical and ecological assessments in water quality monitoring. Different methods cover a broad range of toxicity mechanisms in diverse organisms, and account for risks posed by non-target compounds and mixtures. Many tests are already applied in chemical and waste assessments, and stakeholders from the science-police interface have recommended their integration in regulatory water quality monitoring. Still, there is a need to address bioassay suitability to evaluate water samples containing emerging pollutants, which are a current priority in water quality monitoring. The presented interlaboratory study (ILS) verified whether a battery of miniaturized bioassays, conducted in 11 different laboratories following their own protocols, would produce comparable results when applied to evaluate blinded samples consisting of a pristine water extract spiked with four emerging pollutants as single chemicals or mixtures, i.e. triclosan, acridine, 17α-ethinylestradiol (EE2) and 3-nitrobenzanthrone (3-NBA). Assays evaluated effects on aquatic organisms from three different trophic levels (algae, daphnids, zebrafish embryos) and mechanism-specific effects using in vitro estrogenicity (ER-Luc, YES) and mutagenicity (Ames fluctuation) assays. The test battery presented complementary sensitivity and specificity to evaluate the different blinded water extract spikes. Aquatic organisms differed in terms of sensitivity to triclosan (algae > daphnids > fish) and acridine (fish > daphnids > algae) spikes, confirming the complementary role of the three taxa for water quality assessment. Estrogenicity and mutagenicity assays identified with high precision the respective mechanism-specific effects of spikes even when non-specific toxicity occurred in mixture. For estrogenicity, although differences were observed between assays and models, EE2 spike relative induction EC 50 values were comparable to the literature, and E2/EE2

  6. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  7. A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries.

    Science.gov (United States)

    Xie, Xiuqiang; Su, Dawei; Zhang, Jinqiang; Chen, Shuangqiang; Mondal, Anjon Kumar; Wang, Guoxiu

    2015-02-21

    SnO2/nitrogen-doped graphene nanohybrids have been synthesized by an in situ hydrothermal method, during which the formation of SnO2 nanocrystals and nitrogen doping of graphene occur simultaneously. The as-prepared SnO2/nitrogen-doped graphene nanohybrids exhibit enhanced electrochemical performance for sodium-ion batteries compared to SnO2/graphene nanocomposites. A systematic comparison between SnO2/nitrogen-doped graphene nanohybrids and the SnO2/graphene counterpart as anode materials for sodium-ion batteries has been conducted. The comparison is in a reasonable framework, where SnO2/nitrogen-doped graphene nanohybrids and the SnO2/graphene counterpart have the same SnO2 ratio, similar SnO2 crystallinity and particle size, close surface area and pore size. The results clearly manifest that the improved electron transfer efficiency of SnO2/nitrogen-doped graphene due to nitrogen-doping plays a more important role than the increased electro-active sites within graphene network in enhancing the electro-activity of SnO2/nitrogen-doped graphene nanohybrids compared to the SnO2/graphene counterpart. In contrast to the previous reports which often ascribe the enhanced electro-activity of nitrogen-doped graphene based composites to two nitrogen-doping effects (improving the electron transfer efficiency and increasing electro-active sites within graphene networks) in one single declaration, this work is expected to provide more specific information for understanding the effects of nitrogen-doping into graphene on improving the electrochemical performance of graphene based composites.

  8. Silicene for Na-ion battery applications

    KAUST Repository

    Zhu, Jiajie

    2016-08-19

    Na-ion batteries are promising candidates to replace Li-ion batteries in large scale applications because of the advantages in natural abundance and cost of Na. Silicene has potential as the anode in Li-ion batteries but so far has not received attention with respect to Na-ion batteries. In this context, freestanding silicene, a graphene-silicene-graphene heterostructure, and a graphene-silicene superlattice are investigated for possible application in Na-ion batteries, using first-principles calculations. The calculated Na capacities of 954mAh/g for freestanding silicene and 730mAh/g for the graphenesilicene superlattice (10% biaxial tensile strain) are highly competitive and potentials of >0.3 V against the Na/Na potential exceed the corresponding value of graphite. In addition, the diffusion barriers are predicted to be <0.3 eV.

  9. Lifetime modelling of lead acid batteries

    DEFF Research Database (Denmark)

    Bindner, H.; Cronin, T.; Lundsager, P.

    2005-01-01

    The performance and lifetime of energy storage in batteries are an important part of many renewable based energy systems. Not only do batteries impact on the system performance but they are also a significant expenditure when considering the whole lifecycle costs. Poor prediction of lifetime can......, therefore, lead to uncertainty in the viability of the system in the long term. This report details the work undertaken to investigate and develop two different battery life prediction methodologies withspecific reference to their use in hybrid renewable energy systems. Alongside this, results from battery...... tests designed to exercise batteries in similar modes to those that they experience in hybrid systems have also been analysed. These have yieldedbattery specific parameters for use in the prediction software and the first results in the validation process of the software are also given. This work has...

  10. Econometric Methods within Romanian Quarterly National Accounts

    Directory of Open Access Journals (Sweden)

    Livia Marineta Drăguşin

    2013-04-01

    Full Text Available The aim of the present paper is to synthesise the main econometric methods (including the mathematical and statistical ones used in the Romanian Quarterly National Accounts compilation, irrespectively of Quarterly Gross Domestic Product (QGDP. These methods are adapted for a fast manner to operatively provide information about the country macroeconomic evolution to interested users. In this context, the mathematical and econometric methods play an important role in obtaining quarterly accounts valued in current prices and in constant prices, in seasonal adjustments and flash estimates of QGDP.

  11. Nondestructive analysis of the gold quarter liras

    International Nuclear Information System (INIS)

    Cakir, C.; Guerol, A.; Demir, L.; Sahin, Y.

    2009-01-01

    In this study, we have prepared seven Au-Cu standards in the concentration range of 18-24 (as carat) for nondestructive control of gold quarter liras. Some calibration curves for quantitative analysis of Au in the gold quarter liras that commercially present in Turkey have been plotted using these standard samples. The characteristic X-rays of Au and Cu emitted from these standard samples and the test sample with known composition are recorded by using a Ge(Li) detector. These calibration curves provide a nondestructive analysis of gold quarter liras with the uncertainties about 1.18%. (author)

  12. Transferring the Incremental Capacity Analysis to Lithium-Sulfur Batteries

    DEFF Research Database (Denmark)

    Knap, Vaclav; Kalogiannis, Theodoros; Purkayastha, Rajlakshmi

    2017-01-01

    In order to investigate the battery degradation and to estimate their health, various techniques can be applied. One of them, which is widely used for Lithium-ion batteries, is the incremental capacity analysis (ICA). In this work, we apply the ICA to Lithium-Sulfur batteries, which differ in many...... aspects from Lithium-ion batteries and possess unique behavior. One of the challenges of applying the ICA to Lithium-Sulfur batteries is the representation of the IC curves, as their voltage profiles are often non-monotonic, resulting in more complex IC curves. The ICA is at first applied to charge...

  13. Idaho National Laboratory Quarterly Occurrence Analysis for the 1st Quarter FY2017

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 82 reportable events (13 from the 1st quarter (Qtr) of fiscal year (FY) 2017 and 68 from the prior three reporting quarters), as well as 31 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (seven from this quarter and 24 from the prior three quarters).

  14. Idaho National Laboratory Quarterly Occurrence Analysis 4th Quarter FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System, as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 84 reportable events (29 from the 4th quarter fiscal year 2016 and 55 from the prior three reporting quarters), as well as 39 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (two from this quarter and 37 from the prior three quarters).

  15. Information Science Research Institute. Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nartker, T.A.

    1994-06-30

    This is a second quarter 1194 progress report on the UNLV Information Science Research Institute. Included is symposium activity; staff activity; document analysis program; text retrieval program; institute activity; and goals.

  16. Quarterly coal report, January--March 1992

    International Nuclear Information System (INIS)

    Young, P.

    1992-01-01

    The United States produced 257 million short tons of coal in the first quarter of 1992. This was the second highest quarterly production level ever recorded. US coal exports in January through March of 1992 were 25 million short tons, the highest first quarter since 1982. The leading destinations for US coal exports were Japan, Italy, France, and the Netherlands, together receiving 46 percent of the total. Coal exports for the first quarter of 1992 were valued at $1 billion, based on an average price of $42.28 per short ton. Steam coal exports totaled 10 million short tons, an increase of 34 percent over the level a year earlier. Metallurgical coal exports amounted to 15 million short tons, about the same as a year earlier. US coal consumption for January through March 1992 was 221 million short tons, 2 million short tons more than a year earlier (Table 45). All sectors but the residential and commercial sector reported increased coal consumption

  17. Quarterly Fishery Surveys - Salton Sea [ds428

    Data.gov (United States)

    California Natural Resource Agency — In the spring of 2003, California Department of Fish and Game (CDFG) personnel began quarterly sampling of Salton Sea fish at fourteen stations around the sea, as...

  18. NSA Diana Wueger Published in Washington Quarterly

    OpenAIRE

    Grant, Catherine L.

    2016-01-01

    National Security Affairs (NSA) News NSA Faculty Associate for Research Diana Wueger has recently had an article titled “India’s Nuclear-Armed Submarines: Deterrence or Danger?” published in the Washington Quarterly.

  19. Electrochemical accumulators batteries; Accumulateurs electrochimiques batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ansart, F; Castillo, S; Laberty- Robert, C; Pellizon-Birelli, M [Universite Paul Sabatier, Lab. de Chimie des Materiaux Inorganiques et Energetiques, CIRIMAT, UMR CNRS 5085, 31 - Toulouse (France); and others

    2000-07-01

    It is necessary to storage the electric power in batteries to join the production and the utilization. In this domain progresses are done every days in the technics and also in the available materials. These technical days present the state of the art in this domain. Many papers were presented during these two days giving the research programs and recent results on the following subjects: the lithium batteries, the electrolytes performances and behaviour, lead accumulators, economic analysis of the electrochemical storage market, the batteries applied to the transportation sector and the telephones. (A.L.B.)

  20. In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries.

    Science.gov (United States)

    Jia, Chuankun; Liu, Qi; Sun, Cheng-Jun; Yang, Fan; Ren, Yang; Heald, Steve M; Liu, Yadong; Li, Zhe-Fei; Lu, Wenquan; Xie, Jian

    2014-10-22

    Synchrotron-based in situ X-ray near-edge absorption spectroscopy (XANES) has been used to study the valence state evolution of the vanadium ion for both the catholyte and anolyte in all-vanadium redox flow batteries (VRB) under realistic cycling conditions. The results indicate that, when using the widely used charge-discharge profile during the first charge process (charging the VRB cell to 1.65 V under a constant current mode), the vanadium ion valence did not reach V(V) in the catholyte and did not reach V(II) in the anolyte. Consequently, the state of charge (SOC) for the VRB cell was only 82%, far below the desired 100% SOC. Thus, such incompletely charged mix electrolytes results in not only wasting the electrolytes but also decreasing the cell performance in the following cycles. On the basis of our study, we proposed a new charge-discharge profile (first charged at a constant current mode up to 1.65 V and then continuously charged at a constant voltage mode until the capacity was close to the theoretical value) for the first charge process that achieved 100% SOC after the initial charge process. Utilizing this new charge-discharge profile, the theoretical charge capacity and the full utilization of electrolytes has been achieved, thus having a significant impact on the cost reduction of the electrolytes in VRB.

  1. Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application.

    Science.gov (United States)

    Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Liu, Le; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-11-12

    Acid-base blend membrane prepared from sulfonated poly(ether ether ketone) (SPEEK) and polyacrylonitrile (PAN) was detailedly evaluated for vanadium redox flow battery (VRFB) application. SPEEK/PAN blend membrane exhibited dense and homogeneous cross-section morphology as scanning electron microscopy and energy-dispersive X-ray spectroscopy images show. The acid-base interaction of ionic cross-linking and hydrogen bonding between SPEEK and PAN could effectively reduce water uptake, swelling ratio, and vanadium ion permeability, and improve the performance and stability of blend membrane. Because of the good balance of proton conductivity and vanadium ion permeability, blend membrane with 20 wt % PAN (S/PAN-20%) showed higher Coulombic efficiency (96.2% vs 91.1%) and energy efficiency (83.5% vs 78.4%) than Nafion 117 membrane at current density of 80 mA cm(-2) when they were used in VRFB single cell. Besides, S/PAN-20% membrane kept a stable performance during 150 cycles at current density of 80 mA cm(-2) in the cycle life test. Hence the SPEEK/PAN acid-base blend membrane could be used as promising candidate for VRFB application.

  2. A quarter century of stimulated Raman scattering

    International Nuclear Information System (INIS)

    Bloembergen, N.

    1987-01-01

    To round out a quarter century of SRS the timing of this writing (1986) requires a look ahead of only one year into the future. The proceedings of the 10th International Conference on Raman Spectroscopy present a picture of current activity. Further progress will be made in time-resolved spectroscopy with subpicosecond resolution, in the study of hyper-Raman and other higher order effects with CARS, in extension of resonant Raman excitation in the UV region of spectrum, and in the development of Raman laser sources. During past few years extensive theoretical investigations have been made for four-wave light mixing in the case of one or more very strong light beams. The perturbation approach for those fields ceases to be valid. If only one light field is strong, the usual approach is to make a transformation to a rotating coordinate system so that the strong Hamiltonian for this light field becomes time-independent. Very recently these techniques have been extended to the case of two or more strong fields. CARS-type experiments with strong beams are likely to receive more attention. Extrapolation of the current activities instills confidence in the vitality of stimulated Raman scattering for the foreseeable future

  3. Fuel Cell and Battery Powered Forklifts

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mortensen, Henrik H.; Jensen, Jes Vestervang

    2013-01-01

    A hydrogen-powered materials handling vehicle with a fuel cell combines the advantages of diesel/LPG and battery powered vehicles. Hydrogen provides the same consistent power and fast refueling capability as diesel and LPG, whilst fuel cells provide energy efficient and zero emission Electric...... propulsion similar to batteries. In this paper, the performance of a forklift powered by PEM fuel cells and lead acid batteries as auxiliary energy source is introduced and investigated. In this electromechanical propulsion system with hybrid energy/power sources, fuel cells will deliver average power...

  4. Lifetime Improvement by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Schmitt, Jens B.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of their batteries. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to

  5. Lifetime improvement by battery scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of its battery. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to the

  6. Advances of aqueous rechargeable lithium-ion battery: A review

    Science.gov (United States)

    Alias, Nurhaswani; Mohamad, Ahmad Azmin

    2015-01-01

    The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.

  7. A Desalination Battery

    KAUST Repository

    Pasta, Mauro; Wessells, Colin D.; Cui, Yi; La Mantia, Fabio

    2012-01-01

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  8. A desalination battery.

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D; Cui, Yi; La Mantia, Fabio

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na(2-x)Mn(5)O(10) nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l(-1) for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (~ 0.2 Wh l(-1)), the most efficient technique presently available. © 2012 American Chemical Society

  9. A Desalination Battery

    KAUST Repository

    Pasta, Mauro

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  10. Polyoxometalate flow battery

    Science.gov (United States)

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  11. Lithium battery management system

    Science.gov (United States)

    Dougherty, Thomas J [Waukesha, WI

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  12. Micro-battery Development using beta radioisotope

    International Nuclear Information System (INIS)

    Jung, H. K.; Cheong, Y. M.; Lee, N. H.; Choi, Y. S.; Joo, Y. S.; Lee, J. S.; Jeon, B. H.

    2007-06-01

    Nuclear battery which use the beta radiation sources emitting the low penetration radiation energy from radioisotope can be applied as the long term (more than 10 years) micro power source in MEMS and nano components. This report describes the basic concept and principles of nuclear micro-battery and its fabrication in space and military field. In particular direct conversion method is described by investigating the electron-hole generation and recombination in p-n junction of silicon betavoltaics with beta radiation

  13. Lifetime modelling of lead acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Cronin, T.; Lundsager, P.

    2005-04-01

    The performance and lifetime of energy storage in batteries are an important part of many renewable based energy systems. Not only do batteries impact on the system performance but they are also a significant expenditure when considering the whole life cycle costs. Poor prediction of lifetime can, therefore, lead to uncertainty in the viability of the system in the long term. This report details the work undertaken to investigate and develop two different battery life prediction methodologies with specific reference to their use in hybrid renewable energy systems. Alongside this, results from battery tests designed to exercise batteries in similar modes to those that they experience in hybrid systems have also been analysed. These have yielded battery specific parameters for use in the prediction software and the first results in the validation process of the software are also given. This work has been part of the European Union Benchmarking research project (ENK6-CT-2001-80576), funded by the European Union, the United States and Australian governments together with other European states and other public and private financing bodies. The project has concentrated on lead acid batteries as this technology is the most commonly used. Through this work the project partner institutions have intended to provide useful tools to improve the design capabilities of organizations, private and public, in remote power systems. (au)

  14. Nonleaking battery terminals.

    Science.gov (United States)

    Snider, W. E.; Nagle, W. J.

