Generalized multiscale radial basis function networks.
Billings, Stephen A; Wei, Hua-Liang; Balikhin, Michael A
2007-12-01
A novel modelling framework is proposed for constructing parsimonious and flexible multiscale radial basis function networks (RBF). Unlike a conventional standard single scale RBF network, where all the basis functions have a common kernel width, the new network structure adopts multiscale Gaussian functions as the bases, where each selected centre has multiple kernel widths, to provide more flexible representations with better generalization properties for general nonlinear dynamical systems. As a direct extension of the traditional single scale Gaussian networks, the new multiscale network is easy to implement and is quick to learn using standard learning algorithms. A k-means clustering algorithm and an improved orthogonal least squares (OLS) algorithm are used to determine the unknown parameters in the network model including the centres and widths of the basis functions, and the weights between the basis functions. It is demonstrated that the new network can lead to a parsimonious model with much better generalization property compared with the traditional single width RBF networks.
RBF networks with mixed radial basis functions
Ciftcioglu, O.; Sariyildiz, I.S.
2000-01-01
After the introduction to neural network technology as multivariable function approximation, radial basis function (RBF) networks have been studied in many different aspects in recent years. From the theoretical viewpoint, approximation and uniqueness of the interpolation is studied and it has been
Generalization performance of radial basis function networks.
Lei, Yunwen; Ding, Lixin; Zhang, Wensheng
2015-03-01
This paper studies the generalization performance of radial basis function (RBF) networks using local Rademacher complexities. We propose a general result on controlling local Rademacher complexities with the L1 -metric capacity. We then apply this result to estimate the RBF networks' complexities, based on which a novel estimation error bound is obtained. An effective approximation error bound is also derived by carefully investigating the Hölder continuity of the lp loss function's derivative. Furthermore, it is demonstrated that the RBF network minimizing an appropriately constructed structural risk admits a significantly better learning rate when compared with the existing results. An empirical study is also performed to justify the application of our structural risk in model selection.
Radial basis function networks and complexity regularization in function learning.
Krzyzak, A; Linder, T
1998-01-01
In this paper we apply the method of complexity regularization to derive estimation bounds for nonlinear function estimation using a single hidden layer radial basis function network. Our approach differs from previous complexity regularization neural-network function learning schemes in that we operate with random covering numbers and l(1) metric entropy, making it possible to consider much broader families of activation functions, namely functions of bounded variation. Some constraints previously imposed on the network parameters are also eliminated this way. The network is trained by means of complexity regularization involving empirical risk minimization. Bounds on the expected risk in terms of the sample size are obtained for a large class of loss functions. Rates of convergence to the optimal loss are also derived.
Radial basis function network design for chaotic time series prediction
Energy Technology Data Exchange (ETDEWEB)
Shin, Chang Yong; Kim, Taek Soo; Park, Sang Hui [Yonsei University, Seoul (Korea, Republic of); Choi, Yoon Ho [Kyonggi University, Suwon (Korea, Republic of)
1996-04-01
In this paper, radial basis function networks with two hidden layers, which employ the K-means clustering method and the hierarchical training, are proposed for improving the short-term predictability of chaotic time series. Furthermore the recursive training method of radial basis function network using the recursive modified Gram-Schmidt algorithm is proposed for the purpose. In addition, the radial basis function networks trained by the proposed training methods are compared with the X.D. He A Lapedes`s model and the radial basis function network by non-recursive training method. Through this comparison, an improved radial basis function network for predicting chaotic time series is presented. (author). 17 refs., 8 figs., 3 tabs.
Side effects of normalising radial basis function networks.
Shorten, R; Murray-Smith, R
1996-05-01
Normalisation of the basis function activations in a Radial Basis Function (RBF) network is a common way of achieving the partition of unity often desired for modelling applications. It results in the basis functions covering the whole of the input space to the same degree. However, normalisation of the basis functions can lead to other effects which are sometimes less desirable for modelling applications. This paper describes some side effects of normalisation which fundamentally alter properties of the basis functions, e.g. the shape is no longer uniform, maxima of basis functions can be shifted from their centres, and the basis functions are no longer guaranteed to decrease monotonically as distance from their centre increases--in many cases basis functions can 'reactivate', i.e. re-appear far from the basis function centre. This paper examines how these phenomena occur, discusses their relevance for non-linear function approximation and examines the effect of normalisation on the network condition number and weights.
Integration of macromolecular diffraction data using radial basis function networks.
Pokrić, B; Allinson, N M; Helliwell, J R
2000-11-01
This paper presents a novel approach for intensity calculation of X-ray diffraction spots based on a two-stage radial basis function (RBF) network. The first stage uses pre-determined reference profiles from a database as basis functions in order to locate the diffraction spots and identify any overlapping regions. The second-stage RBF network employs narrow basis functions capable of local modifications of the reference profiles leading to a more accurate observed diffraction spot approximation and therefore accurate determination of spot positions and integrated intensities.
On the classification enhancement of radial basis function networks
Ciftcioglu, O.; Durmisevic, S.; Sariyildiz, I.S.
2001-01-01
Artificial neural networks are powerfultools for analysing information expressed as data sets, which contain complex nonlinear relationships to be identified and classified. In particular radial basis function (RBF) neural networks have outstanding features for this. However, due to far reaching imp
Orthogonal least squares learning algorithm for radial basis function networks
Energy Technology Data Exchange (ETDEWEB)
Chen, S.; Cowan, C.F.N.; Grant, P.M. (Dept. of Electrical Engineering, Univ. of Edinburgh, Mayfield Road, Edinburgh EH9 3JL, Scotland (GB))
1991-03-01
The radial basis function network offers a viable alternative to the two-layer neural network in many applications of signal processing. A common learning algorithm for radial basis function networks is based on first choosing randomly some data points as radial basis function centers and then using singular value decomposition to solve for the weights of the network. Such a procedure has several drawbacks and, in particular, an arbitrary selection of centers is clearly unsatisfactory. The paper proposes an alternative learning procedure based on the orthogonal least squares method. The procedure choose radial basis function centers one by one in a rational way until an adequate network has been constructed. The algorithm has the property that each selected center maximizes the increment to the explained variance or energy of the desired output and does not suffer numerical ill-conditioning problems. The orthogonal least squares learning strategy provides a simple and efficient means for fitting radial basis function networks, and this is illustrated using examples taken from two different signal processing applications.
Orthogonal least squares learning algorithm for radial basis function networks.
Chen, S; Cowan, C N; Grant, P M
1991-01-01
The radial basis function network offers a viable alternative to the two-layer neural network in many applications of signal processing. A common learning algorithm for radial basis function networks is based on first choosing randomly some data points as radial basis function centers and then using singular-value decomposition to solve for the weights of the network. Such a procedure has several drawbacks, and, in particular, an arbitrary selection of centers is clearly unsatisfactory. The authors propose an alternative learning procedure based on the orthogonal least-squares method. The procedure chooses radial basis function centers one by one in a rational way until an adequate network has been constructed. In the algorithm, each selected center maximizes the increment to the explained variance or energy of the desired output and does not suffer numerical ill-conditioning problems. The orthogonal least-squares learning strategy provides a simple and efficient means for fitting radial basis function networks. This is illustrated using examples taken from two different signal processing applications.
Universal approximation by radial basis function networks of Delsarte translates.
Arteaga, Cristian; Marrero, Isabel
2013-10-01
We prove that, under certain mild conditions on the kernel function (or activation function), the family of radial basis function neural networks obtained by replacing the usual translation with the Delsarte one, and taking the same smoothing factor in all kernel nodes, has the universal approximation property.
Using Radial-basis Function Network for CLV
Institute of Scientific and Technical Information of China (English)
李纯青; 郑建国
2002-01-01
Analysis and comparing with three existing and popularly used forcasting customer lifetime value (CLV) methods, which are the Dwyer method, customer event-method and fitting method, and using performances of the existent artificial neural network, we apply the Radial-basis Function(RBF) network to forecast the CLV, the RBF network can approach the objective function partially. To every input/output pairs, it only needs adjust the weight a little and learn quickly which is very important to the forecast precision. Simulation and experimental results on the customers' data of a company in Shaanxi Province reveal the effectiveness and feasibility of the RBF network.
Modeling Marine Electromagnetic Survey with Radial Basis Function Networks
Directory of Open Access Journals (Sweden)
Agus Arif
2014-11-01
Full Text Available A marine electromagnetic survey is an engineering endeavour to discover the location and dimension of a hydrocarbon layer under an ocean floor. In this kind of survey, an array of electric and magnetic receivers are located on the sea floor and record the scattered, refracted and reflected electromagnetic wave, which has been transmitted by an electric dipole antenna towed by a vessel. The data recorded in receivers must be processed and further analysed to estimate the hydrocarbon location and dimension. To conduct those analyses successfuly, a radial basis function (RBF network could be employed to become a forward model of the input-output relationship of the data from a marine electromagnetic survey. This type of neural networks is working based on distances between its inputs and predetermined centres of some basis functions. A previous research had been conducted to model the same marine electromagnetic survey using another type of neural networks, which is a multi layer perceptron (MLP network. By comparing their validation and training performances (mean-squared errors and correlation coefficients, it is concluded that, in this case, the MLP network is comparatively better than the RBF network[1].[1] This manuscript is an extended version of our previous paper, entitled Radial Basis Function Networks for Modeling Marine Electromagnetic Survey, which had been presented on 2011 International Conference on Electrical Engineering and Informatics, 17-19 July 2011, Bandung, Indonesia.
Direction-dependent learning approach for radial basis function networks.
Singla, Puneet; Subbarao, Kamesh; Junkins, John L
2007-01-01
Direction-dependent scaling, shaping, and rotation of Gaussian basis functions are introduced for maximal trend sensing with minimal parameter representations for input output approximation. It is shown that shaping and rotation of the radial basis functions helps in reducing the total number of function units required to approximate any given input-output data, while improving accuracy. Several alternate formulations that enforce minimal parameterization of the most general radial basis functions are presented. A novel "directed graph" based algorithm is introduced to facilitate intelligent direction based learning and adaptation of the parameters appearing in the radial basis function network. Further, a parameter estimation algorithm is incorporated to establish starting estimates for the model parameters using multiple windows of the input-output data. The efficacy of direction-dependent shaping and rotation in function approximation is evaluated by modifying the minimal resource allocating network and considering different test examples. The examples are drawn from recent literature to benchmark the new algorithm versus existing methods.
Learning without local minima in radial basis function networks.
Bianchini, M; Frasconi, P; Gori, M
1995-01-01
Learning from examples plays a central role in artificial neural networks. The success of many learning schemes is not guaranteed, however, since algorithms like backpropagation may get stuck in local minima, thus providing suboptimal solutions. For feedforward networks, optimal learning can be achieved provided that certain conditions on the network and the learning environment are met. This principle is investigated for the case of networks using radial basis functions (RBF). It is assumed that the patterns of the learning environment are separable by hyperspheres. In that case, we prove that the attached cost function is local minima free with respect to all the weights. This provides us with some theoretical foundations for a massive application of RBF in pattern recognition.
Modeling Marine Electromagnetic Survey with Radial Basis Function Networks
Directory of Open Access Journals (Sweden)
Agus Arif
2011-08-01
Full Text Available A marine electromagnetic survey is an engineering endeavour to discover the location and dimension of a hydrocarbon layer under an ocean floor. In this kind of survey, an array of electric and magnetic receivers are located on the sea floor and record the scattered, refracted and reflected electromagnetic wave, which has been transmitted by an electric dipole antenna towed by a vessel. The data recorded in receivers must be processed and further analysed to estimate the hydrocarbon location and dimension. To conduct those analyses successfuly, a radial basis function (RBF network could be employed to become a forward model of the input-output relationship of the data from a marine electromagnetic survey. This type of neural networks is working based on distances between its inputs and predetermined centres of some basis functions. A previous research had been conducted to model the same marine electromagnetic survey using another type of neural networks, which is a multi layer perceptron (MLP network. By comparing their validation and training performances (mean-squared errors and correlation coefficients, it is concluded that, in this case, the MLP network is comparatively better than the RBF network
Combining regression trees and radial basis function networks.
Orr, M; Hallam, J; Takezawa, K; Murra, A; Ninomiya, S; Oide, M; Leonard, T
2000-12-01
We describe a method for non-parametric regression which combines regression trees with radial basis function networks. The method is similar to that of Kubat, who was first to suggest such a combination, but has some significant improvements. We demonstrate the features of the new method, compare its performance with other methods on DELVE data sets and apply it to a real world problem involving the classification of soybean plants from digital images.
An incremental design of radial basis function networks.
Yu, Hao; Reiner, Philip D; Xie, Tiantian; Bartczak, Tomasz; Wilamowski, Bogdan M
2014-10-01
This paper proposes an offline algorithm for incrementally constructing and training radial basis function (RBF) networks. In each iteration of the error correction (ErrCor) algorithm, one RBF unit is added to fit and then eliminate the highest peak (or lowest valley) in the error surface. This process is repeated until a desired error level is reached. Experimental results on real world data sets show that the ErrCor algorithm designs very compact RBF networks compared with the other investigated algorithms. Several benchmark tests such as the duplicate patterns test and the two spiral problem were applied to show the robustness of the ErrCor algorithm. The proposed ErrCor algorithm generates very compact networks. This compactness leads to greatly reduced computation times of trained networks.
Radial basis function networks for fast contingency ranking
Energy Technology Data Exchange (ETDEWEB)
Devaraj, D.; Ramar, K. [Indian Inst. of Technology, Madras (India). Dept. of Electrical Engineering; Yegnanarayana, B. [Indian Inst. of Technology, Madras (India). Dept. of Computer Science and Engineering
2002-06-01
This paper presents an artificial neural network-based approach for static-security assessment. The proposed approach uses radial basis function (RBF) networks to predict the system severity level following a given list of contingencies. The RBF networks are trained off-line to capture the nonlinear relationship between the pre-contingency line flows and the post-contingency severity index. A method based on mutual information is proposed for selecting the input features of the networks. Mutual information has the advantage of measuring the general relationship between the independent variables and the dependent variables as against the linear relationship measured by the correlation-based methods. The performance of the proposed approach is demonstrated through contingency ranking in IEEE 30-bus test system. (author)
A growing and pruning method for radial basis function networks.
Bortman, M; Aladjem, M
2009-06-01
A recently published generalized growing and pruning (GGAP) training algorithm for radial basis function (RBF) neural networks is studied and modified. GGAP is a resource-allocating network (RAN) algorithm, which means that a created network unit that consistently makes little contribution to the network's performance can be removed during the training. GGAP states a formula for computing the significance of the network units, which requires a d-fold numerical integration for arbitrary probability density function p(x) of the input data x (x in R(d)) . In this work, the GGAP formula is approximated using a Gaussian mixture model (GMM) for p(x) and an analytical solution of the approximated unit significance is derived. This makes it possible to employ the modified GGAP for input data having complex and high-dimensional p(x), which was not possible in the original GGAP. The results of an extensive experimental study show that the modified algorithm outperforms the original GGAP achieving both a lower prediction error and reduced complexity of the trained network.
Learning and generalization in radial basis function networks.
Freeman, J A; Saad, D
1995-09-01
The two-layer radial basis function network, with fixed centers of the basis functions, is analyzed within a stochastic training paradigm. Various definitions of generalization error are considered, and two such definitions are employed in deriving generic learning curves and generalization properties, both with and without a weight decay term. The generalization error is shown analytically to be related to the evidence and, via the evidence, to the prediction error and free energy. The generalization behavior is explored; the generic learning curve is found to be inversely proportional to the number of training pairs presented. Optimization of training is considered by minimizing the generalization error with respect to the free parameters of the training algorithms. Finally, the effect of the joint activations between hidden-layer units is examined and shown to speed training.
Radial Basis Function Networks for Conversion of Sound Spectra
Directory of Open Access Journals (Sweden)
Carlo Drioli
2001-03-01
Full Text Available In many advanced signal processing tasks, such as pitch shifting, voice conversion or sound synthesis, accurate spectral processing is required. Here, the use of Radial Basis Function Networks (RBFN is proposed for the modeling of the spectral changes (or conversions related to the control of important sound parameters, such as pitch or intensity. The identification of such conversion functions is based on a procedure which learns the shape of the conversion from few couples of target spectra from a data set. The generalization properties of RBFNs provides for interpolation with respect to the pitch range. In the construction of the training set, mel-cepstral encoding of the spectrum is used to catch the perceptually most relevant spectral changes. Moreover, a singular value decomposition (SVD approach is used to reduce the dimension of conversion functions. The RBFN conversion functions introduced are characterized by a perceptually-based fast training procedure, desirable interpolation properties and computational efficiency.
Nonlinear Time Series Forecast Using Radial Basis Function Neural Networks
Institute of Scientific and Technical Information of China (English)
ZHENGXin; CHENTian-Lun
2003-01-01
In the research of using Radial Basis Function Neural Network (RBF NN) forecasting nonlinear time series, we investigate how the different clusterings affect the process of learning and forecasting. We find that k-means clustering is very suitable. In order to increase the precision we introduce a nonlinear feedback term to escape from the local minima of energy, then we use the model to forecast the nonlinear time series which are produced by Mackey-Glass equation and stocks. By selecting the k-means clustering and the suitable feedback term, much better forecasting results are obtained.
Nonlinear Time Series Forecast Using Radial Basis Function Neural Networks
Institute of Scientific and Technical Information of China (English)
ZHENG Xin; CHEN Tian-Lun
2003-01-01
In the research of using Radial Basis Function Neural Network (RBF NN) forecasting nonlinear timeseries, we investigate how the different clusterings affect the process of learning and forecasting. We find that k-meansclustering is very suitable. In order to increase the precision we introduce a nonlinear feedback term to escape from thelocal minima of energy, then we use the model to forecast the nonlinear time series which are produced by Mackey-Glassequation and stocks. By selecting the k-means clustering and the suitable feedback term, much better forecasting resultsare obtained.
Snow cover thickness estimation by using radial basis function networks
Directory of Open Access Journals (Sweden)
A. Guidali
2012-07-01
Full Text Available This work investigates learning and generalisation capabilities of radial basis function networks (RBFN used to solve snow cover thickness estimation model as regression and classification. The model is based on a minimal set of climatic and topographic data collected from a limited number of stations located in the Italian Central Alps. Several experiments have been conceived and conducted adopting different evaluation indexes in both regression and classification tasks. The snow cover thickness estimation by RBFN has been proved a valuable tool able to deal with several critical aspects arising from the specific experimental context.
Synchronization of chaos using radial basis functions neural networks
Institute of Scientific and Technical Information of China (English)
Ren Haipeng; Liu Ding
2007-01-01
The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method.
Dynamics of learning near singularities in radial basis function networks.
Wei, Haikun; Amari, Shun-Ichi
2008-09-01
The radial basis function (RBF) networks are one of the most widely used models for function approximation in the regression problem. In the learning paradigm, the best approximation is recursively or iteratively searched for based on observed data (teacher signals). One encounters difficulties in such a process when two component basis functions become identical, or when the magnitude of one component becomes null. In this case, the number of the components reduces by one, and then the reduced component recovers as the learning process proceeds further, provided such a component is necessary for the best approximation. Strange behaviors, especially the plateau phenomena, have been observed in dynamics of learning when such reduction occurs. There exist singularities in the space of parameters, and the above reduction takes place at the singular regions. This paper focuses on a detailed analysis of the dynamical behaviors of learning near the overlap and elimination singularities in RBF networks, based on the averaged learning equation that is applicable to both on-line and batch mode learning. We analyze the stability on the overlap singularity by solving the eigenvalues of the Hessian explicitly. Based on the stability analysis, we plot the analytical dynamic vector fields near the singularity, which are then compared to those real trajectories obtained by a numeric method. We also confirm the existence of the plateaus in both batch and on-line learning by simulation.
Efficient VLSI Architecture for Training Radial Basis Function Networks
Directory of Open Access Journals (Sweden)
Wen-Jyi Hwang
2013-03-01
Full Text Available This paper presents a novel VLSI architecture for the training of radial basis function (RBF networks. The architecture contains the circuits for fuzzy C-means (FCM and the recursive Least Mean Square (LMS operations. The FCM circuit is designed for the training of centers in the hidden layer of the RBF network. The recursive LMS circuit is adopted for the training of connecting weights in the output layer. The architecture is implemented by the field programmable gate array (FPGA. It is used as a hardware accelerator in a system on programmable chip (SOPC for real-time training and classification. Experimental results reveal that the proposed RBF architecture is an effective alternative for applications where fast and efficient RBF training is desired.
Efficient VLSI architecture for training radial basis function networks.
