WorldWideScience

Sample records for batch processing system

  1. Batch-to-batch learning for model-based control of process systems with application to cooling crystallization

    NARCIS (Netherlands)

    Forgione, M.

    2014-01-01

    From an engineering perspective, the term process refers to a conversion of raw materials into intermediate or final products using chemical, physical, or biological operations. Industrial processes can be performed either in continuous or in batch mode. There exist for instance continuous and batch

  2. Mechanistic Models for Process Development and Optimization of Fed-batch Fermentation Systems

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albæk, Mads O.

    2016-01-01

    . This is based on on-line gas measurements and ammonia addition flow rate measurements. Additionally, a mechanistic model is applied offline as a tool for batch planning, based on definition of the process back pressure, aeration rate and stirrer speed. This allows the batch starting fill to be planned, taking...... into account the oxygen transfer conditions, as well as the evaporation rates of the system. Mechanistic models are valuable tools which are applicable for both process development and optimization. The state estimator described will be a valuable tool for future work as part of control strategy development...... for on-line process control and optimization....

  3. Development and validation of a novel monitoring system for batch flocculant solids settling process

    DEFF Research Database (Denmark)

    Valverde Pérez, Borja; Zhang, Xueqian; Penkarski-Rodon, Elena

    2017-01-01

    Secondary sedimentation is the main hydraulic bottleneck of effective pollution control WWTP under wetweather flow conditions. Therefore, online monitoring tools are required for control and optimization of the settling process under dynamic conditions. In this work we propose a novel monitoring...... system able to monitor batch settling tests by tracking the sludge blanket height and solid concentration along the column in the range of 1 to 8 g L-1. The system could be efficiently applied to monitor the batch settling tests of several full scale treatment plants run under different operational...... conditions....

  4. Progressing batch hydrolysis process

    Science.gov (United States)

    Wright, John D.

    1986-01-01

    A progressive batch hydrolysis process for producing sugar from a lignocellulosic feedstock, comprising passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feedstock to glucose; cooling said dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, then feeding said dilute acid stream serially through a plurality of prehydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose; and cooling the dilute acid stream containing glucose after it exits the last prehydrolysis reactor.

  5. Modelling of Batch Process Operations

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Cameron, Ian; Gani, Rafiqul

    2011-01-01

    Here a batch cooling crystalliser is modelled and simulated as is a batch distillation system. In the batch crystalliser four operational modes of the crystalliser are considered, namely: initial cooling, nucleation, crystal growth and product removal. A model generation procedure is shown that s...

  6. Biological sludge reduction during abattoir wastewater treatment process using a sequencing batch aerobic system.

    Science.gov (United States)

    Keskes, Sajiâa; Bouallagui, Hassib; Godon, Jean Jacques; Abid, Sami; Hamdi, Moktar

    2013-01-01

    Excess sludge disposal during biological treatment of wastewater is subject to numerous constraints, including social, health and regulatory factors. To reduce the amount of excess sludge, coupled processes involving different biological technologies are currently under taken. This work presents a laboratory scale sequencing batch aerobic system included an anaerobic zone for biomass synchronization (SBAAS: sequencing batch aerobic anaerobic system). This system was adopted to reduce sludge production during abattoir wastewater (AW) treatment. The average chemical oxygen demand (COD) removal efficiency of 89% was obtained at a hydraulic retention time (HRT) and a sludge retention time (SRT) of 2 days and 15-20 days, respectively. The comparison of SBAAS performances with a conventional sequencing batch activated sludge system (SBASS) found that the observed biomass production yield (Y(obs)) were in the ranges of 0.26 and 0.7 g suspended solids g(-1) COD removed, respectively. A significant reduction in the excess biomass production of 63% was observed by using the SBAAS. In fact, in the anaerobic zone microorganisms consume the intracellular stocks of energy by endogenous metabolism, which limits biosynthesis and accelerates sludge decay. The single strand conformation polymorphism (SSCP) method was used to study the dynamic and the diversity of bacterial communities. Results showed a significant change in the population structure by including the anaerobic stage in the process, and revealed clearly that the sludge production yield can be correlated with the bacterial communities present in the system.

  7. Heuristics for batching and sequencing in batch processing machines

    Directory of Open Access Journals (Sweden)

    Chuda Basnet

    2016-12-01

    Full Text Available In this paper, we discuss the “batch processing” problem, where there are multiple jobs to be processed in flow shops. These jobs can however be formed into batches and the number of jobs in a batch is limited by the capacity of the processing machines to accommodate the jobs. The processing time required by a batch in a machine is determined by the greatest processing time of the jobs included in the batch. Thus, the batch processing problem is a mix of batching and sequencing – the jobs need to be grouped into distinct batches, the batches then need to be sequenced through the flow shop. We apply certain newly developed heuristics to the problem and present computational results. The contributions of this paper are deriving a lower bound, and the heuristics developed and tested in this paper.

  8. Control of Batch Processes Based on Hierarchical Petri Nets

    OpenAIRE

    YAJIMA, Tomoyuki; ITO, Takashi; HASHIZUME, Susumu; KURIMOTO, Hidekazu; ONOGI, Katsuaki

    2004-01-01

    A batch process is a typical concurrent system in which multiple interacting tasks are carried out in parallel on several batches at the same time. A major difficulty in designing a batch control system is the lack of modeling techniques. This paper aims at developing a method of constructing batch control system models in a hierarchical manner and operating batch processes using the constructed models. For this purpose, it first defines process and plant specifications described by partial l...

  9. Control and Optimization of Batch Chemical Processes

    OpenAIRE

    Rohani, Sohrab; Chhabra, Raj; Bonvin, Dominique; François, Grégory

    2017-01-01

    A batch process is characterized by the repetition of time-varying operations of finite duration. Due to the repetition, there are two independent “time” variables, namely, the run time during a batch and the batch index. Accordingly, the control and optimization objectives can be defined for a given batch or over several batches. This chapter describes the various control and optimization strategies available for the operation of batch processes. These include online and run-to-run control o...

  10. Semiautomated, Reproducible Batch Processing of Soy

    Science.gov (United States)

    Thoerne, Mary; Byford, Ivan W.; Chastain, Jack W.; Swango, Beverly E.

    2005-01-01

    A computer-controlled apparatus processes batches of soybeans into one or more of a variety of food products, under conditions that can be chosen by the user and reproduced from batch to batch. Examples of products include soy milk, tofu, okara (an insoluble protein and fiber byproduct of soy milk), and whey. Most processing steps take place without intervention by the user. This apparatus was developed for use in research on processing of soy. It is also a prototype of other soy-processing apparatuses for research, industrial, and home use. Prior soy-processing equipment includes household devices that automatically produce soy milk but do not automatically produce tofu. The designs of prior soy-processing equipment require users to manually transfer intermediate solid soy products and to press them manually and, hence, under conditions that are not consistent from batch to batch. Prior designs do not afford choices of processing conditions: Users cannot use previously developed soy-processing equipment to investigate the effects of variations of techniques used to produce soy milk (e.g., cold grinding, hot grinding, and pre-cook blanching) and of such process parameters as cooking times and temperatures, grinding times, soaking times and temperatures, rinsing conditions, and sizes of particles generated by grinding. In contrast, the present apparatus is amenable to such investigations. The apparatus (see figure) includes a processing tank and a jacketed holding or coagulation tank. The processing tank can be capped by either of two different heads and can contain either of two different insertable mesh baskets. The first head includes a grinding blade and heating elements. The second head includes an automated press piston. One mesh basket, designated the okara basket, has oblong holes with a size equivalent to about 40 mesh [40 openings per inch (.16 openings per centimeter)]. The second mesh basket, designated the tofu basket, has holes of 70 mesh [70 openings

  11. Improving the development of event-driven control systems in the batch processing industry. A case study.

    Science.gov (United States)

    Sanchez, A; Rotstein, G; Alsop, N; Bromberg, J P; Gollain, C; Sorensen, S; Macchietto, S; Jakeman, C

    2002-07-01

    This paper presents the results of an academia-industry collaborative project whose main objective was to test novel techniques for the development of event-driven control systems in the batch processing (e.g., pharmaceutical, fine chemicals, food) industries. Proposed techniques build upon industrial standards and focus on (i) formal synthesis of phase control logic and its automatic translation into procedural code, and (ii) verification of the complete discrete-event control system via dynamic simulation. In order to test the techniques in an engineering environment, a complete discrete-event control system was produced for a benchmark batch process plant based on a standard development method employed by one of the industrial partners. The control system includes functional process specification, control architecture, distributed control system (DCS) proprietary programming code for procedural control at equipment, unit, and process cell levels, and human-machine interfaces: A technical assessment of the development method and the obtained control system was then carried out. Improvements were suggested using the proposed techniques in the specification, code generation and, verification steps. The project assessed the impact of these techniques from both an engineering and economic point of view. Results suggest that the introduction of computer aided engineering (CAE) practices based on the benchmarked techniques and a structured approach could effect a 75% reduction of errors produced in the development process. This translates into estimated overall savings of 7% for green-field projects. Figures were compared with other partners' experience. It is expected that the work load on a given project will shift, increasing the load on process engineers during the specification stage and decreasing the load on the software engineers during the code writing.

  12. PROOF on a Batch System

    International Nuclear Information System (INIS)

    Behrenhoff, W; Ehrenfeld, W; Samson, J; Stadie, H

    2011-01-01

    The 'parallel ROOT facility' (PROOF) from the ROOT framework provides a mechanism to distribute the load of interactive and non-interactive ROOT sessions on a set of worker nodes optimising the overall execution time. While PROOF is designed to work on a dedicated PROOF cluster, the benefits of PROOF can also be used on top of another batch scheduling system with the help of temporary per user PROOF clusters. We will present a lightweight tool which starts a temporary PROOF cluster on a SGE based batch cluster or, via a plugin mechanism, e.g. on a set of bare desktops via ssh. Further, we will present the result of benchmarks which compare the data throughput for different data storage back ends available at the German National Analysis Facility (NAF) at DESY.

  13. Batch process. Batch process used in a beer brewery; Biru kojo no bacchi purosesu

    Energy Technology Data Exchange (ETDEWEB)

    Kihara, K. [Kirin Engneering Co. Ltd. (Japan)

    1997-09-05

    In a beer brewing process, there is a system in which unit operation of chemical engineering is combined with the techniques of food and fermentation engineering in order to brew beer meeting the quality concept. This paper introduces the characteristics of a batch system used in the brewing of beer and the control method for the brewing of beer. The characteristics of the batch system used in a beer brewing process are the following three. In order to minimize the quality variation ascribed to the raw materials and the process, the materials are blended in various parts of the system. In the saccharification step which determines the quality of beer, two methods, i.e. a batch method and a continuous method are used, and beer brewing companies employ a saccharification system meeting the condition for attaining a desired quality of their own products. Two mashing systems are operated at different cycles shifted by half cycle from each other, not starting both at a time, so as to level the peaks of the utilities, whereby the operation of the utility-related facility is optimized. 1 ref., 2 figs., 1 tab.

  14. The improvement of the quality of polluted irrigation water through a phytoremediation process in a hydroponic batch culture system

    Science.gov (United States)

    Retnaningdyah, Catur

    2017-11-01

    The objective of this research was to determine the effectiveness of a phytoremediation process using some local hydro macrophytes to reduce fertilizer residue in irrigation water in order to support healthy agriculture and to prevent eutrophication and algae bloom in water. A phytoremediation process was carried out in a hydroponic floating system by using transparent plastic bags of 1 m in diameter and 1 m in height that were placed in collecting ponds before they were used for agricultural activities. Paddy soils were used as substrates in this system. The irrigation water was treated with nutrient enrichment (Urea and SP-36 fertilizers). Then, the system was planted with remediation actors (Azolla sp., Ipomoea aquatica, Limnocharis flava, Marsilea crenata, polyculture of those hydro macrophytes and control). The improvement of the water quality as a result of the phytoremediation process was characterized by a decline in the concentration of some physicochemical parameters, which were measured at 7 days after incubation, as well as an increase in the plankton diversity index value. The results showed that all of the hydro macrophytes used in this research, which was grown in the hydroponic batch culture system for a period of 7 days, were able to significantly improve the irrigation water quality, which was enriched by the synthetic fertilizers Urea and SP36. This was reflected by a significant decrease in the concentration of water TSS, nitrate, BOD, COD and total phosphate and an increase in the value of water DO at 7 days after incubation. Improvement of the water quality is also reflected in the increasing plankton diversity index value as a bioindicator of water pollution indicating a change in the pollution status from moderately polluted to slightly polluted at 7 days after incubation.

  15. Monitoring of batch processes using spectroscopy

    NARCIS (Netherlands)

    Gurden, S. P.; Westerhuis, J. A.; Smilde, A. K.

    2002-01-01

    There is an increasing need for new techniques for the understanding, monitoring and the control of batch processes. Spectroscopy is now becoming established as a means of obtaining real-time, high-quality chemical information at frequent time intervals and across a wide range of industrial

  16. 40 CFR 63.1321 - Batch process vents provisions.

    Science.gov (United States)

    2010-07-01

    ... the reference control technology requirements for Group 1 batch process vents in § 63.1322, the.... Owners or operators of all Group 2 batch process vents shall comply with the applicable reference control....1323 is not required. (2) For batch process vents and aggregate batch vent streams, the control...

  17. Optimal operation of batch membrane processes

    CERN Document Server

    Paulen, Radoslav

    2016-01-01

    This study concentrates on a general optimization of a particular class of membrane separation processes: those involving batch diafiltration. Existing practices are explained and operational improvements based on optimal control theory are suggested. The first part of the book introduces the theory of membrane processes, optimal control and dynamic optimization. Separation problems are defined and mathematical models of batch membrane processes derived. The control theory focuses on problems of dynamic optimization from a chemical-engineering point of view. Analytical and numerical methods that can be exploited to treat problems of optimal control for membrane processes are described. The second part of the text builds on this theoretical basis to establish solutions for membrane models of increasing complexity. Each chapter starts with a derivation of optimal operation and continues with case studies exemplifying various aspects of the control problems under consideration. The authors work their way from th...

  18. Development of interactive graphic user interfaces for modeling reaction-based biogeochemical processes in batch systems with BIOGEOCHEM

    Science.gov (United States)

    Chang, C.; Li, M.; Yeh, G.

    2010-12-01

    The BIOGEOCHEM numerical model (Yeh and Fang, 2002; Fang et al., 2003) was developed with FORTRAN for simulating reaction-based geochemical and biochemical processes with mixed equilibrium and kinetic reactions in batch systems. A complete suite of reactions including aqueous complexation, adsorption/desorption, ion-exchange, redox, precipitation/dissolution, acid-base reactions, and microbial mediated reactions were embodied in this unique modeling tool. Any reaction can be treated as fast/equilibrium or slow/kinetic reaction. An equilibrium reaction is modeled with an implicit finite rate governed by a mass action equilibrium equation or by a user-specified algebraic equation. A kinetic reaction is modeled with an explicit finite rate with an elementary rate, microbial mediated enzymatic kinetics, or a user-specified rate equation. None of the existing models has encompassed this wide array of scopes. To ease the input/output learning curve using the unique feature of BIOGEOCHEM, an interactive graphic user interface was developed with the Microsoft Visual Studio and .Net tools. Several user-friendly features, such as pop-up help windows, typo warning messages, and on-screen input hints, were implemented, which are robust. All input data can be real-time viewed and automated to conform with the input file format of BIOGEOCHEM. A post-processor for graphic visualizations of simulated results was also embedded for immediate demonstrations. By following data input windows step by step, errorless BIOGEOCHEM input files can be created even if users have little prior experiences in FORTRAN. With this user-friendly interface, the time effort to conduct simulations with BIOGEOCHEM can be greatly reduced.

  19. Model Penjadwalan Batch Multi Item dengan Dependent Processing Time

    Directory of Open Access Journals (Sweden)

    Sukoyo Sukoyo

    2010-01-01

    Full Text Available This paper investigates a development of single machine batch scheduling for multi items with dependent processing time. The batch scheduling problem is to determine simultaneously number of batch (N, which item and its size allocated for each batch, and processing sequences of resulting batches. We use total actual flow time as the objective of schedule performance. The multi item batch scheduling problem could be formulated into a biner-integer nonlinear programming model because the number of batch should be in integer value, the allocation of items to resulting batch need binary values, and also there are some non-linearity on objective function and constraint due to the dependent processing time. By applying relaxation on the decision variable of number of batch (N as parameter, a heuristic procedure could be applied to find solution of the single machine batch scheduling problem for multi items.

  20. DEVELOPMENT OF AN AUTOMATED BATCH-PROCESS SOLAR ...

    African Journals Online (AJOL)

    One of the shortcomings of solar disinfection of water (SODIS) is the absence of a feedback mechanism indicating treatment completion. This work presents the development of an automated batch-process water disinfection system aimed at solving this challenge. Locally sourced materials in addition to an Arduinomicro ...

  1. Multi-objective optimization of glycopeptide antibiotic production in batch and fed batch processes

    DEFF Research Database (Denmark)

    Maiti, Soumen K.; Eliasson Lantz, Anna; Bhushan, Mani

    2011-01-01

    as pareto optimal solutions. These solutions gives flexibility in evaluating the trade-offs and selecting the most suitable operating policy. Here, ε-constraint approach was used to generate the pareto solutions for two objectives: product concentration and product per unit cost of media, for batch and fed...... batch operations using process model for Amycolatopsis balhimycina, a glycopeptide antibiotic producer. This resulted in a set of several pareto optimal solutions with the two objectives ranging from (0.75gl−1, 3.97g$-1) to (0.44gl−1, 5.19g$-1) for batch and from (1.5gl−1, 5.46g$-1) to (1.1gl−1, 6.34g......$-1) for fed batch operations. One pareto solution each for batch and for fed batch mode was experimentally validated....

  2. Batch process. Flexible paint production system using movable tanks; Idoso wo mochiita toryo no flexible seisan system

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, S. [Kansai Paint Co. Ltd., Hiratsuka, Kanagawa (Japan). Central Lab.

    1997-09-05

    In the paint manufacturing industry, there are many kinds of product depending on the use, and there are few kinds of paint which can be manufactured by a large facility capable of producing several tens of kL of paint. An average working ratio of facility in this industry is limited to between 60 to 70%, and the ratio of the personnel expense to the cost has recently increased. The changing to an FMS (Flexible Manufacturing System) for increasing the working ratio of the facility and the changing of the system to greatly improve the operation efficiency have been demanded. The concrete means for these requirements include changing the facility to a pipeless one. The paint manufacturing facility comprises four sections, i.e. a premixing section, dispersing section, mixing section and canning section. If the mixing tank is made movable and the equipment on the preceding and succeeding stages of the mixing tank is made pipeless, the facility can be changed to the one not substantially restricted by the quality of products from the dispersing section to the filtration section which can be formed. However, the drawbacks of this system include the following: a failure, if it occurs, influences the whole production line; learning the system operating method requires much time, causing many initial failure occur; and great expansion of the facility is difficult. 2 refs., 2 figs., 2 tabs.

  3. Improved monitoring of batch processes by incorporating external information

    NARCIS (Netherlands)

    Ramaker, H. J.; van Sprang, E. N. M.; Gurden, S. P.; Westerhuis, J. A.; Smilde, A. K.

    2002-01-01

    In this paper an overview is given of statistical process monitoring with the emphasis on batch processes and the possible steps to take for improving this by incorporating external information. First, the general concept of statistical process monitoring of batches is explained. This concept has

  4. 40 CFR Table 1 to Subpart H of... - Batch Processes

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch Processes 1 Table 1 to Subpart H... Subpart H of Part 63—Batch Processes Monitoring Frequency for Equipment Other than Connectors Operating time (% of year) Equivalent continuous process monitoring frequency time in use Monthly Quarterly...

  5. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Science.gov (United States)

    2010-07-01

    ... megagram of product or less for non-solvent-based resin production. (2) The owner or operator of a reactor... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor...

  6. Batch-batch stable microbial community in the traditional fermentation process of huyumei broad bean pastes.

    Science.gov (United States)

    Zhu, Linjiang; Fan, Zihao; Kuai, Hui; Li, Qi

    2017-09-01

    During natural fermentation processes, a characteristic microbial community structure (MCS) is naturally formed, and it is interesting to know about its batch-batch stability. This issue was explored in a traditional semi-solid-state fermentation process of huyumei, a Chinese broad bean paste product. The results showed that this MCS mainly contained four aerobic Bacillus species (8 log CFU per g), including B. subtilis, B. amyloliquefaciens, B. methylotrophicus, and B. tequilensis, and the facultative anaerobe B. cereus with a low concentration (4 log CFU per g), besides a very small amount of the yeast Zygosaccharomyces rouxii (2 log CFU per g). The dynamic change of the MCS in the brine fermentation process showed that the abundance of dominant species varied within a small range, and in the beginning of process the growth of lactic acid bacteria was inhibited and Staphylococcus spp. lost its viability. Also, the MCS and its dynamic change were proved to be highly reproducible among seven batches of fermentation. Therefore, the MCS naturally and stably forms between different batches of the traditional semi-solid-state fermentation of huyumei. Revealing microbial community structure and its batch-batch stability is helpful for understanding the mechanisms of community formation and flavour production in a traditional fermentation. This issue in a traditional semi-solid-state fermentation of huyumei broad bean paste was firstly explored. This fermentation process was revealed to be dominated by a high concentration of four aerobic species of Bacillus, a low concentration of B. cereus and a small amount of Zygosaccharomyces rouxii. Lactic acid bacteria and Staphylococcus spp. lost its viability at the beginning of fermentation. Such the community structure was proved to be highly reproducible among seven batches. © 2017 The Society for Applied Microbiology.

  7. Using warping information for batch process monitoring and fault classification.

    NARCIS (Netherlands)

    González-Martínez, J.M.; Westerhuis, J.A.; Ferrer, A.

    2013-01-01

    This paper discusses how to use the warping information obtained after batch synchronization for process monitoring and fault classification. The warping information can be used for i) building unsupervised control charts or ii) fault classification when a rich faulty batches database is available.

  8. Tier 3 batch system data locality via managed caches

    Science.gov (United States)

    Fischer, Max; Giffels, Manuel; Jung, Christopher; Kühn, Eileen; Quast, Günter

    2015-05-01

    Modern data processing increasingly relies on data locality for performance and scalability, whereas the common HEP approaches aim for uniform resource pools with minimal locality, recently even across site boundaries. To combine advantages of both, the High- Performance Data Analysis (HPDA) Tier 3 concept opportunistically establishes data locality via coordinated caches. In accordance with HEP Tier 3 activities, the design incorporates two major assumptions: First, only a fraction of data is accessed regularly and thus the deciding factor for overall throughput. Second, data access may fallback to non-local, making permanent local data availability an inefficient resource usage strategy. Based on this, the HPDA design generically extends available storage hierarchies into the batch system. Using the batch system itself for scheduling file locality, an array of independent caches on the worker nodes is dynamically populated with high-profile data. Cache state information is exposed to the batch system both for managing caches and scheduling jobs. As a result, users directly work with a regular, adequately sized storage system. However, their automated batch processes are presented with local replications of data whenever possible.

  9. Hadoop distributed batch processing for Gaia: a success story

    Science.gov (United States)

    Riello, Marco

    2015-12-01

    The DPAC Cambridge Data Processing Centre (DPCI) is responsible for the photometric calibration of the Gaia data including the low resolution spectra. The large data volume produced by Gaia (~26 billion transits/year), the complexity of its data stream and the self-calibrating approach pose unique challenges for scalability, reliability and robustness of both the software pipelines and the operations infrastructure. DPCI has been the first in DPAC to realise the potential of Hadoop and Map/Reduce and to adopt them as the core technologies for its infrastructure. This has proven a winning choice allowing DPCI unmatched processing throughput and reliability within DPAC to the point that other DPCs have started following our footsteps. In this talk we will present the software infrastructure developed to build the distributed and scalable batch data processing system that is currently used in production at DPCI and the excellent results in terms of performance of the system.

  10. Achieving nitrite accumulation in a continuous system treating low-strength domestic wastewater: switchover from batch start-up to continuous operation with process control.

    Science.gov (United States)

    Peng, Yongzhen; Guo, Jianhua; Horn, Harald; Yang, Xiong; Wang, Shuying

    2012-04-01

    Although biological nitrogen removal via nitrite is recognized as one of the cost-effective and sustainable biological nitrogen removal processes, nitrite accumulation has proven difficult to achieve in continuous processes treating low-strength nitrogenous wastewater. Partial nitrification to nitrite was achieved and maintained in a lab-scale completely stirred tank reactor (CSTR) treating real domestic wastewater. During the start-up period, sludge with ammonia-oxidizing bacteria (AOB) but no nitrite-oxidizing bacteria (NOB) was obtained by batch operation with aeration time control. The nitrifying sludge with the dominance of AOB was then directly switched into continuous operation. It was demonstrated that partial nitrification to nitrite in the continuous system could be repeatedly and reliably achieved using this start-up strategy. The ratio of dissolved oxygen to ammonium loading rate (DO/ALR) was critical to maintain high ammonium removal efficiency and nitrite accumulation ratio. Over 85% of nitrite accumulation ratio and more than 95% of ammonium removal efficiency were achieved at DO/ALR ratios in an optimal range of 4.0-6.0 mg O(2)/g N d, even under the disturbances of ammonium loading rate. Microbial population shift was investigated, and fluorescence in situ hybridization analysis indicated that AOB were the dominant nitrifying bacteria over NOB when stable partial nitrification was established.

  11. Process optimization of batch biosorption of lead using Lactobacillius bulgaricus in an aqueous phase system using response surface methodology.

    Science.gov (United States)

    Sedighi, Mehdi; Ghasemi, Mostafa; Hassan, Sedky H A; Daud, Wan Ramli Wan; Ismail, Manal; Abdallah, Elgorban

    2012-05-01

    Response surface methodology (RSM) based on central composite rotatable design was used to investigate the effects of operating variable, mainly, pH, weight of biomass, and initial lead ion concentration on the lead adsorption capacity at ambient temperature using dried cells of Lactobacillius bulgaricus. Using RSM, quadratic polynomial equation was obtained for predicting the percent of lead ion removal. Analysis of variance showed that the effects of pH and weight of dried biomass were concluded to be the key factors influencing the capacity of lead ion removal. At pH lower than 2 (high acidic condition) and in alkaline condition, there is no significant biosorption. The optimum percent of lead ion removal was found at pH of 6.78, biomass concentration of 6.58 g/l and initial lead concentration 36.22 ppm. In this condition, percent of lead ion removal was 86.21%. This study showed RSM effectiveness for modeling of biosorption process.

  12. Optimizing Resource Utilization in Grid Batch Systems

    International Nuclear Information System (INIS)

    Gellrich, Andreas

    2012-01-01

    On Grid sites, the requirements of the computing tasks (jobs) to computing, storage, and network resources differ widely. For instance Monte Carlo production jobs are almost purely CPU-bound, whereas physics analysis jobs demand high data rates. In order to optimize the utilization of the compute node resources, jobs must be distributed intelligently over the nodes. Although the job resource requirements cannot be deduced directly, jobs are mapped to POSIX UID/GID according to the VO, VOMS group and role information contained in the VOMS proxy. The UID/GID then allows to distinguish jobs, if users are using VOMS proxies as planned by the VO management, e.g. ‘role=production’ for Monte Carlo jobs. It is possible to setup and configure batch systems (queuing system and scheduler) at Grid sites based on these considerations although scaling limits were observed with the scheduler MAUI. In tests these limitations could be overcome with a home-made scheduler.

  13. Monitoring a PVC batch process with multivariate statistical process control charts

    NARCIS (Netherlands)

    Tates, A. A.; Louwerse, D. J.; Smilde, A. K.; Koot, G. L. M.; Berndt, H.

    1999-01-01

    Multivariate statistical process control charts (MSPC charts) are developed for the industrial batch production process of poly(vinyl chloride) (PVC). With these MSPC charts different types of abnormal batch behavior were detected on-line. With batch contribution plots, the probable causes of these

  14. Amorphous silicon batch process cost analysis

    International Nuclear Information System (INIS)

    Whisnant, R.A.; Sherring, C.

    1993-08-01

    This report describes the development of baseline manufacturing cost data to assist PVMaT monitoring teams in assessing current and future subcontracts, which an emphasis on commercialization and production. A process for the manufacture of a single-junction, large-area, a Si module was modeled using an existing Research Triangle Institute (RTI) computer model. The model estimates a required, or breakeven, price for the module based on its production process and the financial structure of the company operating the process. Sufficient detail on cost drivers is presented so the relationship of the process features and business characteristics can be related to the estimated required price

  15. Risk-based Methodology for Validation of Pharmaceutical Batch Processes.

    Science.gov (United States)

    Wiles, Frederick

    2013-01-01

    In January 2011, the U.S. Food and Drug Administration published new process validation guidance for pharmaceutical processes. The new guidance debunks the long-held industry notion that three consecutive validation batches or runs are all that are required to demonstrate that a process is operating in a validated state. Instead, the new guidance now emphasizes that the level of monitoring and testing performed during process performance qualification (PPQ) studies must be sufficient to demonstrate statistical confidence both within and between batches. In some cases, three qualification runs may not be enough. Nearly two years after the guidance was first published, little has been written defining a statistical methodology for determining the number of samples and qualification runs required to satisfy Stage 2 requirements of the new guidance. This article proposes using a combination of risk assessment, control charting, and capability statistics to define the monitoring and testing scheme required to show that a pharmaceutical batch process is operating in a validated state. In this methodology, an assessment of process risk is performed through application of a process failure mode, effects, and criticality analysis (PFMECA). The output of PFMECA is used to select appropriate levels of statistical confidence and coverage which, in turn, are used in capability calculations to determine when significant Stage 2 (PPQ) milestones have been met. The achievement of Stage 2 milestones signals the release of batches for commercial distribution and the reduction of monitoring and testing to commercial production levels. Individuals, moving range, and range/sigma charts are used in conjunction with capability statistics to demonstrate that the commercial process is operating in a state of statistical control. The new process validation guidance published by the U.S. Food and Drug Administration in January of 2011 indicates that the number of process validation batches

  16. Stochastic growth logistic model with aftereffect for batch fermentation process

    International Nuclear Information System (INIS)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-01-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits

  17. Stochastic growth logistic model with aftereffect for batch fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Norhayati; Ayoubi, Tawfiqullah [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah; Rahman, Haliza Abdul [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  18. 40 CFR 63.1326 - Batch process vents-recordkeeping provisions.

    Science.gov (United States)

    2010-07-01

    ... operator of a batch process vent that has chosen to use a control device to comply with § 63.1322(a) shall... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Batch process vents-recordkeeping... Batch process vents—recordkeeping provisions. (a) Group determination records for batch process vents...

  19. 40 CFR 63.487 - Batch front-end process vents-reference control technology.

    Science.gov (United States)

    2010-07-01

    ... § 63.487 Batch front-end process vents—reference control technology. (a) Batch front-end process vents... process vent, reduce organic HAP emissions for the batch cycle by 90 weight percent using a control device... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch front-end process vents-reference...

  20. Investigation of vinegar production using a novel shaken repeated batch culture system.

    Science.gov (United States)

    Schlepütz, Tino; Büchs, Jochen

    2013-01-01

    Nowadays, bioprocesses are developed or optimized on small scale. Also, vinegar industry is motivated to reinvestigate the established repeated batch fermentation process. As yet, there is no small-scale culture system for optimizing fermentation conditions for repeated batch bioprocesses. Thus, the aim of this study is to propose a new shaken culture system for parallel repeated batch vinegar fermentation. A new operation mode - the flushing repeated batch - was developed. Parallel repeated batch vinegar production could be established in shaken overflow vessels in a completely automated operation with only one pump per vessel. This flushing repeated batch was first theoretically investigated and then empirically tested. The ethanol concentration was online monitored during repeated batch fermentation by semiconductor gas sensors. It was shown that the switch from one ethanol substrate quality to different ethanol substrate qualities resulted in prolonged lag phases and durations of the first batches. In the subsequent batches the length of the fermentations decreased considerably. This decrease in the respective lag phases indicates an adaptation of the acetic acid bacteria mixed culture to the specific ethanol substrate quality. Consequently, flushing repeated batch fermentations on small scale are valuable for screening fermentation conditions and, thereby, improving industrial-scale bioprocesses such as vinegar production in terms of process robustness, stability, and productivity. Copyright © 2013 American Institute of Chemical Engineers.

  1. Synthesis of zero effluent multipurpose batch processes using effective scheduling

    CSIR Research Space (South Africa)

    Gouws, JF

    2008-06-01

    Full Text Available the scheduling of operations in the synthesis phase. The mathematically based method presented in this paper deals with the synthesis of a batch plant operating in the fashion mentioned above. The method determines the optimal size and number of processing...

  2. 40 CFR 63.491 - Batch front-end process vents-recordkeeping requirements.

    Science.gov (United States)

    2010-07-01

    ... combustion device to control halogenated batch front-end process vents or halogenated aggregate batch vent... periods of process or control device operation when monitors are not operating. (f) Aggregate batch vent... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch front-end process vents...

  3. 40 CFR 63.489 - Batch front-end process vents-monitoring equipment.

    Science.gov (United States)

    2010-07-01

    ... operator of a batch front-end process vent or aggregate batch vent stream that uses a control device to... meets the conditions of § 63.490(b)(3). (i) For batch front-end process vents using a control device to... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch front-end process vents...

  4. 40 CFR 63.492 - Batch front-end process vents-reporting requirements.

    Science.gov (United States)

    2010-07-01

    ... recorded under § 63.491(e)(3) when the batch front-end process vent is diverted away from the control... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch front-end process vents-reporting... Batch front-end process vents—reporting requirements. (a) The owner or operator of a batch front-end...

  5. A review of control strategies for manipulating the feed rate in fed-batch fermentation processes

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Sin, Gürkan

    2017-01-01

    A majority of industrial fermentation processes are operated in fed-batch mode. In this case, the rate of feed addition to the system is a focus for optimising the process operation, as it directly impacts metabolic activity, as well as directly affecting the volume dynamics in the system...

  6. A novel model-based control strategy for aerobic filamentous fungal fed-batch fermentation processes

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albaek, Mads O.

    2017-01-01

    A novel model-based control strategy has been developed for filamentous fungal fed-batch fermentation processes. The system of interest is a pilot scale (550 L) filamentous fungus process operating at Novozymes A/S. In such processes, it is desirable to maximize the total product achieved...... in a batch in a defined process time. In order to achieve this goal, it is important to maximize both the product concentration, and also the total final mass in the fed-batch system. To this end, we describe the development of a control strategy which aims to achieve maximum tank fill, while avoiding oxygen...... limited conditions. This requires a two stage approach: (i) calculation of the tank start fill; and (ii) on-line control in order to maximize fill subject to oxygen transfer limitations. First, a mechanistic model was applied off-line in order to determine the appropriate start fill for processes...

  7. Cell engineering of Escherichia coli allows high cell density accumulation without fed-batch process control.

    Science.gov (United States)

    Bäcklund, Emma; Markland, Katrin; Larsson, Gen

    2008-01-01

    A set of mutations in the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) was used to create Escherichia coli strains with a reduced uptake rate of glucose. This allows a growth restriction, which is controlled on cellular rather than reactor level, which is typical of the fed-batch cultivation concept. Batch growth of the engineered strains resulted in cell accumulation profiles corresponding to a growth rate of 0.78, 0.38 and 0.25 h(-1), respectively. The performance of the mutants in batch cultivation was compared to fed-batch cultivation of the wild type cell using restricted glucose feed to arrive at the corresponding growth profiles. Results show that the acetate production, oxygen consumption and product formation were similar, when a recombinant product was induced from the lacUV5 promoter. Ten times more cells could be produced in batch cultivation using the mutants without the growth detrimental production of acetic acid. This allows high cell density production without the establishment of elaborate fed-batch control equipment. The technique is suggested as a versatile tool in high throughput multiparallel protein production but also for increasing the number of experiments performed during process development while keeping conditions similar to the large-scale fed-batch performance.

  8. Yields from pyrolysis of refinery residue using a batch process

    Directory of Open Access Journals (Sweden)

    S. Prithiraj

    2017-12-01

    Full Text Available Batch pyrolysis was a valuable process of assessing the potential of recovering and characterising products from hazardous waste materials. This research explored the pyrolysis of hydrocarbon-rich refinery residue, from crude oil processes, in a 1200 L electrically-heated batch retort. Furthermore, the off-gases produced were easily processed in compliance with existing regulatory emission standards. The methodology offers a novel, cost-effective and environmentally compliant method of assessing recovery potential of valuable products. The pyrolysis experiments yielded significant oil (70% with high calorific value (40 MJ/kg, char (14% with carbon content over 80% and non-condensable gas (6% with significant calorific value (240 kJ/mol. The final gas stream was subjected to an oxidative clean-up process with continuous on-line monitoring demonstrating compliance with South African emission standards. The gas treatment was overall economically optimal as only a smaller portion of the original residue was subjected to emission-controlling steps. Keywords: Batch pyrolysis, Volatiles, Oil yields, Char, Emissions, Oil recovery

  9. Using Simulation for Scheduling and Rescheduling of Batch Processes

    OpenAIRE

    Girish Joglekar

    2017-01-01

    The problem of scheduling multiproduct and multipurpose batch processes has been studied for more than 30 years using math programming and heuristics. In most formulations, the manufacturing recipes are represented by simplified models using state task network (STN) or resource task network (RTN), transfers of materials are assumed to be instantaneous, constraints due to shared utilities are often ignored, and scheduling horizons are kept small due to the limits on the problem size that can b...

  10. Sequencing batch-reactor control using Gaussian-process models.

    Science.gov (United States)

    Kocijan, Juš; Hvala, Nadja

    2013-06-01

    This paper presents a Gaussian-process (GP) model for the design of sequencing batch-reactor (SBR) control for wastewater treatment. The GP model is a probabilistic, nonparametric model with uncertainty predictions. In the case of SBR control, it is used for the on-line optimisation of the batch-phases duration. The control algorithm follows the course of the indirect process variables (pH, redox potential and dissolved oxygen concentration) and recognises the characteristic patterns in their time profile. The control algorithm uses GP-based regression to smooth the signals and GP-based classification for the pattern recognition. When tested on the signals from an SBR laboratory pilot plant, the control algorithm provided a satisfactory agreement between the proposed completion times and the actual termination times of the biodegradation processes. In a set of tested batches the final ammonia and nitrate concentrations were below 1 and 0.5 mg L(-1), respectively, while the aeration time was shortened considerably. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Hydrogen generation from glycerol in batch fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, K.; Waligorska, M.; Wojtowski, M.; Laniecki, M. [Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan (Poland)

    2009-05-15

    The influence of concentration of glycerol, inoculum and total nitrogen on hydrogen generation, in batch dark fermentation process in the presence of digested sludge (at 37 C and at initial pH = 6) was studied. Changes in substrate and products concentrations were modeled with modified Gompertz equations (correlation coefficient R{sup 2} = 0.9015). The 1,3-propandiol, butyric acid, acetic acid, lactic acid and ethanol were found as the main liquid metabolites. Maximal substrate yield for hydrogen was 0.41 mol H{sub 2}/mol glycerol and was obtained for medium containing 10 g/l of glycerol with the lowest amount of inoculum - 1.16 g volatile suspended solid (VSS)/l. Increase of glycerol concentration from 5 to 30 g/l resulted in much better hydrogen generation, namely from 0.345 to 0.715 l H{sub 2}/l. Further increase of glycerol concentration did not cause any changes. The H{sub 2}:CO{sub 2} ratio in biogas in system with the highest substrate yield was always 1. The initial concentration of glycerol does not influence the rate of hydrogen generation. The increase of initial concentration of inoculum from 1.2 to 11.6 g VSS/l results in the decrease of specific hydrogen yield. Nitrogen concentration in medium does not influence the hydrogen production. (author)

  12. MASS PRODUCTION OF THE BENEFICIAL NEMATODE STEINERNEMA CARPOCAPSAE UTILIZING A FED-BATCH CULTURING PROCESS

    OpenAIRE

    Leonard D. Holmes; Floyd L. Inman III; Sivanadane Mandjiny; Rinu Kooliyottil; Devang Upadhyay

    2013-01-01

    The present study deals with the batch and fed-batch mass production of Steinernema carpocapsae. S. carpocapsae is an entomoparasitic nematode that is used as a biological control agent of soil-borne crop insect pests. The ability and efficiency of fed-batch culture process was successful through the utilization of the nematode’s bacterial symbiont Xenorhabdus nematophila. Results from the fed-batch process were compared to those obtain from the standard batch process. The fed-batch process s...

  13. Performance assessment and improvement of control charts for statistical batch process monitoring

    NARCIS (Netherlands)

    Ramaker, Henk-Jan; van Sprang, Eric N. M.; Westerhuis, Johan A.; Gurden, Stephen P.; Smilde, Age K.; van der Meulen, Frank H.

    2006-01-01

    This paper describes the concepts of statistical batch process monitoring and the associated problems. It starts with an introduction to process monitoring in general which is then extended to batch process monitoring. The performance of control charts for batch process monitoring is discussed by

  14. 40 CFR 63.1323 - Batch process vents-methods and procedures for group determination.

    Science.gov (United States)

    2010-07-01

    ... in § 63.1322(a)(1) or § 63.1322(b)(1) or routing the batch process vent to a control device to comply... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Batch process vents-methods and... Polymers and Resins § 63.1323 Batch process vents—methods and procedures for group determination. (a...

  15. 40 CFR 63.486 - Batch front-end process vent provisions.

    Science.gov (United States)

    2010-07-01

    ... sources with batch front-end process vents classified as Group 1 shall comply with the reference control... Group 2 batch front-end process vents shall comply with the applicable reference control technology... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Batch front-end process vent provisions...

  16. 40 CFR 63.1322 - Batch process vents-reference control technology.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Batch process vents-reference control technology. 63.1322 Section 63.1322 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Batch process vents—reference control technology. (a) Batch process vents. The owner or operator of a...

  17. 40 CFR 63.1407 - Non-reactor batch process vent provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Non-reactor batch process vent... § 63.1407 Non-reactor batch process vent provisions. (a) Emission standards. (1) Owners or operators of non-reactor batch process vents located at new or existing affected sources with 0.25 tons per year (0...

  18. Combined Estimation and Optimal Control of Batch Membrane Processes

    Directory of Open Access Journals (Sweden)

    Martin Jelemenský

    2016-11-01

    Full Text Available In this paper, we deal with the model-based time-optimal operation of a batch diafiltration process in the presence of membrane fouling. Membrane fouling poses one of the major problems in the field of membrane processes. We model the fouling behavior and estimate its parameters using various methods. Least-squares, least-squares with a moving horizon, recursive least-squares methods and the extended Kalman filter are applied and discussed for the estimation of the fouling behavior on-line during the process run. Model-based optimal non-linear control coupled with parameter estimation is applied in a simulation case study to show the benefits of the proposed approach.

  19. Analysis and modelling of the energy requirements of batch processes; Analyse und Modellierung des Energiebedarfes in Batch-Prozessen

    Energy Technology Data Exchange (ETDEWEB)

    Bieler, P.S.

    2002-07-01

    This intermediate report for the Swiss Federal Office of Energy (SFOE) presents the results of a project aiming to model the energy consumption of multi-product, multi-purpose batch production plants. The utilities investigated were electricity, brine and steam. Both top-down and bottom-up approaches are described, whereby top-down was used for the buildings where the batch process apparatus was installed. Modelling showed that for batch-plants at the building level, the product mix can be too variable and the diversity of products and processes too great for simple modelling. Further results obtained by comparing six different production plants that could be modelled are discussed. The several models developed are described and their wider applicability is discussed. Also, the results of comparisons made between modelled and actual values are presented. Recommendations for further work are made.

  20. An order-picking operations system for managing the batching activities in a warehouse

    Science.gov (United States)

    Lam, Cathy H. Y.; Choy, K. L.; Ho, G. T. S.; Lee, C. K. M.

    2014-06-01

    Nowadays, customer orders with high product variety in small quantities are often received and requested for timely delivery. However, the order-picking process is a labour-intensive and costly activity to handle those small orders separately. In such cases, small orders are often grouped into batches so that two or more orders can be served at once to increase the picking efficiency and thus reduce the travel distance. In this paper, an order-picking operations system (OPOS) is proposed to assist the formulation of an order-picking plan and batch-handling sequence. The study integrates a mathematical model and fuzzy logic technique to divide the receiving orders into batches and prioritise the batch-handling sequence for picking, respectively. Through the proposed system, the order-picking process can be managed as batches with common picking locations to minimise the travel distance, and the batch-picking sequence can be determined as well. To demonstrate the use of the system, a case study in a third-party logistics warehouse is presented, and the result shows that both the order-picking activity and labour utilisation can be better organised.

  1. Selecting local constraint for alignment of batch process data with dynamic time warping

    DEFF Research Database (Denmark)

    Spooner, Max Peter; Kold, David; Kulahci, Murat

    2017-01-01

    observation number for every batch. Dynamic time warping has been shown to be an effective method for meeting these objectives. This is based on a dynamic programming algorithm that aligns a batch to a reference batch, by stretching and compressing its local time dimension. The resulting ”warping function......There are two key reasons for aligning batch process data. The first is to obtain same-length batches so that standard methods of analysis may be applied, whilst the second reason is to synchronise events that take place during each batch so that the same event is associated with the same......” may be interpreted as a progress signature of the batch which may be appended to the aligned data for further analysis. For the warping function to be a realistic reflection of the progress of a batch, it is necessary to impose some constraints on the dynamic time warping algorithm, to avoid...

  2. Batch arrival discrete time queue with gated vacation system ...

    African Journals Online (AJOL)

    A class of single server vacation queues, which have batch arrivals and single server, is considered in discrete time. Here the server goes on vacation of random length as soon as the system becomes empty. On return from vacation, if he finds any customers waiting in the queue, the server starts serving the customers one ...

  3. A recirculating incubation system for hatching small batches of fish ...

    African Journals Online (AJOL)

    This paper describes the design, construction and evaluation of the capacity of a re-circulating incubation system for hatching small batches of fish eggs. ... Water flowed out of the incubation unit through a small section of glass and then plastic tubing inserted through a second hole in the rubber stopper to a PVC drain ...

  4. Integration of virtualized worker nodes in standard batch systems

    International Nuclear Information System (INIS)

    Buege, Volker; Kunze, Marcel; Oberst, Oliver; Quast, Guenter; Scheurer, Armin; Hessling, Hermann; Kemp, Yves; Synge, Owen

    2010-01-01

    Current experiments in HEP only use a limited number of operating system flavours. Their software might only be validated on one single OS platform. Resource providers might have other operating systems of choice for the installation of the batch infrastructure. This is especially the case if a cluster is shared with other communities, or communities that have stricter security requirements. One solution would be to statically divide the cluster into separated sub-clusters. In such a scenario, no opportunistic distribution of the load can be achieved, resulting in a poor overall utilization efficiency. Another approach is to make the batch system aware of virtualization, and to provide each community with its favoured operating system in a virtual machine. Here, the scheduler has full flexibility, resulting in a better overall efficiency of the resources. In our contribution, we present a lightweight concept for the integration of virtual worker nodes into standard batch systems. The virtual machines are started on the worker nodes just before jobs are executed there. No meta-scheduling is introduced. We demonstrate two prototype implementations, one based on the Sun Grid Engine (SGE), the other using Maui/Torque as a batch system. Both solutions support local job as well as Grid job submission. The hypervisors currently used are Xen and KVM, a port to another system is easily envisageable. To better handle different virtual machines on the physical host, the management solution VmImageManager is developed. We will present first experience from running the two prototype implementations. In a last part, we will show the potential future use of this lightweight concept when integrated into high-level (i.e. Grid) work-flows.

  5. A novel model-based control strategy for aerobic filamentous fungal fed-batch fermentation processes.

    Science.gov (United States)

    Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Cassells, Benny; Sin, Gürkan; Gernaey, Krist V

    2017-07-01

    A novel model-based control strategy has been developed for filamentous fungal fed-batch fermentation processes. The system of interest is a pilot scale (550 L) filamentous fungus process operating at Novozymes A/S. In such processes, it is desirable to maximize the total product achieved in a batch in a defined process time. In order to achieve this goal, it is important to maximize both the product concentration, and also the total final mass in the fed-batch system. To this end, we describe the development of a control strategy which aims to achieve maximum tank fill, while avoiding oxygen limited conditions. This requires a two stage approach: (i) calculation of the tank start fill; and (ii) on-line control in order to maximize fill subject to oxygen transfer limitations. First, a mechanistic model was applied off-line in order to determine the appropriate start fill for processes with four different sets of process operating conditions for the stirrer speed, headspace pressure, and aeration rate. The start fills were tested with eight pilot scale experiments using a reference process operation. An on-line control strategy was then developed, utilizing the mechanistic model which is recursively updated using on-line measurements. The model was applied in order to predict the current system states, including the biomass concentration, and to simulate the expected future trajectory of the system until a specified end time. In this way, the desired feed rate is updated along the progress of the batch taking into account the oxygen mass transfer conditions and the expected future trajectory of the mass. The final results show that the target fill was achieved to within 5% under the maximum fill when tested using eight pilot scale batches, and over filling was avoided. The results were reproducible, unlike the reference experiments which show over 10% variation in the final tank fill, and this also includes over filling. The variance of the final tank fill is

  6. Specialized hybrid batch fabrication process for MEMS RF voltage sensors

    Science.gov (United States)

    Dittmer, Jan; Judaschke, Rolf; Büttgenbach, Stephanus

    2007-12-01

    RF voltage measurement based on electrostatic RMS voltage-to-force conversion is an alternative method in comparison to the classical thermal power dissipation method. It is based on a parallel-plate capacitor with one elastically hinged plate. By applying an AC voltage, a force proportional to its RMS value is generated between the plates, and consequently the movable plate swings to the equilibrium position between spring force and electrostatic force. For a theoretically adequate resolution and precision, the necessary geometrical dimensions of the sensor practically require the use of advanced micromachining techniques. In this contribution, we discuss a unique batch fabrication process to meet the challenge of having two very large plane-parallel surfaces separated by only a few microns. The basic design consists of an actuator made of silicon embedded between two glass wafers for electrical contacting and sealing. Each step of this hybrid process has been optimized to prevent residual liquids leading to stiction and breaking of the fragile parts of the micro-structures. Flat grooves in the silicon define the gap between the capacitor electrodes, and an anisotropic dry-etch step releases the actuator. A second glass wafer builds the top of the stack and is fixated using a patterned photo-resist. Bumpers on the bottom layer and ridges in the top wafer improve the robustness of the structure. In this paper, we present a detailed analysis of the production process, pointing out critical as well as alternative design steps towards the optimized sensor. Finally, results of working devices are shown.

  7. Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process.

    Science.gov (United States)

    Jin, Huaiping; Chen, Xiangguang; Yang, Jianwen; Wu, Lei; Wang, Li

    2014-11-01

    The lack of accurate process models and reliable online sensors for substrate measurements poses significant challenges for controlling substrate feeding accurately, automatically and optimally in fed-batch fermentation industries. It is still a common practice to regulate the feeding rate based upon manual operations. To address this issue, a hybrid intelligent control method is proposed to enable automatic substrate feeding. The resulting control system consists of three modules: a presetting module for providing initial set-points; a predictive module for estimating substrate concentration online based on a new time interval-varying soft sensing algorithm; and a feedback compensator using expert rules. The effectiveness of the proposed approach is demonstrated through its successful applications to the industrial fed-batch chlortetracycline fermentation process. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  8. SLUDGE BATCH 6/TANK 51 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, David; Best, David

    2010-04-28

    Qualification simulant testing was completed to determine appropriate processing conditions and assumptions for the Sludge Batch 6 (SB6) Shielded Cells demonstration of the DWPF flowsheet using the qualification sample from Tank 51 for SB6 after SRNL washing. It was found that an acid addition window of 105-139% of the DWPF acid equation (100-133% of the Koopman minimum acid equation) gave acceptable Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) results for nitrite destruction and hydrogen generation. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 117%, 133%, and 150% stoichiometry (Koopman) were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 42 hours of boiling in the SRAT. The 150% acid run reached 110% of the DWPF SRAT limit of 0.65 lb H{sub 2}/hr, and the 133% acid run reached 75% of the DWPF SME limit of 0.223 lb H{sub 2}/hr. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 25 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two other processing issues were noted. First, incomplete mercury suspension impacted mercury stripping from the SRAT slurry. This led to higher SRAT product mercury concentrations than targeted (>0.45 wt% in the total solids). Associated with this issue was a general difficulty in quantifying the mass of mercury in the SRAT vessel as a function of time, especially as acid stoichiometry increased. About ten times more mercury was found after drying the 150% acid SME product to powder than was indicated by the SME product sample results. Significantly more mercury was also found in the 133% acid SME product samples than was found during the SRAT cycle sampling. It appears that mercury is segregating from the bulk slurry in the SRAT vessel, as mercury amalgam deposits for example, and is not being resuspended by the agitators. The second processing issue

  9. Critical evaluation of approaches for on-line batch process monitoring

    NARCIS (Netherlands)

    van Sprang, E. N. M.; Ramaker, H. J.; Westerhuis, J. A.; Gurden, S. P.; Smilde, A. K.

    2002-01-01

    Since the introduction of batch process monitoring using component models in 1992, different approaches for statistical batch process monitoring have been suggested in the literature. This is the first evaluation of five proposed approaches so far. The differences and similarities between the

  10. Recursive Gaussian Process Regression Model for Adaptive Quality Monitoring in Batch Processes

    Directory of Open Access Journals (Sweden)

    Le Zhou

    2015-01-01

    Full Text Available In chemical batch processes with slow responses and a long duration, it is time-consuming and expensive to obtain sufficient normal data for statistical analysis. With the persistent accumulation of the newly evolving data, the modelling becomes adequate gradually and the subsequent batches will change slightly owing to the slow time-varying behavior. To efficiently make use of the small amount of initial data and the newly evolving data sets, an adaptive monitoring scheme based on the recursive Gaussian process (RGP model is designed in this paper. Based on the initial data, a Gaussian process model and the corresponding SPE statistic are constructed at first. When the new batches of data are included, a strategy based on the RGP model is used to choose the proper data for model updating. The performance of the proposed method is finally demonstrated by a penicillin fermentation batch process and the result indicates that the proposed monitoring scheme is effective for adaptive modelling and online monitoring.

  11. A storage assignment model for batch preparation in process industries

    NARCIS (Netherlands)

    Ashayeri, J.; Selen, W.

    2013-01-01

    Purpose – The purpose of this paper is to develop new model formulation for reducing the workload in pre‐batching at a manufacturer of flavors and fragrances, by optimally assigning ingredients to different storage types, taking into account past usage of ingredients and several restrictions about

  12. A general framework for the synthesis and operational design of batch processes

    DEFF Research Database (Denmark)

    Papaeconomou, Eirini; Gani, Rafiqul; Jørgensen, Sten Bay

    2002-01-01

    , which is the sequence of batch operations performed in order to achieve a specific objective. Important features of the methodology are a set of rule-based algorithms that provide the operational model of the units. Such an algorithm is highlighted, together with the associated rules......The objective of this paper is to present a general problem formulation and a general methodology for the synthesis of batch operations and the operational design of individual batch processes, such as mixing, reaction and separation. The general methodology described supplies the batch routes......, for the operational design of batch reactors. A case study involving the feasible operation of a batch reactor with multiple desirable and undesirable reactions and operational constraints is presented. Application results including verification of the generated operational sequences (alternatives) through dynamic...

  13. A General framework for the Synthesis and Operational Design of Batch Processes

    DEFF Research Database (Denmark)

    , which is the sequence of batch operations performed in order to achieve a specific objective. Important features of the methodology are a set of rule-based algorithms that provide the operational model of the units. Such an algorithm is highlighted, together with the associated rules......The objective of this paper is to present a general problem formulation and a general methodlogy for the synthesis of batch operations and the operational design of individual batch processes, such as mixing, reaction and separation. The general methodology described supplies the batch routes......, for the operational design of batch reactors. A case study involving the feasible operation of a batch reactor with multiple desirable and undesirable reactions and operational constraints is presented. Application results including verification of the generated operational sequences (alternatives) through dynamic...

  14. Process Analytical Technology (PAT): batch-to-batch reproducibility of fermentation processes by robust process operational design and control.

    Science.gov (United States)

    Gnoth, S; Jenzsch, M; Simutis, R; Lübbert, A

    2007-10-31

    The Process Analytical Technology (PAT) initiative of the FDA is a reaction on the increasing discrepancy between current possibilities in process supervision and control of pharmaceutical production processes and its current application in industrial manufacturing processes. With rigid approval practices based on standard operational procedures, adaptations of production reactors towards the state of the art were more or less inhibited for long years. Now PAT paves the way for continuous process and product improvements through improved process supervision based on knowledge-based data analysis, "Quality-by-Design"-concepts, and, finally, through feedback control. Examples of up-to-date implementations of this concept are presented. They are taken from one key group of processes in recombinant pharmaceutical protein manufacturing, the cultivations of genetically modified Escherichia coli bacteria.

  15. CONVERSION OF PINEAPPLE JUICE WASTE INTO LACTIC ACID IN BATCH AND FED – BATCH FERMENTATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Abdullah Mochamad Busairi

    2012-01-01

    Full Text Available Pineapple juice waste contains valuable components, which are mainly sucrose, glucose, and fructose. Recently, lactic acid has been considered to be an important raw material for the production of biodegradable lactide polymer. The fermentation experiments were carried out in a 3 litres fermentor (Biostat B Model under anaerobic condition with stirring speed of 50 rpm, temperature at 40oC, and pH of 6.00. Effect of feed concentration on lactic acid production, bacterial growth, substrate utilisation and productivity was studied. The results obtained from fed- batch culture fermentation showed that the maximum lactic acid productivity was 0.44 g/L.h for feed concentration of 90 g/L at 48 hours. Whereas the lactic acid productivity obtained from fed-batch culture was twice and half fold higher than that of batch culture productivity.  Buangan jus nanas mengandung komponen yang berharga terutama sukrosa, glukosa, dan fruktosa. Asam laktat adalah bahan baku yang terbaru dan penting untuk dibuat sebagai polimer laktat yang dapat terdegradasi oleh lingkungan. Percobaan dilakukan pada fermentor 3 liter (Model Biostat B di bawah kondisi anaerob dengan kecepatan pengadukan 50 rpm, temperatur 40oC, dan pH 6,00. Pengaruh konsentrasi umpan terhadap produksi asam laktat, pertumbuhan mikroba, pengggunaan substrat dan produktivitas telah dipelajari. Hasil yang didapatkan pada fermentasi dengan menggunakan sistem fed-batch menunjukkan bahwa produktivitas asam laktat maksimum adalah 0.44 g/L,jam dengan konsentrasi umpan, 90 g/L pada waktu 48 jam. Bahkan produktivitas asam laktat yang didapat pada kultur fed-batch lebih tinggi 2,5 kali dari pada proses menggunakan sistem batch

  16. Degradation of chlorophenol mixtures in a fed-batch system by two ...

    African Journals Online (AJOL)

    Degradation of chlorophenol mixtures in a fed-batch system by two soil bacteria. ... This work was undertaken to investigate the effect of variations of the feed rate on a fed-batch set-up used to degrade xenobiotics. ... Keywords: Chlorophenol; fed batch system; aerobic degradation; waste treatment; microbial biocatalysis ...