    1972-01-01

    Three different terminals were designed for usage in a 40 ampere/hour silver zinc battery which has a 45% KOH by weight electrolyte in a plastic battery case. Life tests, including thermal cycling, electrical charge and discharge for up to three years duration, were conducted on these three different terminal designs. Tests for creep rate and tensile strength were conducted on the polyphenylene oxide plastic battery cases. Some cases were unused and others containing KOH electrolyte were placed on life tests. The design and testing of nonleaking battery terminals for use with a KOH electrolyte in a plastic case are considered.

  15. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-08

    The operating temperature is critical in achieving the right balance between performance, cost, and life for both Li-ion batteries and ultracapacitors. The chemistries of advanced energy-storage devices - such as lithium-based batteries - are very sensitive to operating temperature. High temperatures degrade batteries faster while low temperatures decrease their power and capacity, affecting vehicle range, performance, and cost. Understanding heat generation in battery systems - from the individual cells within a module, to the inter-connects between the cells, and across the entire battery system - is imperative for designing effective thermal-management systems and battery packs. At NREL, we have developed unique capabilities to measure the thermal properties of cells and evaluate thermal performance of battery packs (air or liquid cooled). We also use our electro-thermal finite element models to analyze the thermal performance of battery systems in order to aid battery developers with improved thermal designs. NREL's tools are used to meet the weight, life, cost, and volume goals set by the U.S. Department of Energy for electric drive vehicles.

  16. Advanced solid state batteries

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, A; Delmas, C; Menetrier, M; Hagenmuller, P

    1984-01-01

    Direct electrochemical storage of electricity is attractive because of its adaptability to vehicle traction as well as to stationary applications. Important advancements are necessary to improve primary or secondary batteries so far used. The aim of this study was to develop and to characterize materials for the next generation of advanced, rechargeable solid state batteries for vehicle transport and stationary storage applications. One of the best electricity storage systems was the lithium/intercalation compound secondary battery, though up to now the behavior of liquid organic electrolytes did not allow for good recycling in such systems. The research program for these batteries is described.

  17. Ballistic negatron battery

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.S.R. [Koneru Lakshmiah Univ.. Dept. of Electrical and Electronics Engineering, Green fields, Vaddeswaram (India)

    2012-07-01

    If we consider the Statistics there is drastic increase in dependence of batteries from year to year, due to necessity of power storage equipment at homes, power generating off grid and on grid Wind, PV systems, etc.. Where wind power is leading in renewable sector, there is a need to look at its development. Considering the scenario in India, most of the wind resource areas are far away from grid and the remaining areas which are near to grid are of low wind currents which is of no use connecting these equipment directly to grid. So, there is a need for a power storage utility to be integrated, such as the BNB (Ballistic Negatron Battery). In this situation a country like India need a battery which should be reliable, cheap and which can be industrialized. So this paper presents the concept of working, design, operation, adaptability of a Ballistic Negatron Battery. Unlike present batteries with low energy density, huge size, more weight, more charging time and low resistant to wear level, this Ballistic Negatron Battery comes with, 1) High energy storage capability (many multiples more than the present most advanced battery). 2) Very compact in size. 3) Almost negligible in weight compared to present batteries. 4) Charges with in very less time. 5) Never exhibits a wear level greater than zero. Seems like inconceivable but adoptable with simple physics. This paper will explains in detail the principle, model, design, construction and practical considerations considered in making this battery. (Author)

  18. Quarterly Environmental Radiological Survey Summary Third Quarter 1998, 100, 200, 300, and 600 Areas; TOPICAL

    International Nuclear Information System (INIS)

    MCKINNEY, S.M.

    1998-01-01

    This report provides a summary of the radiological surveys performed in support of near-facility environmental monitoring at the Hanford Site. The Third Quarter 1998 survey results and the status of actions required are summarized: (1) All of the eighty-five environmental radiological surveys scheduled during July, August and September were performed as planned. Fifty-one of the surveys were conducted at Project Hanford Management Contractors (PHMC) sites and thirty-four at Environmental Restoration Contractor (ERC) sites. Contamination above background levels was found at seventeen of the PHMC waste sites and two of the ERC waste sites. Contamination levels as high and gt;1,000,000 disintegrations per minute (dpm) per 100 cm(sup 2) were reported. Of these contaminated surveys nine were in Underground Radioactive Material (URM) areas, three were in unposted areas and seven were in contamination areas. The contamination found within four of the URM and three of the CA areas was immediately cleaned up and no further action was required. The remaining five URM and two unposted sites were posted and along with the five CA sites will require remediation. Radiological Problem Reports (RPR's) were issued and the sites were turned over to the landlord for further action as required. (2) During the second quarter of 1998, 1.2 hectares (3.0 acres) were stabilized and radiologically down posted from Contamination Area (CA)/Soil Contamination (SC) to URM. (3) Four hectares (10 acres) located south and west of B-Plant were posted as a radiological buffer area as a result of a contamination spread. This off-normal occurrence is currently being investigated. (4) Four Surveillance Compliance Inspection Reports (SCIRs) remained open and had not been resolved. Tank Farms Operations has responsibility for the unresolved SCIRs

  19. Idaho National Laboratory Quarterly Occurrence Analysis - 3rd Quarter FY-2016

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 73 reportable events (23 from the 3rd Qtr FY-16 and 50 from the prior three reporting quarters), as well as 45 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (16 from this quarter and 29 from the prior three quarters).

  20. Idaho National Laboratory Quarterly Occurrence Analysis - 1st Quarter FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 74 reportable events (16 from the 1st Qtr FY-16 and 58 from the prior three reporting quarters), as well as 35 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (15 from this quarter and 20 from the prior three quarters).

  1. Environmental Biosciences Program Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence C. Mohr, M.D.

    2009-01-30

    Current research projects have focused Environmental Biosciences Program (EBP) talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene, low-dose ionizing radiation (gamma and neutron) and alpha radiation from plutonium. Trichloroethylene research has been conducted as a joint collaborative effort with the University of Georgia. Work on the trichloroethylene research projects has been slowed as a result of funding uncertainties. The impact of these funding uncertainties has been discussed with the United States Department of Energy (DOE). Laboratory work has been completed on several trichloroethylene risk assessment projects, and these projects have been brought to a close. Plans for restructuring the performance schedule of the remaining trichloroethylene projects have been submitted to the department. A comprehensive manuscript on the scientific basis of trichloroethylene risk assessment is in preparation. Work on the low-dose radiation risk assessment projects is also progressing at a slowed rate as a result of funding uncertainties. It has been necessary to restructure the proponency and performance schedule of these projects, with the project on Low-Dose Radiation: Epidemiology Risk Models transferred to DOE Office of Science proponency under a separate funding instrument. Research on this project will continue under the provisions of the DOE Office of Science funding instrument, with progress reported in accordance with the requirements of that funding instrument. Progress on that project will no longer be reported in quarterly reports for DE-FC09-02CH11109. Following a meeting at the Savannah River Site on May 8, 2008, a plan was submitted for development of an epidemiological cohort study and prospective medical surveillance system for the assessment of disease rates among workers at the Savannah River

  2. Optimization of batteries for plug-in hybrid electric vehicles

    Science.gov (United States)

    English, Jeffrey Robb

    This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity

  3. Idaho National Laboratory Quarterly Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INL from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.

  4. Quarterly coal statistics of OECD countries

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-27

    These quarterly statistics contain data from the fourth quarter 1990 to the fourth quarter 1991. The first set of tables (A1 to A30) show trends in production, trade, stock change and apparent consumption data for OECD countries. Tables B1 to B12 show detailed statistics for some major coal trade flows to and from OECD countries and average value in US dollars. A third set of tables, C1 to C12, show average import values and indices. The trade data have been extracted or derived from national and EEC customs statistics. An introductory section summarizes trends in coal supply and consumption, deliveries to thermal power stations; electricity production and final consumption of coal and tabulates EEC and Japanese steam coal and coking coal imports to major countries.

  5. ER Consolidated Quarterly Report October 2014

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    This Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) provides the status of ongoing corrective actions and related Long- Term Stewardship (LTS) activities being implemented by Sandia National Laboratories, New Mexico (SNL/NM) ER for the April, May, and June 2014 quarterly reporting period. Section 2.0 provides the status of ER Operations activities including closure activities for the Mixed Waste Landfill (MWL), project management and site closure, and hydrogeologic characterizations. Section 3.0 provides the status of LTS activities that relate to the Chemical Waste Landfill (CWL) and the associated Corrective Action Management Unit (CAMU). Section 4.0 provides the references noted in Section I of this report.

  6. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications

  7. Silicon Betavoltaic Batteries Structures

    OpenAIRE

    V.N. Murashev; S.A. Legotin; O.I. Rabinovich; O.R. Abdulaev; U.V. Osipov

    2015-01-01

    For low-power miniature energy creation sources the particular interest is nickel Ni63. This paper discusses the main types of betavoltaic battery structures with the prospects for industrial application using - isotope of nickel Ni63. It is shown that the prospects for improving the effective efficiency are planar multijunction betavoltaic batteries.

  8. Deep diode atomic battery

    International Nuclear Information System (INIS)

    Anthony, T.R.; Cline, H.E.

    1977-01-01

    A deep diode atomic battery is made from a bulk semiconductor crystal containing three-dimensional arrays of columnar and lamellar P-N junctions. The battery is powered by gamma rays and x-ray emission from a radioactive source embedded in the interior of the semiconductor crystal

  9. Lithium Battery Diaper Ulceration.

    Science.gov (United States)

    Maridet, Claire; Taïeb, Alain

    2016-01-01

    We report a case of lithium battery diaper ulceration in a 16-month-old girl. Gastrointestinal and ear, nose, and throat lesions after lithium battery ingestion have been reported, but skin involvement has not been reported to our knowledge. © 2015 Wiley Periodicals, Inc.

  10. Battery Pack Thermal Design

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-14

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.

  11. Quarterly report for the electricity market. 2. quarter of 2012; Kvartalsrapport for kraftmarknaden. 2. kvartal 2012

    Energy Technology Data Exchange (ETDEWEB)

    Eliston, Anton Jaynand; Holmqvist, Erik; Lund, Per Tore Jensen; Magnussen, Ingrid; Viggen, Kjerstin Dahl; Willumsen, Mats Oeivind; Guren, Ingrid; Ulriksen, Margit Iren

    2012-07-01

    Fourth quarter of 2011 was unusually mild and wet, resulting in high energy inflow to the Norwegian reservoirs. Total inflow for the year was 149.2 TWh, 26.7 TWh more than normal. This ensured record-high 80.3 percent load factor at the end of the quarter.The stored energy amount in the reservoirs was thus 29.5 TWh greater than at the end of 2010/2011. Norway had a power consumption of 34.1 TWh in the fourth quarter. Compared with the same quarter of 2010, a decrease of 4.2 TWh, which can be connected to the mild weather development. The total Norwegian electricity consumption in 2011 was 125.1 TWh, or 6.9 TWh less than in 2010. Electricity production in the fourth quarter of 2011 was 38.3 GWh, an increase of 3.7 TWh from the same quarter the year before. The production increase were a result of the large volume of water in the system. Power production for the year 2011 was 128.1 TWh, an increase of 3.7 TWh from 2010. Kraft surplus was therefore large, and it was Norwegian net export of 4.2 TWh in the fourth quarter, and 3.0 TWh total for the year. In comparison, in the fourth quarter of 2010 Norwegian net import of 0.8 TWh and 7.5 TWh annually. The good resource combined with the low consumption gave a unusually low price levels in the wholesale market for electricity. On average for fourth quarter, the price of power in the East and South-East Norway Nok 264 / MWh, in western Norway Nok 260 / MWh, in Central Norway Nok 270 / MWh (eb)

  12. Quarterly report for the electricity market. 1. quarter of 2012; Kvartalsrapport for kraftmarknaden. 1. kvartal 2012

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Finn Erik Ljaastad; Eliston, Anton Jaynanand; Guren, Ingri; Homqvist, Erik; Lund, Per Tore Jensen; Magnussen, Ingrid; Rasmussen, Kristian; Ulriksen, Margit Iren

    2012-07-01

    The first quarter of 2012 was unusually mild and wetter than normal. Total inflow was 16.8 TWh, 7.5 TWh more than normal. This ensured a high reservoir levels and at the end of the quarter the filling was 50.5 percent. It is 12.5 percentage points over the normal for the time of year and 32.4 percentage points higher than the same time last year. Norway had a power consumption of 37.5 TWh in the first quarter, which is 2.3 percent less than in the same quarter last year. the past 12 months, consumption has been 124.2 TWh, compared with 129.7 TWh the preceding 12 months. Power production in Norway was 42.3 TWh in the first quarter - an increase of 32.3 percent compared with the same quarter last year. The last 12 months have the Norwegian production been 138.5 TWh compared to 117.7 TWh the the previous 12 months. The production increase is due to milder and wetter weather than normal over the past year. This involvement also high the exports abroad. In the first quarter, Norway had a net export of 4.8 TWh, compared with a net import of 6.4 TWh in the first quarter last year. The good resource, combined with a low consumption gave a low price level in wholesale market for electricity. On average for the fourth quarter was the average spot price in the South and West Norway, Nok 272 and 275 / MWh. In Eastern Norway, the average price of Nok 283 / MWh, while it was Nok 285 / MWh in the Middle and Northern Norway. (Author)

  13. Quarterly report for the electricity market. 2. quarter of 2012; Kvartalsrapport for kraftmarknaden. 2. kvartal 2012

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Finn Erik Ljaastad; Eliston, Anton Jayanand; Vaeringstad, Thomas; Lund, Per Tore Jensen; Magnussen, Ingrid; Langseth, Benedicte; Willumsen, Mats Oeivind; Rasmussen, Kristian; Guren, Ingri

    2012-07-01

    Second quarter of 2012 was cold. Total inflow was 47.0 TWh, 8.8 TWh less than normal. At the end of the quarter, the reservoir level 68.4 percent. It is 1.8 percentage points above normal for time of year and 1.2 percentage points higher than the same time last year. Norway had a power consumption of 28.2 TWh in the second quarter, which is 4.2 percent higher than in the same quarter last year. The last 12 months the consumption have been 125.7 TWh, compared with 128.7 TWh the preceding 12 months. The power production in Norway was 33.3 TWh in the second quarter - an increase of 26.1 percent compared with the same quarter last year. The last 12 months the Norwegian production has been 145.8 TWh, compared with 120.9 TWh the preceding 12 months. The production increase is due to that the last year has been much wetter than the preceding. This has also given high export abroad. In the second quarter Norway had a net export of 5.1 TWh, compared with a net import of 0.6 TWh in the second quarter last year. The good resource gave a low price level in the wholesale market for electricity. On average for the second quarter was the average spot price in West, Southwest and Eastern Norway, 201, 202 and 203 Nok / MWh. In Central and Northern Norway, the average price 218 and 213 Nok/ MWh. (eb)

  14. Market research of batteries placed on the market and returned, in particular lithium batteries; Marktstudie des Batterieaufkommens und der Batterierueckgabe, speziell der Lithium-Batterien

    Energy Technology Data Exchange (ETDEWEB)

    Meisenzahl, Sonja; Sittig, Peter-Paul; Hoeck, Michael [Technische Univ. Bergakademie Freiberg (Germany). Lehrstuhl fuer Industriebetriebslehre, Produktionswirtschaft und Logistik

    2013-06-15

    The resource-efficient handling of raw materials also includes the knowledge of already processed raw materials in the meanings of the recycling management. The research project 'Hybride Lithiumgewinnung', which is funded by the Federal Ministry of Education and Research (BMBF) and GC Potential (German: WK Potential), will investigate the raw material Lithium in particular. The study of the recovery of secondary raw materials focuses on the device batteries. The findings of the market study on device batteries will be presented with the priority for Lithium device batteries. A status analysis of resent battery systems focusing Lithium batteries and a stockpile analysis in a German sorting facility for used Lithium batteries were conducted. The aim of the investigation is the varying kinds of chemical composition of Lithium batteries and to determine the age distribution of the used Lithium batteries. (orig.)