Fan, Zhe-Cheng; Hwang, Wen-Jyi
2013-03-19
This paper presents a novel VLSI architecture for the training of radial basis function (RBF) networks. The architecture contains the circuits for fuzzy C-means (FCM) and the recursive Least Mean Square (LMS) operations. The FCM circuit is designed for the training of centers in the hidden layer of the RBF network. The recursive LMS circuit is adopted for the training of connecting weights in the output layer. The architecture is implemented by the field programmable gate array (FPGA). It is used as a hardware accelerator in a system on programmable chip (SOPC) for real-time training and classification. Experimental results reveal that the proposed RBF architecture is an effective alternative for applications where fast and efficient RBF training is desired.
Snow cover thickness estimation using radial basis function networks
Directory of Open Access Journals (Sweden)
E. Binaghi
2013-05-01
Full Text Available This paper reports an experimental study designed for the in-depth investigation of how the radial basis function network (RBFN estimates snow cover thickness as a function of climate and topographic parameters. The estimation problem is modeled in terms of both function regression and classification, obtaining continuous and discrete thickness values, respectively. The model is based on a minimal set of climatic and topographic data collected from a limited number of stations located in the Italian Central Alps. Several experiments have been conceived and conducted adopting different evaluation indexes. A comparison analysis was also developed for a quantitative evaluation of the advantages of the RBFN method over to conventional widely used spatial interpolation techniques when dealing with critical situations originated by lack of data and limited n-homogeneously distributed instrumented sites. The RBFN model proved competitive behavior and a valuable tool in critical situations in which conventional techniques suffer from a lack of representative data.
Neuronal spike sorting based on radial basis function neural networks
Directory of Open Access Journals (Sweden)
Taghavi Kani M
2011-02-01
Full Text Available "nBackground: Studying the behavior of a society of neurons, extracting the communication mechanisms of brain with other tissues, finding treatment for some nervous system diseases and designing neuroprosthetic devices, require an algorithm to sort neuralspikes automatically. However, sorting neural spikes is a challenging task because of the low signal to noise ratio (SNR of the spikes. The main purpose of this study was to design an automatic algorithm for classifying neuronal spikes that are emitted from a specific region of the nervous system."n "nMethods: The spike sorting process usually consists of three stages: detection, feature extraction and sorting. We initially used signal statistics to detect neural spikes. Then, we chose a limited number of typical spikes as features and finally used them to train a radial basis function (RBF neural network to sort the spikes. In most spike sorting devices, these signals are not linearly discriminative. In order to solve this problem, the aforesaid RBF neural network was used."n "nResults: After the learning process, our proposed algorithm classified any arbitrary spike. The obtained results showed that even though the proposed Radial Basis Spike Sorter (RBSS reached to the same error as the previous methods, however, the computational costs were much lower compared to other algorithms. Moreover, the competitive points of the proposed algorithm were its good speed and low computational complexity."n "nConclusion: Regarding the results of this study, the proposed algorithm seems to serve the purpose of procedures that require real-time processing and spike sorting.
Ultrasonic flaw detection using radial basis function networks (RBFNs).
Gil Pita, R; Vicen, R; Rosa, M; Jarabo, M P; Vera, P; Curpian, J
2004-04-01
Ultrasonic flaw detection has been studied many times in the literature. Schemes based on thresholding after a previous matched filter use to be the best solution, but results obtained with this method are only satisfactory when scattering and attenuation are not considered. In this paper, we propose an alternative solution to thresholding detection method. We deal with the usage of different flaw detection methods comparing them with the proposed one. The experiment tries to determinate whether a given ultrasonic signal contains a flaw echo or not. Starting with a set of 24,000 patterns with 750 samples each one, two subsets are defined for the experiments. The first one, the training set, is used to obtain the detection parameters of the different methods, and the second one is used to test the performance of them. The proposed method is based on radial basis functions networks, one of the most powerful neural network techniques. This signal processing technique tries to find the optimal decision criterion. Comparing this method with thresholding based ones, an improvement over 25-30% is obtained, depending on the probability of false alarm. So our new method is a good alternative to flaw detection problem.
Radial basis function networks GPU-based implementation.
Brandstetter, Andreas; Artusi, Alessandro
2008-12-01
Neural networks (NNs) have been used in several areas, showing their potential but also their limitations. One of the main limitations is the long time required for the training process; this is not useful in the case of a fast training process being required to respond to changes in the application domain. A possible way to accelerate the learning process of an NN is to implement it in hardware, but due to the high cost and the reduced flexibility of the original central processing unit (CPU) implementation, this solution is often not chosen. Recently, the power of the graphic processing unit (GPU), on the market, has increased and it has started to be used in many applications. In particular, a kind of NN named radial basis function network (RBFN) has been used extensively, proving its power. However, their limiting time performances reduce their application in many areas. In this brief paper, we describe a GPU implementation of the entire learning process of an RBFN showing the ability to reduce the computational cost by about two orders of magnitude with respect to its CPU implementation.
Organisms modeling: The question of radial basis function networks
Directory of Open Access Journals (Sweden)
Muzy Alexandre
2014-01-01
Full Text Available There exists usually a gap between bio-inspired computational techniques and what biologists can do with these techniques in their current researches. Although biology is the root of system-theory and artifical neural networks, computer scientists are tempted to build their own systems independently of biological issues. This publication is a first-step re-evalution of an usual machine learning technique (radial basis funtion(RBF networks in the context of systems and biological reactive organisms.
Estimation of spatiotemporal neural activity using radial basis function networks.
Anderson, R W; Das, S; Keller, E L
1998-12-01
We report a method using radial basis function (RBF) networks to estimate the time evolution of population activity in topologically organized neural structures from single-neuron recordings. This is an important problem in neuroscience research, as such estimates may provide insights into systems-level function of these structures. Since single-unit neural data tends to be unevenly sampled and highly variable under similar behavioral conditions, obtaining such estimates is a difficult task. In particular, a class of cells in the superior colliculus called buildup neurons can have very narrow regions of saccade vectors for which they discharge at high rates but very large surround regions over which they discharge at low, but not zero, levels. Estimating the dynamic movement fields for these cells for two spatial dimensions at closely spaced timed intervals is a difficult problem, and no general method has been described that can be applied to all buildup cells. Estimation of individual collicular cells' spatiotemporal movement fields is a prerequisite for obtaining reliable two-dimensional estimates of the population activity on the collicular motor map during saccades. Therefore, we have developed several computational-geometry-based algorithms that regularize the data before computing a surface estimation using RBF networks. The method is then expanded to the problem of estimating simultaneous spatiotemporal activity occurring across the superior colliculus during a single movement (the inverse problem). In principle, this methodology could be applied to any neural structure with a regular, two-dimensional organization, provided a sufficient spatial distribution of sampled neurons is available.
Radial Basis Function Network Compensators for Uncertainties of Robotic Manipulators
Ziauddin, S.M.; Zalzala, A.M.S.
1994-01-01
This report proposes a decentralised compensation scheme for uncertainties and modelling errors of robotic manipulators. The scheme employs a central decoupler and independent joint neural network controllers. Recursive Newton Euler formulas are used to decouple robot dynamics to obtain a set of equations in terms of each joint's input and output. To identify and suppress the effects of uncertainties associated with the model, each joint is controlled separately by Gaussian radial basis funct...
Vuković, Najdan; Miljković, Zoran
2013-10-01
Radial basis function (RBF) neural network is constructed of certain number of RBF neurons, and these networks are among the most used neural networks for modeling of various nonlinear problems in engineering. Conventional RBF neuron is usually based on Gaussian type of activation function with single width for each activation function. This feature restricts neuron performance for modeling the complex nonlinear problems. To accommodate limitation of a single scale, this paper presents neural network with similar but yet different activation function-hyper basis function (HBF). The HBF allows different scaling of input dimensions to provide better generalization property when dealing with complex nonlinear problems in engineering practice. The HBF is based on generalization of Gaussian type of neuron that applies Mahalanobis-like distance as a distance metrics between input training sample and prototype vector. Compared to the RBF, the HBF neuron has more parameters to optimize, but HBF neural network needs less number of HBF neurons to memorize relationship between input and output sets in order to achieve good generalization property. However, recent research results of HBF neural network performance have shown that optimal way of constructing this type of neural network is needed; this paper addresses this issue and modifies sequential learning algorithm for HBF neural network that exploits the concept of neuron's significance and allows growing and pruning of HBF neuron during learning process. Extensive experimental study shows that HBF neural network, trained with developed learning algorithm, achieves lower prediction error and more compact neural network.
Extending the functional equivalence of radial basis function networks and fuzzy inference systems.
Hunt, K J; Haas, R; Murray-Smith, R
1996-01-01
We establish the functional equivalence of a generalized class of Gaussian radial basis function (RBFs) networks and the full Takagi-Sugeno model (1983) of fuzzy inference. This generalizes an existing result which applies to the standard Gaussian RBF network and a restricted form of the Takagi-Sugeno fuzzy system. The more general framework allows the removal of some of the restrictive conditions of the previous result.
Functional equivalence between radial basis function networks and fuzzy inference systems.
Jang, J R; Sun, C T
1993-01-01
It is shown that, under some minor restrictions, the functional behavior of radial basis function networks (RBFNs) and that of fuzzy inference systems are actually equivalent. This functional equivalence makes it possible to apply what has been discovered (learning rule, representational power, etc.) for one of the models to the other, and vice versa. It is of interest to observe that two models stemming from different origins turn out to be functionally equivalent.
Anderson, H C; Lotfi, A; Westphal, L C; Jang, J R
1998-01-01
The above paper claims that under a set of minor restrictions radial basis function networks and fuzzy inference systems are functionally equivalent. The purpose of this letter is to show that this set of restrictions is incomplete and that, when it is completed, the said functional equivalence applies only to a small range of fuzzy inference systems. In addition, a modified set of restrictions is proposed which is applicable for a much wider range of fuzzy inference systems.
Sherstinsky, A; Picard, R W
1996-01-01
The efficiency of the orthogonal least squares (OLS) method for training approximation networks is examined using the criterion of energy compaction. We show that the selection of basis vectors produced by the procedure is not the most compact when the approximation is performed using a nonorthogonal basis. Hence, the algorithm does not produce the smallest possible networks for a given approximation error. Specific examples are given using the Gaussian radial basis functions type of approximation networks.
A Novel Algorithm of Network Trade Customer Classification Based on Fourier Basis Functions
Directory of Open Access Journals (Sweden)
Li Xinwu
2013-11-01
Full Text Available Learning algorithm of neural network is always an important research contents in neural network theory research and application field, learning algorithm about the feed-forward neural network has no satisfactory solution in particular for its defects in calculation speed. The paper presents a new Fourier basis functions neural network algorithm and applied it to classify network trade customer. First, 21 customer classification indicators are designed, based on characteristics and behaviors analysis of network trade customer, including customer characteristics type variables and customer behaviors type variables,; Second, Fourier basis functions is used to improve the calculation flow and algorithm structure of original BP neural network algorithm to speed up its convergence and then a new Fourier basis neural network model is constructed. Finally the experimental results show that the problem of convergence speed can been solved, and the accuracy of the customer classification are ensured when the new algorithm is used in network trade customer classification practically.
Mayorga, René V; Carrera, Jonathan
2007-06-01
This Paper presents an efficient approach for the fast computation of inverse continuous time variant functions with the proper use of Radial Basis Function Networks (RBFNs). The approach is based on implementing RBFNs for computing inverse continuous time variant functions via an overall damped least squares solution that includes a novel null space vector for singularities prevention. The singularities avoidance null space vector is derived from developing a sufficiency condition for singularities prevention that conduces to establish some characterizing matrices and an associated performance index.
Noise Reduction Technique for Images using Radial Basis Function Neural Networks
Directory of Open Access Journals (Sweden)
Sander Ali Khowaja
2014-07-01
Full Text Available This paper presents a NN (Neural Network based model for reducing the noise from images. This is a RBF (Radial Basis Function network which is used to reduce the effect of noise and blurring from the captured images. The proposed network calculates the mean MSE (Mean Square Error and PSNR (Peak Signal to Noise Ratio of the noisy images. The proposed network has also been successfully applied to medical images. The performance of the trained RBF network has been compared with the MLP (Multilayer Perceptron Network and it has been demonstrated that the performance of the RBF network is better than the MLP network.
Cheng, Longlong; Zhang, Guangju; Wan, Baikun; Hao, Linlin; Qi, Hongzhi; Ming, Dong
2009-01-01
Functional electrical stimulation (FES) has been widely used in the area of neural engineering. It utilizes electrical current to activate nerves innervating extremities affected by paralysis. An effective combination of a traditional PID controller and a neural network, being capable of nonlinear expression and adaptive learning property, supply a more reliable approach to construct FES controller that help the paraplegia complete the action they want. A FES system tuned by Radial Basis Function (RBF) Neural Network-based Proportional-Integral-Derivative (PID) model was designed to control the knee joint according to the desired trajectory through stimulation of lower limbs muscles in this paper. Experiment result shows that the FES system with RBF Neural Network-based PID model get a better performance when tracking the preset trajectory of knee angle comparing with the system adjusted by Ziegler- Nichols tuning PID model.
Chen, S; Mulgrew, B; Grant, P M
1993-01-01
The application of a radial basis function network to digital communications channel equalization is examined. It is shown that the radial basis function network has an identical structure to the optimal Bayesian symbol-decision equalizer solution and, therefore, can be employed to implement the Bayesian equalizer. The training of a radial basis function network to realize the Bayesian equalization solution can be achieved efficiently using a simple and robust supervised clustering algorithm. During data transmission a decision-directed version of the clustering algorithm enables the radial basis function network to track a slowly time-varying environment. Moreover, the clustering scheme provides an automatic compensation for nonlinear channel and equipment distortion. Computer simulations are included to illustrate the analytical results.
Radial Basis Function Networks: Generalization in Over-realizable and Unrealizable Scenarios.
Saad, David; Freeman, Jason A. S.
1996-12-01
Learning and generalization in a two-layer radial basis function network, with fixed centres of the basis functions, is examined within a stochastic training paradigm. Employing a Bayesian approach, expressions for generalization error are derived under the assumption that the generating mechanism (teacher) for the training data is also a radial basis function network, but one for which the basis function centres and widths need not correspond to those of the student network. The effects of regularization, via a weight decay term, are examined. The cases in which the student has greater representational power than the teacher (over-realizable), and in which the teacher has greater power than the student (unrealizable) are studied. Dependence on knowing the centres of the teacher is eliminated by introducing a single degree-of-confidence parameter. Finally, simulations are performed which validate the analytic results. Copyright 1996 Elsevier Science Ltd.
Satisfiability of logic programming based on radial basis function neural networks
Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged; Choon, Ong Hong
2014-07-01
In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We applied the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems.
Satisfiability of logic programming based on radial basis function neural networks
Energy Technology Data Exchange (ETDEWEB)
Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged; Choon, Ong Hong [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)
2014-07-10
In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We applied the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems.
Directory of Open Access Journals (Sweden)
Yunfeng Wu
2014-01-01
Full Text Available This paper presents a novel adaptive linear and normalized combination (ALNC method that can be used to combine the component radial basis function networks (RBFNs to implement better function approximation and regression tasks. The optimization of the fusion weights is obtained by solving a constrained quadratic programming problem. According to the instantaneous errors generated by the component RBFNs, the ALNC is able to perform the selective ensemble of multiple leaners by adaptively adjusting the fusion weights from one instance to another. The results of the experiments on eight synthetic function approximation and six benchmark regression data sets show that the ALNC method can effectively help the ensemble system achieve a higher accuracy (measured in terms of mean-squared error and the better fidelity (characterized by normalized correlation coefficient of approximation, in relation to the popular simple average, weighted average, and the Bagging methods.
Burken, John J.
2005-01-01
This viewgraph presentation reviews the use of a Robust Servo Linear Quadratic Regulator (LQR) and a Radial Basis Function (RBF) Neural Network in reconfigurable flight control designs in adaptation to a aircraft part failure. The method uses a robust LQR servomechanism design with model Reference adaptive control, and RBF neural networks. During the failure the LQR servomechanism behaved well, and using the neural networks improved the tracking.
Directory of Open Access Journals (Sweden)
Shengqiao Ni
Full Text Available This paper presents improvements to the conventional Topology Representing Network to build more appropriate topology relationships. Based on this improved Topology Representing Network, we propose a novel method for online dimensionality reduction that integrates the improved Topology Representing Network and Radial Basis Function Network. This method can find meaningful low-dimensional feature structures embedded in high-dimensional original data space, process nonlinear embedded manifolds, and map the new data online. Furthermore, this method can deal with large datasets for the benefit of improved Topology Representing Network. Experiments illustrate the effectiveness of the proposed method.
Ni, Shengqiao; Lv, Jiancheng; Cheng, Zhehao; Li, Mao
2015-01-01
This paper presents improvements to the conventional Topology Representing Network to build more appropriate topology relationships. Based on this improved Topology Representing Network, we propose a novel method for online dimensionality reduction that integrates the improved Topology Representing Network and Radial Basis Function Network. This method can find meaningful low-dimensional feature structures embedded in high-dimensional original data space, process nonlinear embedded manifolds, and map the new data online. Furthermore, this method can deal with large datasets for the benefit of improved Topology Representing Network. Experiments illustrate the effectiveness of the proposed method.
Sensitivity analysis applied to the construction of radial basis function networks.
Shi, D; Yeung, D S; Gao, J
2005-09-01
Conventionally, a radial basis function (RBF) network is constructed by obtaining cluster centers of basis function by maximum likelihood learning. This paper proposes a novel learning algorithm for the construction of radial basis function using sensitivity analysis. In training, the number of hidden neurons and the centers of their radial basis functions are determined by the maximization of the output's sensitivity to the training data. In classification, the minimal number of such hidden neurons with the maximal sensitivity will be the most generalizable to unknown data. Our experimental results show that our proposed sensitivity-based RBF classifier outperforms the conventional RBFs and is as accurate as support vector machine (SVM). Hence, sensitivity analysis is expected to be a new alternative way to the construction of RBF networks.
Directory of Open Access Journals (Sweden)
Mohammad Mehdi Mazarei
2012-01-01
Full Text Available This paper presents numerical solution of elliptic partial differential equations (Poisson's equation using a combination of logarithmic and multiquadric radial basis function networks. This method uses a special combination between logarithmic and multiquadric radial basis functions with a parameter r. Further, the condition number which arises in the process is discussed, and a comparison is made between them with our earlier studies and previously known ones. It is shown that the system is stable.
Selver, M Alper; Güzeliş, Cüneyt
2009-01-01
As being a tool that assigns optical parameters used in interactive visualization, Transfer Functions (TF) have important effects on the quality of volume rendered medical images. Unfortunately, finding accurate TFs is a tedious and time consuming task because of the trade off between using extensive search spaces and fulfilling the physician's expectations with interactive data exploration tools and interfaces. By addressing this problem, we introduce a semi-automatic method for initial generation of TFs. The proposed method uses a Self Generating Hierarchical Radial Basis Function Network to determine the lobes of a Volume Histogram Stack (VHS) which is introduced as a new domain by aligning the histograms of slices of a image series. The new self generating hierarchical design strategy allows the recognition of suppressed lobes corresponding to suppressed tissues and representation of the overlapping regions which are parts of the lobes but can not be represented by the Gaussian bases in VHS. Moreover, approximation with a minimum set of basis functions provides the possibility of selecting and adjusting suitable units to optimize the TF. Applications on different CT and MR data sets show enhanced rendering quality and reduced optimization time in abdominal studies.
Radical pruning: a method to construct skeleton radial basis function networks.
Augusteijn, M F; Shaw, K A
2000-04-01
Trained radial basis function networks are well-suited for use in extracting rules and explanations because they contain a set of locally tuned units. However, for rule extraction to be useful, these networks must first be pruned to eliminate unnecessary weights. The pruning algorithm cannot search the network exhaustively because of the computational effort involved. It is shown that using multiple pruning methods with smart ordering of the pruning candidates, the number of weights in a radial basis function network can be reduced to a small fraction of the original number. The complexity of the pruning algorithm is quadratic (instead of exponential) in the number of network weights. Pruning performance is shown using a variety of benchmark problems from the University of California, Irvine machine learning database.