  17. SLUDGE BATCH 6/TANK 40 SIMULANT CHEMICAL PROCESS CELL SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, David

    2010-04-28

    Phase III simulant flowsheet testing was completed using the latest composition estimates for SB6/Tank 40 feed to DWPF. The goals of the testing were to determine reasonable operating conditions and assumptions for the startup of SB6 processing in the DWPF. Testing covered the region from 102-159% of the current DWPF stoichiometric acid equation. Nitrite ion concentration was reduced to 90 mg/kg in the SRAT product of the lowest acid run. The 159% acid run reached 60% of the DWPF Sludge Receipt and Adjustment Tank (SRAT) limit of 0.65 lb H2/hr, and then sporadically exceeded the DWPF Slurry Mix Evaporator (SME) limit of 0.223 lb H2/hr. Hydrogen generation rates peaked at 112% of the SME limit, but higher than targeted wt% total solids levels may have been partially responsible for rates seen. A stoichiometric factor of 120% met both objectives. A processing window for SB6 exists from 102% to something close to 159% based on the simulant results. An initial recommendation for SB6 processing is at 115-120% of the current DWPF stoichiometric acid equation. The addition of simulated Actinide Removal Process (ARP) and Modular Caustic Side Solvent Extraction Unit (MCU) streams to the SRAT cycle had no apparent impact on the preferred stoichiometric factor. Hydrogen generation occurred continuously after acid addition in three of the four tests. The three runs at 120%, 118.4% with ARP/MCU, and 159% stoichiometry were all still producing around 0.1 lb hydrogen/hr at DWPF scale after 36 hours of boiling in the SRAT. The 120% acid run reached 23% of the SRAT limit and 37% of the SME limit. Conversely, nitrous oxide generation was subdued compared to previous sludge batches, staying below 29 lb/hr in all four tests or about a fourth as much as in comparable SB4 testing. Two processing issues, identified during SB6 Phase II flowsheet testing and qualification simulant testing, were monitored during Phase III. Mercury material balance closure was impacted by acid stoichiometry

  18. Water-integrated scheduling of batch process plants

    NARCIS (Netherlands)

    Pulluru, Sai Jishna; Akkerman, Renzo

    2017-01-01

    Efficient water management is becoming increasingly important in production systems, but companies often do not have any concrete strategies to implement. While there are numerous technological options for improving water efficiency in process plants, there is a lack of effective decision support to

  19. Water-integrated scheduling of batch process plants

    NARCIS (Netherlands)

    Pulluru, Sai Jishna; Akkerman, Renzo

    2018-01-01

    Efficient water management is becoming increasingly important in production systems, but companies often do not have any concrete strategies to implement. While there are numerous technological options for improving water efficiency in process plants, there is a lack of effective decision support to

  20. An Advisory System for On-line Control of Fed-batch Cultivation of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ljakova K.

    2008-12-01

    Full Text Available Free software for entering and documenting data EpiData is here used for design of an advisory system for on-line control of a fermentation process. Based on the preliminary developed system for functional state recognition, presented here system will advise the user which new functional state can be reached and what kind of control actions have to be taken. New-designed system appears as an expert system and comprises knowledge of well-trained operators of cultivation processes. Developed advisory system is further applied for a fed-batch cultivation of Saccharomyces cerevisiae.

  1. Production of Polystyrene Open-celled Microcellular Foam in Batch Process by Super Critical CO2

    Directory of Open Access Journals (Sweden)

    M.S. Enayati

    2010-12-01

    Full Text Available Open-celled foams are capable to allow the passage of fluids through their structure, because of interconnections between the open cells or bubbles and therefore these structures can be used as a membrane and filter. In thiswork, we have studied the production of polystyrene open-celled microcellular foam by using CO2 as blowing agent. To achieve such structures, it is necessary to control the stages of growth in such a way that the cells would connect to each other through the pores without any coalescence. The required processing condition to achieve open-celled structures is predictable by a model theory of opened-cell. This model suggests that at least a 130 bar saturation pressure and foaming time between 9 and 58 s are required for this system. The temperature range has been selected for to be both higher than polymer glass transition temperature and facilitating the foaming process. Experimental results in the batch foaming process has verified the model quite well. The SEM and mercury porousimetry tests show the presence of pores between the cells with open-celled structure. Experimental results show that by increasing the saturation pressure and the foaming temperature, there is a drop in the time required for open-celled structure formation. A 130 bar saturation pressure, 150o C foaming temperature and 60 s foaming time, suggest the attainment of open-celled microcellular foam based on polystyrene/CO2 system in the batch process.

  2. Design and Implementation of Electronic Batch Record Systems for Pharmaceutical Manufacturing Documentation

    International Nuclear Information System (INIS)

    Abdul Jalil Abd Hamid; Shafii Khamis; Rehir Dahalan

    2011-01-01

    Paper batch records have been used for decades to record procedures, the types and quantities of each material used, and the status of each step in the manufacturing process for both pharmaceuticals and medical devices. Although paper batch records are well established in its implementation, the system is laborious to maintain and prone to human error, particularly as manufacturing operations become increasingly complicated. Many pharmaceutical manufacturers are currently evaluating the feasibility of Electronic Batch Record (EBR) system. An integrated EBR system has been developed by Medical Technology Division of Nuclear Malaysia to monitor process and equipment used in the manufacture of pharmaceuticals and medical devices. The system architecture consists of an iPAN7 data processing system operating under Microsoft Windows Embedded CE 6.0 R2. The system serves as a common data bank and an input/output device for the iPAN7 processors. Full traceability from component material to finished product is maintained. Properly implemented, EBR eliminate paperwork, speed up information distribution, and provide useful tools for improving quality and efficiency. This paper discusses the general system requirements and specifications along with the hardware and software required to implement those requirements and specifications. Also discussed are problems which were encountered after initial development and plans for future development, and a plan for extending and commercializing this technology. (author)

  3. Evaluation of moving-bed biofilm sequencing batch reactor (MBSBR) in operating A2O process with emphasis on biological removal of nutrients existing in wastewater

    DEFF Research Database (Denmark)

    Seyedsalehi, M.; Jaafari, J.; Hélix-Nielsen, Claus

    2018-01-01

    In this study, the performance of moving-bed biofilm sequencing batch reactor in operating the anaerobic/anoxic/oxic (A2O) process for treatment of wastewaters containing nitrogen and phosphorous was evaluated. For this purpose, a pilot system with two bench-scale sequencing batch reactors with a...

  4. A discrete time formulation for batch processes with storage capacity and storage time limitations

    NARCIS (Netherlands)

    Kilic, O.A.; van Donk, D.P.; Wijngaard, J.

    This paper extends the conventional discrete time mixed integer linear programming (MILP) formulation for scheduling multiproduct/multipurpose batch processes by introducing storage capacity and storage time limitations. For this purpose, storage vessels are explicitly modeled on which material

  5. Designing an Autonomous Integrated Downstream Sequence From a Batch Separation Process - An Industrial Case Study.

    Science.gov (United States)

    Löfgren, Anton; Andersson, Niklas; Sellberg, Anton; Nilsson, Bernt; Löfgren, Magnus; Wood, Susanne

    2017-12-16

    This work is a proof of concept of how a sequence of industrial batch separation steps together are used to form an integrated autonomous downstream process. The sequence in this case study consisted of an anion chromatography step, virus inactivation and finally a hydrophobic chromatography step. Moving from batch to integrated separation minimizes hold-up times, storage tanks, and required equipment. The conversion from batch to integrated mode is achieved by extracting operating points and separation data from batch chromatograms. The integrated separation process is realized on an ÄKTA Pure controlled by an open research software called Orbit, making it possible to operate complex process configurations including multiple steps. The results from this case study is the principle and method of the steps taken to automation, achieving a more continuous and efficient downstream process. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Real-time synchronization of batch trajectories for on-line multivariate statistical process control using Dynamic Time Warping

    NARCIS (Netherlands)

    Gonzáles-Martínez, J.M.; Ferrer, A.; Westerhuis, J.A.

    2011-01-01

    This paper addresses the real-time monitoring of batch processes with multiple different local time trajectories of variables measured during the process run. For Unfold Principal Component Analysis (U-PCA)—or Unfold Partial Least Squares (U-PLS)-based on-line monitoring of batch processes, batch

  7. Fed-Batch Production of Bacterial Ghosts Using Dielectric Spectroscopy for Dynamic Process Control.

    Science.gov (United States)

    Meitz, Andrea; Sagmeister, Patrick; Lubitz, Werner; Herwig, Christoph; Langemann, Timo

    2016-03-24

    The Bacterial Ghost (BG) platform technology evolved from a microbiological expression system incorporating the ϕX174 lysis gene E. E-lysis generates empty but structurally intact cell envelopes (BGs) from Gram-negative bacteria which have been suggested as candidate vaccines, immunotherapeutic agents or drug delivery vehicles. E-lysis is a highly dynamic and complex biological process that puts exceptional demands towards process understanding and control. The development of a both economic and robust fed-batch production process for BGs required a toolset capable of dealing with rapidly changing concentrations of viable biomass during the E-lysis phase. This challenge was addressed using a transfer function combining dielectric spectroscopy and soft-sensor based biomass estimation for monitoring the rapid decline of viable biomass during the E-lysis phase. The transfer function was implemented to a feed-controller, which followed the permittivity signal closely and was capable of maintaining a constant specific substrate uptake rate during lysis phase. With the described toolset, we were able to increase the yield of BG production processes by a factor of 8-10 when compared to currently used batch procedures reaching lysis efficiencies >98%. This provides elevated potentials for commercial application of the Bacterial Ghost platform technology.

  8. Fed-Batch Production of Bacterial Ghosts Using Dielectric Spectroscopy for Dynamic Process Control

    Directory of Open Access Journals (Sweden)

    Andrea Meitz

    2016-03-01

    Full Text Available The Bacterial Ghost (BG platform technology evolved from a microbiological expression system incorporating the ϕX174 lysis gene E. E-lysis generates empty but structurally intact cell envelopes (BGs from Gram-negative bacteria which have been suggested as candidate vaccines, immunotherapeutic agents or drug delivery vehicles. E-lysis is a highly dynamic and complex biological process that puts exceptional demands towards process understanding and control. The development of a both economic and robust fed-batch production process for BGs required a toolset capable of dealing with rapidly changing concentrations of viable biomass during the E-lysis phase. This challenge was addressed using a transfer function combining dielectric spectroscopy and soft-sensor based biomass estimation for monitoring the rapid decline of viable biomass during the E-lysis phase. The transfer function was implemented to a feed-controller, which followed the permittivity signal closely and was capable of maintaining a constant specific substrate uptake rate during lysis phase. With the described toolset, we were able to increase the yield of BG production processes by a factor of 8–10 when compared to currently used batch procedures reaching lysis efficiencies >98%. This provides elevated potentials for commercial application of the Bacterial Ghost platform technology.

  9. Nitrate to ammonia and ceramic (NAC) process during batch and continuous operation

    International Nuclear Information System (INIS)

    Muguercia, I.; Solomon, S.; Ebadian, M.A.

    1996-01-01

    The nitrate to ammonia and ceramic (NAC) process is an innovative technology for the denitration of radioactive sodium nitrate-based liquid waste found throughout Department of Energy (DOE) facilities in the United States. In the present investigation, two reaction systems were studied. The first utilized only sodium nitrate as the substrate for the aluminum. The second consisted of the multication composition of waste forms located at the Hanford facility. Studies were carried out on the batch reaction at three different starting nitrate ion concentrations, each at three different temperatures. For each of these conditions, the rate of nitrate depletion was determined, and rate constants were calculated. The reaction did not demonstrate simple kinetics; rather, it appeared to involve two zero order reactions. Certain generalities were obtained in both the batch reaction and in the continuous process, nonetheless. It was found that the conversion of nitrate to ammonia seemed to be most efficient at the lowest temperature studied, 50 degrees C. This behavior was more obvious in the case of the unadulterated nitrate solution than with the Hanford simulant. To elaborate a practical, marketable product, it was necessary to develop a process that could be carried out in a continuous matter, whereby reactants were continuously fed into a reactor while the products of the reaction were simultaneously removed. Thus, the objective has been to develop the prototype procedures for carrying out this continuous reaction. As a corollary of this research, it was first necessary to define the characteristics of the reaction with respect to rate, conversion efficiency, and safety. To achieve this end, reactions were run under various batch conditions, and an attempt was made to measure the rates of the depletion of nitrate and the production of ammonia and hydrogen as well as pH and temperature changes

  10. Statistical Review of Data from DWPF's Process Samples for Batches 19 Through 30

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.B.

    1999-04-06

    The measurements derived from samples taken during the processing of batches 19 through 30 at the Defense Waste Processing Facility (DWPF) affords an opportunity for review and comparisons. This report has looked at some of the statistics from these data. Only the data reported by the DWPF lab (that is, the data provided by the lab as representative of the samples taken) are available for this analysis. In some cases, the sample results reported may be a subset of the sample results generated by the analytical procedures. A thorough assessment of the DWPF lab's analytical procedures would require the complete set of data. Thus, the statistics reported here, specifically, as they relate to analytical uncertainties, are limited to the reported data for these samples, A fell for the consistency of the incoming slurry is the estimation of the components of variation for the Sludge Receipt and Adjustment Tank (SRAT) receipts. In general, for all of the vessels, the data from batches after 21 show smaller batch-to-batch variation than the data from all the batches. The relative contributions of batch-to-batch versus residual, which includes analytical, are presented in these analyses.

  11. Brunovsky Normal Form of Monod Kinetics Models and Growth Rate Control of a Fed-batch Cultivation Process

    Directory of Open Access Journals (Sweden)

    Pavlov Y.

    2007-12-01

    Full Text Available A mathematical methodology that gives assistance to design of fed-batch stabilization and control is presented. The methodology is based both on Utility theory and optimal Control theory. The Utility theory deals with the expressed subjective preferences and allows for the expert preferences to be taken in consideration in complex biotechnological systems as criteria for control and optimization. The Control theory is used for parameters stabilization of a fed-batch cultivation process. The control is written based on information of the growth rate. The simulations show good efficiency of the control laws.

  12. Batch management based monitoring system: design, implement, and visualization

    International Nuclear Information System (INIS)

    Kan Bowen; Shi Jingyan

    2012-01-01

    Torque, an efficient PBS (Portable Batch System)-based open source Resource Management system, was originally developed by Ames research center of NASA, which was designed to satisfy the computing requirements of heterogeneous network. With the development of distributed computing, Torque has been widely used in high performance computing cluster. However, because of the lack of a well designed monitoring system, it is difficult to monitor, record, and control, leading to low stability, reliability and manageability. To overcome those problems, this paper designs and implements an adaptive lightweight monitoring system for torque from five aspects. 1) A lightweight circulating filtration logging system is developed to obtain the real-time running status of torque; 2) One uniform interface was provided for administrators to define monitoring commands, which can query management resources of torque; 3) Storage strategy is designed to make monitoring information persistent; 4) One uniform interface is provided for users to customized alarms, which can submit exceptions and errors to users via emails and SMS in real time; 5) HTML5 technology is applied in the customizable visualization of the jobs' status in torque in real time. (authors)

  13. Application of heat compensation calorimetry to an E. coli fed-batch process.

    Science.gov (United States)

    Müller, Matthias; Meusel, Wolfram; Husemann, Ute; Greller, Gerhard; Kraume, Matthias

    2018-01-20

    The application of biocalorimetry to fermentation processes offers advantageous insights, while being less complex compared to other, sophisticated PAT solutions. Although the general concept is established, calorimetric methods vary in detail. In this work, a special approach, called heat compensation calorimetry, was applied to an E. coli fed-batch process. Much work has been done for batch processes, proving the validity and accuracy of this calorimetric mode. However, the adaption of this strategy to fed-batch processes has some implications. In the first section of this work, batch fermentations were performed, comparing heat capacity calorimetry to the compensation mode. Both processes showed very good agreement by means of growth behavior. The heat related differences, e.g. temperature profiles, were obvious. In addition, the impact of the chosen mode on the calculation of in-process heat transfer coefficients was shown. Finally, a fed-batch fermentation was performed. The compensation mode was kept sufficiently, up to the point where the metabolic heat production accelerated strongly. Controller tuning was a neuralgic point, which would have needed further optimization under these conditions. Nevertheless, in the present work it was possible to realize a working compensation process while demonstrating critical aspects that must be considered when establishing such approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. An Integrated Environment for Batch Process Development - From Recipe to Manufacture

    DEFF Research Database (Denmark)

    Batch process development involves the process of converting a chemical synthesis into an optimum, safe, robust, and economical process for manufacturing the chemical of desired quality at the ultimate desired scale. In this paper we describe a strategy for developing a set of integrated decision...

  15. Functional Unfold Principal Component Regression Methodology for Analysis of Industrial Batch Process Data

    DEFF Research Database (Denmark)

    Mears, Lisa; Nørregaard, Rasmus; Sin, Gürkan

    2016-01-01

    This work proposes a methodology utilizing functional unfold principal component regression (FUPCR), for application to industrial batch process data as a process modeling and optimization tool. The methodology is applied to an industrial fermentation dataset, containing 30 batches of a production...... process operating at Novozymes A/S. Following the FUPCR methodology, the final product concentration could be predicted with an average prediction error of 7.4%. Multiple iterations of preprocessing were applied by implementing the methodology to identify the best data handling methods for the model....... It is shown that application of functional data analysis and the choice of variance scaling method have the greatest impact on the prediction accuracy. Considering the vast amount of batch process data continuously generated in industry, this methodology can potentially contribute as a tool to identify...

  16. Evaluation of Lip Prints on Different Supports Using a Batch Image Processing Algorithm and Image Superimposition.

    Science.gov (United States)

    Herrera, Lara Maria; Fernandes, Clemente Maia da Silva; Serra, Mônica da Costa

    2018-01-01

    This study aimed to develop and to assess an algorithm to facilitate lip print visualization, and to digitally analyze lip prints on different supports, by superimposition. It also aimed to classify lip prints according to sex. A batch image processing algorithm was developed, which facilitated the identification and extraction of information about lip grooves. However, it performed better for lip print images with a uniform background. Paper and glass slab allowed more correct identifications than glass and the both sides of compact disks. There was no significant difference between the type of support and the amount of matching structures located in the middle area of the lower lip. There was no evidence of association between types of lip grooves and sex. Lip groove patterns of type III and type I were the most common for both sexes. The development of systems for lip print analysis is necessary, mainly concerning digital methods. © 2017 American Academy of Forensic Sciences.

  17. Fast lithographic source optimization using a batch-processing sequential least square estimator.

    Science.gov (United States)

    Ma, Xu; Lin, Haijun; Jiao, Guoli; Li, Yanqiu; Arce, Gonzalo R

    2017-07-20

    This paper proposes a fast source optimization (SO) method for lithography systems to improve the imaging performance of different hotspots on the fullchip layout. Hotspots are referred to as the critical locations on the layout that are difficult to print. A fullchip layout usually includes numerous hotspots with different geometric characteristics. Current SO approaches collect all of the data from different hotspots before the optimization, and then try to calculate the common optimal source for all hotspots. If any new data from unaccounted hotspots become available, the optimal source has to be recalculated. This paper first develops a batch-processing sequential least square estimator, and then uses it to iteratively modify the source pattern based on the ongoing hotspot data. The optimized source for one hotspot can be updated to suit others without redundant computation. Simulations show that the proposed method can significantly accelerate the SO procedure, while improving the imaging performance of multiple hotspots.

  18. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-10

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  19. 40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements

    Science.gov (United States)

    2010-07-01

    ....1416(d).b Boiler or process heater with a design heat input capacity less than 44 megawatts and where... Requirements 3 Table 3 to Subpart OOO of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Resins Pt. 63, Subpt. OOO, Table 3 Table 3 to Subpart OOO of Part 63—Batch Process Vent Monitoring...

  20. Comparison of batch and continuous multi-column protein A capture processes by optimal design.

    Science.gov (United States)

    Baur, Daniel; Angarita, Monica; Müller-Späth, Thomas; Steinebach, Fabian; Morbidelli, Massimo

    2016-07-01

    Multi-column capture processes show several advantages compared to batch capture. It is however not evident how many columns one should use exactly. To investigate this issue, twin-column CaptureSMB, 3- and 4-column periodic counter-current chromatography (PCC) and single column batch capture are numerically optimized and compared in terms of process performance for capturing a monoclonal antibody using protein A chromatography. Optimization is carried out with respect to productivity and capacity utilization (amount of product loaded per cycle compared to the maximum amount possible), while keeping yield and purity constant. For a wide range of process parameters, all three multi-column processes show similar maximum capacity utilization and performed significantly better than batch. When maximizing productivity, the CaptureSMB process shows optimal performance, except at high feed titers, where batch chromatography can reach higher productivity values than the multi-column processes due to the complete decoupling of the loading and elution steps, albeit at a large cost in terms of capacity utilization. In terms of trade-off, i.e. how much the capacity utilization decreases with increasing productivity, CaptureSMB is optimal for low and high feed titers, whereas the 3-column process is optimal in an intermediate region. Using these findings, the most suitable process can be chosen for different production scenarios. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The integration of process planning and shop floor scheduling in small batch part manufacturing

    NARCIS (Netherlands)

    Zijm, Willem H.M.; Kals, H.J.J.

    1995-01-01

    In this paper we explore possibilities to cut manufacturing leadtimes and to improve delivery performance in a small batch part manufacturing shop by integrating process planning and shop floor scheduling. Using a set of initial process plans (one for each order in the shop), we exploit a resource

  2. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines

    DEFF Research Database (Denmark)

    Fan, Li; Zhao, Liang; Sun, Yating

    2009-01-01

    An animal component-free and chemically defined fed-batch process for GS-engineered cell lines producing recombinant antibodies has been developed. The fed-batch process relied on supplying sufficient nutrients to match their consumption, simultaneously minimizing the accumulation of byproducts....... This generic and high-yielding fed-batch process would shorten development time, and ensure process stability, thereby facilitating the manufacture of therapeutic antibodies by GS-engineered cell lines....

  3. VERIFICATION OF THE DEFENSE WASTE PROCESSING FACILITY PROCESS DIGESTION METHOD FOR THE SLUDGE BATCH 6 QUALIFICATION SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Click, D.; Jones, M.; Edwards, T.

    2010-06-09

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) confirms applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples.1 DWPF SRAT samples are typically dissolved using a room temperature HF-HNO3 acid dissolution (i.e., DWPF Cold Chem (CC) Method, see DWPF Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICPAES). In addition to the CC method confirmation, the DWPF lab's mercury (Hg) digestion method was also evaluated for applicability to SB6 (see DWPF procedure 'Mercury System Operating Manual', Manual: SW4-15.204. Section 6.1, Revision 5, Effective date: 12-04-03). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium Peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestion of Sludge Batch 6 (SB6) SRAT Receipt and SB6 SRAT Product samples. For validation of the DWPF lab's Hg method, only SRAT receipt material was used and compared to AR digestion results. The SB6 SRAT Receipt and SB6 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB6 Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 5 (SB5), to form the SB6 Blend composition. In addition to the 16 elements currently measured by the DWPF, this report includes Hg and thorium (Th) data (Th comprising {approx}2.5 - 3 Wt% of the total solids in SRAT Receipt and SRAT Product, respectively) and provides specific details of ICP-AES analysis of Th. Thorium was found to interfere with the U 367.007 nm emission line, and an inter-element correction (IEC) had to be applied to U

  4. SPEEDUP simulation of liquid waste batch processing. Revision 1

    International Nuclear Information System (INIS)

    Shannahan, K.L.; Aull, J.E.; Dimenna, R.A.

    1994-01-01

    The Savannah River Site (SRS) has accumulated radioactive hazardous waste for over 40 years during the time SRS made nuclear materials for the United States Department of Energy (DOE) and its predecessors. This waste is being stored as caustic slurry in a large number of 1 million gallon steel tanks, some of which were initially constructed in the early 1950's. SRS and DOE intend to clean up the Site and convert this waste into stable forms which then can be safely stored. The liquid waste will be separated into a partially decontaminated low-level and radioactive high-level waste in one feed preparation operation, In-Tank Precipitation. The low-level waste will be used to make a concrete product called saltstone in the Saltstone Facility, a part of the Defense Waste Processing Facility (DWPF). The concrete will be poured into large vaults, where it will be permanently stored. The high-level waste will be added to glass-formers and waste slurry solids from another feed preparation operation, Extended Sludge Processing. The mixture will then be converted to a stable borosilicate glass by a vitrification process that is the other major part of the DWPF. This glass will be poured into stainless steel canisters and sent to a temporary storage facility prior to delivery to a permanent underground storage site

  5. A review of control strategies for manipulating the feed rate in fed-batch fermentation processes.

    Science.gov (United States)

    Mears, Lisa; Stocks, Stuart M; Sin, Gürkan; Gernaey, Krist V

    2017-03-10

    A majority of industrial fermentation processes are operated in fed-batch mode. In this case, the rate of feed addition to the system is a focus for optimising the process operation, as it directly impacts metabolic activity, as well as directly affecting the volume dynamics in the system. This review covers a range of strategies which have been employed to use the feed rate as a manipulated variable in a control strategy. The feed rate is chosen as the focus for this review, as it is seen that this variable may be used towards many different objectives depending on the process of interest, the characteristics of the strain, or the product being produced, which leads to different drivers for process optimisation. This review summarises the methods, as well as focusing on the different objectives for the controllers, and the choice of measured variables involved in the strategy. The discussion includes a summary of considerations for control strategy development. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Modelling of Fed-batch Fermentation Process with Droppings for L-lysine Production

    Directory of Open Access Journals (Sweden)

    Velitchka Ivanova

    2006-04-01

    Full Text Available The aim of the article is the development of dynamic unstructured model of L-lysine fed-batch fermentation process with droppings. This approach includes the following procedures: description of the process by generalized stoichiometric equations; preliminary data processing; identification of the specific rates (growth rate (mu , substrate utilization rate (nu, production rate (rho; establishment and optimization of the dynamic model of the process; simulation researches.

  7. The influence of pH adjustment on kinetics parameters in tapioca wastewater treatment using aerobic sequencing batch reactor system

    Science.gov (United States)

    Mulyani, Happy; Budianto, Gregorius Prima Indra; Margono, Kaavessina, Mujtahid

    2018-02-01

    The present investigation deals with the aerobic sequencing batch reactor system of tapioca wastewater treatment with varying pH influent conditions. This project was carried out to evaluate the effect of pH on kinetics parameters of system. It was done by operating aerobic sequencing batch reactor system during 8 hours in many tapioca wastewater conditions (pH 4.91, pH 7, pH 8). The Chemical Oxygen Demand (COD) and Mixed Liquor Volatile Suspended Solids (MLVSS) of the aerobic sequencing batch reactor system effluent at steady state condition were determined at interval time of two hours to generate data for substrate inhibition kinetics parameters. Values of the kinetics constants were determined using Monod and Andrews models. There was no inhibition constant (Ki) detected in all process variation of aerobic sequencing batch reactor system for tapioca wastewater treatment in this study. Furthermore, pH 8 was selected as the preferred aerobic sequencing batch reactor system condition in those ranging pH investigated due to its achievement of values of kinetics parameters such µmax = 0.010457/hour and Ks = 255.0664 mg/L COD.

  8. Fault detection properties of global, local and time evolving models for batch process monitoring

    NARCIS (Netherlands)

    Ramaker, H. J.; van Sprang, E. N. M.; Westerhuis, J. A.; Smilde, A. K.

    2005-01-01

    This paper discusses alternative methods for batch process monitoring. Two alternative methods are investigated and compared to an existing one (the benchmark). A description of the models is given and the performance is discussed by means of fault detection performance indices. The performance

  9. Fault detection properties of global, local and time evolving models for batch process monitoring.

    NARCIS (Netherlands)

    Ramaker, H.J.; van Sprang, E.N.M.; Westerhuis, J.A.; Smilde, A.K.

    2005-01-01

    This paper discusses alternative methods for batch process monitoring. Two alternative methods are investigated and compared to an existing one (the benchmark). A description of the models is given and the performance is discussed by means of fault detection performance indices. The performance

  10. 40 CFR 63.1324 - Batch process vents-monitoring equipment.

    Science.gov (United States)

    2010-07-01

    ... such as low leg drains, high point bleeds, analyzer vents, open-ended valves or lines, and pressure relief valves needed for safety purposes are not subject to this paragraph (e). (1) Properly install... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Batch process vents-monitoring...

  11. Real-World Experimentation Comparing Time-Sharing and Batch Processing in Teaching Computer Science,

    Science.gov (United States)

    effectiveness of time-sharing and batch processing in teaching computer science . The experimental design was centered on direct, ’real world’ comparison...ALGOL). The experimental sample involved all introductory computer science courses with a total population of 415 cadets. The results generally

  12. Water conservation and reuse using the Water Sources Diagram method for batch process: case studies

    Directory of Open Access Journals (Sweden)

    Fernando Luiz Pellegrini Pessoa

    2012-04-01

    Full Text Available The water resources management has been an important factor for the sustainability of industrial processes, since there is a growing need for the development of methodologies aimed at the conservation and rational use of water. The objective of this work was to apply the heuristic-algorithmic method called Water Sources Diagram (WSD, which is used to define the target of minimum water consumption, to batch processes. Scenarios with reuse of streams were generated and evaluated with application of the method from the data of water quantity and concentration of contaminants in the operations. Two case studies aiming to show the reduction of water consumption and wastewater generation, and final treatment costs besides investment in storage tanks, were presented. The scenarios showed great promising, achieving reduction up to 45% in water consumption and wastewater generation, and a reduction of around 37% on cost of storage tanks, without the need to allocate regeneration processes. Thus, the WSD method showed to be a relevant and flexible alternative regarding to systemic tools aimed at minimizing the consumption of water in industrial processes, playing an important role within a program of water resources management.

  13. Contribution to the heat integration of batch processes (with or without heat storage)

    OpenAIRE

    Krummenacher, Pierre; Favrat, Daniel

    2007-01-01

    This work addresses the indirect heat integration (i.e. resorting to intermediate heat storage) and the direct heat integration (i.e. heat exchanges between coexisting process streams) of batch processes. Tools and methods for the targeting of these two limiting cases of heat integration are proposed, and completed by the development and the application of an automatic design & optimization methodology using the Struggle genetic algorithm (GA). A brewery process is used to demonstrate the fea...

  14. Structural analysis of magnetic fusion energy systems in a combined interactive/batch computer environment

    International Nuclear Information System (INIS)

    Johnson, N.E.; Singhal, M.K.; Walls, J.C.; Gray, W.H.

    1979-01-01

    A system of computer programs has been developed to aid in the preparation of input data for and the evaluation of output data from finite element structural analyses of magnetic fusion energy devices. The system utilizes the NASTRAN structural analysis computer program and a special set of interactive pre- and post-processor computer programs, and has been designed for use in an environment wherein a time-share computer system is linked to a batch computer system. In such an environment, the analyst must only enter, review and/or manipulate data through interactive terminals linked to the time-share computer system. The primary pre-processor programs include NASDAT, NASERR and TORMAC. NASDAT and TORMAC are used to generate NASTRAN input data. NASERR performs routine error checks on this data. The NASTRAN program is run on a batch computer system using data generated by NASDAT and TORMAC. The primary post-processing programs include NASCMP and NASPOP. NASCMP is used to compress the data initially stored on magnetic tape by NASTRAN so as to facilitate interactive use of the data. NASPOP reads the data stored by NASCMP and reproduces NASTRAN output for selected grid points, elements and/or data types

  15. Ship Lock as General Queuing System with Batch Arrivals and Batch Service

    Directory of Open Access Journals (Sweden)

    Zoran Radmilović

    2007-11-01

    Full Text Available The real lock operations with ships and barge convoys areconsidered dependent on the transport technologies applied, ormore precisely, the kinds of ships/convoys requiring thelockage. The fleet can be divided as follows: (1 groups of singleships, (2 pushed and pulled tows of barges and (3 differentcombinations of previous systems (1 and (2. The groups ofships and tows passing through the lock have extremely stochasticcharacteristics thus forming various arrivals and setvicetime patterns. It means that uniform navigation or strongscheduling between locks and lock operations are not possibleeven though highly sophisticated equipment is at disposal.Therefore, in this paper an analytical method was developedusing bulk queuing systems for the analysis and planning oflock requirements supporting it with numerical example. Thedeveloped methodology can be applied to determine the meanqueue length of ships - convoys at lock anchorage, withoutblocking behaviour between upstream and downstream navigationfor single-lane traffic.

  16. Selective tungsten deposition in a batch cold wall CVD system

    International Nuclear Information System (INIS)

    Chow, R.; Kang, S.; Harshbarger, W.R.; Susoeff, M.

    1987-01-01

    Selective deposition of tungsten offers many advantages for VLSI technology. The process can be used as a planarization technique for multilevel interconnect technology, it can be used to fill contacts and to provide a barrier layer between Al and Si materials, and the selective W process might be used as a self-aligned technology to provide low resistance layers on source/drain and gate conductors. Recent publications have indicate that cold wall CVD systems provide advantages for development of selective W process. Genus has investigated selective W deposition processing, and we have developed a selective W deposition process for the Genus 8402 multifilm deposition system. This paper describes the Genus 8402 system and the selective W process developed in this reactor. To further develop selective W technology, Genus has signed an agreement with General Electric establishing a joint development program. As a part of this program, the authors characterized the selective W process for encroachment, Si consumption and degrees of selectivity on various dielectrics. The status of this development activity and process characterization is reviewed in this paper

  17. Adsorption of Arsenite onto Kemiron in a batch system

    African Journals Online (AJOL)

    doti

    This study investigated the effect of pH and coexisting ions on As(III) adsorption using batch experiment and discovered that pH strongly influenced As(III) adsorption. However, differences in background ionic strengths of 0.001 N NaNO3 and 0.1 N NaNO3 had no effect on the sorption trend. The isotherms followed ...

  18. Simple control of fed-batch processes for recombinant protein production with E. coli.

    Science.gov (United States)

    Schaepe, Sebastian; Kuprijanov, Artur; Aehle, Mathias; Simutis, Rimvydas; Lübbert, Andreas

    2011-09-01

    A very simple but effective process control technique is proposed that leads to a high batch-to-batch reproducibility with respect to biomass concentration as well as the specific biomass growth rate profiles in E. coli fermentations performed during recombinant protein production. It makes use of the well-established temperature controllers in currently used fermenters, but takes its information from the difference between the controlled culture temperature T (cult) and the temperature T (coolin) of the coolant fed to the fermenter's cooling jacket as adjusted by the fermenter temperature controller. For process control purposes this measured difference is corrected regarding stirrer influences and cumulated before it is used as a new process control variable. As a spin-off of this control, it becomes possible to estimate online the oxygen mass transfer rates and the corresponding k(L)a values during the real cultivation process. © Springer Science+Business Media B.V. 2011

  19. Process kinetics and digestion efficiency of anaerobic batch fermentation of brewer`s spent grains (BSG)

    Energy Technology Data Exchange (ETDEWEB)

    Ezeonu, F.C.; Okaka, A.N.C. [Nnamdi Azikiwe University, Awka (Nigeria). Dept. of Applied Biochemistry

    1996-12-31

    The process kinetics of optimized anaerobic batch digestion of brewer`s spent grains (BSG) reveal that biomethanation is essentially a first order reaction interrupted intermittently by mixed order reactions. An apparent cellulose degradation efficiency of approximately 60% and a lignin degradation efficiency of about 40% was observed in the optimized process. Using the Ken and Hashimoto model, the operational efficiency of the digester was determined to be 26%. (author)

  20. 40 CFR Table 6 to Subpart U of... - Group 1 Batch Front-End Process Vents and Aggregate Batch Vent Streams-Monitoring, Recordkeeping...

    Science.gov (United States)

    2010-07-01

    ... monitoring data are not collected. Boiler or process heater with a design heat input capacity less than 44... and Aggregate Batch Vent Streams-Monitoring, Recordkeeping, and Reporting Requirements 6 Table 6 to... Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins Pt. 63, Subpt. U, Table 6 Table...

  1. 40 CFR Table 2 to Subpart Ffff of... - Emission Limits and Work Practice Standards for Batch Process Vents

    Science.gov (United States)

    2010-07-01

    ...—Emission Limits and Work Practice Standards for Batch Process Vents As required in § 63.2460, you must meet... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Emission Limits and Work Practice Standards for Batch Process Vents 2 Table 2 to Subpart FFFF of Part 63 Protection of Environment...

  2. Surface Nano Structures Manufacture Using Batch Chemical Processing Methods for Tooling Applications

    DEFF Research Database (Denmark)

    Tosello, Guido; Calaon, Matteo; Gavillet, J.

    2011-01-01

    The patterning of large surface areas with nano structures by using chemical batch processes to avoid using highenergy intensive nano machining processes was investigated. The capability of different surface treatment methods of creating micro and nano structured adaptable mould inserts...... for subsequent polymer replication by injection moulding was analyzed. New tooling solutions to produce nano structured mould surfaces were investigated. Experiments based on three different chemical-based-batch techniques to establish surface nano (i.e. sub-μm) structures on large areas were performed. Three...... approaches were selected: (1) using Ø500 nm nano beads deposition for direct patterning of a 4” silicon wafer; (2) using Ø500 nm nano beads deposition as mask for 4” silicon wafer etching and subsequent nickel electroplating; (3) using the anodizing process to produce Ø500 nm structures on a 30x80 mm2...

  3. Advances in industrial biopharmaceutical batch process monitoring: Machine-learning methods for small data problems.

    Science.gov (United States)

    Tulsyan, Aditya; Garvin, Christopher; Ündey, Cenk

    2018-04-06

    Biopharmaceutical manufacturing comprises of multiple distinct processing steps that require effective and efficient monitoring of many variables simultaneously in real-time. The state-of-the-art real-time multivariate statistical batch process monitoring (BPM) platforms have been in use in recent years to ensure comprehensive monitoring is in place as a complementary tool for continued process verification to detect weak signals. This article addresses a longstanding, industry-wide problem in BPM, referred to as the "Low-N" problem, wherein a product has a limited production history. The current best industrial practice to address the Low-N problem is to switch from a multivariate to a univariate BPM, until sufficient product history is available to build and deploy a multivariate BPM platform. Every batch run without a robust multivariate BPM platform poses risk of not detecting potential weak signals developing in the process that might have an impact on process and product performance. In this article, we propose an approach to solve the Low-N problem by generating an arbitrarily large number of in silico batches through a combination of hardware exploitation and machine-learning methods. To the best of authors' knowledge, this is the first article to provide a solution to the Low-N problem in biopharmaceutical manufacturing using machine-learning methods. Several industrial case studies from bulk drug substance manufacturing are presented to demonstrate the efficacy of the proposed approach for BPM under various Low-N scenarios. © 2018 Wiley Periodicals, Inc.

  4. A PAT-based qualification of pharmaceutical excipients produced by batch or continuous processing.

    Science.gov (United States)

    Hertrampf, A; Müller, H; Menezes, J C; Herdling, T

    2015-10-10

    Pharmaceutical excipients have an influence on the main requirements for medicinal products (viz., quality, safety and efficacy) but also on their manufacturability. During product lifecycle it may become necessary to introduce minor changes (e.g., to continuously improve it) or major changes in the validated process (e.g., moving it to a new production site, replacing process version or even disruptively changing processing type). Those changes can influence the critical to quality attributes of the product. Therefore, it is important to enhance process understanding to avoid the risk of any significant quality changes. Process analytical technology can support better decision making and risk-management as required in quality by design - viz., by many pharmaceutical regulatory authorities. This study compares the quality of the pharmaceutical excipient sodium carbonate (anhydrous) produced either in a batch or a continuous process. For continuous processing two different production lines were available that differed on the dryer and crystallizer types used. Therefore their influence on critical to quality attributes of sodium carbonate was investigated for each of the three processing alternatives. The overall goal was to identify which of the continuous processes ensures a similar product quality to batch processing. Namely, changes on chemical and physical attributes of the product were investigated with Raman spectroscopy, laser diffraction and X-ray powder diffraction. Principal component analysis, a very common multivariate analysis technique, was applied to extract relevant information from small differences at multiple spectral regions from samples from each process type and from each analytical technique used. Changing processing from batch to continuous improved consistency of certain attributes (e.g., particle size distribution) but affected others. However, the increased process/product knowledge gained can lead to an enhanced control strategy and

  5. Algal Feedback and Removal Efficiency in a Sequencing Batch Reactor Algae Process (SBAR to Treat the Antibiotic Cefradine.

    Directory of Open Access Journals (Sweden)

    Jianqiu Chen

    Full Text Available Many previous studies focused on the removal capability for contaminants when the algae grown in an unexposed, unpolluted environment and ignored whether the feedback of algae to the toxic stress influenced the removal capability in a subsequent treatment batch. The present research investigated and compared algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR to remove cefradine. Three varied pollution load conditions (10, 30 and 60 mg/L were considered. Compared with the algal characteristics in the first treatment batch at 10 and 30 mg/L, higher algal growth inhibition rates were observed in the second treatment batch (11.23% to 20.81%. In contrast, algae produced more photosynthetic pigments in response to cefradine in the second treatment batch. A better removal efficiency (76.02% was obtained during 96 h when the alga treated the antibiotic at 60 mg/L in the first treatment batch and at 30 mg/L in the second treatment batch. Additionally, the removal rate per unit algal density was also improved when the alga treated the antibiotic at 30 or 60 mg/L in the first treatment batch, respectively and at 30 mg/L in the second treatment batch. Our result indicated that the green algae were also able to adapt to varied pollution loads in different treatment batches.

  6. Algal Feedback and Removal Efficiency in a Sequencing Batch Reactor Algae Process (SBAR) to Treat the Antibiotic Cefradine

    Science.gov (United States)

    Chen, Jianqiu; Zheng, Fengzhu; Guo, Ruixin

    2015-01-01

    Many previous studies focused on the removal capability for contaminants when the algae grown in an unexposed, unpolluted environment and ignored whether the feedback of algae to the toxic stress influenced the removal capability in a subsequent treatment batch. The present research investigated and compared algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR) to remove cefradine. Three varied pollution load conditions (10, 30 and 60 mg/L) were considered. Compared with the algal characteristics in the first treatment batch at 10 and 30 mg/L, higher algal growth inhibition rates were observed in the second treatment batch (11.23% to 20.81%). In contrast, algae produced more photosynthetic pigments in response to cefradine in the second treatment batch. A better removal efficiency (76.02%) was obtained during 96 h when the alga treated the antibiotic at 60 mg/L in the first treatment batch and at 30 mg/L in the second treatment batch. Additionally, the removal rate per unit algal density was also improved when the alga treated the antibiotic at 30 or 60 mg/L in the first treatment batch, respectively and at 30 mg/L in the second treatment batch. Our result indicated that the green algae were also able to adapt to varied pollution loads in different treatment batches. PMID:26177093

  7. Analysis of selected problems of biomass combustion process in batch boilers - experimental and numerical approach

    Science.gov (United States)

    Szubel, Mateusz

    2016-03-01

    It is possible to list numerous groups of heating units that are used in households, such as boilers, stoves and units used as supporting heat sources, namely fireplaces. In each case, however, the same operational problems may be evoked [1]. To understand the causes of energy losses in a boiler system, a proper definition of significant elements of the unit's heat balance is necessary. In the group of energy losses, the flue gas loss and the incomplete combustion loss are the most significant factors. The problem with the loss resulting from incomplete combustion, which is related to the presence of combustible substances in the exhaust, is especially significant in case of biomass boilers [2, 3]. The paper presents results of the research and the optimisation of the biomass combustion process in the 180 kW batch boiler. The studies described have been focused on the reduction of the pollutants emission, which was primarily realised by the modifications of the air feeding system. Results of the experiments and the CFD simulations have been compared and discussed. Both in case of the model as well as the experiment, positive influence of the modifications on the emission have been observed.

  8. Analysis of selected problems of biomass combustion process in batch boilers - experimental and numerical approach

    Directory of Open Access Journals (Sweden)

    Szubel Mateusz

    2016-01-01

    Full Text Available It is possible to list numerous groups of heating units that are used in households, such as boilers, stoves and units used as supporting heat sources, namely fireplaces. In each case, however, the same operational problems may be evoked [1]. To understand the causes of energy losses in a boiler system, a proper definition of significant elements of the unit’s heat balance is necessary. In the group of energy losses, the flue gas loss and the incomplete combustion loss are the most significant factors. The problem with the loss resulting from incomplete combustion, which is related to the presence of combustible substances in the exhaust, is especially significant in case of biomass boilers [2, 3]. The paper presents results of the research and the optimisation of the biomass combustion process in the 180 kW batch boiler. The studies described have been focused on the reduction of the pollutants emission, which was primarily realised by the modifications of the air feeding system. Results of the experiments and the CFD simulations have been compared and discussed. Both in case of the model as well as the experiment, positive influence of the modifications on the emission have been observed.

  9. Design and construction of a batch oven for investigation of industrial continuous baking processes

    DEFF Research Database (Denmark)

    Stenby Andresen, Mette; Risum, Jørgen; Adler-Nissen, Jens

    2013-01-01

    A new batch oven has been constructed to mimic industrial convection tunnel ovens for research and development of continuous baking processes. The process parameters (air flow, air temperature, air humidity, height of baking area and the baking band velocity) are therefore highly controllable...... and adjustable over a wide range of settings. It is possible to monitor the product weight and temperature continuously during baking. The simultaneous measuring of mass and a window allowing for visual (e.g., by video recording) control is unique for this experimental batch oven. Two validation steps have been...... oven, with a butter cookie as the test product. The investigated quality parameters for the butter cookies were mass loss and surface browning, where the uniformity of browning was evaluated subjectively against a scale of standards and objectively by L* value measurements. Good reproducibility...

  10. Effect of feeding methods on the astaxanthin production by Phaffia rhodozyma in fed-batch process

    Directory of Open Access Journals (Sweden)

    Danilo Gomes Moriel

    2005-05-01

    Full Text Available The effect of feeding methods on the production of astaxanthin by the yeast Phaffia rhodozyma ATCC 24202 was studied, using continuous and pulsed fed-batch processes and low cost materials as substrates (sugar cane juice and urea. In continuous fed-batch processes, a cellular astaxanthin concentration of 383.73 µg/g biomass was obtained. But in pulsed fed-batch processes a reduction in the cellular astaxanthin concentration (303.34 µg/g biomass was observed. Thus the continuous fed-batch processes could be an alternative to industrial production of astaxanthin, allowing an increase in the biomass productivity without losses on astaxanthin production by the yeast.O efeito da alimentação na produção de astaxantina pela levedura Phaffia rhodozyma ATCC 24202 foi estudado, utilizando processos descontínuo alimentado com alimentação contínua e intermitente, e matérias-primas de baixo custo como substratos (caldo de cana de açúcar e uréia. Em processos descontínuo alimentado com alimentação contínua, uma concentração celular de astaxantina de 383,73 µg/g biomassa foi obtida. Entretanto, em processos descontínuo alimentado com alimentação intermitente, uma redução na concentração celular de astaxantina (303,34 µg/g biomassa foi observada. Desta forma, processos descontínuo alimentado com alimentação contínua poderiam ser uma alternativa na produção industrial de astaxantina, permitindo um aumento na produtividade de biomassa sem perdas na produção de astaxantina pela levedura.

  11. SRS SLUDGE BATCH QUALIFICATION AND PROCESSING; HISTORICAL PERSPECTIVE AND LESSONS LEARNED

    Energy Technology Data Exchange (ETDEWEB)

    Cercy, M.; Peeler, D.; Stone, M.

    2013-09-25

    This report provides a historical overview and lessons learned associated with the SRS sludge batch (SB) qualification and processing programs. The report covers the framework of the requirements for waste form acceptance, the DWPF Glass Product Control Program (GPCP), waste feed acceptance, examples of how the program complies with the specifications, an overview of the Startup Program, and a summary of continuous improvements and lessons learned. The report includes a bibliography of previous reports and briefings on the topic.

  12. Process performance of high-solids batch anaerobic digestion of sewage sludge.

    Science.gov (United States)

    Liao, Xiaocong; Li, Huan; Cheng, Yingchao; Chen, Nan; Li, Chenchen; Yang, Yuning

    2014-01-01

    The characteristics of high-solids anaerobic digestion (AD) of sewage sludge were investigated by comparison with conventional low-solids processes. A series of batch experiments were conducted under mesophilic condition and the initial solid contents were controlled at four levels of 1.79%, 4.47%, 10.28% and 15.67%. During these experiments, biogas production, organic degradation and intermediate products were monitored. The results verified that high-solids batch AD of sewage sludge was feasible. Compared with the low-solids AD with solid contents of 1.79% or 4.47%, the high-solids processes decreased the specific biogas yield per gram of sludge volatile solids slightly, achieved the same organic degradation rate of about 40% within extended degradation time, but increased the volumetric biogas production rate and the treatment capability of digesters significantly. The blocked mass and energy transfer, the low substrate to inoculum rate and the excessive cumulative free ammonia were the main factors impacting the performance of high-solids batch AD.

  13. Multivariate statistical process control of batch processes based on three-way models

    NARCIS (Netherlands)

    Louwerse, D. J.; Smilde, A. K.

    2000-01-01

    The theory of batch MSPC control charts is extended and improved control charts an developed. Unfold-PCA, PARAFAC and Tucker3 models are discussed and used as a basis for these charts. The results of the different models are compared and the performance of the control charts based on these models is

  14. Online data processing system

    International Nuclear Information System (INIS)

    Nakahara, Yoshinori; Yagi, Hideyuki; Yamada, Takayuki

    1979-02-01

    A pulse height analyzer terminal system PHATS has been developed for online data processing via JAERI-TOKAI computer network. The system is controled by using a micro-computer MICRO-8 which was developed for the JAERI-TOKAI network. The system program consists of two subprograms, online control system ONLCS and pulse height analyzer control system PHACS. ONLCS links the terminal with the conversational programming system of FACOM 230/75 through the JAERI-TOKAI network and controls data processing in TSS and remote batch modes. PHACS is used to control INPUT/OUTPUT of data between pulse height analyzer and cassette-MT or typewriter. This report describes the hardware configuration and the system program in detail. In the appendix, explained are real time monitor, type of message, PEX to PEX protocol and Host to Host protocol, required for the system programming. (author)

  15. Batch Fermentative Biohydrogen Production Process Using Immobilized Anaerobic Sludge from Organic Solid Waste

    Directory of Open Access Journals (Sweden)

    Patrick T. Sekoai

    2016-12-01

    Full Text Available This study examined the potential of organic solid waste for biohydrogen production using immobilized anaerobic sludge. Biohydrogen was produced under batch mode at process conditions of 7.9, 30.3 °C and 90 h for pH, temperature and fermentation time, respectively. A maximum biohydrogen fraction of 48.67%, which corresponded to a biohydrogen yield of 215.39 mL H2/g Total Volatile Solids (TVS, was achieved. Therefore, the utilization of immobilized cells could pave the way for a large-scale biohydrogen production process.

  16. Unix Commands and Batch Processing for the Reluctant Librarian or Archivist

    Directory of Open Access Journals (Sweden)

    Anthony Cocciolo

    2014-01-01

    Full Text Available The Unix environment offers librarians and archivists high-quality tools for quickly transforming born-digital and digitized assets, such as resizing videos, creating access copies of digitized photos, and making fair-use reproductions of audio recordings. These tools, such as ffmpeg, lame, sox, and ImageMagick, can apply one or more manipulations to digital assets without the need to manually process individual items, which can be error prone, time consuming, and tedious. This article will provide information on getting started in using the Unix environment to take advantage of these tools for batch processing.

  17. Biological treatment of potato processing wastewater for red pigment production by immobilized cells of UV-irradiated monascus sp. in repeated batch

    International Nuclear Information System (INIS)

    Khalaf, S.A.

    2004-01-01

    Potato processing wastewater (PPW) was collected and analyzed for biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen and starch content. A fungal strain isolated from PPW identified as Monascus sp. PPW was evaluated for its ability to grow and produce red pigment, biomass and reduce the starch content of the ,PPW. Active UV-irradiated isolate of the above strain was obtained by exposing the parent strain to UV-radiation and coded Monascus. sp. PPW-UV7 and used as immobilized cell system for PPW treatment process in repeated batch fermentation. The immobilized cells (in sponge cubes) were able to reduce COD by about 85.7 %, with biomass production of 9.22 gl+ l and over productivity of red pigment of 2.6 gl+ 1 after 8 days fermentation (2 batches). The immobilized cells showed stability and viability for 8 batches (32 days) during the process treatment

  18. DEFENSE WASTE PROCESSING FACILITY ANALYTICAL METHOD VERIFICATION FOR THE SLUDGE BATCH 5 QUALIFICATION SAMPLE

    International Nuclear Information System (INIS)

    Click, D; Tommy Edwards, T; Henry Ajo, H

    2008-01-01

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO3 acid dissolution (i.e., DWPF Cold Chem Method, see Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium Peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestion of Sludge Batch 5 (SB5) SRAT Receipt and SB5 SRAT Product samples. The SB5 SRAT Receipt and SB5 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB5 Batch composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 4 (SB4), to form the SB5 Blend composition. The results for any one particular element should not be used in any way to identify the form or speciation of a particular element in the sludge or used to estimate ratios of compounds in the sludge. A statistical comparison of the data validates the use of the DWPF CC method for SB5 Batch composition. However, the difficulty that was encountered in using the CC method for SB4 brings into question the adequacy of CC for the SB5 Blend. Also, it should be noted that visible solids remained in the final diluted solutions of all samples digested by this method at SRNL (8 samples total), which is typical for the DWPF CC method but not seen in the other methods. Recommendations to the DWPF for application to SB5 based on studies to date: (1) A dissolution study should be performed on the WAPS

  19. Multivariate fault isolation of batch processes via variable selection in partial least squares discriminant analysis.

    Science.gov (United States)

    Yan, Zhengbing; Kuang, Te-Hui; Yao, Yuan

    2017-09-01

    In recent years, multivariate statistical monitoring of batch processes has become a popular research topic, wherein multivariate fault isolation is an important step aiming at the identification of the faulty variables contributing most to the detected process abnormality. Although contribution plots have been commonly used in statistical fault isolation, such methods suffer from the smearing effect between correlated variables. In particular, in batch process monitoring, the high autocorrelations and cross-correlations that exist in variable trajectories make the smearing effect unavoidable. To address such a problem, a variable selection-based fault isolation method is proposed in this research, which transforms the fault isolation problem into a variable selection problem in partial least squares discriminant analysis and solves it by calculating a sparse partial least squares model. As different from the traditional methods, the proposed method emphasizes the relative importance of each process variable. Such information may help process engineers in conducting root-cause diagnosis. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Batch statistical process control of a fluid bed granulation process using in-line spatial filter velocimetry and product temperature measurements.

    Science.gov (United States)

    Burggraeve, A; Van den Kerkhof, T; Hellings, M; Remon, J P; Vervaet, C; De Beer, T

    2011-04-18

    Fluid bed granulation is a batch process, which is characterized by the processing of raw materials for a predefined period of time, consisting of a fixed spraying phase and a subsequent drying period. The present study shows the multivariate statistical modeling and control of a fluid bed granulation process based on in-line particle size distribution (PSD) measurements (using spatial filter velocimetry) combined with continuous product temperature registration using a partial least squares (PLS) approach. Via the continuous in-line monitoring of the PSD and product temperature during granulation of various reference batches, a statistical batch model was developed allowing the real-time evaluation and acceptance or rejection of future batches. Continuously monitored PSD and product temperature process data of 10 reference batches (X-data) were used to develop a reference batch PLS model, regressing the X-data versus the batch process time (Y-data). Two PLS components captured 98.8% of the variation in the X-data block. Score control charts in which the average batch trajectory and upper and lower control limits are displayed were developed. Next, these control charts were used to monitor 4 new test batches in real-time and to immediately detect any deviations from the expected batch trajectory. By real-time evaluation of new batches using the developed control charts and by computation of contribution plots of deviating process behavior at a certain time point, batch losses or reprocessing can be prevented. Immediately after batch completion, all PSD and product temperature information (i.e., a batch progress fingerprint) was used to estimate some granule properties (density and flowability) at an early stage, which can improve batch release time. Individual PLS models relating the computed scores (X) of the reference PLS model (based on the 10 reference batches) and the density, respectively, flowabililty as Y-matrix, were developed. The scores of the 4 test

  1. Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures.

    Science.gov (United States)

    Hiller, Gregory W; Ovalle, Ana Maria; Gagnon, Matthew P; Curran, Meredith L; Wang, Wenge

    2017-07-01

    A simple method originally designed to control lactate accumulation in fed-batch cultures of Chinese Hamster Ovary (CHO) cells has been modified and extended to allow cells in culture to control their own rate of perfusion to precisely deliver nutritional requirements. The method allows for very fast expansion of cells to high density while using a minimal volume of concentrated perfusion medium. When the short-duration cell-controlled perfusion is performed in the production bioreactor and is immediately followed by a conventional fed-batch culture using highly concentrated feeds, the overall productivity of the culture is approximately doubled when compared with a highly optimized state-of-the-art fed-batch process. The technology was applied with near uniform success to five CHO cell processes producing five different humanized monoclonal antibodies. The increases in productivity were due to the increases in sustained viable cell densities. Biotechnol. Bioeng. 2017;114: 1438-1447. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. A KINETIC MODEL FOR H2O2/UV PROCESS IN A COMPLETELY MIXED BATCH REACTOR. (R825370C076)

    Science.gov (United States)

    A dynamic kinetic model for the advanced oxidation process (AOP) using hydrogen peroxide and ultraviolet irradiation (H2O2/UV) in a completely mixed batch reactor (CMBR) is developed. The model includes the known elementary chemical and photochemical reac...