  15. Experimenting with wires, batteries, bulbs and the induction coil: Narratives of teaching and learning physics in the electrical investigations of Laura, David, Jamie, myself and the nineteenth century experimenters. Our developments and instruments

    Science.gov (United States)

    Cavicchi, Elizabeth Mary

    Physics is conventionally taught as a fixed curriculum which students must master. This thesis changes that: curriculum emerges from what learners try and question in experiments they invent. The thesis narrates: three adult students exploring wires, batteries and bulbs with me as teacher; nineteenth century investigations of electromagnetism; my laboratory work replicating historic instruments. In each case, learning arose through activity with materials. Evidences of this are analyzed within narratives and reflections. I used teaching-research, a method developed by Duckworth from Piaget's clinical interviewing, to research and simultaneously extend students' evolving understandings. What I learned through questioning students informed my next interactions; what they learned extended their experimenting. Similarly, I researched historical accounts interactively: improvising experiments to develop my understandings. Studying my own learning deepened my interpretations of students' learning. My students Laura, David and Jamie experimented by: soldering bulbs to wires, making series and parallel circuits, inserting resistive wire that dimmed bulbs, conducting electricity through salt water They noticed bulb brightness and battery heat, compared electricity's paths, questioned how voltage and current relate. They inferred electricity's effects manifest magnitudes of material properties. They found their experiences while learning were inseparable from what they learned. I researched investigations connected with Cavendish's leather fish, Galvani's frogs, Schweigger's wire spiraled around a compass needle, Henry's electromagnets, Faraday's induction ring, induction devices of Page, Callan, Hearder. Experimentally, I made galvanometers, electromagnets, induction rings, induction coil. I observed effects of electromagnetism, internal resistance, induced sparking. Across these investigations, learning developed with instrumental innovations; confusions were productive

  16. Mineral exploration, Australia, March quarter 1983

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    This publication contains annual and quarterly statistics of exploration for minerals in Australia. Part 1 sets out statistics of exploration for minerals and oil shale for which data are no longer available for separate publication. Part 2 gives details of petroleum exploration.

  17. 39 CFR 243.2 - Quarters.

    Science.gov (United States)

    2010-07-01

    ... UNITED STATES POSTAL SERVICE ORGANIZATION AND ADMINISTRATION CONDUCT OF OFFICES § 243.2 Quarters. (a.... Postal Service, General Accounting Office Building, Washington, DC 20260, with a memorandum of... depositing mail in front of or next to the post office. Show collection time schedules on letterboxes. At...

  18. "The Career Development Quarterly": A Centennial Retrospective

    Science.gov (United States)

    Savickas, Mark L.; Pope, Mark; Niles, Spencer G.

    2011-01-01

    "The Career Development Quarterly" has been the premier journal in the field of vocational guidance and career intervention since its inception 100 years ago. To celebrate its centennial, 3 former editors trace its evolution from a modest and occasional newsletter to its current status as a major professional journal. They recount its history of…

  19. 76 FR 22910 - ACHP Quarterly Business Meeting

    Science.gov (United States)

    2011-04-25

    ... ADVISORY COUNCIL ON HISTORIC PRESERVATION ACHP Quarterly Business Meeting AGENCY: Advisory Council on Historic Preservation. ACTION: Notice. SUMMARY: Notice is hereby given that the Advisory Council... Historic Preservation Working Group IX. New Business X. Adjourn Note: The meetings of the ACHP are open to...

  20. Subject Access Project. Third Quarterly Report.

    Science.gov (United States)

    Atherton, Pauline

    This third quarterly report for the period January to March 1977 describes the production schedule, records, and estimated costs and times in creating the Subject Access Project data base. Plans for on-line use of the data base and search strategy design are outlined. A table of specifications for preparing the data base for on-line searching is…

  1. Horizontal impact testing of quarter scale flasks using masonry targets

    International Nuclear Information System (INIS)

    Tufton, E.P.S.

    1985-01-01

    The programme leading up to the Train Crash Demonstration included investigation of flask impacts, in horizontal motion, against masonry targets representing abutment structures. An outline is given of a series of eight tests, of which five are described in detail. All the tests used quarter-scale flasks, and the design and construction of the appropriate brick and stone masonry targets is described. A summary of results is given in terms of damage to the model flask compared with the more severe damage seen in regulatory drop tests. (author)

  2. Status of the DOE battery and electrochemical technology program. III

    International Nuclear Information System (INIS)

    Roberts, R.

    1982-02-01

    This report reviews the status of the Department of Energy Subelement on Electrochemical Storage Systems. It emphasizes material presented at the Fourth US Department of Energy Battery and Electrochemical Contractors' Conference, held June 2-4, 1981. The conference stressed secondary batteries, however, the aluminum/air mechanically rechargeable battery and selected topics on industrial electrochemical processes were included. The potential contributions of the battery and electrochemical technology efforts to supported technologies: electric vehicles, solar electric systems, and energy conservation in industrial electrochemical processes, are reviewed. The analyses of the potential impact of these systems on energy technologies as the basis for selecting specific battery systems for investigation are noted. The battery systems in the research, development, and demonstration phase discussed include: aqueous mobile batteries (near term) - lead-acid, iron/nickel-oxide, zinc/nickel-oxide; advanced batteries - aluminum/air, iron/air, zinc/bromine, zinc/ferricyanide, chromous/ferric, lithium/metal sulfide, sodium/sulfur; and exploratory batteries - lithium organic electrolyte, lithium/polymer electrolyte, sodium/sulfur (IV) chloroaluminate, calcium/iron disulfide, lithium/solid electrolyte. Supporting research on electrode reactions, cell performance modeling, new battery materials, ionic conducting solid electrolytes, and electrocatalysis is reviewed. Potential energy saving processes for the electrowinning of aluminum and zinc, and for the electrosynthesis of inorganic and organic compounds are included

  3. Electrochemical performance evaluations and safety investigations of pentafluoro(phenoxy)cyclotriphosphazene as a flame retardant electrolyte additive for application in lithium ion battery systems using a newly designed apparatus for improved self-extinguishing time measurements

    Science.gov (United States)

    Dagger, Tim; Lürenbaum, Constantin; Schappacher, Falko M.; Winter, Martin

    2017-02-01

    A modified self-extinguishing time (SET) device which enhances the reproducibility of the results is presented. Pentafluoro(phenoxy)cyclotriphosphazene (FPPN) is investigated as flame retardant electrolyte additive for lithium ion batteries (LIBs) in terms of thermal stability and electrochemical performance. SET measurements and adiabatic reaction calorimetry are applied to determine the flammability and the reactivity of a standard LIB electrolyte containing 5% FPPN. The results reveal that the additive-containing electrolyte is nonflammable for 10 s whereas the commercially available reference electrolyte inflames instantaneously after 1 s of ignition. The onset temperature of the safety enhanced electrolyte is delayed by ≈ 21 °C. Compatibility tests in half cells show that the electrolyte is reductively stable while the cyclic voltammogram indicates oxidative decomposition during the first cycle. Cycling experiments in full cells show improved cycling performance and rate capability, which can be attributed to cathode passivation during the first cycle. Post-mortem analysis of the electrolyte by gas chromatography-mass spectrometry confirms the presence of the additive in high amounts after 501 cycles which ensures enhanced safety of the electrolyte. The investigations present FPPN as stable electrolyte additive that improves the intrinsic safety of the electrolyte and its cycling performance at the same time.

  4. Quarterly environmental radiological survey summary: 100, 200, 300 and 600 Areas. Fourth quarter 1994

    International Nuclear Information System (INIS)

    McKinney, S.M.

    1995-01-01

    This report provides a summary of the radiological surveys performed on waste disposal sites located at the Hanford Site. The Fourth Quarter 1994 survey results and the status of actions required from current and past reports are summarized

  5. Recent advances in lithium-sulfur batteries

    Science.gov (United States)

    Chen, Lin; Shaw, Leon L.

    2014-12-01

    Lithium-sulfur (Li-S) batteries have attracted much attention lately because they have very high theoretical specific energy (2500 Wh kg-1), five times higher than that of the commercial LiCoO2/graphite batteries. As a result, they are strong contenders for next-generation energy storage in the areas of portable electronics, electric vehicles, and storage systems for renewable energy such as wind power and solar energy. However, poor cycling life and low capacity retention are main factors limiting their commercialization. To date, a large number of electrode and electrolyte materials to address these challenges have been investigated. In this review, we present the latest fundamental studies and technological development of various nanostructured cathode materials for Li-S batteries, including their preparation approaches, structure, morphology and battery performance. Furthermore, the development of other significant components of Li-S batteries including anodes, electrolytes, additives, binders and separators are also highlighted. Not only does the intention of our review article comprise the summary of recent advances in Li-S cells, but also we cover some of our proposals for engineering of Li-S cell configurations. These systematic discussion and proposed directions can enlighten ideas and offer avenues in the rational design of durable and high performance Li-S batteries in the near future.

  6. Thermal management of batteries

    Science.gov (United States)

    Gibbard, H. F.; Chen, C.-C.

    Control of the internal temperature during high rate discharge or charge can be a major design problem for large, high energy density battery systems. A systematic approach to the thermal management of such systems is described for different load profiles based on: thermodynamic calculations of internal heat generation; calorimetric measurements of heat flux; analytical and finite difference calculations of the internal temperature distribution; appropriate system designs for heat removal and temperature control. Examples are presented of thermal studies on large lead-acid batteries for electrical utility load levelling and nickel-zinc and lithium-iron sulphide batteries for electric vehicle propulsion.

  7. ARM Operations Quarterly Report October 1-December 31, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, Jimmy W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-31

    The U.S. Department of Energy requires national user facilities to report time-based operating data. This quarterly report is written to comply with this requirement. This reports on the first quarter facility statistics.

  8. Evaluation of the point-centred-quarter method of sampling ...

    African Journals Online (AJOL)

    -quarter method.The parameter which was most efficiently sampled was species composition relativedensity) with 90% replicate similarity being achieved with 100 point-centred-quarters. However, this technique cannot be recommended, even ...

  9. HST Replacement Battery Initial Performance

    Science.gov (United States)

    Krol, Stan; Waldo, Greg; Hollandsworth, Roger

    2009-01-01

    The Hubble Space Telescope (HST) original Nickel-Hydrogen (NiH2) batteries were replaced during the Servicing Mission 4 (SM4) after 19 years and one month on orbit.The purpose of this presentation is to highlight the findings from the assessment of the initial sm4 replacement battery performance. The batteries are described, the 0 C capacity is reviewed, descriptions, charts and tables reviewing the State Of Charge (SOC) Performance, the Battery Voltage Performance, the battery impedance, the minimum voltage performance, the thermal performance, the battery current, and the battery system recharge ratio,

  10. Idaho National Laboratory Quarterly Performance Analysis - 3rd Quarter FY2014

    Energy Technology Data Exchange (ETDEWEB)

    Lisbeth A. Mitchell

    2014-09-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other non-reportable issues identified at INL from July 2013 through June 2014.

  11. Idaho National Laboratory Quarterly Performance Analysis for the 2nd Quarter FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of events for the 2nd Qtr FY-15.

  12. Investigations In Neurology | Ojini | Nigerian Quarterly Journal of ...

    African Journals Online (AJOL)

    Much of the progress in clinical neurology during the last two decades has come from the development of new diagnostic procedures. The most dramatic progress has occurred in the field of neuroimaging, where computerized tomography and magnetic resonance imaging have revolutionalized the diagnosis of central ...

  13. Lithium-thionyl chloride battery

    Science.gov (United States)

    Wong, D.; Bowden, W.; Hamilton, N.; Cubbison, D.; Dey, A. N.

    1981-04-01

    The main objective is to develop, fabricate, test, and deliver safe high rate lithium-thionyl chloride batteries for various U.S. Army applications such as manpack ratios and GLLD Laser Designators. We have devoted our efforts in the following major areas: (1) Optimization of the spirally wound D cell for high rate applications, (2) Development of a 3 inch diameter flat cylindrical cell for the GLLD laser designator application, and (3) Investigation of the reduction mechanism of SOCl2. The rate capability of the spirally wound D cell previously developed by us has been optimized for both the manpack radio (BA5590) battery and GLLD laser designator battery application in this program. A flat cylindrical cell has also been developed for the GLLD laser designator application. It is 3 inches in diameter and 0.9 inch in height with extremely low internal cell impedance that minimizes cell heating and polarization on the GLLD load. Typical cell capacity was found to be 18.0-19.0 Ahr with a few cells delivering up to about 21.0 Ahr on the GLLD test load. Study of the reduction mechanism of SOCl2 using electrochemical and spectroscopic techniques has also been carried out in this program which may be directly relevant to the intrinsic safety of the system.

  14. Recycling abandoned lead battery sites

    International Nuclear Information System (INIS)

    Montgomery, A.H.

    1993-01-01

    In the past, automobile batteries were recycled principally for their lead content. The waste generated at battery wrecking facilities consisted of spent acid, crushed casings (ebonite and plastic), and where secondary smelting was involved, matte, slag, and carbon from the smelting process. These waste products were generally disposed in an on-site in a landfill or stored in piles. If the facility shut down because further commercial operations were not financially viable, the waste piles remained to be addressed at a later date through remedial action or reclamation programs. There are many of these facilities in the US. Nationally, about 28 sites have been discovered by the US Environmental Protection Agency (EPA) under the Superfund program and are under investigation or administrative orders for remedial action. A major remediation effort is now underway at the Gould Superfund Site in Portland, Oregon, which was operated as a secondary smelting facility between 1949 and 1981. This paper describes the nature of the contamination at the Gould site and the work conducted by Canonie Environmental Services Corp. (Canonie) to develop a process which would treat the waste from battery wrecking operations and produce revenue generating recyclable products while removing the source contamination (lead) from the site. The full-scale commercial plant is now operating and is expected to achieve a throughput rate of between 200 and 250 tons per day in the coming weeks

  15. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  16. Aging in lithium-ion batteries: Model and experimental investigation of harvested LiFePO4 and mesocarbon microbead graphite electrodes

    International Nuclear Information System (INIS)

    Zavalis, Tommy Georgios; Klett, Matilda; Kjell, Maria H.; Behm, Mårten; Lindström, Rakel Wreland; Lindbergh, Göran

    2013-01-01

    This study investigates aging in LiFePO 4 /mesocarbon microbead graphite cells that have been subjected to either a synthetic hybrid drive cycle or calendar aging, at 22 °C. The investigation involves detailed examination and comparison of harvested fresh and aged electrodes. The electrode properties are determined using a physics-based electrochemical impedance spectroscopy (EIS) model that is fitted to three-electrode EIS measurements, with input from measured electrode capacity and scanning electrode microscopy (SEM). Results from the model fitting provide a detailed insight to the electrode degradation and is put into context with the behavior of the full cell aging. It was established that calendar aging has negligible effect on cell impedance, while cycle aging increases the impedance mainly due to structural changes in the LiFePO 4 porous electrode and electrolyte decomposition products on both electrodes. Further, full-cell capacity fade is mainly a consequence of cyclable lithium loss caused by electrolyte decomposition

  17. Battery Dimensioning and Life Cycle Costs Analysis for a Heavy-Duty Truck Considering the Requirements of Long-Haul Transportation

    OpenAIRE

    Mareev, Ivan; Becker, Jan Nicolas; Sauer, Dirk Uwe

    2018-01-01

    The use of heavy-duty battery electric trucks for long-haul transportation is challenging because of the required high energy amounts and thus the high capacity of traction batteries. Furthermore a high capacity battery implies high initial costs for the electric vehicle. This study investigates the required battery capacity for battery electric trucks considering the requirements of long-haul transportation in Germany and compares the life cycle costs of battery electric trucks and conventio...

  18. 10 CFR 34.69 - Records of quarterly inventory.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of quarterly inventory. 34.69 Section 34.69 Energy... INDUSTRIAL RADIOGRAPHIC OPERATIONS Recordkeeping Requirements § 34.69 Records of quarterly inventory. (a) Each licensee shall maintain records of the quarterly inventory of sealed sources and of devices...

  19. Natural gas imports and exports. Second quarter report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the second quarter of 1997 (April through June).