Radial basis function neural network for power system load-flow
Energy Technology Data Exchange (ETDEWEB)
Karami, A.; Mohammadi, M.S. [Faculty of Engineering, The University of Guilan, P.O. Box 41635-3756, Rasht (Iran)
2008-01-15
This paper presents a method for solving the load-flow problem of the electric power systems using radial basis function (RBF) neural network with a fast hybrid training method. The main idea is that some operating conditions (values) are needed to solve the set of non-linear algebraic equations of load-flow by employing an iterative numerical technique. Therefore, we may view the outputs of a load-flow program as functions of the operating conditions. Indeed, we are faced with a function approximation problem and this can be done by an RBF neural network. The proposed approach has been successfully applied to the 10-machine and 39-bus New England test system. In addition, this method has been compared with that of a multi-layer perceptron (MLP) neural network model. The simulation results show that the RBF neural network is a simpler method to implement and requires less training time to converge than the MLP neural network. (author)
Chen, S; Wu, Y; Luk, B L
1999-01-01
The paper presents a two-level learning method for radial basis function (RBF) networks. A regularized orthogonal least squares (ROLS) algorithm is employed at the lower level to construct RBF networks while the two key learning parameters, the regularization parameter and the RBF width, are optimized using a genetic algorithm (GA) at the upper level. Nonlinear time series modeling and prediction is used as an example to demonstrate the effectiveness of this hierarchical learning approach.
Rotation Invariant Face Detection Using Wavelet, PCA and Radial Basis Function Networks
Kamruzzaman, S M; Islam, Md Saiful; Haque, Md Emdadul; Alam, Mohammad Shamsul
2010-01-01
This paper introduces a novel method for human face detection with its orientation by using wavelet, principle component analysis (PCA) and redial basis networks. The input image is analyzed by two-dimensional wavelet and a two-dimensional stationary wavelet. The common goals concern are the image clearance and simplification, which are parts of de-noising or compression. We applied an effective procedure to reduce the dimension of the input vectors using PCA. Radial Basis Function (RBF) neural network is then used as a function approximation network to detect where either the input image is contained a face or not and if there is a face exists then tell about its orientation. We will show how RBF can perform well then back-propagation algorithm and give some solution for better regularization of the RBF (GRNN) network. Compared with traditional RBF networks, the proposed network demonstrates better capability of approximation to underlying functions, faster learning speed, better size of network, and high ro...
Wang, Z O; Zhu, T
2000-01-01
This paper presents an efficient recursive learning algorithm for improving generalization performance of radial basis function (RBF) neural networks. The approach combines the rival penalized competitive learning (PRCL) [Xu, L., Kizyzak, A. & Oja, E. (1993). Rival penalized competitive learning for clustering analysis, RBF net and curve detection, IEEE Transactions on Neural Networks, 4, 636-649] and the regularized least squares (RLS) to provide an efficient and powerful procedure for constructing a minimal RBF network that generalizes very well. The RPCL selects the number of hidden units of network and adjusts centers, while the RLS constructs the parsimonious network and estimates the connection weights. In the RLS we derived a simple recursive algorithm, which needs no matrix calculation, and so largely reduces the computational cost. This combined algorithm significantly enhances the generalization performance and the real-time capability of the RBF networks. Simulation results of three different problems demonstrate much better generalization performance of the present algorithm over other existing similar algorithms.
Radial basis function neural networks with sequential learning MRAN and its applications
Sundararajan, N; Wei Lu Ying
1999-01-01
This book presents in detail the newly developed sequential learning algorithm for radial basis function neural networks, which realizes a minimal network. This algorithm, created by the authors, is referred to as Minimal Resource Allocation Networks (MRAN). The book describes the application of MRAN in different areas, including pattern recognition, time series prediction, system identification, control, communication and signal processing. Benchmark problems from these areas have been studied, and MRAN is compared with other algorithms. In order to make the book self-contained, a review of t
Design of Radial Basis Function Neural Networks for Software Effort Estimation
Directory of Open Access Journals (Sweden)
Ali Idri
2010-07-01
Full Text Available In spite of the several software effort estimation models developed over the last 30 years, providing accurate estimates of the software project under development is still unachievable goal. Therefore, many researchers are working on the development of new models and the improvement of the existing ones using artificial intelligence techniques such as: case-based reasoning, decision trees, genetic algorithms and neural networks. This paper is devoted to the design of Radial Basis Function Networks for software cost estimation. It shows the impact of the RBFN network structure, especially the number of neurons in the hidden layer and the widths of the basis function, on the accuracy of the produced estimates measured by means of MMRE and Pred indicators. The empirical study uses two different software project datasets namely, artificial COCOMO'81 and Tukutuku datasets.
Dual-orthogonal radial basis function networks for nonlinear time series prediction.
Hong, X; Billings, Steve A.
1998-04-01
A new structure of Radial Basis Function (RBF) neural network called the Dual-orthogonal RBF Network (DRBF) is introduced for nonlinear time series prediction. The hidden nodes of a conventional RBF network compare the Euclidean distance between the network input vector and the centres, and the node responses are radially symmetrical. But in time series prediction where the system input vectors are lagged system outputs, which are usually highly correlated, the Euclidean distance measure may not be appropriate. The DRBF network modifies the distance metric by introducing a classification function which is based on the estimation data set. Training the DRBF networks consists of two stages. Learning the classification related basis functions and the important input nodes, followed by selecting the regressors and learning the weights of the hidden nodes. In both cases, a forward Orthogonal Least Squares (OLS) selection procedure is applied, initially to select the important input nodes and then to select the important centres. Simulation results of single-step and multi-step ahead predictions over a test data set are included to demonstrate the effectiveness of the new approach.
Liu, Jinkun
2013-01-01
Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design. This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronauti...
Upset Prediction in Friction Welding Using Radial Basis Function Neural Network
Directory of Open Access Journals (Sweden)
Wei Liu
2013-01-01
Full Text Available This paper addresses the upset prediction problem of friction welded joints. Based on finite element simulations of inertia friction welding (IFW, a radial basis function (RBF neural network was developed initially to predict the final upset for a number of welding parameters. The predicted joint upset by the RBF neural network was compared to validated finite element simulations, producing an error of less than 8.16% which is reasonable. Furthermore, the effects of initial rotational speed and axial pressure on the upset were investigated in relation to energy conversion with the RBF neural network. The developed RBF neural network was also applied to linear friction welding (LFW and continuous drive friction welding (CDFW. The correlation coefficients of RBF prediction for LFW and CDFW were 0.963 and 0.998, respectively, which further suggest that an RBF neural network is an effective method for upset prediction of friction welded joints.
[Hyperspectral remote sensing image classification based on radical basis function neural network].
Tan, Kun; Du, Pei-jun
2008-09-01
Based on the radial basis function neural network (RBFNN) theory and the specialty of hyperspectral remote sensing data, the effective feature extraction model was designed, and those extracted features were connected to the input layer of RBFNN, finally the classifier based on radial basis function neural network was constructed. The hyperspectral image with 64 bands of OMIS II made by Chinese was experimented, and the case study area was zhongguancun in Beijing. Minimum noise fraction (MNF) was conducted, and the former 20 components were extracted for further processing. The original data (20 dimension) of extraction by MNF, the texture transformation data (20 dimension) extracted from the former 20 components after MNF, and the principal component analysis data (20 dimension) of extraction were combined to 60 dimension. For classification by RBFNN, the sizes of training samples were less than 6.13% of the whole image. That classifier has a simple structure and fast convergence capacity, and can be easily trained. The classification precision of radial basis function neural network classifier is up to 69.27% in contrast with the 51.20% of back propagation neural network (BPNN) and 40. 88% of traditional minimum distance classification (MDC), so RBFNN classifier performs better than the other three classifiers. It proves that RBFNN is of validity in hyperspectral remote sensing classification.
Computing single step operators of logic programming in radial basis function neural networks
Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong
2014-07-01
Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.
Computing single step operators of logic programming in radial basis function neural networks
Energy Technology Data Exchange (ETDEWEB)
Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)
2014-07-10
Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.
Gradient radial basis function networks for nonlinear and nonstationary time series prediction.
Chng, E S; Chen, S; Mulgrew, B
1996-01-01
We present a method of modifying the structure of radial basis function (RBF) network to work with nonstationary series that exhibit homogeneous nonstationary behavior. In the original RBF network, the hidden node's function is to sense the trajectory of the time series and to respond when there is a strong correlation between the input pattern and the hidden node's center. This type of response, however, is highly sensitive to changes in the level and trend of the time series. To counter these effects, the hidden node's function is modified to one which detects and reacts to the gradient of the series. We call this new network the gradient RBF (GRBF) model. Single and multistep predictive performance for the Mackey-Glass chaotic time series were evaluated using the classical RBF and GRBF models. The simulation results for the series without and with a tine-varying mean confirm the superior performance of the GRBF predictor over the RBF predictor.
Petković, Dalibor; Gocic, Milan; Shamshirband, Shahaboddin; Qasem, Sultan Noman; Trajkovic, Slavisa
2016-08-01
Accurate estimation of the reference evapotranspiration (ET0) is important for the water resource planning and scheduling of irrigation systems. For this purpose, the radial basis function network with particle swarm optimization (RBFN-PSO) and radial basis function network with back propagation (RBFN-BP) were used in this investigation. The FAO-56 Penman-Monteith equation was used as reference equation to estimate ET0 for Serbia during the period of 1980-2010. The obtained simulation results confirmed the proposed models and were analyzed using the root mean-square error (RMSE), the mean absolute error (MAE), and the coefficient of determination ( R 2). The analysis showed that the RBFN-PSO had better statistical characteristics than RBFN-BP and can be helpful for the ET0 estimation.
Institute of Scientific and Technical Information of China (English)
ZHAO Min; CUI Wei-cheng
2007-01-01
Improving the efficiency of ship optimization is crucial for modern ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.
Image interpolation for progressive transmission by using radial basis function networks.
Sigitani, T; Iiguni, Y; Maeda, H
1999-01-01
This paper investigates the application of a radial basis function network (RBFN) to a hierarchical image coding for progressive transmission. The RBFN is then used to generate an interpolated image from the subsampled version. An efficient method of computing the network parameters is developed for reduction in computational and memory requirements. The coding method does not suffer from problems of blocking effect and can produce the coarsest image quickly. Quantization error effects introduced at one stage are considered in decoding images at the following stages, thus allowing lossless progressive transmission.
Radial Basis Function Neural Network Based Super-Resolution Restoration for an Underspled Image
Institute of Scientific and Technical Information of China (English)
苏秉华; 金伟其; 牛丽红
2004-01-01
To achieve restoration of high frequency information for an underspled and degraded low-resolution image, a nonlinear and real-time processing method-the radial basis function (RBF) neural network based super-resolution method of restoration is proposed. The RBF network configuration and processing method is suitable for a high resolution restoration from an underspled low-resolution image. The soft-competition learning scheme based on the k-means algorithm is used, and can achieve higher mapping approximation accuracy without increase in the network size. Experiments showed that the proposed algorithm can achieve a super-resolution restored image from an underspled and degraded low-resolution image, and requires a shorter training time when compared with the multiplayer perception (MLP) network.
Gorinevsky, D
1995-01-01
Considers radial basis function (RBF) network approximation of a multivariate nonlinear mapping as a linear parametric regression problem. Linear recursive identification algorithms applied to this problem are known to converge, provided the regressor vector sequence has the persistency of excitation (PE) property. The main contribution of this paper is formulation and proof of PE conditions on the input variables. In the RBF network identification, the regressor vector is a nonlinear function of these input variables. According to the formulated condition, the inputs provide PE, if they belong to domains around the network node centers. For a two-input network with Gaussian RBF that have typical width and are centered on a regular mesh, these domains cover about 25% of the input domain volume. The authors further generalize the proposed solution of the standard RBF network identification problem and study affine RBF network identification that is important for affine nonlinear system control. For the affine RBF network, the author formulates and proves a PE condition on both the system state parameters and control inputs.
An Adaptive Identification and Control Scheme Using Radial Basis Function Networks
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an adaptive fuzzy generalized learning vector quantization (AFGLVQ) technique and recursive least squares algorithm with variable forgetting factor (VRLS). The AFGLVQ adjusts the centers of the RBF while the VRLS updates the connection weights of the network. The identification algorithm has the properties of rapid convergence and persistent adaptability that make it suitable for real-time control. Secondly, on the basis of the one-step ahead RBF predictor, the control law is optimized iteratively through a numerical stable Davidon's least squares-based (SDLS) minimization approach. Four nonlinear examples are simulated to demonstrate the effectiveness of the identification and control algorithms.
Parallel Fixed Point Implementation of a Radial Basis Function Network in an FPGA
Directory of Open Access Journals (Sweden)
Alisson C. D. de Souza
2014-09-01
Full Text Available This paper proposes a parallel fixed point radial basis function (RBF artificial neural network (ANN, implemented in a field programmable gate array (FPGA trained online with a least mean square (LMS algorithm. The processing time and occupied area were analyzed for various fixed point formats. The problems of precision of the ANN response for nonlinear classification using the XOR gate and interpolation using the sine function were also analyzed in a hardware implementation. The entire project was developed using the System Generator platform (Xilinx, with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA.
Parallel fixed point implementation of a radial basis function network in an FPGA.
de Souza, Alisson C D; Fernandes, Marcelo A C
2014-09-29
This paper proposes a parallel fixed point radial basis function (RBF) artificial neural network (ANN), implemented in a field programmable gate array (FPGA) trained online with a least mean square (LMS) algorithm. The processing time and occupied area were analyzed for various fixed point formats. The problems of precision of the ANN response for nonlinear classification using the XOR gate and interpolation using the sine function were also analyzed in a hardware implementation. The entire project was developed using the System Generator platform (Xilinx), with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA.
Radial Basis Function Networks Applied in Bacterial Classification Based on MALDI-TOF-MS
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The radial basis function networks were applied to bacterial classification based on the matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOF-MS) data. The classification of bacteria cultured at different time was discussed and the effect of the network parameters on the classification was investigated. The cross-validation method was used to test the trained networks. The correctness of the classification of different bacteria investigated changes in a wide range from 61.5% to 92.8%. Owing to the complexity of biological effects in bacterial growth, the more rigid control of bacterial culture conditions seems to be a critical factor for improving the rate of correctness for bacterial classification.
Construction of tunable radial basis function networks using orthogonal forward selection.
Chen, Sheng; Hong, Xia; Luk, Bing L; Harris, Chris J
2009-04-01
An orthogonal forward selection (OFS) algorithm based on leave-one-out (LOO) criteria is proposed for the construction of radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines an RBF node, namely, its center vector and diagonal covariance matrix, by minimizing the LOO statistics. For regression application, the LOO criterion is chosen to be the LOO mean-square error, while the LOO misclassification rate is adopted in two-class classification application. This OFS-LOO algorithm is computationally efficient, and it is capable of constructing parsimonious RBF networks that generalize well. Moreover, the proposed algorithm is fully automatic, and the user does not need to specify a termination criterion for the construction process. The effectiveness of the proposed RBF network construction procedure is demonstrated using examples taken from both regression and classification applications.
Ma, Shu-min; Liu, Si-dong; Zhang, Zhuo-yong; Fan, Guo-qiang
2005-06-01
The Fourier transform infrared spectrometry (FTIRS) and radial basis function neural network (RBF-NN) have been applied to develop classification models for identifying official and unofficial rhubarb samples. The original data were compressed from 775 variables to 49 variables by using wavelet transformation method. The compressed spectra with reduced variables maintain the characteristics of the IR spectra and speed up the network training process. The effects of network parameters including error goal and spread constant, were investigated. The rate of correct classification is up to 97.78% at optimized conditions. Results show that the combination of IRS and ANN can be used as fast and convenient tool for identification of Chinese herbal samples.
Prediction Study on PCI Failure of Reactor Fuel Based on a Radial Basis Function Neural Network
Directory of Open Access Journals (Sweden)
Xinyu Wei
2016-01-01
Full Text Available Pellet-clad interaction (PCI is one of the major issues in fuel rod design and reactor core operation in water cooled reactors. The prediction of fuel rod failure by PCI is studied in this paper by the method of radial basis function neural network (RBFNN. The neural network is built through the analysis of the existing experimental data. It is concluded that it is a suitable way to reduce the calculation complexity. A self-organized RBFNN is used in our study, which can vary its structure dynamically in order to maintain the prediction accuracy. For the purpose of the appropriate network complexity and overall computational efficiency, the hidden neurons in the RBFNN can be changed online based on the neuron activity and mutual information. The presented method is tested by the experimental data from the reference, and the results demonstrate its effectiveness.
Markopoulos, Angelos P.; Georgiopoulos, Sotirios; Manolakos, Dimitrios E.
2016-03-01
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, namely the adaptive back propagation algorithm of the steepest descent with the use of momentum term, the back propagation Levenberg-Marquardt algorithm and the back propagation Bayesian algorithm. Moreover, radial basis function neural networks are examined. All the aforementioned algorithms are used for the prediction of surface roughness in milling, trained with the same input parameters and output data so that they can be compared. The advantages and disadvantages, in terms of the quality of the results, computational cost and time are identified. An algorithm for the selection of the spread constant is applied and tests are performed for the determination of the neural network with the best performance. The finally selected neural networks can satisfactorily predict the quality of the manufacturing process performed, through simulation and input-output surfaces for combinations of the input data, which correspond to milling cutting conditions.
Directory of Open Access Journals (Sweden)
Dongliang Guo
2014-01-01
Full Text Available Indoor localization technique has received much attention in recent years. Many techniques have been developed to solve the problem. Among the recent proposed methods, radio frequency identification (RFID indoor localization technology has the advantages of low-cost, noncontact, non-line-of-sight, and high precision. This paper proposed two radial basis function (RBF neural network based indoor localization methods. The RBF neural networks are trained to learn the mapping relationship between received signal strength indication values and position of objects. Traditional method used the received signal strength directly as the input of neural network; we added another input channel by taking the difference of the received signal strength, thus improving the reliability and precision of positioning. Fuzzy clustering is used to determine the center of radial basis function. In order to reduce the impact of signal fading due to non-line-of-sight and multipath transmission in indoor environment, we improved the Gaussian filter to process received signal strength values. The experimental results show that the proposed method outperforms the existing methods as well as improves the reliability and precision of the RFID indoor positioning system.
Radial basis function networks with linear interval regression weights for symbolic interval data.
Su, Shun-Feng; Chuang, Chen-Chia; Tao, C W; Jeng, Jin-Tsong; Hsiao, Chih-Ching
2012-02-01
This paper introduces a new structure of radial basis function networks (RBFNs) that can successfully model symbolic interval-valued data. In the proposed structure, to handle symbolic interval data, the Gaussian functions required in the RBFNs are modified to consider interval distance measure, and the synaptic weights of the RBFNs are replaced by linear interval regression weights. In the linear interval regression weights, the lower and upper bounds of the interval-valued data as well as the center and range of the interval-valued data are considered. In addition, in the proposed approach, two stages of learning mechanisms are proposed. In stage 1, an initial structure (i.e., the number of hidden nodes and the adjustable parameters of radial basis functions) of the proposed structure is obtained by the interval competitive agglomeration clustering algorithm. In stage 2, a gradient-descent kind of learning algorithm is applied to fine-tune the parameters of the radial basis function and the coefficients of the linear interval regression weights. Various experiments are conducted, and the average behavior of the root mean square error and the square of the correlation coefficient in the framework of a Monte Carlo experiment are considered as the performance index. The results clearly show the effectiveness of the proposed structure.
Gonzalez, J; Rojas, I; Ortega, J; Pomares, H; Fernandez, F J; Diaz, A F
2003-01-01
This paper presents a multiobjective evolutionary algorithm to optimize radial basis function neural networks (RBFNNs) in order to approach target functions from a set of input-output pairs. The procedure allows the application of heuristics to improve the solution of the problem at hand by including some new genetic operators in the evolutionary process. These new operators are based on two well-known matrix transformations: singular value decomposition (SVD) and orthogonal least squares (OLS), which have been used to define new mutation operators that produce local or global modifications in the radial basis functions (RBFs) of the networks (the individuals in the population in the evolutionary procedure). After analyzing the efficiency of the different operators, we have shown that the global mutation operators yield an improved procedure to adjust the parameters of the RBFNNs.
Zhang, Zhuoyong; Wang, Dan; Harrington, Peter de B; Voorhees, Kent J; Rees, Jon
2004-06-17
Forward selection improved radial basis function (RBF) network was applied to bacterial classification based on the data obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The classification of each bacterium cultured at different time was discussed and the effect of parameters of the RBF network was investigated. The new method involves forward selection to prevent overfitting and generalized cross-validation (GCV) was used as model selection criterion (MSC). The original data was compressed by using wavelet transformation to speed up the network training and reduce the number of variables of the original MS data. The data was normalized prior training and testing a network to define the area the neural network to be trained in, accelerate the training rate, and reduce the range the parameters to be selected in. The one-out-of-n method was used to split the data set of p samples into a training set of size p-1 and a test set of size 1. With the improved method, the classification correctness for the five bacteria discussed in the present paper are 87.5, 69.2, 80, 92.3, and 92.8%, respectively.