  3. Pro Spring Batch

    CERN Document Server

    Minella, Michael T

    2011-01-01

    Since its release, Spring Framework has transformed virtually every aspect of Java development including web applications, security, aspect-oriented programming, persistence, and messaging. Spring Batch, one of its newer additions, now brings the same familiar Spring idioms to batch processing. Spring Batch addresses the needs of any batch process, from the complex calculations performed in the biggest financial institutions to simple data migrations that occur with many software development projects. Pro Spring Batch is intended to answer three questions: *What? What is batch processing? What

  4. Testing of the Defense Waste Processing Facility Cold Chemical Dissolution Method in Sludge Batch 9 Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Young, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-10

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt or SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.

  5. Activity of fuel batches processed through Hanford separations plants, 1944 through 1989

    Energy Technology Data Exchange (ETDEWEB)

    Watrous, R.A.; Wootan, D.W.

    1997-07-29

    This document provides a printout of the ``Fuel Activity Database`` (version U6) generated by the Hanford DKPRO code and transmitted to the Los Alamos National Laboratory for input to their ``Hanford Defined Waste`` model of waste tank inventories. This fuel activity file consists of 1,276 records--each record representing the activity associated with a batch of spent reactor fuel processed by month (or shorter period) through individual Hanford separations plants between 1944 and 1989. Each record gives the curies for 46 key radionuclides, decayed to a common reference date of January 1, 1994.

  6. Effect of batch-process solar disinfection on survival of Cryptosporidium parvum oocysts in drinking water.

    Science.gov (United States)

    Méndez-Hermida, F; Castro-Hermida, J A; Ares-Mazás, E; Kehoe, S C; McGuigan, K G

    2005-03-01

    The results of batch-process solar disinfection (SODIS) of Cryptosporidium parvum oocysts in water are reported. Oocyst suspensions were exposed to simulated sunlight (830 W m(-2)) at 40 degrees C. Viability assays (4',6'-diamidino-2-phenylindole [DAPI]/propidium iodide and excystation) and infectivity tests (Swiss CD-1 suckling mice) were performed. SODIS exposures of 6 and 12 h reduced oocyst infectivity from 100% to 7.5% (standard deviation = 2.3) and 0% (standard deviation = 0.0), respectively.

  7. Estimation of Temperature Dependent Parameters of a Batch Alcoholic Fermentation Process

    Science.gov (United States)

    de Andrade, Rafael Ramos; Rivera, Elmer Ccopa; Costa, Aline C.; Atala, Daniel I. P.; Filho, Francisco Maugeri; Filho, Rubens Maciel

    In this work, a procedure was established to develop a mathematical model considering the effect of temperature on reaction kinetics. Experiments were performed in batch mode in temperatures from 30 to 38°C. The microorganism used was Saccharomyces cerevisiae and the culture media, sugarcane molasses. The objective is to assess the difficulty in updating the kinetic parameters when there are changes in fermentation conditions. We conclude that, although the re-estimation is a time-consuming task, it is possible to accurately describe the process when there are changes in raw material composition if a re-estimation of parameters is performed.

  8. Redesign of a Grignard-Based Active Pharmaceutical Ingredient (API) Batch Synthesis to a Flow Process for the Preparation of Melitracen HCl

    DEFF Research Database (Denmark)

    Pedersen, Michael J.; Skovby, Tommy; Mealy, Michael J.

    2018-01-01

    A Grignard-based batch process, for the preparation of Melitracen HCl, has been redesigned to fit a continuous reactor system. The Grignard addition is carried out at room temperature, with subsequent hydrolysis of the magnesium alkoxide intermediate followed by dehydration of the resulting alcoh...

  9. The small intestine and irritable bowel syndrome (IBS): a batch process model.

    Science.gov (United States)

    Dobson, Brian C

    2008-11-01

    Faults in a batch process model of the small intestine create the symptoms of all types of irritable bowel syndrome. The model has three sequential processing sections corresponding to the natural divisions of the intestine. It is governed by a brain controller that is divided into four sub-controllers, each with a unique neurotransmitter. Each section has a sub-controller to manage transport. Sensors in the walls of the intestine provide input and output goes to the muscles lining the walls of the intestine. The output controls the speed of the food soup, moves it in both directions, mixes it, controls absorption, and transfers it to the next section at the correct speed (slow). The fourth sub-controller manages the addition of chemicals. It obtains input from the first section of the process via the signalling hormone Cholecystokinin and sends output to the muscles that empty the gall bladder and pancreas. The correct amounts of bile salts and enzymes are then added to the first section. The sub-controllers produce output only when input is received. When output is missing the enteric nervous system applies a default condition. This default condition normally happens when no food is in the intestine. If food is in the intestine and a transport sub-controller fails to provide output then the default condition moves the food soup to the end of that section. The movement is in one direction only (forward), at a speed dependent on the amount and type of fibre present. Cereal, bean and vegetable fibre causes high speeds. This default high speed transport causes irritable bowel syndrome. A barrier is created when a section moving fast at the default speed, precedes a section controlled by a transport sub-controller. Then the sub-controller constricts the intestine to stop the fast flow. The barrier causes constipation, cramping, and bloating. Diarrhoea results when the section terminating the process moves at the fast default speed. Two problems can occur to prevent

  10. Comparisons between continuous and batch processing to produce clavulanic acid by Streptomyces clavuligerus

    Directory of Open Access Journals (Sweden)

    Álvaro Baptista-Neto

    2005-06-01

    Full Text Available The aim of the present work was to compare CA production in continuous culture with and without cell recycling and in batch process by Streptomyces clavuligerus. Continuous cultivations with high cell concentration using cell recycling were performed utilizing a hollow fiber ultrafiltration module to separate cells from the filtrate broth. The continuous cultures without cell recycling and the batch cultivations were performed conventionally. The highest productivity was attained in the continuous cultivation with cell recycling (22.2 mg.L-1.h-1. The highest CA concentration was obtained in the batch process (470 mg.L-1.h-1.O ácido clavulânico (AC é um importante inibidor de beta-lactamases, enzimas que degradampartir do metabolismo secundário do Streptomyces clavuligerus, bactéria filamentosa e estritamente aeróbia. Considerando que a velocidade de produção de metabólitos secundários está ligada à concentração celular, o presente trabalho teve como objetivo comparar a produção de AC nos processos contínuos com e sem reciclo celular e em batelada, realizando cultivos dessa bactéria com alta densidade celular. Para cumprir com o objetivo proposto, foram realizados experimentos em biorreator operando na forma contínua com reciclo utilizando-se um módulo de filtração tangencial de fibra oca para a separação celular. Os processos contínuos sem reciclo e em batelada foram realizados de forma convencional. A produtividade em AC no cultivo contínuo com reciclo celular (22,2 mg.L-1h-1 foi superior aos processos convencionais, apesar de obter-se maior concentração do produto (470 mg.L-1 em batelada.

  11. Improved design of constrained model predictive tracking control for batch processes against unknown uncertainties.

    Science.gov (United States)

    Wu, Sheng; Jin, Qibing; Zhang, Ridong; Zhang, Junfeng; Gao, Furong

    2017-07-01

    In this paper, an improved constrained tracking control design is proposed for batch processes under uncertainties. A new process model that facilitates process state and tracking error augmentation with further additional tuning is first proposed. Then a subsequent controller design is formulated using robust stable constrained MPC optimization. Unlike conventional robust model predictive control (MPC), the proposed method enables the controller design to bear more degrees of tuning so that improved tracking control can be acquired, which is very important since uncertainties exist inevitably in practice and cause model/plant mismatches. An injection molding process is introduced to illustrate the effectiveness of the proposed MPC approach in comparison with conventional robust MPC. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Quality-by-Design approach to monitor the operation of a batch bioreactor in an industrial avian vaccine manufacturing process.

    Science.gov (United States)

    Largoni, Martina; Facco, Pierantonio; Bernini, Donatella; Bezzo, Fabrizio; Barolo, Massimiliano

    2015-10-10

    Monitoring batch bioreactors is a complex task, due to the fact that several sources of variability can affect a running batch and impact on the final product quality. Additionally, the product quality itself may not be measurable on line, but requires sampling and lab analysis taking several days to be completed. In this study we show that, by using appropriate process analytical technology tools, the operation of an industrial batch bioreactor used in avian vaccine manufacturing can be effectively monitored as the batch progresses. Multivariate statistical models are built from historical databases of batches already completed, and they are used to enable the real time identification of the variability sources, to reliably predict the final product quality, and to improve process understanding, paving the way to a reduction of final product rejections, as well as to a reduction of the product cycle time. It is also shown that the product quality "builds up" mainly during the first half of a batch, suggesting on the one side that reducing the variability during this period is crucial, and on the other side that the batch length can possibly be shortened. Overall, the study demonstrates that, by using a Quality-by-Design approach centered on the appropriate use of mathematical modeling, quality can indeed be built "by design" into the final product, whereas the role of end-point product testing can progressively reduce its importance in product manufacturing. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Optimization of a fed-batch fermentation process for production of ...

    African Journals Online (AJOL)

    Due to the substrate inhibition that takes place at high levels of carbon source, fed-batch fermentation was proposed as a better alternative for BLM production. The combined effects of batch and fed-batch fermentation and various pH profiles on BLM production in a bioreactor were evaluated. The tested pH profiles included ...

  14. A new divided-wall heat integrated distillation column (HIDiC) for batch processing: Feasibility and analysis

    International Nuclear Information System (INIS)

    Jana, Amiya K.

    2016-01-01

    Highlights: • A novel heat integrated configuration is proposed for batch distillation. • The shell is divided into two closed semi-cylinders by a metal wall. • An open-loop variable manipulation policy is formulated. • The column improves its energy efficiency and economic performance. - Abstract: This work introduces a new heat integrated distillation column (HIDiC) for batch processing. Under this scheme, the entire cylindrical shell is proposed to divide vertically by a metal wall into two closed semi-cylinders. Aiming to generate an internal heat source, a heat pump system is employed over the left hand division to elevate the pressure of the right hand part with the application of HIDiC concept. This new divided-wall HIDiC column utilizes its own energy source by transferring heat from the high pressure (HP) to low pressure (LP) side, thereby reducing the utility consumption in both the still and condenser. To make this thermal integration technology more effective, a typical tray configuration is proposed in both sides of the divided-wall. Unlike the continuous flow distillation, the batch column shows unsteady state process characteristics that make its operation more challenging. With this, an open-loop variable manipulation policy is formulated so that the dynamics of the heat integrated column remain close, if not same, with its conventional counterpart. This is a necessary condition required for a fair comparison between them. Finally, the proposed configuration is illustrated by a binary column, showing an improvement in energy savings, entropy generation and cost over its conventional analogous. This thermally integrated configuration is relatively simple than the traditional HIDiC in terms of design and operation.

  15. Constructing regions of attainable sizes and achieving target size distribution in a batch cooling sonocrystallization process.

    Science.gov (United States)

    Bhoi, Stutee; Sarkar, Debasis

    2018-04-01

    The application of ultrasound to a crystallization process has several interesting benefits. The temperature of the crystallizer increases during ultrasonication and this makes it difficult for the temperature controller of the crystallizer to track a set temperature trajectory precisely. It is thus necessary to model this temperature rise and the temperature-trajectory tracking ability of the crystallizer controller to perform model-based dynamic optimization for a given cooling sonocrystallization set-up. In our previous study, we reported a mathematical model based on population balance framework for a batch cooling sonocrystallization of l-asparagine monohydrate (LAM). Here we extend the previous model by including energy balance equations and a Generic Model Control algorithm to simulate the temperature controller of the crystallizer that tracks a cooling profile during crystallization. The improved model yields very good closed-loop prediction and is conveniently used for studies related to particle engineering by optimization. First, the model is used to determine the regions of attainable particle sizes for LAM batch cooling sonocrystallization process by solving appropriate dynamic optimization problems. Then the model is used to determine optimal operating conditions for achieving a target crystal size distribution. The experimental evidence clearly demonstrates the efficiency of the particle engineering approach by optimization. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. On the Use of Nonlinear Model Predictive Control without Parameter Adaptation for Batch Processes

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Binette

    2016-08-01

    Full Text Available Optimization techniques are typically used to improve economic performance of batch processes, while meeting product and environmental specifications and safety constraints. Offline methods suffer from the parameters of the model being inaccurate, while re-identification of the parameters may not be possible due to the absence of persistency of excitation. Thus, a practical solution is the Nonlinear Model Predictive Control (NMPC without parameter adaptation, where the measured states serve as new initial conditions for the re-optimization problem with a diminishing horizon. In such schemes, it is clear that the optimum cannot be reached due to plant-model mismatch. However, this paper goes one step further in showing that such re-optimization could in certain cases, especially with an economic cost, lead to results worse than the offline optimal input. On the other hand, in absence of process noise, for small parametric variations, if the cost function corresponds to tracking a feasible trajectory, re-optimization always improves performance. This shows inherent robustness associated with the tracking cost. A batch reactor example presents and analyzes the different cases. Re-optimizing led to worse results in some cases with an economical cost function, while no such problem occurred while working with a tracking cost.

  17. Time Series Analysis of Fed-batch Fermentation Process for L-valine Production

    Directory of Open Access Journals (Sweden)

    Tzanko Georgiev

    2006-04-01

    Full Text Available Fed-batch fermentation processes are some of the most efficient and wildly applied types of cultivation for industrial production of most amino acids including L-valine. Time series analysis is an important tool for description of the experimental data. This article deals with statistical inference from the time series analysis of generalised stoichiometric equations as a hypothesis for modelling and optimisation. The aim of the article is to develop some time series models of generalized stoichiometric equations. The identification procedure includes the following steps: description of the process by generalized stoichiometric equations; preliminary data processing; model structure selection for each stoichiometric equation; estimation of the model's parameters; verification of the derived models.

  18. Procedures for Efficient and Economic Recovery of Heat for Reuse in Batch Processes for Cleaning

    DEFF Research Database (Denmark)

    Qvale, Einar Bjørn

    2005-01-01

    The expenditure of primary energy can be reduced and the economics of process plants in the food industry can be improved by intelligent application of Process Integration (PI). Since a greater part of the products in the food industry is processed in batches, the use of Thermal- Energy Storage...... are often encountered in the food industry. However, the extent to which PI is utilized is much smaller than the number of potential applications. The present paper will address this topic, give some reasons for the underuse of PI, and indicate some principles, methods, and directions that, when applied......, could increase the use and usefulness of PI by incorporating TES, thus fulfilling PI’s promises of improved operation, reduced energy consumption, reduced environmental impact, and improved economics. The application of these procedures is illustrated through the description of two cases. Keywords: Heat...

  19. Early-warning process/control for anaerobic digestion and biological nitrogen transformation processes: Batch, semi-continuous, and/or chemostat experiments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hickey, R. [Science Applications International Corp., McLean, VA (United States)

    1992-09-01

    The objective of this project was to develop and test an early-warning/process control model for anaerobic sludge digestion (AD). The approach was to use batch and semi-continuously fed systems and to assemble system parameter data on a real-time basis. Specific goals were to produce a real-time early warning control model and computer code, tested for internal and external validity; to determine the minimum rate of data collection for maximum lag time to predict failure with a prescribed accuracy and confidence in the prediction; and to determine and characterize any trends in the real-time data collected in response to particular perturbations to feedstock quality. Trends in the response of trace gases carbon monoxide and hydrogen in batch experiments, were found to depend on toxicant type. For example, these trace gases respond differently for organic substances vs. heavy metals. In both batch and semi-continuously feed experiments, increased organic loading lead to proportionate increases in gas production rates as well as increases in CO and H{sub 2} concentration. An analysis of variance of gas parameters confirmed that CO was the most sensitive indicator variable by virtue of its relatively larger variance compared to the others. The other parameters evaluated including gas production, methane production, hydrogen, carbon monoxide, carbon dioxide and methane concentration. In addition, a relationship was hypothesized between gaseous CO concentration and acetate concentrations in the digester. The data from semicontinuous feed experiments were supportive.

  20. Production of a potential liquid plant bio-stimulant by immobilized Piriformospora indica in repeated-batch fermentation process.

    Science.gov (United States)

    Vassilev, Nikolay; Eichler-Löbermann, Bettina; Flor-Peregrin, Elena; Martos, Vanessa; Reyes, Antonia; Vassileva, Maria

    2017-12-01

    Piriformospora indica, a mycorrhizal-like fungus able to establish associations with roots of a wide range of plants, supporting plant nutrition and increasing plant resistance and tolerance to stress, was shown to solubilise phosphate applied in the form of animal bone char (HABO) in fermentation systems. The process of P solubilisation was caused most likely by proton extrusion and medium pH lowering. The fungal mycelium was successfully immobilized/retained in a polyurethane foam carrier. Further employment of the immobilized mycelium in repeated-batch fermentation process resulted in at least 5 cycles of P solubilization. The concentration of soluble P increased during the experiment with 1.0 and 3.0 g HABO l -1 and at the end of the 5th batch cycle reached 40.8 and 120 mg l -1 , respectively. The resulting final liquid product, without or with solubilized phosphate, was found to significantly increase plant growth and P plant uptake. It can be used as a biostimulant containing microbial plant growth-promoting substances and soluble P derived from renewable sources (HABO) thus supporting the development of sustainable agro-ecosystems.

  1. Image processing in digital pathology: an opportunity to solve inter-batch variability of immunohistochemical staining.

    Science.gov (United States)

    Van Eycke, Yves-Rémi; Allard, Justine; Salmon, Isabelle; Debeir, Olivier; Decaestecker, Christine

    2017-02-21

    Immunohistochemistry (IHC) is a widely used technique in pathology to evidence protein expression in tissue samples. However, this staining technique is known for presenting inter-batch variations. Whole slide imaging in digital pathology offers a possibility to overcome this problem by means of image normalisation techniques. In the present paper we propose a methodology to objectively evaluate the need of image normalisation and to identify the best way to perform it. This methodology uses tissue microarray (TMA) materials and statistical analyses to evidence the possible variations occurring at colour and intensity levels as well as to evaluate the efficiency of image normalisation methods in correcting them. We applied our methodology to test different methods of image normalisation based on blind colour deconvolution that we adapted for IHC staining. These tests were carried out for different IHC experiments on different tissue types and targeting different proteins with different subcellular localisations. Our methodology enabled us to establish and to validate inter-batch normalization transforms which correct the non-relevant IHC staining variations. The normalised image series were then processed to extract coherent quantitative features characterising the IHC staining patterns.

  2. Image processing in digital pathology: an opportunity to solve inter-batch variability of immunohistochemical staining

    Science.gov (United States)

    Van Eycke, Yves-Rémi; Allard, Justine; Salmon, Isabelle; Debeir, Olivier; Decaestecker, Christine

    2017-01-01

    Immunohistochemistry (IHC) is a widely used technique in pathology to evidence protein expression in tissue samples. However, this staining technique is known for presenting inter-batch variations. Whole slide imaging in digital pathology offers a possibility to overcome this problem by means of image normalisation techniques. In the present paper we propose a methodology to objectively evaluate the need of image normalisation and to identify the best way to perform it. This methodology uses tissue microarray (TMA) materials and statistical analyses to evidence the possible variations occurring at colour and intensity levels as well as to evaluate the efficiency of image normalisation methods in correcting them. We applied our methodology to test different methods of image normalisation based on blind colour deconvolution that we adapted for IHC staining. These tests were carried out for different IHC experiments on different tissue types and targeting different proteins with different subcellular localisations. Our methodology enabled us to establish and to validate inter-batch normalization transforms which correct the non-relevant IHC staining variations. The normalised image series were then processed to extract coherent quantitative features characterising the IHC staining patterns. PMID:28220842

  3. Ethanol production from Sorghum bicolor using both separate and simultaneous saccharification and fermentation in batch and fed batch systems

    DEFF Research Database (Denmark)

    Mehmood, Sajid; Gulfraz, M.; Rana, N. F.

    2009-01-01

    The objective of this work was to find the best combination of different experimental conditions during pre-treatment, enzymatic saccharification, detoxification of inhibitors and fermentation of Sorghum bicolor straw for ethanol production. The optimization of pre-treatment using different...... were used in order to increase the monomeric sugar during enzymatic hydrolysis and it has been observed that the addition of these surfactants contributed significantly in cellulosic conversion but no effect was shown on hemicellulosic hydrolysis. Fermentability of hydrolyzate was tested using...... Saccharomyces cerevisiae Ethanol Red (TM) and it was observed that simultaneous saccharification and fermentation ( SSF) with both batch and fed batch resulted in better ethanol yield as compared to separate hydrolysis and fermentation ( SHF). Detoxification of furan during SHF facilitated reduction...

  4. On the design of two small batch operating systems 1965 - 1970

    NARCIS (Netherlands)

    F.E.J. Kruseman Aretz

    2013-01-01

    htmlabstractThis paper describes the design considerations and decisions for two small batch operating systems, called MICRO and MILLI, for the Electrologica X8, a Dutch computer delivered from 1965 onwards. Their sole tasks were to run sequences of ALGOL 60 programs, thus transforming the X8 into

  5. Alcoholic fermentation with flocculant Saccharomyces cerevisiae in fed-batch process.

    Science.gov (United States)

    Guidini, Carla Zanella; Marquez, Líbia Diniz Santos; de Almeida Silva, Helisângela; de Resende, Miriam Maria; Cardoso, Vicelma Luiz; Ribeiro, Eloízio Júlio

    2014-02-01

    Studies have been conducted on selecting yeast strains for use in fermentation for ethanol production to improve the performance of industrial plants and decrease production costs. In this paper, we study alcoholic fermentation in a fed-batch process using a Saccharomyces cerevisiae yeast strain with flocculant characteristics. Central composite design (CCD) was used to determine the optimal combination of the variables involved, with the sucrose concentration of 170 g/L, a cellular concentration in the inoculum of 40% (v/v), and a filling time of 6 h, which resulted in a 92.20% yield relative to the theoretical maximum yield, a productivity of 6.01 g/L h and a residual sucrose concentration of 44.33 g/L. With some changes in the process such as recirculation of medium during the fermentation process and increase in cellular concentration in the inoculum after use of the CCD was possible to reduce the residual sucrose concentration to 2.8 g/L in 9 h of fermentation and increase yield and productivity for 92.75% and 9.26 g/L h, respectively. A model was developed to describe the inhibition of alcoholic fermentation kinetics by the substrate and the product. The maximum specific growth rate was 0.103 h(-1), with K(I) and K(s) values of 109.86 and 30.24 g/L, respectively. The experimental results from the fed-batch reactor show a good fit with the proposed model, resulting in a maximum growth rate of 0.080 h(-1).

  6. Artificial neural network (ANN) approach for modeling Zn(II) adsorption in batch process

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Sayiter [Engineering Faculty, Cumhuriyet University, Sivas (Turkmenistan)

    2017-09-15

    Artificial neural networks (ANN) were applied to predict adsorption efficiency of peanut shells for the removal of Zn(II) ions from aqueous solutions. Effects of initial pH, Zn(II) concentrations, temperature, contact duration and adsorbent dosage were determined in batch experiments. The sorption capacities of the sorbents were predicted with the aid of equilibrium and kinetic models. The Zn(II) ions adsorption onto peanut shell was better defined by the pseudo-second-order kinetic model, for both initial pH, and temperature. The highest R{sup 2} value in isotherm studies was obtained from Freundlich isotherm for the inlet concentration and from Temkin isotherm for the sorbent amount. The high R{sup 2} values prove that modeling the adsorption process with ANN is a satisfactory approach. The experimental results and the predicted results by the model with the ANN were found to be highly compatible with each other.

  7. Application of batch tests to assess antibiotic loads in anaerobic processes.

    Science.gov (United States)

    Rodríguez, Diana C; Londoño, Yudy A; Peñuela, Gustavo A

    2017-05-01

    The presence of antibiotics in drinking water and wastewater has not been widely studied because the sanitary engineering sector mainly focuses on the removal of organic matter and nutrients. There is a lack of environmental regulations for pollutants like antibiotics. Batch tests analyse biodegradability to measure the anaerobic degradation potential of the substrate, or they can be used as toxicity tests. Oxytetracycline, florfenicol (FLO), ceftiofur (CEF) and penicillin G (PEN), commonly used in Colombia for the treatment of livestock diseases, were added in different concentrations to anaerobic sludge contained in serological glass bottles. The production of methane stored in the empty spaces of the bottles was monitored in order to determine the effect of the aforementioned antibiotics on the anaerobic process. It was found that CEF did not have any inhibitory effect on methanogenic activity, while PEN showed inhibition at all concentrations evaluated.

  8. Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem

    Science.gov (United States)

    Molla-Alizadeh-Zavardehi, S.; Tavakkoli-Moghaddam, R.; Lotfi, F. Hosseinzadeh

    2014-01-01

    This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM) scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA), variable neighborhood search (VNS), and simulated annealing (SA) frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms. PMID:24883359

  9. Increased CPC batch size study for Tank 42 sludge in the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Daniel, W.E.

    2000-01-01

    A series of experiments have been completed at TNX for the sludge-only REDOX adjusted flowsheet using Tank 42 sludge simulant in response to the Technical Task Request HLW/DWPT/TTR-980013 to increase CPC batch sizes. By increasing the initial SRAT batch size, a melter feed batch at greater waste solids concentration can be prepared and thus increase melter output per batch by about one canister. The increased throughput would allow DWPF to dispose of more waste in a given time period thus shortening the overall campaign

  10. Increased CPC batch size study for Tank 42 sludge in the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W.E.

    2000-01-06

    A series of experiments have been completed at TNX for the sludge-only REDOX adjusted flowsheet using Tank 42 sludge simulant in response to the Technical Task Request HLW/DWPT/TTR-980013 to increase CPC batch sizes. By increasing the initial SRAT batch size, a melter feed batch at greater waste solids concentration can be prepared and thus increase melter output per batch by about one canister. The increased throughput would allow DWPF to dispose of more waste in a given time period thus shortening the overall campaign.

  11. The Misselhorn Cycle: Batch-Evaporation Process for Efficient Low-Temperature Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Moritz Gleinser

    2016-05-01

    Full Text Available The concept of the Misselhorn cycle is introduced as a power cycle that aims for efficient waste heat recovery of temperature sources below 100 °C. The basic idea shows advantages over a standard Organic Rankine Cycle (ORC in overall efficiency and utilization of the heat source. The main characteristic of this cycle is the use of at least three parallel batch evaporators instead of continuous heat exchangers. The operational phases of the evaporators are shifted so that there is always one vaporizer in discharge mode. A transient MATLAB® model (The MathWorks: Natick, MA, USA is used to simulate the achievable performance of the Misselhorn cycle. The calculations of the thermodynamic states of the system are based on the heat flux, the equations for energy conservation and the equations of state found in the NIST Standard Reference Database 23 (Reference Fluid Thermodynamic and Transport Properties - REFPROP, National Institute of Standards and Technology: Gaithersburg, MD, USA. In the isochoric batch evaporation, the pressure and the corresponding boiling temperature rise over time. With a gradually increasing boiling temperature, no pinch point limitation occurs. Furthermore, the heat source medium is passed through the evaporators in serial order to obtain a quasi-counter flow setup. It could be shown that these features offer the possibility to gain both high thermal efficiencies and an enhanced utilization of the heat source at the same time. A basic model with a fixed estimated heat transfer coefficient promises a possible system exergy efficiency of 44.4%, which is an increase of over 60% compared to a basic ORC with a system exergy efficiency of only 26.8%.

  12. Optimization of high solids fed-batch saccharification of sugarcane bagasse based on system viscosity changes.

    Science.gov (United States)

    Liu, Yunyun; Xu, Jingliang; Zhang, Yu; Yuan, Zhenhong; Xie, Jun

    2015-10-10

    Viscosity trends in alkali-pretreated sugarcane bagasse (SCB) slurries undergoing high solids fed-batch enzymatic hydrolysis were measured for a range of solids loading from 15% to 36%. Solids liquefaction times were related to system viscosity changes. The viscosity decreased quickly for low solids loading, and increased with increasing solids content. Fed-batch hydrolysis was initiated with 15% solids loading, and an additional 8%, 7% and 6% were successively added after the system viscosity decreased to stable values to achieve a final solids content of 36%. Two enzyme-adding modes with 8.5FPU/g solid were investigated. The batch mode with all enzyme being added at the beginning of the reaction produced the highest yields, with approximately 231.7g/L total sugars and 134.9g/L glucose being obtained after 96h with nearly 60% of the final glucan conversion rate. This finding indicates that under the right conditions, the fed-batch strategy might be a plausible way to produce high sugars under high solids. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Elucidating Batch-to-Batch Variation Caused by Homocoupled Side Products in Solution-Processable Organic Solar Cells

    DEFF Research Database (Denmark)

    Vangerven, Tim; Verstappen, Pieter; Patil, Nilesh

    2016-01-01

    on the impact of homocouplings on device performance is, however, still lacking as is a profound understanding of the underlying causes of the device deterioration. For differentiating the combined effect of molecular weight and homocouplings in polymer solar cells, a systematic study on a small molecule system......Conjugated polymers and small molecules based on alternating electron-donating (D) and electron-accepting (A) building blocks have led to state-of-the-art organic solar cell materials governing efficiencies beyond 10%. Unfortunately, the connection of D and A building blocks via cross......-coupling reactions does not always proceed as planned, which can result in the generation of side products containing D-D or A-A homocoupling motifs. Previous studies have reported a reduced performance in polymer and small molecule solar cells when such defect structures are present. A general consensus...

  14. THE DEVELOPMENT AND EXPERIMENTAL TESTING OF A FUZZY CONTROL SYSTEM FOR BATCH DISTILLATION

    Directory of Open Access Journals (Sweden)

    A.M.Frattini Fileti

    2002-03-01

    Full Text Available The present work describes the development and implementation of fuzzy control algorithms in order to control on-line the overhead product composition of a batch distillation column. Firstly, the influence of design parameters was evaluated through computational simulations and then the algorithms were experimentally tested by monitoring a pilot column. Binary mixtures of n-hexane/n-heptane were distilled. Temperature measurements and vapor-liquid equilibrium data are the basis for the inference of overhead and bottom compositions. Two different operational strategies were used for the experimental runs: constant overhead product composition and previously determined set-point trajectory. Using the first strategy, the performance of the fuzzy controllers is compared to the performance of conventional feedback digital controllers. Experimental results show that fuzzy control presents a better performance than the conventional digital feedback control and also that fuzzy controllers were able to deal successfully with variable set-point strategy, albeit using constant design parameter values. Under conventional control, the average reflux rate implemented was higher than the average reflux rate implemented with fuzzy algorithms. Consequently, the process becomes less time- and energy-consuming under fuzzy control. Since fuzzy methodology is a promising new way of looking at process control problems and their solutions, the results of this work could provide control system designers with a better evaluation of the potential worth of fuzzy control.

  15. Batch process solar disinfection is an efficient means of disinfecting drinking water contaminated with Shigella dysenteriae type I.

    Science.gov (United States)

    Kehoe, S C; Barer, M R; Devlin, L O; McGuigan, K G

    2004-01-01

    The mortality and morbidity rate caused by Shigella dysenteriae type I infection is increasing in the developing world each year. In this paper, the possibility of using batch process solar disinfection (SODIS) as an effective means of disinfecting drinking water contaminated with Sh. dysenteriae type I is investigated. Phosphate-buffered saline contaminated with Sh. dysenteriae type I was exposed to simulated solar conditions and the inactivation kinetics of this organism was compared with that of Sh. flexneri, Vibrio cholerae and Salmonella typhimurium. Recovery of injured Sh. dysenteriae type I may be improved by plating on medium supplemented with catalase or pyruvate. Sh. dysenteriae type I is very sensitive to batch process SODIS and is easily inactivated even during overcast conditions. Batch process SODIS is an appropriate intervention for use in developing countries during Sh. dysenteriae type I epidemics.

  16. State observers for a biological wastewater nitrogen removal process in a sequential batch reactor.

    Science.gov (United States)

    Boaventura, K M; Roqueiro, N; Coelho, M A; Araújo, O Q

    2001-08-01

    Biological removal of nitrogen is a two-step process: aerobic autotrophic microorganisms oxidize ammoniacal nitrogen to nitrate, and the nitrate is further reduced to elementary nitrogen by heterotrophic microorganisms under anoxic condition with concomitant organic carbon removal. Several state variables are involved which render process monitoring a demanding task, as in most biotechnological processes, measurement of primary variables such as microorganism, carbon and nitrogen concentrations is either difficult or expensive. An alternative is to use a process model of reduced order for on-line inference of state variables based on secondary process measurements, e.g. pH and redox potential. In this work, two modeling approaches were investigated: a generic reduced order model based on the generally accepted IAWQ No. 1 Model [M. Henze, C.P.L., Grady, W., Gujer, G.V.R., Marais, T., Matsuo, Water Res. 21 (5) (1987) 505-515]-generic model (GM), and a reduced order model specially validated with the data acquired from a benchscale sequential batch reactor (SBR) specific model (SM). Model inaccuracies and measurement errors were compensated for with a Kalman filter structure to develop two state observers: one built with GM, the generic observer (GO), and another based on SM, the specific observer (SO). State variables estimated by GM, SM, GO and SO were compared to experimental data from the SBR unit. GM gave the worst performance while SM predictions presented some model to data mismatch. GO and SO, on the other hand, were both in very good agreement with experimental data showing that filters add robustness against model errors, which reduces the modeling effort while assuring adequate inference of process variables.

  17. Production optimization for concentration and volume-limited fed-batch reactors in biochemical processes.

    Science.gov (United States)

    Liu, Ping; Liu, Xinggao; Zhang, Zeyin; Wang, Yalin; Yang, Chunhua; Gui, Weihua

    2018-03-01

    Since a very slight violation of constraint could cause process safety and product quality problems in biochemical processes, an adaptive approach of fed-batch reactor production optimization that can strictly satisfy constraints over the entire operating time is presented. In this approach, an improved smooth function is proposed such that the inequality constraints can be transformed into smooth constraints. Based on this, only an auxiliary state is needed to monitor violations in the augmented performance index. Combined with control variable parameterization (CVP), the dynamic optimization is executed and constraint violations are examined by calculating the sensitivities of states to ensure that the inequality constraints are satisfied everywhere inside the time interval. Three biochemical production optimization problems, including the manufacturing of ethanol, penicillin and protein, are tested as illustrations. Meanwhile, comparisons with pure penalty CVP method, famous dynamic optimization toolbox DOTcvp and literature results are carried out. Research results show that the proposed method achieves better performances in terms of optimization accuracy and computation cost.

  18. Bioethanol production from starchy biomass by direct fermentation using saccharomyces diastaticus in batch free and immobilized cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Kilonzo, P.M.; Margaritis, A. [University of Western Ontario, London, ON (Canada). Dept. of Chemical and Biochemical Engineering; Yu, J.; Ye, Q. [East China Univ. of Science and Technology, Shanghai (China). Biochemical Engineering Research Inst. and State Key Lab

    2006-07-01

    The feasibility of using amylolytic yeasts for the direct fermentation of starchy biomass to ethanol was discussed. Although amylolytic yeasts such as Saccharomycopsis, Lipomyces, and Schwaniomyces secrete both {alpha}-amylase and glucoamylase enzymes that synergistically enhance starch degradation, they are not suitable for industrial bio-ethanol production because of low tolerance for ethanol and slow fermentation rate. For that reason, this study examined the direct ethanol fermentation of soluble starch or dextrin with the amylolytic yeast Saccharomyces diastaticus in batch free and immobilized cells systems. Saccharomyces diastaticus secretes glucoamylase and can therefore assimilate and ferment starch and starch-like biomass. The main focus of the study was on parameters leading to higher ethanol yields from high concentration of dextrin and soluble starch using batch cultures. A natural attachment method was proposed in which polyurethane foam sheets were used as the carrier for amylolytic yeasts immobilization in ethanol fermentations. The support was chosen because it was inexpensive, autoclavable, pliable and could be tailored to suit process requirements regarding net surface charge, shape and size. It was found that Saccharomyces diastaticus was very efficient in terms of fermentation of high initial concentrations of dextrin or soluble starch. Higher concentrations of ethanol were produced. In batch fermentations, the cells fermented high dextrin concentrations more efficiently. In particular, in batch fermentation, more than 92 g-L of ethanol was produced from 240 g-L of dextrin, at conversion efficiency of 90 per cent. The conversion efficiency decreased to 60 per cent but a higher final ethanol concentration of 147 g/L was attained with a medium containing 500 g/L of dextrin. In an immobilized cell bioreactor, Saccharomyces diastaticus produced 83 g/L of ethanol from 240 g/L of dextrin, corresponding to ethanol volumetric productivity of 9.1 g

  19. Cell-recycle batch process of Scheffersomyces stipitis and Saccharomyces cerevisiae co-culture for second generation bioethanol production.

    Science.gov (United States)

    Ashoor, Selim; Comitini, Francesca; Ciani, Maurizio

    2015-11-01

    To achieve an optimized co-culture ratio of Scheffersomyces stipitis and Saccharomyces cerevisiae for the production of second generation bioethanol under a cell-recycle batch process. Three Sacc. cerevisiae strains were evaluated in co-culture with Sch. stipitis CBS 5773 at different ratios using synthetic medium containing glucose and xylose. Bioreactor trials indicated that the optimal condition for ethanol production using Sacc. cerevisiae EC1118 and Sch. stipitis co-culture was 1 % of O2 concentration. To increase ethanol production with Sacc. cerevisiae/Sch. stipitis co-culture a cell-recycle batch process was evaluated. Using this process, the maximum ethanol production (9.73 g l(-1)) and ethanol yield (0.42 g g(-1)) were achieved exhibiting a tenfold increase in ethanol productivity in comparison with batch process (2.1 g l(-1) h(-1)). In these conditions a stabilization of the cells ratio Sacc. cerevisiae/Sch. stipitis (1:5) at steady state condition was obtained. Batch cells recycling fermentation is an effective process to use Sch. stipitis/Sacc. cerevisiae co-culture for second generation ethanol production.

  20. Continuous bind-and-elute protein A capture chromatography: Optimization under process scale column constraints and comparison to batch operation.

    Science.gov (United States)

    Kaltenbrunner, Oliver; Diaz, Luis; Hu, Xiaochun; Shearer, Michael

    2016-07-08

    Recently, continuous downstream processing has become a topic of discussion and analysis at conferences while no industrial applications of continuous downstream processing for biopharmaceutical manufacturing have been reported. There is significant potential to increase the productivity of a Protein A capture step by converting the operation to simulated moving bed (SMB) mode. In this mode, shorter columns are operated at higher process flow and corresponding short residence times. The ability to significantly shorten the product residence time during loading without appreciable capacity loss can dramatically increase productivity of the capture step and consequently reduce the amount of Protein A resin required in the process. Previous studies have not considered the physical limitations of how short columns can be packed and the flow rate limitations due to pressure drop of stacked columns. In this study, we are evaluating the process behavior of a continuous Protein A capture column cycling operation under the known pressure drop constraints of a compressible media. The results are compared to the same resin operated under traditional batch operating conditions. We analyze the optimum system design point for a range of feed concentrations, bed heights, and load residence times and determine achievable productivity for any feed concentration and any column bed height. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:938-948, 2016. © 2016 American Institute of Chemical Engineers.

  1. Automatic endpoint determination for batch tea dryers

    NARCIS (Netherlands)

    Temple, S.J.; Boxtel, van A.J.B.

    2001-01-01

    A laboratory batch fluid-bed dryer was developed for handling small samples of tea for experimental batch manufacture, and this dryer required a means of stopping drying when the process was complete. A control system was devised which requires only the initial weight of the sample to be entered

  2. A low-cost batch process for high-performance melt-textured GdBaCuO pellets

    Czech Academy of Sciences Publication Activity Database

    Muralidhar, M.; Tomita, M.; Suzuki, K.; Jirsa, Miloš; Fukumoto, .Y.; Ishihara, A.

    2010-01-01

    Roč. 23, č. 4 (2010), 045033/1-045033/7 ISSN 0953-2048 Institutional research plan: CEZ:AV0Z10100520 Keywords : superconducting magnet * GdBaCuO * batch process * high-Tc bulk Subject RIV: BM - Solid Matter Physics ; Magnet ism Impact factor: 2.402, year: 2010

  3. 40 CFR Table 5 to Subpart Ppp of... - Process Vents From Batch Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Science.gov (United States)

    2010-07-01

    ... Operations-Monitoring, Recordkeeping, and Reporting Requirements 5 Table 5 to Subpart PPP of Part 63... Hazardous Air Pollutant Emissions for Polyether Polyols Production Pt. 63, Subpt. PPP, Table 5 Table 5 to Subpart PPP of Part 63—Process Vents From Batch Unit Operations—Monitoring, Recordkeeping, and Reporting...

  4. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines

    DEFF Research Database (Denmark)

    Fan, Li; Zhao, Liang; Sun, Yating

    2009-01-01

    (lactate and osmolality). The proportionalities of nutritional consumption were determined by direct analysis. And the robust, metabolically responsive feeding strategy was based on the off-line measurement of glucose. The fed-batch process was shown to perform equivalently in GS-CHO and GS-NS0 culture...

  5. Immobilization of yeast inulinase on chitosan beads for the hydrolysis of inulin in a batch system.

    Science.gov (United States)

    Singh, R S; Singh, R P; Kennedy, J F

    2017-02-01

    An extracellular inulinase was partially purified by ethanol precipitation and gel exclusion chromatography from a cell free extract of Kluyveromyces marxianus. Partially purified inulinase exhibited 420 IU/mg specific activity and it was immobilized on chitosan beads. Activity yield of immobilized inulinase was optimized with glutaraldehyde concentration (1-5%), glutaraldehyde treatment time (30-240min), enzyme coupling-time (2-16h) and enzyme loading (5-30 IU) as functions. Under the optimized conditions maximum yield 65.5% of immobilized inulinase was obtained. Maximum hydrolysis of inulin 84.5% and 78.2% was observed at 125rpm after 4h by immobilized and free enzyme, respectively. A retention-time of 4h and 5h was found optimal for the hydrolysis of inulin under agitation (125rpm) by free and immobilized enzyme, respectively. The recycling of the developed immobilized biocatalyst was carried out after 5h of inulin hydrolysis in a batch system. The developed immobilized biocatalyst was successfully used for the hydrolysis of inulin for 14 batches. This is the first report on the immobilization of yeast inulinase on chitosan beads for the hydrolysis of inulin in a batch system. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Near-infrared spectroscopic monitoring of a series of industrial batch processes using a bilinear grey model.

    Science.gov (United States)

    van Sprang, Eric N M; Ramaker, Henk-Jan; Westerhuis, Johan A; Smilde, Age K; Gurden, Stephen P; Wienke, Dietrich

    2003-08-01

    A good process understanding is the foundation for process optimization, process monitoring, end-point detection, and estimation of the end-product quality. Performing good process measurements and the construction of process models will contribute to a better process understanding. To improve the process knowledge it is common to build process models. These models are often based on first principles such as kinetic rates or mass balances. These types of models are also known as hard or white models. White models are characterized by being generally applicable but often having only a reasonable fit to real process data. Other commonly used types of models are empirical or black-box models such as regression and neural nets. Black-box models are characterized by having a good data fit but they lack a chemically meaningful model interpretation. Alternative models are grey models, which are combinations of white models and black models. The aim of a grey model is to combine the advantages of both black-box models and white models. In a qualitative case study of monitoring industrial batches using near-infrared (NIR) spectroscopy, it is shown that grey models are a good tool for detecting batch-to-batch variations and an excellent tool for process diagnosis compared to common spectroscopic monitoring tools.

  7. Adsorption of Chrysoidine R by using fly ash in batch process

    International Nuclear Information System (INIS)

    Matheswaran, Manickam; Karunanithi, Thirugnanam

    2007-01-01

    This investigation deals with effective utilization of fly ash as adsorbent for the removal of Chrysoidine R from the aqueous solution. The fly ash is a major byproduct generated in coal-based thermal power plants and has good potential for use as an adsorbent. A series of experiments were carried out in a batch adsorption technique to obtain the effect of process variables viz. contact time, pH (2, 4, 6 and 8) initial concentration of the dye (400, 600, 800 and 1000 mg L -1 ), amount of the adsorbent (125, 250, 375 and 500 mg L -1 ), and temperature (303, 313, 323 and 333 K) on adsorption. The concentration of dye was determined by spectrophotometer. The results showed that as the amount of the adsorbent was increased, the percentage of dye removal increased accordingly; higher adsorption percentage was observed at lower concentration of chrysoidine. The adsorption data were analyzed using Langmuir and Freundlich isotherms. The adsorption was found to obey pseudo-first order kinetics. An intra particle diffusion model was used to fit the experimental data. The thermodynamic parameters such as standard change in free energy, enthalpy and entropy of adsorption have been calculated. Adsorption of Chrysoidine R on fly ash was found to be an exothermic reaction

  8. Slide Set: Reproducible image analysis and batch processing with ImageJ.

    Science.gov (United States)

    Nanes, Benjamin A

    2015-11-01

    Most imaging studies in the biological sciences rely on analyses that are relatively simple. However, manual repetition of analysis tasks across multiple regions in many images can complicate even the simplest analysis, making record keeping difficult, increasing the potential for error, and limiting reproducibility. While fully automated solutions are necessary for very large data sets, they are sometimes impractical for the small- and medium-sized data sets common in biology. Here we present the Slide Set plugin for ImageJ, which provides a framework for reproducible image analysis and batch processing. Slide Set organizes data into tables, associating image files with regions of interest and other relevant information. Analysis commands are automatically repeated over each image in the data set, and multiple commands can be chained together for more complex analysis tasks. All analysis parameters are saved, ensuring transparency and reproducibility. Slide Set includes a variety of built-in analysis commands and can be easily extended to automate other ImageJ plugins, reducing the manual repetition of image analysis without the set-up effort or programming expertise required for a fully automated solution.

  9. Testing SLURM open source batch system for a Tierl/Tier2 HEP computing facility

    International Nuclear Information System (INIS)

    Donvito, Giacinto; Italiano, Alessandro; Salomoni, Davide

    2014-01-01

    In this work the testing activities that were carried on to verify if the SLURM batch system could be used as the production batch system of a typical Tier1/Tier2 HEP computing center are shown. SLURM (Simple Linux Utility for Resource Management) is an Open Source batch system developed mainly by the Lawrence Livermore National Laboratory, SchedMD, Linux NetworX, Hewlett-Packard, and Groupe Bull. Testing was focused both on verifying the functionalities of the batch system and the performance that SLURM is able to offer. We first describe our initial set of requirements. Functionally, we started configuring SLURM so that it replicates all the scheduling policies already used in production in the computing centers involved in the test, i.e. INFN-Bari and the INFN-Tier1 at CNAF, Bologna. Currently, the INFN-Tier1 is using IBM LSF (Load Sharing Facility), while INFN-Bari, an LHC Tier2 for both CMS and Alice, is using Torque as resource manager and MAUI as scheduler. We show how we configured SLURM in order to enable several scheduling functionalities such as Hierarchical FairShare, Quality of Service, user-based and group-based priority, limits on the number of jobs per user/group/queue, job age scheduling, job size scheduling, and scheduling of consumable resources. We then show how different job typologies, like serial, MPI, multi-thread, whole-node and interactive jobs can be managed. Tests on the use of ACLs on queues or in general other resources are then described. A peculiar SLURM feature we also verified is triggers on event, useful to configure specific actions on each possible event in the batch system. We also tested highly available configurations for the master node. This feature is of paramount importance since a mandatory requirement in our scenarios is to have a working farm cluster even in case of hardware failure of the server(s) hosting the batch system. Among our requirements there is also the possibility to deal with pre-execution and post

  10. Testing SLURM open source batch system for a Tierl/Tier2 HEP computing facility

    Science.gov (United States)

    Donvito, Giacinto; Salomoni, Davide; Italiano, Alessandro

    2014-06-01

    In this work the testing activities that were carried on to verify if the SLURM batch system could be used as the production batch system of a typical Tier1/Tier2 HEP computing center are shown. SLURM (Simple Linux Utility for Resource Management) is an Open Source batch system developed mainly by the Lawrence Livermore National Laboratory, SchedMD, Linux NetworX, Hewlett-Packard, and Groupe Bull. Testing was focused both on verifying the functionalities of the batch system and the performance that SLURM is able to offer. We first describe our initial set of requirements. Functionally, we started configuring SLURM so that it replicates all the scheduling policies already used in production in the computing centers involved in the test, i.e. INFN-Bari and the INFN-Tier1 at CNAF, Bologna. Currently, the INFN-Tier1 is using IBM LSF (Load Sharing Facility), while INFN-Bari, an LHC Tier2 for both CMS and Alice, is using Torque as resource manager and MAUI as scheduler. We show how we configured SLURM in order to enable several scheduling functionalities such as Hierarchical FairShare, Quality of Service, user-based and group-based priority, limits on the number of jobs per user/group/queue, job age scheduling, job size scheduling, and scheduling of consumable resources. We then show how different job typologies, like serial, MPI, multi-thread, whole-node and interactive jobs can be managed. Tests on the use of ACLs on queues or in general other resources are then described. A peculiar SLURM feature we also verified is triggers on event, useful to configure specific actions on each possible event in the batch system. We also tested highly available configurations for the master node. This feature is of paramount importance since a mandatory requirement in our scenarios is to have a working farm cluster even in case of hardware failure of the server(s) hosting the batch system. Among our requirements there is also the possibility to deal with pre-execution and post

  11. Natural soil mediated photo Fenton-like processes in treatment of pharmaceuticals: Batch and continuous approach.

    Science.gov (United States)

    Changotra, Rahil; Rajput, Himadri; Dhir, Amit

    2017-12-01

    This paper manifests the potential viability of soil as a cost-free catalyst in photo-Fenton-like processes for treating pharmaceuticals at large scale. Naturally available soil without any cost intensive modification was utilized as a catalyst to degrade pharmaceuticals, specifically ornidazole (ORZ) and ofloxacin (OFX). Soil was characterized and found enriched with various iron oxides like hematite, magnetite, goethite, pyrite and wustite, which contributes toward enhanced dissolution of Fe 3+ than Fe 2+ in the aqueous solution resulting in augmented rate of photo-Fenton reaction. The leached iron concentration in solution was detected during the course of experiments. The degradation of ORZ and OFX was assessed in solar induced batch experiments using H 2 O 2 as oxidant and 95% ORZ and 92% OFX removal was achieved. Elevated efficiencies were achieved due to Fe 2+ /Fe 3+ cycling, producing more hydroxyl radical leading to the existence of homogeneous and heterogeneous reactions simultaneously. The removal efficiency of solar photo-Fenton like process was also compared to photo-Fenton process with different irradiation sources (UV-A and UV-B) and were statistically analysed. Continuous-scale studies were conducted employing soil either in the form of soil beads or as a thin layer spread on the surface of baffled reactor. Soil beads were found to have satisfactory reusability and stability. 84 and 79% degradation of ORZ and OFX was achieved using soil as thin layer while with soil beads 71 and 68% degradation, respectively. HPLC and TOC study confirmed the efficient removal of both the compounds. Toxicity assessment demonstrates the inexistence of toxic intermediates during the reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Implementation of a repeated fed-batch process for the production of chitin-glucan complex by Komagataella pastoris.

    Science.gov (United States)

    Farinha, Inês; Freitas, Filomena; Reis, Maria A M

    2017-07-25

    The yeast Komagataella pastoris was cultivated under different fed-batch strategies for the production of chitin-glucan complex (CGC), a co-polymer of chitin and β-glucan. The tested fed-batch strategies included DO-stat mode, predefined feeding profile and repeated fed-batch operation. Although high cell dry mass and high CGC production were obtained under the tested DO-stat strategy in a 94h cultivation (159 and 29g/L, respectively), the overall biomass and CGC productivities were low (41 and 7.4g/Lday, respectively). Cultivation with a predefined profile significantly improved both biomass and CGC volumetric productivity (87 and 10.8g/Lday, respectively). Hence, this strategy was used to implement a repeated fed-batch process comprising 7 consecutive cycles. A daily production of 119-126g/L of biomass with a CGC content of 11-16wt% was obtained, thus proving this cultivation strategy is adequate to reach a high CGC productivity that ranged between 11 and 18g/Lday. The process was stable and reproducible in terms of CGC productivity and polymer composition, making it a promising strategy for further process development. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Feasibility of bioengineered two-stages sequential batch reactor and filtration-adsorption process for complex agrochemical effluent.

    Science.gov (United States)

    Manekar, Pravin; Biswas, Rima; Urewar, Chaitali; Pal, Sukdeb; Nandy, Tapas

    2013-11-01

    In the present study, the feasibility of a bioengineered two-stages sequential batch reactor (BTSSBR) followed by filtration-adsorption process was investigated to treat the agrochemical effluent by overcoming factor affecting process stability such as microbial imbalance and substrate sensitivity. An air stripper stripped 90% of toxic ammonia, and combined with other streams for bio-oxidation and filtration-adsorption. The BTSSBR system achieved bio-oxidation at 6 days hydraulic retention time by fending off microbial imbalance and substrate sensitivity. The maximum reduction in COD and BOD by heterotrophic bacteria in the first reactor was 87% and 90%, respectively. Removal of toxic ammoniacal-nitrogen by autotrophic bacteria in a post-second stage bio-oxidation was 97%. The optimum filtration and adsorption of pollutants were achieved at a filtration rate of 10 and 9 m(3)m(-2)h(-1), respectively. The treatment scheme comprising air stripper, BTSSBR and filtration-adsorption process showed a great promise for treating the agrochemical effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Technologies and Principles of Hot Recycling and Investigation of Preheated Reclaimed Asphalt Pavement Batching Process in an Asphalt Mixing Plant

    Directory of Open Access Journals (Sweden)

    Henrikas Sivilevičius

    2017-10-01

    Full Text Available More and more recycled asphalt mixtures with high reclaimed asphalt pavement (RAP content are used in road pavement. Having determined and evaluated RAP composition (aged bitumen content and aggregate gradation and properties, a suitable recycling agent and virgin materials are selected in the design process. The gradation of hot mix asphalt (HMA mixture that is recycled in an asphalt mixing plant (AMP shall correspond to its optimal gradation set out in its job-mix formula (JMF. When RAP is recycled in an AMP, inevitable systematic and random errors of performed technological operations and inhomogeneity of virgin materials and RAP have a significant influence. These factors influence the variation of components quantities of recycled hot mix asphalt (RHMA mixture and deviations from JMF. In this study, the principles of asphalt pavement hot recycling are systematized, which allows analysis of the factors of components’ interaction influencing the results of the recycling process. The paper also presents and analyses asphalt recycling technologies in AMP and their comparative analysis. During the season of asphalt mixture production in 2014, statistical parameters were calculated according to the data obtained from one of the companies, which collected and systematized RAP batch masses, when before batching it was pre-dried and pre-heated in an additional dryer. These parameters of batch mass and RAP content in RHMA position and variation were used when evaluating the accuracy and precision of the recycling process in AMP. The obtained data showed that when RHMA mixtures are produced in a modern batch-type AMP, RAP is batched accurately, but not precisely enough.

  15. Fed-batch bioreactor process with recombinant Saccharomyces cerevisiae growing on cheese whey

    Directory of Open Access Journals (Sweden)

    R. Rech

    2006-12-01

    Full Text Available Saccharomyces cerevisiae strain W303 was transformed with two yeast integrative plasmids containing Kluyveromyces lactis LAC4 and LAC12 genes that codify beta-galactosidase and lactose permease respectively. The BLR030 recombinant strain was selected due to its growth and beta-galactosidase production capacity. Different culture media based on deproteinized cheese whey (DCW were tested and the best composition (containing DCW, supplemented with yeast extract 1 %, and peptone 3 % (w/v was chosen for bioreactor experiments. Batch, and fed-batch cultures with linear ascending feeding for 25 (FB25, 35 (FB35, and 50 (FB50 hours, were performed. FB35 and FB50 produced the highest beta-galactosidase specific activities (around 1,800 U/g cells, and also the best productivities (180 U/L.h. Results show the potential use of fed-batch cultures of recombinant S. cerevisiae on industrial applications using supplemented whey as substrate.

  16. Batch-to-batch model improvement for cooling crystallization

    OpenAIRE

    Forgione , Marco; Birpoutsoukis , Georgios; Bombois , Xavier; Mesbah , Ali; Daudey , Peter; Van Den Hof , Paul

    2015-01-01

    International audience; Two batch-to-batch model update strategies for model-based control of batch cooling crystallization are presented. In Iterative Learning Control, a nominal process model is adjusted by a non-parametric, additive correction term which depends on the difference between the measured output and the model prediction in the previous batch. In Iterative Identification Control, the uncertain model parameters are iteratively estimated using the measured batch data. Due to the d...

  17. Control of continuous fed-batch fermentation process using neural network based model predictive controller.

    Science.gov (United States)

    Kiran, A Uma Maheshwar; Jana, Asim Kumar

    2009-10-01

    Cell growth and metabolite production greatly depend on the feeding of the nutrients in fed-batch fermentations. A strategy for controlling the glucose feed rate in fed-batch baker's yeast fermentation and a novel controller was studied. The difference between the specific carbon dioxide evolution rate and oxygen uptake rate (Qc - Qo) was used as controller variable. The controller evaluated was neural network based model predictive controller and optimizer. The performance of the controller was evaluated by the set point tracking. Results showed good performance of the controller.

  18. Treatment of rinse water from zinc phosphate coating by batch and continuous electrocoagulation processes.

    Science.gov (United States)

    Kobya, M; Demirbas, E; Dedeli, A; Sensoy, M T

    2010-01-15

    Treatment of spent final rinse water of zinc phosphating from an automotive assembly plant was investigated in an electrochemical cell equipped with aluminum or iron plate electrodes in a batch mode by electrocoagulation (EC). Effects of the process variables such as pH, current density, electrode material and operating time were explored with respect to phosphate and zinc removal efficiencies, electrical energy and electrode consumptions. The optimum operating conditions for removal of phosphate and zinc were current density of 60.0 A/m(2), pH 5.0 and operating time of 25.0 min with Al electrode and current density of 60.0 A/m(2), pH 3.0 and operating time of 15.0 min with Fe electrode, respectively. The highest phosphate and zinc removal efficiencies at optimum conditions were 97.7% and 97.8% for Fe electrode, and 99.8% and 96.7% for Al electrode. The electrode consumptions increased from 0.01 to 0.35 kg electrode/m(3) for Al electrode and from 0.20 to 0.62 kg electrode/m(3) for Fe electrode with increasing current density from 10.0 to 100.0 A/m(2). The energy consumptions were 0.18-11.29 kWh/m(3) for Al electrode and 0.24-8.47 kWh/m(3) for Fe electrode in the same current density range. Removal efficiencies of phosphate and zinc were found to decrease when flow rate was increased from 50 to 400 mL/min in continuous mode of operation. The morphology and elements present in the sludge was also characterized by using SEM and EDX.