  20. 77 FR 51705 - Rescission of Quarterly Financial Reporting Requirements

    Science.gov (United States)

    2012-08-27

    ... No. FMCSA-2012-0020] RIN-2126-AB48 Rescission of Quarterly Financial Reporting Requirements AGENCY...: FMCSA withdraws its June 27, 2012, direct final rule eliminating the quarterly financial reporting... future proposing the elimination of the quarterly financial reporting requirements for Form QFR and Form...

  1. The quarter wave resonator as a superconducting linac element

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Brennan, J.M.

    1983-01-01

    The electrical and mechanical properties of quarter wave resonators are derived. A procedure for optimal design of a quarter wave resonator for use in a superconducting heavy ion linac is given. It is concluded that a quarter wave resonator has significant advantages for this application. (orig.)

  2. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.

    1992-06-04

    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  3. A Rechargeable Hydrogen Battery.

    Science.gov (United States)

    Christudas Dargily, Neethu; Thimmappa, Ravikumar; Manzoor Bhat, Zahid; Devendrachari, Mruthunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Gautam, Manu; Shafi, Shahid Pottachola; Thotiyl, Musthafa Ottakam

    2018-04-27

    We utilize proton-coupled electron transfer in hydrogen storage molecules to unlock a rechargeable battery chemistry based on the cleanest chemical energy carrier molecule, hydrogen. Electrochemical, spectroscopic, and spectroelectrochemical analyses evidence the participation of protons during charge-discharge chemistry and extended cycling. In an era of anthropogenic global climate change and paramount pollution, a battery concept based on a virtually nonpolluting energy carrier molecule demonstrates distinct progress in the sustainable energy landscape.

  4. Bifunctional redox flow battery

    International Nuclear Information System (INIS)

    Wen, Y.H.; Cheng, J.; Xun, Y.; Ma, P.H.; Yang, Y.S.

    2008-01-01

    A new bifunctional redox flow battery (BRFB) system, V(III)/V(II)-L-cystine(O 2 ), was systematically investigated by using different separators. It is shown that during charge, water transfer is significantly restricted with increasing the concentration of HBr when the Nafion 115 cation exchange membrane is employed. The same result can be obtained when the gas diffusion layer (GDL) hot-pressed separator is used. The organic electro-synthesis is directly correlated with the crossover of vanadium. When employing the anion exchange membrane, the electro-synthesis efficiency is over 96% due to a minimal crossover of vanadium. When the GDL hot-pressed separator is applied, the crossover of vanadium and water transfer are noticeably prevented and the electro-synthesis efficiency of over 99% is obtained. Those impurities such as vanadium ions and bromine can be eliminated through the purification of organic electro-synthesized products. The purified product is identified to be L-cysteic acid by IR spectrum. The BRFB shows a favorable discharge performance at a current density of 20 mA cm -2 . Best discharge performance is achieved by using the GDL hot-pressed separator. The coulombic efficiency of 87% and energy efficiency of about 58% can be obtained. The cause of major energy losses is mainly associated with the cross-contamination of anodic and cathodic active electrolytes

  5. Battery sizing and rule-based operation of grid-connected photovoltaic-battery system: A case study in Sweden

    International Nuclear Information System (INIS)

    Zhang, Yang; Lundblad, Anders; Campana, Pietro Elia; Benavente, F.; Yan, Jinyue

    2017-01-01

    Highlights: • Battery sizing and rule-based operation are achieved concurrently. • Hybrid operation strategy that combines different strategies is proposed. • Three operation strategies are compared through multi-objective optimization. • High Net Present Value and Self Sufficiency Ratio are achieved at the same time. - Abstract: The optimal components design for grid-connected photovoltaic-battery systems should be determined with consideration of system operation. This study proposes a method to simultaneously optimize the battery capacity and rule-based operation strategy. The investigated photovoltaic-battery system is modeled using single diode photovoltaic model and Improved Shepherd battery model. Three rule-based operation strategies—including the conventional operation strategy, the dynamic price load shifting strategy, and the hybrid operation strategy—are designed and evaluated. The rule-based operation strategies introduce different operation parameters to run the system operation. multi-objective Genetic Algorithm is employed to optimize the decisional variables, including battery capacity and operation parameters, towards maximizing the system’s Self Sufficiency Ratio and Net Present Value. The results indicate that employing battery with the conventional operation strategy is not profitable, although it increases Self Sufficiency Ratio. The dynamic price load shifting strategy has similar performance with the conventional operation strategy because the electricity price variation is not large enough. The proposed hybrid operation strategy outperforms other investigated strategies. When the battery capacity is lower than 72 kW h, Self Sufficiency Ratio and Net Present Value increase simultaneously with the battery capacity.

  6. First-cycle defect evolution of Li1-xNi1/3Mn1/3Co1/3O2 lithium ion battery electrodes investigated by positron annihilation spectroscopy

    Science.gov (United States)

    Seidlmayer, Stefan; Buchberger, Irmgard; Reiner, Markus; Gigl, Thomas; Gilles, Ralph; Gasteiger, Hubert A.; Hugenschmidt, Christoph

    2016-12-01

    In this study the structure and evolution of vacancy type defects in lithium ion batteries are investigated in respect of crystallographic properties. The relation between positron annihilation and electronic structure is discussed in terms of structural dynamics during the lithiation process. Samples of Li1-xNi1/3Mn1/3Co1/3O2 (NMC-111) electrodes with decreasing lithium content (x = 0-0.7) covering the whole range of state of charge were electrochemically prepared for the non-destructive analysis using positron coincidence Doppler broadening spectroscopy (CDBS). The positron measurements allowed us to observe the evolution of the defect structure caused by the delithiation process in the NMC-111 electrodes. The combination of CDBS with X-ray diffraction for the characterization of the lattice structures enabled the analysis of the well-known kinetic-hindrance-effect in the first charge-discharge cycle and possible implications of vacancy ordering. In particular, CDBS revealed the highest degree of relithiation after discharge to 3.0 V at 55 °C. For the first time, we report on the successful application of CDBS on NMC-111 electrodes yielding new insights in the important role of defects caused by the delithiation process and the kinetic hindrance effect.

  7. Investigation on the structure, thermodynamic and electrochemical properties of the MmNi3.55Mn0.4Al0.3Fe0.75 compound used as negative electrode in Ni–MH batteries

    International Nuclear Information System (INIS)

    Ben Moussa, M.; Abdellaoui, M.; Lamloumi, J.; Percheron Guégan, A.

    2013-01-01

    Highlights: •The solid–gas capacity at room temperature is equal to 3.93 H/mol. •The value pressure equilibrium is 0.024 bar. •The average radius particles decrease with number of cycles. •The hydrogen diffusion coefficient D H , increase with number of cycles. -- Abstract: The structure, thermodynamic and electrochemical properties of the hydride poly-substituted MmNi 3.55 Mn 0.4 Al 0.3 Fe 0.75 alloy used as material for negative electrode in Ni–MH batteries investigated. The solid–gas capacity and pressure equilibrium measurement at room temperature are respectively 3.93 H/mol and 0.024 bars. The chronoamperometry method shows the size of the particles (a) participating in the electrochemical reaction decrease of cycle number. The hydrogen diffusion coefficient determined by electrochemical impedance spectroscopy (EIS) increase of the number of cycles from 3.5 × 10 −12 cm 2 s −1 before cycling to 7.29 × 10 −10 cm 2 s −1 after 13 cycles charge–decharge

  8. The Second Life Ageing of the NMC/C Electric Vehicle Retired Li-Ion Batteries in the Stationary Applications

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Martinez-Laserna, Egoitz

    2016-01-01

    Despite the cost of li-ion batteries is gradually falling, the price for li-ion batteries is still too high in order to significantly impact the mass market adoption of e-mobility and household battery applications. It is expected that it might take another several years before lithium-ion...... batteries obtain grid parity and Electric Vehicles (EVs) will become competitive in cost with conventional vehicles (Figure 1). In consequence, a different approach for battery cost reduction can be investigated....

  9. Environmental Biosciences Program Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence C. Mohr, M.D.

    2006-10-31

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. The intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this cooperative agreement can be forwarded to Dr. Lawrence C. Mohr in the EBP office of the Medical University of South Carolina at (843) 792-1532.

  10. Environmental Biosciences First Quarter Report

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence C. Mohr, M.D.

    2003-09-30

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risk issues. These initiatives are consistent with the Medical University's role as a comprehensive state-supported health sciences institution and the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. The intrinsic capabilities of a comprehensive health sciences institution enable the Medical University to be a national resource for the scientific investigation of environmental health issues. EBP's success in convening worldwide scientific expertise is due in part to the inherent credibility the Medical University brings to the process of addressing these complex issues. Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene (TCE), polychlorinated biphenyls (PCBs), asbestos and low-dose ionizing radiation. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making.

  11. Environmental Biosciences Program Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence C. Mohr, M.D.

    2007-07-31

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. The intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. Work on the trichloroethylene research projects has been slowed as a result of funding uncertainties. The impact of these funding uncertainties has been discussed with the DOE. Plans for restructuring the performance schedule of the trichloroethylene projects have been submitted to the department. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making. Questions, comments or requests for further information concerning the activities under this

  12. Environmental Biosciences Program Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence C. Mohr, M.D.

    2008-01-31

    In May 2002, the United States Department of Energy (DOE) signed Assistance Instrument Number DE-FC09-02CH11109 with the Medical University of South Carolina (MUSC) to support the Environmental Biosciences Program (EBP). This funding instrument replaces DOE Assistance Instrument Number DE-FC02-98CH10902. EBP is an integrated, multidisciplinary scientific research program, employing a range of research initiatives to identify, study and resolve environmental health risks. These initiatives are consistent with the MUSC role as a comprehensive state-supported health sciences institution and with the nation's need for new and better approaches to the solution of a complex and expansive array of environment-related health problems. The intrinsic capabilities of a comprehensive health sciences institution enable MUSC to be a national resource for the scientific investigation of environmental health issues. EBPs success as a nationally prominent research program is due, in part, to its ability to task-organize scientific expertise from multiple disciplines in addressing these complex problems Current research projects have focused EBP talent and resources on providing the scientific basis for risk-based standards, risk-based decision making and the accelerated clean-up of widespread environmental hazards. These hazards include trichloroethylene and low-dose ionizing radiation. Work on the trichloroethylene research projects has been slowed as a result of funding uncertainties. The impact of these funding uncertainties has been discussed with the DOE. Plans for restructuring the performance schedule of the trichloroethylene projects have been submitted to the department. A project is also being conducted in the use of geographical information system technology to analyze population health risks related to environmental hazards as a tool for risk-based decision-making.

  13. LLE Review 83, Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-12-01

    This volume of the LLE Review, covering April-June 2000, features an article by F. J. Marshall, T. Ohki, D. McInnis, Z. Ninkov, and J. Carbone, who detail the conversion of the OMEGA time-integrated x-ray diagnostics to electronic readout using direct-detection x-ray cameras [charge-injection devices (CID's)]. Pinhole and x-ray microscope images are shown along with inferred calibration measurements of the CID cameras. Currently, the same cameras are being used to obtain x-ray spectra in a TIM-based spectrometer, extending their use to all time-integrated imaging and spectroscopic x-ray instruments used on OMEGA. Additional highlights of the research presented in this issue are: (1) V. A. Smalyuk, B. Yaakobi, F. J. Marshall, and D. D. Meyerhofer investigate the spatial structure of the temperature and density of target-shell plasmas at peak compression (stagnation). This is accomplished by examining the energy dependence of the x-ray emission using narrow-band x-ray filters and the known absorption properties of the shell dopant (Ti). (2) F. Sequin, C. K. Ll, D. G. Hicks, J. A. Frenje, K. M. Green, R. D. Petrasso, J. M. Soures, V. Yu. Glebov, C. Stoeckl, P. B. Radha, D. D. Meyerhofer, S. Roberts, C. Sorce, T. C. Sangster, M. D. Cable, S. Padalino, and K. Fletcher detail the physics and instrumentation used to obtain and interpret secondary D-{sup 3}He proton spectra from current gas-filled-target and future cryogenic-target experiments. Through a novel extension of existing charged-particle detection techniques with track detectors, the authors demonstrate the ability to obtain secondary proton spectra with increased sensitivity. (3) M. Guardelben, L. Ning, N. Jain, D. Battaglia, and K. Marshall compare the utility of a novel liquid-crystal-based, point-diffraction interferometer (LCPDI) with the commercial standard phase-shifting interferometer and conclude that the LCPDI is a viable low-cost alternative. (4) A. B. Shorey, S. D. Jacobs, W. I. Kordonski, and R

  14. LLE Review 83, Quarterly Report

    International Nuclear Information System (INIS)

    2000-01-01

    This volume of the LLE Review, covering April-June 2000, features an article by F. J. Marshall, T. Ohki, D. McInnis, Z. Ninkov, and J. Carbone, who detail the conversion of the OMEGA time-integrated x-ray diagnostics to electronic readout using direct-detection x-ray cameras [charge-injection devices (CID's)]. Pinhole and x-ray microscope images are shown along with inferred calibration measurements of the CID cameras. Currently, the same cameras are being used to obtain x-ray spectra in a TIM-based spectrometer, extending their use to all time-integrated imaging and spectroscopic x-ray instruments used on OMEGA. Additional highlights of the research presented in this issue are: (1) V. A. Smalyuk, B. Yaakobi, F. J. Marshall, and D. D. Meyerhofer investigate the spatial structure of the temperature and density of target-shell plasmas at peak compression (stagnation). This is accomplished by examining the energy dependence of the x-ray emission using narrow-band x-ray filters and the known absorption properties of the shell dopant (Ti). (2) F. Sequin, C. K. Ll, D. G. Hicks, J. A. Frenje, K. M. Green, R. D. Petrasso, J. M. Soures, V. Yu. Glebov, C. Stoeckl, P. B. Radha, D. D. Meyerhofer, S. Roberts, C. Sorce, T. C. Sangster, M. D. Cable, S. Padalino, and K. Fletcher detail the physics and instrumentation used to obtain and interpret secondary D- 3 He proton spectra from current gas-filled-target and future cryogenic-target experiments. Through a novel extension of existing charged-particle detection techniques with track detectors, the authors demonstrate the ability to obtain secondary proton spectra with increased sensitivity. (3) M. Guardelben, L. Ning, N. Jain, D. Battaglia, and K. Marshall compare the utility of a novel liquid-crystal-based, point-diffraction interferometer (LCPDI) with the commercial standard phase-shifting interferometer and conclude that the LCPDI is a viable low-cost alternative. (4) A. B. Shorey, S. D. Jacobs, W. I. Kordonski, and R. F. Gans

  15. Joint Force Quarterly. Number 4, Spring 1994

    Science.gov (United States)

    1994-05-01

    Martin J. Peters, Jr. Calvin B. Kelley Art Direction Typography and Design Division Government Printing Office Joint Force Quarterly is published by...within larger organizations. For example, the concept 6 JFQ / Spring 1994 of the combined joint task force for Europe is designed to provide just such...or financial, may be the shared outcome for all parties to future conflicts. The image of war, shaped over centuries, is precise, graphic , and

  16. Niobium sputter deposition on quarter wave resonators

    CERN Document Server

    Viswanadham, C; Jayaprakash, D; Mishra, R L

    2003-01-01

    Niobium sputter deposition on quarter wave copper R.F resonators, have been taken up in our laboratory, An ultra high vacuum system was made for this purpose. Niobium exhibits superconducting properties at liquid Helium temperature. A uniform coating of about 1.5 mu m of niobium on the internal surfaces of the copper resonant cavities is desired. Power dissipation in the resonators can be greatly reduced by making the internal surfaces of the R.F cavity super conducting. (author)

  17. A Walk around Irkutsk’s Quarters

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2016-10-01

    Full Text Available The article presents the key issues of the Concept of reconstruction of the 11 Irkutsk’s quarters adjacent to the Trading Axis. While remaining basic, the trading function should reduce its overwhelming domination to be in harmony with other functions of the city environment, which attract inhabitants and guests to the historical area of Irkutsk, that is culture, education, leisure, recreation, and housing.

  18. MENA Quarterly Economic Brief, July 2015

    OpenAIRE

    Devarajan, Shanta; Mottaghi, Lili

    2015-01-01

    Iran and the Permanent Members of the UN Security Council and Germany (P5+1) reached a deal on July 14, 2015 that limits Iranian nuclear activity in return for lifting all international sanctions that were placed on Iran (Box 1). This issue of the MENA Quarterly Economic Brief (QEB) traces the economic effects of this development—removing sanctions on Iran—on the world oil market, on Iran’s trading partners, and on the Iranian economy.