Sun, Gang; Hoff, Steven J; Zelle, Brian C; Nelson, Minda A
2008-12-01
It is vital to forecast gas and particle matter concentrations and emission rates (GPCER) from livestock production facilities to assess the impact of airborne pollutants on human health, ecological environment, and global warming. Modeling source air quality is a complex process because of abundant nonlinear interactions between GPCER and other factors. The objective of this study was to introduce statistical methods and radial basis function (RBF) neural network to predict daily source air quality in Iowa swine deep-pit finishing buildings. The results show that four variables (outdoor and indoor temperature, animal units, and ventilation rates) were identified as relative important model inputs using statistical methods. It can be further demonstrated that only two factors, the environment factor and the animal factor, were capable of explaining more than 94% of the total variability after performing principal component analysis. The introduction of fewer uncorrelated variables to the neural network would result in the reduction of the model structure complexity, minimize computation cost, and eliminate model overfitting problems. The obtained results of RBF network prediction were in good agreement with the actual measurements, with values of the correlation coefficient between 0.741 and 0.995 and very low values of systemic performance indexes for all the models. The good results indicated the RBF network could be trained to model these highly nonlinear relationships. Thus, the RBF neural network technology combined with multivariate statistical methods is a promising tool for air pollutant emissions modeling.
Sabour, Mohammad Reza; Moftakhari Anasori Movahed, Saman
2017-02-01
The soil sorption partition coefficient logKoc is an indispensable parameter that can be used in assessing the environmental risk of organic chemicals. In order to predict soil sorption partition coefficient for different and even unknown compounds in a fast and accurate manner, a radial basis function neural network (RBFNN) model was developed. Eight topological descriptors of 800 organic compounds were used as inputs of the model. These 800 organic compounds were chosen from a large and very diverse data set. Generalized Regression Neural Network (GRNN) was utilized as the function in this neural network model due to its capability to adapt very quickly. Hence, it can be used to predict logKoc for new chemicals, as well. Out of total data set, 560 organic compounds were used for training and 240 to test efficiency of the model. The obtained results indicate that the model performance is very well. The correlation coefficients (R2) for training and test sets were 0.995 and 0.933, respectively. The root-mean square errors (RMSE) were 0.2321 for training set and 0.413 for test set. As the results for both training and test set are extremely satisfactory, the proposed neural network model can be employed not only to predict logKoc of known compounds, but also to be adaptive for prediction of this value precisely for new products that enter the market each year.
Assessment of Global Voltage Stability Margin through Radial Basis Function Neural Network
Directory of Open Access Journals (Sweden)
Akash Saxena
2016-01-01
Full Text Available Dynamic operating conditions along with contingencies often present formidable challenges to the power engineers. Decisions pertaining to the control strategies taken by the system operators at energy management centre are based on the information about the system’s behavior. The application of ANN as a tool for voltage stability assessment is empirical because of its ability to do parallel data processing with high accuracy, fast response, and capability to model dynamic, nonlinear, and noisy data. This paper presents an effective methodology based on Radial Basis Function Neural Network (RBFN to predict Global Voltage Stability Margin (GVSM, for any unseen loading condition of the system. GVSM is used to assess the overall voltage stability status of the power system. A comparative analysis of different topologies of ANN, namely, Feedforward Backprop (FFBP, Cascade Forward Backprop (CFB, Generalized Regression (GR, Layer Recurrent (LR, Nonlinear Autoregressive Exogenous (NARX, ELMAN Backprop, and Feedforward Distributed Time Delay Network (FFDTDN, is carried out on the basis of capability of the prediction of GVSM. The efficacy of RBFN is better than other networks, which is validated by taking the predictions of GVSM at different levels of Additive White Gaussian Noise (AWGN in input features. The results obtained from ANNs are validated through the offline Newton Raphson (N-R method. The proposed methodology is tested over IEEE 14-bus, IEEE 30-bus, and IEEE 118-bus test systems.
On-line Cutting Quality Recognition in Milling Using a Radical Basis Function Neural Network
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Tool wear, chatter vibration, chip breaking and built-up edge are main phenomena to be monitored in modern manufacturing processes, which are considered as important factors to the quality of products.They are closely related to the cutting parameters, which are to be selected in manufacturing process.However, it is very difficult to measure directly the cutting quality based on on-line monitoring.In this study, the relationship between the cutting parameters and cutting quality is analyzed.A Radical Basis Function (RBF) neural network based on-line quality recognition scheme is also presented, which monitors the level of surface roughness.The experimental results reveal that the RBF neural network has a high prediction success rate.
Institute of Scientific and Technical Information of China (English)
HUANG He; BAI Ji-cheng; LU Ze-sheng; GUO Yong-feng
2009-01-01
Milling electrical discharge machining (EDM) enables the machining of complex cavities using cylindrical or tubular electrodes. To ensure acceptable machining accuracy the process requires some methods of compensating for electrode wear. Due to the complexity and random nature of the process, existing methods of compensating for such wear usually involve off-line prediction. This paper discusses an innovative model of electrode wear prediction for milling EDM based upon a radial basis function (RBF) network. Data gained from an orthogonal experiment were used to provide training samples for the RBF network. The model established was used to forecast the electrode wear, making it possible to calculate the real-time tool wear in the milling EDM process and, to lay the foundations for dynamic compensation of the electrode wear on-line. This paper demonstrates that by using this model prediction errors can be controlled within 8%.
Institute of Scientific and Technical Information of China (English)
Jun Wang; Guoqing Chen; Tuo Zhu; Shumei Gao; Bailin Wei; Linna Bi
2009-01-01
@@ The fluorescence spectra of synthetic food dyes of sunset yellow and tartrazine are analyzed.The fluorescence peak wavelengths of sunset yellow and tartrazine are 576 and 569 nm, respectively, while the fluorescence spectra widths are 480-750 and 500-750 nm induced by ultraviolet light between 310-400 nm.The fluorescence spectra of sunset yellow overlap heavily with those of tartrazine, so it is diffic ult to distinguish them.Based on the principle of radial basis function neural network, a neural network is obtained from the training of the 14 groups of experimental data.The results show that the species of sunset yellow and tartrazine could be recognized accurately.This method has potential applications in other synthetic food dyes detection and food safety inspection.
Numerical solution of differential equations using multiquadric radial basis functions networks.
Mai-Duy, N; Tran-Cong, T
2001-03-01
This paper presents mesh-free procedures for solving linear differential equations (ODEs and elliptic PDEs) based on multiquadric (MQ) radial basis function networks (RBFNs). Based on our study of approximation of function and its derivatives using RBFNs that was reported in an earlier paper (Mai-Duy, N. & Tran-Cong, T. (1999). Approximation of function and its derivatives using radial basis function networks. Neural networks, submitted), new RBFN approximation procedures are developed in this paper for solving DEs, which can also be classified into two types: a direct (DRBFN) and an indirect (IRBFN) RBFN procedure. In the present procedures, the width of the RBFs is the only adjustable parameter according to a(i) = betad(i), where d(i) is the distance from the ith centre to the nearest centre. The IRBFN method is more accurate than the DRBFN one and experience so far shows that beta can be chosen in the range 7 < or = beta 10 for the former. Different combinations of RBF centres and collocation points (uniformly and randomly distributed) are tested on both regularly and irregularly shaped domains. The results for a 1D Poisson's equation show that the DRBFN and the IRBFN procedures achieve a norm of error of at least O(1.0 x 10(-4)) and O(1.0 x 10(-8)), respectively, with a centre density of 50. Similarly, the results for a 2D Poisson's equation show that the DRBFN and the IRBFN procedures achieve a norm of error of at least O(1.0 x 10(-3)) and O(1.0 x10(-6)) respectively, with a centre density of 12 X 12.
Filtered-X Radial Basis Function Neural Networks for Active Noise Control
Directory of Open Access Journals (Sweden)
Bambang Riyanto
2004-05-01
Full Text Available This paper presents active control of acoustic noise using radial basis function (RBF networks and its digital signal processor (DSP real-time implementation. The neural control system consists of two stages: first, identification (modeling of secondary path of the active noise control using RBF networks and its learning algorithm, and secondly neural control of primary path based on neural model obtained in the first stage. A tapped delay line is introduced in front of controller neural, and another tapped delay line is inserted between controller neural networks and model neural networks. A new algorithm referred to as Filtered X-RBF is proposed to account for secondary path effects of the control system arising in active noise control. The resulting algorithm turns out to be the filtered-X version of the standard RBF learning algorithm. We address centralized and decentralized controller configurations and their DSP implementation is carried out. Effectiveness of the neural controller is demonstrated by applying the algorithm to active noise control within a 3 dimension enclosure to generate quiet zones around error microphones. Results of the real-time experiments show that 10-23 dB noise attenuation is produced with moderate transient response.
DENSENESS OF RADIAL-BASIS FUNCTIONS IN L2（Rn） AND ITS APPLICATIONS IN NEURAL NETWORKS
Institute of Scientific and Technical Information of China (English)
CHENTIANPING; CHENHONG
1996-01-01
The authors discuss problems of approximation to functions in L2 (Rn)and operators from L2(Rn1)to L2(Rn2)by Radial-Basis Functions. The results obtained solve the parblem of capability of RBF neural networks,a basic problem in neural networks.
An improved method using radial basis function neural networks to speed up optimization algorithms
Bazan, M; Russenschuck, Stephan
2002-01-01
The paper presents a method using radial basis function (RBF) neural networks to speed up deterministic search algorithms used for the optimization of superconducting magnets for the LHC accelerator project at CERN. The optimization of the iron yoke of the main LHC dipoles requires a number of numerical field computations per trial solution as the field quality depends on the excitation and local iron saturation in the yoke. This results in computation times of about 30 min for each objective function evaluation (on DEC-Alpha 600 /333). In this paper, we present a method for constructing an RBF neural network for a local approximation of the objective function. The computational time required for such a construction is negligible compared to the deterministic function evaluation, and, thus, yields a speed-up of the overall search process. The effectiveness of this method is demonstrated by means of two- and three-parametric optimization examples. The achieved speed-up of the search routine is up to 30%. (12 r...
Adaptive critic autopilot design of bank-to-turn missiles using fuzzy basis function networks.
Lin, Chuan-Kai
2005-04-01
A new adaptive critic autopilot design for bank-to-turn missiles is presented. In this paper, the architecture of adaptive critic learning scheme contains a fuzzy-basis-function-network based associative search element (ASE), which is employed to approximate nonlinear and complex functions of bank-to-turn missiles, and an adaptive critic element (ACE) generating the reinforcement signal to tune the associative search element. In the design of the adaptive critic autopilot, the control law receives signals from a fixed gain controller, an ASE and an adaptive robust element, which can eliminate approximation errors and disturbances. Traditional adaptive critic reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error interactions with a dynamic environment, however, the proposed tuning algorithm can significantly shorten the learning time by online tuning all parameters of fuzzy basis functions and weights of ASE and ACE. Moreover, the weight updating law derived from the Lyapunov stability theory is capable of guaranteeing both tracking performance and stability. Computer simulation results confirm the effectiveness of the proposed adaptive critic autopilot.
Voigt, M.; Lorenz, P.; Kruschke, T.; Osinski, R.; Ulbrich, U.; Leckebusch, G. C.
2012-04-01
Winterstorms and related gusts can cause extensive socio-economic damages. Knowledge about the occurrence and the small scale structure of such events may help to make regional estimations of storm losses. For a high spatial and temporal representation, the use of dynamical downscaling methods (RCM) is a cost-intensive and time-consuming option and therefore only applicable for a limited number of events. The current study explores a methodology to provide a statistical downscaling, which offers small scale structured gust fields from an extended large scale structured eventset. Radial-basis-function (RBF) networks in combination with bidirectional Kohonen (BDK) maps are used to generate the gustfields on a spatial resolution of 7 km from the 6-hourly mean sea level pressure field from ECMWF reanalysis data. BDK maps are a kind of neural network which handles supervised classification problems. In this study they are used to provide prototypes for the RBF network and give a first order approximation for the output data. A further interpolation is done by the RBF network. For the training process the 50 most extreme storm events over the North Atlantic area from 1957 to 2011 are used, which have been selected from ECMWF reanalysis datasets ERA40 and ERA-Interim by an objective wind based tracking algorithm. These events were downscaled dynamically by application of the DWD model chain GME → COSMO-EU. Different model parameters and their influence on the quality of the generated high-resolution gustfields are studied. It is shown that the statistical RBF network approach delivers reasonable results in modeling the regional gust fields for untrained events.
Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao
2014-09-18
The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality.
Interval model updating using perturbation method and Radial Basis Function neural networks
Deng, Zhongmin; Guo, Zhaopu; Zhang, Xinjie
2017-02-01
In recent years, stochastic model updating techniques have been applied to the quantification of uncertainties inherently existing in real-world engineering structures. However in engineering practice, probability density functions of structural parameters are often unavailable due to insufficient information of a structural system. In this circumstance, interval analysis shows a significant advantage of handling uncertain problems since only the upper and lower bounds of inputs and outputs are defined. To this end, a new method for interval identification of structural parameters is proposed using the first-order perturbation method and Radial Basis Function (RBF) neural networks. By the perturbation method, each random variable is denoted as a perturbation around the mean value of the interval of each parameter and that those terms can be used in a two-step deterministic updating sense. Interval model updating equations are then developed on the basis of the perturbation technique. The two-step method is used for updating the mean values of the structural parameters and subsequently estimating the interval radii. The experimental and numerical case studies are given to illustrate and verify the proposed method in the interval identification of structural parameters.
Approximating Gaussian mixture model or radial basis function network with multilayer perceptron.
Patrikar, Ajay M
2013-07-01
Gaussian mixture models (GMMs) and multilayer perceptron (MLP) are both popular pattern classification techniques. This brief shows that a multilayer perceptron with quadratic inputs (MLPQ) can accurately approximate GMMs with diagonal covariance matrices. The mapping equations between the parameters of GMM and the weights of MLPQ are presented. A similar approach is applied to radial basis function networks (RBFNs) to show that RBFNs with Gaussian basis functions and Euclidean norm can be approximated accurately with MLPQ. The mapping equations between RBFN and MLPQ weights are presented. There are well-established training procedures for GMMs, such as the expectation maximization (EM) algorithm. The GMM parameters obtained by the EM algorithm can be used to generate a set of initial weights of MLPQ. Similarly, a trained RBFN can be used to generate a set of initial weights of MLPQ. MLPQ training can be continued further with gradient-descent based methods, which can lead to improvement in performance compared to the GMM or RBFN from which it is initialized. Thus, the MLPQ can always perform as well as or better than the GMM or RBFN.
Institute of Scientific and Technical Information of China (English)
李昕; 郑宇; 等
2002-01-01
The performance of speaker verification systems is often compromised under real-world environments.For example,variations in handset characteristics could cause severe performance degradation.This paper presents a novel method to overcome this problem by using a non-linear handset mapper.Under this method,a mapper is constructed by training an elliptical basis function network using distorted speech features as inputs and the corresponding clean features as the desired outputs.During feature recuperation,clean features are recovered by feeding the distorted features to the feature mapper.The recovered features are then presented to a speaker model as if they were derived from clean speech.Experimental evaluation based on 258 speakers of the TIMIT and NTIMIT corpuses suggest that the feature mappers improve the verification performance remarkably.
Higher-order-statistics-based radial basis function networks for signal enhancement.
Lin, Bor-Shyh; Lin, Bor-Shing; Chong, Fok-Ching; Lai, Feipei
2007-05-01
In this paper, a higher-order-statistics (HOS)-based radial basis function (RBF) network for signal enhancement is introduced. In the proposed scheme, higher order cumulants of the reference signal were used as the input of HOS-based RBF. An HOS-based supervised learning algorithm, with mean square error obtained from higher order cumulants of the desired input and the system output as the learning criterion, was used to adapt weights. The motivation is that the HOS can effectively suppress Gaussian and symmetrically distributed non-Gaussian noise. The influence of a Gaussian noise on the input of HOS-based RBF and the HOS-based learning algorithm can be mitigated. Simulated results indicate that HOS-based RBF can provide better performance for signal enhancement under different noise levels, and its performance is insensitive to the selection of learning rates. Moreover, the efficiency of HOS-based RBF under the nonstationary Gaussian noise is stable.
Institute of Scientific and Technical Information of China (English)
LIU Hailong; TANG Jiling
2007-01-01
The types of myocardial ischemia can be revealed by electrocardiographic (ECG) ST segment.Effective measurement and electrocardiographic analysis of ST as well as calculation of displacement and shape change of ST segment can help doctors diagnose coronary heart disease and myocardial ischemia,especially for asymptomatic myocardial ischemia.Therefore,it is a very important subject in clinical practice to measure and classify the ECG ST segment.In this paper,we introduce a computerized automatic identification method of the electrocardiographic ST segment shape with radial basis function neural network based on adaptive fuzzy system,which has a better effect than other methods.It helps to analyze the reason of the ST segment change and confirm the position of myocardial ischemia,and is useful for doctor diagnosis.
Ryu, Duchwan
2013-03-01
The sea surface temperature (SST) is an important factor of the earth climate system. A deep understanding of SST is essential for climate monitoring and prediction. In general, SST follows a nonlinear pattern in both time and location and can be modeled by a dynamic system which changes with time and location. In this article, we propose a radial basis function network-based dynamic model which is able to catch the nonlinearity of the data and propose to use the dynamically weighted particle filter to estimate the parameters of the dynamic model. We analyze the SST observed in the Caribbean Islands area after a hurricane using the proposed dynamic model. Comparing to the traditional grid-based approach that requires a supercomputer due to its high computational demand, our approach requires much less CPU time and makes real-time forecasting of SST doable on a personal computer. Supplementary materials for this article are available online. © 2013 American Statistical Association.
Radial Basis Function Neural Networks Based QSPR for the Prediction of log P
Institute of Scientific and Technical Information of China (English)
姚小军; 范波涛; 等
2002-01-01
Quantitative structure-property relationship(QSPR) method is used to study the correlation models between the structures of a set of diverse organic compounds and their log P.Molecular descriptors calculated from strucure alone are used to describe the molecular structures.A subset of the calcualted descriptors,selected using forward stepwise regression,is used in the QSPR models development.Multiple linear regression (MLR) and radial basis function neural networks (RBFNNs) are utilied to construct the linear and non-linear correlation model,respectively,The optimal QSPR model developed is based on a 7-17-1 RBFNNs architecture using sever calculated molecular descriptors .The root mean square errors in predictions for the training,predicting and overall data sets are 0.284,0.327 and 0.291 log P units respectively.
Babu, G S; Suresh, S
2013-02-01
In this paper, we present a sequential projection-based metacognitive learning algorithm in a radial basis function network (PBL-McRBFN) for classification problems. The algorithm is inspired by human metacognitive learning principles and has two components: a cognitive component and a metacognitive component. The cognitive component is a single-hidden-layer radial basis function network with evolving architecture. The metacognitive component controls the learning process in the cognitive component by choosing the best learning strategy for the current sample and adapts the learning strategies by implementing self-regulation. In addition, sample overlapping conditions and past knowledge of the samples in the form of pseudosamples are used for proper initialization of new hidden neurons to minimize the misclassification. The parameter update strategy uses projection-based direct minimization of hinge loss error. The interaction of the cognitive component and the metacognitive component addresses the what-to-learn, when-to-learn, and how-to-learn human learning principles efficiently. The performance of the PBL-McRBFN is evaluated using a set of benchmark classification problems from the University of California Irvine machine learning repository. The statistical performance evaluation on these problems proves the superior performance of the PBL-McRBFN classifier over results reported in the literature. Also, we evaluate the performance of the proposed algorithm on a practical Alzheimer's disease detection problem. The performance results on open access series of imaging studies and Alzheimer's disease neuroimaging initiative datasets, which are obtained from different demographic regions, clearly show that PBL-McRBFN can handle a problem with change in distribution.
Energy Technology Data Exchange (ETDEWEB)
Hancock, M.F. Jr. [Rollins College, Winter Park, FL (United States)
1995-12-31
The National Council on Compensation Insurance (NCCI) maintains a national data base of outcomes of workers` compensation claims. We consider whether a radial basis function network can predict the total dollar value of a claim based upon medical and demographic indicators (MDI`s). This work used data from 12,130 workers` compensation claims collected over a period of four years from the state of New Mexico. Two problems were addressed: (1) How well can the total incurred medical expense for all claims be predicted from available MDI`s? For individual claims? (2) How well can the duration of disability be predicted from available MDI`s? The available features intuitively correlated with total medical cost were selected, including type of injury, part of body injured, person`s age at time of injury, gender, marital status, etc. These features were statistically standardized and sorted by correlation with outcome valuation. Principal component analysis was applied. A radial basis function neural network was applied to the feature sets in both supervised and unsupervised training modes. For sets used in training, individual case valuations could consistently be predicted to within $1000 over 98% of the time. For these sets, it was possible to predict total medical expense for the training sets themselves to within 10%. When applied as blind tests against sets which were NOT part of the training data, the prediction was within 15% on the whole sets. Results on individual cases were very poor in only 30% of the cases were the predictions for the training sets within $1000 of their actual valuations. Single-factor analysis suggested that the presence of an attorney strongly decorrelated the data. A simple stratification was performed to remove cases involving attorneys and contested claims, and the procedures above repeated. Preliminary results based upon the very limited effort applied indicate that NCCI data support population estimates, but not single-point estimates.