  19. Effect of residual H2O2 from advanced oxidation processes on subsequent biological water treatment: A laboratory batch study.

    Science.gov (United States)

    Wang, Feifei; van Halem, Doris; Liu, Gang; Lekkerkerker-Teunissen, Karin; van der Hoek, Jan Peter

    2017-10-01

    H 2 O 2 residuals from advanced oxidation processes (AOPs) may have critical impacts on the microbial ecology and performance of subsequent biological treatment processes, but little is known. The objective of this study was to evaluate how H 2 O 2 residuals influence sand systems with an emphasis on dissolved organic carbon (DOC) removal, microbial activity change and bacterial community evolution. The results from laboratory batch studies showed that 0.25 mg/L H 2 O 2 lowered DOC removal by 10% while higher H 2 O 2 concentrations at 3 and 5 mg/L promoted DOC removal by 8% and 28%. A H 2 O 2 dosage of 0.25 mg/L did not impact microbial activity (as measured by ATP) while high H 2 O 2 dosages, 1, 3 and 5 mg/L, resulted in reduced microbial activity of 23%, 37% and 37% respectively. Therefore, DOC removal was promoted by the increase of H 2 O 2 dosage while microbial activity was reduced. The pyrosequencing results illustrated that bacterial communities were dominated by Proteobacteria. The presence of H 2 O 2 showed clear influence on the diversity and composition of bacterial communities, which became more diverse under 0.25 mg/L H 2 O 2 but conversely less diverse when the dosage increased to 5 mg/L H 2 O 2 . Anaerobic bacteria were found to be most sensitive to H 2 O 2 as their growth in batch reactors was limited by both 0.25 and 5 mg/L H 2 O 2 (17-88% reduction). In conclusion, special attention should be given to effects of AOPs residuals on microbial ecology before introducing AOPs as a pre-treatment to biological (sand) processes. Additionally, the guideline on the maximum allowable H 2 O 2 concentration should be properly evaluated. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Selection of chemically defined media for CHO cell fed-batch culture processes

    NARCIS (Netherlands)

    Pan, X.; Streefland, M.; Dalm, C.; Wijffels, R.H.; Martens, D.E.

    2017-01-01

    Two CHO cell clones derived from the same parental CHOBC cell line and producing the same monoclonal antibody (BC-G, a low producing clone; BC-P, a high producing clone) were tested in four basal media in all possible combinations with three feeds (=12 conditions) in fed-batch cultures.
    Higher

  1. Modelling and synthesis of pharmaceutical processes: moving from batch to continuous

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil

    Research in pharmaceutical process development has gained a lot of interest over the last years. Long development times, increasing R&D costs, increasing competition, and short patent duration are some of the driving forces for the increased research efforts in the field. Increased process...... understanding of the pharmaceutical process has resulted in major improvements in the field. Process systems engineering (PSE) approaches, which have been successfully applied in the design, analysis and optimization of chemical and petrochemical processes, might be also important for the improvement...... of pharmaceutical processes by providing systematic and structured solutions for the stages of the pharmaceutical process development. In this PhD thesis, the objective is to systematize the pharmaceutical process development in order to enhance process understanding by creating a data-rich environment...

  2. A novel fed-batch digestion system for biomethanation of plant biomasses.

    Science.gov (United States)

    Sharma, A; Unni, B G; Singh, H D

    1999-01-01

    Plant biomasses, which in the absence of adequate pretreatment pose serious operational problems in biogas production using conventional domestic flow-through digesters, can be successfully digested in a novel fedbatch digestion system that produces a steady rate of biogas. Basically, the system is a batch digestion operated with a regular input of a calculated amount of feed based on first order decay kinetics in order to maintain a regular biogas production rate. For nearly three years the system was tested in a laboratory-scale fed-batch digester (10 l) using dried water hyacinth as feed providing the desired biogas production rate. A field-scale domestic digester of masonry construction with a working volume of 10 m3 was designed and tested for about 9 months by feeding a mixture of dried water hyacinth or banana stem along with sugarcane press mud, yielding an average biogas production of 90-100% of the expected rate calculated on the basis of the feed rate.

  3. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    Science.gov (United States)

    Han, Wei; Yan, Yingting; Shi, Yiwen; Gu, Jingjing; Tang, Junhong; Zhao, Hongting

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35 g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen production of 5850 mL was achieved with a yield of 245.7 mL hydrogen/g glucose (1.97 mol hydrogen/mol glucose) in the batch system. In the continuous system, the effect of hydraulic retention time (HRT) on biohydrogen production from food waste hydrolysate was investigated. The optimal HRT obtained from this study was 6 h with the highest hydrogen production rate of 8.02 mmol/(h·L). Ethanol and acetate were the major soluble microbial products with low propionate production at all HRTs. Enzymatic hydrolysis of food waste could effectively accelerate hydrolysis speed, improve substrate utilization rate and increase hydrogen yield. PMID:27910937

  4. Experience on HTCondor batch system for HEP and other research fields at KISTI-GSDC

    Science.gov (United States)

    Ahn, S. U.; Jaikar, A.; Kong, B.; Yeo, I.; Bae, S.; Kim, J.

    2017-10-01

    Global Science experimental Data hub Center (GSDC) at Korea Institute of Science and Technology Information (KISTI) located at Daejeon in South Korea is the unique datacenter in the country which helps with its computing resources fundamental research fields dealing with the large-scale of data. For historical reason, it has run Torque batch system while recently it starts running HTCondor for new systems. Having different kinds of batch systems implies inefficiency in terms of resource management and utilization. We conducted a research on resource management with HTCondor for several user scenarios corresponding to the user environments that currently GSDC supports. A recent research on the resource usage patterns at GSDC is considered in this research to build the possible user scenarios. Checkpointing and Super-Collector model of HTCondor give us more efficient and flexible way to manage resources and Grid Gate provided by HTCondor helps to interface with the Grid environment. In this paper, the overview on the essential features of HTCondor exploited in this work is described and the practical examples for HTCondor cluster configuration in our cases are presented.

  5. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR).

    Science.gov (United States)

    Muñoz, C; Young, H; Antileo, C; Bornhardt, C

    2009-01-01

    This paper presents a sliding mode controller (SMC) for dissolved oxygen (DO) in an integrated nitrogen removal process carried out in a suspended biomass sequencing batch reactor (SBR). The SMC performance was compared against an auto-tuning PI controller with parameters adjusted at the beginning of the batch cycle. A method for cancelling the slow DO sensor dynamics was implemented by using a first order model of the sensor. Tests in a lab-scale reactor showed that the SMC offers a better disturbance rejection capability than the auto-tuning PI controller, furthermore providing reasonable performance in a wide range of operation. Thus, SMC becomes an effective robust nonlinear tool to the DO control in this process, being also simple from a computational point of view, allowing its implementation in devices such as industrial programmable logic controllers (PLCs).

  6. High Level Waste Feed Delivery AZ-101 Batch Transfer to the Private Contractor Transfer and Mixing Process Improvements

    International Nuclear Information System (INIS)

    DUNCAN, G.P.

    2000-01-01

    The primary purpose of this business case is to provide Operations and Maintenance with a detailed transfer process review for the first High Level Waste (HLW) feed delivery to the Privatization Contractor (PC), AZ-101 batch transfer to PC. The Team was chartered to identify improvements that could be implemented in the field. A significant penalty can be invoked for not providing the quality, quantity, or timely delivery of HLW feed to the PC

  7. Operational conditions for successful partial nitrification in a sequencing batch reactor (SBR) based on process kinetics.

    Science.gov (United States)

    Liu, Xiaoguang; Kim, Mingu; Nakhla, George

    2017-03-01

    The objective of this study is to analyze the factors affecting the performance of partial nitrification in a sequencing batch reactor (SBR) using kinetic models. During the 4-month operation, dissolved oxygen (DO) and influent ammonia concentration were selected as operating variables to evaluate nitrite accumulation. Stable partial nitrification was observed with two conditions, influent ammonia concentration of 190 mg N/L and a DO of 0.6-3.0 mg/L as well as influent ammonia concentration of 100 mg N/L and a DO of 0.15-2.0 mg/L with intermittent aeration. At a DO of 0.6-3.0 mg O 2 /L and influent ammonia concentration of 90 mg N/L, nitrite-oxidizing bacteria growth was not suppressed. Kinetic parameters were determined or estimated with batch tests and model simulation. The kinetic model predicted the SBR performance well.

  8. AUTOMATED BATCH CHARACTERIZATION OF ICF SHELLS WITH VISION-ENABLED OPTICAL MICROSCOPE SYSTEM

    International Nuclear Information System (INIS)

    HUANG, H.; STEPHENS, R.B.; HILL, D.W.; LYON, C.; NIKROO, A.; STEINMAN, D.A.

    2003-09-01

    OAK-B135 Inertial Confinement Fusion (ICF) shells are mesoscale objects with nano-scale dimensional and nano-surface finish requirements. Currently, the shell dimensions are measured by white-light interferometry and an image analysis method. These two methods complement each other and give a rather complete data set on a single shell. The process is, however, labor intensive. They have developed an automation routine to fully characterize a shell in one shot and perform unattended batch measurements. The method is useful to the ICF program both for production screening and for full characterization. It also has potential for Inertial Fusion Energy (IFE) power plant where half a million shells need to be processed daily

  9. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination.

    Science.gov (United States)

    Warsinger, David M; Tow, Emily W; Nayar, Kishor G; Maswadeh, Laith A; Lienhard V, John H

    2016-12-01

    As reverse osmosis (RO) desalination capacity increases worldwide, the need to reduce its specific energy consumption becomes more urgent. In addition to the incremental changes attainable with improved components such as membranes and pumps, more significant reduction of energy consumption can be achieved through time-varying RO processes including semi-batch processes such as closed-circuit reverse osmosis (CCRO) and fully-batch processes that have not yet been commercialized or modelled in detail. In this study, numerical models of the energy consumption of batch RO (BRO), CCRO, and the standard continuous RO process are detailed. Two new energy-efficient configurations of batch RO are analyzed. Batch systems use significantly less energy than continuous RO over a wide range of recovery ratios and source water salinities. Relative to continuous RO, models predict that CCRO and batch RO demonstrate up to 37% and 64% energy savings, respectively, for brackish water desalination at high water recovery. For batch RO and CCRO, the primary reductions in energy use stem from atmospheric pressure brine discharge and reduced streamwise variation in driving pressure. Fully-batch systems further reduce energy consumption by not mixing streams of different concentrations, which CCRO does. These results demonstrate that time-varying processes can significantly raise RO energy efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Ochratoxin A contamination of coffee batches from Kenya in relation to cultivation methods and post-harvest processing treatments.

    Science.gov (United States)

    Duris, Daniel; Mburu, Joseph K; Durand, Noël; Clarke, Renata; Frank, John M; Guyot, Bernard

    2010-06-01

    This study set out to assess the relative importance of sound and unsound beans in a batch of coffee with regard to ochratoxin A (OTA) contamination. Initially, unsound beans were found to account for 95% of contamination in a batch of coffee, whatever the methods used for post-harvest processing. It was also found that beans displaying traces of attacks by Colletotrichum kahawae were the greatest contributors to OTA contamination. In a second stage, the study compared the contamination of sound beans with that of beans attacked by Colletotrichum kahawae. On average, beans attacked by Colletotrichum kahawae had a statistically higher OTA content than sound beans (18.0 microg kg(-1) as opposed to 1.2 microg kg(-1)). In addition, the average OTA content in unsound beans varied depending on growing conditions.

  11. Polyethylene ionomer-based nano-composite foams prepared by a batch process and MuCell injection molding

    International Nuclear Information System (INIS)

    Hayashi, Hidetomo; Mori, Tomoki; Okamoto, Masami; Yamasaki, Satoshi; Hayami, Hiroshi

    2010-01-01

    To understand the correlation between foamability and melt rheology of polyethylene-based ionomers having different degrees of the neutralization and corresponding nano-composites, we have conducted the foam processing via a batch process in an autoclave and microcellular foam injection molding (FIM) process using the MuCell technology. We have discussed the obtainable morphological properties in both foaming processes. All cellular structures were investigated by using field emission scanning electron microscopy. The competitive phenomenon between the cell nucleation and the cell growth including the coalescence of cell was discussed in light of the interfacial energy and the relaxation rate as revealed by the modified classical nucleation theory and rheological measurement, respectively. The FIM process led to the opposite behavior in the cell growth and coalescence of cell as compared with that of the batch process, where the ionic cross-linked structure has significant contribution to retard the cell growth and coalescence of cell. The mechanical properties of the structural foams obtained by FIM process were discussed.

  12. An automated system for processing electrodermal activity.

    Science.gov (United States)

    Frantzidis, Christos A; Konstantinidis, Evdokimos; Pappas, Costas; Bamidis, Panagiotis D

    2009-01-01

    A new approach is presented in this paper for the display and processing of electrodermal activity. It offers a fully automated interface for the pre-processing and scoring individual skin conductance responses (SCRs). The application supports parallel processing by means of multiple threads. Batch processing is also available. The XML format is used to describe the derived features. The system is employed to analyze emotion-related data.

  13. A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures.

    Science.gov (United States)

    Mazzoleni, Stefano; Landi, Carmine; Cartenì, Fabrizio; de Alteriis, Elisabetta; Giannino, Francesco; Paciello, Lucia; Parascandola, Palma

    2015-07-30

    Microbial population dynamics in bioreactors depend on both nutrients availability and changes in the growth environment. Research is still ongoing on the optimization of bioreactor yields focusing on the increase of the maximum achievable cell density. A new process-based model is proposed to describe the aerobic growth of Saccharomyces cerevisiae cultured on glucose as carbon and energy source. The model considers the main metabolic routes of glucose assimilation (fermentation to ethanol and respiration) and the occurrence of inhibition due to the accumulation of both ethanol and other self-produced toxic compounds in the medium. Model simulations reproduced data from classic and new experiments of yeast growth in batch and fed-batch cultures. Model and experimental results showed that the growth decline observed in prolonged fed-batch cultures had to be ascribed to self-produced inhibitory compounds other than ethanol. The presented results clarify the dynamics of microbial growth under different feeding conditions and highlight the relevance of the negative feedback by self-produced inhibitory compounds on the maximum cell densities achieved in a bioreactor.

  14. Modelling of spectroscopic batch process data using grey models to incorporate external information

    NARCIS (Netherlands)

    Gurden, S. P.; Westerhuis, J. A.; Bijlsma, S.; Smilde, A. K.

    2001-01-01

    In both analytical and process chemistry, one common aim is to build models describing measured data. In cases where additional information about the chemical system is available, this can be incorporated into the model with the aim of improving model fit and interpretability. A model which consists

  15. Algae for controlled ecological life support system diet characterization of cyanobacteria 'spirulina' in batch cultures

    Science.gov (United States)

    Tadros, M. G.

    1990-01-01

    Spirulina sp. is a bioregenerative photosynthetic and edible alga for space craft crews in a Closed Ecological Life Support System (CLESS). It was characterized for growth rate and biomass yield in batch cultures, under various environmental conditions. The cell characteristics were identified for one strain of Spirulina: S. maxima. Fast growth rate and high yield were obtained. The partitioning of the assimulatory products (proteins, carbohydrates, lipids) were manipulated by varying the environmental conditions. Experiments with Spirulina demonstrated that under stress conditions carbohydrate increased at the expense of protein. In other experiments, where the growth media were sufficient in nutrients and incubated under optimum growth conditions, the total proteins were increased up to almost 70 percent of the organic weight. In other words, the nutritional quality of the alga could be manipulated by growth conditions. These results support the feasibility of considering Spirulina as a subsystem in CELSS because of the ease with which its nutrient content can be manipulated.

  16. Cycle-time determination and process control of sequencing batch membrane bioreactors.

    Science.gov (United States)

    Krampe, J

    2013-01-01

    In this paper a method to determine the cycle time for sequencing batch membrane bioreactors (SBMBRs) is introduced. One of the advantages of SBMBRs is the simplicity of adapting them to varying wastewater composition. The benefit of this flexibility can only be fully utilised if the cycle times are optimised for the specific inlet load conditions. This requires either proactive and ongoing operator adjustment or active predictive instrument-based control. Determination of the cycle times for conventional sequencing batch reactor (SBR) plants is usually based on experience. Due to the higher mixed liquor suspended solids concentrations in SBMBRs and the limited experience with their application, a new approach to calculate the cycle time had to be developed. Based on results from a semi-technical pilot plant, the paper presents an approach for calculating the cycle time in relation to the influent concentration according to the Activated Sludge Model No. 1 and the German HSG (Hochschulgruppe) Approach. The approach presented in this paper considers the increased solid contents in the reactor and the resultant shortened reaction times. This allows for an exact calculation of the nitrification and denitrification cycles with a tolerance of only a few minutes. Ultimately the same approach can be used for a predictive control strategy and for conventional SBR plants.

  17. A highly efficient SDRAM controller supporting variable-length burst access and batch process for discrete reads

    Science.gov (United States)

    Li, Nan; Wang, Junzheng

    2016-03-01

    A highly efficient Synchronous Dynamic Random Access Memory (SDRAM) controller supporting variable-length burst access and batch process for discrete reads is proposed in this paper. Based on the Principle of Locality, command First In First Out (FIFO) and address range detector are designed within this controller to accelerate its responses to discrete read requests, which dramatically improves the average Effective Bus Utilization Ratio (EBUR) of SDRAM. Our controller is finally verified by driving the Micron 256-Mb SDRAM MT48LC16M16A2. Successful simulation and verification results show that our controller exhibits much higher EBUR than do most existing designs in case of discrete reads.

  18. Bioremediation of petroleum wastewater by hyper-phenol tolerant Bacillus cereus: Preliminary studies with laboratory-scale batch process.

    Science.gov (United States)

    Banerjee, Aditi; Ghoshal, Aloke K

    2017-09-03

    Petroleum wastewater samples from oil refinery and oil exploration site were treated by hyper phenol-tolerant Bacillus cereus (AKG1 and AKG2) in laboratory-scale batch process to assess their bioremediation efficacy. Quality of the treated wastewater samples were analyzed in terms of removal of chemical oxygen demand (COD), total organic carbon (TOC) and ammonium nitrogen content, and improvement of biological oxygen demand (BOD). Adaptation of these bacteria to the toxic environment through structural changes in their cell membranes was also highlighted. Among different combinations, the co-culture of AKG1 and AKG2 showed the best performance in degrading the wastewater samples.

  19. Endoplasmic Reticulum-Associated rht-PA Processing in CHO Cells: Influence of Mild Hypothermia and Specific Growth Rates in Batch and Chemostat Cultures.

    Directory of Open Access Journals (Sweden)

    Mauricio Vergara

    Full Text Available Chinese hamster ovary (CHO cells are the main host for producing recombinant proteins with human therapeutic applications mainly because of their capability to perform proper folding and glycosylation processes. In addition, mild hypothermia is one of the main strategies for maximising the productivity of these systems. However, little information is available on the effect of culture temperature on the folding and degradation processes of recombinant proteins that takes place in the endoplasmic reticulum.In order to evaluate the effect of the mild hypothermia on processing/endoplasmatic reticulum-associated degradation (ERAD processes, batch cultures of CHO cells producing recombinant human tissue plasminogen activator (rht-PA were carried out at two temperatures (37°C and 33°C and treated with specific inhibitors of glycosylation and ERAD I (Ubiquitin/Proteasome system or ERAD II (Autophagosoma/Lisosomal system pathways. The effect of mild hypothermia was analysed separately from its indirect effect on specific cell growth rate. To do this, chemostat cultures were carried out at the same incubation conditions as the batch cultures, controlling cell growth at high (0.017 h-1 and low (0.012 h-1 dilution rates. For a better understanding of the investigated phenomenon, cell behaviour was also analysed using principal component analysis (PCA.Results suggest that rht-PA is susceptible to degradation by both ERAD pathways studied, revealing that processing and/or ERAD processes are sensitive to temperature cultivation in batch culture. Moreover, by isolating the effect of culture temperature from the effect of cell growth rate verifyed by using chemostat cultures, we have found that processing and/or ERAD processes are more sensitive to reduction in specific growth rate than low temperature, and that temperature reduction may have a positive effect on protein processing. Interestingly, PCA indicated that the integrated performance displayed by CHO

  20. A Genetic Algorithm for Feeding Trajectory Optimisation of Fed-batch Fermentation Processes

    Directory of Open Access Journals (Sweden)

    Stoyan Tzonkov

    2009-03-01

    Full Text Available In this work a genetic algorithm is proposed with the purpose of the feeding trajectory optimization during a fed-batch fermentation of E. coli. The feed rate profiles are evaluated based on a number of objective functions. Optimization results obtained for different feeding trajectories demonstrate that the genetic algorithm works well and shows good computational performance. Developed optimal feed profiles meet the defined criteria. The ration of the substrate concentration and the difference between actual cell concentration and theoretical maximum cell concentration is defined as the most appropriate objective function. In this case the final cell concentration of 43 g·l-1 and final product concentration of 125 g·l-1 are achieved and there is not significant excess of substrate.

  1. A low-cost batch process for high-performance melt-textured GdBaCuO pellets

    Science.gov (United States)

    Muralidhar, M.; Tomita, M.; Suzuki, K.; Jirsa, M.; Fukumoto, Y.; Ishihara, A.

    2010-04-01

    High-Tc superconducting magnets promise a variety of industrial, medical, public, and research applications. However, the potential large-scale applications of these materials need excellent and uniform properties and a cheap production method. The batch process developed for the fabrication of GdBa2Cu3Oy pellets in air fulfils all of these requirements. The samples were melt-processed using a cold seeding method with thin film Nd-123 seeds grown on MgO crystals. We used self-made Gd-123 and Gd-211 powders mixed with 0.1 wt% of Pt. Up to 1-1.5 kg of melt-grown Gd-123 bulks could be prepared in one run. XRD analysis confirmed that all of the bulks were c-axis oriented. The superconducting and magnetic performance of the pellets was checked on several small test samples cut out at various standard positions within the bulk. The values were reasonably uniform and the performance was similar to the oxygen-controlled melt-grown Gd-123 samples. The average trapped field at 77 K in the 24 mm diameter batch samples was between 0.8 and 0.9 T, close to the maximum value of 1 T reported so far for Gd-123 single grains processed in air. The present results prove that a high-performance good-quality LREBa2Cu3Oy material can be scaled up from laboratory to industrial production.

  2. Removal of nitrogen and phosphorus from dairy wastewater using constructed wetlands systems operating in batch

    Directory of Open Access Journals (Sweden)

    Ronaldo Rocha Bastos

    2012-08-01

    Full Text Available This work presents the results of a study conducted for a period of seven months on the effectiveness of constructed wetland systems for the treatment of dairy wastewater aiming at removing, nitrogen and phosphorus. Six experimental systems were assembled with a net volume of 115 L using HDPE tanks, with length/width ratio of 2:1. In three of the systems, gravel 0 was used as substrate, while gravel 0 and sand was used in the three others, in the percentage of 80% and 20%, respectively. The systems were operated in batch cycles of 48 hours, applying 7.5 L of influent per cycle. Four of the experimental units were cultivated, and two kept as controls. The selected species chosen were the macrophytes, Typha domingensis and Hedychium coronarium. The removal efficiency concerning nitrogen compounds showed to be quite promising with values ranging from 29.4 to 73.4%, while phosphorus removal from the beds was lower, reaching efficiencies between 18.61 and 34.3%, considered good values, since the removal of these substances is quite difficult through conventional treatment.

  3. A batch system for HEP applications on a distributed IaaS cloud

    International Nuclear Information System (INIS)

    Gable, I; Agarwal, A; Anderson, M; Armstrong, P; Fransham, K; Leavett-Brown, D Harris C; Paterson, M; Penfold-Brown, D; Sobie, R J; Vliet, M; Charbonneau, A; Impey, R; Podaima, W

    2011-01-01

    The emergence of academic and commercial Infrastructure-as-a-Service (IaaS) clouds is opening access to new resources for the HEP community. In this paper we will describe a system we have developed for creating a single dynamic batch environment spanning multiple IaaS clouds of different types (e.g. Nimbus, OpenNebula, Amazon EC2). A HEP user interacting with the system submits a job description file with a pointer to their VM image. VM images can either be created by users directly or provided to the users. We have created a new software component called Cloud Scheduler that detects waiting jobs and boots the user VM required on any one of the available cloud resources. As the user VMs appear, they are attached to the job queues of a central Condor job scheduler, the job scheduler then submits the jobs to the VMs. The number of VMs available to the user is expanded and contracted dynamically depending on the number of user jobs. We present the motivation and design of the system with particular emphasis on Cloud Scheduler. We show that the system provides the ability to exploit academic and commercial cloud sites in a transparent fashion.

  4. A batch system for HEP applications on a distributed IaaS cloud

    Science.gov (United States)

    Gable, I.; Agarwal, A.; Anderson, M.; Armstrong, P.; Fransham, K.; Leavett-Brown, D. Harris C.; Paterson, M.; Penfold-Brown, D.; Sobie, R. J.; Vliet, M.; Charbonneau, A.; Impey, R.; Podaima, W.

    2011-12-01

    The emergence of academic and commercial Infrastructure-as-a-Service (IaaS) clouds is opening access to new resources for the HEP community. In this paper we will describe a system we have developed for creating a single dynamic batch environment spanning multiple IaaS clouds of different types (e.g. Nimbus, OpenNebula, Amazon EC2). A HEP user interacting with the system submits a job description file with a pointer to their VM image. VM images can either be created by users directly or provided to the users. We have created a new software component called Cloud Scheduler that detects waiting jobs and boots the user VM required on any one of the available cloud resources. As the user VMs appear, they are attached to the job queues of a central Condor job scheduler, the job scheduler then submits the jobs to the VMs. The number of VMs available to the user is expanded and contracted dynamically depending on the number of user jobs. We present the motivation and design of the system with particular emphasis on Cloud Scheduler. We show that the system provides the ability to exploit academic and commercial cloud sites in a transparent fashion.

  5. Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Gasser Brigitte

    2006-12-01

    Full Text Available Abstract Background Secretion of heterologous proteins depends both on biomass concentration and on the specific product secretion rate, which in turn is not constant at varying specific growth rates. As fed batch processes usually do not maintain a steady state throughout the feed phase, it is not trivial to model and optimize such a process by mathematical means. Results We have developed a model for product accumulation in fed batch based on iterative calculation in Microsoft Excel spreadsheets, and used the Solver software to optimize the time course of the media feed in order to maximize the volumetric productivity. The optimum feed phase consisted of an exponential feed at maximum specific growth rate, followed by a phase with linearly increasing feed rate and consequently steadily decreasing specific growth rate. The latter phase could be modeled also by exact mathematical treatment by the calculus of variations, yielding the explicit shape of the growth function, however, with certain indeterminate parameters. To evaluate the latter, one needs a numerical optimum search algorithm. The explicit shape of the growth function provides additional evidence that the Excel model results in correct data. Experimental evaluation in two independent fed batch cultures resulted in a good correlation to the optimized model data, and a 2.2 fold improvement of the volumetric productivity. Conclusion The advantages of the procedure we describe here are the ease of use and the flexibility, applying software familiar to every scientist and engineer, and rapid calculation which makes predictions extremely easy, so that many options can be tested in silico quickly. Additional options like further biological and technological constraints or different functions for specific productivity and biomass yield can easily be integrated.

  6. Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris.

    Science.gov (United States)

    Maurer, Michael; Kühleitner, Manfred; Gasser, Brigitte; Mattanovich, Diethard

    2006-12-11

    Secretion of heterologous proteins depends both on biomass concentration and on the specific product secretion rate, which in turn is not constant at varying specific growth rates. As fed batch processes usually do not maintain a steady state throughout the feed phase, it is not trivial to model and optimize such a process by mathematical means. We have developed a model for product accumulation in fed batch based on iterative calculation in Microsoft Excel spreadsheets, and used the Solver software to optimize the time course of the media feed in order to maximize the volumetric productivity. The optimum feed phase consisted of an exponential feed at maximum specific growth rate, followed by a phase with linearly increasing feed rate and consequently steadily decreasing specific growth rate. The latter phase could be modeled also by exact mathematical treatment by the calculus of variations, yielding the explicit shape of the growth function, however, with certain indeterminate parameters. To evaluate the latter, one needs a numerical optimum search algorithm. The explicit shape of the growth function provides additional evidence that the Excel model results in correct data. Experimental evaluation in two independent fed batch cultures resulted in a good correlation to the optimized model data, and a 2.2 fold improvement of the volumetric productivity. The advantages of the procedure we describe here are the ease of use and the flexibility, applying software familiar to every scientist and engineer, and rapid calculation which makes predictions extremely easy, so that many options can be tested in silico quickly. Additional options like further biological and technological constraints or different functions for specific productivity and biomass yield can easily be integrated.

  7. The optimal manufacturing batch size with rework under time-varying demand process for a finite time horizon

    Science.gov (United States)

    Musa, Sarah; Supadi, Siti Suzlin; Omar, Mohd

    2014-07-01

    Rework is one of the solutions to some of the main issues in reverse logistic and green supply chain as it reduces production cost and environmental problem. Many researchers focus on developing rework model, but to the knowledge of the author, none of them has developed a model for time-varying demand rate. In this paper, we extend previous works and develop multiple batch production system for time-varying demand rate with rework. In this model, the rework is done within the same production cycle.

  8. Definition of a process for the recovery of ultra traces of Pu238 from a 300 Kg depleted uranium batch

    International Nuclear Information System (INIS)

    Maillard, C.

    1992-11-01

    In order to measure the half life of the double beta decay of U 238 , a process for the recovery of trace amounts of Pu 238 (about 30 000 atoms) from a 300 kg batch of depleted uranium has been studied and tested. The process includes a Pu (IV) valency adjustment step with nitrous oxide, followed by nine chromatographic cycles (plutonium decontamination factor up to 10 11 have been achieved for Th, Pa and U). The procedure to realize the alpha spectrometry measurement has also been defined. Full scale apparatus have been set in the CRN facility near STRASBOURG. The first part of the experiment (U 238 purification before one year aging and measurement of the extracted Pu 238 traces) has been realized. The results of the Pu traces counting allows the validation of the chemical process but also show an important Pu 238 contamination certainly a consequence of the TCHERNOBYL accident. (author). 76 refs., 63 tabs., 49 figs

  9. Recipe Development Process Re-Design with ANSI/ISA-88 Batch Control Standard in the Pharmaceutical Industry

    Directory of Open Access Journals (Sweden)

    Margherita De Minicis

    2014-11-01

    which must be appropriately shared among local laboratories and plants. To this extent, the ANSI/ISA-88 batch manufacturing standard, rising in the context of process control and automation, is rapidly becoming widely used in pharmaceutical companies. This paper presents a step-by-step approach to assessing the compliance to the ANSI/ISA-88 standard along with a BPM-oriented methodology applicable to the re-design of any generic recipe development process. Redesigning a recipe development process is a complex activity and can mask several pitfalls and criticalities. Thus, along with the methodology, some general evidence and suggestions are provided based on the experience of a project carried out in a large multinational pharmaceutical company.

  10. Changing the batch system in a Tier 1 computing center: why and how

    Science.gov (United States)

    Chierici, Andrea; Dal Pra, Stefano

    2014-06-01

    At the Italian Tierl Center at CNAF we are evaluating the possibility to change the current production batch system. This activity is motivated mainly because we are looking for a more flexible licensing model as well as to avoid vendor lock-in. We performed a technology tracking exercise and among many possible solutions we chose to evaluate Grid Engine as an alternative because its adoption is increasing in the HEPiX community and because it's supported by the EMI middleware that we currently use on our computing farm. Another INFN site evaluated Slurm and we will compare our results in order to understand pros and cons of the two solutions. We will present the results of our evaluation of Grid Engine, in order to understand if it can fit the requirements of a Tier 1 center, compared to the solution we adopted long ago. We performed a survey and a critical re-evaluation of our farming infrastructure: many production softwares (accounting and monitoring on top of all) rely on our current solution and changing it required us to write new wrappers and adapt the infrastructure to the new system. We believe the results of this investigation can be very useful to other Tier-ls and Tier-2s centers in a similar situation, where the effort of switching may appear too hard to stand. We will provide guidelines in order to understand how difficult this operation can be and how long the change may take.

  11. TIME-TEMPERATURE-TRANSFORMATION DIAGRAMS FOR THE SLUDGE BATCH 3 - FRIT 418 GLASS SYSTEM

    International Nuclear Information System (INIS)

    Billings, A.; Edwards, Tommy

    2009-01-01

    As a part of the Waste Acceptance Product Specifications (WAPS) for Vitrified High-Level Waste Forms defined by the Department of Energy - Office of Environmental Management, the phase stability must be determined for each of the projected high-level waste (HLW) types at the Savannah River Site (SRS). Specifically, WAPS 1.4.1 requires the glass transition temperature (Tg) to be defined and time-temperature-transformation (TTT) diagrams to be developed. The Tg of a glass is an indicator of the approximate temperature where the supercooled liquid converts to a solid on cooling or conversely, where the solid begins to behave as a viscoelastic solid on heating. A TTT diagram identifies the crystalline phases that can form as a function of time and temperature for a given waste type or more specifically, the borosilicate glass waste form. In order to assess durability, the Product Consistency Test (PCT) was used and the durability results compared to the Environmental Assessment (EA) glass. The measurement of glass transition temperature and the development of TTT diagrams have already been performed for the seven Defense Waste Processing Facility (DWPF) projected compositions as defined in the Waste Form Compliance Plan (WCP). These measurements were performed before DWPF start-up and the results were incorporated in Volume 7 of the Waste Form Qualification Report (WQR). Additional information exists for other projected compositions, but overall these compositions did not consider some of the processing scenarios now envisioned for DWPF to accelerate throughput. Changes in DWPF processing strategy have required this WAPS specification to be revisited to ensure that the resulting phases have been bounded. Frit 418 was primarily used to process HLW Sludge Batch 3 (SB3) at 38% waste loading (WL) through the DWPF. The Savannah River National Laboratory (SRNL) fabricated a cache of glass from reagent grade oxides to simulate the SB3-Frit 418 system at a 38 wt % WL for glass

  12. Optimization of Bioethanol In Silico Production Process in a Fed-Batch Bioreactor Using Non-Linear Model Predictive Control and Evolutionary Computation Techniques

    Directory of Open Access Journals (Sweden)

    Hanniel Ferreira Sarmento de Freitas

    2017-11-01

    Full Text Available Due to growing worldwide energy demand, the search for diversification of the energy matrix stands out as an important research topic. Bioethanol represents a notable alternative of renewable and environmental-friendly energy sources extracted from biomass, the bioenergy. Thus, the assurance of optimal growth conditions in the fermenter through operational variables manipulation is cardinal for the maximization of the ethanol production process yield. The current work focuses in the determination of optimal control scheme for the fermenter feed rate and batch end-time, evaluating different parametrization profiles, and comparing evolutionary computation techniques, the genetic algorithm (GA and differential evolution (DE, using a dynamic real-time optimization (DRTO approach for the in silico ethanol production optimization. The DRTO was able to optimize the reactor feed rate considering disturbances in the process input. Open-loop tests results obtained for the algorithms were superior to several works presented in the literature. The results indicate that the interaction between the intervals of DRTO cycles and parametrization profile is more significant for the GA, both in terms of ethanol productivity and batch time. In general lines, the present work presents a methodology for control and optimization studies applicable to other bioenergy generation systems.

  13. Biological removal of cyanide compounds from electroplating wastewater (EPWW) by sequencing batch reactor (SBR) system

    International Nuclear Information System (INIS)

    Sirianuntapiboon, Suntud; Chairattanawan, Kanidta; Rarunroeng, Methinee

    2008-01-01

    Biological treatment system especially, sequencing batch reactor (SBR) system could not be applied to treat the raw electroplating wastewater (EPWW) due to the low organic matter concentration of 10 ± 3 mg-BOD 5 /L and toxic of high cyanide concentration of 23.0 ± 2.2 mg-CN/L. However, EPWW could be used as the nitrogen source for the bio-sludge of SBR system. And 10% of EPWW (the final cyanide concentration of 2.3 ± 0.2 mg/L) was most suitable to supplement into the wastewater as the nitrogen source. SBR system showed the highest COD, BOD 5 , TKN and cyanide removal efficiencies of 79 ± 2%, 85 ± 3%, 49.0 ± 2.1% and 97.7 ± 0.7%, respectively with 4-times diluted Thai-rice noodle wastewater (TRNWW) containing 10% EPWW and 138 mg/L NH 4 Cl (BOD 5 : TN of 100:10) at SRT of 72 ± 13 days (under organic and cyanide loadings of 0.40 kg-BOD 5 /m 3 d and 0.0023 kg-CN/m 3 d, respectively). However, the effluent ammonia was still high of 22.6 ± 0.4 mg-N/L while the effluent nitrate and nitrite was only 9.9 ± 0.4 and 1.2 ± 0.9 mg-N/L, respectively. And SVI and effluent SS of the system were higher than 95 and 75 mg/L, respectively

  14. REMOVAL OF REACTIVE BLUE 19 BY ADDING POLYALUMINUM CHLORIDE TO SEQUENCING BATCH REACTOR SYSTEM

    Directory of Open Access Journals (Sweden)

    1Sh. Mehrali, *1M. R. Alavi Moghaddam, 2S. H. Hashemi

    2010-01-01

    Full Text Available The main objective of this study was to evaluate Reactive Blue 19 dye removal efficiency in aerobic sequencing batch reactor (SBR process by adding polyaluminum chloride (PACl. PACl was added to the reactors in concentrations of 0, 1, 5, 15 and 30 mg-Al/L (SBR1 to SBR5 after filling periods. Initial dye concentrations were selected to be 40 mg/L for all reactors. The averages of dye removal efficiencies were more than 57% in all reactors. The maximum and minimum dye removal efficiencies were 71.7% ± 13.6 and 57.7% ± 34.3 in SBR3 and SBR4, respectively. According to the obtained results, PACl had not any significant effects on the COD removal efficiency. The MLSS and MLVSS concentration of SBRs had an increasing rate during whole operation time and reached from 2500 mg/L (1st day to 4900 mg/L (39th day. The maximum increasing rate was 50% in SBR5.

  15. USE OF EXCEL WORKSHEETS WITH USER-FRIENDLY INTERFACE IN BATCH PROCESS (PSBP TO MINIMIZE THE MAKESPAN

    Directory of Open Access Journals (Sweden)

    Rony Peterson da Rocha

    2014-01-01

    Full Text Available In the chemical industry, the necessity for scheduling is becoming more pronounced, especially in batch production mode. Nowadays, planning industrial activities is a necessity for survival. Intense competition requires diversified products and delivery in accordance with the requirements of consumers. These activities require quick decision making and the lowest possible cost, through an efficient Production Scheduling. So, this work addresses the Permutation Flow Shop scheduling problem, characterized as Production Scheduling in Batch Process (PSBP, with the objective of minimizing the total time to complete the schedule (Makespan. A method to approach the problem of production scheduling is to turn it into Mixed Integer Linear Programming- MILP, and to solve it using commercial mathematical programming packages. In this study an electronic spreadsheet with user-friendly interface (ESUFI was developed in Microsoft Excel. The ease of manipulation of the ESUFI is quite evident, as with the use of VBA language a user-friendly interface could be created between the user and the spreadsheet itself. The results showed that it is possible to use the ESUFI for small problems.

  16. Enhanced ammonia nitrogen removal using consistent ammonium exchange of modified zeolite and biological regeneration in a sequencing batch reactor process.

    Science.gov (United States)

    Wei, Yun Xia; Ye, Zheng Fang; Wang, Yao Long; Ma, Ming Guang; Li, Yan Feng

    2011-01-01

    Utilizing preferential ion exchange of the modified zeolite, the zeo-sequencing batch reactor (SBR) is recommended for a new nitrogen removal process. In this study, natural zeolite was modified by sodium chloride to enhance sorption capacity for ammoniacal nitrogen. The untreated and treated zeolite was characterized by XPS and XRD techniques. The sorption isotherm tests showed that equilibrium sorption data were better represented by the Langmuir model than by the Freundlich model. Treatment of natural zeolite by sodium chloride increased the sorption capacity for ammoniacal nitrogen removal from aqueous solutions. As a result of the continuous bioregeneration of ammonium saturated zeolite-floc in the SBR, the nitrogen removal efficiency of the zeo-SBR was relatively ideal. Scanning electron microscopy results showed that microbes were abundant in the zeo-SBR process.

  17. 21 CFR 111.260 - What must the batch record include?

    Science.gov (United States)

    2010-04-01

    ..., LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Production and Process Control System: Requirements... record must include the following: (a) The batch, lot, or control number: (1) Of the finished batch of... that quality control personnel: (1) Reviewed the batch production record, including: (i) Review of any...

  18. Some properties of a sequencing batch reactor system for removal of vat dyes.

    Science.gov (United States)

    Sirianuntapiboon, Suntud; Chairattanawan, Kanidta; Jungphungsukpanich, Sawanya

    2006-07-01

    Bio-sludge from a wastewater treatment plant could be used as an adsorbent of vat dye from textile wastewater. Resting bio-sludge gave a higher adsorption capacity than dead bio-sludge. The resting bio-sludge from a textile wastewater treatment plant gave relatively high COD, BOD5 and dye adsorption capacity of 364.4 +/- 4.3, 178.0 +/- 9.0 and 50.5 +/- 1.3 mg/g of bio-sludge, respectively, in synthetic textile wastewater containing 40 mg/l Vat Yellow 1. Another advantage of the bio-sludge was that, after washing with 0.1 N NaOH solution, it was reusable without any activity loss. Through treatment with a sequencing batch reactor (SBR) system, both organic and dye in STIWW could be removed. The maximum dye (Vat Yellow 1), COD, BOD5 and TKN removal efficiencies of the SBR system under an MLSS of 2000 mg/l and an HRT of three days were 98.5 +/- 1.0%, 96.9 +/- 0.7%, 98.6 +/- 0.1% and 93.4 +/- 1.3%, respectively. Although, the dye and organic removal efficiencies of the SBR system with real textile wastewater were quite low, they could be increased by adding organic matters, especially glucose. The dye, COD, BOD5 and TKN removal efficiencies of the SBR system with glucose (0.89 g/l) supplemented textile industrial wastewater were 75.12 +/- 1.2%, 70.61 +/- 3.4%, 96.7 +/- 0.0%, and 63.2 +/- 1.1%, respectively.

  19. Optimization of atrazine and imidacloprid removal from water using biochars: Designing single or multi-staged batch adsorption systems.

    Science.gov (United States)

    Mandal, Abhishek; Singh, Neera

    2017-05-01

    Contamination of surface and ground water by pesticides from agricultural runoff and industrial discharge is one of the main causes of aqueous contaminations world over. Biochar, agricultural waste derived highly aromatic substance produced after pyrolysis and carbonification of biomass have exhibited good adsorption capacity for pesticides and can be used to develop on-site bio-purification systems for organic contaminant removal from polluted waters. However, high amounts of adsorbent required in single stage-batch sorption plant increases the cost of water treatment; therefore, multistage plant systems were investigated. Normal (RSBC) and phosphoric acid treated (T-RSBC) rice straw biochars were evaluated for atrazine and imidacloprid sorption and data fitted to the Freundlich isotherm. The adsorption data was modelled to develop single or multi-staged adsorber plants for pesticide removal from water. Both biochars showed significantly high adsorption capacity for imidacloprid and atrazine. Modelling studies using the Freundlich adsorption parameters suggested that the amounts (kg/1000L) of RSBC and T-RSBC for 95% of atrazine removal (10mg/L) in single-, two- and three-staged adsorber plant models were 8.84, 2.44, 1.61kg and 4.47, 1.42, 0.98kg, respectively. Corresponding amounts for 95% imidacloprid removal (10mg/L) were 3.97, 1.22, 0.84kg and 3.98, 1.38, 0.96kg, respectively. Thus, the two-staged model suggested 65-72% reduction in amount of adsorbent required over the single stage model, while the three-staged model suggested 30-34% adsorbent saving over the two-staged plant model. Single and two-staged adsorber plant model findings were validated for atrazine removal using T-RSBC. Results suggested that amounts calculated using modelling studies were fairly accurate. Biochars, as low cost adsorbents for atrazine and imidacloprid removal from contaminated water, can be used to develop low cost adsorber plants based on multiple batch sorption systems for the

  20. Analysis of the Influence of the Modernized Bitumen Batching System on the Composition of the Hot Mix Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Justas Bražiūnas

    2011-04-01

    Full Text Available The weighted mass of a binder in the bucket of the bitumen batcher of a batch-type asphalt plant should be such that its percentage of hot mix asphalt (HMA mixture lot would comply with the design amount of the job-mix formula in all mix batches. A bitumen batcher does not always weigh bitumen portions precisely. Their mass deviations from the amount determined by the project and its variation impair HMA composition and performance. The paper provides data on a statistical evaluation of bitumen batcher modernization performed at Lithuanian enterprise „LL“. The article analyzes differences in the structures of reconstructed and not reconstructed bitumen batching systems and presents methods for determining modernization effectiveness. The paper also focuses on the effectiveness of the batching system, determining deviations from bitumen content in subsamples taken and extracted everyday during two seasons (before and after batcher‘s modernization of producing HMA from the value of job-mix formula and comparing them to the values of tolerances.Article in Lithuanian

  1. An integrated model of scheduling, batch delivery and supplier selection in a make-to-order manufacturing system

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdavi Mazdeh

    2016-06-01

    Full Text Available This paper analyzes a supply chain, which consists of a manufacturer, a retailer and several suppliers in which the retailer orders jobs to the manufacturer and the suppliers provide the requiring parts. The manufacturer schedules and processes the orders and dispatches them to the retailer either individually or collectively in batches. The manufacturer incurs a penalty cost for each tardy job and a transportation cost for every delivered batch and therefore, searches for a schedule that yields minimum number of tardy jobs and batches. Moreover, the manufacturer tries to optimize its supplying cost through locating the suppliers that offer appropriate release times and costs for manufacturing parts. Since the release times of parts directly affect scheduling of orders, in this research, we develop an integrated mathematical model for the manufacturer that incorporates suppliers' selection issue into the scheduling and batching decisions. Furthermore, we present a heuristic algorithm (greedy algorithm and also a local search to quickly determine the optimal or near-optimal solutions. The computational analysis shows the importance of the integrated model and also the superiority and effectiveness of the heuristic algorithms.

  2. Adaptive scheduling of batch servers in flow shops

    NARCIS (Netherlands)

    van der Zee, D.J.

    Batch servicing is a common way of benefiting from economies of scale in manufacturing operations. Good examples of production systems that allow for batch processing are ovens found in the aircraft industry and in semiconductor manufacturing. In this paper we study the issue of dynamic scheduling

  3. Adaptive Scheduling Of Batch Servers In Flow Shops

    NARCIS (Netherlands)

    van der Zee, D.J.

    2001-01-01

    Batch servicing is a common way of benefiting from economies of scale in manufacturing operations. Good examples of production systems that allow for batch processing are ovens found in aircraft industry and in semiconductor manufacturing. In this paper we study the issue of dynamic scheduling of

  4. Analysis of Process Capability on the Digital Control Board Batch Testing

    Directory of Open Access Journals (Sweden)

    Chun-Jiang SHUAI

    2014-03-01

    Full Text Available This paper introduces a process control method and analysis procedure. Current data for the digital control single board was obtained with the Statistical Process Control method for a TD outdoor base station. The pass rate and quality of the digital single board was obtained through a production process capability analysis. The improvements associated with the single board method have been put forward here in order to lay a foundation for the enhancement of the quality of several indices. Indices here include the index for process capability and processing accuracy.

  5. Investigation on hemolytic effect of poly(lactic co-glycolic) acid nanoparticles synthesized using continuous flow and batch processes

    Energy Technology Data Exchange (ETDEWEB)

    Libi, Sumit; Calenic, Bogdan; Astete, Carlos E.; Kumar, Challa; Sabliov, Cristina M.

    2017-01-01

    Abstract

    With the increasing interest in polymeric nanoparticles for biomedical applications, there is a need for continuous flow methodologies that allow for the precise control of nanoparticle synthesis. Poly(lactide-co-glycolic) acid (PLGA) nanoparticles with diameters of 220–250 nm were synthesized using a lab-on-a-chip, exploiting the precise flow control offered by a millifluidic platform. The association and the effect of PLGA nanoparticles on red blood cells (RBCs) were compared for fluorescent PLGA nanoparticles made by this novel continuous flow process using a millifluidic chip and smaller PLGA nanoparticles made by a batch method. Results indicated that all PLGA nanoparticles studied, independent of the synthesis method and size, adhered to the surface of RBCs but had no significant hemolytic effect at concentrations lower than 10 mg/ml.

  6. Evaluation of degree of readsorption of radionuclides during sequential extraction in soil: comparison between batch and dynamic extraction systems

    DEFF Research Database (Denmark)

    Petersen, Roongrat; Hansen, Elo Harald; Hou, Xiaolin

    developed in our laboratory for heavy metal fractionation has shown the reduction of readsorption problem in comparison with the batch techniques. Moreover, the system shows many advantages over the batch system such as speed of extraction, simple procedure, fully automatic, less risk of contamination......Sequential extraction techniques have been widely used to fractionate metals in solid samples (soils, sediments, solid wastes, etc.) due to their leachability. The results are useful for obtaining information about bioavailability, potential mobility and transport of element in natural environments....... However, the techniques have an important problem with redistribution as a result of readsorption of dissolved analytes onto the remaining solids phases during extraction. Many authors have demonstrated the readsorption problem and inaccuracy from it. In our previous work, a dynamic extraction system...

  7. Fusion of product and process data: Batch-mode and real-time streaming

    Energy Technology Data Exchange (ETDEWEB)

    Vincent De Sapio; Spike Leonard

    1999-12-01

    In today's DP product realization enterprise it is imperative to reduce the design-to-fabrication cycle time and cost while improving the quality of DP parts (reducing defects). Much of this challenge resides in the inherent gap between the product and process worlds. The lack of seamless, bi-directional flow of information prevents true concurrency in the product realization world. This report addresses a framework for product-process data fusion to help achieve next generation product realization. A fundamental objective is to create an open environment for multichannel observation of process date, and subsequent mapping of that data onto product geometry. In addition to the sensor-based observation of manufacturing processes, model-based process data provides an important complement to empirically acquired data. Two basic groups of manufacturing models are process physics, and machine kinematics and dynamics. Process physics addresses analytical models that describe the physical phenomena of the process itself. Machine kinematic and dynamic models address the mechanical behavior of the processing equipment. As a secondary objective, an attempt has been made in this report to address part of the model-based realm through the development of an open object-oriented library and toolkit for machine kinematics and dynamics. Ultimately, it is desirable to integrate design definition, with all types of process data; both sensor-based and model-based. Collectively, the goal is to allow all disciplines within the product realization enterprise to have a centralized medium for the fusion of product and process data.

  8. Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness.

    Science.gov (United States)

    Konakovsky, Viktor; Clemens, Christoph; Müller, Markus Michael; Bechmann, Jan; Berger, Martina; Schlatter, Stefan; Herwig, Christoph

    2016-01-11

    Biomass and cell-specific metabolic rates usually change dynamically over time, making the "feed according to need" strategy difficult to realize in a commercial fed-batch process. We here demonstrate a novel feeding strategy which is designed to hold a particular metabolic state in a fed-batch process by adaptive feeding in real time. The feed rate is calculated with a transferable biomass model based on capacitance, which changes the nutrient flow stoichiometrically in real time. A limited glucose environment was used to confine the cell in a particular metabolic state. In order to cope with uncertainty, two strategies were tested to change the adaptive feed rate and prevent starvation while in limitation: (i) inline pH and online glucose concentration measurement or (ii) inline pH alone, which was shown to be sufficient for the problem statement. In this contribution, we achieved metabolic control within a defined target range. The direct benefit was two-fold: the lactic acid profile was improved and pH could be kept stable. Multivariate Data Analysis (MVDA) has shown that pH influenced lactic acid production or consumption in historical data sets. We demonstrate that a low pH (around 6.8) is not required for our strategy, as glucose availability is already limiting the flux. On the contrary, we boosted glycolytic flux in glucose limitation by setting the pH to 7.4. This new approach led to a yield of lactic acid/glucose (Y L/G) around zero for the whole process time and high titers in our labs. We hypothesize that a higher carbon flux, resulting from a higher pH, may lead to more cells which produce more product. The relevance of this work aims at feeding mammalian cell cultures safely in limitation with a desired metabolic flux range. This resulted in extremely stable, low glucose levels, very robust pH profiles without acid/base interventions and a metabolic state in which lactic acid was consumed instead of being produced from day 1. With this contribution

  9. Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness

    Directory of Open Access Journals (Sweden)

    Viktor Konakovsky

    2016-01-01

    Full Text Available Biomass and cell-specific metabolic rates usually change dynamically over time, making the “feed according to need” strategy difficult to realize in a commercial fed-batch process. We here demonstrate a novel feeding strategy which is designed to hold a particular metabolic state in a fed-batch process by adaptive feeding in real time. The feed rate is calculated with a transferable biomass model based on capacitance, which changes the nutrient flow stoichiometrically in real time. A limited glucose environment was used to confine the cell in a particular metabolic state. In order to cope with uncertainty, two strategies were tested to change the adaptive feed rate and prevent starvation while in limitation: (i inline pH and online glucose concentration measurement or (ii inline pH alone, which was shown to be sufficient for the problem statement. In this contribution, we achieved metabolic control within a defined target range. The direct benefit was two-fold: the lactic acid profile was improved and pH could be kept stable. Multivariate Data Analysis (MVDA has shown that pH influenced lactic acid production or consumption in historical data sets. We demonstrate that a low pH (around 6.8 is not required for our strategy, as glucose availability is already limiting the flux. On the contrary, we boosted glycolytic flux in glucose limitation by setting the pH to 7.4. This new approach led to a yield of lactic acid/glucose (Y L/G around zero for the whole process time and high titers in our labs. We hypothesize that a higher carbon flux, resulting from a higher pH, may lead to more cells which produce more product. The relevance of this work aims at feeding mammalian cell cultures safely in limitation with a desired metabolic flux range. This resulted in extremely stable, low glucose levels, very robust pH profiles without acid/base interventions and a metabolic state in which lactic acid was consumed instead of being produced from day 1. With

  10. Optimal Control of a Fed-batch Fermentation Process by Neuro-Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Tatiana Ilkova

    2004-10-01

    Full Text Available In this paper the method for optimal control of a fermentation process is presented, that is based on an approach for optimal control - Neuro-Dynamic programming. For this aim the approximation neural network is developed and the decision of the optimization problem is improved by an iteration mode founded on the Bellman equation. With this approach computing time and procedure are decreased and quality of the biomass at the end of the process is increased.

  11. Synthesis of Peptide Amides using Sol-Gel Immobilized Alcalase in Batch and Continuous Reaction System

    NARCIS (Netherlands)

    Corici, L.N.; Frissen, A.E.; Zoelen, van D.J.; Eggen, I.F.; Peter, F.; Davidescu, C.; Boeriu, C.G.

    2011-01-01

    Two commercial proteases from Bacillus licheniformis (Alcalase 2.4 L FG and Alcalase 2.5 L, Type DX) were screened for the production of Z-Ala-Phe-NH2 in batch reaction. Alcalase 2.4 L FG was the most efficient enzyme for the C-terminal amidation of Z-Ala-Phe-OMe using ammonium carbamate as ammonium

  12. UPTAKE OF HEAVY METALS IN BATCH SYSTEMS BY A RECYCLED IRON-BEARING MATERIAL

    Science.gov (United States)

    An iron-bearing material deriving from surface finishing operations in the manufacturing of cast-iron components demonstrates potential for removal of heavy metals from aqueous waste streams. Batch isotherm and rate experiments were conducted for uptake of cadmium, zinc, and lead...

  13. Autohydrolysis pretreatment of Arundo donax: a comparison between microwave-assisted batch and fast heating rate flow-through reaction systems.

    Science.gov (United States)

    Galia, Alessandro; Schiavo, Benedetto; Antonetti, Claudia; Galletti, Anna Maria Raspolli; Interrante, Leonardo; Lessi, Marco; Scialdone, Onofrio; Valenti, Maria Grazia

    2015-01-01

    Autohydrolysis of lignocellulosic biomass in liquid hot water has been widely studied owing to its high efficiency and relatively low cost. In the perspective of industrial applications, continuous or semi-continuous processes are more interesting than batch systems. Moreover, microwave heating of pretreatment systems has been proposed to intensify the kinetics of the process. In this study, the autohydrolysis of Arundo donax was performed in pure liquid hot water using a microwave-heated batch reactor and a semi-continuous flow-through reaction system with fast heating rate at the same operating conditions with the aim of performing a systematic comparison between the two different experimental apparatuses. The effect of process temperature and time, biomass to water mass to volume ratio and water flow rate on the concentration and yield of hydrolysis products was investigated. The flow-through set-up allowed us to reach biomass solubilization up to 44.5 wt% on dry basis, while the batch system stopped at 34.5 wt% suggesting that the mass transfer could be the rate-determining step in the solubilization of the constituting biopolymers. For example, in the flow-through layout, using a flow rate of 3.5 mL/min at 200 °C with 20 min of processing time, quantitative recovery of hemicellulose was obtained with limited formation of degradation products. Interestingly, higher cellulose/hemicellulose extraction ratios were found using the microwave-assisted batch reactor. FTIR analyses of the solid residues recovered after the pretreatment offered independent information on the fractions of liquefied biopolymers complementary to those derived from HPLC and UV-Vis spectroscopy. Collected experimental results indicated that the flow-through system can be adopted to obtain complete solubilization of the hemicellulose fraction of Arundo donax addressing the product distribution in soluble compounds towards fermentable sugars with limited formation of sugar degradation

  14. An integral term adaptive neural control of fed-batch fermentation biotechnological process; Control neuronal adaptable con termino integral para un proceso biotecnologico de fermentacion por lote alimentado

    Energy Technology Data Exchange (ETDEWEB)

    Baruch, Ieroham; Hernandez, Luis Alberto; Barrera Cortes, Josefina [Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Mexico D.F. (Mexico)

    2005-07-15

    A nonlinear mathematical model of aerobic biotechnological process of a fed-batch fermentation system is derived using ordinary differential equations. A neurocontrol is applied using Recurrent Trainable Neural Network (RTNN) plus integral term; the first network performs an approximation of the plant's output; the second network generates the control signal so that the biomass concentration could be regulated by the nutrient influent flow rate into the bioreactor. [Spanish] Un modelo matematico no lineal de un proceso biotecnologico aerobio de un sistema de fermentacion por lote alimentado es presentado mediante ecuaciones diferenciales ordinarias. Es propuesto un control utilizando dos redes neuronales recurrentes entrenables (RNRE) con la adicion de un termino integral; la primera red representa un aproximador de la salida de la planta y la segunda genera la senal de control tal que la concentracion de la biomasa pueda ser regulada mediante la alimentacion de un flujo con nutrientes al biorreactor.

