WorldWideScience

Sample records for bassetite

  1. Crystal structure of bassetite and saleeite. New insight into autunite-group minerals

    Energy Technology Data Exchange (ETDEWEB)

    Dal Bo, Fabrice; Hatert, Frederic [Liege Univ. (Belgium). Lab. de Mineralogie; Mees, Florias [Royal Museum for Central Africa, Tervuren (Belgium); Philippo, Simon [Musee National d' Histoire Naturelle, Luxembourg (Luxembourg). Section Mineralogie; Baijot, Maxime; Fontaine, Francois [Liege Univ. (Belgium). Dept. de Geologie

    2016-06-15

    The crystal structures of two autunite-group minerals have been solved recently. The crystal structure of bassetite, Fe{sup 2+}[(UO{sub 2})(PO{sub 4})]{sub 2}(H{sub 2}O){sub 10}, from the type locality in Cornwall, United Kingdom (Basset Mines) was solved for the first time. Bassetite is monoclinic, space group P2{sub 1}/n, a = 6.961(1), b = 20.039(2), c = 6.974(1) Aa and β = 90.46(1) . The crystal structure of saleeite, Mg[(UO{sub 2})(PO{sub 4})]{sub 2}(H{sub 2}O){sub 10}, from Shinkolobwe, Democratic Republic of Congo, was also solved. Saleeite is monoclinic, space group P2{sub 1}/n, a = 6.951(1), b = 19.942(1), c = 6.967(1) Aa and β = 90.58(1) . The crystal structure investigation of bassetite (R{sub 1} = 0.0658 for 1879 observed reflections with vertical stroke F{sub o} vertical stroke ≥ 4σ{sub F}) and saleeite (R{sub 1} = 0.0307 for 1990 observed reflections with vertical stroke F{sub o} vertical stroke ≥ 4σ{sub F}) confirms that both minerals are topologically identical and that bassetite contains ten water molecules per formula unit. Their structure contains autunite-type sheets, [(UO{sub 2})(PO{sub 4})]{sup -}, consisting of corner-sharing UO{sub 6} square bipyramids and PO{sub 4} tetrahedra. Iron and magnesium are surrounded by water molecules to form Fe(H{sub 2}O){sub 6} or Mg(H{sub 2}O){sub 6} octahedra located in interlayer, between the autunite-type sheets. Two isolated independent water molecules are also located in interlayer. Energy-dispersive X-ray spectroscopy analysis confirmed the chemical composition obtained from structure refinement. These new data prompt a re-assessment of minerals of the autunite and meta-autunite groups.

  2. New french uranium mineral species

    International Nuclear Information System (INIS)

    Branche, G.; Chervet, J.; Guillemin, C.

    1952-01-01

    In this work, the authors study the french new uranium minerals: parsonsite and renardite, hydrated phosphates of lead and uranium; kasolite: silicate hydrated of uranium and lead uranopilite: sulphate of uranium hydrated; bayleyite: carbonate of uranium and of hydrated magnesium; β uranolite: silicate of uranium and of calcium hydrated. For all these minerals, the authors give the crystallographic, optic characters, and the quantitative chemical analyses. On the other hand, the following species, very rare in the french lodgings, didn't permit to do quantitative analyses. These are: the lanthinite: hydrated uranate oxide; the α uranotile: silicate of uranium and of calcium hydrated; the bassetite: uranium phosphate and of hydrated iron; the hosphuranylite: hydrated uranium phosphate; the becquerelite: hydrated uranium oxide; the curite: oxide of uranium and lead hydrated. Finally, the authors present at the end of this survey a primary mineral: the brannerite, complex of uranium titanate. (author) [fr

  3. New french uranium mineral species; Nouvelles especes uraniferes francaises

    Energy Technology Data Exchange (ETDEWEB)

    Branche, G; Chervet, J; Guillemin, C [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1952-07-01

    In this work, the authors study the french new uranium minerals: parsonsite and renardite, hydrated phosphates of lead and uranium; kasolite: silicate hydrated of uranium and lead uranopilite: sulphate of uranium hydrated; bayleyite: carbonate of uranium and of hydrated magnesium; {beta} uranolite: silicate of uranium and of calcium hydrated. For all these minerals, the authors give the crystallographic, optic characters, and the quantitative chemical analyses. On the other hand, the following species, very rare in the french lodgings, didn't permit to do quantitative analyses. These are: the lanthinite: hydrated uranate oxide; the {alpha} uranotile: silicate of uranium and of calcium hydrated; the bassetite: uranium phosphate and of hydrated iron; the hosphuranylite: hydrated uranium phosphate; the becquerelite: hydrated uranium oxide; the curite: oxide of uranium and lead hydrated. Finally, the authors present at the end of this survey a primary mineral: the brannerite, complex of uranium titanate. (author) [French] Dans ce travail, les auteurs etudient les nouveaux mineraux uraniferes francais: parsonsite et renardite, phosphates hydrates de plomb et d'uranium; kasolite: silicate hydrate d'uranium et de plomb uranopilite: sulfate d'uranium hydrate; bayleyite: carbonate d'uranium et de magnesium hydrate; {beta} uranolite: silicate d'uranium et de calcium hydrate. Pour tous ces mineraux, les auteurs donnent les caracteres cristallographiques, optiques, et les analyses chimiques quantitatives. Par contre, les especes suivantes, tres rares dans les gites francais, n'ont pas permis d'effectuer d'analyses quantitatives. Ce sont: l'ianthinite: oxyde uraneux hydrate; l'{alpha} uranotile: silicate d'uranium et de calcium hydrate; le bassetite: phosphate d'uranium et de fer hydrate; la hosphuranylite: phosphate duranium hydrate; la becquerelite: oxyde d'uranium hydrate; la curite: oxyde d'uranium et de plomb hydrate. Enfin, les auteurs presentent a la fin de cette etude

  4. Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates.