Institute of Scientific and Technical Information of China (English)
YANG Xiao-hua; HUANG Jing-feng; WANG Jian-wen; WANG Xiu-zhen; LIU Zhan-yu
2007-01-01
Hyperspectral reflectance (350-2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices (VIs) were used to predict the rice agronomic parameters including Leaf Area Index (LAI, m2 green leaf/m2 soil) and Green Leaf Chlorophyll Density (GLCD,mg chlorophyll/m2 soil) by the traditional regression models and Radial Basis Function Neural Network (RBF). RBF emerged as a variant of Artificial Neural Networks (ANNs) in the late 1980's. A large variety of training algorithms has been tested for training RBF networks. In this study, Original RBF (ORBF), Gradient Descent RBF (GDRBF), and Generalized Regression Neural Network (GRNN) were employed. Results showed that green waveband Normalized Difference Vegetation Index (NDVIgreen) and TCARI/OSAVI have the best prediction power for LAI by exponent model and ORBF respectively, and that TCARI/OSAVI has the best prediction power for GLCD by exponent model and GDRBF. The best performances of RBF are compared with the traditional models, showing that the relationship between VIs and agronomic variables are further improved when RBF is used.Compared with the best traditional models, ORBF using TCARI/OSAVI improves the prediction power for LAI by lowering the Root Mean Square Error (RMSE) for 0.1119, and GDRBF using TCARI/OSAVI improves the prediction power for GLCD by lowering the RMSE for 26.7853. It is concluded that RBF provides a useful exploratory and predictive tool when applied to the sensitive VIs.
OPTIMASI LEARNING RADIAL BASIS FUNCTION NEURAL NETWORK DENGAN EXTENDED KALMAN FILTER
Directory of Open Access Journals (Sweden)
Oni Soesanto
2015-09-01
Full Text Available Dalam paper ini dibahas mengenai optimasi Radial Basis Function Neural Network (RBFNN dengan Extended Kalman Filter. Proses learning RBF dengan Extended Kalman Filter menggunakan parameter bobot pada hidden center RBF yaitu noise proses pada perhitungan bobot hidden center dan noise pengukuran pada data output. Extended Kalman Filter pada jaringan syaraf RBF berfungsi mengoptimalkan bobot pada hidden center dengan meminimalkan error pada output RBF dengan parameter proses pada unit center RBF dan parameter bobot output pada output layer. Bobot output optimal diperoleh pada saat error output pada training RBF telah konvergen, selanjutnya digunakan untuk proses testing. Algoritma Extended Kalman Filter dan Radial Basis Fuction (EKF-RBF memungkinkan proses learning memungkinkan center dan variansi pada hidden layer tidak perlu dihitung sebelum bobot output optimum ditemukan. Hasil simulasi menunjukkan bahwa pada training, performansi klasifikasi algoritma EKF-RBF mampu mengenali rata-rata 92.42% dan untuk prediksi didapatkan MAE sebesar 5,3846 dan RMSE sebesar 16,2398 dengan CPU time 24,4146 detik dengan iterasi rata-rata 68,8 iterasi, testing in sample rata-rata MAE sebesar 4,3388, rata-rata RMSE sebesar 13,2230 dan rata-rata CPU time sebesar 0,1123 detik sedangkan pada testing out sample didapatkan rata-rata MAE sebesar 4,1065, RMSE sebesar 11,0126 dan CPU time sebesar 0,0265 detik. Kata kunci : Extended Kalman Filter, Extended Kalman Filter â€“ Radial Basis Function (EKF-RBF, Optimasi Jaringan Syaraf RBF
Near and long-term load prediction using radial basis function networks
Energy Technology Data Exchange (ETDEWEB)
Hancock, M.F. [Rollins College, Winter Park, FL (United States)
1995-12-31
A number of researchers have investigated the application of multi-layer perceptrons (MLP`s), a variety of neural network, to the problem of short-term load forecasting for electric utilities (e.g., Rahman & Hazin, IEEE Trans. Power Systems, May 1993). {open_quotes}Short-term{close_quotes} in this context typically means {open_quotes}next day{close_quotes}. These forecasts have been based upon previous day actual loads and meteorological factors (e.g., max-min temperature, relative humidity). We describe the application of radial basis function networks (RBF`s) to the {open_quotes}long-term{close_quotes} (next year) load forecasting problem. The RBF network performs a two-stage classification based upon annual average loads and meteorological data. During stage 1, discrete classification is performed using radius-limited elements. During stage 2, a multi-layer perceptron may be applied. The quantized output is used to correct a prediction template. The stage 1 classifier is trained by maximizing an objective function (the {open_quotes}disambiguity{close_quotes}). The stage 2 MLP`s are trained by standard back-propagation. This work uses 12 months of hourly meteorological data, and the corresponding hourly load data for both commercial and residential feeders. At the current stage of development, the RBF machine can train on 20% of the weather/load data (selected by simple linear sampling), and estimate the hourly load for an entire year (8,760 data points) with 9.1% error (RMS, relative to daily peak load). (By comparison, monthly mean profiles perform at c. 12% error.) The best short-term load forecasters operate in the 2% error range. The current system is an engineering prototype, and development is continuing.
Ensembles of radial basis function networks for spectroscopic detection of cervical precancer
Tumer, K.; Ramanujam, N.; Ghosh, J.; Richards-Kortum, R.
1998-01-01
The mortality related to cervical cancer can be substantially reduced through early detection and treatment. However, current detection techniques, such as Pap smear and colposcopy, fail to achieve a concurrently high sensitivity and specificity. In vivo fluorescence spectroscopy is a technique which quickly, noninvasively and quantitatively probes the biochemical and morphological changes that occur in precancerous tissue. A multivariate statistical algorithm was used to extract clinically useful information from tissue spectra acquired from 361 cervical sites from 95 patients at 337-, 380-, and 460-nm excitation wavelengths. The multivariate statistical analysis was also employed to reduce the number of fluorescence excitation-emission wavelength pairs required to discriminate healthy tissue samples from precancerous tissue samples. The use of connectionist methods such as multilayered perceptrons, radial basis function (RBF) networks, and ensembles of such networks was investigated. RBF ensemble algorithms based on fluorescence spectra potentially provide automated and near real-time implementation of precancer detection in the hands of nonexperts. The results are more reliable, direct, and accurate than those achieved by either human experts or multivariate statistical algorithms.
A Fast Incremental Learning for Radial Basis Function Networks Using Local Linear Regression
Ozawa, Seiichi; Okamoto, Keisuke
To avoid the catastrophic interference in incremental learning, we have proposed Resource Allocating Network with Long Term Memory (RAN-LTM). In RAN-LTM, not only new training data but also some memory items stored in long-term memory are trained either by a gradient descent algorithm or by solving a linear regression problem. In the latter approach, radial basis function (RBF) centers are not trained but selected based on output errors when connection weights are updated. The proposed incremental learning algorithm belongs to the latter approach where the errors not only for a training data but also for several retrieved memory items and pseudo training data are minimized to suppress the catastrophic interference. The novelty of the proposed algorithm is that connection weights to be learned are restricted based on RBF activation in order to improve the efficiency in learning time and memory size. We evaluate the performance of the proposed algorithm in one-dimensional and multi-dimensional function approximation problems in terms of approximation accuracy, learning time, and average memory size. The experimental results demonstrate that the proposed algorithm can learn fast and have good performance with less memory size compared to memory-based learning methods.
Kuo, R J.; Cohen, P H.
1999-03-01
On-line tool wear estimation plays a very critical role in industry automation for higher productivity and product quality. In addition, appropriate and timely decision for tool change is significantly required in the machining systems. Thus, this paper is dedicated to develop an estimation system through integration of two promising technologies, artificial neural networks (ANN) and fuzzy logic. An on-line estimation system consisting of five components: (1) data collection; (2) feature extraction; (3) pattern recognition; (4) multi-sensor integration; and (5) tool/work distance compensation for tool flank wear, is proposed herein. For each sensor, a radial basis function (RBF) network is employed to recognize the extracted features. Thereafter, the decisions from multiple sensors are integrated through a proposed fuzzy neural network (FNN) model. Such a model is self-organizing and self-adjusting, and is able to learn from the experience. Physical experiments for the metal cutting process are implemented to evaluate the proposed system. The results show that the proposed system can significantly increase the accuracy of the product profile.
Oyang, Yen-Jen; Hwang, Shien-Ching; Ou, Yu-Yen; Chen, Chien-Yu; Chen, Zhi-Wei
2005-01-01
This paper presents a novel learning algorithm for efficient construction of the radial basis function (RBF) networks that can deliver the same level of accuracy as the support vector machines (SVMs) in data classification applications. The proposed learning algorithm works by constructing one RBF subnetwork to approximate the probability density function of each class of objects in the training data set. With respect to algorithm design, the main distinction of the proposed learning algorithm is the novel kernel density estimation algorithm that features an average time complexity of O(n log n), where n is the number of samples in the training data set. One important advantage of the proposed learning algorithm, in comparison with the SVM, is that the proposed learning algorithm generally takes far less time to construct a data classifier with an optimized parameter setting. This feature is of significance for many contemporary applications, in particular, for those applications in which new objects are continuously added into an already large database. Another desirable feature of the proposed learning algorithm is that the RBF networks constructed are capable of carrying out data classification with more than two classes of objects in one single run. In other words, unlike with the SVM, there is no need to resort to mechanisms such as one-against-one or one-against-all for handling datasets with more than two classes of objects. The comparison with SVM is of particular interest, because it has been shown in a number of recent studies that SVM generally are able to deliver higher classification accuracy than the other existing data classification algorithms. As the proposed learning algorithm is instance-based, the data reduction issue is also addressed in this paper. One interesting observation in this regard is that, for all three data sets used in data reduction experiments, the number of training samples remaining after a naive data reduction mechanism is
A new discrete-continuous algorithm for radial basis function networks construction.
Zhang, Long; Li, Kang; He, Haibo; Irwin, George W
2013-11-01
The construction of a radial basis function (RBF) network involves the determination of the model size, hidden nodes, and output weights. Least squares-based subset selection methods can determine a RBF model size and its parameters simultaneously. Although these methods are robust, they may not achieve optimal results. Alternatively, gradient methods are widely used to optimize all the parameters. The drawback is that most algorithms may converge slowly as they treat hidden nodes and output weights separately and ignore their correlations. In this paper, a new discrete-continuous algorithm is proposed for the construction of a RBF model. First, the orthogonal least squares (OLS)-based forward stepwise selection constructs an initial model by selecting model terms one by one from a candidate term pool. Then a new Levenberg-Marquardt (LM)-based parameter optimization is proposed to further optimize the hidden nodes and output weights in the continuous space. To speed up the convergence, the proposed parameter optimization method considers the correlation between the hidden nodes and output weights, which is achieved by translating the output weights to dependent parameters using the OLS method. The correlation is also used by the previously proposed continuous forward algorithm (CFA). However, unlike the CFA, the new method optimizes all the parameters simultaneously. In addition, an equivalent recursive sum of squared error is derived to reduce the computation demanding for the first derivatives used in the LM method. Computational complexity is given to confirm the new method is much more computationally efficient than the CFA. Different numerical examples are presented to illustrate the effectiveness of the proposed method. Further, Friedman statistical tests on 13 classification problems are performed, and the results demonstrate that RBF networks built by the new method are very competitive in comparison with some popular classifiers.
The Application of Direction Basis Function Neural Networks to the Prediction of Chaotic Time Series
Institute of Scientific and Technical Information of China (English)
CAOWenming
2004-01-01
In this paper we have examined the ability of Direction basis function networks (DBFN) to predict the output of a chaotic time series generated from a model of a physical system. DBFNs are known to be universal approximators, and chaotic systems are known to exhibit “random” behavior. Therefore the challenge is to apply the DBFN to the prediction of the output of a chaotic system, which we have chosen here to be the Mackey-Glass delay differential equation. The DBFN has been trained with off-line supervised learning using a Recursive Least Squares optimization for obtaining weights. Key issues which are addressed are the estimation of the order of the system and dependence of prediction error on various factors such as placement of DBF centers, selection of perceptive widths, and number of training samples. Included in this study is an implementation of Moody and Darken's K Means Clustering approach to optimally place DBF centers and a heuristic nearest neighbor method for determining perceptive widths.
Parameter estimation for stiff equations of biosystems using radial basis function networks
Directory of Open Access Journals (Sweden)
Sugimoto Masahiro
2006-04-01
Full Text Available Abstract Background The modeling of dynamic systems requires estimating kinetic parameters from experimentally measured time-courses. Conventional global optimization methods used for parameter estimation, e.g. genetic algorithms (GA, consume enormous computational time because they require iterative numerical integrations for differential equations. When the target model is stiff, the computational time for reaching a solution increases further. Results In an attempt to solve this problem, we explored a learning technique that uses radial basis function networks (RBFN to achieve a parameter estimation for biochemical models. RBFN reduce the number of numerical integrations by replacing derivatives with slopes derived from the distribution of searching points. To introduce a slight search bias, we implemented additional data selection using a GA that searches data-sparse areas at low computational cost. In addition, we adopted logarithmic transformation that smoothes the fitness surface to obtain a solution simply. We conducted numerical experiments to validate our methods and compared the results with those obtained by GA. We found that the calculation time decreased by more than 50% and the convergence rate increased from 60% to 90%. Conclusion In this work, our RBFN technique was effective for parameter optimization of stiff biochemical models.
Cost-Sensitive Radial Basis Function Neural Network Classifier for Software Defect Prediction
Venkatesan, R.
2016-01-01
Effective prediction of software modules, those that are prone to defects, will enable software developers to achieve efficient allocation of resources and to concentrate on quality assurance activities. The process of software development life cycle basically includes design, analysis, implementation, testing, and release phases. Generally, software testing is a critical task in the software development process wherein it is to save time and budget by detecting defects at the earliest and deliver a product without defects to the customers. This testing phase should be carefully operated in an effective manner to release a defect-free (bug-free) software product to the customers. In order to improve the software testing process, fault prediction methods identify the software parts that are more noted to be defect-prone. This paper proposes a prediction approach based on conventional radial basis function neural network (RBFNN) and the novel adaptive dimensional biogeography based optimization (ADBBO) model. The developed ADBBO based RBFNN model is tested with five publicly available datasets from the NASA data program repository. The computed results prove the effectiveness of the proposed ADBBO-RBFNN classifier approach with respect to the considered metrics in comparison with that of the early predictors available in the literature for the same datasets.
Radial basis function networks applied to DNBR calculation in digital core protection systems
Energy Technology Data Exchange (ETDEWEB)
Lee, Gyu-Cheon E-mail: gclee@kopec.co.kr; Heung Chang, Soon
2003-10-01
The nuclear power plant has to be operated with sufficient margin from the specified DNBR limit for assuring its safety. The digital core protection system calculates on-line real-time DNBR by using a complex subchannel analysis program, and triggers a reliable reactor shutdown if the calculated DNBR approaches the specified limit. However, it takes a relatively long calculation time even for a steady state condition, which may have an adverse effect on the operation flexibility. To overcome the drawback, a new method using a radial basis function network is presented in this paper. Nonparametric training approach is utilized, which shows dramatic reduction of the training time, no tedious heuristic process for optimizing parameters, and no local minima problem during the training. The test results show that the predicted DNBR is within about {+-}2% deviation from the target DNBR for the fixed axial flux shape case. For the variable axial flux case including severely skewed shapes that appeared during accidents, the deviation is within about {+-}10%. The suggested method could be the alternative that can calculate DNBR very quickly while guaranteeing the plant safety.
Fast and efficient second-order method for training radial basis function networks.
Xie, Tiantian; Yu, Hao; Hewlett, Joel; Rózycki, Paweł; Wilamowski, Bogdan
2012-04-01
This paper proposes an improved second order (ISO) algorithm for training radial basis function (RBF) networks. Besides the traditional parameters, including centers, widths and output weights, the input weights on the connections between input layer and hidden layer are also adjusted during the training process. More accurate results can be obtained by increasing variable dimensions. Initial centers are chosen from training patterns and other parameters are generated randomly in limited range. Taking the advantages of fast convergence and powerful search ability of second order algorithms, the proposed ISO algorithm can normally reach smaller training/testing error with much less number of RBF units. During the computation process, quasi Hessian matrix and gradient vector are accumulated as the sum of related sub matrices and vectors, respectively. Only one Jacobian row is stored and used for multiplication, instead of the entire Jacobian matrix storage and multiplication. Memory reduction benefits the computation speed and allows the training of problems with basically unlimited number of patterns. Several practical discrete and continuous classification problems are applied to test the properties of the proposed ISO training algorithm.
CMAC with General Basis Functions.
Chun-Shin, Lin; Ching-Tsan, Chiang
1996-10-01
The cerebellar model articulation controller (CMAC) is often used in learning control. It can be viewed as a basis function network (BFN). The conventional CMAC uses local constant basis functions. A disadvantage is that its output is constant within each quantized state and the derivative information is not preserved. If the constant basis functions are replaced by non-constant differentiable basis functions, the derivative information will be able to be stored into the structure as well. In this paper, the generalized scheme that uses general basis functions is investigated. The conventional CMAC is a special case of the generalized technique. The mathematical foundation for the modified scheme is derived and the convergence of learning is proved. Simulations for the CMAC with Gaussian basis functions (GBFs) are performed to demonstrate the improvement of accuracy in modeling, and the capability in providing derivative information. Copyright 1996 Elsevier Science Ltd
On-line Supervised Adaptive Training Using Radial Basis Function Networks.
Luo, Wan; Billings, Steve A.; Fung, Chi F.
1996-12-01
A new recursive supervised training algorithm is derived for the radial basis neural network architecture. The new algorithm combines the procedures of on-line candidate regressor selection with the conventional Givens QR based recursive parameter estimator to provide efficient adaptive supervised network training. A new concise on-line correlation based performance monitoring scheme is also introduced as an auxiliary device to detect structural changes in temporal data processing applications. Practical and simulated examples are included to demonstrate the effectiveness of the new procedures. Copyright 1996 Elsevier Science Ltd.
Kayri, Murat
2015-01-01
The objective of this study is twofold: (1) to investigate the factors that affect the success of university students by employing two artificial neural network methods (i.e., multilayer perceptron [MLP] and radial basis function [RBF]); and (2) to compare the effects of these methods on educational data in terms of predictive ability. The…
Adaptive, optical, radial basis function neural network for handwritten digit recognition
Foor, Wesley E.; Neifeld, Mark A.
1995-11-01
An adaptive, optical, radial basis function classifier for handwritten digit recognition is experimentally demonstrated. We describe a spatially multiplexed system that incorporates an on-line adaptation of weights and basis function widths to provide robustness to optical system imperfections and system noise. The optical system computes the Euclidean distances between a 100-dimensional input vector and 198 stored reference patterns in parallel by using dual vector-matrix multipliers and a contrast-reversing spatial light modulator. Software is used to emulate an electronic chip that performs the on-line learning of the weights and basis function widths. An experimental recognition rate of 92.7% correct out of 300 testing samples is achieved with the adaptive training, versus 31.0% correct for nonadaptive training. We compare the experimental results with a detailed computer model of the system in order to analyze the influence of various noise sources on the system performance.