  15. Fermentative and growth performances of Dekkera bruxellensis in different batch systems and the effect of initial low cell counts in co-cultures with Saccharomyces cerevisiae.

    Science.gov (United States)

    Meneghin, Maria Cristina; Bassi, Ana Paula Guarnieri; Codato, Carolina Brito; Reis, Vanda Renata; Ceccato-Antonini, Sandra Regina

    2013-08-01

    Dekkera bruxellensis is a multifaceted yeast present in the fermentative processes used for alcoholic beverage and fuel alcohol production - in the latter, normally regarded as a contaminant. We evaluated the fermentation and growth performance of a strain isolated from water in an alcohol-producing unit, in batch systems with/without cell recycling in pure and co-cultures with Saccharomyces cerevisiae. The ethanol resistance and aeration dependence for ethanol/acid production were verified. Ethanol had an effect on the growth of D. bruxellensis in that it lowered or inhibited growth depending on the concentration. Acid production was verified in agitated cultures either with glucose or sucrose, but more ethanol was produced with glucose in agitated cultures. Regardless of the batch system, low sugar consumption and alcohol production and expressive growth were found with D. bruxellensis. Despite a similar ethanol yield compared to S. cerevisiae in the batch system without cell recycling, ethanol productivity was approximately four times lower. However, with cell recycling, ethanol yield was almost half that of S. cerevisiae. At initial low cell counts of D. bruxellensis (10 and 1000 cells/ml) in co-cultures with S. cerevisiae, a decrease in fermentative efficiency and a substantial growth throughout the fermentative cycles were displayed by D. bruxellensis. Due to the peculiarity of cell repitching in Brazilian fermentation processes, D. bruxellensis is able to establish itself in the process, even when present in low numbers initially, substantially impairing bioethanol production due to the low ethanol productivity, in spite of comparable ethanol yields. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Production-process optimization algorithm: Application to fed-batch bioprocess

    Czech Academy of Sciences Publication Activity Database

    Pčolka, M.; Čelikovský, Sergej

    2017-01-01

    Roč. 354, č. 18 (2017), s. 8529-8551 ISSN 0016-0032 R&D Projects: GA ČR(CZ) GA17-04682S Institutional support: RVO:67985556 Keywords : Optimal control * Bioprocess * Optimization Subject RIV: BC - Control Systems Theory OBOR OECD: Automation and control systems Impact factor: 3.139, year: 2016 https:// doi . org /10.1016/j.jfranklin.2017.10.012

  17. Performance of Continuous Micro Photo Reactor – Comparison with Batch Process

    Czech Academy of Sciences Publication Activity Database

    Drhová, Magdalena; Hejda, S.; Křišťál, Jiří; Klusoň, Petr

    2012-01-01

    Roč. 42, SI (2012), s. 1365-1372 E-ISSN 1877-7058. [International Congress of Chemical and Process Engineering CHISA 2012 and 15th Conference PRES 2012 /20./. Prague, 25.08.2012-29.08.2012] Institutional support: RVO:67985858 Keywords : continuous microreactor * photooxidation * phtalocyanine Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  18. Batch processing images in Adobe Photoshop using a script written in JavaScript

    Directory of Open Access Journals (Sweden)

    Наталья Сергеевна Дидык

    2014-10-01

    Full Text Available The article seeks to consider the possibility of automating the processing of a series of photographs. Particular attention is paid to the use of scripts written in the programming language Java Script for Adobe Photoshop. Java Script scenarios are dynamic and have significant advantages over a simple-to-use Action.

  19. Systematic Modelling and Crystal Size Distribution Control for Batch Crystallization Processes

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Singh, Ravendra; Sin, Gürkan

    Crystallization processes form an important class of separation methods that are frequently used in the chemical, the pharmaceutical and the food industry. The specifications of the crystal product are usually given in terms of crystal size, shape and purity. In order to predict the desired cryst...

  20. Utilisation of factorial experiments for the UV/H O process in a batch ...

    African Journals Online (AJOL)

    drinie

    2001-10-04

    Oct 4, 2001 ... as is predicted by factorial experiments. On the other hand, initial H2O2 concentration, initial phenol concentration and temperature significantly influenced the efficiency of the process. Optimal values were determined: a temperature of about 20°C and a. CH2O2/Cphenol ratio of 120 (mg/mg). Introduction.

  1. CMOS-compatible batch processing of monolayer MoS2 MOSFETs

    Science.gov (United States)

    Xiong, Kuanchen; Kim, Hyun; Marstell, Roderick J.; Göritz, Alexander; Wipf, Christian; Li, Lei; Park, Ji-Hoon; Luo, Xi; Wietstruck, Matthias; Madjar, Asher; Strandwitz, Nicholas C.; Kaynak, Mehmet; Lee, Young Hee; Hwang, James C. M.

    2018-04-01

    Thousands of high-performance 2D metal-oxide-semiconductor field effect transistors (MOSFETs) were fabricated on wafer-scale chemical vapor deposited MoS2 with fully-CMOS-compatible processes such as photolithography and aluminum metallurgy. The yield was greater than 50% in terms of effective gate control with less-than-10 V threshold voltage, even for MOSFETs having deep-submicron gate length. The large number of fabricated MOSFETs allowed statistics to be gathered and the main yield limiter to be attributed to the weak adhesion between the transferred MoS2 and the substrate. With cut-off frequencies approaching the gigahertz range, the performances of the MOSFETs were comparable to that of state-of-the-art MoS2 MOSFETs, whether the MoS2 was grown by a thin-film process or exfoliated from a bulk crystal.

  2. Optimization of a semi-batch tablet coating process for a continuous manufacturing line by design of experiments.

    Science.gov (United States)

    Barimani, Shirin; Šibanc, Rok; Kleinebudde, Peter

    2018-01-29

    The aim of the study was to optimize a tablet coating process for a continuous manufacturing line. High throughputs should be achieved while inter-tablet coating variability should be as small as possible. Drug-free cores were coated with a colored suspension. All processes were monitored in-line with Raman spectroscopy. A statistical design of experiment was performed to find optimum process parameters. Tablet loading, spray rate and drum rotation speed were studied. Image analysis was performed using a computer scanner. Tablet hue and saturation were evaluated to obtain information about the inter-tablet color variabilities and the numbers of outliers. Low variabilities could be achieved using low spray rates and high rotation speeds and they were independent from the tablet batch sizes in the studied factor space. For the prediction of the coating thickness, univariate analysis was compared to PLS-regression. Calibration models were built based on the three center points of the statistical design of experiment resulting in RMSEC of 1.07% of sprayed suspension with R 2 of 0.9989 and Q 2 of 0.9987. Model prediction was possible independent from loading, spray rate and drum rotation speed. The experiment with lowest color variability was conducted with a desired throughput rate of 25 kg/h and with a RMSEP of 2.5%. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Optimization of a batch process for production of biopolymers using low-cost feedstocks

    OpenAIRE

    Luque Gil, Alejandro; D'Alessio Cagnone, Guillermo

    2017-01-01

    During the last century, the preoccupation concerning the environment has increased. This fact is due to the high consumption of products from non-renewables sources which processing, seriously damages the ecosystem. One of the most important non-renewables sources nowadays remains petroleum. Petroleum is used, mostly, as a raw material for obtaining energy. According to the International Energy Agency, in 2013 the world consumption of energy was 1,894.28 kg of oil equivalent p...

  4. Optimization of a batch process for production of biopolymers using low cost feedstocks

    OpenAIRE

    D'alessio Cagnone, Guillermo Alessandro

    2017-01-01

    During the last century, the preoccupation concerning the environment has increased. This fact is due to the high consumption of products from non-renewables sources which processing, seriously damages the ecosystem. One of the most important non-renewables sources nowadays remains petroleum. Petroleum is used, mostly, as a raw material for obtaining energy. According to the International Energy Agency, in 2013 the world consumption of energy was 1,894.28 kg of oil equivalent p...

  5. Upscaling of a Batch De-Vulcanization Process for Ground Car Tire Rubber to a Continuous Process in a Twin Screw Extruder

    Directory of Open Access Journals (Sweden)

    Sitisaiyidah Saiwari

    2016-08-01

    Full Text Available As a means to decrease the amount of waste tires and to re-use tire rubber for new tires, devulcanization of ground passenger car tires is a promising process. Being an established process for NR and EPDM, earlier work has shown that for ground passenger car tire rubber with a relatively high amount of SBR, a devulcanization process can be formulated, as well. This was proven for a laboratory-scale batch process in an internal mixer, using diphenyl disulfide as the devulcanization aid and powder-sized material. In this paper, the devulcanization process for passenger car tire rubber is upscaled from 15 g per batch and transformed into a continuous process in a co-rotating twin screw extruder with a capacity of 2 kg/h. As SBR is rather sensitive to devulcanization process conditions, such as thermal and mechanical energy input, the screw design was based on a low shear concept. A granulate with particle sizes from 1–3.5 mm was chosen for purity, as well as economic reasons. The devulcanization process conditions were fine-tuned in terms of: devulcanization conditions (time/temperature profile, concentration of devulcanization aid, extruder parameters (screw configuration, screw speed, fill factor and ancillary equipment (pre-treatment, extrudate handling. The influence of these parameters on the devulcanization efficiency and the quality of the final product will be discussed. The ratio of random to crosslink scission as determined by a Horikx plot was taken for the evaluation of the process and material. A best practice for continuous devulcanization will be given.

  6. Demonstration of a batch vacuum thermal desorption process on hazardous and mixed waste

    International Nuclear Information System (INIS)

    Palmer, C.R.; McElwee, M.; Meyers, G.

    1995-01-01

    Many different waste streams have been identified at Department of Energy (DOE) facilities as having both hazardous organic and radioactive contaminants. There is presently only one permitted facility in which to manage these materials, and that facility has only limited capacity to process solid wastes. Over the past two years, Rust has been pilot testing a new thermal desorption process that is very well suited to these wastes, and has begun permitting and design of a unit for commercial operation. This paper presents both historic and recent pilot test data on the treatment of hazardous and mixed waste. Also described is the commercial unit. Rust's patented VAC*TRAX technology takes advantage of high vacuum to reduced operating temperature for the thermal desorption of organic contaminants from waste soils, sludges and other contaminated solids. This allows for economical thermal separation on relatively small sites (30 to 5,000 m 3 of waste). VAC*TRAX employs indirect heating; this, combined with a very low carrier gas flow, results in a vent flow rate of approximately 1 m 3 /min which allows for the use of control devices that would not be practical with conventional thermal technology. The unit is therefore ideally suited to processing mixed waste, since zero radioactive emissions can be maintained. An additional benefit of the technology is that the low operating temperature allows highly effective separation to be performed well below the degradation point for the solid components of a trash type waste stream, which constitutes a large fraction of the present mixed waste inventory

  7. Microbial Protein Production from Candida tropicalis ATCC13803 in a Submerged Batch Fermentation Process

    Directory of Open Access Journals (Sweden)

    Sahar Golaghaiee

    2017-01-01

    Full Text Available Background and Objective: Microbial protein production can resolve one of the major world challenges, i.e. lack of protein sources. Candida tropicalis growth was investigated to specify a medium to reach the highest cell proliferation and protein production.Material and Methods: Fractional factorial design and the index of signal to noise ratio were applied for optimization of microbial protein production. Optimization process was conducted based on the experimental results of Taguchi approach designs. Fermentationwas performed at 25oC and the agitation speed of 300 rpm for 70 h. Ammonium sulfate, iron sulfate, glycine and glucose concentrations were considered as process variables. Optimization of the culture medium composition was conducted in order to obtain the highest cell biomass concentration and protein content. Experiment design was performed based on the Taguchi approach and L-16 orthogonal arrays using Qualitek-4 software.Results and Conclusion: Maximum biomass of 8.72 log (CFU ml-1 was obtained using the optimized medium with 0.3, 0.15, 2 and 80 g l-1 of ammonium sulfate, iron sulfate, glycine and glucose, respectively. Iron sulfate and ammonium sulfate with 41.76% (w w-1 and 35.27% (w w-1 contributions, respectively, were recognized as the main components for cell growth. Glucose and glycine with 17.12% and 5.86% (w w-1 contributions,respectively, also affected cell production. The highest interaction severity index of +54.16% was observed between glycine and glucose while the least one of +0.43% was recorded for ammonium sulfate and glycine. A deviation of 7% between the highestpredicted cell numbers and the experimented count confirms the suitability of the applied statistical method. High protein content of 52.16% (w w-1 as well as low fat and nucleic acids content suggest that Candida tropicalis is a suitable case for commercial processes.Conflict of interest: The authors declare that there is no conflict of interest.

  8. Model-Based Comparison of Antibody Dimerization in Continuous and Batch-Wise Downstream Processing

    Directory of Open Access Journals (Sweden)

    Anton Sellberg

    2015-07-01

    Full Text Available Monoclonal antibodies are generally produced using a generic platform approach in which several chromatographic separations assure high purity of the product. Dimerization can occur during the fermentation stage and may occur also during the downstream processing. We present here simulations in which a traditional platform approach that consist of protein A capture, followed by cation-exchange and anion-exchange chromatography for polishing is compared to a continuous platform in which dimer removal and virus inactivation are carried out on a size-exclusion column. A dimerization model that takes pH, salt concentration and the concentration of antibodies into account is combined with chromatographic models, to be able to predicted both the separation and the degree to which dimers are formed. Purification of a feed composition that contained 1% by weight of dimer and a total antibody concentration of 1 g/L was modeled using both approaches, and the amount of antibodies in the continuous platform was at least 4 times lower than in the traditional platform. The total processing time was also lower, as the cation-exchange polish could be omitted.

  9. In vitro fermentation of carbohydrates by porcine faecal inocula and their influence on Salmonella Typhimurium growth in batch culture systems.

    Science.gov (United States)

    Martín-Peláez, Sandra; Gibson, Glenn R; Martín-Orúe, Susana M; Klinder, Annett; Rastall, Robert A; La Ragione, Roberto M; Woodward, Martin J; Costabile, Adele

    2008-12-01

    The aim of this study was to evaluate in vitro the influence of fermentable carbohydrates on the activity of porcine microbiota and survival of Salmonella Typhimurium in a batch culture system simulating the porcine hindgut. The carbohydrates tested were xylooligosaccharides, a mixture of fructooligosaccharides/inulin (FIN), fructooligosaccharides (FOS), gentiooligosaccharides (GEO) and lactulose (LAC). These ingredients stimulated the growth of selected Bifidobacterium and Lactobacillus species in pure cultures. In batch cultures, the carbohydrates influenced some fermentation parameters. For example, GEO and FIN significantly increased lactic acids compared with the control (no added carbohydrate). With the exception of LAC, the test carbohydrates increased the production of short-chain fatty acid (SCFA) and modified SCFA profiles. Quantitative analysis of bacterial populations by FISH revealed increased counts of the Bifidobacterium group compared with control and, with exception of FOS, increased Lactobacillus, Leuconostoc and Weissella spp. counts. Salmonella numbers were the lowest during the fermentation of LAC. This work has looked at carbohydrate metabolism by porcine microbiota in a pH-controlled batch fermentation system. It provides an initial model to analyse interactions with pathogens.

  10. Heat transfer system safety: Comparing the effectiveness of batch venting and a light-ends removal kit (LERK

    Directory of Open Access Journals (Sweden)

    Christopher Ian Wright

    2014-11-01

    Full Text Available Heat transfer fluids (HTF should be analysed at least once per year to determine the extent of thermal degradation. Under normal operating conditions, mineral-based HTFs will thermally degrade and the bonds between hydrocarbons break to form shorter-chain hydrocarbons known as “light-ends”. These light-ends accumulate in a HTF system and present a future potential fire risk. Light-ends can be removed from a HTF system via a batch vent or installation of a temporary or permanently installed light-ends removal kit (LERK. Data was collected prior to and following batch venting or installation of a LERK. The main study parameter was closed flash temperature as open flash temperature and fire point did not change considerably. Analysis showed that both methods increased closed flash temperature in excess of 130 °C three months after the intervention, so both methods were deemed effective. Data showed that the percentage change achieved with the LERK, compared to batch venting, was 2-fold higher at three months and 10-fold higher at 6 months. The duration of effect was longer with the LERK with closed flash temperature being stable and consistently above 130 °C for 50 months after being permanently installed. This case highlights the effectiveness of a permanently fitted LERK which is effective for the longer-term control of closed flash temperature. However, mobile LERKs could be an option for manufacturers looking to manage closed flash temperature on a shorter-term basis or as an alternative to batch venting.

  11. CMOS compatible generic batch process towards flexible memory on bulk monocrystalline silicon (100)

    KAUST Repository

    Ghoneim, Mohamed T.

    2014-12-01

    Today\\'s mainstream flexible electronics research is geared towards replacing silicon either totally, by having organic devices on organic substrates, or partially, by transferring inorganic devices onto organic substrates. In this work, we present a pragmatic approach combining the desired flexibility of organic substrates and the ultra-high integration density, inherent in silicon semiconductor industry, to transform bulk/inflexible silicon into an ultra-thin mono-crystalline fabric. We also show the effectiveness of this approach in achieving fully flexible electronic systems. Furthermore, we provide a progress report on fabricating various memory devices on flexible silicon fabric and insights for completely flexible memory modules on silicon fabric.

  12. Bioleaching of uranium in batch stirred tank reactor: Process optimization using Box–Behnken design

    International Nuclear Information System (INIS)

    Eisapour, M.; Keshtkar, A.; Moosavian, M.A.; Rashidi, A.

    2013-01-01

    Highlights: ► High amount of uranium recovery achieved using Acidithiobacillus ferrooxidans. ► ANOVA shows individual variables and their squares are statistically significant. ► The model can accurately predict the behavior of uranium recovery. ► The model shows that pulp density has the greatest effect on uranium recovery. - Abstract: To design industrial reactors, it is important to identify and optimize the effective parameters of the process. Therefore, in this study, a three-level Box–Behnken factorial design was employed combining with a response surface methodology to optimize pulp density, agitation speed and aeration rate in uranium bioleaching in a stirred tank reactor using a pure native culture of Acidithiobacillus ferrooxidans. A mathematical model was then developed by applying the least squares method using the software Minitab Version 16.1.0. The second order model represents the uranium recovery as a function of pulp density, agitation speed and aeration rate. An analysis of variance was carried out to investigate the effects of individual variables and their combined interactive effects on uranium recovery. The results showed that the linear and quadratic terms of variables were statistically significant whilst the interaction terms were statistically insignificant. The model estimated that a maximum uranium extraction (99.99%) could be obtained when the pulp density, agitation speed and aeration rate were set at optimized values of 5.8% w/v, 510 rpm and 250 l/h, respectively. A confirmatory test at the optimum conditions resulted in a uranium recovery of 95%, indicating a marginal error of 4.99%. Furthermore, control tests were performed to demonstrate the effect of A. ferrooxidans in uranium bioleaching process and showed that the addition of this microorganism greatly increases the uranium recovery

  13. THE DEVELOPMENT AND EXPERIMENTAL TESTING OF A FUZZY CONTROL SYSTEM FOR BATCH DISTILLATION

    OpenAIRE

    Fileti, A.M.Frattini; Pereira Filho, R.D.; Pereira, J.A.F.R.

    2002-01-01

    The present work describes the development and implementation of fuzzy control algorithms in order to control on-line the overhead product composition of a batch distillation column. Firstly, the influence of design parameters was evaluated through computational simulations and then the algorithms were experimentally tested by monitoring a pilot column. Binary mixtures of n-hexane/n-heptane were distilled. Temperature measurements and vapor-liquid equilibrium data are the basis for the infere...

  14. An improved solution of local window parameters setting for local singularity analysis based on Excel VBA batch processing technology

    Science.gov (United States)

    Zhang, Daojun; Cheng, Qiuming; Agterberg, Frits; Chen, Zhijun

    2016-03-01

    In this paper Excel VBA is used for batch calculation in Local Singularity Analysis (LSA), which is for the information extracting from different kinds of geoscience data. Capabilities and advantages of a new module called Batch Tool for Local Singularity Index Mapping (BTLSIM) are: (1) batch production of series of local singularity maps with different settings of local window size, shape and orientation parameters; (2) local parameter optimization based on statistical tests; and (3) provision of extra output layers describing how spatial changes induced by parameter optimization are related to spatial structure of the original input layers.

  15. Robust flow-batch coulometric/biamperometric titration system: determination of bromine index and bromine number of petrochemicals.

    Science.gov (United States)

    Pasquini, Celio; de Aquino, Emerson Vidal; das Virgens Reboucas, Marcio; Gonzaga, Fabiano Barbieri

    2007-09-26

    A flow-batch system was constructed and evaluated to perform coulometric titrations with biamperometric end point detection. The flow section of the system is employed for sampling by injecting a sample volume (50-300 microL) in a flow injection-like system. About 1.5 mL of a suitable carrier solution is delivered by a peristaltic pump in order to quantitatively transfer the sample to the system titration cell (2.0 mL total inner volume). The carrier contains the coulometric precursor for the titrant species. The cell contains two pairs of platinum electrodes used for coulometric generation of reagent and biamperometric detection and is actively stirred. The titrant species is generated and the titration is performed by the usual batch procedure with the excess of titrant being detected by biamperometry following the analysis of the titration curve. System operation is computer controlled and all operations are automated, including titration curve analysis and cell cleaning after the titration is ended. The system is characterized by its robustness because its operation does not depend on flow rates, and the work using coulometric methods which generate gases at the counter-electrode is not troublesome. The flow-batch system has been evaluated for determination of bromine index and bromine number (relative to the total reactive olefin content) in petrochemicals according to an ASTM procedure. Typical precision (R.S.D.) is between 0.5 and 6% for different petrochemicals whose bromine number/index vary from 1000 to 10mg of bromine per 100g of sample, respectively. Recoveries for standard additions are between 92 and 123% for 10mg of Br(2) per 100g increments and 98 to 101% for 100mg per 100g increments. Accuracy of the proposed system was evaluated against results obtained by the standard ASTM with no significant difference detected at 95% confidence level.

  16. Enhanced biological nutrient removal in sequencing batch reactors operated as static/oxic/anoxic (SOA) process.

    Science.gov (United States)

    Xu, Dechao; Chen, Hongbo; Li, Xiaoming; Yang, Qi; Zeng, Tianjing; Luo, Kun; Zeng, Guangming

    2013-09-01

    An innovative static/oxic/anoxic (SOA) activated sludge process characterized by static phase as a substitute for conventional anaerobic stage was developed to enhance biological nutrient removal (BNR) with influent ammonia of 20 and 40 mg/L in R1 and R2 reactors, respectively. The results demonstrated that static phase could function as conventional anaerobic stage. In R1 lower influent ammonia concentration facilitated more polyphosphate accumulating organisms (PAOs) growth, but secondary phosphorus release occurred due to NOx(-) depletion during post-anoxic period. In R2, however, denitrifying phosphorus removal proceeded with sufficient NOx(-). Both R1 and R2 saw simultaneous nitrification-denitrification. Glycogen was utilized to drive post-denitrification with denitrification rates in excess of typical endogenous decay rates. The anoxic stirring duration could be shortened from 3 to 1.5h to avoid secondary phosphorus release in R1 and little adverse impact was found on nutrients removal in R2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Fluctuating Asymmetry of Plant Leaves: Batch Processing with LAMINA and Continuous Symmetry Measures

    Directory of Open Access Journals (Sweden)

    John H. Graham

    2015-03-01

    Full Text Available Unlike landmark methods for estimating object asymmetry, continuous symmetry measures (CSM can be used to measure the symmetry distance (ds of inconsistent objects, such as plant leaves. Inconsistent objects have no homologous landmarks, no consistent topology, no quantitative consistency, and sometimes no matching points. When CSM is used in conjugation with LAMINA Leaf Shape Determination software, one can quickly and efficiently process a large number of scanned leaves. LAMINA automatically generates equally-spaced points around the perimeter of each leaf and the resulting x-y coordinates are normalized to average centroid size prior to estimating ds using a fold, average, unfold algorithm. We estimated shape asymmetry of leaves of three species of flowering plants: Ligustrum sinense (Chinese Privet, Rubus cuneifolius (blackberry, and Perilla frutescens (Perilla, as well as individual leaves from a few species of oaks (Quercus and maples (Acer. We found that 100 to 200 equally-spaced points worked well for all three of the main species. Measurement error accounted for a small proportion of the asymmetry variation. Nevertheless, measurement error was great enough to generate some negative size scaling after normalization to average centroid size.

  18. Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: Optimization by response surface methodology

    International Nuclear Information System (INIS)

    Aziz, Shuokr Qarani; Aziz, Hamidi Abdul; Yusoff, Mohd Suffian; Bashir, Mohammed J.K.

    2011-01-01

    In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH 3 -N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1 L/min and contact time of 5.5 h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH 3 -N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions.

  19. Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: Optimization by response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Shuokr Qarani [School of Civil Engineering, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Penang (Malaysia); Aziz, Hamidi Abdul, E-mail: cehamidi@eng.usm.my [School of Civil Engineering, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Penang (Malaysia); Yusoff, Mohd Suffian; Bashir, Mohammed J.K. [School of Civil Engineering, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Penang (Malaysia)

    2011-05-15

    In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH{sub 3}-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1 L/min and contact time of 5.5 h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH{sub 3}-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions.

  20. Quantifying Porosity through Automated Image Collection and Batch Image Processing: Case Study of Three Carbonates and an Aragonite Cemented Sandstone

    Directory of Open Access Journals (Sweden)

    Jim Buckman

    2017-08-01

    Full Text Available Modern scanning electron microscopes often include software that allows for the possibility of obtaining large format high-resolution image montages over areas of several square centimeters. Such montages are typically automatically acquired and stitched, comprising many thousand individual tiled images. Images, collected over a regular grid pattern, are a rich source of information on factors such as variability in porosity and distribution of mineral phases, but can be hard to visually interpret. Additional quantitative data can be accessed through the application of image analysis. We use backscattered electron (BSE images, collected from polished thin sections of two limestone samples from the Cretaceous of Brazil, a Carboniferous limestone from Scotland, and a carbonate cemented sandstone from Northern Ireland, with up to 25,000 tiles per image, collecting numerical quantitative data on the distribution of porosity. Images were automatically collected using the FEI software Maps, batch processed by image analysis (through ImageJ, with results plotted on 2D contour plots with MATLAB. These plots numerically and visually clearly express the collected porosity data in an easily accessible form, and have application for the display of other data such as pore size, shape, grain size/shape, orientation and mineral distribution, as well as being of relevance to sandstone, mudrock and other porous media.

  1. Biodegradation of pulp and paper mill effluent by co-culturing ascomycetous fungi in repeated batch process.

    Science.gov (United States)

    Rajwar, Deepika; Paliwal, Rashmi; Rai, J P N

    2017-08-31

    The competence of novel fungal consortium, consisting of Nigrospora sp. LDF00204 (accession no. KP732542) and Curvularia lunata LDF21 (accession no. KU664593), was investigated for the treatment of pulp and paper mill effluent. Fungal consortium exhibited enhanced biomass production under optimized medium conditions, i.e., glucose as carbon (C), sodium nitrate as nitrogen (N), C/N 1.5:0.5, pH 5, temperature 30 °C, and agitation 140 rpm, and significantly reduced biochemical oxygen demand (85.6%), chemical oxygen demand (80%), color (82.3%), and lignin concentration (76.1%) under catalytic enzyme activity; however, unutilized ligninolytic enzymes, such as laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP), were observed to be 13.5, 11.4, and 9.4 U/ml after the third cycle of effluent treatment in repeated batch process. Scanning electron microscopy (SEM) of fungal consortium revealed their compatibility through intermingled hyphae and spores, while the FTIR spectra confirmed the alteration of functional groups ensuring structural changes during the effluent treatment. Gas chromatography/mass spectroscopy (GC-MS) analysis showed the reduction of complex compounds and development of numerous low-molecular-weight metabolites, such as 1-3-dimethyl benzene, 2-chloro-3-methyl butane, pentadecanoic acid, and 1-2-benzene dicarboxylic acid, during the treatment, demonstrating the massive potential of the novel fungal consortium to degrade recalcitrant industrial pollutants.

  2. Key Process Conditions for Production of C4 Dicarboxylic Acids in Bioreactor Batch Cultures of an Engineered Saccharomyces cerevisiae Strain▿

    Science.gov (United States)

    Zelle, Rintze M.; de Hulster, Erik; Kloezen, Wendy; Pronk, Jack T.; van Maris, Antonius J. A.

    2010-01-01

    A recent effort to improve malic acid production by Saccharomyces cerevisiae by means of metabolic engineering resulted in a strain that produced up to 59 g liter−1 of malate at a yield of 0.42 mol (mol glucose)−1 in calcium carbonate-buffered shake flask cultures. With shake flasks, process parameters that are important for scaling up this process cannot be controlled independently. In this study, growth and product formation by the engineered strain were studied in bioreactors in order to separately analyze the effects of pH, calcium, and carbon dioxide and oxygen availability. A near-neutral pH, which in shake flasks was achieved by adding CaCO3, was required for efficient C4 dicarboxylic acid production. Increased calcium concentrations, a side effect of CaCO3 dissolution, had a small positive effect on malate formation. Carbon dioxide enrichment of the sparging gas (up to 15% [vol/vol]) improved production of both malate and succinate. At higher concentrations, succinate titers further increased, reaching 0.29 mol (mol glucose)−1, whereas malate formation strongly decreased. Although fully aerobic conditions could be achieved, it was found that moderate oxygen limitation benefitted malate production. In conclusion, malic acid production with the engineered S. cerevisiae strain could be successfully transferred from shake flasks to 1-liter batch bioreactors by simultaneous optimization of four process parameters (pH and concentrations of CO2, calcium, and O2). Under optimized conditions, a malate yield of 0.48 ± 0.01 mol (mol glucose)−1 was obtained in bioreactors, a 19% increase over yields in shake flask experiments. PMID:20008165

  3. Synthesis of Peptide Amides using Sol-Gel Immobilized Alcalase in Batch and Continuous Reaction System

    OpenAIRE

    L. N. Corîci; A. E. Frissen; D -J. Van Zoelen; I. F. Eggen; F. Peter; C. M. Davidescu; C. G. Boeriu

    2011-01-01

    Two commercial proteases from Bacillus licheniformis (Alcalase 2.4 L FG and Alcalase 2.5 L, Type DX) were screened for the production of Z-Ala-Phe-NH2 in batch reaction. Alcalase 2.4 L FG was the most efficient enzyme for the C-terminal amidation of Z-Ala-Phe-OMe using ammonium carbamate as ammonium source. Immobilization of protease has been achieved by the sol-gel method, using dimethyldimethoxysilane (DMDMOS) and tetramethoxysilane (TMOS) as precursors (unpublished res...

  4. Energy-aware stochastic scheduler for batch of precedence-constrained jobs on heterogeneous computing system

    International Nuclear Information System (INIS)

    Sajid, Mohammad; Raza, Zahid

    2017-01-01

    The problem of optimal scheduling of precedence-constrained jobs as well as finding the Pareto-optimal sets for multi objective scheduling problem have been proven to be nondeterministic polynomial time (NP)-complete. The growing consumption of energy has compelled the researchers to consider energy consumption as an important parameter along with other parameters in multi-objective scheduling problem. Accordingly, many energy-aware precedence-constraints scheduling algorithms have been reported in the literature. Most of the algorithms have a limitation of treating this problem as a single objective optimization problem modelling with deterministic execution times rather than stochastic execution times. This work proposes energy-aware stochastic scheduler to schedule the batch of precedence-constrained jobs on dynamic voltage frequency scaling-enabled processors in order to optimize the energy consumption and the turnaround time. The execution and inter-communication times are stochastic which are drawn from independent probability distributions. A novel encoding for batch of precedence-constrained jobs, stochastic turnaround time and energy models are also proposed. Experimental results show that, compared with other algorithms, the proposed scheduler offers reduced turnaround time and reduced energy consumption. - Highlights: • This paper reports stochastic scheduler for energy management of data centres. • Novel encoding, turnaround time and energy consumption models are proposed. • Clark's equations are used to compute the turnaround time and energy consumption. • The proposed scheduler offers reduced turnaround time as well as energy consumption.

  5. Development of partial nitrification as a first step of nitrite shunt process in a Sequential Batch Reactor (SBR) using Ammonium Oxidizing Bacteria (AOB) controlled by mixing regime.

    Science.gov (United States)

    Soliman, Moomen; Eldyasti, Ahmed

    2016-12-01

    Shortcut biological nitrogen removal is a non-conventional way of removing nitrogen from wastewater using two processes either nitrite shunt or deammonification. In the nitrite shunt process, the ammonia oxidation step stops at the nitrite stage, which is known as partial nitrification, then nitrite is directly reduced to nitrogen gas. Effective partial nitrification could be achieved by accumulating Ammonia Oxidizing Bacteria (AOB) and inhibiting Nitrite Oxidizing Bacteria (NOB). In this research, a novel control strategy has been developed to control the DO using the variable mixing regime in a suspended growth system using a Sequential Batch Reactor (SBR) in order to achieve a stable ammonia removal efficiency (ARE) and nitrite accumulation rate (NAR) at a high nitrogen loading rate (NLR). The new controlled SBR system has been successfully running at NLR up to 1.2kg/(m 3 .day) and achieved an ARE of 98.6±2.8% and NAR of 93.0±0.7%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process

    Directory of Open Access Journals (Sweden)

    Nevoigt Elke

    2010-05-01

    Full Text Available Abstract Background Glycerol is the major by-product accounting for up to 5% of the carbon in Saccharomyces cerevisiae ethanolic fermentation. Decreasing glycerol formation may redirect part of the carbon toward ethanol production. However, abolishment of glycerol formation strongly affects yeast's robustness towards different types of stress occurring in an industrial process. In order to assess whether glycerol production can be reduced to a certain extent without jeopardising growth and stress tolerance, the yeast's capacity to synthesize glycerol was adjusted by fine-tuning the activity of the rate-controlling enzyme glycerol 3-phosphate dehydrogenase (GPDH. Two engineered strains whose specific GPDH activity was significantly reduced by two different degrees were comprehensively characterized in a previously developed Very High Ethanol Performance (VHEP fed-batch process. Results The prototrophic strain CEN.PK113-7D was chosen for decreasing glycerol formation capacity. The fine-tuned reduction of specific GPDH activity was achieved by replacing the native GPD1 promoter in the yeast genome by previously generated well-characterized TEF promoter mutant versions in a gpd2Δ background. Two TEF promoter mutant versions were selected for this study, resulting in a residual GPDH activity of 55 and 6%, respectively. The corresponding strains were referred to here as TEFmut7 and TEFmut2. The genetic modifications were accompanied to a strong reduction in glycerol yield on glucose; the level of reduction compared to the wild-type was 61% in TEFmut7 and 88% in TEFmut2. The overall ethanol production yield on glucose was improved from 0.43 g g-1 in the wild type to 0.44 g g-1 measured in TEFmut7 and 0.45 g g-1 in TEFmut2. Although maximal growth rate in the engineered strains was reduced by 20 and 30%, for TEFmut7 and TEFmut2 respectively, strains' ethanol stress robustness was hardly affected; i.e. values for final ethanol concentration (117 ± 4 g

  7. A comparison of anaerobic 2, 4-dichlorophenoxy acetic acid degradation in single-fed and sequencing batch reactor systems

    Science.gov (United States)

    Elefsiniotis, P.; Wareham, D. G.; Fongsatitukul, P.

    2017-08-01

    This paper compares the practical limits of 2, 4-dichlorophenoxy acetic acid (2,4-D) degradation that can be obtained in two laboratory-scale anaerobic digestion systems; namely, a sequencing batch reactor (SBR) and a single-fed batch reactor (SFBR) system. The comparison involved synthesizing a decade of research conducted by the lead author and drawing summative conclusions about the ability of each system to accommodate industrial-strength concentrations of 2,4-D. In the main, 2 L liquid volume anaerobic SBRs were used with glucose as a supplemental carbon source for both acid-phase and two-phase conditions. Volatile fatty acids however were used as a supplemental carbon source for the methanogenic SBRs. The anaerobic SBRs were operated at an hydraulic retention time of 48 hours, while being subjected to increasing concentrations of 2,4-D. The SBRs were able to degrade between 130 and 180 mg/L of 2,4-D depending upon whether they were operated in the acid-phase or two-phase regime. The methanogenic-only phase did not achieve 2,4-D degradation however this was primarily attributed to difficulties with obtaining a sufficiently long SRT. For the two-phase SFBR system, 3.5 L liquid-volume digesters were used and no difficulty was experienced with degrading 100 % of the 2,4-D concentration applied (300 mg/L).

  8. ACHEMA '85: Process control systems

    International Nuclear Information System (INIS)

    Rosskopf, E.

    1985-01-01

    The strategy obviously adopted by the well-established manufacturers is to offer 'easy-to-handle' equipment to gain new customers, and there is a variety of new compact systems or personal computers being put on the market. The changes and improvements within the processing sector proceed more or less in silence; high-capacity storage devices and multiprocessor configurations are obtainable at a moderate price, offering a greater variety of basic functions and enhanced control possibilities. Redundancy problems are handled with greater flexibility, and batch programs are advancing. Data communication has become a common feature, transmission speed and bus length have been improved. Important improvements have been made with regard to data display; even medium-sized equipment now offer the possibility of making dynamic flow-sheets and reserving space for process history display, and the hierarchy of displays has been considerably simplified. The user software also has been made more easy, 'fill-in-the-blancs' is the prevailing motto for dialog configurations, and such big terms as process computer' or 'programming skill' are passing into oblivion. (orig./HP) [de

  9. Comparison of three combined sequencing batch reactor followed by enhanced Fenton process for an azo dye degradation: Bio-decolorization kinetics study

    Energy Technology Data Exchange (ETDEWEB)

    Azizi, A., E-mail: armina_84@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology, Hafez Ave., Tehran15875-4413 (Iran, Islamic Republic of); Alavi Moghaddam, M.R., E-mail: alavim@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology, Hafez Ave., Tehran15875-4413 (Iran, Islamic Republic of); Maknoon, R., E-mail: rmaknoon@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology, Hafez Ave., Tehran15875-4413 (Iran, Islamic Republic of); Kowsari, E., E-mail: kowsarie@aut.ac.ir [Department of Chemistry, Amirkabir University of Technology, Hafez Ave., Tehran 15875-4413 (Iran, Islamic Republic of)

    2015-12-15

    Highlights: • Three combined advanced SBR and enhanced Fenton process as post treatment was compared. • Higher biomass concentration, dye, COD and metabolites removal was presented together. • Pseudo zero and pseudo first-order bio-decolorization kinetics were observed in all SBRs. • High reduction of AR18 to intermediate metabolites was monitored by HPLC. - Abstract: The purpose of this research was to compare three combined sequencing batch reactor (SBR) – Fenton processes as post-treatment for the treatment of azo dye Acid Red 18 (AR18). Three combined treatment systems (CTS1, CTS2 and CTS3) were operated to investigate the biomass concentration, COD removal, AR18 dye decolorization and kinetics study. The MLSS concentration of CTS2 reached 7200 mg/L due to the use of external feeding in the SBR reactor of CTS2. The COD concentration remained 273 mg/L and 95 mg/L (initial COD = 3270 mg/L) at the end of alternating anaerobic–aerobic SBR with external feeding (An-A MSBR) and CTS2, respectively, resulting in almost 65% of Fenton process efficiency. The dye concentration of 500 mg/L was finally reduced to less than 10 mg/L in all systems indicating almost complete AR18 decolorization, which was also confirmed by UV–vis analysis. The dye was removed following two successive parts as parts 1 and 2 with pseudo zero-order and pseudo first-order kinetics, respectively, in all CTSs. Higher intermediate metabolites degradation was obtained using HPLC analysis in CTS2. Accordingly, a combined treatment system can be proposed as an appropriate and environmentally-friendly system for the treatment of the azo dye AR18 in wastewater.

  10. Model-based intensification of a fed-batch microbial process for the maximization of polyhydroxybutyrate (PHB) production rate.

    Science.gov (United States)

    Penloglou, Giannis; Vasileiadou, Athina; Chatzidoukas, Christos; Kiparissides, Costas

    2017-08-01

    An integrated metabolic-polymerization-macroscopic model, describing the microbial production of polyhydroxybutyrate (PHB) in Azohydromonas lata bacteria, was developed and validated using a comprehensive series of experimental measurements. The model accounted for biomass growth, biopolymer accumulation, carbon and nitrogen sources utilization, oxygen mass transfer and uptake rates and average molecular weights of the accumulated PHB, produced under batch and fed-batch cultivation conditions. Model predictions were in excellent agreement with experimental measurements. The validated model was subsequently utilized to calculate optimal operating conditions and feeding policies for maximizing PHB productivity for desired PHB molecular properties. More specifically, two optimal fed-batch strategies were calculated and experimentally tested: (1) a nitrogen-limited fed-batch policy and (2) a nitrogen sufficient one. The calculated optimal operating policies resulted in a maximum PHB content (94% g/g) in the cultivated bacteria and a biopolymer productivity of 4.2 g/(l h), respectively. Moreover, it was demonstrated that different PHB grades with weight average molecular weights of up to 1513 kg/mol could be produced via the optimal selection of bioprocess operating conditions.

  11. 40 CFR 63.488 - Methods and procedures for batch front-end process vent group determination.

    Science.gov (United States)

    2010-07-01

    ... measurement, or engineering assessment, emissions from a batch cycle shall be calculated in accordance with... maximum design production). (iii) The single highest-HAP recipe for a product means the recipe of the... direct measurement as specified in paragraph (b)(5) of this section. Engineering assessment may also be...

  12. Combining mechanistic and data-driven approaches to gain process knowledge on the control of the metabolic shift to lactate uptake in a fed-batch CHO process.

    Science.gov (United States)

    Zalai, Dénes; Koczka, Krisztina; Párta, László; Wechselberger, Patrick; Klein, Tobias; Herwig, Christoph

    2015-01-01

    A growing body of knowledge is available on the cellular regulation of overflow metabolism in mammalian hosts of recombinant protein production. However, to develop strategies to control the regulation of overflow metabolism in cell culture processes, the effect of process parameters on metabolism has to be well understood. In this study, we investigated the effect of pH and temperature shift timing on lactate metabolism in a fed-batch Chinese hamster ovary (CHO) process by using a Design of Experiments (DoE) approach. The metabolic switch to lactate consumption was controlled in a broad range by the proper timing of pH and temperature shifts. To extract process knowledge from the large experimental dataset, we proposed a novel methodological concept and demonstrated its usefulness with the analysis of lactate metabolism. Time-resolved metabolic flux analysis and PLS-R VIP were combined to assess the correlation of lactate metabolism and the activity of the major intracellular pathways. Whereas the switch to lactate uptake was mainly triggered by the decrease in the glycolytic flux, lactate uptake was correlated to TCA activity in the last days of the cultivation. These metabolic interactions were visualized on simple mechanistic plots to facilitate the interpretation of the results. Taken together, the combination of knowledge-based mechanistic modeling and data-driven multivariate analysis delivered valuable insights into the metabolic control of lactate production and has proven to be a powerful tool for the analysis of large metabolic datasets. © 2015 American Institute of Chemical Engineers.

  13. Effect of residual H2O2 from advanced oxidation processes on subsequent biological water treatmen : A laboratory batch study

    NARCIS (Netherlands)

    Wang, F.; van Halem, D.; Liu, G.; Lekkerkerker-Teunissen, K.; van der Hoek, J.P.

    2017-01-01

    H2O2 residuals from advanced oxidation processes (AOPs) may have critical impacts on the microbial ecology and performance of subsequent biological treatment processes, but little is known. The objective of this study was to evaluate how H2O2 residuals influence sand systems with an emphasis on

  14. Glycerol as a Cheaper Carbon Source in Bacterial Cellulose (BC) Production by Gluconacetobacter Xylinus DSM46604 in Batch Fermentation System

    International Nuclear Information System (INIS)

    Azila Adnan; Nair, G.R.; Roslan Umar; Roslan Umar

    2015-01-01

    Bacterial cellulose (BC) is a polymer of glucose monomers, which has unique properties including high crystallinity and high strength. It has potential to be used in biomedical applications such as making artificial blood vessel, wound dressings, and in the paper making industry. Extensive study on BC aimed to improve BC production such as by using glycerol as a cheaper carbon source. BC was produced in shake flask culture using five different concentrations of glycerol (10, 20, 30, 40 and 50 g/ L). Using concentration of glycerol above 20 g/ L inhibited culture growth and BC production. Further experiments were performed in batch culture (3-L bioreactor) using 20 g/ L glycerol. It produced yield and productivity of 0.15 g/ g and 0.29 g/ L/ day BC, respectively. This is compared with the control medium, 50 g/ L glucose, which only gave yield and productivity of 0.05 g/ g and 0.23 g/ L/ day, respectively. Twenty g/ L of glycerol enhanced BC production by Gluconacetobacter xylinus DSM46604 in batch fermentation system. (author)

  15. Production of pullulan by a thermotolerant aureobasidium pullulans strain in non-stirred fed batch fermentation process.

    Science.gov (United States)

    Singh, Ranjan; Gaur, Rajeeva; Tiwari, Soni; Gaur, Manogya Kumar

    2012-07-01

    Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l) at 42(o)C, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with the 2 liters in two successive batches at 5 h interval into the fermentor. The sterile air was supplied only for 10h at the rate of 0.5 vvm.

  16. Production of pullulan by a thermotolerant Aureobasidium pullulans strain in non-stirred fed batch fermentation process

    Directory of Open Access Journals (Sweden)

    Ranjan Singh

    2012-09-01

    Full Text Available Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l at 42ºC, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with the 2 liters in two successive batches at 5 h interval into the fermentor. The sterile air was supplied only for 10h at the rate of 0.5 vvm.

  17. Spitzer Telemetry Processing System

    Science.gov (United States)

    Stanboli, Alice; Martinez, Elmain M.; McAuley, James M.

    2013-01-01

    The Spitzer Telemetry Processing System (SirtfTlmProc) was designed to address objectives of JPL's Multi-mission Image Processing Lab (MIPL) in processing spacecraft telemetry and distributing the resulting data to the science community. To minimize costs and maximize operability, the software design focused on automated error recovery, performance, and information management. The system processes telemetry from the Spitzer spacecraft and delivers Level 0 products to the Spitzer Science Center. SirtfTlmProc is a unique system with automated error notification and recovery, with a real-time continuous service that can go quiescent after periods of inactivity. The software can process 2 GB of telemetry and deliver Level 0 science products to the end user in four hours. It provides analysis tools so the operator can manage the system and troubleshoot problems. It automates telemetry processing in order to reduce staffing costs.

  18. Controle multivariado de processos em batelada com duração variável Multivariate statistical control of unsynchronized batch processes

    Directory of Open Access Journals (Sweden)

    Flávio S. Fogliatto

    2008-01-01

    Full Text Available Processos em batelada são utilizados em diversos setores industriais (por exemplo, na manufatura de alimentos e fármacos. Nesses processos, matérias-primas são carregadas em uma unidade de processamento e submetidas a uma série de transformações até a obtenção do produto final. O desempenho do processo é descrito por variáveis, monitoradas ao longo da batelada. Dados resultantes desses processos tendem a apresentar uma estrutura de correlação e autocorrelação significativa, sendo usualmente monitorados usando cartas de controle baseadas na análise de componentes principais (CCPs. Neste artigo, investiga-se o caso especial, bastante freqüente na prática, de bateladas com duração variável, as quais não podem ser diretamente monitoradas através das CCPs. Para tanto, propõe-se uma nova estratégia de controle multivariado da qualidade. No procedimento proposto, bateladas não são alinhadas ou time warped relativamente a suas trajetórias, mas completadas utilizando um esquema de fácil implementação prática. Desta forma, preserva-se toda a informação sobre a variabilidade ao longo do eixo do tempo nos perfis das variáveis de processo. O conjunto de dados completados é analisado utilizando o método Statis e o monitoramento do desempenho da batelada é realizado diretamente nos gráficos de planos fatoriais, a partir dos quais cartas de controle não-paramétricas são derivadas. Um exemplo utilizando dados simulados ilustra a proposta metodológica.Batch processes are widely used in several industrial sectors, such as food and pharmaceutical manufacturing. In a typical batch, raw materials are loaded in the processing unit and submitted to a series of transformations, yielding the final product. Process performance is described by variables which are monitored as the batch progresses. Data arising from such processes are likely to display a strong correlation-autocorrelation structure, and are usually monitored using

  19. Integrated batch production and maintenance scheduling for multiple items processed on a deteriorating machine to minimize total production and maintenance costs with due date constraint

    Directory of Open Access Journals (Sweden)

    Zahedi Zahedi

    2016-04-01

    Full Text Available This paper discusses an integrated model of batch production and maintenance scheduling on a deteriorating machine producing multiple items to be delivered at a common due date. The model describes the trade-off between total inventory cost and maintenance cost as the increase of production run length. The production run length is a time bucket between two consecutive preventive maintenance activities. The objective function of the model is to minimize total cost consisting of in process and completed part inventory costs, setup cost, preventive and corrective maintenance costs and rework cost. The problem is to determine the optimal production run length and to schedule the batches obtained from determining the production run length in order to minimize total cost.

  20. Kinetic analysis of batch ethanol acetylation in isothermal non-stationary multiphase systems by lyophilized mycelium of Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Emilio Palazzi

    2011-03-01

    Full Text Available A relatively complex network of reactions has been investigated, using as a network model the isothermal batch esterification of acetic acid with ethanol in n-heptane catalyzed by lyophilized mycelium of Aspergillus oryzae. The kinetic analysis was firstly carried out on the whole system, without any simplification, by means of the well-known integral method. Owing to the poor results obtained by this way, we developed an alternative approach, combining initial rates and integral analysis and reducing the number of empirical parameters to be determined by the use of equilibrium data. All the values of the parameters calculated according to this "composite" approach to kinetic analysis well correlate with experimental data.

  1. Computer aided design, analysis and experimental investigation of membrane assisted batch reaction-separation systems

    DEFF Research Database (Denmark)

    Mitkowski, Piotr Tomasz; Buchaly, Carsten; Kreis, Peter

    2009-01-01

    into account the performance of each constituent element and the optimisation of the design must take into consideration their interdependency. In this paper use of a membrane, to assist in the synthesis of propyl-propionate is investigated through the use of a hybrid process design framework, which consists...... of a process design/analysis stage, a process implementation stage and a process verification stage. For the hybrid process design/analysis stage, a model-based methodology has been developed and integrated with the necessary computer-aided methods/tools to identify the operational window of reaction...

  2. Commercial application of freezing-irradiation combination process for pasteurization of two specific batches of cooked, peeled shrimps

    International Nuclear Information System (INIS)

    Wills, P.A.

    1981-01-01

    In 1978 microbiological standards for pre-cooked, peeled frozen shrimps imported into Australia were abruptly amended and made more stringent. Large consignments of shrimps failed to meet the new specifications and were placed in quarantine on arrival. Two importers affected by the change in policy obtained permission to investigate the feasibility of using ionizing radiation to reduce to an acceptable level the microbial load on two batches of frozen shrimps. Trial irradiations established that doses of 6 or 8 kGy (600 or 800 krad) reduced microbial levels at least 100-fold, thus enabling these batches to meet the new microbiological standard. Applications to State regulatory authorities resulted in approvals being granted to the importers to irradiate: (1) in New South Wales 47 tonnes of imported frozen shrimps at 6 kGy, using the Research Establishment's facilities; and (2) in Victoria 14.3 tonnes at 8 kGy using ICI Australia Operations Pty Ltd's commercial radiation plant at Dandenong. Approvals applied solely to these two batches and marketing of the irradiated shrimps were confined to the State in which they were irradiated. The microbiological basis for the choice of dose, dosimetry, technology, legal aspects, economics and public acceptance of this first limited commercial use in Australia of radiation for food preservation are described. It is suggested that in standards for irradiation of specific foods, dose limits should be flexible enough to take into account the relationships between the physical state of food, temperature during irradiation, the extent of chemical change likely to occur at that temperature, and the dose required to produce the desired microbiological effect. (author)

  3. Production of pullulan by a thermotolerant Aureobasidium pullulans strain in non-stirred fed batch fermentation process

    OpenAIRE

    Singh, Ranjan; Gaur, Rajeeva; Tiwari, Soni; Gaur, Manogya Kumar

    2012-01-01

    Total 95 isolates of Aureobasidium pullulans were isolated from different flowers and leaves samples, out of which 11 thermotolerant strains produced pullulan. One thermotolerant non-melanin pullulan producing strain, designated as RG-5, produced highest pullulan (37.1±1.0 g/l) at 42ºC, pH 5.5 in 48h of incubation with 3% sucrose and 0.5% ammonium sulphate in a non-stirred fed batch fermentor of 6 liters capacity. The two liters of initial volume of fermentation medium was further fed with th...

  4. Process evaluation distributed system

    Science.gov (United States)

    Moffatt, Christopher L. (Inventor)

    2006-01-01

    The distributed system includes a database server, an administration module, a process evaluation module, and a data display module. The administration module is in communication with the database server for providing observation criteria information to the database server. The process evaluation module is in communication with the database server for obtaining the observation criteria information from the database server and collecting process data based on the observation criteria information. The process evaluation module utilizes a personal digital assistant (PDA). A data display module in communication with the database server, including a website for viewing collected process data in a desired metrics form, the data display module also for providing desired editing and modification of the collected process data. The connectivity established by the database server to the administration module, the process evaluation module, and the data display module, minimizes the requirement for manual input of the collected process data.

  5. Comprehensive clone screening and evaluation of fed-batch strategies in a microbioreactor and lab scale stirred tank bioreactor system: application on Pichia pastoris producing Rhizopus oryzae lipase

    Science.gov (United States)

    2014-01-01

    . pastoris Mut+ phenotype. The use of fed-batch strategies using mixed substrate feeds resulted in increased biomass and lipolytic activity. The automated processing of fed-batch strategies by the RoboLector considerably facilitates the operation of fermentation processes, while reducing error-prone clone selection by increasing product titers. The scale-up from microbioreactor to lab scale stirred tank bioreactor showed an excellent correlation, validating the use of microbioreactor as a powerful tool for evaluating fed-batch operational strategies. PMID:24606982

  6. A Single-Batch Fermentation System to Simulate Human Colonic Microbiota for High-Throughput Evaluation of Prebiotics

    Science.gov (United States)

    Sasaki, Daisuke; Fukuda, Itsuko; Tanaka, Kosei; Yoshida, Ken-ichi; Kondo, Akihiko; Osawa, Ro

    2016-01-01

    We devised a single-batch fermentation system to simulate human colonic microbiota from fecal samples, enabling the complex mixture of microorganisms to achieve densities of up to 1011 cells/mL in 24 h. 16S rRNA gene sequence analysis of bacteria grown in the system revealed that representatives of the major phyla, including Bacteroidetes, Firmicutes, and Actinobacteria, as well as overall species diversity, were consistent with those of the original feces. On the earlier stages of fermentation (up to 9 h), trace mixtures of acetate, lactate, and succinate were detectable; on the later stages (after 24 h), larger amounts of acetate accumulated along with some of propionate and butyrate. These patterns were similar to those observed in the original feces. Thus, this system could serve as a simple model to simulate the diversity as well as the metabolism of human colonic microbiota. Supplementation of the system with several prebiotic oligosaccharides (including fructo-, galacto-, isomalto-, and xylo-oligosaccharides; lactulose; and lactosucrose) resulted in an increased population in genus Bifidobacterium, concomitant with significant increases in acetate production. The results suggested that this fermentation system may be useful for in vitro, pre-clinical evaluation of the effects of prebiotics prior to testing in humans. PMID:27483470

  7. Model-based analysis of high shear wet granulation from batch to continuous processes in pharmaceutical production--a critical review.

    Science.gov (United States)

    Kumar, Ashish; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar

    2013-11-01

    The manufacturing of pharmaceutical dosage forms, which has traditionally been a batch-wise process, is now also transformed into a series of continuous operations. Some operations such as tabletting and milling are already performed in continuous mode, while the adaptation towards a complete continuous production line is still hampered by complex steps such as granulation and drying which are considered to be too inflexible to handle potential product change-overs. Granulation is necessary in order to achieve good flowability properties and better control of drug content uniformity. This paper reviews modelling and supporting measurement tools for the high shear wet granulation (HSWG) process, which is an important granulation technique due to the inherent benefits and the suitability of this unit operation for the desired switch to continuous mode. For gaining improved insight into the complete system, particle-level mechanisms are required to be better understood, and linked with an appropriate meso- or macro-scale model. A brief review has been provided to understand the mechanisms of the granulation process at micro- or particle-level such as those involving wetting and nucleation, aggregation, breakage and consolidation. Further, population balance modelling (PBM) and the discrete element method (DEM), which are the current state-of-the-art methods for granulation modelling at micro- to meso-scale, are discussed. The DEM approach has a major role to play in future research as it bridges the gap between micro- and meso-scales. Furthermore, interesting developments in the measurement technologies are discussed with a focus towards inline measurements of the granulation process to obtain experimental data which are required for developing good models. Based on the current state of the developments, the review focuses on the twin-screw granulator as a device for continuous HSWG and attempts to critically evaluate the current process. As a result, a set of open

  8. Batch efficiency

    International Nuclear Information System (INIS)

    Schwickerath, Ulrich; Silva, Ricardo; Uria, Christian

    2010-01-01

    A frequent source of concern for resource providers is the efficient use of computing resources in their centers. This has a direct impact on requests for new resources. There are two different but strongly correlated aspects to be considered: while users are mostly interested in a good turn-around time for their jobs, resource providers are mostly interested in a high and efficient usage of their available resources. Both things, the box usage and the efficiency of individual user jobs, need to be closely monitored so that the sources of the inefficiencies can be identified. At CERN, the Lemon monitoring system is used for both purposes. Examples of such sources are poorly written user code, inefficient access to mass storage systems, and dedication of resources to specific user groups. As a first step for improvements CERN has launched a project to develop a scheduler add-on that allows careful overloading of worker nodes that run idle jobs.