  19. Joint Force Quarterly. Number 2, Autumn 1993

    Science.gov (United States)

    1993-09-01

    Typography and Design Division Government Printing Office Joint Force Quarterly is published by the Institute for National Strategic Studies, National...Decisions regard- ing the key force will affect many factors in the new environment. It determines reaction time, how much and what type of force to...shelters destroyed? Only indirectly. Attacks on shel- ters had forced a reaction by the Iraqis, one that caused the loss of their air arm as a force in

  20. Quarterly Report - May through July 2012

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Laniece E. [Los Alamos National Laboratory

    2012-08-09

    The first quarter of my postgraduate internship has been an extremely varied one, and one which I have tackled several different aspects of the project. Because this is the beginning of a new investigation for the Research Library, I think it is appropriate that I explore data management at LANL from multiple perspectives. I have spent a considerable amount of time doing a literature search and taking notes on what I've been reading in preparation for potential writing activities later. The Research Library is not the only research library exploring the possibility of providing services to their user base. The Joint Information Systems Committee (JISC) and the Digital Curation Centre (DCC) in the UK are actively pursuing possibilities to preserve the scientific record. DataOne is a U.S. National Science Foundation (NSF) initiative aimed at helping to curate bioscience data. This is just a tiny sample of the organizations actively looking into the issues surrounding data management on an organizational, cultural, or technical level. I have included a partial bibliography of some papers I have read. Based on what I read, various discussions, and previous library training, I have begun to document the services I feel I could provide researchers in the context of my internship. This is still very much a work in progress as I learn more about the landscape in libraries and at the Laboratory. I have detailed this process and my thoughts on the issue below. As data management is such a complex and interconnected activity, it is impossible to investigate the organizational and cultural needs of the researchers without familiarizing myself with technologies that could facilitate the local cataloging and preservation of data sets. I have spent some time investigating the repository software DSpace. The library has long maintained the digital object repository aDORe, but the differences in features and lack of a user interface compared to DSpace have made DSpace a good

  1. Quarterly coal report July--September 1996, February 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1996 and aggregated quarterly historical data for 1990 through the second quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. 8 figs., 72 tabs.

  2. Strain measurement based battery testing

    Science.gov (United States)

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  3. 2nd Quarter Transportation Report FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, L. [National Security Technologies, LLC, Las Vegas, NV (United States) (United States)

    2014-07-01

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the second quarter of fiscal year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet (ft3) generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.

  4. Selective poisoning of Li-air batteries for increased discharge capacity

    DEFF Research Database (Denmark)

    Mýrdal, Jón Steinar Garðarsson; Vegge, Tejs

    2014-01-01

    The main discharge product at the cathode of non-aqueous Li-air batteries is insulating Li2O2 and its poor electronic conduction is a main limiting factor in the battery performance. Here, we apply density functional theory calculations (DFT) to investigate the potential of circumventing...... accessible battery capacity at the expense of a limited increase in the overpotentials....

  5. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  6. Latest position in battery techniques

    Energy Technology Data Exchange (ETDEWEB)

    Staeger, H J

    1960-03-17

    A short survey of the development of electrochemical properties as batteries is followed by an account of the construction, properties, and fields of application of lead, iron--nickel, and silver--zinc batteries, and their more recent developments, such as the hollow-rod plates in lead batteries, sintered plates, and sealed batteries. The work in progress on fuel cells is discussed and different practical cells are compared. There is no battery which is the best for all applications, each system has its own advantages or disadvantages. The lead battery in its different forms still remains the most universally applied.

  7. Electrode Materials for Lithium/Sodium-Ion Batteries

    DEFF Research Database (Denmark)

    Shen, Yanbin

    2014-01-01

    The synthesis of electrode materials for lithium/sodium ion batteries and their structural stability during lithium/sodium insertion/extraction are the two essential issues that have limited battery application in the fields requiring long cycle life and high safety. During her PhD studies, Yanbin...... Shen systematically investigated the controlled synthesis of electrode materials for lithium/sodium ion batteries. She also investigated their formation mechanisms and structural evolution during the operation of batteries using in situ/operando X-ray diffraction techniques. The research findings...... provide insights into formation mechanisms of Li4Ti5O12 anode material from both hydrothermal and solid-state reaction. The results also contribute to a thorough understanding of the intercalation and decay mechanisms of O3/P2 layered sodium cathode materials in sodium ion batteries....

  8. Radioluminescent nuclear batteries with different phosphor layers

    International Nuclear Information System (INIS)

    Hong, Liang; Tang, Xiao-Bin; Xu, Zhi-Heng; Liu, Yun-Peng; Chen, Da

    2014-01-01

    Highlights: • We present and test the electrical properties of the nuclear battery. • The best thickness range for ZnS:Cu phosphor layer is 12–14 mg cm −2 for 147 Pm radioisotope. • The best thickness range for Y 2 O 2 S:Eu phosphor layer is 17–21 mg cm −2147 Pm radioisotope. • The battery with ZnS:Cu phosphor layer can provide higher energy conversion efficiency. • The mechanism affecting the nuclear battery output performance is revealed. - Abstract: A radioluminescent nuclear battery based on the beta radioluminescence of phosphors is presented, and which consists of 147 Pm radioisotope, phosphor layers, and GaAs photovoltaic cell. ZnS:Cu and Y 2 O 2 S:Eu phosphor layers for various thickness were fabricated. To investigate the effect of phosphor layer parameters on the battery, the electrical properties were measured. Results indicate that the optimal thickness ranges for the ZnS:Cu and Y 2 O 2 S:Eu phosphor layers are 12 mg cm −2 to 14 mg cm −2 and 17 mg cm −2 to 21 mg cm −2 , respectively. ZnS:Cu phosphor layer exhibits higher fluorescence efficiency compared with the Y 2 O 2 S:Eu phosphor layer. Its spectrum properly matches the spectral response of GaAs photovoltaic cell. As a result, the battery with ZnS:Cu phosphor layer indicates higher energy conversion efficiency than that with Y 2 O 2 S:Eu phosphor layer. Additionally, the mechanism of the phosphor layer parameters that influence the output performance of the battery is discussed through the Monte Carlo method and transmissivity test

  9. Yucca Mountain Site Characterization Project: Technical Data Catalog (quarterly supplement), June 30, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The DOE/NRC Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the date, place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1993, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1994

  10. Joint optimisation of arbitrage profits and battery life degradation for grid storage application of battery electric vehicles

    Science.gov (United States)

    Kies, Alexander

    2018-02-01

    To meet European decarbonisation targets by 2050, the electrification of the transport sector is mandatory. Most electric vehicles rely on lithium-ion batteries, because they have a higher energy/power density and longer life span compared to other practical batteries such as zinc-carbon batteries. Electric vehicles can thus provide energy storage to support the system integration of generation from highly variable renewable sources, such as wind and photovoltaics (PV). However, charging/discharging causes batteries to degradate progressively with reduced capacity. In this study, we investigate the impact of the joint optimisation of arbitrage revenue and battery degradation of electric vehicle batteries in a simplified setting, where historical prices allow for market participation of battery electric vehicle owners. It is shown that the joint optimisation of both leads to stronger gains then the sum of both optimisation strategies and that including battery degradation into the model avoids state of charges close to the maximum at times. It can be concluded that degradation is an important aspect to consider in power system models, which incorporate any kind of lithium-ion battery storage.

  11. SSTI- Lewis Spacecraft Nickel-Hydrogen Battery

    Science.gov (United States)

    Tobias, R. F.

    1997-01-01

    Topics considered include: NASA-Small Spacecraft Technology Initiative (SSTI) objectives, SSTI-Lewis overview, battery requirement, two cells Common Pressure Vessel (CPV) design summary, CPV electric performance, battery design summary, battery functional description, battery performance.

  12. First-Quarter Academic Performance. Indicators as Predictors of College Attrition: A Study of the 1976-1980 Class at Central State University.

    Science.gov (United States)

    Rodney, Elaine

    The validity of students' first-quarter academic performance in predicting attrition at Central State University, Ohio, was investigated. It was hypothesized that freshmen who performed satisfactorily during the first quarter were more likely to complete their baccalaureate programs than were those who performed less well. Data on 287 students…

  13. Collocational Networks Supporting Strategic Planning of Brand Communication: Analysis of Quarterly Reports of Telecommunication Companies

    Directory of Open Access Journals (Sweden)

    Pentti Järvi

    2004-10-01

    Full Text Available This study addresses analysing quarterly reports from a brandtheoretical viewpoint. The study addresses the issue through a method which introduces both a quantitative tool based on linguistic theory and qualitative decisions of the researchers. The research objects of this study are two quarterly reports each of three telecommunications companies: Ericsson, Motorola and Nokia. The method used is a collocational network. The analyses show that there are differences in communication and message strategies among investigated companies and also changes during a quite short period in each company

  14. Circulating current battery heater

    Science.gov (United States)

    Ashtiani, Cyrus N.; Stuart, Thomas A.

    2001-01-01

    A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

  15. Used batteries - REMINDER

    CERN Multimedia

    2006-01-01

    With colder weather drawing in, it is quite likely that older car batteries will fail. On this subject, the Safety Commission wishes to remind everyone that CERN is not responsible for the disposal of used batteries from private vehicles. So please refrain from abandoning them on pavements or around or inside buildings. Used batteries can be disposed of safely, free-of-charge and without any damage to the environment at waste disposal sites (déchetteries) close to CERN in both France (Ain and Haute-Savoie) and in the Canton of Geneva in Switzerland (Cheneviers). Since the average car battery lasts a number of years, this only represents a small effort on your part over the whole lifetime of your vehicle. Most people don't need reminding that car batteries contain concentrated sulphuric acid, which can cause severe burns. Despite this, we frequently find them casually dumped in scrap metal bins! For more information, please contact R. Magnier/SC-GS 160879 We all have a responsibility for safety and th...

  16. H-division quarterly report, October--December 1977

    International Nuclear Information System (INIS)

    1978-01-01

    The Theoretical EOS Group develops theoretical techniques for describing material properties under extreme conditions and constructs equation-of-state (EOS) tables for specific applications. Work this quarter concentrated on a Li equation of state, equation of state for equilibrium plasma, improved ion corrections to the Thomas--Fermi--Kirzhnitz theory, and theoretical estimates of high-pressure melting in metals. The Experimental Physics Group investigates properties of materials at extreme conditions of pressure and temperature, and develops new experimental techniques. Effort this quarter concerned the following: parabolic projectile distortion in the two-state light-gas gun, construction of a ballistic range for long-rod penetrators, thermodynamics and sound velocities in liquid metals, isobaric expansion measurements in Pt, and calculation of the velocity--mass profile of a jet produced by a shaped charge. Code development was concentrated on the PELE code, a multimaterial, multiphase, explicit finite-difference Eulerian code for pool suppression dynamics of a hypothetical loss-of-coolant accident in a nuclear reactor. Activities of the Fluid Dynamics Group were directed toward development of a code to compute the equations of state and transport properties of liquid metals (e.g. Li) and partially ionized dense plasmas, jet stability in the Li reactor system, and the study and problem application of fluid dynamic turbulence theory. 19 figures, 5 tables

  17. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter 1996

    International Nuclear Information System (INIS)

    Sillanpaeae, T.

    1996-11-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. In the second quarter of 1996, the Finnish nuclear power plant units were in power operation except for the annual maintenance outages of TVO plant units and the Midsummer shutdown at TVO II which was due to low electricity demand, a turbine generator inspection and repairs. The load factor average of all plant units was 88.9 %. Events in the second quarter of 1996 were classified level 0 on the International Nuclear Event Scale (INES)

  18. Quarterly environmental radiological survey summary: Third quarter 1994--100, 200, 300, and 600 Areas

    International Nuclear Information System (INIS)

    McKinney, S.M.

    1994-11-01

    This report provides a summary of the radiological surveys performed on waste disposal sites located at the Hanford Site. The Third Quarter 1994 survey results and the status of actions required from current and past reports and are summarized below: (1) All the routine environmental radiological surveys scheduled during July, August, and September 1994 were completed except for the D Island vent riser area. The surveys for the 200-W railways, spurs, and sidings were completed during this period after being delayed by equipment problems during the second quarter. (2) No Compliance Assessment Reports (CARs) were issued for sites found out of compliance with standards identified in WHC-CM-7-5, Environmental Compliance. (3) Two Surveillance Compliance/Inspection Reports (SCIRs) were closed during the Third Quarter of 1994. (4) Eleven open SCIRs had not been resolved

  19. Idaho National Laboratory Quarterly Performance Analysis - 1st Quarter FY2015

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 73 reportable events (27 from the 1St Qtr FY-15 and 46 from the prior three reporting quarters), as well as 38 other issue reports (including nine not reportable events and Significant Category A and B conditions reported during the1st Qtr FY-15) identified at INL during the past 12 months.

  20. Short-term energy outlook. Quarterly projections, 2nd quarter 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. The forecast period for this issue of the Outlook extends from the second quarter of 1994 through the fourth quarter of 1995. Values for the first quarter of 1994, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available. The historical energy data, compiled into the second quarter 1994 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The cases are produced using the STIFS. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. The EIA model is available on computer tape from the National Technical Information Service.

  1. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    Science.gov (United States)

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  2. Incremental Capacity Analysis of a Lithium-Ion Battery Pack for Different Charging Rates

    DEFF Research Database (Denmark)

    Kalogiannis, Theodoros; Stroe, Daniel-Ioan; Nyborg, Jonas

    2017-01-01

    -depth investigation of two battery packs composed of 14 Lithium-ion cells each; for the purpose of evaluating the applicability and the challenges of the ICA on a battery pack level by means of different charging current rates. Also, at a certain charging current, the influence of the temperature on the ICA curves......Incremental Capacity Analysis (ICA) is a method used to investigate the capacity state of health of batteries by tracking the electrochemical properties of the cell. It is based on the differentiation of the battery capacity over the battery voltage, for a full or a partial cycle regarding...

  3. Rechargeable lithium/polymer cathode batteries

    Science.gov (United States)

    Osaka, Tetsuya; Nakajima, Toshiki; Shiota, Koh; Owens, Boone B.

    1989-06-01

    Polypyrrole (PPy) and polyaniline (PAn) were investigated for cathode materials of rechargeable lithium batteries. PPy films prepared with PF6(-) anion and/or platinum substrate precoated with nitrile butadiene rubber (NBR) were excellent cathode materials because of rough and/or highly oriented film structure. PAn films were successfully prepared from non-aqueous propylene carbonate solution containing aniline, CF3COOH and lithium perchlorate. Its acidity strongly affects the anion doping-undoping behavior. The PAn cathode prepared in high acidic solution (e.g., 4:1 ratio of acid:aniline) gives the excellent battery performance.

  4. Inertial Confinement Fusion quarterly report, April--June 1995. Volume 5, No. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The ICF Quarterly Reports is published four times each fiscal year by the Inertial Confinement Fusion Program at the Lawrence Livermore National Laboratory. The journal reports selected current research within the ICF Program. Major areas of investigation presented here include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology.

  5. Coded ultrasonic remote control without batteries

    International Nuclear Information System (INIS)

    Gerhardy, C; Burlage, K; Schomburg, W K

    2009-01-01

    A concept for battery-less remote controls has been developed based on mechanically actuated beams and micro whistles generating ultrasound signals. These signals need to be frequency or time coded to increase the number of signals which can be distinguished from each other and environmental ultrasound. Several designs for generating coded ultrasonic signals have been investigated

  6. Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.

  7. Idaho National Laboratory Quarterly Performance Analysis - 2nd Quarter FY2014

    Energy Technology Data Exchange (ETDEWEB)

    Lisbeth A. Mitchell

    2014-06-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other deficiency reports (including not reportable events) identified at INL from January 2014 through March 2014.

  8. Quarterly environmental radiological survey summary - second quarter 1997 100, 200, 300, and 600 areas

    International Nuclear Information System (INIS)

    McKinney, S.M.; Marks, B.M.

    1997-01-01

    This report provides a summary of the radiological surveys performed in support of near-facility environmental monitoring at the Hanford Site. The Second Quarter 1997 survey results and the status of actions required are summarized below: All of the routine environmental radiological surveys scheduled during April, May, and June 1997, were performed as planned with the exception of UN-216-E-9. This site was not surveyed as stabilization activities were in progress. The sites scheduled for the Environmental Restorations Contractor (ERC) team were switched with those identified for the third quarter as there was a conflict with vegetation management activities

  9. Microfluidic redox battery.

    Science.gov (United States)

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-07

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications.