Lee, Tzong-Yi; Chen, Shu-An; Hung, Hsin-Yi; Ou, Yu-Yen
2011-03-09
Ubiquitin (Ub) is a small protein that consists of 76 amino acids about 8.5 kDa. In ubiquitin conjugation, the ubiquitin is majorly conjugated on the lysine residue of protein by Ub-ligating (E3) enzymes. Three major enzymes participate in ubiquitin conjugation. They are E1, E2 and E3 which are responsible for activating, conjugating and ligating ubiquitin, respectively. Ubiquitin conjugation in eukaryotes is an important mechanism of the proteasome-mediated degradation of a protein and regulating the activity of transcription factors. Motivated by the importance of ubiquitin conjugation in biological processes, this investigation develops a method, UbSite, which uses utilizes an efficient radial basis function (RBF) network to identify protein ubiquitin conjugation (ubiquitylation) sites. This work not only investigates the amino acid composition but also the structural characteristics, physicochemical properties, and evolutionary information of amino acids around ubiquitylation (Ub) sites. With reference to the pathway of ubiquitin conjugation, the substrate sites for E3 recognition, which are distant from ubiquitylation sites, are investigated. The measurement of F-score in a large window size (-20∼+20) revealed a statistically significant amino acid composition and position-specific scoring matrix (evolutionary information), which are mainly located distant from Ub sites. The distant information can be used effectively to differentiate Ub sites from non-Ub sites. As determined by five-fold cross-validation, the model that was trained using the combination of amino acid composition and evolutionary information performs best in identifying ubiquitin conjugation sites. The prediction sensitivity, specificity, and accuracy are 65.5%, 74.8%, and 74.5%, respectively. Although the amino acid sequences around the ubiquitin conjugation sites do not contain conserved motifs, the cross-validation result indicates that the integration of distant sequence features of Ub
Directory of Open Access Journals (Sweden)
Tzong-Yi Lee
Full Text Available Ubiquitin (Ub is a small protein that consists of 76 amino acids about 8.5 kDa. In ubiquitin conjugation, the ubiquitin is majorly conjugated on the lysine residue of protein by Ub-ligating (E3 enzymes. Three major enzymes participate in ubiquitin conjugation. They are E1, E2 and E3 which are responsible for activating, conjugating and ligating ubiquitin, respectively. Ubiquitin conjugation in eukaryotes is an important mechanism of the proteasome-mediated degradation of a protein and regulating the activity of transcription factors. Motivated by the importance of ubiquitin conjugation in biological processes, this investigation develops a method, UbSite, which uses utilizes an efficient radial basis function (RBF network to identify protein ubiquitin conjugation (ubiquitylation sites. This work not only investigates the amino acid composition but also the structural characteristics, physicochemical properties, and evolutionary information of amino acids around ubiquitylation (Ub sites. With reference to the pathway of ubiquitin conjugation, the substrate sites for E3 recognition, which are distant from ubiquitylation sites, are investigated. The measurement of F-score in a large window size (-20∼+20 revealed a statistically significant amino acid composition and position-specific scoring matrix (evolutionary information, which are mainly located distant from Ub sites. The distant information can be used effectively to differentiate Ub sites from non-Ub sites. As determined by five-fold cross-validation, the model that was trained using the combination of amino acid composition and evolutionary information performs best in identifying ubiquitin conjugation sites. The prediction sensitivity, specificity, and accuracy are 65.5%, 74.8%, and 74.5%, respectively. Although the amino acid sequences around the ubiquitin conjugation sites do not contain conserved motifs, the cross-validation result indicates that the integration of distant sequence
Valencia, M; Fernandez-Seara, MA; Artieda, J; Martinerie, J; Chavez, M
2009-01-01
Modular structure is ubiquitous among real-world networks from related proteins to social groups. Here we analyze the modular organization of brain networks at a large-scale (voxel level) extracted from functional magnetic resonance imaging (fMRI) signals. By using a random walk-based method, we unveil the modularity of brain-webs, and show that modules with a spatial distribution that matches anatomical structures with functional significance. The functional role of each node in the network is studied by analyzing its patterns of inter- and intra-modular connections. Results suggest that the modular architecture constitutes the structural basis for the coexistence of functional integration of distant and specialized brain areas during normal brain activities at rest.
Mixtures of truncated basis functions
DEFF Research Database (Denmark)
Langseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael
2012-01-01
In this paper we propose a framework, called mixtures of truncated basis functions (MoTBFs), for representing general hybrid Bayesian networks. The proposed framework generalizes both the mixture of truncated exponentials (MTEs) framework and the mixture of polynomials (MoPs) framework. Similar...
Energy Technology Data Exchange (ETDEWEB)
Al-Amoudi, A.; Zhang, L. [University of Leeds (United Kingdom). School of Electronic and Electrical Engineering
2000-09-01
A neural-network-based approach for solar array modelling is presented. The logic hidden unit of the proposed network consists of a set of nonlinear radial basis functions (RBFs) which are connected directly to the input vector. The links between hidden and output units are linear. The model can be trained using a random set of data collected from a real photovoltaic (PV) plant. The training procedures are fast and the accuracy of the trained models is comparable with that of the conventional model. The principle and training procedures of the RBF-network modelling when applied to emulate the I/V characteristics of PV arrays are discussed. Simulation results of the trained RBF networks for modelling a PV array and predicting the maximum power points of a real PV panel are presented. (author)
Analysis of CT Brain Images using Radial Basis Function Neural Network
Directory of Open Access Journals (Sweden)
T. Joshva Devadas
2012-07-01
Full Text Available Medical image processing and analysis is the tool to assist radiologists in the diagnosis process to obtain a moreaccurate and faster diagnosis. In this work, we have developed a neural network to classify the computer tomography(CT brain tumor image for automatic diagnosis. This system is divided into four steps namely enhancement, segmentation, feature extraction and classification. In the first phase, an edge-based selective median filter is usedto improve the visibility of the loss of the gray-white matter interface in CT brain tumor images. Second phaseuses a modified version of shift genetic algorithm for the segmentation. Next phase extracts the textural featuresusing statistical texture analysis method. These features are fed into classifiers like BPN, Fuzzy k-NN, and radialbasis function network. The performances of these classifiers are analyzed in the final phase with receiver operating characteristic and precision-recall curve. The result shows that the CAD system is only to develop the tool for braintumor and proposed method is very accurate and computationally more efficient and less time consuming.Defence Science Journal, 2012, 62(4, pp.212-218, DOI:http://dx.doi.org/10.14429/dsj.62.1830
Li, Meina; Kwak, Keun-Chang; Kim, Youn Tae
2016-09-22
Conventionally, indirect calorimetry has been used to estimate oxygen consumption in an effort to accurately measure human body energy expenditure. However, calorimetry requires the subject to wear a mask that is neither convenient nor comfortable. The purpose of our study is to develop a patch-type sensor module with an embedded incremental radial basis function neural network (RBFNN) for estimating the energy expenditure. The sensor module contains one ECG electrode and a three-axis accelerometer, and can perform real-time heart rate (HR) and movement index (MI) monitoring. The embedded incremental network includes linear regression (LR) and RBFNN based on context-based fuzzy c-means (CFCM) clustering. This incremental network is constructed by building a collection of information granules through CFCM clustering that is guided by the distribution of error of the linear part of the LR model.
Directory of Open Access Journals (Sweden)
Meina Li
2016-09-01
Full Text Available Conventionally, indirect calorimetry has been used to estimate oxygen consumption in an effort to accurately measure human body energy expenditure. However, calorimetry requires the subject to wear a mask that is neither convenient nor comfortable. The purpose of our study is to develop a patch-type sensor module with an embedded incremental radial basis function neural network (RBFNN for estimating the energy expenditure. The sensor module contains one ECG electrode and a three-axis accelerometer, and can perform real-time heart rate (HR and movement index (MI monitoring. The embedded incremental network includes linear regression (LR and RBFNN based on context-based fuzzy c-means (CFCM clustering. This incremental network is constructed by building a collection of information granules through CFCM clustering that is guided by the distribution of error of the linear part of the LR model.
Albrecht, S; Busch, J; Kloppenburg, M; Metze, F; Tavan, P
2000-12-01
By adding reverse connections from the output layer to the central layer it is shown how a generalized radial basis functions (GRBF) network can self-organize to form a Bayesian classifier, which is also capable of novelty detection. For this purpose, three stochastic sequential learning rules are introduced from biological considerations which pertain to the centers, the shapes, and the widths of the receptive fields of the neurons and allow ajoint optimization of all network parameters. The rules are shown to generate maximum-likelihood estimates of the class-conditional probability density functions of labeled data in terms of multivariate normal mixtures. Upon combination with a hierarchy of deterministic annealing procedures, which implement a multiple-scale approach, the learning process can avoid the convergence problems hampering conventional expectation-maximization algorithms. Using an example from the field of speech recognition, the stages of the learning process and the capabilities of the self-organizing GRBF classifier are illustrated.
Oh, Sung-Kwun; Kim, Wook-Dong; Pedrycz, Witold
2016-05-01
In this paper, we introduce a new architecture of optimized Radial Basis Function neural network classifier developed with the aid of fuzzy clustering and data preprocessing techniques and discuss its comprehensive design methodology. In the preprocessing part, the Linear Discriminant Analysis (LDA) or Principal Component Analysis (PCA) algorithm forms a front end of the network. The transformed data produced here are used as the inputs of the network. In the premise part, the Fuzzy C-Means (FCM) algorithm determines the receptive field associated with the condition part of the rules. The connection weights of the classifier are of functional nature and come as polynomial functions forming the consequent part. The Particle Swarm Optimization algorithm optimizes a number of essential parameters needed to improve the accuracy of the classifier. Those optimized parameters include the type of data preprocessing, the dimensionality of the feature vectors produced by the LDA (or PCA), the number of clusters (rules), the fuzzification coefficient used in the FCM algorithm and the orders of the polynomials of networks. The performance of the proposed classifier is reported for several benchmarking data-sets and is compared with the performance of other classifiers reported in the previous studies.
Directory of Open Access Journals (Sweden)
Xiaodong Mao
2014-06-01
Full Text Available In this study, near-infrared reflectance spectroscopy and radial basis function (RBF neural network algorithm were used to measure the protein content of wheat owing to their nondestructiveness and quick speed as well as better performance compared to the traditional measuring method (semimicro-Kjeldahl in actual practice. To simplify the complex structure of the RBF network caused by the excessive wave points of samples obtained by near-infrared reflectance spectroscopy, we proposed the particle swarm optimization (PSO algorithm to optimize the cluster center in the hidden layers of the RBF neural network. In addition, a series of improvements for the PSO algorithm was also made to deal with its drawbacks in premature convergence and mechanical inertia weight setting. The experimental analysis demonstrated that the improved PSO algorithm greatly reduced the complexity of the network structure and improved the training speed of the RBF network. Meanwhile, the research result also proved the high performance of the model with its root-mean-square error of prediction (RMSEP and prediction correlation coefficient (R at 0.26576 and 0.975, respectively, thereby fulfilling the modern agricultural testing requirements featuring nondestructiveness, real-timing, and abundance in the number of samples.
Energy Technology Data Exchange (ETDEWEB)
Casadio, R.; Fariselli, P.; Vivarelli, F. [Univ. of Bologna (Italy); Compiani, M. [Univ. of Camerino (Italy)
1995-12-31
Radial basis function neural networks are trained on a data base comprising 38 globular proteins of well resolved crystallographic structure and the corresponding free energy contributions to the overall protein stability (as computed partially from crystallographic analysis and partially with multiple regression from experimental thermodynamic data by Ponnuswamy and Gromiha (1994)). Starting from the residue sequence and using as input code the percentage of each residue and the total residue number of the protein, it is found with a cross-validation method that neural networks can optimally predict the free energy contributions due to hydrogen bonds, hydrophobic interactions and the unfolded state. Terms due to electrostatic and disulfide bonding free energies are poorly predicted. This is so also when other input codes, including the percentage of secondary structure type of the protein and/or residue-pair information are used. Furthermore, trained on the computed and/or experimental {Delta}G values of the data base, neural networks predict a conformational stability ranging from about 10 to 20 kcal mol{sup -1} rather independently of the residue sequence, with an average error per protein of about 9 kcal mol{sup -1}.
Casadio, R; Compiani, M; Fariselli, P; Vivarelli, F
1995-01-01
Radial basis function neural networks are trained on a data base comprising 38 globular proteins of well resolved crystallographic structure and the corresponding free energy contributions to the overall protein stability (as computed partially from chrystallographic analysis and partially with multiple regression from experimental thermodynamic data by Ponnuswamy and Gromiha (1994)). Starting from the residue sequence and using as input code the percentage of each residue and the total residue number of the protein, it is found with a cross-validation method that neural networks can optimally predict the free energy contributions due to hydrogen bonds, hydrophobic interactions and the unfolded state. Terms due to electrostatic and disulfide bonding free energies are poorly predicted. This is so also when other input codes, including the percentage of secondary structure type of the protein and/or residue-pair information are used. Furthermore, trained on the computed and/or experimental delta G values of the data base, neural networks predict a conformational stability ranging from about 10 to 20 kcal mol-1 rather independently of the residue sequence, with an average error per protein of about 9 kcal mol-1.
Sbarufatti, Claudio; Corbetta, Matteo; Giglio, Marco; Cadini, Francesco
2017-03-01
Lithium-Ion rechargeable batteries are widespread power sources with applications to consumer electronics, electrical vehicles, unmanned aerial and spatial vehicles, etc. The failure to supply the required power levels may lead to severe safety and economical consequences. Thus, in view of the implementation of adequate maintenance strategies, the development of diagnostic and prognostic tools for monitoring the state of health of the batteries and predicting their remaining useful life is becoming a crucial task. Here, we propose a method for predicting the end of discharge of Li-Ion batteries, which stems from the combination of particle filters with radial basis function neural networks. The major innovation lies in the fact that the radial basis function model is adaptively trained on-line, i.e., its parameters are identified in real time by the particle filter as new observations of the battery terminal voltage become available. By doing so, the prognostic algorithm achieves the flexibility needed to provide sound end-of-discharge time predictions as the charge-discharge cycles progress, even in presence of anomalous behaviors due to failures or unforeseen operating conditions. The method is demonstrated with reference to actual Li-Ion battery discharge data contained in the prognostics data repository of the NASA Ames Research Center database.
Directory of Open Access Journals (Sweden)
Chun-Cheng Lin
2016-09-01
Full Text Available Abnormal intra-QRS potentials (AIQPs are commonly observed in patients at high risk for ventricular tachycardia. We present a method for approximating a measured QRS complex using a non-linear neural network with all radial basis functions having the same smoothness. We extracted the high frequency, but low amplitude intra-QRS potentials using the approximation error to identify possible ventricular tachycardia. With a specified number of neurons, we performed an orthogonal least squares algorithm to determine the center of each Gaussian radial basis function. We found that the AIQP estimation error arising from part of the normal QRS complex could cause clinicians to misjudge patients with ventricular tachycardia. Our results also show that it is possible to correct this misjudgment by combining multiple AIQP parameters estimated using various spread parameters and numbers of neurons. Clinical trials demonstrate that higher AIQP-to-QRS ratios in the X, Y and Z leads are visible in patients with ventricular tachycardia than in normal subjects. A linear combination of 60 AIQP-to-QRS ratios can achieve 100% specificity, 90% sensitivity, and 95.8% total prediction accuracy for diagnosing ventricular tachycardia.
Institute of Scientific and Technical Information of China (English)
DONG Li-xin; XIAO Deng-ming Xiao; LIU Yi-lu
2007-01-01
Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input of RBFNN and mine the rules. The mined rules whose "confidence" and "support" is higher than requirement are used to offer fault diagnosis service for power transformer directly. On the other hand the mining samples corresponding to the mined rule, whose "confidence and support" is lower than requirement,are used to be training samples set of RBFNN and these samples are clustered by rough set. The center of each clustering set is used to be center of radial basis function, i.e. , as the hidden layer neuron. The RBFNN is structured with above base, which is used to diagnose the case that can not be diagnosed by mined simplified valuable rules based on rough set. The advantages and effectiveness of this method are verified by testing.
DEFF Research Database (Denmark)
Lee, Kyo-Beum; Blaabjerg, Frede
2005-01-01
A new scheme to estimate the moment of inertia in the servo motor drive system in very low speed is proposed in this paper. The speed estimation scheme in most servo drive systems for low speed operation is sensitive to the variation of machine parameter, especially the moment of inertia. To esti......A new scheme to estimate the moment of inertia in the servo motor drive system in very low speed is proposed in this paper. The speed estimation scheme in most servo drive systems for low speed operation is sensitive to the variation of machine parameter, especially the moment of inertia....... To estimate the motor inertia value, the observer using the Radial Basis Function Network (RBFN) is applied. A control law for stabilizing the system and adaptive laws for updating both of the weights in the RBFN and a bounding constant are established so that the whole closed-loop system is stable...
Institute of Scientific and Technical Information of China (English)
Lei Wang; Cheng Shao; Hai Wang; Hong Wu
2006-01-01
Membrane technology has found wide applications in the petrochemical industry, mainly in the purification and recovery of the hydrogen resources. Accurate prediction of the membrane separation performance plays an important role in carrying out advanced process control (APC). For the first time, a soft-sensor model for the membrane separation process has been established based on the radial basis function (RBF) neural networks. The main performance parameters, i.e, permeate hydrogen concentration, permeate gas flux, and residue hydrogen concentration, are estimated quantitatively by measuring the operating temperature, feed-side pressure, permeate-side pressure, residue-side pressure, feed-gas flux, and feed-hydrogen concentration excluding flow structure, membrane parameters, and other compositions. The predicted results can gain the desired effects. The effectiveness of this novel approach lays a foundation for integrating control technology and optimizing the operation of the gas membrane separation process.
ul Amin, Rooh; Aijun, Li; Khan, Muhammad Umer; Shamshirband, Shahaboddin; Kamsin, Amirrudin
2017-01-01
In this paper, an adaptive trajectory tracking controller based on extended normalized radial basis function network (ENRBFN) is proposed for 3-degree-of-freedom four rotor hover vehicle subjected to external disturbance i.e. wind turbulence. Mathematical model of four rotor hover system is developed using equations of motions and a new computational intelligence based technique ENRBFN is introduced to approximate the unmodeled dynamics of the hover vehicle. The adaptive controller based on the Lyapunov stability approach is designed to achieve tracking of the desired attitude angles of four rotor hover vehicle in the presence of wind turbulence. The adaptive weight update based on the Levenberg-Marquardt algorithm is used to avoid weight drift in case the system is exposed to external disturbances. The closed-loop system stability is also analyzed using Lyapunov stability theory. Simulations and experimental results are included to validate the effectiveness of the proposed control scheme.
A Novel Carbon Steel Pipe Protection Based on Radial Basis Function Neural Network
Directory of Open Access Journals (Sweden)
Sami A. Ajeel
2010-01-01
Full Text Available Problem statement: The cost due to corrosion Damage have estimated to be 3-4% of their gross national product which significantly Countries problem around the world. Approach: In this study, a novel carbon steel pipe protection based on RBFNN was proposed. The RBFNN used to predict the minimum current density required in impressed current cathodic protection to protect low carbon steel pipe. Learning data was performed by using a 30 samples test with different concentration C%, temperature T, distance D and pH. The RBFNN model has four input nodes representing the (concentration C%, temperature T, distance D and pH, eight nodes at hidden layer and one output node representing the min. current density. Results: Generalization test used 5 data samples taken from the experimental results other than those data samples used in the learning process to check the performance of the neural network on these data. Conclusion: In addition, the experimental results indicate that proposed system can be used successfully to obtain minimum cathodic protection current density to protect low carbon steel pipes.
Directory of Open Access Journals (Sweden)
Seerat Fatima
2011-10-01
Full Text Available The purpose of this study is to classify the networks according to functions they performed, especially scrutinize their structures. The research concentrates on the influence of these functional networks on the internationalization process of small and medium sized companies (SME in developing countries. What are the different types of support being provided by network partners? What is the structure of the existing network? The research part is inductive, qualitative and based on case study. The study’s findings illustrate the subtleties of how various network partners interact with entrepreneurs to penetrate, integrate and extend their international markets. Networks can help entrepreneurs expose themselves to new opportunities, obtain knowledge, learn from experiences, and benefit from the synergistic effect of pooled resources. Another contribution of this paper is that it identifies structures of the functional networks, till date networks are classified on the basis of extent of support they provide, not on what support they provide, thus advancing the literature.
Directory of Open Access Journals (Sweden)
Jingwen Tian
2013-02-01
Full Text Available Since the control system of the welding gun pose in whole‐position welding is complicated and nonlinear, an intelligent control system of welding gun pose for a pipeline welding robot based on an improved radial basis function neural network (IRBFNN and expert system (ES is presented in this paper. The structure of the IRBFNN is constructed and the improved genetic algorithm is adopted to optimize the network structure. This control system makes full use of the characteristics of the IRBFNN and the ES. The ADXRS300 micro‐mechanical gyro is used as the welding gun position sensor in this system. When the welding gun position is obtained, an appropriate pitch angle can be obtained through expert knowledge and the numeric reasoning capacity of the IRBFNN. ARM is used as the controller to drive the welding gun pitch angle step motor in order to adjust the pitch angle of the welding gun in real‐time. The experiment results show that the intelligent control system of the welding gun pose using the IRBFNN and expert system is feasible and it enhances the welding quality. This system has wide prospects for application.
Rai, H. M.; Trivedi, A.; Chatterjee, K.; Shukla, S.