  9. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  10. Batch and semi-continuous anaerobic digestion of food waste in a dual solid-liquid system.

    Science.gov (United States)

    Zhang, Cunsheng; Su, Haijia; Tan, Tianwei

    2013-10-01

    To avoid the inhibition from both of waste oil and high concentrations of cationic elements, anaerobic digestion of food waste in a dual solid-liquid (ADSL) system was examined in this present paper. Results from batch test indicated that a higher methane yield could be obtained in the ADSL system. The methane yield of food solid waste (FSW), food liquid waste (FLW) and raw food waste (RFW) were 643, 659 and 581 mL/g-VS, respectively. In semi-continuous anaerobic digestion, the optimum organic loading rates (OLR) for FSW, FLW and RFW were 9, 4 and 7 g-VS/L/d, respectively. The total methane production of RFW and ADSL systems, based on 1 kg-VS(RFW), were 405 and 460 L, respectively, indicating that the methane production increased by 13.6% in the ADSL system. The optimum C/N ratio, redistribution of metal element and lower content of waste oil in FSW explain the higher methane production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Process gas solidification system

    International Nuclear Information System (INIS)

    1980-01-01

    A process for withdrawing gaseous UF 6 from a first system and directing same into a second system for converting the gas to liquid UF 6 at an elevated temperature, additionally including the step of withdrawing the resulting liquid UF 6 from the second system, subjecting it to a specified sequence of flash-evaporation, cooling and solidification operations, and storing it as a solid in a plurality of storage vessels. (author)

  12. A new expert systems (SeDeM diagram) for control batch powder formulation and preformulation drug products.

    Science.gov (United States)

    Pérez, Pilar; Suñé-Negre, Josep M; Miñarro, Montserrat; Roig, Manel; Fuster, Roser; García-Montoya, Encarna; Hernández, Carmen; Ruhí, Ramón; Ticó, Josep R

    2006-11-01

    The new SeDeM Method is proposed for testing the batch-to-batch reproducibility of the same active pharmaceutical ingredient (API) in powder form. The procedure describes the study of the galenic properties of substances in powder form in terms of the applicability of direct compression technology. Through experimental determination of the SeDeM Method parameters, and their subsequent mathematical treatment and graphical expression (SeDeM Diagram), three batches of the same API were analysed to determine whether it was suitable for direct compression. Batch-to-batch reproducibility of the results was verified. It was concluded that the SeDeM Method is suitable for testing batch-to-batch reproducibility of characteristics in powdered APIs substances. The results obtained confirm that the SeDeM Method is a useful, effective tool for drug-preformulation studies providing the pharmacotechnical data required when formulating a drug in tablet form. In addition, the results were effective for defining the most appropriate manufacturing technology.

  13. Neodymium Recovery by Chitosan/Iron(III Hydroxide [ChiFer(III] Sorbent Material: Batch and Column Systems

    Directory of Open Access Journals (Sweden)

    Hary Demey

    2018-02-01

    Full Text Available A low cost composite material was synthesized for neodymium recovery from dilute aqueous solutions. The in-situ production of the composite containing chitosan and iron(III hydroxide (ChiFer(III was improved and the results were compared with raw chitosan particles. The sorbent was characterized using Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy-energy dispersive X-ray analyses (SEM-EDX. The equilibrium studies were performed using firstly a batch system, and secondly a continuous system. The sorption isotherms were fitted with the Langmuir, Freundlich, and Sips models; experimental data was better described with the Langmuir equation and the maximum sorption capacity was 13.8 mg g-1 at pH 4. The introduction of iron into the biopolymer matrix increases by four times the sorption uptake of the chitosan; the individual sorption capacity of iron (into the composite was calculated as 30.9 mg Nd/g Fe. The experimental results of the columns were fitted adequately using the Thomas model. As an approach to Nd-Fe-B permanent magnets effluents, a synthetic dilute effluent was simulated at pH 4, in order to evaluate the selectivity of the sorbent material; the overshooting of boron in the column system confirmed the higher selectivity toward neodymium ions. The elution step was carried out using MilliQ-water with the pH set to 3.5 (dilute HCl solution.

  14. Batch system for study of Cr(VI) Bio sorption by dried waste activated sludge

    International Nuclear Information System (INIS)

    Farzadkia, M.; Gholami, M.; Darvishi Cheshmeh Soltani, R.; Yaghmaeian, K.; Shams Khorramabadi, G.

    2009-01-01

    Activated sludge from wastewater treatment systems contains both bacteria and protozoa. The cell wall of bacteria essentially consists of various compounds, such as carboxyl, acidic polysaccharides,lipids, amino acids and other components. (Author)

  15. Modelling the trade off between period lenght and stages in a period batch control system

    NARCIS (Netherlands)

    Riezebos, J.

    1997-01-01

    The purpose of this paper is to propose a nonparametric interest rate term structure model and investigate its implications on term structure dynamics and prices of interest rate derivative securities. The nonparametric spot interest rate process is estimated from the observed short-term interest

  16. Data-driven batch schuduling

    Energy Technology Data Exchange (ETDEWEB)

    Bent, John [Los Alamos National Laboratory; Denehy, Tim [GOOGLE; Arpaci - Dusseau, Remzi [UNIV OF WISCONSIN; Livny, Miron [UNIV OF WISCONSIN; Arpaci - Dusseau, Andrea C [NON LANL

    2009-01-01

    In this paper, we develop data-driven strategies for batch computing schedulers. Current CPU-centric batch schedulers ignore the data needs within workloads and execute them by linking them transparently and directly to their needed data. When scheduled on remote computational resources, this elegant solution of direct data access can incur an order of magnitude performance penalty for data-intensive workloads. Adding data-awareness to batch schedulers allows a careful coordination of data and CPU allocation thereby reducing the cost of remote execution. We offer here new techniques by which batch schedulers can become data-driven. Such systems can use our analytical predictive models to select one of the four data-driven scheduling policies that we have created. Through simulation, we demonstrate the accuracy of our predictive models and show how they can reduce time to completion for some workloads by as much as 80%.

  17. Removal of metal ions by Phormidium bigranulatum (cyanobacteria)-dominated mat in batch and continuous flow systems.

    Science.gov (United States)

    Kumar, Dhananjay; Rai, Jyoti; Gaur, J P

    2012-01-01

    Live Phormidium bigranulatum-dominated mat successfully removed Pb(II), Cu(II) and Cd(II) from aqueous solution. Percent metal removal approached equilibrium within 4h, independent of mat thickness (0.2-1.6 mm), in batch system. But % metal removal increased with increase in mat thickness due to enhancement of biomass, which provided more metal binding sites. Metal accumulation decreased with increase in mat thickness due to lessened metal availability vis-à-vis biomass. Metal removal (%) increased with increasing mat area, but decreased with increasing metal concentration in the solution. In continuous flow system, metal accumulation increased with increasing volume of single or multi-metal solution passed over the mat. The mat removed all the tested metals from the multi-metal solution with almost the same efficiency. The maximum removal of the test metals occurred at the lowest tested flow rate. Raceway type ponds can be employed for large-scale use of Phormidium mat in bioremediation of metalliferous wastewaters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Efficiency of the Genius batch hemodialysis system with low serum solute concentrations: the case of lithium intoxication therapy.

    Science.gov (United States)

    Dhondt, Annemieke; Verstraete, Alain; Vandewoude, Koen; Segers, Hannah; Eloot, Sunny; Decruyenaere, Johan; Vanholder, Raymond

    2005-11-01

    The Genius batch system consists of a 90-L closed reservoir, from which fresh dialysate is extracted at the top and to which spent dialysate is returned at the bottom. It was shown in long-term hemodialysis patients that almost the entire amount of unspent dialysate can be used before contamination of fresh with spent dialysate occurs. Separation is caused by differences in density, partly because of the presence of uremic solutes in spent dialysate. The question is raised whether this separation can be maintained during dialysis of patients who experience an intoxication without renal failure. A patient intoxicated with lithium was dialyzed using the Genius system, prepared at 37 degrees C, during 300 minutes. With dialysate flow set at 300 mL/min (5 mL/s) and in the absence of mixing, urea is not expected at the inlet dialysate tubing before minute 300. In the dialysate inlet tubing, an abrupt increase in lithium and urea concentrations was observed 210 minutes after the start of the session, reflecting contamination of fresh with spent dialysate. At minute 210, only 60.9 L of 90 L of dialysate had crossed the dialyzer. In a control dialysis treatment in a patient with marked renal failure, this mixing occurred only at 300 minutes. In the present observation, it is shown that during Genius dialysis in a patient without renal failure, an earlier contamination of fresh with spent dialysate can occur, compared to conditions of renal failure.

  19. Model-based analysis of high shear wet granulation from batch to continuous processes in pharmaceutical production - A critical review

    DEFF Research Database (Denmark)

    Kumar, Ashish; Gernaey, Krist; De Beer, Thomas

    2013-01-01

    continuous production line is still hampered by complex steps such as granulation and drying which are considered to be too inflexible to handle potential product change-overs. Granulation is necessary in order to achieve good flowability properties and better control of drug content uniformity. This paper...... reviews modelling and supporting measurement tools for the high shear wet granulation (HSWG) process, which is an important granulation technique due to the inherent benefits and the suitability of this unit operation for the desired switch to continuous mode. For gaining improved insight...... into the complete system, particle-level mechanisms are required to be better understood, and linked with an appropriate meso- or macro-scale model. A brief review has been provided to understand the mechanisms of the granulation process at micro- or particle-level such as those involving wetting and nucleation...

  20. Simulation of batch adsorption systems; Simulacao de sistemas adsorvedores operando em batelada

    Energy Technology Data Exchange (ETDEWEB)

    Valerio, Cristiano C.; Neves Junior, Flavio; Stachiw, Rosalvo [Universidade Federal Tecnologica do Parana (UTFPR), Curitiba, PR (Brazil)

    2008-07-01

    One of the treatments used to adequate the wastewater from petroleum industry according to environmental laws, is the treatment by the adsorption process. Powdered activated carbon is the commonly used adsorber material, for this great affinity with various organic compounds. But there are alternative adsorber materials that can substitute activated carbon, with a low cost, and limited applicability. In this work, will be used the software resulting from Efli project, developed at Federal University of Technology - Parana, to compare the alternative adsorber materials (oil shale compounds and fluid catalytic cracking) efficiency to that of activated carbon. (author)

  1. Electron beam processing system

    International Nuclear Information System (INIS)

    Kashiwagi, Masayuki

    2004-01-01

    Electron beam Processing Systems (EPS) are used as useful and powerful tools in many industrial application fields such as the production of cross-linked wire, rubber tire, heat shrinkable film and tubing, curing, degradation of polymers, sterilization and environmental application. In this paper, the feature and application fields, the selection of machine ratings and safety measures of EPS will be described. (author)

  2. Quartz resonator processing system

    Science.gov (United States)

    Peters, Roswell D. M.

    1983-01-01

    Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

  3. Process optimization at small and medium-sized enterprises: production of small and medium-sized batches

    Science.gov (United States)

    Stettmer, J.

    2017-06-01

    The organization of a company needs to refer to the production process and especially to the number of employees. Many enterprises which are growing, are primarily focused on the development of the technology and not on the development of the organization. This ends up in an increase of the turnover but in a reduced margin. For the development of the organization in growing companies there are two things necessary. The development of the staff to work systematically and coordinated in teams as well as the flow of the information and material between the teams. ERP - systems are required to install the material and information flow especially in the work floor. Unfortunately many enterprises don't use the ERP-systems to plan and control the material and information flow very detailed. In companies where the control of the material and information flow was installed, it could be demonstrated that the margin increased analog to it. The requirements to the development of the organization based on the increasing number of the employees are basically the same for most of the production processes like the production of metal sheet housings or the production of mirrors and lenses.

  4. Enhancement of canthaxanthin production from Dietzia natronolimnaea HS-1 in a fed-batch process using trace elements and statistical methods

    Directory of Open Access Journals (Sweden)

    M. R. Nasri Nasrabadi

    2010-12-01

    Full Text Available Under fed-batch process conditions, the statistical analysis of trace elements was performed by application of Plackett-Burman design (for screening tests and response surface methodology (for predicting the optimal points to achieve the highest level of canthaxanthin production from Dietzia natronolimnaea HS-1. Plackett-Burman design was conducted on eleven trace elements (i. e., aluminum, boron, cobalt, copper, iron, magnesium, manganese, molybdenum, selenium, vanadium and zinc to select out elements that significantly enhance the canthaxanthin production of D. natronolimnaea HS-1. Plackett-Burman design revealed that Fe3+, Cu2+ and Zn2+ ions had the highest effect on canthaxanthin production of D. natronolimnaea HS-1 (P<0.05. These three elements were used for further optimization. By means of response surface methodology for the fed-batch process, the optimum conditions to achieve the highest level of canthaxanthin (8923±18 µg/L were determined as follow: Fe3+ 30 ppm, Cu2+ 28.75 ppm and Zn2+ 27 ppm.

  5. Adsorption of Volatile Organic Compounds from Aqueous Solution by Granular Activated Carbon in Batch System

    International Nuclear Information System (INIS)

    Zeinali, F.; Ghoreyshi, A. A.; Najafpour, G.

    2011-01-01

    Chlorinated hydrocarbons and aromatics are the major volatile organic compounds that contaminate the ground water and industrial waste waters. The best way to overcome this problem is to recover the dissolved compounds in water. In order to evaluate the potential ability of granular activated carbon for recovery of volatile organic compounds from water, the equilibrium adsorption was investigated. This study deals with the adsorption of dichloromethane as a typical chlorinated volatile organic compound and toluene as the representative of aromatic volatile organic compounds on a commercial granular activated carbon. The adsorption isotherms of these two volatile organic compounds on granular activated carbon were measured at three different temperatures, toluene at 293, 303 and 313 K and dichloromethane at 298, 303 and 313 K within their solubility concentration range in water. The maximum adsorption capacity of dichloromethane and toluene adsorption by granular activated carbon was 4 and 0.2 mol/Kg-1, respectively. The experimental data obtained were correlated with different adsorption isotherm models. The Langmuir model was well adapted to the description of dichloromethane adsorption on granular activated carbon at all three temperatures, while the adsorption of toluene on granular activated carbon was found to be well described by the Langmuir-BET hybrid model at all three temperatures. The heat of adsorption was also calculated based on the thermodynamic equation of Clausius Clapeyron, which indicates the adsorption process is endothermic for both compounds.

  6. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-14

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are present in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.

  7. Near-infrared spectroscopic monitoring of a series of industrial batch processes using a bilinear grey model

    OpenAIRE

    Van Sprang, ENM; Ramaker, HJ; Westerhuis, JA; Smilde, AK; Gurden, SP; Wienke, D

    2003-01-01

    A good process understanding is the foundation for process optimization, process monitoring, end-point detection, and estimation of the end-product quality. Performing good process measurements and the construction of process models will contribute to a better process understanding. To improve the process knowledge it is common to build process models. These models are often based on first principles such as kinetic rates or mass balances. These types of models are also known as hard or white...

  8. Near-infrared spectroscopic monitoring of a series of industrial batch processes using a bilinear grey model

    NARCIS (Netherlands)

    van Sprang, Eric N. M.; Ramaker, Henk-Jan; Westerhuis, Johan A.; Smilde, Age K.; Gurden, Stephen P.; Wienke, Dietrich

    2003-01-01

    A good process understanding is the foundation for process optimization, process monitoring, end-point detection, and estimation of the end-product quality. Performing good process measurements and the construction of process models will contribute to a better process understanding. To improve the

  9. Inside the removal of lead(II) from aqueous solutions by De-Oiled Allspice Husk in batch and continuous processes

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Olivares, J.; Perez-Alonso, C. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N. C.P. 50120, Toluca, Estado de Mexico (Mexico); Barrera-Diaz, C., E-mail: cbarrera@uaemex.mx [Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, C.P. 50200, Toluca, Estado de Mexico (Mexico); Lopez, G.; Balderas-Hernandez, P. [Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, C.P. 50200, Toluca, Estado de Mexico (Mexico)

    2010-09-15

    A new adsorbent material for removing lead ions from aqueous solutions has been investigated. The residue of the allspice extraction process (De-Oiled Allspice Husk) was used on the removal of Pb(II) from water solutions. The lead sorption capacity of De-Olied Allspice Husk (DOAH) was studied in batch and continuous processes. It was found that percentage removals of Pb(II) depend on the pH and the initial lead concentrations. The Pb(II) uptake process was maximum at pH 5 in a range concentrations of 5-25 mg L{sup -1}. The overall sorption process was well described by the pseudo-second-order kinetic model under conditions of pH 5 (0.1 g adsorbent per 100 mL of contaminated solution) 0.001 mass/volume ratio and 25 deg. C. The sorption capacity of lead(II) onto DOAH in batch process was 5.00, 8.02, 11.59, 15.23 and 20.07 mg g{sup -1}, when the concentration solutions were 5, 10, 15, 20 and 25 mg L{sup -1} respectively. These values are lower than obtained in continuous process, where lead was removed by 95% and the experimental results were appropriately fitted by the Yoon-Nelson model. X-ray photoelectron spectroscopy (XPS) provides information regarding the interactions between lead ions and the adsorbent surface indicating that the formation of 2 complexes depends on the functional groups associated.

  10. Case Study on Lean Manufacturing System Implementation in Batch Printing Industry Malaysia

    Directory of Open Access Journals (Sweden)

    Tang Saihong

    2016-01-01

    Full Text Available Lean Manufacturing is a popular tool to be implemented in printing industry fields for the purpose of achieving the successful production goals and it is a well-organized method used to eliminate the waste or non-value added activities. Lean Manufacturing consists of several tools like 5S, TPM, Kanban, Kaizen and others. In this paper, the researcher is focus on TPM (Total Productive Maintenance. TPM is a concept used for maintaining plants and equipment with the involvement of all employees in the company in order to increase the overall equipment effectiveness (OEE. In this paper, the researcher will identify the problem faced in company’s production line and then implement lean tools in order to improve the productivity. Afterward, the researcher will carry out time study on company’s production line. The purpose of time study is to getting the result for OEE and the time taken for producing one piece of product. The researcher is then designed and suggested one-piece flow system to the management with showing the result on simulation that getting improvement in productivity. The result was simulated by using Flexsim and shows that 7.59 seconds was saved in producing one piece of calendar. At the end, the result shows that OEE increase from 34.3% to 60% and the company total save around 6 hours per month by implement one-piece flow. At last, by verifying the distribution of collected data, the researcher will perform Anderson Darling Normality test to ensure the distribution of data are normal.

  11. Advanced information processing system

    Science.gov (United States)

    Lala, J. H.

    1984-01-01

    Design and performance details of the advanced information processing system (AIPS) for fault and damage tolerant data processing on aircraft and spacecraft are presented. AIPS comprises several computers distributed throughout the vehicle and linked by a damage tolerant data bus. Most I/O functions are available to all the computers, which run in a TDMA mode. Each computer performs separate specific tasks in normal operation and assumes other tasks in degraded modes. Redundant software assures that all fault monitoring, logging and reporting are automated, together with control functions. Redundant duplex links and damage-spread limitation provide the fault tolerance. Details of an advanced design of a laboratory-scale proof-of-concept system are described, including functional operations.

  12. Supervision of Fed-Batch Fermentations

    DEFF Research Database (Denmark)

    Gregersen, Lars; Jørgensen, Sten Bay

    1999-01-01

    Process faults may be detected on-line using existing measurements based upon modelling that is entirely data driven. A multivariate statistical model is developed and used for fault diagnosis of an industrial fed-batch fermentation process. Data from several (25) batches are used to develop a mo...

  13. Biogenic Hydrogen Conversion of De-Oiled Jatropha Waste via Anaerobic Sequencing Batch Reactor Operation: Process Performance, Microbial Insights, and CO2 Reduction Efficiency

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Kumar

    2014-01-01

    Full Text Available We report the semicontinuous, direct (anaerobic sequencing batch reactor operation hydrogen fermentation of de-oiled jatropha waste (DJW. The effect of hydraulic retention time (HRT was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L*d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d with a DJW concentration of 200 g/L, temperature 55°C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L*d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30°C, and pH 7.0. PCR-DGGE analysis revealed that combination of celluloytic and fermentative bacteria were present in the hydrogen producing ASBR.

  14. System vaccinology for the evaluation of influenza vaccine safety by multiplex gene detection of novel biomarkers in a preclinical study and batch release test.

    Directory of Open Access Journals (Sweden)

    Takuo Mizukami

    Full Text Available Vaccines are beneficial and universal tools to prevent infectious disease. Thus, safety of vaccines is strictly evaluated in the preclinical phase of trials and every vaccine batch must be tested by the National Control Laboratories according to the guidelines published by each country. Despite many vaccine production platforms and methods, animal testing for safety evaluation is unchanged thus far. We recently developed a systems biological approach to vaccine safety evaluation where identification of specific biomarkers in a rat pre-clinical study evaluated the safety of vaccines for pandemic H5N1 influenza including Irf7, Lgals9, Lgalsbp3, Cxcl11, Timp1, Tap2, Psmb9, Psme1, Tapbp, C2, Csf1, Mx2, Zbp1, Ifrd1, Trafd1, Cxcl9, β2m, Npc1, Ngfr and Ifi47. The current study evaluated whether these 20 biomarkers could evaluate the safety, batch-to-batch and manufacturer-to-manufacturer consistency of seasonal trivalent influenza vaccine using a multiplex gene detection system. When we evaluated the influenza HA vaccine (HAv from four different manufactures, the biomarker analysis correlated to findings from conventional animal use tests, such as abnormal toxicity test. In addition, sensitivity of toxicity detection and differences in HAvs were higher and more accurate than with conventional methods. Despite a slight decrease in body weight caused by HAv from manufacturer B that was not statistically significant, our results suggest that HAv from manufacturer B is significantly different than the other HAvs tested with regard to Lgals3bp, Tapbp, Lgals9, Irf7 and C2 gene expression in rat lungs. Using the biomarkers confirmed in this study, we predicted batch-to-batch consistency and safety of influenza vaccines within 2 days compared with the conventional safety test, which takes longer. These biomarkers will facilitate the future development of new influenza vaccines and provide an opportunity to develop in vitro methods of evaluating batch-to-batch

  15. System vaccinology for the evaluation of influenza vaccine safety by multiplex gene detection of novel biomarkers in a preclinical study and batch release test.

    Science.gov (United States)

    Mizukami, Takuo; Momose, Haruka; Kuramitsu, Madoka; Takizawa, Kazuya; Araki, Kumiko; Furuhata, Keiko; Ishii, Ken J; Hamaguchi, Isao; Yamaguchi, Kazunari

    2014-01-01

    Vaccines are beneficial and universal tools to prevent infectious disease. Thus, safety of vaccines is strictly evaluated in the preclinical phase of trials and every vaccine batch must be tested by the National Control Laboratories according to the guidelines published by each country. Despite many vaccine production platforms and methods, animal testing for safety evaluation is unchanged thus far. We recently developed a systems biological approach to vaccine safety evaluation where identification of specific biomarkers in a rat pre-clinical study evaluated the safety of vaccines for pandemic H5N1 influenza including Irf7, Lgals9, Lgalsbp3, Cxcl11, Timp1, Tap2, Psmb9, Psme1, Tapbp, C2, Csf1, Mx2, Zbp1, Ifrd1, Trafd1, Cxcl9, β2m, Npc1, Ngfr and Ifi47. The current study evaluated whether these 20 biomarkers could evaluate the safety, batch-to-batch and manufacturer-to-manufacturer consistency of seasonal trivalent influenza vaccine using a multiplex gene detection system. When we evaluated the influenza HA vaccine (HAv) from four different manufactures, the biomarker analysis correlated to findings from conventional animal use tests, such as abnormal toxicity test. In addition, sensitivity of toxicity detection and differences in HAvs were higher and more accurate than with conventional methods. Despite a slight decrease in body weight caused by HAv from manufacturer B that was not statistically significant, our results suggest that HAv from manufacturer B is significantly different than the other HAvs tested with regard to Lgals3bp, Tapbp, Lgals9, Irf7 and C2 gene expression in rat lungs. Using the biomarkers confirmed in this study, we predicted batch-to-batch consistency and safety of influenza vaccines within 2 days compared with the conventional safety test, which takes longer. These biomarkers will facilitate the future development of new influenza vaccines and provide an opportunity to develop in vitro methods of evaluating batch-to-batch consistency and

  16. Multilevel correlations in the biological phosphorus removal process: From bacterial enrichment to conductivity-based metabolic batch tests and polyphosphatase assays.

    Science.gov (United States)

    Weissbrodt, David G; Maillard, Julien; Brovelli, Alessandro; Chabrelie, Alexandre; May, Jonathan; Holliger, Christof

    2014-12-01

    Enhanced biological phosphorus removal (EBPR) from wastewater relies on the preferential selection of active polyphosphate-accumulating organisms (PAO) in the underlying bacterial community continuum. Efficient management of the bacterial resource requires understanding of population dynamics as well as availability of bioanalytical methods for rapid and regular assessment of relative abundances of active PAOs and their glycogen-accumulating competitors (GAO). A systems approach was adopted here toward the investigation of multilevel correlations from the EBPR bioprocess to the bacterial community, metabolic, and enzymatic levels. Two anaerobic-aerobic sequencing-batch reactors were operated to enrich activated sludge in PAOs and GAOs affiliating with "Candidati Accumulibacter and Competibacter phosphates", respectively. Bacterial selection was optimized by dynamic control of the organic loading rate and the anaerobic contact time. The distinct core bacteriomes mainly comprised populations related to the classes Betaproteobacteria, Cytophagia, and Chloroflexi in the PAO enrichment and of Gammaproteobacteria, Alphaproteobacteria, Acidobacteria, and Sphingobacteria in the GAO enrichment. An anaerobic metabolic batch test based on electrical conductivity evolution and a polyphosphatase enzymatic assay were developed for rapid and low-cost assessment of the active PAO fraction and dephosphatation potential of activated sludge. Linear correlations were obtained between the PAO fraction, biomass specific rate of conductivity increase under anaerobic conditions, and polyphosphate-hydrolyzing activity of PAO/GAO mixtures. The correlations between PAO/GAO ratios, metabolic activities, and conductivity profiles were confirmed by simulations with a mathematical model developed in the aqueous geochemistry software PHREEQC. © 2014 Wiley Periodicals, Inc.

  17. Uneven batch data alignment with application to the control of batch end-product quality.

    Science.gov (United States)

    Wan, Jian; Marjanovic, Ognjen; Lennox, Barry

    2014-03-01

    Batch processes are commonly characterized by uneven trajectories due to the existence of batch-to-batch variations. The batch end-product quality is usually measured at the end of these uneven trajectories. It is necessary to align the time differences for both the measured trajectories and the batch end-product quality in order to implement statistical process monitoring and control schemes. Apart from synchronizing trajectories with variable lengths using an indicator variable or dynamic time warping, this paper proposes a novel approach to align uneven batch data by identifying short-window PCA&PLS models at first and then applying these identified models to extend shorter trajectories and predict future batch end-product quality. Furthermore, uneven batch data can also be aligned to be a specified batch length using moving window estimation. The proposed approach and its application to the control of batch end-product quality are demonstrated with a simulated example of fed-batch fermentation for penicillin production. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Detection of protozoan hosts for Legionella pneumophila in engineered water systems by using a biofilm batch test

    NARCIS (Netherlands)

    Valster, R.M.; Wullings, B.A.; Kooij, van der D.

    2010-01-01

    Legionella pneumophila proliferates in aquatic habitats within free-living protozoa, 17 species of which have been identified as hosts by using in vitro experiments. The present study aimed at identifying protozoan hosts for L. pneumophila by using a biofilm batch test (BBT). Samples (600 ml)

  19. Biomass composition, lipid characterization, and metabolic profile analysis of the fed-batch fermentation process of two different docosahexanoic acid producing Schizochytrium sp. strains.

    Science.gov (United States)

    Qu, Liang; Ren, Lu-Jing; Li, Juan; Sun, Guan-Nan; Sun, Li-Na; Ji, Xiao-Jun; Nie, Zhi-Kui; Huang, He

    2013-12-01

    Growth and fermentation characteristics, biomass composition, lipid characterization and metabolic profiling analysis of two different Schizochytrium sp. strains, the original strain and the industrial adaptive strain, were investigated in the fed-batch fermentation process. The final cell biomass, total lipids content, docosahexanoic acid (DHA) content and DHA productivity of the adaptive strain were much higher than those of the original strain. The metabolic distinctions which extensively existed between these two strains were revealed by the score plot of principal component analysis. In addition, potential biomarkers responsible for discriminating different strains were identified as myo-inositol, histidine, alanine, asparagine, cysteine, and oxalic acid. These findings provided new insights into the industrial strain screening and further improvement of DHA production by Schizochytrium sp.

  20. A two-compartment bioreactor system made of commercial parts for bioprocess scale-down studies: impact of oscillations on Bacillus subtilis fed-batch cultivations.

    Science.gov (United States)

    Junne, Stefan; Klingner, Arne; Kabisch, Johannes; Schweder, Thomas; Neubauer, Peter

    2011-08-01

    This study describes an advanced version of a two-compartment scale-down bioreactor that simulates inhomogeneities present in large-scale industrial bioreactors on the laboratory scale. The system is made of commercially available parts and is suitable for sterilization with steam. The scale-down bioreactor consists of a usual stirred tank bioreactor (STR) and a plug flow reactor (PFR) equipped with static mixer modules. The PFR module with a working volume of 1.2 L is equipped with five sample ports, and pH and dissolved oxygen (DO) sensors. The concept was applied using the non-sporulating Bacillus subtilis mutant strain AS3, characterized by a SpoIIGA gene knockout. In a fed-batch process with a constant feed rate, it is found that oscillating substrate and DO concentration led to diminished glucose uptake, ethanol formation and an altered amino acid synthesis. Sampling at the PFR module allowed the detection of dynamics at different concentrations of intermediates, such as pyruvic acid, lactic acid and amino acids. Results indicate that the carbon flux at excess glucose and low DO concentrations is shifted towards ethanol formation. As a result, the reduced carbon flux entering the tricarboxylic acid cycle is not sufficient to support amino acid synthesis following the oxaloacetic acid branch point. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Life-cycle and cost of goods assessment of fed-batch and perfusion-based manufacturing processes for mAbs.

    Science.gov (United States)

    Bunnak, Phumthep; Allmendinger, Richard; Ramasamy, Sri V; Lettieri, Paola; Titchener-Hooker, Nigel J

    2016-09-01

    Life-cycle assessment (LCA) is an environmental assessment tool that quantifies the environmental impact associated with a product or a process (e.g., water consumption, energy requirements, and solid waste generation). While LCA is a standard approach in many commercial industries, its application has not been exploited widely in the bioprocessing sector. To contribute toward the design of more cost-efficient, robust and environmentally-friendly manufacturing process for monoclonal antibodies (mAbs), a framework consisting of an LCA and economic analysis combined with a sensitivity analysis of manufacturing process parameters and a production scale-up study is presented. The efficiency of the framework is demonstrated using a comparative study of the two most commonly used upstream configurations for mAb manufacture, namely fed-batch (FB) and perfusion-based processes. Results obtained by the framework are presented using a range of visualization tools, and indicate that a standard perfusion process (with a pooling duration of 4 days) has similar cost of goods than a FB process but a larger environmental footprint because it consumed 35% more water, demanded 17% more energy, and emitted 17% more CO 2 than the FB process. Water consumption was the most important impact category, especially when scaling-up the processes, as energy was required to produce process water and water-for-injection, while CO 2 was emitted from energy generation. The sensitivity analysis revealed that the perfusion process can be made more environmentally-friendly than the FB process if the pooling duration is extended to 8 days. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1324-1335, 2016. © 2016 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  2. UHPLC-MS/MS quantification combined with chemometrics for the comparative analysis of different batches of raw and wine-processed Dipsacus asper.

    Science.gov (United States)

    Tao, Yi; Du, Yingshan; Su, Dandan; Li, Weidong; Cai, Baochang

    2017-04-01

    A rapid and sensitive ultra-high performance liquid chromatography with tandem mass spectrometry approach was established for the simultaneous determination of 4-caffeoylquinic acid, loganic acid, chlorogenic acid, loganin, 3,5-dicaffeoylquinic acid, dipsacoside B, asperosaponin VI, and sweroside in raw and wine-processed Dipsacus asper. Chloramphenicol and glycyrrhetinic acid were employed as internal standards. The proposed approach was fully validated in terms of linearity, sensitivity, precision, repeatability as well as recovery. Intra- and interassay variability for all analytes were 2.8-4.9 and 1.7-4.8%, respectively. The standard addition method determined recovery rates for each analytes (96.8-104.6%). In addition, the developed approach was applied to 20 batches of raw and wine-processed samples of Dipsacus asper. Principle component analysis and partial least squares-discriminate analysis revealed a clear separation between the raw group and wine-processed group. After wine-processing, the contents of loganic acid, chlorogenic acid, dipsacoside B, and asperosaponin VI were upregulated, while the contents of 3,5-dicaffeoylquinic acid, 4-caffeoylquinic acid, loganin, and sweroside were downregulated. Our results demonstrated that ultra-high performance liquid chromatography with tandem mass spectrometry quantification combined with chemometrics is a viable method for quality evaluation of the raw Dipsacus asper and its wine-processed products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Family based dispatching with batch availability

    NARCIS (Netherlands)

    van der Zee, D.J.

    2013-01-01

    Family based dispatching rules seek to lower set-up frequencies by grouping (batching) similar types of jobs for joint processing. Hence shop flow times may be improved, as less time is spent on set-ups. Motivated by an industrial project we study the control of machines with batch availability,

  4. Mars Aqueous Processing System

    Science.gov (United States)

    Berggren, Mark; Wilson, Cherie; Carrera, Stacy; Rose, Heather; Muscatello, Anthony; Kilgore, James; Zubrin, Robert

    2012-01-01

    The goal of the Mars Aqueous Processing System (MAPS) is to establish a flexible process that generates multiple products that are useful for human habitation. Selectively extracting useful components into an aqueous solution, and then sequentially recovering individual constituents, can obtain a suite of refined or semi-refined products. Similarities in the bulk composition (although not necessarily of the mineralogy) of Martian and Lunar soils potentially make MAPS widely applicable. Similar process steps can be conducted on both Mars and Lunar soils while tailoring the reaction extents and recoveries to the specifics of each location. The MAPS closed-loop process selectively extracts, and then recovers, constituents from soils using acids and bases. The emphasis on Mars involves the production of useful materials such as iron, silica, alumina, magnesia, and concrete with recovery of oxygen as a byproduct. On the Moon, similar chemistry is applied with emphasis on oxygen production. This innovation has been demonstrated to produce high-grade materials, such as metallic iron, aluminum oxide, magnesium oxide, and calcium oxide, from lunar and Martian soil simulants. Most of the target products exhibited purities of 80 to 90 percent or more, allowing direct use for many potential applications. Up to one-fourth of the feed soil mass was converted to metal, metal oxide, and oxygen products. The soil residue contained elevated silica content, allowing for potential additional refining and extraction for recovery of materials needed for photovoltaic, semiconductor, and glass applications. A high-grade iron oxide concentrate derived from lunar soil simulant was used to produce a metallic iron component using a novel, combined hydrogen reduction/metal sintering technique. The part was subsequently machined and found to be structurally sound. The behavior of the lunar-simulant-derived iron product was very similar to that produced using the same methods on a Michigan iron

  5. User's instructions for the Guyton circulatory dynamics model using the Univac 1110 batch and demand processing (with graphic capabilities)

    Science.gov (United States)

    Archer, G. T.

    1974-01-01

    The model presents a systems analysis of a human circulatory regulation based almost entirely on experimental data and cumulative present knowledge of the many facets of the circulatory system. The model itself consists of eighteen different major systems that enter into circulatory control. These systems are grouped into sixteen distinct subprograms that are melded together to form the total model. The model develops circulatory and fluid regulation in a simultaneous manner. Thus, the effects of hormonal and autonomic control, electrolyte regulation, and excretory dynamics are all important and are all included in the model.

  6. GROWTH AND COMPOSITION OF Arthrospira (Spirulina platensis IN A TUBULAR PHOTOBIOREACTOR USING AMMONIUM NITRATE AS THE NITROGEN SOURCE IN A FED-BATCH PROCESS

    Directory of Open Access Journals (Sweden)

    C. Cruz-Martínez

    2015-06-01

    Full Text Available AbstractNH4NO3 simultaneously provides a readily assimilable nitrogen source (ammonia and a reserve of nitrogen (nitrate, allowing for an increase in Arthrospira platensis biomass production while reducing the cost of the cultivation medium. In this study, a 22plus star central composite experimental design combined with response surface methodology was employed to analyze the influence of light intensity (I and the total amount of added NH4NO3 (Mt on a bench-scale tubular photobioreactor for fed-batch cultures. The maximum cell concentration (Xm, cell productivity (PX and biomass yield on nitrogen (YX/N were evaluated, as were the protein and lipid contents. Under optimized conditions (I = 148 μmol·photons·m-2·s-1 and Mt = 9.7 mM NH4NO3, Xm = 4710 ±34.4 mg·L-1, PX = 478.9 ±3.8 mg·L-1·d-1 and YX/N = 15.87 ±0.13 mg·mg-1 were obtained. The best conditions for protein content in the biomass (63.2% were not the same as those that maximized cell growth (I = 180 μmol·photons·m-2·s-1 and Mt = 22.5 mM NH4NO3. Based on these results, it is possible to conclude that ammonium nitrate is an interesting alternate nitrogen source for the cultivation of A. platensisin a fed-batch process and could be used for other photosynthetic microorganisms.

  7. Takagi-Sugeno model based analysis of EWMA RtR control of batch processes with stochastic metrology delay and mixed products.

    Science.gov (United States)

    Zheng, Ying; Wong, David Shan-Hill; Wang, Yan-Wei; Fang, Huajing

    2014-07-01

    In many batch-based industrial manufacturing processes, feedback run-to-run control is used to improve production quality. However, measurements may be expensive and cannot always be performed online. Thus, the measurement delay always exists. The metrology delay will affect the stability and performance of the process. Moreover, since quality measurements are performed offline, delay is not fixed but is stochastic in nature. In this paper, a modeling approach Takagi-Sugeno (T-S) model is presented to handle stochastic metrology delay in both single-product and mixed-product processes. Based on the Markov characteristics of the delay, the membership of the T-S model is derived. Performance indices such as the mean and the variance of the closed-loop output of the exponentially weighted moving average (EWMA) control algorithm can be derived. A steady-state error of the process output always exists, which leads the output deviating from the target. To remove the steady-state error, an algorithm called compensatory EWMA run-to-run (COM-EWMA-RtR) algorithm is proposed. The validity of the T-S model analysis and the efficiency of the proposed COM-EWMA-RtR algorithm are confirmed by simulation.

  8. Automatic flow-batch system for cold vapor atomic absorption spectroscopy determination of mercury in honey from Argentina using online sample treatment.

    Science.gov (United States)

    Domínguez, Marina A; Grünhut, Marcos; Pistonesi, Marcelo F; Di Nezio, María S; Centurión, María E

    2012-05-16

    An automatic flow-batch system that includes two borosilicate glass chambers to perform sample digestion and cold vapor atomic absorption spectroscopy determination of mercury in honey samples was designed. The sample digestion was performed by using a low-cost halogen lamp to obtain the optimum temperature. Optimization of the digestion procedure was done using a Box-Behnken experimental design. A linear response was observed from 2.30 to 11.20 μg Hg L(-1). The relative standard deviation was 3.20% (n = 11, 6.81 μg Hg L(-1)), the sample throughput was 4 sample h(-1), and the detection limit was 0.68 μg Hg L(-1). The obtained results with the flow-batch method are in good agreement with those obtained with the reference method. The flow-batch system is simple, allows the use of both chambers simultaneously, is seen as a promising methodology for achieving green chemistry goals, and is a good proposal to improving the quality control of honey.

  9. Optimal control of switched systems arising in fermentation processes

    CERN Document Server

    Liu, Chongyang

    2014-01-01

    The book presents, in a systematic manner, the optimal controls under different mathematical models in fermentation processes. Variant mathematical models – i.e., those for multistage systems; switched autonomous systems; time-dependent and state-dependent switched systems; multistage time-delay systems and switched time-delay systems – for fed-batch fermentation processes are proposed and the theories and algorithms of their optimal control problems are studied and discussed. By putting forward novel methods and innovative tools, the book provides a state-of-the-art and comprehensive systematic treatment of optimal control problems arising in fermentation processes. It not only develops nonlinear dynamical system, optimal control theory and optimization algorithms, but can also help to increase productivity and provide valuable reference material on commercial fermentation processes.

  10. 21 CFR 111.123 - What quality control operations are required for the master manufacturing record, the batch...

    Science.gov (United States)

    2010-04-01

    ..., LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Production and Process Control System: Requirements... manufacturing record, the batch production record, and manufacturing operations? (a) Quality control operations...) Quality control personnel must not approve and release for distribution: (1) Any batch of dietary...

  11. Bioprocess iterative batch-to-batch optimization based on hybrid parametric/nonparametric models.

    Science.gov (United States)

    Teixeira, Ana P; Clemente, João J; Cunha, António E; Carrondo, Manuel J T; Oliveira, Rui

    2006-01-01

    This paper presents a novel method for iterative batch-to-batch dynamic optimization of bioprocesses. The relationship between process performance and control inputs is established by means of hybrid grey-box models combining parametric and nonparametric structures. The bioreactor dynamics are defined by material balance equations, whereas the cell population subsystem is represented by an adjustable mixture of nonparametric and parametric models. Thus optimizations are possible without detailed mechanistic knowledge concerning the biological system. A clustering technique is used to supervise the reliability of the nonparametric subsystem during the optimization. Whenever the nonparametric outputs are unreliable, the objective function is penalized. The technique was evaluated with three simulation case studies. The overall results suggest that the convergence to the optimal process performance may be achieved after a small number of batches. The model unreliability risk constraint along with sampling scheduling are crucial to minimize the experimental effort required to attain a given process performance. In general terms, it may be concluded that the proposed method broadens the application of the hybrid parametric/nonparametric modeling technique to "newer" processes with higher potential for optimization.

  12. Spring batch essentials

    CERN Document Server

    Rao, P Raja Malleswara

    2015-01-01

    If you are a Java developer with basic knowledge of Spring and some experience in the development of enterprise applications, and want to learn about batch application development in detail, then this book is ideal for you. This book will be perfect as your next step towards building simple yet powerful batch applications on a Java-based platform.

  13. Key Process Conditions for Production of C4 Dicarboxylic Acids in Bioreactor Batch Cultures of an Engineered Saccharomyces cerevisiae Strain

    NARCIS (Netherlands)

    Zelle, R.M.; De Hulster, E.; Kloezen, W.; Pronk, J.T.; Van Maris, A.J.A.

    2010-01-01

    A recent effort to improve malic acid production by Saccharomyces cerevisiae by means of metabolic engineering resulted in a strain that produced up to 59 g liter(-1) of malate at a yield of 0.42 mol (mol glucose)(-1) in calcium carbonate-buffered shake flask cultures. With shake flasks, process

  14. NGBAuth - Next Generation Batch Authentication for long running batch jobs.

    CERN Document Server

    Juto, Zakarias

    2015-01-01

    This document describes the prototyping of a new solution for the CERN batch authentication of long running jobs. While the job submission requires valid user credentials, these have to be renewed due to long queuing and execution times. Described within is a new system which will guarantee a similar level of security as the old LSFAuth while simplifying the implementation and the overall architecture. The new system is being built on solid, streamlined and tested components (notably OpenSSL) and a priority has been to make it more generic in order to facilitate the evolution of the current system such as for the expected migration from LSF to Condor as backend batch system.

  15. Ethanol effect on batch and fed-batch Arthrospira platensis growth.

    Science.gov (United States)

    Bezerra, Raquel P; Matsudo, Marcelo C; Pérez Mora, Lina S; Sato, Sunao; de Carvalho, João C Monteiro

    2014-04-01

    The ability of Arthrospira platensis to use ethanol as a carbon and energy source was investigated by batch process and fed-batch process. A. platensis was cultivated under the effect of a single addition (batch process) and a daily pulse feeding (fed-batch process) of pure ethanol, at different concentrations, to evaluate cell concentration (X) and specific growth rate (μ). A marked increase was observed in the cell concentration of A. platensis in runs with ethanol addition when compared to control cultures without ethanol addition. The fed-batch process using an ethanol concentration of 38 mg L(-1) days(-1) reached the maximum cell concentration of 2,393 ± 241 mg L(-1), about 1.5-fold that obtained in the control culture. In all experiments, the maximum specific growth rate was observed in the early exponential phase of cell growth. In the fed-batch process, μ decreased more slowly than in the batch process and control culture, resulting in the highest final cell concentration. Ethanol can be used as a feasible carbon and energy source for A. platensis growth via a fed-batch process.

  16. Optimization of the process of methylic transesterification of palm oil an experimental plant in batches in RECOPE

    International Nuclear Information System (INIS)

    Delgado Quesada, Adrian

    2013-01-01

    The production process of biodiesel is optimized in the Laboratorio de Investigacion of RECOPE. A subprocess of raw material purification and finished product is implemented. Parameters of optimization for the experimental plant are established by a bibliographic search. Palm oil acquired by RECOPE is characterized. The optimization of the alkaline transesterification of palm oil with methanol is realized in the experimental plant of RECOPE, through a full factorial design of five variables on two levels: the effect of temperature, the relationship of catalyst-oil, the speed of agitation, the molar relationship alcohol-oil and the reaction time in the production of biodiesel. The operation optimal values of the experimental plant are obtained by ANOVA. The maximum quantity of soaps required is determined to saturate exchange resin used in the purification of the biodiesel. The parameters of optimum operating are proposed for the production process of methyl biodiesel of palm according to the conditions of the oil and in the test plant of RECOPE. The result of the analysis of control variables of the biodiesel as the density have been according to reported by the Reglamento Tecnico Centroamericano (RTCA). However, the measured variables to biodiesel as total glycerin, inflammability point, content of fatty acid methyl esters and acid number have indicated the necessity to implement pretreatment steps from the oil by acid esterification. Besides, the study has determined that biodiesel remains without comply with the standards established by the RTCA for its commercialization at national or international level [es

  17. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition.

    Science.gov (United States)

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-06-17

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.

  18. Material insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition

    Science.gov (United States)

    Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, Christian

    2016-06-01

    With the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.

  19. Photo-removal of sulfamethoxazole (SMX) by photolytic and photocatalytic processes in a batch reactor under UV-C radiation ({lambda}{sub max} = 254 nm)

    Energy Technology Data Exchange (ETDEWEB)

    Nasuhoglu, Deniz; Yargeau, Viviane [Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 2B2 (Canada); Berk, Dimitrios, E-mail: dimitrios.berk@mcgill.ca [Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 2B2 (Canada)

    2011-02-15

    In this study, photolytic and photocatalytic removal of the antibiotic sulfamethoxazole (SMX) under UVC radiation ({lambda} = 254 nm) was investigated. The light intensity distribution inside the batch photoreactor was characterized by azoxybenzene actinometry. The intensity of incident radiation was found to be a strong function of position inside the reactor. 12 mg L{sup -1} of SMX was completely removed within 10 min of irradiation under UVC photolysis, compared to 30 min under TiO{sub 2} photocatalysis. COD measurement was used as an indication of the mineralization efficiency of both processes and higher COD removal with photocatalysis was shown. After 6 h of reaction with photolysis and photocatalysis, 24% and 87% removal of COD was observed, respectively. Two of the intermediate photo-products were identified as sulfanilic acid and 3-amino-5-methylisoxazole by direct comparison of the HPLC chromatograms of standards to those of treated solutions. Ecotoxicity of treated and untreated solutions of SMX towards Daphnia magna was also investigated. It was found that a 3:1 ratio of sample to standard freshwater and a high initial concentration of 60 mg L{sup -1} of SMX were used to obtain reliable and reproducible results. The photo-products formed during photocatalytic and photolytic processes were shown to be generally more toxic than the parent compound.

  20. SAR processing using SHARC signal processing systems

    Science.gov (United States)

    Huxtable, Barton D.; Jackson, Christopher R.; Skaron, Steve A.

    1998-09-01

    Synthetic aperture radar (SAR) is uniquely suited to help solve the Search and Rescue problem since it can be utilized either day or night and through both dense fog or thick cloud cover. Other papers in this session, and in this session in 1997, describe the various SAR image processing algorithms that are being developed and evaluated within the Search and Rescue Program. All of these approaches to using SAR data require substantial amounts of digital signal processing: for the SAR image formation, and possibly for the subsequent image processing. In recognition of the demanding processing that will be required for an operational Search and Rescue Data Processing System (SARDPS), NASA/Goddard Space Flight Center and NASA/Stennis Space Center are conducting a technology demonstration utilizing SHARC multi-chip modules from Boeing to perform SAR image formation processing.

  1. LSF usage for batch at CERN

    CERN Multimedia

    Schwickerath, Ulrich

    2007-01-01

    Contributed poster to the CHEP07. Original abstract: LSF 7, the latest version of Platform's batch workload management system, addresses many issues which limited the ability of LSF 6.1 to support large scale batch farms, such as the lxbatch service at CERN. In this paper we will present the status of the evaluation and deployment of LSF 7 at CERN, including issues concerning the integration of LSF 7 with the gLite grid middleware suite and, in particular, the steps taken to endure an efficient reporting of the local batch system status and usage to the Grid Information System

  2. Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I.

    Science.gov (United States)

    Samorì, Giulia; Samorì, Chiara; Guerrini, Franca; Pistocchi, Rossella

    2013-02-01

    The microalgal biomass applications strongly depend on cell composition and the production of low cost products such as biofuels appears to be economically convenient only in conjunction with wastewater treatment. As a preliminary study, in view of the development of a wastewater treatment pilot plant for nutrient removal and algal biomass production, a biological wastewater system was carried out on a laboratory scale growing a newly isolated freshwater algal strain, Desmodesmus communis, and a natural consortium of microalgae in effluents generated by a local wastewater reclamation facility. Batch cultures were operated by using D. communis under different growth conditions to better understand the effects of CO₂, nutrient concentration and light intensity on the biomass productivity and biochemical composition. The results were compared with those obtained using a natural algal consortium. D. communis showed a great vitality in the wastewater effluents with a biomass productivity of 0.138-0.227 g L⁻¹ d⁻¹ in the primary effluent enriched with CO₂, higher biomass productivity compared with the one achieved by the algal consortium (0.078 g L⁻¹ d⁻¹). D. communis cultures reached also a better nutrient removal efficiency compared with the algal consortium culture, with almost 100% for ammonia and phosphorous at any N/P ratio characterizing the wastewater nutrient composition. Biomass composition was richer in polysaccharides and total fatty acids as the ammonia concentration in the water decreased. In view of a future application of this algal biomass, due to the low total fatty acids content of 1.4-9.3 wt% and the high C/N ratio of 7.6-39.3, anaerobic digestion appeared to be the most appropriate biofuel conversion process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. The impact of pH inhomogeneities on CHO cell physiology and fed-batch process performance - two-compartment scale-down modelling and intracellular pH excursion.

    Science.gov (United States)

    Brunner, Matthias; Braun, Philipp; Doppler, Philipp; Posch, Christoph; Behrens, Dirk; Herwig, Christoph; Fricke, Jens

    2017-07-01

    Due to high mixing times and base addition from top of the vessel, pH inhomogeneities are most likely to occur during large-scale mammalian processes. The goal of this study was to set-up a scale-down model of a 10-12 m 3 stirred tank bioreactor and to investigate the effect of pH perturbations on CHO cell physiology and process performance. Short-term changes in extracellular pH are hypothesized to affect intracellular pH and thus cell physiology. Therefore, batch fermentations, including pH shifts to 9.0 and 7.8, in regular one-compartment systems are conducted. The short-term adaption of the cells intracellular pH are showed an immediate increase due to elevated extracellular pH. With this basis of fundamental knowledge, a two-compartment system is established which is capable of simulating defined pH inhomogeneities. In contrast to state-of-the-art literature, the scale-down model is included parameters (e.g. volume of the inhomogeneous zone) as they might occur during large-scale processes. pH inhomogeneity studies in the two-compartment system are performed with simulation of temporary pH zones of pH 9.0. The specific growth rate especially during the exponential growth phase is strongly affected resulting in a decreased maximum viable cell density and final product titer. The gathered results indicate that even short-term exposure of cells to elevated pH values during large-scale processes can affect cell physiology and overall process performance. In particular, it could be shown for the first time that pH perturbations, which might occur during the early process phase, have to be considered in scale-down models of mammalian processes. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Processed Products Database System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection of annual data on processed seafood products. The Division provides authoritative advice, coordination and guidance on matters related to the collection,...

  5. A generic multi-dimensional model-based system for batch cooling crystallization processes

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Singh, Ravendra; Sin, Gürkan

    2011-01-01

    Highly porous deposits of flame-made aerosol nanoparticles were formed by filtration through a porous substrate (α-alumina, average pore diameter 3.7 μm). The aerosol was characterized by transmission electron microscopy (TEM) and scanning mobility particle sizer (SMPS) showing average primary an...

  6. SPS batch spacing optimisation

    CERN Document Server

    Velotti, F M; Carlier, E; Goddard, B; Kain, V; Kotzian, G

    2017-01-01

    Until 2015, the LHC filling schemes used the batch spac-ing as specified in the LHC design report. The maximumnumber of bunches injectable in the LHC directly dependson the batch spacing at injection in the SPS and hence onthe MKP rise time.As part of the LHC Injectors Upgrade project for LHCheavy ions, a reduction of the batch spacing is needed. In thisdirection, studies to approach the MKP design rise time of150ns(2-98%) have been carried out. These measurementsgave clear indications that such optimisation, and beyond,could be done also for higher injection momentum beams,where the additional slower MKP (MKP-L) is needed.After the successful results from 2015 SPS batch spacingoptimisation for the Pb-Pb run [1], the same concept wasthought to be used also for proton beams. In fact, thanksto the SPS transverse feed back, it was already observedthat lower batch spacing than the design one (225ns) couldbe achieved. For the 2016 p-Pb run, a batch spacing of200nsfor the proton beam with100nsbunch spacing wasreque...

  7. Production of exopolysaccharides by Acinetobacter strains in a controlled fed-batch fermentation process using soap stock oil (SSO) as carbon source.

    Science.gov (United States)

    Shabtai, Y

    1990-04-01

    The production of two extracellular capsular heteropolysaccharides by two different Acinetobacter strains has been studied in separate controlled fermentation processes with a view to their industrial applications as specific dispersing agents. The first, emulsan, is an extracellular polyanionic amphipathic heteropolysaccharide (MW 10(6) D) made by A. calcoaceticus RAG-1. It forms and stabilizes oil in water emulsions. The other, biodispersan (PS-A2), is another extracellular zwitterionic heteropolysaccharide (MW 51 kD) made by A. calcoaceticus A2. This polysaccharide disperses big solid limestone granules forming micron-size water suspension. Both polysaccharides are synthesized within the cells, exported to their outer surface to form an extracellular cell-associated capsule and released subsequently into the growth medium. The polymers were produced in a computer-controlled fed-batch intensively aerated fermentation process. A commercially available and cheap fatty acids mixture (soap stock oil) served as the carbon source, and was fed in coordination with the required nitrogen. The coordinated feed of carbon and nitrogen was operated on the basis of two metabolic correlations: The first correlation related the cell protein produced and the ammonium nitrogen consumed with the outcoming coeffients of 24 and 21 mM NH3/g protein for the emulsan and the biodispersan fermentations respectively. The second correlation linked the consumption of the fatty acids with that of the nitrogen source dictating the appropriate C/N ratio of the feed into the operating fermentor. These ratios were 7.7 g C/g N for the emulsan fermentation and 8.5 gC/g N in the case of the biodispersan production process.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Personal Investigations Processing System

    Data.gov (United States)

    US Agency for International Development — PIPS is a system that maintains the Security/Suitability Investigations Index (SII) for OPM. It contains over 11 million background investigation records of Federal...

  9. Tracking an Escherichia coli O157:H7-contaminated batch of leafy greens through a pilot-scale fresh-cut processing line.

    Science.gov (United States)

    Buchholz, Annemarie L; Davidson, Gordon R; Marks, Bradley P; Todd, Ewen C D; Ryser, Elliot T

    2014-09-01

    Cross-contamination of fresh-cut leafy greens with residual Escherichia coli O157:H7-contaminated product during commercial processing was likely a contributing factor in several recent multistate outbreaks. Consequently, radicchio was used as a visual marker to track the spread of the contaminated product to iceberg lettuce in a pilot-scale processing line that included a commercial shredder, step conveyor, flume tank, shaker table, and centrifugal dryer. Uninoculated iceberg lettuce (45 kg) was processed, followed by 9.1 kg of radicchio (dip inoculated to contain a four-strain, green fluorescent protein-labeled nontoxigenic E. coli O157:H7 cocktail at 10(6) CFU/g) and 907 kg (2,000 lb) of uninoculated iceberg lettuce. After collecting the lettuce and radicchio in about 40 bags (∼22.7 kg per bag) along with water and equipment surface samples, all visible shreds of radicchio were retrieved from the bags of shredded product, the equipment, and the floor. E. coli O157:H7 populations were quantified in the lettuce, water, and equipment samples by direct plating with or without prior membrane filtration on Trypticase soy agar containing 0.6% yeast extract and 100 ppm of ampicillin. Based on triplicate experiments, the weight of radicchio in the shredded lettuce averaged 614.9 g (93.6%), 6.9 g (1.3%), 5.0 g (0.8%), and 2.8 g (0.5%) for bags 1 to 10, 11 to 20, 21 to 30, and 31 to 40, respectively, with mean E. coli O157:H7 populations of 1.7, 1.2, 1.1, and 1.1 log CFU/g in radicchio-free lettuce. After processing, more radicchio remained on the conveyor (9.8 g; P 0.05) recovered from all equipment surfaces after processing. These findings clearly demonstrate both the potential for the continuous spread of contaminated lettuce to multiple batches of product during processing and the need for improved equipment designs that minimize the buildup of residual product during processing.

  10. Expert systems in process control systems

    International Nuclear Information System (INIS)

    Wittig, T.