  10. Size effects in lithium ion batteries

    International Nuclear Information System (INIS)

    Yao Hu-Rong; Yin Ya-Xia; Guo Yu-Gao

    2016-01-01

    Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discovered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together. Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example, secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted. (topical review)

  11. Battery Management System Hardware Concepts: An Overview

    Directory of Open Access Journals (Sweden)

    Markus Lelie

    2018-03-01

    Full Text Available This paper focuses on the hardware aspects of battery management systems (BMS for electric vehicle and stationary applications. The purpose is giving an overview on existing concepts in state-of-the-art systems and enabling the reader to estimate what has to be considered when designing a BMS for a given application. After a short analysis of general requirements, several possible topologies for battery packs and their consequences for the BMS’ complexity are examined. Four battery packs that were taken from commercially available electric vehicles are shown as examples. Later, implementation aspects regarding measurement of needed physical variables (voltage, current, temperature, etc. are discussed, as well as balancing issues and strategies. Finally, safety considerations and reliability aspects are investigated.

  12. Battery Monitoring and Charging System

    National Research Council Canada - National Science Library

    Thivierge, Daniel P

    2007-01-01

    A battery monitoring device for a battery having cells grouped in modules. The device includes a monitoring circuit for each module which monitors the voltage in each cell and the overall module voltage...

  13. Numerical Analysis and Design of Thermal Management System for Lithium Ion Battery Pack Using Thermoelectric Coolers

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2014-08-01

    Full Text Available A new design of thermal management system for lithium ion battery pack using thermoelectric coolers (TECs is proposed. Firstly, the 3D thermal model of a high power lithium ion battery and the TEC is elaborated. Then the model is calibrated with experiment results. Finally, the calibrated model is applied to investigate the performance of a thermal management system for a lithium ion battery pack. The results show that battery thermal management system (BTMS with TEC can cool the battery in very high ambient temperature. It can also keep a more uniform temperature distribution in the battery pack than common BTMS, which will extend the life of the battery pack and may save the expensive battery equalization system.

  14. Slim Battery Modelling Features

    Science.gov (United States)

    Borthomieu, Y.; Prevot, D.

    2011-10-01

    Saft has developed a life prediction model for VES and MPS cells and batteries. The Saft Li-ion Model (SLIM) is a macroscopic electrochemical model based on energy (global at cell level). The main purpose is to predict the battery performances during the life for GEO, MEO and LEO missions. This model is based on electrochemical characteristics such as Energy, Capacity, EMF, Internal resistance, end of charge voltage. It uses fading and calendar law effects on energy and internal impedance vs. time, temperature, End of Charge voltage. Based on the mission profile, satellite power system characteristics, the model proposes the various battery configurations. For each configuration, the model gives the battery performances using mission figures and profiles: power, duration, DOD, end of charge voltages, temperatures during eclipses and solstices, thermal dissipations and cell failures. For the GEO/MEO missions, eclipse and solstice periods can include specific profile such as plasmic propulsion fires and specific balancing operations. For LEO missions, the model is able to simulate high power peaks to predict radar pulses. Saft's main customers have been using the SLIM model available in house for two years. The purpose is to have the satellite builder power engineers able to perform by themselves in the battery pre-dimensioning activities their own battery simulations. The simulations can be shared with Saft engineers to refine the power system designs. This model has been correlated with existing life and calendar tests performed on all the VES and MPS cells. In comparing with more than 10 year lasting life tests, the accuracy of the model from a voltage point of view is less than 10 mV at end Of Life. In addition, thethe comparison with in-orbit data has been also done. b This paper will present the main features of the SLIM software and outputs comparison with real life tests. b0

  15. Impact resistant battery enclosure systems

    Science.gov (United States)

    Tsutsui, Waterloo; Feng, Yuezhong; Chen, Weinong Wayne; Siegmund, Thomas Heinrich

    2017-10-31

    Battery enclosure arrangements for a vehicular battery system. The arrangements, capable of impact resistance include plurality of battery cells and a plurality of kinetic energy absorbing elements. The arrangements further include a frame configured to encase the plurality of the kinetic energy absorbing elements and the battery cells. In some arrangements the frame and/or the kinetic energy absorbing elements can be made of topologically interlocked materials.

  16. Lithium-ion batteries

    CERN Document Server

    Yoshio, Masaki; Kozawa, Akiya

    2010-01-01

    This book is a compilation of up-to-date information relative to Li-Ion technology. It provides the reader with a single source covering all important aspects of Li-Ion battery operations. It fills the gap between the old original Li-Ion technology and present state of the technology that has developed into a high state of practice. The book is designed to provide a single source for an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful to researchers interested in energy conversion for the direct conversion of chemical energy into electrica

  17. Automotive battery technology

    CERN Document Server

    Watzenig, Daniel

    2014-01-01

    The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.

  18. The WSTIAC Quarterly. Volume 9, Number 4

    Science.gov (United States)

    2010-04-28

    elements of command– Major Eric D. Trias Captain Bryan M. Bell US Air Force You have to know the past to understand the present. — Carl Sagan This article is...Quarterly, Volume 9, Number 4 3 INTRODUCTION Carl von Clausewitz defined war as “…an act of violence intended to compel our opponent to fulfill our will...controlled systems. NOTES & REFERENCES ‡ Joint Pub 3-13 provides the doctrinal foundation for the conduct of IO in joint operations. [1] von Clausewitz, Carl

  19. Natural gas consumption for GRTgaz areas: 1. Quarter of 2015, 2. Quarter of 2015, 3. Quarter of 2015, 4. Quarter of 2015

    International Nuclear Information System (INIS)

    2016-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents the quarterly key figures of GRTgaz activity in 2015: gross consumption, climate corrected consumption, quantities of natural gas transported

  20. Natural gas consumption within GRTgaz's territory: 1. Quarter of 2008, 2. Quarter of 2008, 3. Quarter of 2008, 4. Quarter of 2008

    International Nuclear Information System (INIS)

    2009-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents the quarterly key figures of GRTgaz activity in 2008: gross consumption, climate corrected consumption, quantities of natural gas transported

  1. Natural gas consumption for GRTgaz areas: 1. Quarter of 2014, 2. Quarter of 2014, 3. Quarter of 2014, 4. Quarter of 2014

    International Nuclear Information System (INIS)

    2015-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents the quarterly key figures of GRTgaz activity in 2014: gross consumption, climate corrected consumption, quantities of natural gas transported

  2. Quarterly coal report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-18

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended.

  3. Natural gas consumption for GRTgaz areas: 1. Quarter of 2011, 2. Quarter of 2011, 3. Quarter of 2011, 4. Quarter of 2011

    International Nuclear Information System (INIS)

    2012-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents the quarterly key figures of GRTgaz activity in 2011: gross consumption, climate corrected consumption, quantities of natural gas transported

  4. Battery switch for downhole tools

    Science.gov (United States)

    Boling, Brian E.

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  5. Recycling of batteries after storage

    International Nuclear Information System (INIS)

    Posthumus, W.

    1997-06-01

    An overview is given of the types and composition of batteries and their waste processing techniques that are operational or under development. Attention is paid to the demands of the waste processing techniques with respect to the quality of the collected batteries. Finally the storage of batteries is discussed. 18 refs

  6. Batteries, from Cradle to Grave

    Science.gov (United States)

    Smith, Michael J.; Gray, Fiona M.

    2010-01-01

    As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. In the United Kingdom, estimates of annual…

  7. Lithium-thionyl chloride battery. Quarterly report No. 6, 1 February-30 April 1980

    Energy Technology Data Exchange (ETDEWEB)

    Dey, A.N.; Hamilton, N.; Bowden, W.; Witalis, P.; Cubbison, D.

    1980-09-01

    We have delivered 100 D cells to the sponsor. The cell has also been tested for capacity retention after abusive storage at 72 degrees C. We demonstrated the safety of the flat cylindrical cell during over discharge and voltage reversal at the 3.2A and 20A rates of the GLLD cell. We also studied the rate capability retention of the flat cell after storage.

  8. Toxic fluoride gas emissions from lithium-ion battery fires.

    Science.gov (United States)

    Larsson, Fredrik; Andersson, Petra; Blomqvist, Per; Mellander, Bengt-Erik

    2017-08-30

    Lithium-ion battery fires generate intense heat and considerable amounts of gas and smoke. Although the emission of toxic gases can be a larger threat than the heat, the knowledge of such emissions is limited. This paper presents quantitative measurements of heat release and fluoride gas emissions during battery fires for seven different types of commercial lithium-ion batteries. The results have been validated using two independent measurement techniques and show that large amounts of hydrogen fluoride (HF) may be generated, ranging between 20 and 200 mg/Wh of nominal battery energy capacity. In addition, 15-22 mg/Wh of another potentially toxic gas, phosphoryl fluoride (POF 3 ), was measured in some of the fire tests. Gas emissions when using water mist as extinguishing agent were also investigated. Fluoride gas emission can pose a serious toxic threat and the results are crucial findings for risk assessment and management, especially for large Li-ion battery packs.

  9. Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes

    KAUST Repository

    Ruffo, Riccardo; Hong, Seung Sae; Chan, Candace K.; Huggins, Robert A.; Cui, Yi

    2009-01-01

    The impedance behavior of silicon nanowire electrodes has been investigated to understand the electrochemical process kinetics that influences the performance when used as a high-capacity anode in a lithium ion battery. The ac response was measured

  10. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter 1997

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1997-12-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which STUK - Radiation and Nuclear Safety Authority considers safety significant. Safety improvements at the plants are also described. The Report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. The Finnish nuclear power plant units were in power operation in the second quarter of 1997, except for the annual maintenance outages of Olkiluoto plant units and the Midsummer outage at Olkiluoto 2 due to reduced demand for electricity. There were also brief interruptions in power operation at the Olkiluoto plant units due to three reactor scrams. All plant units are undergoing long-term test operation at upgraded reactor power level which has been approved by STUK The load factor average of all plant units was 88.7 %. One event in the second quarter of 1997 was classified level 1 on the INES. The event in question was a scram at Olkiluoto 1 which was caused by erroneous opening of switches. Other events in this quarter were level 0. Occupational doses and radioactive releases off-site were below authorized limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  11. Quarterly environmental radiological survey summary: Second Quarter 1995 100, 200, 300, and 600 Areas

    International Nuclear Information System (INIS)

    McKinney, S.M.

    1995-01-01

    This report provides a summary of the radiological surveys performed in support of the operational environmental monitoring program at the Hanford Site. The Second Quarter 1995 survey results and the status of actions required from current and past reports are summarized

  12. Operation of Finnish nuclear power plants. Quarterly report 4th quarter, 1994 and annual summary

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1995-05-01

    The Loviisa NPP units were in power operation the whole last quarter, with the exception of a reactor scram at Loviisa 1. The load factor average of all Finnish plant units was 100.2 %. The annual average was 90.0 %. All events in the fourth annual quarter were assigned level 0 (no safety significance) on the international INES scale. Four events in 1994 were classified level 1 (an anomaly). The Finnish Centre for Radiation and Nuclear Safety in December approved Imatran Voima Oy's application to extend the operation of the reactor pressure vessel of Loviisa 2 until the annual maintenance outage of 2010. During this quarter, a batch of spent fuel from Loviisa power plant was transported to Russia. Occupational doses and radioactive releases off-site were below authorised limits. Only such quantities of plant-based radioactive materials were measurable in samples collected around the plants as have no bearing on the radiation exposure of the population. The report includes a summary of all the items described in the Quarterly Reports of 1994. (8 figs., 4 tabs.)

  13. Operation of Finnish nuclear power plants. Quarterly report, 3rd quarter 1996

    International Nuclear Information System (INIS)

    Sillanpaeae, T.

    1997-02-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The Report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. In the third quarter of 1996, the Finnish nuclear power plant units were in power operation except for the annual maintenance outages of Loviisa plant units and a shutdown at Olkiluoto 1 to identify and repair malfunctions of a high pressure turbine control valve. The load factor average of all plant units was 77.2%. Events in the third quarter of 1996 were classified level 0 on the International Nuclear Event Scale. Occupational doses and radioactive releases off-site were below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. The names of Teollisuuden Voima Oy's plant units have changed. Olkiluoto 1 and Olkiluoto 2 now replace the names TVO I and TVO II previously used in quarterly reports. (orig.)

  14. Operation of Finnish nuclear power plants. Quarterly report 4th quarter, 1994 and annual summary

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K [ed.

    1995-05-01

    The Loviisa NPP units were in power operation the whole last quarter, with the exception of a reactor scram at Loviisa 1. The load factor average of all Finnish plant units was 100.2 %. The annual average was 90.0 %. All events in the fourth annual quarter were assigned level 0 (no safety significance) on the international INES scale. Four events in 1994 were classified level 1 (an anomaly). The Finnish Centre for Radiation and Nuclear Safety in December approved Imatran Voima Oy`s application to extend the operation of the reactor pressure vessel of Loviisa 2 until the annual maintenance outage of 2010. During this quarter, a batch of spent fuel from Loviisa power plant was transported to Russia. Occupational doses and radioactive releases off-site were below authorised limits. Only such quantities of plant-based radioactive materials were measurable in samples collected around the plants as have no bearing on the radiation exposure of the population. The report includes a summary of all the items described in the Quarterly Reports of 1994. (8 figs., 4 tabs.).

  15. Quarterly environmental radiological survey summary. Fourth quarter, 1995 100, 200, 300, and 600 Areas

    International Nuclear Information System (INIS)

    McKinney, S.M.; Markes, B.M.

    1996-01-01

    This report provides a summary of the radiological surveys performed in support of the operational environmental monitoring program at the Hanford Site. The Fourth Quarter 1995 survey results and the status of actions required from current and past reports are described

  16. Operation of Finnish nuclear power plants. Quarterly report, 3rd quarter 1997

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1998-04-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety that the Radiation and Nuclear Safety Authority of Finland (STUK) considers safety significant. Safety improvements at the plants are also described. The Report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. The Finnish nuclear power plant units were in power operation in the third quarter of 1997, except for the annual maintenance outages of Loviisa plant units which lasted well over a month in all. There was also a brief interruption in electricity generation at Olkiluoto 1 for repairs and at Olkiluoto 2 due to a disturbance at the turbine plant. All plant units were in long-term test operation at upgraded reactor power level approved by STUK. The load factor average of all plant units was 87.6 %. One event in the third quarter was classified level 1 on the International Nuclear Event Scale (INES). It was noted at Loviisa 2 that one of four pressurized water tanks in the plant unit's emergency cooling system had been inoperable for a year. Other events in this quarter were INES level 0. Occupational doses and radioactive releases off-site were below authorized limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  17. Quarterly report of the Swedish Nuclear Power Inspectorate. 4th quarter 1984

    International Nuclear Information System (INIS)

    1985-01-01

    During the fourth quarter of 1984 ten power reactors were in operation in Sweden. Two new reactors, Oskarshamn 3 and Forsmark 3, got loading authorization and started the test operation. No serious fault has occurred during the period. (K.A.E.)

  18. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system

  19. Intelligent automotive battery systems

    Science.gov (United States)

    Witehira, P.

    A single power-supply battery is incompatible with modern vehicles. A one-cmbination 12 cell/12 V battery, developed by Power Beat International Limited (PBIL), is described. The battery is designed to be a 'drop in' replacement for existing batteries. The cell structures, however, are designed according to load function, i.e., high-current shallow-discharge cycles and low-current deep-discharge cycles. The preferred energy discharge management logic and integration into the power distribution network of the vehicle to provide safe user-friendly usage is described. The system is designed to operate transparent to the vehicle user. The integrity of the volatile high-current cells is maintained by temperature-sensitive voltage control and discharge management. The deep-cycle cells can be fully utilized without affecting startability under extreme conditions. Electric energy management synchronization with engine starting will provide at least 6% overall reduction in hydrocarbon emissions using an intelligent on-board power-supply technology developed by PBIL.