2014-01-01
This paper employed the Daubechies wavelet transform (WT) for R-peak detection and radial basis function neural network (RBFNN) to classify the electrocardiogram (ECG) signals. Five types of ECG beats: normal beat, paced beat, left bundle branch block (LBBB) beat, right bundle branch block (RBBB) beat and premature ventricular contraction (PVC) were classified. 500 QRS complexes were arbitrarily extracted from 26 records in Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database, which are available on Physionet website. Each and every QRS complex was represented by 21 points from p1 to p21 and these QRS complexes of each record were categorized according to types of beats. The system performance was computed using four types of parameter evaluation metrics: sensitivity, positive predictivity, specificity and classification error rate. The experimental result shows that the average values of sensitivity, positive predictivity, specificity and classification error rate are 99.8%, 99.60%, 99.90% and 0.12%, respectively with RBFNN classifier. The overall accuracy achieved for back propagation neural network (BPNN), multilayered perceptron (MLP), support vector machine (SVM) and RBFNN classifiers are 97.2%, 98.8%, 99% and 99.6%, respectively. The accuracy levels and processing time of RBFNN is higher than or comparable with BPNN, MLP and SVM classifiers.
Institute of Scientific and Technical Information of China (English)
YANG Xiao-Hua; WANG Fu-Min; HUANG Jing-Feng; WANG Jian-Wen; WANG Ren-Chao; SHEN Zhang-Quan; WANG Xiu-Zhen
2009-01-01
The radial basis function (RBF) emerged as a variant of artificial neural network.Generalized regression neural network (GRNN) is one type of RBF,and its principal advantages are that it can quickly learn and rapidly converge to the optimal regression surface with large number of data sets.Hyperspectral reflectance (350 to 2 500 nm) data were recorded at two different rice sites in two experiment fields with two cultivars,three nitrogen treatments and one plant density (45 plants m-2).Stepwise multivariable regression model (SMR) and RBF were used to compare their predictability for the leaf area index (LAI) and green leaf chlorophyll density (GLCD) of rice based on reflectance (R) and its three different transformations,the first derivative reflectance (D1),the second derivative reflectance (D2) and the log-transformed reflectance (LOG).GRNN based on D1 was the best model for the prediction of rice LAI and GLCD.The relationships between different transformations of reflectance and rice parameters could be further improved when RBF was employed.Owing to its strong capacity for nonlinear mapping and good robustness,GRNN could maximize the sensitivity to chlorophyll content using D1.It is concluded that RBF may provide a useful exploratory and predictive tool for the estimation of rice biophysical parameters.
Ou, Yu-Yen; Chen, Shu-An; Chang, Yun-Min; Velmurugan, Devadasan; Fukui, Kazuhiko; Michael Gromiha, M
2013-09-01
Efflux proteins are membrane proteins, which are involved in the transportation of multidrugs. The annotation of efflux proteins in genomic sequences would aid to understand the function. Although the percentage of membrane proteins in genomes is estimated to be 25-30%, there is no information about the content of efflux proteins. For annotating such class of proteins it is necessary to develop a reliable method to identify efflux proteins from amino acid sequence information. In this work, we have developed a method based on radial basis function networks using position specific scoring matrices (PSSM) and amino acid properties. We noticed that the C-terminal domain of efflux proteins contain vital information for discrimination. Our method showed an accuracy of 78 and 92% in discriminating efflux proteins from transporters and membrane proteins, respectively using fivefold cross-validation. We utilized our method for annotating the genomes E. coli and P. aeruginosa and it predicted 8.7 and 9.2% of proteins as efflux proteins in these genomes, respectively. The predicted efflux proteins have been compared with available experimental data and we observed a very good agreement between them. Further, we developed a web server for classifying efflux proteins and it is freely available at http://rbf.bioinfo.tw/∼sachen/EFFLUXpredict/Efflux-RBF.php. We suggest that our method could be an effective tool for annotating efflux proteins in genomic sequences.
Ou, Yu-Yen; Chen, Shu-An; Gromiha, M Michael
2010-05-15
Transporters are proteins that are involved in the movement of ions or molecules across biological membranes. Transporters are generally classified into channels/pores, electrochemical transporters, and active transporters. Discriminating the specific class of transporters and their subfamilies are essential tasks in computational biology for the advancement of structural and functional genomics. We have systematically analyzed the amino acid composition, residue pair preference and amino acid properties in six different families of transporters. Utilizing the information, we have developed a radial basis function (RBF) network method based on profiles obtained with position specific scoring matrices for discriminating transporters belonging to three different classes and six families. Our method showed a fivefold cross validation accuracy of 76%, 73%, and 69% for discriminating transporters and nontransporters, three different classes and six different families of transporters, respectively. Further, the method was tested with independent datasets, which showed similar level of accuracy. A web server has been developed for discriminating transporters based on three classes and six families, and it is available at http://rbf.bioinfo.tw/ approximately sachen/tcrbf.html. We suggest that our method could be effectively used to identify transporters and discriminating them into different classes and families.
Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold
2014-12-01
In this study, we propose Hybrid Radial Basis Function Neural Networks (HRBFNNs) realized with the aid of fuzzy clustering method (Fuzzy C-Means, FCM) and polynomial neural networks. Fuzzy clustering used to form information granulation is employed to overcome a possible curse of dimensionality, while the polynomial neural network is utilized to build local models. Furthermore, genetic algorithm (GA) is exploited here to optimize the essential design parameters of the model (including fuzzification coefficient, the number of input polynomial fuzzy neurons (PFNs), and a collection of the specific subset of input PFNs) of the network. To reduce dimensionality of the input space, principal component analysis (PCA) is considered as a sound preprocessing vehicle. The performance of the HRBFNNs is quantified through a series of experiments, in which we use several modeling benchmarks of different levels of complexity (different number of input variables and the number of available data). A comparative analysis reveals that the proposed HRBFNNs exhibit higher accuracy in comparison to the accuracy produced by some models reported previously in the literature.
Dai, Xiaoyan; Guo, Zhongyang; Zhang, Liquan; Xu, Wencheng
2009-12-01
Soft classification methods can be used for mixed-pixel classification on remote sensing imagery by estimating different land cover class fractions of every pixel. However, the spatial distribution and location of these class components within the pixel remain unknown. To map land cover at subpixel scale and increase the spatial resolution of land cover classification maps, in this paper, a prediction model combining wavelet transform and Radial Basis Functions (RBF) neural network, abbreviated as Wavelet-RBFNN, is constructed by predicting high-frequency wavelet coefficients from low-frequency coefficients at the same resolution with RBF network and taking wavelet coefficients at coarser resolution as training samples. According to different land cover class fraction images obtained from mixed-pixel classification, based on the assumption of neighborhood dependence of wavelet coefficients, subpixel mapping on remote sensing imagery can be accomplished through two steps, i.e., prediction of land cover class compositions within subpixels and hard classification. The experimental results obtained with artificial images, QuickBird image and Landsat 7 ETM+ image indicate that the subpixel mapping method proposed in this paper can successfully produce super-resolution land cover classification maps from remote sensing imagery, outperforming cubic B-spline and Kriging interpolation method in visual effect and prediction accuracy. The Wavelet-RBFNN model can also be applied to simulate higher spatial resolution image, and automatically identify and locate land cover targets at the subpixel scales, when the cost and availability of high resolution imagery prohibit its use in many areas of work.
Prediction of fMRI time series of a single voxel using radial basis function neural network
Song, Sutao; Zhang, Jiacai; Yao, Li
2011-03-01
A great deal of current literature regarding functional neuroimaging has elucidated the relationships of neurons distributed all over the brain. Modern neuroimaging techniques, such as the functional MRI (fMRI), provide a convenient tool for people to study the correlation among different voxels as well as the spatio-temporal patterns of brain activity. In this study, we present a computational model using radial basis function neural network (RBF-NN) to predict the fMRI voxel activation with the activation of other voxels acquired at the same time. The fMRI data from a visual images stimuli presentation experiment was separated into two sets; one was used to train the model, and the other to validate the accuracy or generalizability of the model. In the visual stimuli presentation experiment, the subject did simple one-back-repetition tasks when four categories of stimuli (houses, faces, cars, and cats) were presented. Voxel sets A and B were selected from fMRI data by two different voxel selection criterion: (1) Voxel set A are those activated for any kind of object stronger than the other three objects in regions of interest (ROIs) without correction (P=0.001); (2) Voxel set B are those activated for at least one of the categories of stimuli within the ROIs (FWE correction, P=0.05). RBF-NN regression models construct the nonlinear relationship between the activation of voxels in A and B. Our test results showed that RBF-NN can capture the nonlinear relationship existing in neurons and reveal the relationship between voxel's activation from different brain regions.
Neurons with radial basis like rate functions.
Kovács, Zsolt László
2005-01-01
Artificial neural networks constructed with "locally tuned processing units" and more generally referred to as "radial basis function networks" have been proposed by a number of workers. In this communication, I submit a conjecture, based on indirect experimental and direct computational evidence of the Hodgkin-Huxley model, that there may be biological neurons in nervous systems for which the rate function is locally tuned. If proved to be valid, this conjecture may simplify neurodynamic models of some functions of nervous systems.
DEFF Research Database (Denmark)
Lee, Kyo-Beum; Bae, C.H.; Blaabjerg, Frede
2005-01-01
A scheme to estimate the moment of inertia in a servo motor drive system at very low speed is proposed. The typical speed estimation scheme used in most servo systems operated at low speed is highly sensitive to variations in the moment of inertia. An observer that uses a radial basis function ne...
Fidêncio, Paulo H; Poppi, Ronei J; de Andrade, João C; de Abreu, Mônica F
2008-07-01
Total nitrogen has been determined by using a model developed between the conventional chemical measurements and diffuse reflectance spectra in the near-infrared region. Samples (244) from different types of soils with total nitrogen contents ranging from 0.20 to 13.60% (m/m) were modeled by partial least-squares regression (PLS), multi-layer perceptron feed-forward networks (MLP) and radial basis function networks (RBFN). The RBFN model produced a better square error of prediction (SEP) of 0.048 and R(2) = 0.93 in a procedure that is simpler, faster and less dependent on the initial conditions.
Functional Basis of Microorganism Classification.
Directory of Open Access Journals (Sweden)
Chengsheng Zhu
2015-08-01
Full Text Available Correctly identifying nearest "neighbors" of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion. Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1 the inconsistency of functional diversity levels among different taxa and (2 an (unsurprising bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less
Afkhami, Abbas; Abbasi-Tarighat, Maryam
2008-06-01
In the present study, chemometric analysis of visible spectral data of phospho-and silico-molybdenum blue complexes was used to develop artificial neural networks (ANNs) for the simultaneous determination of the phosphate and silicate. Combinations of principal component analysis (PCA) with feed-forward neural networks (FFNNs) and radial basis function networks (RBFNs) were built and investigated. The structures of the models were simplified by using the corresponding important principal components as input instead of the original spectra. Number of inputs and hidden nodes, learning rate, transfer functions and number of epochs and SPREAD values were optimized. Performances of methods were tested with root mean square errors prediction (RMSEP, %), using synthetic solutions. The obtained satisfactory results indicate the applicability of this ANN approach based on PCA input selection for determination in highly spectral overlapping. The results obtained by FFNNs and by RBF networks were compared. The applicability of methods was investigated for synthetic samples, for detergent formulations, and for a river water sample.
Indian Academy of Sciences (India)
Izzet Y Önel; K Burak Dalci; İbrahim Senol
2006-06-01
This paper investigates the application of induction motor stator current signature analysis (MCSA) using Park’s transform for the detection of rolling element bearing damages in three-phase induction motor. The paper ﬁrst discusses bearing faults and Park’s transform, and then gives a brief overview of the radial basis function (RBF) neural networks algorithm. Finally, system information and the experimental results are presented. Data acquisition and Park’s transform algorithm are achieved by using LabVIEW and the neural network algorithm is achieved by using MATLAB programming language. Experimental results show that it is possible to detect bearing damage in induction motors using an ANN algorithm.
Directory of Open Access Journals (Sweden)
Abu H. M. A. Rahim
2014-03-01
Full Text Available The converters of a permanent magnet synchronous generator have to be properly controlled to achieve maximum transfer of energy from wind. To achiev e this goal, this article employs an energy storage device consisting of an energy capacitor interfaced through a voltage source converter which is operated through a smart adaptive radial basis function neural network (RBFNN controller. The proposed adaptive strategy employs online neural network training as opposed to conventional procedure requiring offline training of a large data-set. The RBFNN controller was tested for various contingencies in the wind generator system. Th e adaptive online controller is observed to provide excellent damping profile following low grid voltage conditions as well as for other large disturbances. The controlled converter DC capacitor voltage helps maintain a smooth flow of real and reactive power in the system.
Directory of Open Access Journals (Sweden)
Shiva Kumar
2012-01-01
Full Text Available Radial basis function neural networks (RBFNNs, which is a relatively new class of neural networks, have been investigated for their applicability for prediction of performance and emission characteristics of a diesel engine fuelled with waste cooking oil (WCO. The RBF networks were trained using the experimental data, where in load percentage, compression ratio, blend percentage, injection timing, and injection pressure were taken as the input parameters, and brake thermal efficiency (BTE, brake specific energy consumption (BSEC, exhaust gas temperature (, and engine emissions were used as the output parameters. The number of RBF centers was selected randomly. The network was initially trained using variable width values for the RBF units using a heuristic and then was trained by using fixed width values. Studies showed that RBFNN predicted results matched well with the experimental results over a wide range of operating conditions. Prediction accuracy for all the output parameters was above 90% in case of performance parameters and above 70% in case of emission parameters.
Liu, Long; Sun, Jun; Xu, Wenbo; Du, Guocheng; Chen, Jian
2009-01-01
Hyaluronic acid (HA) is a natural biopolymer with unique physiochemical and biological properties and finds a wide range of applications in biomedical and cosmetic fields. It is important to increase HA production to meet the increasing HA market demand. This work is aimed to model and optimize the amino acids addition to enhance HA production of Streptococcus zooepidemicus with radial basis function (RBF) neural network coupling quantum-behaved particle swarm optimization (QPSO) algorithm. In the RBF-QPSO approach, RBF neural network is used as a bioprocess modeling tool and QPSO algorithm is applied to conduct the optimization with the established RBF neural network black model as the objective function. The predicted maximum HA yield was 6.92 g/L under the following conditions: arginine 0.062 g/L, cysteine 0.036 g/L, and lysine 0.043 g/L. The optimal amino acids addition allowed HA yield increased from 5.0 g/L of the control to 6.7 g/L in the validation experiments. Moreover, the modeling and optimization capacity of the RBF-QPSO approach was compared with that of response surface methodology (RSM). It was indicated that the RBF-QPSO approach gave a slightly better modeling and optimization result compared with RSM. The developed RBF-QPSO approach in this work may be helpful for the modeling and optimization of the other multivariable, nonlinear, time-variant bioprocesses.
Institute of Scientific and Technical Information of China (English)
陈刚; 田志平
2011-01-01
针对电力系统预想事故自动选择问题,提出了一种基于模糊推理系统FIS(fuzzy inference system)和径向基函数网络RBFN(radial basis function network)算法.定义了一种有功行为指标PIpf,该指标添加了一个模糊补偿系数用以改善遮蔽现象；同时构造了一个三层的RBFN,该网络以发电机功率、负荷功率和网络拓扑结构作为输入,以PIpf作为输出,并通过离线潮流计算获得训练样本；对算例进行计算并与其他算法比较,结果显示该算法能使事故排序更为合理,且计算精度和速度都令人满意.%In view of the problems of automatic contingency selection of power system, an advanced algorithm is proposed, which is based on fuzzy inference system(FIS) and radial basis function network(RBFN). Firstly an active performance index is defined, which adds a fuzzy compensation factor coefficient to improve shelter phenomenon. Meanwhile a three-layer RBFN is constructed, which treats generator power, load power and network topology as inputs, while treats the active performance index as output. The results of off-line load flow calculation are used to train the RBFN. Finally, the proposed method is demonstrated by an example, compared with several other algorithms. And the results show that the ranking of contingency is much more reasonable, and the calculation accuracy and speed are satisfied.
Afkhami, Abbas; Abbasi-Tarighat, Maryam; Bahram, Morteza
2008-03-15
In this work feed-forward neural networks and radial basis function networks were used for the determination of enantiomeric composition of alpha-phenylglycine using UV spectra of cyclodextrin host-guest complexes and the data provided by two techniques were compared. Wavelet transformation (WT) and principal component analysis (PCA) were used for data compression prior to neural network construction and their efficiencies were compared. The structures of the wavelet transformation-radial basis function networks (WT-RBFNs) and wavelet transformation-feed-forward neural networks (WT-FFNNs), were simplified by using the corresponding wavelet coefficients of three mother wavelets (Mexican hat, daubechies and symlets). Dilation parameters, number of inputs, hidden nodes, learning rate, transfer functions, number of epochs and SPREAD values were optimized. Performances of the proposed methods were tested with regard to root mean square errors of prediction (RMSE%), using synthetic solutions containing a fixed concentration of beta-cyclodextrin (beta-CD) and fixed concentration of alpha-phenylglycine (alpha-Gly) with different enantiomeric compositions. Although satisfactory results with regard to some statistical parameters were obtained for all the investigated methods but the best results were achieved by WT-RBFNs.
改进RBF神经网络用于降雨量预测%PRECIPITATION PREDICTING BASED ON IMPROVED RADIAL BASIS FUNCTION NEURAL NETWORKS
Institute of Scientific and Technical Information of China (English)
周佩玲; 陶小丽; 傅忠谦; 彭虎; 王新跃
2001-01-01
利用基于GA的改进RBF网络建立了为时间序列为对象的预测模型，并提出了基于模型的数据处理方法，在此基础上，对安徽省蚌埠地区42年来6—8月份的降水量进行预测，结果表明了该模型在时间序列预测中有良好的推广和应用能力.%The paper suggests the forecasting model about objects that havetime sequence by using improved Radial Basis Function network model based on GA and data proceding method based on the model,and verifies it through precipitation pre dicting . A good product is obtained and proved its well spread and application.
Institute of Scientific and Technical Information of China (English)
Li-juan XIE; Xing-qian YE; Dong-hong LIU; Yi-bin YING
2008-01-01
Near-infrared (NIR) spectroscopy combined with chemometrics techniques was used to classify the pure bayberry juice and the one adulterated with 10% (w/w) and 20% (w/w) water. Principal component analysis (PCA) was applied to reduce the dimensions of spectral data, give information regarding a potential capability of separation of objects, and provide principal component (PC) scores for radial basis function neural networks (RBFNN). RBFNN was used to detect bayberry juice adulterant. Multiplicative scatter correction (MSC) and standard normal variate (SNV) transformation were used to preprocess spectra. The results demonstrate that PC-RBFNN with optimum parameters can separate pure bayberry juice samples from water-adulterated bayberry at a recognition rate of 97.62%, but cannot clearly detect water levels in the adulterated bayberry juice. We conclude that NIR technology can be successfully applied to detect water-adulterated bayberry juice.
Institute of Scientific and Technical Information of China (English)
Wu Xue-Dong; Wang Yao-Nan; Liu Wei-Ting; Zhu Zhi-Yu
2011-01-01
On the assumption that random interruptions in the observation process are modeled by a sequence of independent Bernoulli random variables, we firstly generalize two kinds of nonlinear filtering methods with random interruption failures in the observation based on the extended Kalman filtering (EKF) and the unscented Kalman filtering (UKF),which were shortened as GEKF and GUKF in this paper, respectively. Then the nonlinear filtering model is established by using the radial basis function neural network (RBFNN) prototypes and the network weights as state equation and the output of RBFNN to present the observation equation. Finally, we take the filtering problem under missing observed data as a special case of nonlinear filtering with random intermittent failures by setting each missing data to be zero without needing to pre-estimate the missing data, and use the GEKF-based RBFNN and the GUKF-based RBFNN to predict the ground radioactivity time series with missing data. Experimental results demonstrate that the prediction results of GUKF-based RBFNN accord well with the real ground radioactivity time series while the prediction results of GEKF-based RBFNN are divergent.
A radial basis function neurocomputer implemented with analog VLSI circuits
Watkins, Steven S.; Chau, Paul M.; Tawel, Raoul
1992-01-01
An electronic neurocomputer which implements a radial basis function neural network (RBFNN) is described. The RBFNN is a network that utilizes a radial basis function as the transfer function. The key advantages of RBFNNs over existing neural network architectures include reduced learning time and the ease of VLSI implementation. This neurocomputer is based on an analog/digital hybrid design and has been constructed with both custom analog VLSI circuits and a commercially available digital signal processor. The hybrid architecture is selected because it offers high computational performance while compensating for analog inaccuracies, and it features the ability to model large problems.