    Science.gov (United States)

    Liang, Xinjin; Csetenyi, Laszlo; Gadd, Geoffrey Michael

    2016-06-01

    In this research, we have demonstrated the ability of several yeast species to mediate U(VI) biomineralization through uranium phosphate biomineral formation when utilizing an organic source of phosphorus (glycerol 2-phosphate disodium salt hydrate (C3H7Na2O6P·xH2O (G2P)) or phytic acid sodium salt hydrate (C6H18O24P6·xNa(+)·yH2O (PyA))) in the presence of soluble UO2(NO3)2. The formation of meta-ankoleite (K2(UO2)2(PO4)2·6(H2O)), chernikovite ((H3O)2(UO2)2(PO4)2·6(H2O)), bassetite (Fe(++)(UO2)2(PO4)2·8(H2O)), and uramphite ((NH4)(UO2)(PO4)·3(H2O)) on cell surfaces was confirmed by X-ray diffraction in yeasts grown in a defined liquid medium amended with uranium and an organic phosphorus source, as well as in yeasts pre-grown in organic phosphorus-containing media and then subsequently exposed to UO2(NO3)2. The resulting minerals depended on the yeast species as well as physico-chemical conditions. The results obtained in this study demonstrate that phosphatase-mediated uranium biomineralization can occur in yeasts supplied with an organic phosphate substrate as sole source of phosphorus. Further understanding of yeast interactions with uranium may be relevant to development of potential treatment methods for uranium waste and utilization of organic phosphate sources and for prediction of microbial impacts on the fate of uranium in the environment.

  5. Phurcalite and others secondary uranium minerals from Perus, Sao Paulo, Brazil; Furcalita e outros minerais uraniferos secundarios de Perus, Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Atencio, D

    1992-12-31

    Phurcalite has been found filling fractures in the tourmaline-bearing granitic pegmatite of Perus, in the north-west part of Sao Paulo city, Brazil. It forms aggregates of radiating euhedral crystals up to 5 mm in length. The crystals are bright yellow, transparent and display vitreous to adamantine lustre. Its streak is pale yellow. Phurcalite is brittle, with a conchoidal fracture, and non-fluorescent. The crystal structure of phurcalite has been solves by single-crystal x-ray diffraction methods and refined to R = 3.8% using 2065 observed [I > 3{sigma}(I)] reflections. The structure consists of [(U O{sub 2}){sub 3} O{sub 2} (P O{sub 4}){sub 2} {sup 4n-}]{sub n} layers, parallel to (010), connected by Ca{sup 2+} ions and H{sub 2} O. The coordination polyhedra are: for U(1) hexagonal bi pyramid; for U(2) and U(3) pentagonal bi pyramids; for Ca(4) and Ca(5) capped trigonal prism and triangulated dodecahedron, respectively; and for P(6) and P(7) tetrahedra. As a consequence of this work, the molecular formula of phurcalite previously reported as Ca{sub 2} (U O{sub 2}){sub 3} (P O{sub 4}){sub 2} (OH){sub 4}.4 H{sub 2} O must be changed to Ca{sub 2} (U O{sub 2}){sub 3} O{sub 2} (P O{sub 4}){sub 2}.7 H{sub 2} O. Other secondary uranium minerals associated with Perus phurcalite are autunite, torbernite, meta-autunite, meta-torbernite, chernikovite, meta-uranocircite I, phosphuranylite, uranophane-alpha, uranophane-beta, haiweeite, barian week site and perhaps also bassetite, meta-tyuyamunite and meta-haiweeite. Opal, tridymite, cristobalite, secondary quartz, saponite and rhodochrosite occur associated to the uranium minerals. (author).

  6. Phurcalite and others secondary uranium minerals from Perus, Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Atencio, D.

    1991-01-01

    Phurcalite has been found filling fractures in the tourmaline-bearing granitic pegmatite of Perus, in the north-west part of Sao Paulo city, Brazil. It forms aggregates of radiating euhedral crystals up to 5 mm in length. The crystals are bright yellow, transparent and display vitreous to adamantine lustre. Its streak is pale yellow. Phurcalite is brittle, with a conchoidal fracture, and non-fluorescent. The crystal structure of phurcalite has been solves by single-crystal x-ray diffraction methods and refined to R = 3.8% using 2065 observed [I > 3σ(I)] reflections. The structure consists of [(U O 2 ) 3 O 2 (P O 4 ) 2 4n- ] n layers, parallel to (010), connected by Ca 2+ ions and H 2 O. The coordination polyhedra are: for U(1) hexagonal bi pyramid; for U(2) and U(3) pentagonal bi pyramids; for Ca(4) and Ca(5) capped trigonal prism and triangulated dodecahedron, respectively; and for P(6) and P(7) tetrahedra. As a consequence of this work, the molecular formula of phurcalite previously reported as Ca 2 (U O 2 ) 3 (P O 4 ) 2 (OH) 4 .4 H 2 O must be changed to Ca 2 (U O 2 ) 3 O 2 (P O 4 ) 2 .7 H 2 O. Other secondary uranium minerals associated with Perus phurcalite are autunite, torbernite, meta-autunite, meta-torbernite, chernikovite, meta-uranocircite I, phosphuranylite, uranophane-alpha, uranophane-beta, haiweeite, barian week site and perhaps also bassetite, meta-tyuyamunite and meta-haiweeite. Opal, tridymite, cristobalite, secondary quartz, saponite and rhodochrosite occur associated to the uranium minerals. (author)