    1987-01-01

    To illustrate where the fundamental difference between expert systems in classical diagnosis and in industrial control lie, the work of process control instrumentation is used as an example for the job of expert systems. Starting from the general process of problem-solving, two classes of expert systems can be defined accordingly. (orig.) [de

  11. Response surface modeling and optimization of chromium(VI) removal from aqueous solution using Tamarind wood activated carbon in batch process.

    Science.gov (United States)

    Sahu, J N; Acharya, Jyotikusum; Meikap, B C

    2009-12-30

    The present paper discusses response surface methodology (RSM) as an efficient approach for predictive model building and optimization of chromium adsorption on developed activated carbon. In this work the application of RSM is presented for optimizing the removal of Cr(VI) ions from aqua solutions using activated carbon as adsorbent. All experiments were performed according to statistical designs in order to develop the predictive regression models used for optimization. The optimization of adsorption of chromium on activated carbon was carried out to ensure a high adsorption efficiency at low adsorbent dose and high initial concentration of Cr(VI). While the goal of adsorption of chromium optimization was to improve adsorption conditions in batch process, i.e., to minimize the adsorbent dose and to increase the initial concentration of Cr(VI). In the adsorption experiments a laboratory developed Tamarind wood activated carbon made of chemical activation (zinc chloride) was used. A 2(4) full factorial central composite design experimental design was employed. Analysis of variance (ANOVA) showed a high coefficient of determination value (R(2)=0.928) and satisfactory prediction second-order regression model was derived. Maximum chromium removal efficiency was predicted and experimentally validated. The optimum adsorbent dose, temperature, initial concentration of Cr(VI) and initial pH of the Cr(VI) solution were found to be 4.3g/l, 32 degrees C, 20.15 mg/l and 5.41 respectively. Under optimal value of process parameters, high removal (>89%) was obtained for Cr(VI).

  12. Adaptation to high throughput batch chromatography enhances multivariate screening.

    Science.gov (United States)

    Barker, Gregory A; Calzada, Joseph; Herzer, Sibylle; Rieble, Siegfried

    2015-09-01

    High throughput process development offers unique approaches to explore complex process design spaces with relatively low material consumption. Batch chromatography is one technique that can be used to screen chromatographic conditions in a 96-well plate. Typical batch chromatography workflows examine variations in buffer conditions or comparison of multiple resins in a given process, as opposed to the assessment of protein loading conditions in combination with other factors. A modification to the batch chromatography paradigm is described here where experimental planning, programming, and a staggered loading approach increase the multivariate space that can be explored with a liquid handling system. The iterative batch chromatography (IBC) approach is described, which treats every well in a 96-well plate as an individual experiment, wherein protein loading conditions can be varied alongside other factors such as wash and elution buffer conditions. As all of these factors are explored in the same experiment, the interactions between them are characterized and the number of follow-up confirmatory experiments is reduced. This in turn improves statistical power and throughput. Two examples of the IBC method are shown and the impact of the load conditions are assessed in combination with the other factors explored. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A novel method to recover inclusion body protein from recombinant E. coli fed-batch processes based on phage ΦX174-derived lysis protein E.

    Science.gov (United States)

    Ehgartner, Daniela; Sagmeister, Patrick; Langemann, Timo; Meitz, Andrea; Lubitz, Werner; Herwig, Christoph

    2017-07-01

    Production of recombinant proteins as inclusion bodies is an important strategy in the production of technical enzymes and biopharmaceutical products. So far, protein from inclusion bodies has been recovered from the cell factory through mechanical or chemical disruption methods, requiring additional cost-intensive unit operations. We describe a novel method that is using a bacteriophage-derived lysis protein to directly recover inclusion body protein from Escherichia coli from high cell density fermentation process: The recombinant inclusion body product is expressed by using a mixed feed fed-batch process which allows expression tuning via adjusting the specific uptake rate of the inducing substrate. Then, bacteriophage ΦX174-derived lysis protein E is expressed to induce cell lysis. Inclusion bodies in empty cell envelopes are harvested via centrifugation of the fermentation broth. A subsequent solubilization step reveals the recombinant protein. The process was investigated by analyzing the impact of fermentation conditions on protein E-mediated cell lysis as well as cell lysis kinetics. Optimal cell lysis efficiencies of 99% were obtained with inclusion body titers of >2.0 g/l at specific growth rates higher 0.12 h -1 and inducer uptake rates below 0.125 g/(g × h). Protein E-mediated cell disruption showed a first-order kinetics with a kinetic constant of -0.8 ± 0.3 h -1 . This alternative inclusion body protein isolation technique was compared to the one via high-pressure homogenization. SDS gel analysis showed 10% less protein impurities when cells had been disrupted via high-pressure homogenization, than when empty cell envelopes including inclusion bodies were investigated. Within this contribution, an innovative technology, tuning recombinant protein production and substituting cost-intensive mechanical cell disruption, is presented. We anticipate that the presented method will simplify and reduce the production costs of inclusion body

  14. Upscaling of a Batch De-vulcanization Process for Ground Car Tire Rubber to a Continuous Process in a Twin Screw Extruder

    NARCIS (Netherlands)

    Saiwari, Sitisaiyidah; van Hoek, Johannes Wilhelmus; Dierkes, Wilma K.; Reuvekamp, Louis A.E.M.; Heideman, G.; Blume, Anke; Noordermeer, Jacobus W.M.

    2016-01-01

    As a means to decrease the amount of waste tires and to re-use tire rubber for new tires, devulcanization of ground passenger car tires is a promising process. Being an established process for NR and EPDM, earlier work has shown that for ground passenger car tire rubber with a relatively high amount

  15. Development of a system for the on-line measurement of carbon dioxide production in microbioreactors: application to aerobic batch cultivations of Candida utilis.

    Science.gov (United States)

    van Leeuwen, Michiel; Heijnen, Joseph J; Gardeniers, Han; van der Wielen, Luuk A M; van Gulik, Walter M

    2009-01-01

    We developed and applied a conductometric method for the quantitative online measurement of the carbon dioxide (CO(2)) production during batch cultivations of Candida utilis on a 100-microL scale. The applied method for the CO(2) measurement consisted of absorption of the produced CO(2) from the exhaust gas of the microbioreactor in an alkali solution, of which the conductivity was measured on-line. The measured conductivity change of the alkali solution showed a linear relation with the total amount of CO(2) absorbed. After calibration of the CO(2) measurement system, it was connected to a well of a 96-well microtiter plate. The mixing in the well was achieved by a magnetic stirrer. Using online measurement of the CO(2) production during the cultivation, we show reproducible exponential batch growth of C. utilis on a 100-microL scale. The CO(2) production measurements obtained from the microcultivation were compared with the CO(2) production measurement in a 4-L bioreactor equipped with a conventional off-gas analyzer. The measurements showed that on-line measurement of the CO(2) production rate in microbioreactors can provide essential data for quantitative physiological studies and provide better understanding of microscale cultivations. 2009 American Institute of Chemical Engineers

  16. Application of a sequential batch reactor system for textile dyes degradation: comparison between azo and phthalocyanine dyes.

    Science.gov (United States)

    Harrelkas, F; Pons, M N; Zahraa, O; Yaacoubi, A; Lakhal, E K

    2007-01-01

    Photocatalysis on supported TiO2 was combined with aerobic biological treatment in a sequential batch reactor to compare the degradation of two textile dyes: a blue azo dye (DR KBL CDG) and a green phthalocyanine dye (DR K4GN). Three reactors were run in parallel. SBR1 was used as a reference and was fed with urban wastewater only. SBR2 and SBR3 were fed with the same urban wastewater combined with pretreated (for SBR2) and non-pretreated (for SBR3) dye solution. For an azo dye concentration of 12 mg/L decolouration yields of 78 and 27% were achieved, respectively, in SBR2 and SBR3. For the phthalocyanine dye, the decolouration yields decreased to 24 and 15%, respectively. Concerning COD removal it decreases for both dyes with and without pretreatment, when the dye concentration increases. Although a detrimental effect on biomass could be observed, bacteria were able to cope with the inhibitory effect of the dyes.

  17. Gráficos de controle multivariados para monitoramento de processos não lineares em bateladas Multivariate control charts for monitoring non-linear batch processes

    Directory of Open Access Journals (Sweden)

    Danilo Marcondes Filho

    2011-03-01

    Full Text Available Processos industriais em bateladas são empregados com frequência na produção de certos itens. Tais processos disponibilizam uma estrutura de dados peculiar; diante disso, existe um crescente interesse no desenvolvimento de gráficos de controle multivariados mais apropriados para seu monitoramento. Investiga-se aqui uma abordagem recente que utiliza gráficos de controle baseados no método Statis. O Statis constitui-se em uma técnica exploratória que permite avaliar similaridade entre matrizes de dados. Entretanto, essa técnica considera a similaridade em um contexto linear, investigando estruturas de correlação lineares nos dados. Propõe-se neste artigo a utilização de gráficos de controle baseados no Statis em conjunto com kernels para monitoramento de processos com presença de não linearidades fortes. Através dos kernels, definem-se funções não lineares dos dados para melhor representação da estrutura a ser caracterizada pelo método Statis. Essa nova abordagem, denominada kernel-Statis, é desenvolvida e avaliada utilizando dados de um processo simulado.Industrial batch processes are widely used in the production of certain items. Such processes provide a peculiar data structure; therefore there is a growing interest in the development of customized multivariate control charts for their monitoring. We investigate a recent approach that uses control charts based on the Statis method. Statis is an exploratory technique for measuring similarities between data matrices. However, the technique only assesses similarities in a linear context, i.e. investigating structures of linear correlation in the data. In this paper we propose control charts based on the Statis method in conjunction with a kernel for monitoring processes in the presence of strong nonlinearities. Through kernels we define nonlinear functions of data for better representing the structure to be characterized by the Statis method. The new approach, named

  18. First passage processes in Queuing system MX/Gr/1 with service delay discipline

    Directory of Open Access Journals (Sweden)

    Lev Abolnikov

    1994-01-01

    Full Text Available This article deals with a general single-server bulk queueing system with a server waiting until the queue will reach level r before it starts processing customers. If at least r customers are available the server takes a batch of the fixed size r of units for service. The input stream is assumed to be a compound Poisson process modulated by a semi-Markov process and with a multilevel control of service time.

  19. Prunus dulcis, Batch

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... almond (Prunus dulcis, Batch) genotypes as revealed by PCR analysis. Yavar Sharafi1*, Jafar Hajilou1, Seyed AbolGhasem Mohammadi2, Mohammad Reza Dadpour1 and Sadollah Eskandari3. 1Department of Horticulture, Faculty of Agriculture, University of Tabriz, Tabriz, 5166614766, Iran.

  20. Intelligent Work Process Engineering System

    Science.gov (United States)

    Williams, Kent E.

    2003-01-01

    Optimizing performance on work activities and processes requires metrics of performance for management to monitor and analyze in order to support further improvements in efficiency, effectiveness, safety, reliability and cost. Information systems are therefore required to assist management in making timely, informed decisions regarding these work processes and activities. Currently information systems regarding Space Shuttle maintenance and servicing do not exist to make such timely decisions. The work to be presented details a system which incorporates various automated and intelligent processes and analysis tools to capture organize and analyze work process related data, to make the necessary decisions to meet KSC organizational goals. The advantages and disadvantages of design alternatives to the development of such a system will be discussed including technologies, which would need to bedesigned, prototyped and evaluated.

  1. Human-Systems Integration Processes

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to baseline a Human-Systems Integration Processes (HSIP) document as a companion to the NASA-STD-3001 and Human Integration Design...

  2. Congestion Management System Process Report

    Science.gov (United States)

    1996-03-01

    In January 1995, the Indianapolis Metropolitan Planning Organization with the help of an interagency Study Review Committee began the process of developing a Congestion Management System (CMS) Plan resulting in this report. This report documents the ...

  3. Suitability of olive oil washing water as an electron donor in a feed batch operating bio-electrochemical system

    Directory of Open Access Journals (Sweden)

    F. G. Fermoso

    2017-06-01

    Full Text Available Olive oil washing water derived from the two-phase manufacturing process was assessed as an electron donor in a bio-electrochemical system (BES operating at 35 ºC. Start-up was carried out by using acetate as a substrate for the BES, reaching a potential of around +680 mV. After day 54, BES was fed with olive oil washing water. The degradation of olive oil washing water in the BES generated a maximum voltage potential of around +520 mV and a Chemical Oxygen Demand (COD removal efficiency of 41%. However, subsequent loads produced a decrease in the COD removal, while current and power density diminished greatly. The deterioration of these parameters could be a consequence of the accumulation of recalcitrant or inhibitory compounds, such as phenols. These results demonstrated that the use of olive oil washing water as an electron donor in a BES is feasible, although it has to be further investigated in order to make it more suitable for a real application.

  4. PREDICTIVE CONTROL OF A BATCH POLYMERIZATION SYSTEM USING A FEEDFORWARD NEURAL NETWORK WITH ONLINE ADAPTATION BY GENETIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    A. Cancelier

    Full Text Available Abstract This study used a predictive controller based on an empirical nonlinear model comprising a three-layer feedforward neural network for temperature control of the suspension polymerization process. In addition to the offline training technique, an algorithm was also analyzed for online adaptation of its parameters. For the offline training, the network was statically trained and the genetic algorithm technique was used in combination with the least squares method. For online training, the network was trained on a recurring basis and only the technique of genetic algorithms was used. In this case, only the weights and bias of the output layer neuron were modified, starting from the parameters obtained from the offline training. From the experimental results obtained in a pilot plant, a good performance was observed for the proposed control system, with superior performance for the control algorithm with online adaptation of the model, particularly with respect to the presence of off-set for the case of the fixed parameters model.

  5. Suitability of olive oil washing water as an electron donor in a feed batch operating bio-electrochemical system

    International Nuclear Information System (INIS)

    Fermoso, F.G.; Fernández-Rodríguez, M.J.; Jiménez-Rodríguez, A.; Serrano, A.; Borja, R.

    2017-01-01

    Olive oil washing water derived from the two-phase manufacturing process was assessed as an electron donor in a bio-electrochemical system (BES) operating at 35 ºC. Start-up was carried out by using acetate as a substrate for the BES, reaching a potential of around +680 mV. After day 54, BES was fed with olive oil washing water. The degradation of olive oil washing water in the BES generated a maximum voltage potential of around +520 mV and a Chemical Oxygen Demand (COD) removal efficiency of 41%. However, subsequent loads produced a decrease in the COD removal, while current and power density diminished greatly. The deterioration of these parameters could be a consequence of the accumulation of recalcitrant or inhibitory compounds, such as phenols. These results demonstrated that the use of olive oil washing water as an electron donor in a BES is feasible, although it has to be further investigated in order to make it more suitable for a real application. [es

  6. Design of object processing systems

    NARCIS (Netherlands)

    Grigoras, D.R.; Hoede, C.

    Object processing systems are met rather often in every day life, in industry, tourism, commerce, etc. When designing such a system, many problems can be posed and considered, depending on the scope and purpose of design. We give here a general approach which involves graph theory, and which can

  7. Transfer from high-shear batch to continuous twin screw wet granulation: a case study in understanding the relationship between process parameters and product quality attributes.

    Science.gov (United States)

    Beer, Paul; Wilson, David; Huang, Zhenyu; De Matas, Marcel

    2014-10-01

    A twin screw to high-shear batch granulation technology switch was evaluated for a pharmaceutical development project. Differences in granule (particle size distribution and porosity) and tablet (dissolution) quality attributes were analysed for both continuous and batch technologies. Liquid to solid (L/S) ratio, screw configuration and screw speed parameters on the twin screw granulator were varied, with output granule and tablet properties characterised. L/S and screw configuration were found to influence the granule particle size distribution, porosity and tablet dissolution. At 0.15 L/S, the particle size distribution showed a significant proportion of ungranulated material in the output granule. As the L/S is increased, the level of ungranulated material decreased. An increase in L/S and the number of kneader elements caused a decrease in granule porosity and tablet dissolution. Twin screw and batch granulation technologies generated different granule properties (size and shape) at a constant L/S. A lower L/S in twin screw granulation was needed to achieve similar tablet attributes. It is concluded that differences in liquid addition and therefore initial granule nucleation caused differences in granule properties, which impacted tablet attributes and manufacturability. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. In Vitro Growth of Curcuma longa L. in Response to Five Mineral Elements and Plant Density in Fed-Batch Culture Systems

    Science.gov (United States)

    El-Hawaz, Rabia F.; Bridges, William C.; Adelberg, Jeffrey W.

    2015-01-01

    Plant density was varied with P, Ca, Mg, and KNO3 in a multifactor experiment to improve Curcuma longa L. micropropagation, biomass and microrhizome development in fed-batch liquid culture. The experiment had two paired D-optimal designs, testing sucrose fed-batch and nutrient sucrose fed-batch techniques. When sucrose became depleted, volume was restored to 5% m/v sucrose in 200 ml of modified liquid MS medium by adding sucrose solutions. Similarly, nutrient sucrose fed-batch was restored to set points with double concentration of treatments’ macronutrient and MS micronutrient solutions, along with sucrose solutions. Changes in the amounts of water and sucrose supplementations were driven by the interaction of P and KNO3 concentrations. Increasing P from 1.25 to 6.25 mM increased both multiplication and biomass. The multiplication ratio was greatest in the nutrient sucrose fed-batch technique with the highest level of P, 6 buds/vessel, and the lowest level of Ca and KNO3. The highest density (18 buds/vessel) produced the highest fresh biomass at the highest concentrations of KNO3 and P with nutrient sucrose fed-batch, and moderate Ca and Mg concentrations. However, maximal rhizome dry biomass required highest P, sucrose fed-batch, and a moderate plant density. Different media formulations and fed-batch techniques were identified to maximize the propagation and storage organ responses. A single experimental design was used to optimize these dual purposes. PMID:25830292

  9. In vitro growth of Curcuma longa L. in response to five mineral elements and plant density in fed-batch culture systems.

    Science.gov (United States)

    El-Hawaz, Rabia F; Bridges, William C; Adelberg, Jeffrey W

    2015-01-01

    Plant density was varied with P, Ca, Mg, and KNO3 in a multifactor experiment to improve Curcuma longa L. micropropagation, biomass and microrhizome development in fed-batch liquid culture. The experiment had two paired D-optimal designs, testing sucrose fed-batch and nutrient sucrose fed-batch techniques. When sucrose became depleted, volume was restored to 5% m/v sucrose in 200 ml of modified liquid MS medium by adding sucrose solutions. Similarly, nutrient sucrose fed-batch was restored to set points with double concentration of treatments' macronutrient and MS micronutrient solutions, along with sucrose solutions. Changes in the amounts of water and sucrose supplementations were driven by the interaction of P and KNO3 concentrations. Increasing P from 1.25 to 6.25 mM increased both multiplication and biomass. The multiplication ratio was greatest in the nutrient sucrose fed-batch technique with the highest level of P, 6 buds/vessel, and the lowest level of Ca and KNO3. The highest density (18 buds/vessel) produced the highest fresh biomass at the highest concentrations of KNO3 and P with nutrient sucrose fed-batch, and moderate Ca and Mg concentrations. However, maximal rhizome dry biomass required highest P, sucrose fed-batch, and a moderate plant density. Different media formulations and fed-batch techniques were identified to maximize the propagation and storage organ responses. A single experimental design was used to optimize these dual purposes.

  10. Removal of Acid Black 1 and Basic Red 2 from aqueous solutions by electrocoagulation/Moringa oleifera seed adsorption coupling in a batch system.

    Science.gov (United States)

    de Carvalho, Helder Pereira; Huang, Jiguo; Ni, Jiaheng; Zhao, Meixia; Yang, Xinyu; Wang, Xiansheng

    2015-01-01

    The removal of Acid Black 1 (AB1) and Basic Red 2 (BR2) from aqueous solutions via an electrocoagulation (EC)/Moringa oleifera seeds (MOS) adsorption coupling process by using aluminum and stainless steel electrode in a batch reactor is described in this study. The influences of the operational parameters, i.e. current density, MOS dosage, and dye initial concentration, on degree of color removal were studied, and the unit energy demand, the unit electrode material demand, and the charge loading were calculated and discussed. The amounts of adsorbent and energy consumption were considered as main criteria of process evaluation, and ideal conditions were chosen. The addition of an appropriate MOS dosage (0.6 g/L for AB1 and 5 g/L for BR2) resulted in faster decolorization of dyes especially at lower current densities and was simultaneously accompanied by a significant reduction in contact time compared to the conventional simple EC process. The coupling process achieved degree of removals above 99.3% and 94% for AB1 and BR2, respectively. The EC/MOS coupling technique could be recommended to replace the conventional simple EC because of its high degree of removal, short contact time, and low energy consumption.

  11. Analysis and modelling of the energy consumption of chemical batch plants

    Energy Technology Data Exchange (ETDEWEB)

    Bieler, P.S.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes two different approaches for the energy analysis and modelling of chemical batch plants. A top-down model consisting of a linear equation based on the specific energy consumption per ton of production output and the base consumption of the plant is postulated. The model is shown to be applicable to single and multi-product batches for batch plants with constant production mix and multi-purpose batch plants in which only similar chemicals are produced. For multipurpose batch plants with highly varying production processes and changing production mix, the top-down model produced inaccurate results. A bottom-up model is postulated for such plants. The results obtained are discussed that show that the electricity consumption for infrastructure equipment was significant and responsible for about 50% of total electricity consumption. The specific energy consumption for the different buildings was related to the degree of automation and the production processes. Analyses of the results of modelling are presented. More detailed analyses of the energy consumption of this apparatus group show that about 30 to 40% of steam energy is lost and thus a large potential for optimisation exists. Various potentials for making savings, ranging from elimination of reflux conditions to the development of a new heating/cooling-system for a generic batch reactor, are identified.

  12. Systematic Methodology for Reproducible Optimizing Batch Operation

    DEFF Research Database (Denmark)

    Bonné, Dennis; Jørgensen, Sten Bay

    2006-01-01

    contribution furthermore presents how the asymptotic convergence of Iterative Learning Control is combined with the closed-loop performance of Model Predictive Control to form a robust and asymptotically stable optimal controller for ensuring reliable and reproducible operation of batch processes....... This controller may also be used for Optimizing control. The modeling and control performance is demonstrated on a fed-batch protein cultivation example. The presented methodologies lend themselves directly for application as Process Analytical Technologies (PAT).......This contribution presents a systematic methodology for rapid acquirement of discrete-time state space model representations of batch processes based on their historical operation data. These state space models are parsimoniously parameterized as a set of local, interdependent models. The present...

  13. Endoplasmic Reticulum-Associated rht-PA Processing in CHO Cells: Influence of Mild Hypothermia and Specific Growth Rates in Batch and Chemostat Cultures

    OpenAIRE

    Vergara, Mauricio; Berrios, Julio; Mart?nez, Irene; D?az-Barrera, Alvaro; Acevedo, Cristian; Reyes, Juan G.; Gonzalez, Ramon; Altamirano, Claudia

    2015-01-01

    Background Chinese hamster ovary (CHO) cells are the main host for producing recombinant proteins with human therapeutic applications mainly because of their capability to perform proper folding and glycosylation processes. In addition, mild hypothermia is one of the main strategies for maximising the productivity of these systems. However, little information is available on the effect of culture temperature on the folding and degradation processes of recombinant proteins that takes place in ...

  14. Flow-batch analysis of clenbuterol based on analyte extraction on molecularly imprinted polymers coupled to an in-system chromogenic reaction. Application to human urine and milk substitute samples.

    Science.gov (United States)

    González, Natalia; Grünhut, Marcos; Šrámková, Ivana; Lista, Adriana G; Horstkotte, Burkhard; Solich, Petr; Sklenářová, Hana; Acebal, Carolina C

    2018-02-01

    A fully automated spectrophotometric method based on flow-batch analysis has been developed for the determination of clenbuterol including an on-line solid phase extraction using a molecularly imprinted polymer (MIP) as the sorbent. The molecularly imprinted solid phase extraction (MISPE) procedure allowed analyte extraction from complex matrices at low concentration levels and with high selectivity towards the analyte. The MISPE procedure was performed using a commercial MIP cartridge that was introduced into a guard column holder and integrated in the analyzer system. Optimized parameters included the volume of the sample, the type and volume of the conditioning and washing solutions, and the type and volume of the eluent. Quantification of clenbuterol was carried out by spectrophotometry after in-system post-elution analyte derivatization based on azo-coupling using N- (1-Naphthyl) ethylenediamine as the coupling agent to yield a red-colored compound with maximum absorbance at 500nm. Both the chromogenic reaction and spectrophotometric detection were performed in a lab-made flow-batch mixing chamber that replaced the cuvette holder of the spectrophotometer. The calibration curve was linear in the 0.075-0.500mgL -1 range with a correlation coefficient of 0.998. The precision of the proposed method was evaluated in terms of the relative standard deviation obtaining 1.1% and 3.0% for intra-day precision and inter-day precision, respectively. The detection limit was 0.021mgL -1 and the sample throughput for the entire process was 3.4h -1 . The proposed method was applied for the determination of CLB in human urine and milk substitute samples obtaining recoveries values within a range of 94.0-100.0%. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Enumeration Verification System (EVS)

    Data.gov (United States)

    Social Security Administration — EVS is a batch application that processes for federal, state, local and foreign government agencies, private companies and internal SSA customers and systems. Each...

  16. Green manufacturing processes and systems

    Energy Technology Data Exchange (ETDEWEB)

    Davim, J. Paulo (ed.) [Aveiro Univ. (Portugal). Dept. of Mechanical Engineering, Campus Universitario de Santiago

    2013-02-01

    This book provides the recent advances on green manufacturing processes and systems for modern industry. Chapter 1 provides information on sustainable manufacturing through environmentally-friendly machining. Chapter 2 is dedicated to environmentally-friendly machining: vegetable based cutting fluids. Chapter 3 describes environmental-friendly joining of tubes. Chapter 4 contains information on concepts, methods and strategies for zero-waste in manufacturing. Finally, chapter 5 is dedicated to the application of hybrid MCDM approach for selecting the best tyre recycling process.

  17. [Application of DOSC combined with SBC in batches transfer of NIR quantitative model].

    Science.gov (United States)

    Jia, Yi-Fei; Zhang, Ying-Ying; Xu, Bing; Wang, An-Dong; Zhan, Xue-Yan

    2017-06-01

    Near infrared model established under a certain condition can be applied to the new samples status, environmental conditions or instrument status through the model transfer. Spectral background correction and model update are two types of data process methods of NIR quantitative model transfer, and orthogonal signal regression (OSR) is a method based on spectra background correction, in which virtual standard spectra is used to fit a linear relation between master batches spectra and slave batches spectra, and map the slave batches spectra to the master batch spectra to realize the transfer of near infrared quantitative model. However, the above data processing method requires the represent activeness of the virtual standard spectra, otherwise the big error will occur in the process of regression. Therefore, direct orthogonal signal correction-slope and bias correction (DOSC-SBC) method was proposed in this paper to solve the problem of PLS model's failure to predict accurately the content of target components in the formula of different batches, analyze the difference between the spectra background of the samples from different sources and the prediction error of PLS models. DOSC method was used to eliminate the difference of spectral background unrelated to target value, and after being combined with SBC method, the system errors between the different batches of samples were corrected to make the NIR quantitative model transferred between different batches. After DOSC-SBC method was used in the preparation process of water extraction and ethanol precipitation of Lonicerae Japonicae Flos in this paper, the prediction error of new batches of samples was decreased to 7.30% from 32.3% and to 4.34% from 237%, with significantly improved prediction accuracy, so that the target component in the new batch samples can be quickly quantified. DOSC-SBC model transfer method has realized the transfer of NIR quantitative model between different batches, and this method does

  18. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing

    2015-10-27

    Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.

  19. Communication and control in small batch part manufacturing

    NARCIS (Netherlands)

    Tiemersma, J.J.; Curtis, W.; Kals, H.J.J.

    1993-01-01

    This paper reports on the development of a real-time control network as an integrated part of a shop floor control system for small batch part manufacturing. The shop floor control system is called the production control system (PCS). The PCS aims at an improved control of small batch part

  20. Development, validation and transfer of a near infrared method to determine in-line the end point of a fluidised drying process for commercial production batches of an approved oral solid dose pharmaceutical product.

    Science.gov (United States)

    Peinado, Antonio; Hammond, Jonathan; Scott, Andrew

    2011-01-05

    Pharmaceutical companies are progressively adopting and introducing the principles of Quality by Design with the main purpose of assurance and built-in quality throughout the whole manufacturing process. Within this framework, a Partial Least Square (PLS) model, based on Near Infrared (NIR) spectra and humidity determinations, was built in order to determine in-line the drying end point of a fluidized bed process. The in-process method was successfully validated following the principles described within The International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use - ICH Q2 (r1) - Validation of Analytical Procedures: Text and Methodology. However, in some aspects, the cited guidelines were not appropriate to in-process methods developed and validated exclusively with in-line samples and implemented in dynamic systems, such as drying processes. In this work, a customized interpretation of guidelines has been adopted which provided the framework of evidence to support a validated application. The application has been submitted to the United States Food and Drug Administration (FDA) and The European Medicines Agency (EMA) during applications for grant of licences. Representatives from these Regulatory Authorities have specifically reviewed this novel application during on-site inspections, and have subsequently approved both the product and this application. Currently, the NIR method is implemented as a primary in-line method to control the drying end point in real-time (to below a control limit of not greater than 1.2% w/w) for commercial production batches of an approved, solid, oral-dose medicine. The implementation of this in-process method allows real-time control with benefits including a reduction in operation time and labour; sample handling and waste generation; and a reduced risk to product quality in further unit operations due to improved consistency of intermediate output at this stage. To date

  1. Characterization of tank 51 sludge samples (HTF-51-17-44/ HTF-51-17-48) in support of sludge batch 10 processing

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-17

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) Engineering (SRR-E) to provide sample characterization and analyses of Tank 51 sludge samples in support of Sludge Batch (SB) 10. The two Tank 51 sludge samples were sampled and delivered to SRNL in May of 2017. These two tank 51 sludge samples were combined into one composite sample and analyzed for corrosion controls analytes, select radionuclides, chemical elements, density and weight percent total solids and aluminum hydroxides (gibbsite and boehmite) by x-ray diffraction.

  2. Characterization of Tank 51 Sludge Slurry Samples (HTF-51-17-67, -68, -69, -74, -75, and -76) in Support of Sludge Batch 10 Processing

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-09

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) Engineering (SRR-E) to provide sample characterization and analyses of Tank 51 sludge samples in support of Sludge Batch (SB) 10. The six Tank 51 sludge samples were sampled and delivered to SRNL in August of 2017. These six Tank 51 sludge samples, after undergoing physical characterizations which included rheology, weight percent total solid, dissolved solids and density measurements, were combined into one composite Tank 51 sample and analyzed for corrosion controls analytes, select radionuclides, chemical elements, density and weight percent total solids.

  3. Modelling and Simulation of the Batch Hydrolysis of Acetic ...

    African Journals Online (AJOL)

    The kinetic modelling of the batch synthesis of acetic acid from acetic anhydride was investigated. The kinetic data of the reaction was obtained by conducting the hydrolysis reaction in a batch reactor. A dynamic model was formulated for this process and simulation was carried out using gPROMS® an advanced process ...

  4. Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S

    2016-06-01

    A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis.

  5. Production of oleic acid ethyl ester catalyzed by crude rice bran (Oryza sativa lipase in a modified fed-batch system: problem and its solution

    Directory of Open Access Journals (Sweden)

    Indro Prastowo

    2015-01-01

    Full Text Available A fed-batch system was modified for the enzymatic production of Oleic Acid Ethyl Ester (OAEE using rice bran (Oryza sativa lipase by retaining the substrate molar ratio (ethanol/oleic acid at 2.05: 1 during the reaction. It resulted in an increase in the ester conversion up to 76.8% in the first 6 h of the reaction, and then followed by a decrease from 76.8% to 22.9% in 6 h later. Meanwhile, the production of water in the reaction system also showed a similar trend to the trend of ester production. The water was hypothesized to lead lipase to reverse the reaction which resulted in a decrease in both (water and esters in the last 6 h of the reaction. In order to overcome the problem, zeolite powders (25 and 50 mg/ml were added into the reaction system at 5 h of the reaction. As the result, final ester conversions increased drastically up to 90 - 95.7% (1.17 – 1.24 times. The addition also proved a hypothesis that the water was involved in reducing the ester conversion in the last 6 h of the reaction. Thus, the combination was effective to produce the high final ester conversion.

  6. Application of biochemical oxygen demand (BOD) biosensor for optimization of biological carbon and nitrogen removal from synthetic wastewater in a sequencing batch reactor system.

    Science.gov (United States)

    Jang, J D; Barford, J P; Lindawati; Renneberg, R

    2004-03-15

    A bench scale reactor using a sequencing batch reactor process was used to evaluate the applicability of biosensors for the process optimization of biological carbon and nitrogen removal. A commercial biochemical oxygen demand (BOD) biosensor with a novel microbial membrane was used to determine the duration of each phase by measuring samples in real time in an SBR cycle with filling/anoxic-anaerobic/aerobic/sludge wasting/settling/withdrawal periods. Possible strategies to increase the efficiency for the biological removal of carbon and nitrogen from synthetic wastewater have been developed. The results show that application of a BOD biosensor enables estimation of organic carbon, in real time, allowing the optimization or reduction the SBR cycle time. Some typical consumption patterns for organic carbon in the non-aeration phase of a typical SBR operation were identified. The rate of decrease of BOD measured using a sensor BOD, was the highest in the initial glucose breakdown period and during denitrification. It then slowed down until a 'quiescent period' was observed, which may be considered as the commencement of the aeration period. Monitoring the BOD curve with a BOD biosensor allowed the reduction of the SBR cycle time, which leads to an increase in the removal efficiency. By reducing the cycle time from 8 to 4 h cycle, the removal efficiencies of nitrate, glucose, and phosphorus in a given time interval, were increased to nearly double, while the removal of nitrogen ammonium was increased by one-third.

  7. VLSI mixed signal processing system

    Science.gov (United States)

    Alvarez, A.; Premkumar, A. B.

    1993-01-01

    An economical and efficient VLSI implementation of a mixed signal processing system (MSP) is presented in this paper. The MSP concept is investigated and the functional blocks of the proposed MSP are described. The requirements of each of the blocks are discussed in detail. A sample application using active acoustic cancellation technique is described to demonstrate the power of the MSP approach.

  8. Handbook of signal processing systems

    CERN Document Server

    Bhattacharyya, Shuvra S; Leupers, Rainer; Takala, Jarmo

    2010-01-01

    The Handbook is organized in four parts. The first part motivates representative applications that drive and apply state-of-the art methods for design and implementation of signal processing systems; the second part discusses architectures for implementing these applications; the third part focuses on compilers and simulation tools; and the fourth part describes models of computation and their associated design tools and methodologies.

  9. Heat integration in multipurpose batch plants using a robust scheduling framework

    CSIR Research Space (South Africa)

    Seid, ER

    2014-07-01

    Full Text Available Energy saving is becoming increasingly important in batch processing facilities. Multipurpose batch plants have become more popular than ever in the processing environment due to their inherent flexibility and adaptability to market conditions, even...

  10. Effects of immobilization, pH and reaction time in the modulation of α-, β- or γ-cyclodextrins production by cyclodextrin glycosyltransferase: Batch and continuous process.

    Science.gov (United States)

    Schöffer, Jéssie da Natividade; Matte, Carla Roberta; Charqueiro, Douglas Santana; de Menezes, Eliana Weber; Costa, Tania Maria Haas; Benvenutti, Edilson Valmir; Rodrigues, Rafael C; Hertz, Plinho Francisco

    2017-08-01

    This study reports the immobilization of a β-CGTase on glutaraldehyde pre-activated silica and its use to production of cyclodextrins in batch and continuous reactions. We were able to modulate the cyclodextrin production (α-, β- and γ-CD) by immobilization and changing the reaction conditions. In batch reactions, the immobilized enzyme reached to maximum productions of 4.9mgmL -1 of α-CD, 3.6mgmL -1 of β-CD and 3.5mgmL -1 of γ-CD at different conditions of temperature, pH and reaction time. In continuous reactor, varying the residence time and pH it was possible to produce at pH 4.0 and 141min of residence time preferentially γ-CD (0.75 and 3.36mgmL -1 of α- and γ-CD, respectively), or at pH 8.0 and 4.81min α- and β-CDs (3.44 and 3.51mgmL -1 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Microprocessor based image processing system

    International Nuclear Information System (INIS)

    Mirza, M.I.; Siddiqui, M.N.; Rangoonwala, A.

    1987-01-01

    Rapid developments in the production of integrated circuits and introduction of sophisticated 8,16 and now 32 bit microprocessor based computers, have set new trends in computer applications. Nowadays the users by investing much less money can make optimal use of smaller systems by getting them custom-tailored according to their requirements. During the past decade there have been great advancements in the field of computer Graphics and consequently, 'Image Processing' has emerged as a separate independent field. Image Processing is being used in a number of disciplines. In the Medical Sciences, it is used to construct pseudo color images from computer aided tomography (CAT) or positron emission tomography (PET) scanners. Art, advertising and publishing people use pseudo colours in pursuit of more effective graphics. Structural engineers use Image Processing to examine weld X-rays to search for imperfections. Photographers use Image Processing for various enhancements which are difficult to achieve in a conventional dark room. (author)

  12. APPLICATION OF MODEL PREDICTIVE CONTROL TO BATCH POLYMERIZATION REACTOR

    Directory of Open Access Journals (Sweden)

    N.M. Ghasem

    2006-06-01

    Full Text Available The absence of a stable operational state in polymerization reactors that operates in batches is factor that determine the need of a special control system. In this study, advanced control methodology is implemented for controlling the operation of a batch polymerization reactor for polystyrene production utilizingmodel predictive control. By utilizing a model of the polymerization process, the necessary operational conditions were determined for producing the polymer within the desired characteristics. The maincontrol objective is to bring the reactor temperature to its target temperature as rapidly as possible with minimal temperature overshoot. Control performance for the proposed method is encouraging. It has been observed that temperature overshoot can be minimized by the proposed method with the use of both reactor and jacket energy balance for reactor temperature control.

  13. Methodology of Supervision by Analysis of Thermal Flux for Thermal Conduction of a Batch Chemical Reactor Equipped with a Monofluid Heating/Cooling System

    Directory of Open Access Journals (Sweden)

    Ghania Henini

    2012-01-01

    Full Text Available We present the thermal behavior of a batch reactor to jacket equipped with a monofluid heating/cooling system. Heating and cooling are provided respectively by an electrical resistance and two plate heat exchangers. The control of the temperature of the reaction is based on the supervision system. This strategy of management of the thermal devices is based on the usage of the thermal flux as manipulated variable. The modulation of the monofluid temperature by acting on the heating power or on the opening degrees of an air-to-open valve that delivers the monofluid to heat exchanger. The study shows that the application of this method for the conduct of the pilot reactor gives good results in simulation and that taking into account the dynamics of the various apparatuses greatly improves ride quality of conduct. In addition thermal control of an exothermic reaction (mononitration shows that the consideration of heat generated in the model representation improve the results by elimination any overshooting of the set-point temperature.

  14. Challenges and recent advances in biochar as low-cost biosorbent: From batch assays to continuous-flow systems.

    Science.gov (United States)

    Rosales, Emilio; Meijide, Jessica; Pazos, Marta; Sanromán, María Angeles

    2017-12-01

    Over the past few years, the increasing amount of pollutants and their diversity demand to develop versatile low-cost adsorption systems. The use of biomass feedstock such as agricultural residues, wood chips, manure or municipal solid wastes as source to produce low-cost biosorbent, and the new advances in their synthesis have encouraged remarkable efforts towards the development of biochar "on demand" in which their characteristics can be improved. This new trend opens the potential of biochar application in the removal of pollutants from wastewater, however, its use in environmental management requires the development of full-scale biosorption in engineered systems. Thus, this paper provides a brief review of recent progress in the research and practical application of biochar with a special emphasis on its potential to reduce the pollutants present in wastewater or to render them harmless. Furthermore, research gaps and uncertainties detected in their scale-up in continuous-flow systems are highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Bleaching of Neutral Cotton Seed Oil Using Organic Activated Carbon in a Batch System: Kinetics and Adsorption Isotherms

    Directory of Open Access Journals (Sweden)

    Abba Chetima

    2018-03-01

    Full Text Available In the processing of cotton and neem seeds to obtain oil for diverse uses, enormous quantities of seed husk are generated as waste, which when not properly disposed of, poses environmental problems. One way of reducing this waste is to use it for the production of activated carbon (AC for its multiple applications. In this work, activated carbon was produced from cotton and neem seed husks by carbonization followed by acid activation. The prepared ACs were characterized for its porosity and surface properties as well as for its ability to bleach neutral cotton seed oil. The prepared ACs are very efficient in the decoloration process, as they removed about 96–98% of the pigments compared to 98.4% removal with commercial bleaching earth. Temperature had a pronounced effect on the bleaching of neutral cotton seed oil. Maximum adsorption was observed at 60 °C for a contact time of 45 min. The adsorption kinetics were modelled by the intra-particle and the pseudo-second order equations while the adsorption isotherms followed the Langmuir and Freundlich equations. It is concluded that the organic ACs are efficient in pigment removal from neutral cotton seed oil and therefore are potential bleaching agents for the vegetable oil industry.

  16. Bioaccumulation and toxicity assessment of irrigation water contaminated with boron (B) using duckweed (Lemna gibba L.) in a batch reactor system.

    Science.gov (United States)

    Türker, Onur Can; Yakar, Anıl; Gür, Nurcan

    2017-02-15

    The present study assesses ability of Lemna gibba L. using a batch reactor approach to bioaccumulation boron (B) from irrigation waters which were collected from a stream in largest borax reserve all over the world. The important note that bioaccumulation of B from irrigation water was first analyzed for first time in a risk assessment study using a Lemna species exposed to various B concentrations. Boron toxicity was evaluated through plant growth and biomass production during phytoremediation process. The result from the present experiment indicated that L. gibba was capable of removing 19-63% B from irrigation water depending upon contaminated level or initial concentration. We also found that B was removed from aqueous solution following pseudo second order kinetic model and Langmuir isotherm model better fitted equilibrium obtained for B phytoremediation. Maximum B accumulation in L. gibba was determined as 2088mgkg -1 at average inflow B concentration 17.39mgL -1 at the end of the experiment. Conversely, maximum bioconcentration factor obtained at lowest inflow B concentrations were 232 for L. gibba. The present study suggested that L. gibba was very useful B accumulator, and thus L. gibba-based techniques could be a reasonable phytoremediation option to remove B directly from water sources contaminated with B. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effect of pH and complementary ion concentration on nitrate removal using puroliteA400 Resin impregnated Cu in batch system

    Science.gov (United States)

    Turmuzi, M.; Tarigan, Z. N.; Nadapdap, L.; Batubara, F.

    2018-02-01

    The total nitrogen content in water bodies should be below 50 mg NO3 -/L (11.3 mgN/l) World Health Organization (WHO) 2006. The content of nitrogen exceeding the quality standard threshold will cause damage to the aquatic ecosystem and be carcinogenic to humans. The Purolite A-400 resin will be modified with Cu metal by batch method to see the adsorption allowance of nitrate in synthetic liquid waste with nitrate concentration of 50 mg/l. This study will evaluate the effect of pH and complementary ions on the adsorption process. From the result of the research, the second order pseudo model is the most suitable adsorption kinetics model. For the adsorption isotherms the most suitable model is the Freundlich adsorption isotherm model. The optimum pH conditions were at the range of 8.5. The addition of complementary ions sulfate and phosphate did not show any significant change, but sulfate is the most effective complementary ion with a content of 20 mg/l.

  18. Forward Osmosis System And Process

    KAUST Repository

    Duan, Jintang

    2013-08-22

    A forward osmosis fluid purification system includes a cross-flow membrane module with a membrane, a channel on each side of the membrane which allows a feed solution and a draw solution to flow through separately, a feed side, a draw side including a draw solute, where the draw solute includes an aryl sulfonate salt. The system can be used in a process to extract water from impure water, such as wastewater or seawater. The purified water can be applied to arid land.

  19. Fuzzy batch controller for granular materials

    Directory of Open Access Journals (Sweden)

    Zamyatin Nikolaj

    2018-01-01

    Full Text Available The paper focuses on batch control of granular materials in production of building materials from fluorine anhydrite. Batching equipment is intended for smooth operation and timely feeding of supply hoppers at a required level. Level sensors and a controller of an asynchronous screw drive motor are used to control filling of the hopper with industrial anhydrite binders. The controller generates a required frequency and ensures required productivity of a feed conveyor. Mamdani-type fuzzy inference is proposed for controlling the speed of the screw that feeds mixture components. As related to production of building materials based on fluoride anhydrite, this method is used for the first time. A fuzzy controller is proven to be effective in controlling the filling level of the supply hopper. In addition, the authors determined optimal parameters of the batching process to ensure smooth operation and production of fluorine anhydrite materials of specified properties that can compete with gypsum-based products.

  20. Inactivation of bacterial contaminants in drinking water using a novel batch-process TiO2-assisted solar photocatalytic disinfection (SPC-DIS) reactor for use in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    McGuigan, K. G.; Duffy, E. F.; Al Touati, F.; Kehoe, S. C.; McLoughlin, O. A.; Gill, L. W.; Gernjak, W.; Oller, I.; Maldonado, M. I.; Malato, S.; Reed, R. H.

    2004-07-01

    The technical feasibility and performance of photocatalytic TiO2 coatings in batch-process solar disinfection (SODIS) reactors to improve potability of drinking water in developing countries have been studied. Borosilicate glass and PET plastic SODIS reactor fitted with flexible plastic inserts coated with TiO2 powder were shown to be 20% and 25% more effective, respectively, than standard SODIS reactors for the inactivation of E. coli K12 . Approximately 550J is required per litre of water to produce each 1-long-unit reduction in bacterial population within SPC-DIS reactors of the design described in this study. (Author) 14 refs.

  1. A Mathematical Model for Scheduling a Batch Processing Machine with Multiple Incompatible Job Families, Non-identical Job dimensions, Non-identical Job sizes, Non-agreeable release times and due dates

    International Nuclear Information System (INIS)

    Ramasubramaniam, M; Mathirajan, M

    2013-01-01

    The paper addresses the problem scheduling a batch processing machine with multiple incompatible job families, non-identical job dimensions, non-identical job sizes and non-agreeable release dates to minimize makespan. The research problem is solved by proposing a mixed integer programming model that appropriately takes into account the parameters considered in the problem. The proposed is validated using a numerical example. The experiment conducted show that the model can pose significant difficulties in solving the large scale instances. The paper concludes by giving the scope for future work and some alternative approaches one can use for solving these class of problems.

  2. The importance of bicarbonate and nonbicarbonate buffer systems in batch and continuous flow bioreactors for articular cartilage tissue engineering.

    Science.gov (United States)

    Khan, Aasma A; Surrao, Denver C

    2012-05-01

    In cartilage tissue engineering an optimized culture system, maintaining an appropriate extracellular environment (e.g., pH of media), can increase cell proliferation and extracellular matrix (ECM) accumulation. We have previously reported on a continuous-flow bioreactor that improves tissue growth by supplying the cells with a near infinite supply of medium. Previous studies have observed that acidic environments reduce ECM synthesis and chondrocyte proliferation. Hence, in this study we investigated the combined effects of a continuous culture system (bioreactor) together with additional buffering agents (e.g., sodium bicarbonate [NaHCO₃]) on cartilaginous tissue growth in vitro. Isolated bovine chondrocytes were grown in three-dimensional cultures, either in static conditions or in a continuous-flow bioreactor, in media with or without NaHCO₃. Tissue constructs cultivated in the bioreactor with NaHCO₃-supplemented media were characterized with significantly increased (p<0.05) ECM accumulation (glycosaminoglycans a 98-fold increase; collagen a 25-fold increase) and a 13-fold increase in cell proliferation, in comparison with static cultures. Additionally, constructs grown in the bioreactor with NaHCO₃-supplemented media were significantly thicker than all other constructs (p<0.05). Further, the chondrocytes from the primary construct expanded and synthesized ECM, forming a secondary construct without a separate expansion phase, with a diameter and thickness of 4 mm and 0.72 mm respectively. Tissue outgrowth was negligible in all other culturing conditions. Thus this study demonstrates the advantage of employing a continuous flow bioreactor coupled with NaHCO₃ supplemented media for articular cartilage tissue engineering.

  3. An Erlang Loss Queue with Time-Phased Batch Arrivals as a Model for Traffic Control in Communication Networks

    Directory of Open Access Journals (Sweden)

    Moon Ho Lee

    2008-01-01

    Full Text Available A multiserver queueing model that does not have a buffer but has batch arrival of customers is considered. In contrast to the standard batch arrival, in which the entire batch arrives at the system during a single epoch, we assume that the customers of a batch (flow arrive individually in exponentially distributed times. The service time is exponentially distributed. Flows arrive according to a stationary Poisson arrival process. The flow size distribution is geometric. The number of flows that can be simultaneously admitted to the system is under control. The loss of any customer from an admitted flow, with a fixed probability, implies termination of the flow arrival. Analysis of the sojourn time and loss probability of an arbitrary flow is performed.

  4. Removal of 1,2-Dichloroethane from real industrial wastewater using a sub-surface batch system with Typha angustifolia L.

    Science.gov (United States)

    Al-Baldawi, Israa Abdulwahab

    2018-01-01

    1,2-Dichloroethane (1,2-DCA) is widely present in urban wastewaters and can be remediated by green technology. Subsurface batch system constructed wetlands (SSCWs) using macrophyte species of T. angustifolia L. were examined to remove 1,2-DCA using real wastewater from a petrochemical industry with a 1,2-DCA concentration of 390mg/L. We conducted an experiment with four pilot-scale constructed wetlands (0.81m 2 ) in a greenhouse. Three SSCWs (T2, T3 and T4) were fed with real wastewater, and another one (T1) was fed with tap water (as plant control) to assess the role of T. angustifolia L. and their associated rhizobacteria to remediate 1,2-DCA. Tank T2 contained only sand without plants acting as contaminant control, tank T3 contained sand with plants and finally tank T4 contained plants with mixture of sand, soil and compost (3:2:1). The results show that the green technology has improved the removal of 1,2-DCA from the contaminated water through biodegradation with a remediation efficiency of 100% in T4 within 42 days. The removal efficiency was enhanced in T4 with 18% more than in T3 due to the compost addition, giving evidence for the potential application of SSCWs to treat chlorinated hydrocarbon in real field. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Productivity and selective accumulation of carotenoids of the novel extremophile microalga Chlamydomonas acidophila grown with different carbon sources in batch systems.

    Science.gov (United States)

    Cuaresma, María; Casal, Carlos; Forján, Eduardo; Vílchez, Carlos

    2011-01-01

    Cultivation of extremophile microorganisms has attracted interest due to their ability to accumulate high-value compounds. Chlamydomonas acidophila is an acidophile green microalga isolated by our group from Tinto River, an acidic river that flows down from the mining area in Huelva, Spain. This microalga accumulates high concentrations of lutein, a very well-known natural antioxidant. The aim of this study is to assess use of different carbon sources (CO(2), glucose, glycerol, starch, urea, and glycine) for efficient growth of and carotenoid production by C. acidophila. Our results reveal that growth of the microalga on different carbon sources resulted in different algal biomass productivities, urea being as efficient as CO(2) when used as sole carbon source (~20 g dry biomass m(-2) day(-1)). Mixotrophic growth on glucose was also efficient in terms of biomass production (~14 g dry biomass m(-2) day(-1)). In terms of carotenoid accumulation, mixotrophic growth on urea resulted in even higher productivity of carotenoids (mainly lutein, probably via α-carotene) than obtained with photoautotrophic cultures (70% versus 65% relative abundance of lutein, respectively). The accumulated lutein concentrations of C. acidophila reported in this work (about 10 g/kg dry weight, produced in batch systems) are among the highest reported for a microalga. Glycerol and glycine seem to enhance β-carotene biosynthesis, and when glycine is used as carbon source, zeaxanthin becomes the most accumulated carotenoid in the microalga. Strategies for production of lutein and zeaxanthin are suggested based on the obtained results.

  6. XCPU2 process management system

    Energy Technology Data Exchange (ETDEWEB)

    Ionkov, Latchesar [Los Alamos National Laboratory; Van Hensbergen, Eric [IBM AUSTIN RESEARCH LAB

    2009-01-01

    Xcpu2 is a new process management system that allows the users to specify custom file system for a running job. Most cluster management systems enforce single software distribution running on all nodes. Xcpu2 allows programs running on the cluster to work in environment identical to the user's desktop, using the same versions of the libraries and tools the user installed locally, and accessing the configuration file in the same places they are located on the desktop. Xcpu2 builds on our earlier work with the Xcpu system. Like Xcpu, Xcpu2's process management interface is represented as a set of files exported by a 9P file server. It supports heterogeneous clusters and multiple head nodes. Unlike Xcpu, it uses pull instead of push model. In this paper we describe the Xcpu2 clustering model, its operation and how the per-job filesystem configuration can be used to solve some of the common problems when running a cluster.

  7. NDMAS System and Process Description

    Energy Technology Data Exchange (ETDEWEB)

    Larry Hull

    2012-10-01

    Experimental data generated by the Very High Temperature Reactor Program need to be more available to users in the form of data tables on Web pages that can be downloaded to Excel or in delimited text formats that can be used directly for input to analysis and simulation codes, statistical packages, and graphics software. One solution that can provide current and future researchers with direct access to the data they need, while complying with records management requirements, is the Nuclear Data Management and Analysis System (NDMAS). This report describes the NDMAS system and its components, defines roles and responsibilities, describes the functions the system performs, describes the internal processes the NDMAS team uses to carry out the mission, and describes the hardware and software used to meet Very High Temperature Reactor Program needs.

  8. Chemical production processes and systems

    Science.gov (United States)

    Holladay, Johnathan E.; Muzatko, Danielle S.; White, James F.; Zacher, Alan H.

    2014-06-17

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  9. Determining The Optimal Order Picking Batch Size In Single Aisle Warehouses

    NARCIS (Netherlands)

    T. Le-Duc (Tho); M.B.M. de Koster (René)

    2002-01-01

    textabstractThis work aims at investigating the influence of picking batch size to average time in system of orders in a one-aisle warehouse under the assumption that order arrivals follow a Poisson process and items are uniformly distributed over the aisle's length. We model this problem as an

  10. Integration of Generic Multi-dimensional Model and Operational Policies for Batch Cooling Crystallization

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Singh, Ravendra; Sin, Gürkan

    2011-01-01

    A generic multi-dimensional modeling framework for studying batch cooling crystallization processes under generated operational policies is presented. The generic nature of the modeling allows the study of a wide range of chemical systems under different operational scenarios, enabling thereby, t...

  11. Batch studies on nitrate removal from potable water | Darbi | Water SA

    African Journals Online (AJOL)

    A sulphur / limestone autotrophic denitrification process was used to achieve the biological removal of nitrate from groundwater. The feasibility of the system was evaluated under anaerobic conditions using laboratory-scale batch reactors. The optimum sulphur / limestone ratio was determined to be 1:1 (wt/wt). Different ...

  12. Application of a fully integrated photodegradation-detection flow-batch analysis system with an on-line preconcentration step for the determination of metsulfuron methyl in water samples.

    Science.gov (United States)

    Acebal, Carolina C; Grünhut, Marcos; Srámková, Ivana; Chocholouš, Petr; Lista, Adriana G; Sklenářová, Hana; Solich, Petr; Band, Beatriz S Fernández

    2014-11-01

    This work presents the development of a fully automated flow-batch analysis (FBA) system as a new approach for on-line preconcentration, photodegradation and fluorescence detection in a lab-constructed mixing chamber that was designed to perform these processes without sample dispersion. The system positions the mixing chamber into the detection system and varies the instrumental parameters according to the required photodegradation conditions. The developed FBA system is simple and easily coupled with any sample pretreatment without altering the configuration. This FBA system was implemented to photodegrade and determine the fluorescence of the degradation products of metsulfuron methyl (MSM), a naturally non-fluorescent herbicide of the sulfonylurea׳s family. An on-line solid phase extraction (SPE) and clean up procedure using a C18 minicolumn was coupled to the photodegradation-detection mixing chamber (PDMC) that was located in the spectrofluorometer. An enrichment factor of 27 was achieved. Photodegradation conditions have been optimized by considering the influence of the elution solvent on both the formation of the photoproduct and on the fluorescence signal. Under optimal conditions, the calibration for the MSM determination was linear over the range of 1.00-7.20 µg L(-1). The limit of detection (LOD) was 0.28 µg L(-1); the relative standard deviation was 2.0% and the sample throughput for the entire process was 3h(-1). The proposed method was applied to real water samples from the Bahía Blanca׳s agricultural region (Bahía Blanca, Buenos Aires, Argentina). This method obtained satisfactory recoveries with a range of 94.7-109.8%. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Musashi dynamic image processing system

    International Nuclear Information System (INIS)

    Murata, Yutaka; Mochiki, Koh-ichi; Taguchi, Akira

    1992-01-01

    In order to produce transmitted neutron dynamic images using neutron radiography, a real time system called Musashi dynamic image processing system (MDIPS) was developed to collect, process, display and record image data. The block diagram of the MDIPS is shown. The system consists of a highly sensitive, high resolution TV camera driven by a custom-made scanner, a TV camera deflection controller for optimal scanning, which adjusts to the luminous intensity and the moving speed of an object, a real-time corrector to perform the real time correction of dark current, shading distortion and field intensity fluctuation, a real time filter for increasing the image signal to noise ratio, a video recording unit and a pseudocolor monitor to realize recording in commercially available products and monitoring by means of the CRTs in standard TV scanning, respectively. The TV camera and the TV camera deflection controller utilized for producing still images can be applied to this case. The block diagram of the real-time corrector is shown. Its performance is explained. Linear filters and ranked order filters were developed. (K.I.)

  14. Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses.