  20. USED BATTERIES-REMINDER

    CERN Multimedia

    2002-01-01

    Note from the TIS Division: Although it is not an obligation for CERN to collect, store and dispose of used batteries from private vehicles, they are often found abandoned on the site and even in the scrap metal bins. As well as being very dangerous (they contain sulphuric acid which is highly corrosive), this practise costs CERN a non-negligible amount of money to dispose of them safely. The disposal of used batteries in the host state could not be simpler, there are 'déchetteries' in neighbouring France at Saint-Genis, Gaillard and Annemasse as well as in other communes. In Geneva Canton the centre de traitement des déchets spéciaux, at Cheneviers on the river Rhône a few kilometers from CERN, will dispose of your batterie free of charge. So we ask you to use a little common sense and to help protect the environnement from the lead and acid in these batteries and even more important, to avoid the possibility of a colleague being seriously injured. It doesn't take m...

  1. Weston Standard battery

    CERN Multimedia

    This is a Weston AOIP standard battery with its calibration certificate (1956). Inside, the glassware forms an "H". Its name comes from the British physicist Edward Weston. A standard is the materialization of a given quantity whose value is known with great accuracy.

  2. High energy battery. Hochenergiebatterie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.

    1992-03-26

    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  3. Quarterly Technical Progress Report June 2015

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Bruce A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-08

    The project has two main goals: 1) Identify the types of adducts naphthalene (NA) forms with DNA and 2) determine whether adduct formation correlates with site selective tumor formation in defined subcompartments of the respiratory tract (respiratory and olfactory nasal epithelium and airways of mice, rats and rhesus monkeys). Five tasks are associated with the completion of the goals. Task 1: Contracting and Animal Use Approvals. IACUC and ACURO approvals are complete, The subcontract with UC Davis (UCD) was executed in December 2014. Task 2: Perform In Vitro Study for Goal 1. Rat samples exposed and in freezer while adduct standards are being made. Mouse samples need to be exposed in next quarter. Task 3: Perform In Vitro Study for Goal 2. Mouse ex vivo samples completed. Rat and monkey samples need to be completed in the next quarter. Task 4: Sample Preparation and Analysis. Mouse Goal 2 samples completed. Other samples remain to be done. Task 5: Data Interpretation and Reporting. Need rat data to write paper on adduct formation.

  4. Review of a Proposed Quarterly Coal Publication

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This Review of a Proposed Quartery Coal Publication contains findings and recommendations regarding the content of a new summary Energy Information Administration (EIA) coal and coke publication entitled The Quarterly Coal Review (QCR). It is divided into five sections: results of interviews with selected EIA data users; identification of major functions of the coal and coke industries; analysis of coal and coke data collection activities; evaluation of issues conerning data presentation including recommendations for the content of the proposed QCR; and comparison of the proposed QCR with other EIA publications. Major findings and recommendations are as follows: (1) User interviews indicate a definite need for a compehensive publication that would support analyses and examine economic, supply and demand trends in the coal industry; (2) the organization of the publication should reflect the natural order of activities of the coal and coke industries. Based on an analysis of the industries, these functions are: production, stocks, imports, exports, distribution, and consumption; (3) current EIA coal and coke surveys collect sufficient data to provide a summary of the coal and coke industries on a quarterly basis; (4) coal and coke data should be presented separately. Coke data could be presented as an appendix; (5) three geographic aggregations are recommended in the QCR. These are: US total, coal producing districts, and state; (6) coal consumption data should be consolidated into four major consumer categories: electric utilities, coke plants, other industrial, and residential commercial; (7) several EIA publications could be eliminated by the proposed QCR.

  5. Orcas Power and Light Company [fourth quarterly] technical progress report, July--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    After a year of operating the G-Van, OPALCO concluded that the company transportation needs were not being met by the G-Van. The previous quarterly report mentioned battery problems with the Solectria (No. 51). This problem is one of reduced range and power and has been determined to be caused by one or more individual monoblock failures. The local Solectria representative and Solectria headquarters personnel have been aware of this unsatisfactory condition and are continuing their attempt to solve it. The Solectria and G-Van continue to be used intermittently by company personnel for errands and engineering trips. Generally, the smaller, compact size of the Solectria make it the most preferred by company drivers. Clearly the G-Van is not selected for use because of its size and weight. It is important to note that the driver dissatisfaction is not related to the fact that it is an electric van, but more its lack of maneuverability.

  6. Orcas Power and Light Company [fourth quarterly] technical progress report, July--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    After a year of operating the G-Van, OPALCO concluded that the company transportation needs were not being met by the G-Van. The previous quarterly report mentioned battery problems with the Solectria (No. 51). This problem is one of reduced range and power and has been determined to be caused by one or more individual monoblock failures. The local Solectria representative and Solectria headquarters personnel have been aware of this unsatisfactory condition and are continuing their attempt to solve it. The Solectria and G-Van continue to be used intermittently by company personnel for errands and engineering trips. Generally, the smaller, compact size of the Solectria make it the most preferred by company drivers. Clearly the G-Van is not selected for use because of its size and weight. It is important to note that the driver dissatisfaction is not related to the fact that it is an electric van, but more its lack of maneuverability.

  7. Fully Coupled Simulation of Lithium Ion Battery Cell Performance

    Energy Technology Data Exchange (ETDEWEB)

    Trembacki, Bradley L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murthy, Jayathi Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Scott Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulated and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.

  8. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter 1999

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1999-12-01

    Quarterly reports on the operation of Finnish NPPs describe events and observations relating to nuclear and radiation safety that the Finnish Radiation and Nuclear Safety Authority (STUK) considers safety significant. Safety improvements at the plants are also described. The report includes a summary of the radiation safety of plant personnel and the environment and tabulated data on the plants' production and load factors. All Finnish NPP units were in power operation for the whole second quarter of 1999, with the exception of the annual maintenance outages of the Olkiluoto plant units. The load factor average of the plant units in this quarter was 93.1%. Two events in this quarter were classified Level 1 on the INKS Scale. At Olkiluoto 1, a valve of the containment gas treatment system had been in an incorrect position for almost a month, owing to which the system would not have been available as planned in an accident. At Olkiluoto 2, main circulation pump work was done during the annual maintenance outage and a containment personnel air lock was briefly open in violation of the Technical Specifications. Water leaking out of the reactor in an accident could not have been directed to the emergency cooling system because it would have leaked out from the containment via the open personnel air lock. Other events in this quarter had no bearing on the nuclear or radiation safety of the plant units. The individual doses of NPP personnel and also radioactive releases off-site were well below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  9. Natural gas imports and exports: First quarter report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Office of Fuels Programs prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports with the OFP. This quarter`s focus is market penetration of gas imports into New England. Attachments show the following: % takes to maximum firm contract levels and weighted average per unit price for the long-term importers, volumes and prices of gas purchased by long-term importers and exporters, volumes and prices for gas imported on short-term or spot market basis, and gas exported short-term to Canada and Mexico.

  10. Mixed Waste Management Facility groundwater monitoring report: Third quarter 1994

    International Nuclear Information System (INIS)

    1994-12-01

    Currently, 125 wells monitor groundwater quality in the uppermost aquifer beneath the Mixed Waste Management Facility (MWMF) at the Savannah River Site. Samples from the wells are analyzed for selected heavy metals, herbicides/pesticides, indicator parameters, radionuclides, volatile organic compounds, and other constituents. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents during third quarter 1994. Sixty-four (51%) of the 125 monitoring wells contained elevated tritium activities. Trichloroethylene concentrations exceeded the final PDWS in 22 (18%) wells. Chloroethene, 1,1-dichloroethylene, and tetrachloroethylene, elevated in one or more wells during third quarter 1994, also occurred in elevated levels during second quarter 1994. These constituents generally were elevated in the same wells during both quarters. Gross alpha, which was elevated in only one well during second quarter 1994, was elevated again during third quarter. Mercury, which was elevated during first quarter 1994, was elevated again in one well. Dichloromethane was elevated in two wells for the first time in several quarters

  11. Third-quarter 1989 electric utility financial results

    International Nuclear Information System (INIS)

    Studness, C.M.

    1990-01-01

    Utility earnings per share before write-offs fell 6.9% in the third quarter of 1989 from the year-earlier level. Write-offs reduced third-quarter earnings of a sample of 83 utilities that account for 95% of investor-owned utility revenue by $792 million, compared with $183 million in the year-earlier quarter. With larger write-offs in 1989 than in 1988, third-quarter earnings per share after write-offs plunged 16.9% from the year-earlier level

  12. Parametric and cycle tests of a 40-AH bipolar nickel-hydrogen battery

    Science.gov (United States)

    Cataldo, R. L.

    1986-01-01

    The performance of a 12 V, 40 ampere-hour bipolar battery during various charge current, discharge current, temperature, and pressure operating conditions is investigated. The cell voltages, temperatures, ampere-hours, and watt-hours derived from the charge/discharge cycle tests are studied. Consideration is given to battery voltage and discharge capacity as a function of discharge current, the correlation between energy delivered on a discharge and battery temperature, battery voltage response to pulse discharges, and the voltage-temperature relationship. The data reveal that the bipolar Ni-H battery is applicable to high power systems.

  13. Modeling for Battery Prognostics

    Science.gov (United States)

    Kulkarni, Chetan S.; Goebel, Kai; Khasin, Michael; Hogge, Edward; Quach, Patrick

    2017-01-01

    For any battery-powered vehicles (be it unmanned aerial vehicles, small passenger aircraft, or assets in exoplanetary operations) to operate at maximum efficiency and reliability, it is critical to monitor battery health as well performance and to predict end of discharge (EOD) and end of useful life (EOL). To fulfil these needs, it is important to capture the battery's inherent characteristics as well as operational knowledge in the form of models that can be used by monitoring, diagnostic, and prognostic algorithms. Several battery modeling methodologies have been developed in last few years as the understanding of underlying electrochemical mechanics has been advancing. The models can generally be classified as empirical models, electrochemical engineering models, multi-physics models, and molecular/atomist. Empirical models are based on fitting certain functions to past experimental data, without making use of any physicochemical principles. Electrical circuit equivalent models are an example of such empirical models. Electrochemical engineering models are typically continuum models that include electrochemical kinetics and transport phenomena. Each model has its advantages and disadvantages. The former type of model has the advantage of being computationally efficient, but has limited accuracy and robustness, due to the approximations used in developed model, and as a result of such approximations, cannot represent aging well. The latter type of model has the advantage of being very accurate, but is often computationally inefficient, having to solve complex sets of partial differential equations, and thus not suited well for online prognostic applications. In addition both multi-physics and atomist models are computationally expensive hence are even less suited to online application An electrochemistry-based model of Li-ion batteries has been developed, that captures crucial electrochemical processes, captures effects of aging, is computationally efficient

  14. Thermal modeling of cylindrical lithium ion battery during discharge cycle

    International Nuclear Information System (INIS)

    Jeon, Dong Hyup; Baek, Seung Man

    2011-01-01

    Highlights: → Transient and thermo-electric finite element analysis (FEA) of cylindrical lithium ion (Li-ion) battery was presented. → This model provides the thermal behavior of Li-ion battery during discharge cycle. → A LiCoO 2 /C battery at various discharge rates was investigated. → The contribution of heat source due to joule heating was significant at a high discharge rate. → The contribution of heat source due to entropy change was dominant at a low discharge rate. - Abstract: Transient and thermo-electric finite element analysis (FEA) of cylindrical lithium ion (Li-ion) battery was presented. The simplified model by adopting a cylindrical coordinate was employed. This model provides the thermal behavior of Li-ion battery during discharge cycle. The mathematical model solves conservation of energy considering heat generations due to both joule heating and entropy change. A LiCoO 2 /C battery at various discharge rates was investigated. The temperature profile from simulation had similar tendency with experiment. The temperature profile was decomposed with contributions of each heat sources and was presented at several discharge rates. It was found that the contribution of heat source due to joule heating was significant at a high discharge rate, whereas that due to entropy change was dominant at a low discharge rate. Also the effect of cooling condition and the LiNiCoMnO 2 /C battery were analyzed for the purpose of temperature reduction.

  15. The AMTEX Partnership. Third quarter report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The AMTEX Partnership is a collaborative research and development program among the U.S. Integrated Textile Industry, the Department of Energy, The DOE laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital U.S. industry and thereby preserve and create American jobs. During the third quarter of 1994 all the Cooperative Research and Development Agreements (CRADAs) were completed and work initiated for three additional projects: Computer Aided Fabric Evaluation (CAFE), Textile Resource Conservation (TReC), and Sensors for Agile Manufacturing (SFAM). The plan for a Cotton Biotechnology project was completed and reviewed by the Industry Technical Advisory Committee. In addition, an `impact study` on the topic of flexible fiber production was conducted by an industry group led by the fiber manufacturers.

  16. Cardiology update 2017: The first quarter

    Directory of Open Access Journals (Sweden)

    Sridharan Umapathy

    2017-01-01

    Full Text Available In the first quarter of 2017, proprotein convertase subtilisin/kexin type 9's role got defined further with a number of trials such as FOURIER, ORION-1, and SPIRE 1 and 2. TAVI proves safe in intermediate-risk patients in the Surgical Replacement and Transcatheter Aortic Valve Implantation study. Newer anticoagulants extended their role to valvular heart disease. Bioabsorbable stent showed problems (ABSORB 2 and 3. New guidelines have been released for syncope and transcatheter aortic valve replacement implantation. Clinical outcome studies involving instantaneous wave-free ratio (IFR showed IFR to be noninferior to fractional flow reserve. Optimal medical therapy proves noninferior to percutaneous coronary intervention in single vessel chronic total occlusion.

  17. Performance indicators for first quarter CY 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy (DOE) has established a Department-Wide Performance Indicator (PI) Program for trending and analysis of operational data as directed by DOE Order 5480.26. The PI Program was established to provide a means for monitoring the environment safety, and health (ES ampersand H) performance of the DOE at the Secretary and other management levels. This is the thirteenth in a series of quarterly reports generated for the Department of Energy Idaho Operations Office (DOE-ID) by EG ampersand G Idaho, Inc., to meet the requirements of the PI Program as directed by the DOE Standard (DOE-STD-1048-92). The report format and content adhere to the guidelines established In DOE Order 5480.26, Trending and Analysis of Operations Information Using Performance Indicators, and DOE-STD-1048-92, DOE Peformance Indicators Guidance Document

  18. Quarterly status of Department of Energy projects

    International Nuclear Information System (INIS)

    1982-01-01

    This Quarterly Status of Department of Energy Projects is prepared by the Office of project and Facilities Management, MA-30. The report is designed to provide Department of Energy (DOE) management officials with a summary of the important baseline data that exists in the DOE project data base. This data base is maintained chiefly from periodic field management reports required by DOE Order 5700.4. Since most of the current estimates in this report are from field project managers, they do not necessarily have full Headquarters approval. The current budget data sheet estimates that appear in the report are considered appropriate for reporting external to the Department and reflect the President's FY 1983 Budget to Congress. Moneys allocated and estimated costs, and the construction status are tabulated for projects under the subject categories of: conservation and renewable energy; defense programs; environmental protection, safety and emergency preparedness; energy research; defense programs; nuclear energy; and management and administration

  19. Batteries and accumulators in France

    International Nuclear Information System (INIS)

    2012-12-01

    The present report gives an overview of the batteries and accumulators market in France in 2011 based on the data reported through ADEME's Register of Batteries and accumulators. In 2001, the French Environmental Agency, known as ADEME, implemented a follow-up of the batteries and accumulators market, creating the Observatory of batteries and accumulators (B and A). In 2010, ADEME created the National Register of producers of Batteries and Accumulators in the context of the implementation of the order issued on November 18, 2009. This is one of the four enforcement orders for the decree 2009-1139 issued on September 22, 2009, concerning batteries and accumulators put on the market and the disposal of waste batteries and accumulators, and which transposes the EU-Directive 2006/66/CE into French law. This Register follows the former Observatory for batteries and accumulators. This Register aims to record the producers on French territory and to collect the B and A producers and recycling companies' annual reporting: the regulation indeed requires that all B and A producers and recycling companies report annually on the Register the quantities of batteries and accumulators they put on the market, collect and treat. Based on this data analysis, ADEME issues an annual report allowing both the follow-up of the batteries and accumulators market in France and communication regarding the achievement of the collection and recovery objectives set by EU regulation. This booklet presents the situation in France in 2011

  20. Research in Nickel/Metal Hydride Batteries 2016

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-10-01

    Full Text Available Nineteen papers focusing on recent research investigations in the field of nickel/metal hydride (Ni/MH batteries have been selected for this Special Issue of Batteries. These papers summarize the joint efforts in Ni/MH battery research from BASF, Wayne State University, the National Institute of Standards and Technology, Michigan State University, and FDK during 2015–2016 through reviews of basic operational concepts, previous academic publications, issued US Patent and filed Japan Patent Applications, descriptions of current research results in advanced components and cell constructions, and projections of future works.