    Science.gov (United States)

    Unrean, Pornkamol; Nguyen, Nhung H A

    2013-03-01

    Scheffersomyces stipitis was cultivated in an optimized, controlled fed-batch fermentation for production of ethanol from glucose-xylose mixture. Effect of feed medium composition was investigated on sugar utilization and ethanol production. Studying influence of specific cell growth rate on ethanol fermentation performance showed the carbon flow towards ethanol synthesis decreased with increasing cell growth rate. The optimum specific growth rate to achieve efficient ethanol production performance from a glucose-xylose mixture existed at 0.1 h(-1). With these optimized feed medium and cell growth rate, a kinetic model has been utilized to avoid overflow metabolism as well as to ensure a balanced feeding of nutrient substrate in fed-batch system. Fed-batch culture with feeding profile designed based on the model resulted in high titer, yield, and productivity of ethanol compared with batch cultures. The maximal ethanol concentration was 40.7 g/L. The yield and productivity of ethanol production in the optimized fed-batch culture was 1.3 and 2 times higher than those in batch culture. Thus, higher efficiency ethanol production was achieved in this study through fed-batch process optimization. This strategy may contribute to an improvement of ethanol fermentation from lignocellulosic biomass by S. stipitis on the industrial scale.

  15. Superstructure-based Design and Optimization of Batch Biodiesel Production Using Heterogeneous Catalysts

    Science.gov (United States)

    Nuh, M. Z.; Nasir, N. F.

    2017-08-01

    Biodiesel as a fuel comprised of mono alkyl esters of long chain fatty acids derived from renewable lipid feedstock, such as vegetable oil and animal fat. Biodiesel production is complex process which need systematic design and optimization. However, no case study using the process system engineering (PSE) elements which are superstructure optimization of batch process, it involves complex problems and uses mixed-integer nonlinear programming (MINLP). The PSE offers a solution to complex engineering system by enabling the use of viable tools and techniques to better manage and comprehend the complexity of the system. This study is aimed to apply the PSE tools for the simulation of biodiesel process and optimization and to develop mathematical models for component of the plant for case A, B, C by using published kinetic data. Secondly, to determine economic analysis for biodiesel production, focusing on heterogeneous catalyst. Finally, the objective of this study is to develop the superstructure for biodiesel production by using heterogeneous catalyst. The mathematical models are developed by the superstructure and solving the resulting mixed integer non-linear model and estimation economic analysis by using MATLAB software. The results of the optimization process with the objective function of minimizing the annual production cost by batch process from case C is 23.2587 million USD. Overall, the implementation a study of process system engineering (PSE) has optimized the process of modelling, design and cost estimation. By optimizing the process, it results in solving the complex production and processing of biodiesel by batch.

  16. Estimation of autotrophic maximum specific growth rate constant--experience from the long-term operation of a laboratory-scale sequencing batch reactor system.

    Science.gov (United States)

    Su, Yu-min; Makinia, Jacek; Pagilla, Krishna R

    2008-04-01

    The autotrophic maximum specific growth rate constant, muA,max, is the critical parameter for design and performance of nitrifying activated sludge systems. In literature reviews (i.e., Henze et al., 1987; Metcalf and Eddy, 1991), a wide range of muA,max values have been reported (0.25 to 3.0 days(-1)); however, recent data from several wastewater treatment plants across North America revealed that the estimated muA,max values remained in the narrow range 0.85 to 1.05 days(-1). In this study, long-term operation of a laboratory-scale sequencing batch reactor system was investigated for estimating this coefficient according to the low food-to-microorganism ratio bioassay and simulation methods, as recommended in the Water Environment Research Foundation (Alexandria, Virginia) report (Melcer et al., 2003). The estimated muA,max values using steady-state model calculations for four operating periods ranged from 0.83 to 0.99 day(-1). The International Water Association (London, United Kingdom) Activated Sludge Model No. 1 (ASM1) dynamic model simulations revealed that a single value of muA,max (1.2 days(-1)) could be used, despite variations in the measured specific nitrification rates. However, the average muA,max was gradually decreasing during the activated sludge chlorination tests, until it reached the value of 0.48 day(-1) at the dose of 5 mg chlorine/(g mixed liquor suspended solids x d). Significant discrepancies between the predicted XA/YA ratios were observed. In some cases, the ASM1 predictions were approximately two times higher than the steady-state model predictions. This implies that estimating this ratio from a complex activated sludge model and using it in simple steady-state model calculations should be accepted with great caution and requires further investigation.

  17. Modeling the effects of material properties on tablet compaction: A building block for controlling both batch and continuous pharmaceutical manufacturing processes.

    Science.gov (United States)

    Escotet-Espinoza, M S; Vadodaria, S; Muzzio, F J; Ierapetritou, M G

    2018-03-20

    As the pharmaceutical industry modernizes its manufacturing practices and incorporates more efficient processing approaches, it is important to reevaluate which process design elements affect product quality and the means to study these systems. The purpose of this work is to provide insight on a methodology to correlate the effect of raw material properties to equipment and process performance using both data-driven and semi-empirical models. In this work, lubricated blends of pharmaceutically-relevant materials were made using varying levels of magnesium stearate, ranging from 0.25 to 1.5%. Materials characterization (e.g., compressibility, permeability, density, particle size) was performed for all materials and blends. The blends were compressed using a two by three experimental design, varying tablet fill cam depth and tablet thickness, respectively. Tablet properties (e.g., weight, tensile strength, and thickness) were collected for all tablets. Using the collected tablet property results, models coefficients for the semi-empirical Kuentz and Leuenberger equation, which relates the tablet tensile strength to changes in porosity, were regressed. Empirical models were then developed to correlate the values of the Kuentz and Leuenberger equation coefficients to the blend material properties. The empirical models were then used in conjunction with the Kuentz and Leuenberger equation to evaluate the compression design and operational space, accounting for material properties. This proof of concept work aimed at developing correlations between raw material properties and unit operation models can aid process development, especially in design space characterization and robustness analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Mathematical technique for the design of near-zero-effluent batch processess

    CSIR Research Space (South Africa)

    Gouws, JF

    2008-07-01

    Full Text Available Wastewater minimisation in chemical processes has always been the privilege of continuous rather than batch plants. However, this situation is steadily changing, since batch plants have a tendency to generate much more toxic effluent compared...

  19. Acidogenic fermentation of the organic fraction of municipal solid waste and cheese whey for bio-plastic precursors recovery - Effects of process conditions during batch tests.

    Science.gov (United States)

    Girotto, Francesca; Lavagnolo, Maria Cristina; Pivato, Alberto; Cossu, Raffaello

    2017-12-01

    The problem of fossil fuels dependency is being addressed through sustainable bio-fuels and bio-products production worldwide. At the base of this bio-based economy there is the efficient use of biomass as non-virgin feedstock. Through acidogenic fermentation, organic waste can be valorised in order to obtain several precursors to be used for bio-plastic production. Some investigations have been done but there is still a lack of knowledge that must be filled before moving to effective full scale plants. Acidogenic fermentation batch tests were performed using food waste (FW) and cheese whey (CW) as substrates. Effects of nine different combinations of substrate to inoculum (S/I) ratio (2, 4, and 6) and initial pH (5, 7, and 9) were investigated for metabolites (acetate, butyrate, propionate, valerate, lactate, and ethanol) productions. Results showed that the most abundant metabolites deriving from FW fermentation were butyrate and acetate, mainly influenced by the S/I ratio (acetate and butyrate maximum productions of 21.4 and 34.5g/L, respectively, at S/I=6). Instead, when dealing with CW, lactate was the dominant metabolite significantly correlated with pH (lactate maximum production of 15.7g/L at pH = 9). Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Formation of Star-Like and Core-Shell AuAg Nanoparticles during Two- and Three-Step Preparation in Batch and in Microfluidic Systems

    Directory of Open Access Journals (Sweden)

    J. Michael Köhler

    2007-01-01

    Full Text Available Regular dendrit-like metal nanoparticles and core-shell nanoparticles were formed by the reduction of mixtures of tetrachloroaurate and silver nitrate solutions with ascorbic acid at room temperature in two- and three-step procedures. The formation of these particles was found in batch experiments as well as in micro flow-through processes using static micromixers. The characteristic diameters of 4-branched star particles were in the range between 60 and 100 nm. The typical particles consist of four metal cores which are embedded in a common shell. Additionally, particles with five and more metallic cores were formed, to some extent, and aggregates of the 4-branched particles also were formed. Larger aggregates and network-like structures of connected star particles were formed after sedimentation. The properties of the formed particles are dependent on the educt concentrations as well as on the order of mixing steps and on the time interval between them. Obviously, the relation of nucleation and particle growth in relation to the concentrations of metal ions determines the composition and the properties of formed nanoparticles. So, star-like particles are observed in case of nucleation of Au in absence of silver ions but with silver deposition after short nucleation time. Spherical core shell particles are formed in case of silver salt addition after complete reduction of tetrachloroaurate in flow-through experiments with sufficient residence time between both mixing steps. Polymer layers are always found in the form of a second outer shell even if the polymer solutions are added in an early stage of particle formation.

  1. A new intuitionistic fuzzy rule-based decision-making system for an operating system process scheduler.

    Science.gov (United States)

    Butt, Muhammad Arif; Akram, Muhammad

    2016-01-01

    We present a new intuitionistic fuzzy rule-based decision-making system based on intuitionistic fuzzy sets for a process scheduler of a batch operating system. Our proposed intuitionistic fuzzy scheduling algorithm, inputs the nice value and burst time of all available processes in the ready queue, intuitionistically fuzzify the input values, triggers appropriate rules of our intuitionistic fuzzy inference engine and finally calculates the dynamic priority (dp) of all the processes in the ready queue. Once the dp of every process is calculated the ready queue is sorted in decreasing order of dp of every process. The process with maximum dp value is sent to the central processing unit for execution. Finally, we show complete working of our algorithm on two different data sets and give comparisons with some standard non-preemptive process schedulers.

  2. Fundamentals of process intensification: A process systems engineering view

    DEFF Research Database (Denmark)

    Babi, Deenesh Kavi; Sales Cruz, Alfonso Mauricio; Gani, Rafiqul

    2016-01-01

    This chapter gives an overview of the fundamentals of process intensification from a process systems engineering point of view. The concept of process intensification, including process integration, is explained together with the drivers for applying process intensification, which can be achieved...

  3. Taurine does not affect the composition, diversity, or metabolism of human colonic microbiota simulated in a single-batch fermentation system

    Science.gov (United States)

    Sasaki, Daisuke; Okai, Naoko; Tanaka, Kosei; Nomoto, Ryohei; Fukuda, Itsuko; Yoshida, Ken-ichi; Kondo, Akihiko; Osawa, Ro

    2017-01-01

    Accumulating evidence suggests that dietary taurine (2-aminoethanesulfonic acid) exerts beneficial anti-inflammatory effects in the large intestine. In this study, we investigated the possible impact of taurine on human colonic microbiota using our single-batch fermentation system (Kobe University Human Intestinal Microbiota Model; KUHIMM). Fecal samples from eight humans were individually cultivated with and without taurine in the KUHIMM. The results showed that taurine remained largely undegraded after 30 h of culturing in the absence of oxygen, although some 83% of the taurine was degraded after 30 h of culturing under aerobic conditions. Diversity in bacterial species in the cultures was analyzed by 16S rRNA gene sequencing, revealing that taurine caused no significant change in the diversity of the microbiota; both operational taxonomic unit and Shannon-Wiener index of the cultures were comparable to those of the respective source fecal samples. In addition, principal coordinate analysis indicated that taurine did not alter the composition of bacterial species, since the 16S rRNA gene profile of bacterial species in the original fecal sample was maintained in each of the cultures with and without taurine. Furthermore, metabolomic analysis revealed that taurine did not affect the composition of short-chain fatty acids produced in the cultures. These results, under these controlled but artificial conditions, suggested that the beneficial anti-inflammatory effects of dietary taurine in the large intestine are independent of the intestinal microbiota. We infer that dietary taurine may act directly in the large intestine to exert anti-inflammatory effects. PMID:28700670

  4. Taurine does not affect the composition, diversity, or metabolism of human colonic microbiota simulated in a single-batch fermentation system.

    Science.gov (United States)

    Sasaki, Kengo; Sasaki, Daisuke; Okai, Naoko; Tanaka, Kosei; Nomoto, Ryohei; Fukuda, Itsuko; Yoshida, Ken-Ichi; Kondo, Akihiko; Osawa, Ro

    2017-01-01

    Accumulating evidence suggests that dietary taurine (2-aminoethanesulfonic acid) exerts beneficial anti-inflammatory effects in the large intestine. In this study, we investigated the possible impact of taurine on human colonic microbiota using our single-batch fermentation system (Kobe University Human Intestinal Microbiota Model; KUHIMM). Fecal samples from eight humans were individually cultivated with and without taurine in the KUHIMM. The results showed that taurine remained largely undegraded after 30 h of culturing in the absence of oxygen, although some 83% of the taurine was degraded after 30 h of culturing under aerobic conditions. Diversity in bacterial species in the cultures was analyzed by 16S rRNA gene sequencing, revealing that taurine caused no significant change in the diversity of the microbiota; both operational taxonomic unit and Shannon-Wiener index of the cultures were comparable to those of the respective source fecal samples. In addition, principal coordinate analysis indicated that taurine did not alter the composition of bacterial species, since the 16S rRNA gene profile of bacterial species in the original fecal sample was maintained in each of the cultures with and without taurine. Furthermore, metabolomic analysis revealed that taurine did not affect the composition of short-chain fatty acids produced in the cultures. These results, under these controlled but artificial conditions, suggested that the beneficial anti-inflammatory effects of dietary taurine in the large intestine are independent of the intestinal microbiota. We infer that dietary taurine may act directly in the large intestine to exert anti-inflammatory effects.

  5. Extended daily veno-venous high-flux haemodialysis in patients with acute renal failure and multiple organ dysfunction syndrome using a single path batch dialysis system.

    Science.gov (United States)

    Lonnemann, G; Floege, J; Kliem, V; Brunkhorst, R; Koch, K M

    2000-08-01

    In the treatment of acute renal failure in patients with multiple organ dysfunction syndrome (MODS), continuous renal replacement therapies (CRRT) are increasingly used because of excellent volume control in the presence of improved cardiovascular stability. Patients with MODS, however, are frequently catabolic and have a high urea generation rate requiring either cost-intensive high-volume CRRT or additional intermittent haemodialysis to provide adequate clearance of small-molecular waste products. We tested the closed-loop batch haemodialysis system (called Genius((R))) for the treatment of acute renal failure in patients with MODS in the intensive care unit. Blood flow and countercurrent dialysate flow were reduced to 70 ml/min. Thus the 75 l dialysate tank of the Genius((R)) system lasts for 18 h of extended single-path high-flux haemodialysis (18 h-HFD) using polysulphous F60 S((R)) dialysers. Blood pressure, body temperature, and venous blood temperature in the extracorporeal circuit (no heating of the dialysate), ultrafiltration rate, serum urea levels, dialyser urea clearance, and total urea removal were monitored. In addition we tested the bacteriological quality of the spent dialysate at the end of 18-h treatments. Twenty patients with acute renal failure and MODS were investigated. Averaged dialyser urea clearance was 59.8 ml/min (equal to 3.6 l/h or 64.8 l/day). Total removal of urea was 14.1+/-6.5 g/day keeping serum levels of urea below 13 mmol/l. Mean arterial pressure remained stable during the 18-h treatments with a mean ultrafiltration rate of 120 ml/h. The temperature in the venous blood tubing dropped by 5+/-0.5 degrees C during the 18-h treatment (0.28 degrees C/h) in the presence of unchanged core temperature in the patients. There was no bacterial growth in 2.5 l of spent dialysate (dialysis using the Genius((R)) system combines the benefits of CRRT (good cardiovascular stability, sterile dialysate) with the advantages of intermittent

  6. Process Control for Precipitation Prevention in Space Water Recovery Systems

    Science.gov (United States)

    Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.

  7. Impact of the freeze-drying process on product appearance, residual moisture content, viability, and batch uniformity of freeze-dried bacterial cultures safeguarded at culture collections.

    Science.gov (United States)

    Peiren, Jindrich; Hellemans, Ann; De Vos, Paul

    2016-07-01

    In this study, causes of collapsed bacterial cultures in glass ampoules observed after freeze-drying were investigated as well as the influence of collapse on residual moisture content (RMC) and viability. Also, the effect of heat radiation and post freeze-drying treatments on the RMC was studied. Cake morphologies of 21 bacterial strains obtained after freeze-drying with one standard protocol could be classified visually into four major types: no collapse, porous, partial collapse, and collapse. The more pronounced the collapse, the higher residual moisture content of the freeze-dried product, ranging from 1.53 % for non-collapsed products to 3.62 % for collapsed products. The most important cause of collapse was the mass of the inserted cotton plug in the ampoule. Default cotton plugs with a mass between 21 and 30 mg inside the ampoule did not affect the viability of freeze-dried Aliivibrio fischeri LMG 4414(T) compared to ampoules without cotton plugs. Cotton plugs with a mass higher than 65 mg inside the ampoule induced a full collapsed product with rubbery look (melt-back) and decreasing viability during storage. Heat radiation effects in the freeze-drying chamber and post freeze-drying treatments such as exposure time to air after freeze-drying and manifold drying time prior to heat sealing of ampoules influenced the RMC of freeze-dried products. To produce uniform batches of freeze-dried bacterial strains with intact cake structures and highest viabilities, inserted cotton plugs should not exceed 21 mg per ampoule. Furthermore, heat radiation effects should be calculated in the design of the primary drying phase and manifold drying time before heat sealing should be determined as a function of exposure time to air.

  8. Modelling the Effect of Different Substrates and Temperature on the Growth and Lactic Acid Production by Lactobacillus amylovorus DSM 20531T in Batch Process

    Directory of Open Access Journals (Sweden)

    Antonija Trontel

    2010-01-01

    Full Text Available Amylolytic lactic acid bacterium Lactobacillus amylovorus DSM 20531T utilised glucose, sucrose and starch as a sole carbon and energy source. The three substrates were completely depleted from MRS medium during batch cultivations carried out in a laboratory scale stirred tank bioreactor at constant temperature (40 °C and pH value (5.5. Under the tested conditions, the bacterium was capable of conducting simultaneously starch hydrolysis and fermentation. A mixture of two stereoisomers, D-(–- and L-(+-lactic acid, was produced in all cases by highly efficient homofermentative bioprocess with 0.93 to 1 g of lactate produced per g of total (consumed substrate. The effect of temperature on the kinetics of cell growth and lactic acid production by the amylolytic strain in the starch-containing medium was also investigated. Efficient simultaneous saccharification and fermentation (SSF was obtained at 35, 40 and 45 °C with completely degraded complex carbohydrate in 8 to 12 h and the product yield coefficient in the range from 0.91 to 0.93 g/g. Maximum values for substrate consumption rate (0.89 h^–1, maximum specific growth rate (0.87 h^–1, product formation rate (2.01 h^–1, and productivity of lactic acid (1.45 g/(L·h were obtained at 45 °C, while maximum biomass concentration (4.38 g/L was attained at 40 °C. The ratio of the two stereoisomeric forms of produced lactic acid was strongly affected by the temperature. Unstructured kinetic model was used to describe the consumption of the three substrates, bacterial biomass formation and lactic acid production by L. amylovorus DSM 20531T. The dependence of biokinetic parameters on temperature was described by cardinal temperature model. The applied models successfully predicted all experimental data.

  9. Batch experiments for assessing the sorption/desorption characteristics of 152Eu in systems of loose sediments and water containing humic acids

    International Nuclear Information System (INIS)

    Klotz, D.

    2001-01-01

    The 152 Eu distribution coefficients of the sorption and desorption of non-binding loose sediments of different grain sizes are investigated using a groundwater of tertiary lignite from Northern Germany which contains high concentrations of humic acids. The batch experiments were carried out with a ratio of 2.5cm 3 /g of solution volume to sediment mass, without mixing [de

  10. Development of a system for the on-line measurement of carbon dioxide production in microbioreactors; application to aerobic batch cultivations of Candida utilis

    NARCIS (Netherlands)

    van Leeuwen, Michiel; Heijnen, Joseph J.; Gardeniers, Johannes G.E.; van der Wielen, Luuk A.M.; van Gulik, Walter M.

    2009-01-01

    We developed and applied a conductometric method for the quantitative online measurement of the carbon dioxide (CO2) production during batch cultivations of Candida utilis on a 100-μL scale. The applied method for the CO2 measurement consisted of absorption of the produced CO2 from the exhaust gas

  11. Batch vs continuous-feeding operational mode for the removal of pesticides from agricultural run-off by microalgae systems: A laboratory scale study

    Energy Technology Data Exchange (ETDEWEB)

    Matamoros, Víctor, E-mail: victor.matamoros@idaea.csic.es; Rodríguez, Yolanda

    2016-05-15

    Highlights: • The effect of microalgae on the removal of pesticides has been evaluated. • Continuous feeding operational mode is more efficient for removing pesticides. • Microalgae increased the removal of some pesticides. • Pesticide TPs confirmed that biodegradation was relevant. - Abstract: Microalgae-based water treatment technologies have been used in recent years to treat different water effluents, but their effectiveness for removing pesticides from agricultural run-off has not yet been addressed. This paper assesses the effect of microalgae in pesticide removal, as well as the influence of different operation strategies (continuous vs batch feeding). The following pesticides were studied: mecoprop, atrazine, simazine, diazinone, alachlor, chlorfenvinphos, lindane, malathion, pentachlorobenzene, chlorpyrifos, endosulfan and clofibric acid (tracer). 2 L batch reactors and 5 L continuous reactors were spiked to 10 μg L{sup −1} of each pesticide. Additionally, three different hydraulic retention times (HRTs) were assessed (2, 4 and 8 days) in the continuous feeding reactors. The batch-feeding experiments demonstrated that the presence of microalgae increased the efficiency of lindane, alachlor and chlorpyrifos by 50%. The continuous feeding reactors had higher removal efficiencies than the batch reactors for pentachlorobenzene, chlorpyrifos and lindane. Whilst longer HRTs increased the technology’s effectiveness, a low HRT of 2 days was capable of removing malathion, pentachlorobenzene, chlorpyrifos, and endosulfan by up to 70%. This study suggests that microalgae-based treatment technologies can be an effective alternative for removing pesticides from agricultural run-off.

  12. Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol

    Directory of Open Access Journals (Sweden)

    Gupta Rishi

    2012-03-01

    Full Text Available Abstract Background Enzymatic hydrolysis, the rate limiting step in the process development for biofuel, is always hampered by its low sugar concentration. High solid enzymatic saccharification could solve this problem but has several other drawbacks such as low rate of reaction. In the present study we have attempted to enhance the concentration of sugars in enzymatic hydrolysate of delignified Prosopis juliflora, using a fed-batch enzymatic hydrolysis approach. Results The enzymatic hydrolysis was carried out at elevated solid loading up to 20% (w/v and a comparison kinetics of batch and fed-batch enzymatic hydrolysis was carried out using kinetic regimes. Under batch mode, the actual sugar concentration values at 20% initial substrate consistency were found deviated from the predicted values and the maximum sugar concentration obtained was 80.78 g/L. Fed-batch strategy was implemented to enhance the final sugar concentration to 127 g/L. The batch and fed-batch enzymatic hydrolysates were fermented with Saccharomyces cerevisiae and ethanol production of 34.78 g/L and 52.83 g/L, respectively, were achieved. Furthermore, model simulations showed that higher insoluble solids in the feed resulted in both smaller reactor volume and shorter residence time. Conclusion Fed-batch enzymatic hydrolysis is an efficient procedure for enhancing the sugar concentration in the hydrolysate. Restricting the process to suitable kinetic regimes could result in higher conversion rates.

  13. The development of an industrial-scale fed-batch fermentation simulation.

    Science.gov (United States)

    Goldrick, Stephen; Ştefan, Andrei; Lovett, David; Montague, Gary; Lennox, Barry

    2015-01-10

    This paper describes a simulation of an industrial-scale fed-batch fermentation that can be used as a benchmark in process systems analysis and control studies. The simulation was developed using a mechanistic model and validated using historical data collected from an industrial-scale penicillin fermentation process. Each batch was carried out in a 100,000 L bioreactor that used an industrial strain of Penicillium chrysogenum. The manipulated variables recorded during each batch were used as inputs to the simulator and the predicted outputs were then compared with the on-line and off-line measurements recorded in the real process. The simulator adapted a previously published structured model to describe the penicillin fermentation and extended it to include the main environmental effects of dissolved oxygen, viscosity, temperature, pH and dissolved carbon dioxide. In addition the effects of nitrogen and phenylacetic acid concentrations on the biomass and penicillin production rates were also included. The simulated model predictions of all the on-line and off-line process measurements, including the off-gas analysis, were in good agreement with the batch records. The simulator and industrial process data are available to download at www.industrialpenicillinsimulation.com and can be used to evaluate, study and improve on the current control strategy implemented on this facility. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  14. Look-ahead strategies for controlling batch operations in industry : Overview, comparison and exploration

    NARCIS (Netherlands)

    van der Zee, D.J.

    2000-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of set ups and/or facilitation of material handling. Good examples of batch wise production systems are ovens found in aircraft industry and in semi-conductor manufacturing.

  15. Look-ahead strategies for controlling batch operations in industry - overview, comparison and exploration

    NARCIS (Netherlands)

    Zee, D.J. van der; Harten, A. van; Schuur, P.C.; Joines, JA; Barton, RR; Kang, K; Fishwick, PA

    2000-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. The main reasons for batching are avoidance of set ups and/or facilitation of material handling. Good examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing.

  16. Look-ahead strategies for controlling batch operations in industry - An overview

    NARCIS (Netherlands)

    Zee, Durk-Jouke van der; Chick, SE; Sanchez, PJ; Ferrin, D; Morrice, DJ

    2003-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of set ups and/or facilitation of material handling. Examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing. Starting

  17. Look-ahead strategies for controlling batch operations in industry : basic insights in rule construction

    NARCIS (Netherlands)

    van der Zee, D.J.; Sullivan, W.A.; Ahmad, M.M.; Fichtner, D.; Sauer, W.; Weigert, G.; Zerna, T.

    2002-01-01

    Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of set ups and/or facilitation of material handling. Examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing. Starting

  18. Active pharmaceutical ingredient (API) production involving continuous processes--a process system engineering (PSE)-assisted design framework.

    Science.gov (United States)

    Cervera-Padrell, Albert E; Skovby, Tommy; Kiil, Søren; Gani, Rafiqul; Gernaey, Krist V

    2012-10-01

    A systematic framework is proposed for the design of continuous pharmaceutical manufacturing processes. Specifically, the design framework focuses on organic chemistry based, active pharmaceutical ingredient (API) synthetic processes, but could potentially be extended to biocatalytic and fermentation-based products. The method exploits the synergic combination of continuous flow technologies (e.g., microfluidic techniques) and process systems engineering (PSE) methods and tools for faster process design and increased process understanding throughout the whole drug product and process development cycle. The design framework structures the many different and challenging design problems (e.g., solvent selection, reactor design, and design of separation and purification operations), driving the user from the initial drug discovery steps--where process knowledge is very limited--toward the detailed design and analysis. Examples from the literature of PSE methods and tools applied to pharmaceutical process design and novel pharmaceutical production technologies are provided along the text, assisting in the accumulation and interpretation of process knowledge. Different criteria are suggested for the selection of batch and continuous processes so that the whole design results in low capital and operational costs as well as low environmental footprint. The design framework has been applied to the retrofit of an existing batch-wise process used by H. Lundbeck A/S to produce an API: zuclopenthixol. Some of its batch operations were successfully converted into continuous mode, obtaining higher yields that allowed a significant simplification of the whole process. The material and environmental footprint of the process--evaluated through the process mass intensity index, that is, kg of material used per kg of product--was reduced to half of its initial value, with potential for further reduction. The case-study includes reaction steps typically used by the pharmaceutical

  19. Renewal Processes and Repairable Systems

    NARCIS (Netherlands)

    2003-01-01

    In this thesis we discuss the following topics: 1. Renewal reward processes The marginal distributions of renewal reward processes and its version, which we call in this thesis instantaneous reward processes, are derived. Our approach is based on the theory of point processes, especially Poisson

  20. A gamma cammera image processing system

    International Nuclear Information System (INIS)

    Chen Weihua; Mei Jufang; Jiang Wenchuan; Guo Zhenxiang

    1987-01-01

    A microcomputer based gamma camera image processing system has been introduced. Comparing with other systems, the feature of this system is that an inexpensive microcomputer has been combined with specially developed hardware, such as, data acquisition controller, data processor and dynamic display controller, ect. Thus the process of picture processing has been speeded up and the function expense ratio of the system raised

  1. Radioactive liquid waste processing system

    International Nuclear Information System (INIS)

    Noda, Tetsuya; Kuramitsu, Kiminori; Ishii, Tomoharu.

    1997-01-01

    The present invention provides a system for processing radioactive liquid wastes containing laundry liquid wastes, shower drains or radioactive liquid wastes containing chemical oxygen demand (COD) ingredients and oil content generated from a nuclear power plant. Namely, a collecting tank collects radioactive liquid wastes. A filtering device is connected to the exit of the collective tank. A sump tank is connected to the exit of the filtering device. A powdery active carbon supplying device is connected to the collecting tank. A chemical fluid tank is connected to the collecting tank and the filtering device by way of chemical fluid injection lines. Backwarding pipelines connect a filtered water flowing exit of the filtering device and the collecting tank. The chemical solution is stored in the chemical solution tank. Then, radioactive materials in radioactive liquid wastes generated from a nuclear power plant are removed by the filtering device. The water quality standard specified in environmental influence reports can be satisfied. In the filtering device, when the filtering flow rate is reduced, the chemical fluid is supplied from the chemical fluid tank to the filtering device to recover the filtering flow rate. (I.S.)

  2. On the track of fish batches in three distribution networks

    DEFF Research Database (Denmark)

    Randrup, Maria; Wu, Haiping; Jørgensen, Bo M.

    2012-01-01

    the necessary information, it was possible to locate the end destinations of the fish batches. The batch sizes and the number of companies involved clearly rose when batch joining occurred. Thus, a fault in a small batch can potentially have widespread implications. The study also underlines the importance......Three fish products sampled in retail shops were traced back to their origin and fish from the same batch were tracked forward towards the retailer, thereby simulating a recall situation. The resulting distribution networks were very complex, but to the extent that companies were willing to provide...... of discovering a fault as early as possible in order to minimise the costs of a recall. The localisation of distributed products during a recall operation can be facilitated by a well-constructed traceability system....

  3. DUAL-PROCESS, a highly reliable process control system

    International Nuclear Information System (INIS)

    Buerger, L.; Gossanyi, A.; Parkanyi, T.; Szabo, G.; Vegh, E.

    1983-02-01

    A multiprocessor process control system is described. During its development the reliability was the most important aspect because it is used in the computerized control of a 5 MW research reactor. DUAL-PROCESS is fully compatible with the earlier single processor control system PROCESS-24K. The paper deals in detail with the communication, synchronization, error detection and error recovery problems of the operating system. (author)

  4. A novel TiO{sub 2}-assisted solar photocatalytic batch-process disinfection reactor for the treatment of biological and chemical contaminants in domestic drinking water in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, E.F.; Al Touati, F. [Royal College of Surgeons in Ireland, Dublin (Ireland). Dept. of Chemistry and Physics; Kehoe, S.C. [Royal College of Surgeons in Ireland, Dublin (IE). Dept. of Surgery] (and others)

    2004-11-01

    The technical feasibility and performance of photocatalytic TiO{sub 2} coatings in batch-process solar disinfection (SODIS) reactors to improve potability of drinking water in developing countries have been studied. Borosilicate glass and PET plastic SODIS reactors fitted with flexible plastic inserts coated with TiO{sub 2} powder were shown to be 20% and 25% more effective, respectively, than standard SODIS reactors for the inactivation of E. coli K12. Isopropanol at 100 ppm concentration levels was observed to be completely photodegraded after 24 h continuous exposure to 100 mW/cm{sup 2} simulated sunlight in a similar solar photocatalytic disinfector (SPC-DIS) reactor. The technique for producing the TiO{sub 2}-coated plastic inserts is described and demonstrated to be an appropriate and affordable technology for developing countries. (Author)

  5. Batch-to-batch quality consistency evaluation of botanical drug products using multivariate statistical analysis of the chromatographic fingerprint.

    Science.gov (United States)

    Xiong, Haoshu; Yu, Lawrence X; Qu, Haibin

    2013-06-01

    Botanical drug products have batch-to-batch quality variability due to botanical raw materials and the current manufacturing process. The rational evaluation and control of product quality consistency are essential to ensure the efficacy and safety. Chromatographic fingerprinting is an important and widely used tool to characterize the chemical composition of botanical drug products. Multivariate statistical analysis has showed its efficacy and applicability in the quality evaluation of many kinds of industrial products. In this paper, the combined use of multivariate statistical analysis and chromatographic fingerprinting is presented here to evaluate batch-to-batch quality consistency of botanical drug products. A typical botanical drug product in China, Shenmai injection, was selected as the example to demonstrate the feasibility of this approach. The high-performance liquid chromatographic fingerprint data of historical batches were collected from a traditional Chinese medicine manufacturing factory. Characteristic peaks were weighted by their variability among production batches. A principal component analysis model was established after outliers were modified or removed. Multivariate (Hotelling T(2) and DModX) control charts were finally successfully applied to evaluate the quality consistency. The results suggest useful applications for a combination of multivariate statistical analysis with chromatographic fingerprinting in batch-to-batch quality consistency evaluation for the manufacture of botanical drug products.

  6. Adaptive Batch Mode Active Learning.

    Science.gov (United States)

    Chakraborty, Shayok; Balasubramanian, Vineeth; Panchanathan, Sethuraman

    2015-08-01

    Active learning techniques have gained popularity to reduce human effort in labeling data instances for inducing a classifier. When faced with large amounts of unlabeled data, such algorithms automatically identify the exemplar and representative instances to be selected for manual annotation. More recently, there have been attempts toward a batch mode form of active learning, where a batch of data points is simultaneously selected from an unlabeled set. Real-world applications require adaptive approaches for batch selection in active learning, depending on the complexity of the data stream in question. However, the existing work in this field has primarily focused on static or heuristic batch size selection. In this paper, we propose two novel optimization-based frameworks for adaptive batch mode active learning (BMAL), where the batch size as well as the selection criteria are combined in a single formulation. We exploit gradient-descent-based optimization strategies as well as properties of submodular functions to derive the adaptive BMAL algorithms. The solution procedures have the same computational complexity as existing state-of-the-art static BMAL techniques. Our empirical results on the widely used VidTIMIT and the mobile biometric (MOBIO) data sets portray the efficacy of the proposed frameworks and also certify the potential of these approaches in being used for real-world biometric recognition applications.

  7. BATCHING PRINCIPLE OF RATING POINT ACCRUAL

    Directory of Open Access Journals (Sweden)

    S. A. Safontsev

    2014-01-01

    Full Text Available The paper analyzes characteristics of the postindustrial educational system, including the credit competence assessment, academic loads, and module-rating discipline structure. The employers’ judgments, reflected in the survey outcomes, make it possible to single out the most significant competencies for students to master. Such findings are regarded as a foundation for developing the assignment modules, integrating the problematic, testing and projecting tasks, designed to master necessary competences; their effectiveness is estimated by using the criteria of behavioral psychology. The paper demonstrates the sequences of monitoring assessment of students’ academic achievements, and recommends the batching principle of rating point accrual, based on criterion-oriented evaluation standards, reflecting students’ competence levels. The authors identify the basic competence indicators: interest in the subject, reflections on the test results, and inner motivation for project activities. The complex of batching equations is given for developing the training cards of academic disciplines, and guaranteeing the effectiveness of education system.

  8. NASA System Engineering Design Process

    Science.gov (United States)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  9. Social Network Supported Process Recommender System

    Directory of Open Access Journals (Sweden)

    Yanming Ye

    2014-01-01

    Full Text Available Process recommendation technologies have gained more and more attention in the field of intelligent business process modeling to assist the process modeling. However, most of the existing technologies only use the process structure analysis and do not take the social features of processes into account, while the process modeling is complex and comprehensive in most situations. This paper studies the feasibility of social network research technologies on process recommendation and builds a social network system of processes based on the features similarities. Then, three process matching degree measurements are presented and the system implementation is discussed subsequently. Finally, experimental evaluations and future works are introduced.

  10. Social network supported process recommender system.

    Science.gov (United States)

    Ye, Yanming; Yin, Jianwei; Xu, Yueshen

    2014-01-01

    Process recommendation technologies have gained more and more attention in the field of intelligent business process modeling to assist the process modeling. However, most of the existing technologies only use the process structure analysis and do not take the social features of processes into account, while the process modeling is complex and comprehensive in most situations. This paper studies the feasibility of social network research technologies on process recommendation and builds a social network system of processes based on the features similarities. Then, three process matching degree measurements are presented and the system implementation is discussed subsequently. Finally, experimental evaluations and future works are introduced.

  11. The Groningen image processing system

    International Nuclear Information System (INIS)

    Allen, R.J.; Ekers, R.D.; Terlouw, J.P.

    1985-01-01

    This paper describes an interactive, integrated software and hardware computer system for the reduction and analysis of astronomical images. A short historical introduction is presented before some examples of the astonomical data currently handled by the system are shown. A description is given of the present hardware and software structure. The system is illustrated by describing its appearance to the user, to the applications programmer, and to the system manager. Some quantitative information on the size and cost of the system is given, and its good and bad features are discussed

  12. Process control using modern systems of information processing

    International Nuclear Information System (INIS)

    Baldeweg, F.

    1984-01-01

    Modern digital automation techniques allow the application of demanding types of process control. These types of process control are characterized by their belonging to higher levels in a multilevel model. Functional and technical aspects of the performance of digital automation plants are presented and explained. A modern automation system is described considering special procedures of process control (e.g. real time diagnosis)

  13. Radiation processing of aqueous systems

    International Nuclear Information System (INIS)

    Gehringer, P.

    1997-09-01

    Groundwater contaminated with about 60 μg/L perchloroethylene (PCE) is purified by a combined ozone/electron beam irradiation process for subsequent use as drinking water. The design of the first commercial plant for such a groundwater remediation having a capacity of 108 m 3 /h is described. The mechanism of the combined ozone/electron beam process for PCE decomposition is discussed with respect to other ozone based advanced oxidation processes like ozone/U.V. and ozone/hydrogen peroxide. The formation of trace amounts of trichloroacetic acid as the only organic by-product in all these processes has been interpreted as an indication that PCE decomposition proceeds via the same mechanism in all cases. (author)

  14. Library Information-Processing System

    Science.gov (United States)

    1985-01-01

    System works with Library of Congress MARC II format. System composed of subsystems that provide wide range of library informationprocessing capabilities. Format is American National Standards Institute (ANSI) format for machine-readable bibliographic data. Adaptable to any medium-to-large library.

  15. Adaptive processes in economic systems

    CERN Document Server

    Murphy, Roy E

    1965-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;. methods for low-rank m

  16. Information systems process and practice

    CERN Document Server

    Urquhart, Christine; Tbaishat, Dina; Yeoman, Alison

    2017-01-01

    This book adopts a holistic interpretation of information architecture, to offer a variety of methods, tools, and techniques that may be used when designing websites and information systems that support workflows and what people require when 'managing information'.

  17. A High-Fidelity Batch Simulation Environment for Integrated Batch and Piloted Air Combat Simulation Analysis

    Science.gov (United States)

    Goodrich, Kenneth H.; McManus, John W.; Chappell, Alan R.

    1992-01-01

    A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics. The environment can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics equivalent to those used in high-fidelity piloted simulation. Databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system known as the Tactical Autopilot (TA) is implemented in the aircraft simulation model. The TA converts guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft. This report describes the capabilities and operation of the TMS.

  18. Method for Business Process Management System Selection

    NARCIS (Netherlands)

    Thijs van de Westelaken; Bas Terwee; Pascal Ravesteijn

    2013-01-01

    In recent years business process management (BPM) and specifically information systems that support the analysis, design and execution of processes (also called business process management systems (BPMS)) are getting more attention. This has lead to an increase in research on BPM and BPMS. However

  19. BatchJS: Implementing Batches in JavaScript

    NARCIS (Netherlands)

    D. Kasemier

    2014-01-01

    htmlabstractNone of our popular programming languages know how to handle distribution well. Yet our programs interact more and more with each other and our data resorts in databases and web services. Batches are a new addition to languages that can finally bring native support for distribution to

  20. Analysis of Adiabatic Batch Reactor

    Directory of Open Access Journals (Sweden)

    Erald Gjonaj

    2016-05-01

    Full Text Available A mixture of acetic anhydride is reacted with excess water in an adiabatic batch reactor to form an exothermic reaction. The concentration of acetic anhydride and the temperature inside the adiabatic batch reactor are calculated with an initial temperature of 20°C, an initial temperature of 30°C, and with a cooling jacket maintaining the temperature at a constant of 20°C. The graphs of the three different scenarios show that the highest temperatures will cause the reaction to occur faster.

  1. On Distributed Port-Hamiltonian Process Systems

    NARCIS (Netherlands)

    Lopezlena, Ricardo; Scherpen, Jacquelien M.A.

    2004-01-01

    In this paper we use the term distributed port-Hamiltonian Process Systems (DPHPS) to refer to the result of merging the theory of distributed Port-Hamiltonian systems (DPHS) with the theory of process systems (PS). Such concept is useful for combining the systematic interconnection of PHS with the

  2. Vision Systems Illuminate Industrial Processes

    Science.gov (United States)

    2013-01-01

    When NASA designs a spacecraft to undertake a new mission, innovation does not stop after the design phase. In many cases, these spacecraft are firsts of their kind, requiring not only remarkable imagination and expertise in their conception but new technologies and methods for their manufacture. In the realm of manufacturing, NASA has from necessity worked on the cutting-edge, seeking new techniques and materials for creating unprecedented structures, as well as capabilities for reducing the cost and increasing the efficiency of existing manufacturing technologies. From friction stir welding enhancements (Spinoff 2009) to thermoset composites (Spinoff 2011), NASA s innovations in manufacturing have often transferred to the public in ways that enable the expansion of the Nation s industrial productivity. NASA has long pursued ways of improving upon and ensuring quality results from manufacturing processes ranging from arc welding to thermal coating applications. But many of these processes generate blinding light (hence the need for special eyewear during welding) that obscures the process while it is happening, making it difficult to monitor and evaluate. In the 1980s, NASA partnered with a company to develop technology to address this issue. Today, that collaboration has spawned multiple commercial products that not only support effective manufacturing for private industry but also may support NASA in the use of an exciting, rapidly growing field of manufacturing ideal for long-duration space missions.

  3. Processing Pa-Lua Uranium ore by Mixing and Curing with Sulfuric Acid on a Scale of 500 kg/Batch to Recover Yellowcake

    International Nuclear Information System (INIS)

    Le Quang Thai; Cao Hung Thai; Le Thi Kim Dung; Phung Vu Phong; Tran Van Son

    2007-01-01

    Uranium ore in Pa-Lua area is sandstone with different levels of weathering. This kind of ore contains calcium and clay that may cause clogs during heap leaching. In this study, a technique of mixing and curing with strong acids is used and followed by washing to recover uranium. This study also focuses on study of ore processing issues such as crushing, regenerating particles in fine ores, mixing, curing and washing. The leach solution is treated by ion-exchange and precipitation of products by NH 4 OH. The experiment results show that regenerating a portion of fine ores, mixing and curing help washing residues in the column more effectively. Flow rate of the input solution can be controllable and stable. Columns do not clog even when washing takes place in the ore column of 5 meters high. Efficiency of uranium recovery can reach to 85-90%. Products of technical uranium are obtained with high quality. (author)

  4. Batch-to-Batch Quality Consistency Evaluation of Botanical Drug Products Using Multivariate Statistical Analysis of the Chromatographic Fingerprint

    OpenAIRE

    Xiong, Haoshu; Yu, Lawrence X.; Qu, Haibin

    2013-01-01

    Botanical drug products have batch-to-batch quality variability due to botanical raw materials and the current manufacturing process. The rational evaluation and control of product quality consistency are essential to ensure the efficacy and safety. Chromatographic fingerprinting is an important and widely used tool to characterize the chemical composition of botanical drug products. Multivariate statistical analysis has showed its efficacy and applicability in the quality evaluation of many ...

  5. Robotic system for process sampling

    International Nuclear Information System (INIS)

    Dyches, G.M.

    1985-01-01

    A three-axis cartesian geometry robot for process sampling was developed at the Savannah River Laboratory (SRL) and implemented in one of the site radioisotope separations facilities. Use of the robot reduces personnel radiation exposure and contamination potential by routinely handling sample containers under operator control in a low-level radiation area. This robot represents the initial phase of a longer term development program to use robotics for further sample automation. Preliminary design of a second generation robot with additional capabilities is also described. 8 figs

  6. Radioactive waste gas processing systems

    International Nuclear Information System (INIS)

    Kita, Kaoru; Minemoto, Masaki; Takezawa, Kazuaki.

    1981-01-01

    Purpose: To effectively separate and remove only hydrogen from hydrogen gas-containing radioactive waste gases produced from nuclear power plants without using large scaled facilities. Constitution: From hydrogen gas-enriched waste gases which contain radioactive rare gases (Kr, Xe) sent from the volume control tank of a chemical volume control system, only the hydrogen is separated in a hydrogen separator using palladium alloy membrane and rare gases are concentrated, volume-decreased and then stored. In this case, an activated carbon adsorption device is connected at its inlet to the radioactive gas outlet of the hydrogen separator and opened at its outlet to external atmosphere. In this system, while only the hydrogen gas permeates through the palladium alloy membrane, other gases are introduced, without permeation, into the activated carbon adsorption device. Then, the radioactive rare gases are decayed by the adsorption on the activated carbon and then released to the external atmosphere. (Furukawa, Y.)

  7. Milk Processing System in Ladak, Northern India

    OpenAIRE

    平田, 昌弘

    2009-01-01

    To understand the milk processing system in northern India, where is located in the central region of the Asian continent, and discuss its characteristics and developing process, eight households of agro-pastoralists were surveyed in Ladak, September of 2007 and then the milk processing system was compared with those in surrounding areas. The techniques of fermented milk processing series and milk cream separating series ware shared over ethnic groups among the agro-pastoralists of Ladak. The...

  8. Feasibility of Batch Reactive Distillation with Equilibrium-Limited Consecutive Reactions in Rectifier, Stripper, or Middle-Vessel Column

    Directory of Open Access Journals (Sweden)

    T. Lukács

    2011-01-01

    Full Text Available A general overall feasibility methodology of batch reactive distillation of multireaction systems is developed to study all the possible configurations of batch reactive distillation. The general model equations are derived for multireaction system with any number of chemical equilibrium-limited reactions and for any number of components. The present methodology is demonstrated with the detailed study of the transesterification of dimethyl carbonate in two reversible cascade reactions in batch reactive distillation process. Pure methanol is produced as distillate, and pure diethyl carbonate is produced at the bottom simultaneously in middle-vessel column; in each section, continuous feeding of ethanol is necessary. The results of feasibility study are successfully validated by rigorous simulations.

  9. Request queues for interactive clients in a shared file system of a parallel computing system

    Science.gov (United States)

    Bent, John M.; Faibish, Sorin

    2015-08-18

    Interactive requests are processed from users of log-in nodes. A metadata server node is provided for use in a file system shared by one or more interactive nodes and one or more batch nodes. The interactive nodes comprise interactive clients to execute interactive tasks and the batch nodes execute batch jobs for one or more batch clients. The metadata server node comprises a virtual machine monitor; an interactive client proxy to store metadata requests from the interactive clients in an interactive client queue; a batch client proxy to store metadata requests from the batch clients in a batch client queue; and a metadata server to store the metadata requests from the interactive client queue and the batch client queue in a metadata queue based on an allocation of resources by the virtual machine monitor. The metadata requests can be prioritized, for example, based on one or more of a predefined policy and predefined rules.

  10. Automated process safety parameters monitoring system

    International Nuclear Information System (INIS)

    Iyudina, O.S.; Solov'eva, A.G.; Syrov, A.A.

    2015-01-01

    Basing on the expertise in upgrading and creation of control systems for NPP process equipment, “Diakont” has developed the automated process safety parameters monitoring system project. The monitoring system is a set of hardware, software and data analysis tools based on a dynamic logical-and-probabilistic model of process safety. The proposed monitoring system can be used for safety monitoring and analysis of the following processes: reactor core reloading; spent nuclear fuel transfer; startup, loading, on-load operation and shutdown of an NPP turbine [ru

  11. High performance electron processing systems

    International Nuclear Information System (INIS)

    Frutiger, W.A.; Nablo, S.V.

    1984-01-01

    Many of the processes of immediate interest for commercial electron curing require large, single pass doses at high speed. The machine designer is faced with some practical upper limits to the dose rate (or electron current density) which can be used efficiently by the chemistry being initiated in the product. In addition, he must pay attention to the temperature excursions in the product due to the relatively low glass transition temperatures or softening temperatures in the substrates of interest. A new family of processors is described capable of delivering up to one megarad at 1500 meters per minute (typically 10 megarads at 150 m/minute). Product temperature excursions are controlled by the use of a shielded drum located within the processor Selfshield. Considerations of the real time diagnosis and control of these processors in production application are discussed, along with typical uniformity and penetration performance in the product

  12. Integrated Monitoring System of Production Processes

    Directory of Open Access Journals (Sweden)

    Oborski Przemysław

    2016-12-01

    Full Text Available Integrated monitoring system for discrete manufacturing processes is presented in the paper. The multilayer hardware and software reference model was developed. Original research are an answer for industry needs of the integration of information flow in production process. Reference model corresponds with proposed data model based on multilayer data tree allowing to describe orders, products, processes and save monitoring data. Elaborated models were implemented in the integrated monitoring system demonstrator developed in the project. It was built on the base of multiagent technology to assure high flexibility and openness on applying intelligent algorithms for data processing. Currently on the base of achieved experience an application integrated monitoring system for real production system is developed. In the article the main problems of monitoring integration are presented, including specificity of discrete production, data processing and future application of Cyber-Physical-Systems. Development of manufacturing systems is based more and more on taking an advantage of applying intelligent solutions into machine and production process control and monitoring. Connection of technical systems, machine tools and manufacturing processes monitoring with advanced information processing seems to be one of the most important areas of near future development. It will play important role in efficient operation and competitiveness of the whole production system. It is also important area of applying in the future Cyber-Physical-Systems that can radically improve functionally of monitoring systems and reduce the cost of its implementation.

  13. NDA BATCH 2002-02

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Livermore National Laboratory

    2009-12-09

    QC sample results (daily background checks, 20-gram and 100-gram SGS drum checks) were within acceptable criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on 5 drums with IDs LL85101099TRU, LL85801147TRU, LL85801109TRU, LL85300999TRU and LL85500979TRU. All replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. Note that the batch covered 5 weeks of SGS measurements from 23-Jan-2002 through 22-Feb-2002. Data packet for SGS Batch 2002-02 generated using gamma spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with established control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable. An Expert Review was performed on the data packet between 28-Feb-02 and 09-Jul-02 to check for potential U-235, Np-237 and Am-241 interferences and address drum cases where specific scan segments showed Se gamma ray transmissions for the 136-keV gamma to be below 0.1 %. Two drums in the batch showed Pu-238 at a relative mass ratio more than 2% of all the Pu isotopes.

  14. Knowledge management: processes and systems | Igbinovia ...

    African Journals Online (AJOL)

    Knowledge management: processes and systems. ... Information Impact: Journal of Information and Knowledge Management ... observation, role reversal technique, and discussion forums as well as the forms of knowledge representation to include report writing, database management system and institutional repositories.

  15. Influence of air flow, temperature and agitation speed in the batch acetification process to obtain orange vinegar (Citrus sinensis var.W. Navel

    Directory of Open Access Journals (Sweden)

    María Ferreyra

    2012-03-01

    Full Text Available This paper describes the influence of process variables to produce orange vinegar. Orange juice was fermented with Saccharomyces cerevisiae until reach 14% v/v. The biooxidation was carried out with Acetobacter sp., in submerge culture using a laboratory scale fermentor. In order to avoid the inhibitory effect of ethanol on acetic acid bacteria, the orange wine was diluted to 6% v/v with a mineral solution. It was performed a factorial design 2k to study the influence of variables. It was studied air flow rate/agitation at levels of 0.3-0.6 vvm and 200-400 rpm and the effect of air flow rate/temperature at 0.4-0.6 vvm and 25- 30°C, respectively. Duplicate treatments were carried out and the results were evaluated in terms of productivity and fermentation yield. Statistical design (p-value<0.05 was analyzed using Statgraphics Centurion XV Corporate software. Treatments performed at 200 rpm and different air flow levels, did not show significant differences on acetification rate. At higher agitation speed and air flow rates, the productivity was high. The best yields were obtained at lower air flows levels and higher agitation speed. Temperature did not present statistically differences on studied variables. The best yield was obtained at 400 rpm and 0.3 vvm at 25°C. It can be concluded that agitation speed plays an important role for a better acetification rate however higher air flow rates causes less yields.

  16. iSBatch: a batch-processing platform for data analysis and exploration of live-cell single-molecule microscopy images and other hierarchical datasets.

    Science.gov (United States)

    Caldas, Victor E A; Punter, Christiaan M; Ghodke, Harshad; Robinson, Andrew; van Oijen, Antoine M

    2015-10-01

    Recent technical advances have made it possible to visualize single molecules inside live cells. Microscopes with single-molecule sensitivity enable the imaging of low-abundance proteins, allowing for a quantitative characterization of molecular properties. Such data sets contain information on a wide spectrum of important molecular properties, with different aspects highlighted in different imaging strategies. The time-lapsed acquisition of images provides information on protein dynamics over long time scales, giving insight into expression dynamics and localization properties. Rapid burst imaging reveals properties of individual molecules in real-time, informing on their diffusion characteristics, binding dynamics and stoichiometries within complexes. This richness of information, however, adds significant complexity to analysis protocols. In general, large datasets of images must be collected and processed in order to produce statistically robust results and identify rare events. More importantly, as live-cell single-molecule measurements remain on the cutting edge of imaging, few protocols for analysis have been established and thus analysis strategies often need to be explored for each individual scenario. Existing analysis packages are geared towards either single-cell imaging data or in vitro single-molecule data and typically operate with highly specific algorithms developed for particular situations. Our tool, iSBatch, instead allows users to exploit the inherent flexibility of the popular open-source package ImageJ, providing a hierarchical framework in which existing plugins or custom macros may be executed over entire datasets or portions thereof. This strategy affords users freedom to explore new analysis protocols within large imaging datasets, while maintaining hierarchical relationships between experiments, samples, fields of view, cells, and individual molecules.

  17. Following an Optimal Batch Bioreactor Operations Model

    DEFF Research Database (Denmark)

    Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.

    2012-01-01

    -batch reactor for biomass production is studied using a differential geometry approach. The maximization problem is solved by handling both the optimal filling policy and substrate concentration in the inlet stream. In order to follow the OBBOM, a master–slave synchronization is used. The OBBOM is considered...... as the master system which includes the optimal cultivation trajectory for the feed flow rate and the substrate concentration. The “real” bioreactor, the one with unknown dynamics and perturbations, is considered as the slave system. Finally, the controller is designed such that the real bioreactor...

  18. Gaseous radioactive waste processing system

    International Nuclear Information System (INIS)

    Onizawa, Hideo.

    1976-01-01

    Object: To prevent explosion of hydrogen gas within gaseous radioactive waste by removing the hydrogen gas by means of a hydrogen absorber. Structure: A coolant extracted from a reactor cooling system is sprayed by nozzle into a gaseous phase (hydrogen) portion within a tank, thus causing slipping of radioactive rare gas. The gaseous radioactive waste rich in hydrogen, which is purged in the tank, is forced by a waste gas compressor into a hydrogen occlusion device. The hydrogen occlusion device is filled with hydrogen occluding agents such as Mg, Mg-Ni alloy, V-Nb alloy, La-Ni alloy and so forth, and hydrogen in the waste gas is removed through reaction to produce hydrogen metal. The gaseous radioactive waste, which is deprived of hydrogen and reduced in volume, is stored in an attenuation tank. The hydrogen stored in the hydrogen absorber is released and used again as purge gas. (Horiuchi, T.)

  19. Treatability of cheese whey for single-cell protein production in nonsterile systems: Part I. Optimal condition for lactic acid fermentation using a microaerobic sequencing batch reactor (microaerobic SBR) with immobilized Lactobacillus plantarum TISTR 2265 and microbial communities.

    Science.gov (United States)

    Monkoondee, Sarawut; Kuntiya, Ampin; Chaiyaso, Thanongsak; Leksawasdi, Noppol; Techapun, Charin; Kawee-Ai, Arthitaya; Seesuriyachan, Phisit

    2016-05-18

    Cheese whey contains a high organic content and causes serious problems if it is released into the environment when untreated. This study aimed to investigate the optimum condition of lactic acid production using the microaerobic sequencing batch reactor (microaerobic SBR) in a nonsterile system. The high production of lactic acid was achieved by immobilized Lactobacillus plantarum TISTR 2265 to generate an acidic pH condition below 4.5 and then to support single-cell protein (SCP) production in the second aerobic sequencing batch reactor (aerobic SBR). A hydraulic retention time (HRT) of 4 days and a whey concentration of 80% feeding gave a high lactic acid yield of 12.58 g/L, chemical oxygen demand (COD) removal of 62.38%, and lactose utilization of 61.54%. The microbial communities in the nonsterile system were dominated by members of lactic acid bacteria, and it was shown that the inoculum remained in the system up to 330 days.

  20. Development of batch electrolytic enrichment cells with 100-fold volume reduction, control electronic units and neutralization/distillation unit, to enable better sensitivity to be achieved in low-level tritium measurements when liquid scintillation counting follows the enrichment process

    International Nuclear Information System (INIS)

    Taylor, C.B.

    1980-06-01

    Full details of the batch-cell tritium enrichment system design are provided including electronic control circuits specially developed for these cells. The system incorporates a new type of concentric electrode cell (outer cathode of mild steel, anode of stainless steel, inner cathode of mild steel) with volume reduction capability 1 l to ca 9 ml. Electrolysis of 20 cells is performed in 2 steps. Down to sample volume ca 20 ml, the cells are series connected at constant currents up to 14.5 A, in the 2nd step, each cell is connected to its own individual current supply (2A) and control circuit. Automatic shut-off at the desired final volume is achieved by sensing the drop in current through the inner cathode as the electrolyte level falls below a PTFE insulator. The large electrode surface area and careful dimensioning at the foot of the cell allow operation with low starting electrolyte concentration 1.5 g Na 2 O 2 .l -1 . After electrolysis, quantitative recovery as distilled water of all hydrogen from the enriched residue is achieved by CO 2 -neutralisation and vacuum distillation at 100 0 C in a distillation unit which handles 20 cells simultaneously