  1. Secondary Use of PHEV and EV Batteries: Opportunities & Challenges (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J.; Pesaran, A.; Howell, D.

    2010-05-01

    NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

  2. Iron phosphate materials as cathodes for lithium batteries

    CERN Document Server

    Prosini, Pier Paolo

    2011-01-01

    ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" describes the synthesis and the chemical-physical characteristics of iron phosphates, and presents methods of making LiFePO4 a suitable cathode material for lithium-ion batteries. The author studies carbon's ability to increase conductivity and to decrease material grain size, as well as investigating the electrochemical behaviour of the materials obtained. ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" also proposes a model to explain lithium insertion/extraction in LiFePO4 and to predict voltage profiles at variou

  3. The nuclear battery

    International Nuclear Information System (INIS)

    Kozier, K.S.; Rosinger, H.E.

    1988-01-01

    This paper reviews the evolution and present status of an Atomic Energy of Canada Limited program to develop a small, solid-state, passively cooled reactor power supply known as the Nuclear Battery. Key technical features of the Nuclear Battery reactor core include a heat-pipe primary heat transport system, graphite neutron moderator, low-enriched uranium TRISO coated-particle fuel and the use of burnable poisons for long-term reactivity control. An external secondary heat transport system extracts useful heat energy, which may be converted into electricity in an organic Rankine cycle engine or used to produce high-pressure steam. The present reference design is capable of producing about 2400 kW(t) (about 600 kW(e) net) for 15 full-power years. Technical and safety features are described along with recent progress in component hardware development programs and market assessment work. 19 refs

  4. Batteries not included

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, M.

    2001-09-08

    This article traces the development of clockwork wind-up battery chargers that can be used to recharge mobile phones, laptop computers, torches or radio batteries from the pioneering research of the British inventor Trevor Baylis to the marketing of the wind-up gadgets by Freeplay Energy who turned the idea into a commercial product. The amount of cranking needed to power wind-up devices is discussed along with a hand-cranked charger for mobile phones, upgrading the phone charger's mechanism, and drawbacks of the charger. Details are given of another invention using a hand-cranked generator with a supercapacitor as a storage device which has a very much higher capacity for storing electrical charge.

  5. Batteries not included

    International Nuclear Information System (INIS)

    Cooper, M.

    2001-01-01

    This article traces the development of clockwork wind-up battery chargers that can be used to recharge mobile phones, laptop computers, torches or radio batteries from the pioneering research of the British inventor Trevor Baylis to the marketing of the wind-up gadgets by Freeplay Energy who turned the idea into a commercial product. The amount of cranking needed to power wind-up devices is discussed along with a hand-cranked charger for mobile phones, upgrading the phone charger's mechanism, and drawbacks of the charger. Details are given of another invention using a hand-cranked generator with a supercapacitor as a storage device which has a very much higher capacity for storing electrical charge

  6. Battery charging stations

    Energy Technology Data Exchange (ETDEWEB)

    Bergey, M.

    1997-12-01

    This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.

  7. Block copolymer battery separator

    Science.gov (United States)

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  8. 77 FR 71288 - Revisions to Electric Quarterly Report Filing Process

    Science.gov (United States)

    2012-11-30

    ... its regulations to change the process for filing Electric Quarterly Reports (EQR). Due to technology... Quarterly Reports (EQR). Due to technology changes that will render the current filing process outmoded... the current EQR software to the web interface minimally disruptive. We direct Commission staff to...

  9. Trend chart: photovoltaic solar energy. Forth quarter 2016

    International Nuclear Information System (INIS)

    Coltier, Yves

    2017-02-01

    This publication presents a quarterly review of power generation from photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, detailed regional results, methodology used

  10. Wind/photovoltaic power indicators. Second quarter 2015

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2015-08-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  11. Wind/photovoltaic power indicators. Third quarter 2011

    International Nuclear Information System (INIS)

    Thienard, Helene

    2011-11-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  12. Wind/photovoltaic power indicators. Second quarter 2009

    International Nuclear Information System (INIS)

    2009-09-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  13. Wind/photovoltaic power indicators. Third quarter 2014

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2014-11-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  14. Wind/photovoltaic power indicators. Second quarter 2011

    International Nuclear Information System (INIS)

    2011-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  15. Wind/photovoltaic power indicators. Fourth quarter 2012

    International Nuclear Information System (INIS)

    Reynaud, Didier; Thienard, Helene

    2013-02-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status. (J.S.)

  16. Wind/photovoltaic power indicators. Third quarter 2010

    International Nuclear Information System (INIS)

    Thienard, Helene

    2010-11-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  17. Wind/photovoltaic power indicators. First quarter 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  18. Wind/photovoltaic power indicators. Fourth quarter 2013

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2014-02-01

    This document presents a quarterly review of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status

  19. Wind/photovoltaic power indicators. Third quarter 2013

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2013-11-01

    This document presents a quarterly review of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status

  20. Wind/photovoltaic power indicators. Fourth quarter 2011

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-02-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  1. Trend chart: photovoltaic solar energy. Third quarter 2016

    International Nuclear Information System (INIS)

    Coltier, Yves

    2016-11-01

    This publication presents a quarterly review of power generation from photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, detailed regional results, methodology used

  2. Trend chart: photovoltaic solar energy. Forth quarter 2015

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-02-01

    This publication presents a quarterly review of power generation from photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, detailed regional results, methodology used

  3. Wind/photovoltaic power indicators. Second quarter 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  4. Trend chart: photovoltaic solar energy. First quarter 2017

    International Nuclear Information System (INIS)

    2017-05-01

    This publication presents a quarterly review of power generation from photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, detailed regional results, methodology used

  5. Wind/photovoltaic power indicators. Third quarter 2012

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-11-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  6. Wind/photovoltaic power indicators. First quarter 2014

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2014-05-01

    This document presents a quarterly review of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status

  7. Wind/photovoltaic power indicators. Second quarter 2012

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-09-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  8. Wind/photovoltaic power indicators. First quarter 2013

    International Nuclear Information System (INIS)

    Reynaud, Didier; Thienard, Helene

    2013-06-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status. (J.S.)

  9. Wind/photovoltaic power indicators. Forth quarter 2014

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2015-02-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  10. Wind/photovoltaic power indicators. Fourth quarter 2010

    International Nuclear Information System (INIS)

    2011-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  11. Wind/photovoltaic power indicators. First quarter 2011

    International Nuclear Information System (INIS)

    2011-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  12. Wind/photovoltaic power indicators. Third quarter 2009

    International Nuclear Information System (INIS)

    2009-11-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  13. Wind/photovoltaic power indicators. Second quarter 2014

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2014-08-01

    This document presents a quarterly review of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  14. Wind/photovoltaic power indicators. Fourth quarter 2009

    International Nuclear Information System (INIS)

    2010-02-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  15. Wind/photovoltaic power indicators. First quarter 2012

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-06-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  16. Wind/photovoltaic power indicators. Third quarter 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  17. 75 FR 35877 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2010-06-23

    ... available on our Web site, http://www.stb.dot.gov . Copies of the decision may be purchased by contacting...-3)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the third quarter 2010 rail cost...

  18. 77 FR 58910 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2012-09-24

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the Office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the fourth quarter 2012 rail cost adjustment factor (RCAF...

  19. 76 FR 37191 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2011-06-24

    ... our Web site, http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the third quarter 2011 Rail Cost Adjustment...

  20. 75 FR 80895 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2010-12-23

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the Office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the first quarter 2011 Rail Cost Adjustment...

  1. 77 FR 37958 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2012-06-25

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the Office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the third quarter 2012 rail cost adjustment...

  2. 78 FR 37660 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2013-06-21

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the Office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board approves the third quarter 2013 Rail Cost Adjustment Factor...

  3. 78 FR 17764 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2013-03-22

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the Office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the second quarter 2013 Rail Cost Adjustment...

  4. 76 FR 59483 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2011-09-26

    ... the decision may be purchased by contacting the Office of Public Assistance, Governmental Affairs, and...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the fourth quarter 2011 Rail Cost Adjustment...

  5. 76 FR 16037 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2011-03-22

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the Office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the second quarter 2011 Rail Cost Adjustment...

  6. 75 FR 17462 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2010-04-06

    ... decision may be purchased by contacting the office of Public Assistance, Governmental Affairs, and...-2)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the second quarter 2010 Rail Cost...

  7. 75 FR 58019 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2010-09-23

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the fourth quarter 2010 Rail Cost Adjustment...

  8. Quarter Dates Location(s) Purpose Transportation and Travel ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Chantal Taylor

    Transportation and Travel. Accommodation, Meals and Other. Hospitality. Total Expenses. Quarter 1. April 4 to 12. Alexandria, Egypt. Meetings. 15,761.81. 4,596.60. 77.24. 20,435.65. May 22. Toronto, ON. Meeting. May 23 to June 5. Jakarta, Bangkok and Delhi. Meetings. Quarter 2. September 22 to 26. New York, NY.

  9. 76 FR 80448 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2011-12-23

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. EP 290 (Sub-No. 5) (2012-1)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the first quarter 2012 rail cost adjustment factor (RCAF...

  10. 77 FR 38211 - Rescission of Quarterly Financial Reporting Requirements

    Science.gov (United States)

    2012-06-27

    ... No. FMCSA-2012-0020] RIN-2126-AB48 Rescission of Quarterly Financial Reporting Requirements AGENCY..., the Federal Motor Carrier Safety Administration (FMCSA) eliminates the quarterly financial reporting... would be ineffective or unacceptable without a change. III. Background Annual Financial Reporting...

  11. 78 FR 31475 - Rescission of Quarterly Financial Reporting Requirements

    Science.gov (United States)

    2013-05-24

    ... No. FMCSA-2012-0020] RIN-2126-AB48 Rescission of Quarterly Financial Reporting Requirements AGENCY...); request for comments. SUMMARY: FMCSA proposes to eliminate the quarterly financial reporting requirements... person argued that the financial reporting requirements transferred from the Interstate Commerce...

  12. 78 FR 76241 - Rescission of Quarterly Financial Reporting Requirements

    Science.gov (United States)

    2013-12-17

    .... SUMMARY: FMCSA eliminates the quarterly financial reporting requirements for certain for-hire motor... prepare plans for reviewing existing rules. The rule eliminates the quarterly financial reporting... Federal Register (73 FR 3316). Background Annual Financial Reporting Requirements Section 14123 of title...

  13. Quarterly report on program cost and schedule: Fourth quarter FY 1988

    International Nuclear Information System (INIS)

    1988-01-01

    Major program milestones completed in the fourth quarter of FY 1988 include completed preliminary draft NWPAA Section 175 Impacts Report, completed Title I ESF design, completed site reclamation in Texas, distributed review draft of the Dry Cask Storage Study, completed draft and final FY 1990 OMB budget, issued FY 1987 Annual Report to Congress, issued four draft Environmental Field Activity Plans, issued draft Environmental Program Overview, and made grant payments to local governments under Section 116 of NWPA, as amended. Major accomplishments during the fourth quarter of FY 1988 are listed. The Water Appropriation Permit Application was filed with the Nevada State Engineer on July 21, 1988. Installation and checkout of the Prototype Engineered Barrier Test equipment in G-tunnel is continuing with an expected early September test initiation data. The Configuration Management Plan was sent to DOE/HQ for approval. The prototype facility for testing the horizontal waste package emplacement configuration was completed in the G-tunnel

  14. Miniaturized nuclear battery

    International Nuclear Information System (INIS)

    Adler, K.; Ducommun, G.

    1976-01-01

    The invention relates to a miniaturized nuclear battery, consisting of several in series connected cells, wherein each cell contains a support which acts as positive pole and which supports on one side a β-emitter, above said emitter is a radiation resisting insulation layer which is covered by an absorption layer, above which is a collector layer, and wherein the in series connected calls are disposed in an airtight case

  15. 78 FR 21632 - Investigative Hearing

    Science.gov (United States)

    2013-04-11

    ... NATIONAL TRANSPORTATION SAFETY BOARD Investigative Hearing On January 7, 2013, about 1021 eastern... Part 129. The investigative hearing is being held to discuss the Boeing 787 battery and battery charger... goals of this hearing will be to gather additional information on the selection of the lithium ion (Li...

  16. Operation of Finnish nuclear power plants. Quarterly report 3rd quarter, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K. [ed.

    1995-03-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe nuclear and radiation safety related events and observations which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants and general matters relating to the use of nuclear energy are also reported. A summary of the radiation safety of plant personnel and of the environment, and tabulated data on the plants` production and load factors are also given. (4 figs., 4 tabs.).

  17. Operation of Finnish nuclear power plants. Quarterly report 3rd quarter, 1994

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1995-03-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe nuclear and radiation safety related events and observations which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants and general matters relating to the use of nuclear energy are also reported. A summary of the radiation safety of plant personnel and of the environment, and tabulated data on the plants' production and load factors are also given. (4 figs., 4 tabs.)

  18. Quarterly environmental radiological survey summary - first quarter 1997 100, 200, 300, and 600 areas

    International Nuclear Information System (INIS)

    Mckinney, S.M.

    1997-01-01

    This report provides a summary of the radiological surveys performed in support of near-facility environmental monitoring at the Hanford Site. The First Quarter 1997 survey results and the status of actions required are summarized below: (1) All of the routine environmental radiological surveys scheduled during January, February, and March 1997, were performed as planned. (2) One hundred four environmental radiological surveys were performed during the first quarter 1997, twenty-nine at the active waste sites and seventy-five at the inactive waste sites. Contamination above background levels was found at eight of the active waste sites and seven of the inactive waste sites. Contamination levels as high as >1,000,000 disintegrations per minute (dpm) were reported. Of these contaminated surveys twelve were in Underground Radioactive Material (URM) areas and three were in contamination areas. The contamination found within ten of the URM areas was immediately cleaned up and no further action was required. In the remaining five sites the areas were posted and will require decontamination. Radiological Problem Reports (RPR's) were issued and the sites were turned over to the landlord for further action if required. (3) During the first quarter of 1997, 5.6 hectares (13.8 acres) were stabilized and radiologically down posted from Contamination Area (CA)/Soil Contamination (SC) to URM. (4) During the first quarter of 1997, the size of 216-A-25 Gable Mountain Pond was increased from 30.4 to 34.5 hectares (75.0 to 85.2 acres). This increase in size was due to the correction of the original boundary area by using the advanced technology of a global positioning system (GPS). An area, 1.6 hectares (4.0 acres), east of and adjacent to the 241-S/SX/SY tank farm complex was posted as a contamination/soil contamination area. (5) Five open Surveillance Compliance Inspection Reports (SCIRs) had not been resolved

  19. Occupants' satisfaction on building maintenance of government quarters

    Science.gov (United States)

    Ismail, Nur'Ain; Ali, Siti Noor Asmiza Md; Othman, Nor A'aini; Jaffar, Nooraidawati

    2017-10-01

    The satisfaction level of occupants toward the maintenance is very important to know the occupants comfortable with maintenance that was provided at the government quarters. The objective of the research is to determine the level of occupants satisfaction perceived of the maintenance in government quarter and also the level of quality of the maintenance of the government quarters. Data have been collected by using questionnaire in order to achieve the objective of the research. The questionnaires distributed among the occupants government quarters at Hospital Kota Bharu Kelantan. In the end of the research, the result are expected that to show the results on this satisfaction level of the occupants toward the maintenance at government quarters can be solve and the occupants can live more comfortable and get the good quality for maintenance and facilities in their houses.

  20. Electric batteries and the environment. Die Batterie und die Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, F; Hartinger, L; Kiehne, H A; Niklas, H; Schiele, R; Steil, H U

    1987-01-01

    The book deals with the production, use and waste management of batteries (accumulators and primary batteries), with regard to protection of the environment. Legal, technical and medical aspects are shown. There are numerous electro-chemical systems, but only few proved to be really good in practice. Most batteries contain lead, cadmium or mercury and must therefore be eliminated in a way doing no harm to the environment. Large quantities of the above named heavy metals are today already being recovered by means of appropriate procedures. The reduction of these heavy metals in batteries is also described to be a contribution to the protection of the environment. (orig.) With 67 figs.