Chemical basis of metabolic network organization.
Directory of Open Access Journals (Sweden)
Qiang Zhu
2011-10-01
Full Text Available Although the metabolic networks of the three domains of life consist of different constituents and metabolic pathways, they exhibit the same scale-free organization. This phenomenon has been hypothetically explained by preferential attachment principle that the new-recruited metabolites attach preferentially to those that are already well connected. However, since metabolites are usually small molecules and metabolic processes are basically chemical reactions, we speculate that the metabolic network organization may have a chemical basis. In this paper, chemoinformatic analyses on metabolic networks of Kyoto Encyclopedia of Genes and Genomes (KEGG, Escherichia coli and Saccharomyces cerevisiae were performed. It was found that there exist qualitative and quantitative correlations between network topology and chemical properties of metabolites. The metabolites with larger degrees of connectivity (hubs are of relatively stronger polarity. This suggests that metabolic networks are chemically organized to a certain extent, which was further elucidated in terms of high concentrations required by metabolic hubs to drive a variety of reactions. This finding not only provides a chemical explanation to the preferential attachment principle for metabolic network expansion, but also has important implications for metabolic network design and metabolite concentration prediction.
Institute of Scientific and Technical Information of China (English)
DU Lin-na; WU Li-hang; LU Jia-hui; GUO Wei-liang; MENG Qing-fan; JIANG Chao-jun; SHEN Si-le; TENG Li-rong
2007-01-01
Partial least squares(PLS), back-propagation neural network (BPNN) and radial basis function neural network(RBFNN) were respectively used for estalishing quantative analysis models with near infrared(NIR) diffuse reflectance spectra for determining the contents of rifampincin(RMP), isoniazid(INH) and pyrazinamide(PZA) in rifampicin isoniazid and pyrazinamide tablets. Savitzky-Golay smoothing, first derivative, second derivative, fast Fourier transform(FFT) and standard normal variate(SNV) transformation methods were applied to pretreating raw NIR diffuse reflectance spectra. The raw and pretreated spectra were divided into several regions, depending on the average spectrum and RSD spectrum. Principal component analysis(PCA) method was used for analyzing the raw and pretreated spectra in different regions in order to reduce the dimensions of input data. The optimum spectral regions and the models' parameters were chosen by comparing the root mean square error of cross-validation(RMSECV) values which were obtained by leave-one-out cross-validation method. The RMSECV values of the RBFNN models for determining the contents of RMP, INH and PZA were 0.00288, 0.00226 and 0.00341, respectively. Using these models for predicting the contents of INH, RMP and PZA in prediction set, the RMSEP values were 0.00266, 0.00227 and 0.00411, respectively. These results are better than those obtained from PLS models and BPNN models. With additional advantages of fast calculation speed and less dependence on the initial conditions, RBFNN is a suitable tool to model complex systems.
Guo, Zhiqiang; Wang, Huaiqing; Yang, Jie; Miller, David J
2015-01-01
In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA) and independent component analysis (ICA). The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron.
Directory of Open Access Journals (Sweden)
Zhiqiang Guo
Full Text Available In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D2PCA and a Radial Basis Function Neural Network (RBFNN to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA and independent component analysis (ICA. The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron.
一种由RBF网络驱动的模糊产生式系统%A Fuzzy Production System Driven by Radial Basis Function Networks
Institute of Scientific and Technical Information of China (English)
王长琼; 孙国正
2000-01-01
Radial Basis Function Networks(RBFN)and fuzzy production systems are introduced.The conditions by which RBFN can drive fuzzy systems are analyzed,and a new learning scheme combining the unsupervised and the supervised algorithm is presented for training RBFN to determine the structure and the parameters of fuzzy systems.Using the new learning scheme,the number of fuzzy rules and parameters of the rules can be determined simultaneously.Simulation illustrates the effectiveness of the method.%介绍了RBF网络和模糊产生式系统.分析了由RBF网络实现模糊产生式系统的条件,并研究了RBF网络的训练算法,以确定模糊系统的结构和参数.运用这种学习算法,可同时确定模糊系统规则的数目和规则的参数.仿真结果说明了该方法的有效性.
Institute of Scientific and Technical Information of China (English)
Bi Jun; Shao Sai; Guan Wei; Wang Lu
2012-01-01
The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice.Because a nonlinear feature exists in the batteries and the radial-basis-function neural network (RBF NN) has good characteristics to solve the nonlinear problem,a practical method for the SOC estimation of batteries based on the RBF NN with a small number of input variables and a simplified structure is proposed.Firstly,in this paper,the model of on-line SOC estimation with the RBF NN is set.Secondly,four important factors for estimating the SOC are confirmed based on the contribution analysis method,which simplifies the input variables of the RBF NN and enhances the real-time performance of estimation.Finally,the pure electric buses with LiFePO4Li-ion batteries running during the period of the 2010 Shanghai World Expo are considered as the experimental object.The performance of the SOC estimation is validated and evaluated by the battery data from the electric vehicle.
Conventional modeling of the multilayer perceptron using polynomial basis functions
Chen, Mu-Song; Manry, Michael T.
1993-01-01
A technique for modeling the multilayer perceptron (MLP) neural network, in which input and hidden units are represented by polynomial basis functions (PBFs), is presented. The MLP output is expressed as a linear combination of the PBFs and can therefore be expressed as a polynomial function of its inputs. Thus, the MLP is isomorphic to conventional polynomial discriminant classifiers or Volterra filters. The modeling technique was successfully applied to several trained MLP networks.
Cerveri, P; Forlani, C; Pedotti, A; Ferrigno, G
2003-03-01
Global polynomial (GP) methods have been widely used to correct geometric image distortion of small-size (up to 30 cm) X-ray image intensifiers (XRIIs). This work confirms that this kind of approach is suitable for 40 cm XRIIs (now increasingly used). Nonetheless, two local methods, namely 3rd-order local un-warping polynomials (LUPs) and hierarchical radial basis function (HRBF) networks are proposed as alternative solutions. Extensive experimental tests were carried out to compare these methods with classical low-order local polynomial and GP techniques, in terms of residual error (RMSE) measured at points not used for parameter estimation. Simulations showed that the LUP and HRBF methods had accuracies comparable with that attained using GP methods. In detail, the LUP method (0.353 microm) performed worse than HRBF (0.348 microm) only for small grid spacing (15 x 15 control points); the accuracy of both HRBF (0.157 microm) and LUP (0.160 microm) methods was little affected by local distortions (30 x 30 control points); weak local distortions made the GP method poorer (0.320 microm). Tests on real data showed that LUP and HRBF had accuracies comparable with that of GP for both 30 cm (GP: 0.238 microm; LUP: 0.240 microm; HRBF: 0.238 microm) and 40 cm (GP: 0.164 microm; LUP: 0.164 microm; HRBF: 0.164 microm) XRIIs. The LUP-based distortion correction was implemented in real time for image correction in digital tomography applications.
径向基函数预测网络拓扑确定新方法%Topology Determination Method for Radial Basis Function Prediction Network
Institute of Scientific and Technical Information of China (English)
吕永乐
2012-01-01
预测能力相对薄弱,已经成为制约PHM(Prognostics and Health Management)技术发展和应用的瓶颈.随着传感器和BIT (Built-in Test)设计技术的日益进步,采用序列分析的方法对复杂系统装备进行故障预测已经成为可能.在基于序列分析的预测方法研究中,径向基函数预测网络具有结构简单、学习速度快、具备非线性建模能力等诸多优点.为了改进其预测性能,在深入分析网络拓扑对模型性能及建模时间影响的基础上,综合考察了序列最佳线性自相关长度、建模精度和模型复杂度等多种因素,提出了基于偏自相关函数统计检测的输入层节点数目确定算法和基于BIC(Bayesian Information Criteria)准则的隐层节点数目确定算法,用以构建径向基函数预测网络；并对算法的有效性进行了分析.仿真结果表明,同传统建模算法相比较,由新算法构建的径向基函数预测网络具有最佳的预测性能,且建模时间不足传统算法的3％.%With the progress of sensor and built-in test (BIT) technology, it is realizable to prognose the health status of complicated system by employing the methodology of time series analysis. In the research of prediction methods based on time series, the radial basis function prediction network (RBFPN) was widely paid attention because of the merits such as brief construction, fast learning and the nonlinear modeling ability. In order to improve the RBFPN prediction performance, the influence of network topology on the model performance and the consumed modeling time was analyzed. After that, the factors including optimal linear correlation length, the modeling precision and complexity were researched, and then the number decision algorithm of input layer nodes based on partial autocorrelation function statistical testing and the neuron number decision algorithm of hidden layer based on the Bayesian information criteria were respectively put forward to
Luengo, Julián; García, Salvador; Herrera, Francisco
2010-04-01
The presence of Missing Values in a data set can affect the performance of a classifier constructed using that data set as a training sample. Several methods have been proposed to treat missing data and the one used more frequently is the imputation of the Missing Values of an instance. In this paper, we analyze the improvement of performance on Radial Basis Function Networks by means of the use of several imputation methods in the classification task with missing values. The study has been conducted using data sets with real Missing Values, and data sets with artificial Missing Values. The results obtained show that EventCovering offers a very good synergy with Radial Basis Function Networks. It allows us to overcome the negative impact of the presence of Missing Values to a certain degree.
Analysis of radial basis function interpolation approach
Institute of Scientific and Technical Information of China (English)
Zou You-Long; Hu Fa-Long; Zhou Can-Can; Li Chao-Liu; Dunn Keh-Jim
2013-01-01
The radial basis function (RBF) interpolation approach proposed by Freedman is used to solve inverse problems encountered in well-logging and other petrophysical issues. The approach is to predict petrophysical properties in the laboratory on the basis of physical rock datasets, which include the formation factor, viscosity, permeability, and molecular composition. However, this approach does not consider the effect of spatial distribution of the calibration data on the interpolation result. This study proposes a new RBF interpolation approach based on the Freedman's RBF interpolation approach, by which the unit basis functions are uniformly populated in the space domain. The inverse results of the two approaches are comparatively analyzed by using our datasets. We determine that although the interpolation effects of the two approaches are equivalent, the new approach is more flexible and beneficial for reducing the number of basis functions when the database is large, resulting in simplification of the interpolation function expression. However, the predicted results of the central data are not sufficiently satisfied when the data clusters are far apart.
Institute of Scientific and Technical Information of China (English)
陈向东; 唐景山; 宋爱国
2000-01-01
In this paper,an improved radial basis function networks named hidden neuron modifiable radial basis function (IINMRBF) networks is proposed for target classification,and evolutionary programming (EP) is used as a learning algorithm to determine and modify the hidden neuron of HNMRBF nets.The result of passive sonar target classification shows that HNMRBF nets can effectively solve the problem of traditional neural networks,i.e.learning new target patterns on-line will cause forgetting of the old patterns.%本文提出了一种改进的称为隐神经元可调径向基函数神经网络(HNMRBF)，并且应用进化规划算法作为聚类算法来决定和修改HNMRBF网络的隐神经元.最后，我们使用基于进化规划算法的HMRBF网络来进行被动声纳信号目标的分类，结果表明HNMRBF网络能有效地解决用传统神经网络时所遇到的问题，即在线学习新的目标模式时往往会遗忘旧的模式.
Institute of Scientific and Technical Information of China (English)
翟红林; 陈晓峰; 陈兴国; 胡之德
2004-01-01
结合了径向基神经网络较强模式分类能力与概率神经网络运算简单的优点,提出了一种径向基概率神经网络模型,并应用于小儿厌食症的辅助诊断,通过对119例样本数据的处理,获得了92.4%的准确率.此外,偏最小二乘法的分析结果表明,Zn元素与小儿厌食症关系最为紧密.%Based on a radial basis function probabilistic neural network model, which combined the powerful capability of the pattern classification of radial basis function neural network and the simple operation of probabilistic neural network, a new approach of assisted diagnosis for infancy anorexia was developed and applied to 119 samples, with an accuracy rate of 92%. In addition, the result of partial least squares analysis indicated that Zn was the most important element that was closely related to infancy anorexia..
On Network Functional Compression
Feizi, Soheil
2010-01-01
In this paper, we consider different aspects of the network functional compression problem where computation of a function (or, some functions) of sources located at certain nodes in a network is desired at receiver(s). The rate region of this problem has been considered in the literature under certain restrictive assumptions, particularly in terms of the network topology, the functions and the characteristics of the sources. In this paper, we present results that significantly relax these assumptions. Firstly, we consider this problem for an arbitrary tree network and asymptotically lossless computation. We show that, for depth one trees with correlated sources, or for general trees with independent sources, a modularized coding scheme based on graph colorings and Slepian-Wolf compression performs arbitrarily closely to rate lower bounds. For a general tree network with independent sources, optimal computation to be performed at intermediate nodes is derived. We introduce a necessary and sufficient condition...
Institute of Scientific and Technical Information of China (English)
吕林涛; 姬娜; 张九龙
2010-01-01
针对国内外金融领域可疑交易的低检测率问题,通过对RBF(Radial Basis Function)神经网络技术的分析与研究,提出了一种基于APC-Ⅲ聚类算法和RLS(Recursive Least Square)算法的面向反洗钱的RBF神经网络模型并加以实现.APC-Ⅲ聚类算法用于确定RBF神经网络隐含层的中心向量,RLS算法用来调整隐舍层与输出层之间的连接权值.RBF神经网络与支持向量机(SVM)和孤立点检测相比,有更高的检测率和较低的误检率,因此,提出的模型具有重要的理论和实用价值.
The Interpolation Theory of Radial Basis Functions
Baxter, Brad
2010-01-01
In this dissertation, it is first shown that, when the radial basis function is a $p$-norm and $1 2$. Specifically, for every $p > 2$, we construct a set of different points in some $\\Rd$ for which the interpolation matrix is singular. The greater part of this work investigates the sensitivity of radial basis function interpolants to changes in the function values at the interpolation points. Our early results show that it is possible to recast the work of Ball, Narcowich and Ward in the language of distributional Fourier transforms in an elegant way. We then use this language to study the interpolation matrices generated by subsets of regular grids. In particular, we are able to extend the classical theory of Toeplitz operators to calculate sharp bounds on the spectra of such matrices. Applying our understanding of these spectra, we construct preconditioners for the conjugate gradient solution of the interpolation equations. Our main result is that the number of steps required to achieve solution of the lin...
Institute of Scientific and Technical Information of China (English)
王开燕; 周妍; 王世龙; 郝菲
2014-01-01
目前，人工智能神经网络在地震储层参数的预测方面具有广泛的应用，最常用的为BP神经网络，但是效果并不是十分理想。径向基函数神经网络（RBFN）是一种前馈神经网络，其在函数逼近、模式识别方面都优于BP网络，已经在岩性识别、孔渗预测方面取得了较好的应用效果。本文首次将此方法运用于预测砂体厚度，利用地震属性信息和神经网络的学习，基于实际数据计算，最后计算出相应的砂体厚度值，并与实测值进行误差分析。实例分析表明，利用径向基函数神经网络进行砂体厚度预测具有一定的可行性和实用价值。%At present, artificial intelligence neural network has widely applied in prediction of seismic reservoir parameters, the most commonly used one is BP neural network, but its effect is not very ideal. Radial basis function neural network (RBFN) is a kind of feedforward neural network; it is superior to the BP network in the aspects of function approximation and pattern recognition, so it has already gained good application effect in lithology identification, permeability and porosity prediction. In this paper, this method was first applied to predict sand body thickness. Through using seismic attribute information and neural network learning, based on the actual data, finally the corresponding sand body thickness value was calculated, and error analysis was carried out by comparing with the measured values. Example analysis shows that, using radial basis function neural network to predict thickness of sand body has certain feasibility and practical value.
Spherical radial basis functions, theory and applications
Hubbert, Simon; Morton, Tanya M
2015-01-01
This book is the first to be devoted to the theory and applications of spherical (radial) basis functions (SBFs), which is rapidly emerging as one of the most promising techniques for solving problems where approximations are needed on the surface of a sphere. The aim of the book is to provide enough theoretical and practical details for the reader to be able to implement the SBF methods to solve real world problems. The authors stress the close connection between the theory of SBFs and that of the more well-known family of radial basis functions (RBFs), which are well-established tools for solving approximation theory problems on more general domains. The unique solvability of the SBF interpolation method for data fitting problems is established and an in-depth investigation of its accuracy is provided. Two chapters are devoted to partial differential equations (PDEs). One deals with the practical implementation of an SBF-based solution to an elliptic PDE and another which describes an SBF approach for solvi...
Bioprinting: Functional droplet networks
Durmus, Naside Gozde; Tasoglu, Savas; Demirci, Utkan
2013-06-01
Tissue-mimicking printed networks of droplets separated by lipid bilayers that can be functionalized with membrane proteins are able to spontaneously fold and transmit electrical currents along predefined paths.
Institute of Scientific and Technical Information of China (English)
黎峻宇; 刘立龙; 蔡成辉; 林国标; 黄良珂
2015-01-01
The necessity of data pretreatment to the elevation fitting on radial basis function network modeling is described.The basic principle and implementation steps of the conversion modeling is depicted based on radial basis function networks elevation.With engineering examples,normalization,centralization,standardization of three different data pretreatment methods is used to calculate the impact of good conversion on radial basis func-tion network.It is shown that data pretreatment model can achieve better conversion accuracy in a large area with elevation changes over the outliers.Different pretreatment methods result in different conversion.The cen-tralization can improve the elevation accuracy on radial conversion function network in a greater degree.Normal-ization wouldn't be the best data pretreatment method.It is necessary for the selection of pretreatment method before elevation conversion.%介绍了数据预处理对基于径向基函数网络的高程转换的必要性，提出了基于径向基函数网络高程转换建模的基本原理和实现步骤。结合工程实例，重点对归一化、中心化、标准化3种不同的数据预处理方法对基于径向基函数网络高程转换的影响进行计算分析。结果表明：针对大面积、高程异常值变化较大的区域，经过数据预处理后模型能够达到更高的转换精度；不同的预处理方法对转换结果影响不同，中心化预处理较其他两种方法能够更大程度地提高径向基函数网络高程转换的精度；归一化预处理方法不一定是最优的，进行高程转换前有必要对预处理方法进行选择。
The functional basis of adaptive evolution in chemostats.
Gresham, David; Hong, Jungeui
2015-01-01
Two of the central problems in biology are determining the molecular basis of adaptive evolution and understanding how cells regulate their growth. The chemostat is a device for culturing cells that provides great utility in tackling both of these problems: it enables precise control of the selective pressure under which organisms evolve and it facilitates experimental control of cell growth rate. The aim of this review is to synthesize results from studies of the functional basis of adaptive evolution in long-term chemostat selections using Escherichia coli and Saccharomyces cerevisiae. We describe the principle of the chemostat, provide a summary of studies of experimental evolution in chemostats, and use these studies to assess our current understanding of selection in the chemostat. Functional studies of adaptive evolution in chemostats provide a unique means of interrogating the genetic networks that control cell growth, which complements functional genomic approaches and quantitative trait loci (QTL) mapping in natural populations. An integrated approach to the study of adaptive evolution that accounts for both molecular function and evolutionary processes is critical to advancing our understanding of evolution. By renewing efforts to integrate these two research programs, experimental evolution in chemostats is ideally suited to extending the functional synthesis to the study of genetic networks.
Basis Function Sampling for Material Property Computations
Whitmer, Jonathan K.; Chiu, Chi-Cheng; Joshi, Abhijeet A.; de Pablo, Juan J.
2014-03-01
Wang-Landau sampling, and the associated class of flat histogram simulation methods, have been particularly successful for free energy calculations in a wide array of physical systems. Practically, the convergence of these calculations to a target free energy surface is hampered by reliance on parameters which are unknown a priori. We derive and implement a method based on orthogonal (basis) functions which is fast, parameter-free, and geometrically robust. An important feature of this method is its ability to achieve arbitrary levels of description for the free energy. It is thus ideally suited to in silico measurement of elastic moduli and other quantities related to free energy perturbations. We demonstrate the utility of such applications by applying our method to calculation of the Frank elastic constants of the Lebwohl-Lasher model.
Institute of Scientific and Technical Information of China (English)
臧蕾; 刘伟; 李祚泳
2012-01-01
[Objective ] The aim was to study the assessment model of carrying capacity of water resources represented with normalized indices values based on radial basis function network ( RBF). [ Method] On the basis of the normalized transformation for indices, the basis function of model was universal for various indices and made representative calculation greatly simplified, as mean as normalized values of standards at all levels as the normalized values of each component of center vector for the basis functions in hidden nodes. [ Result] The RBF model optimized weight values by monkey king algorithm was applied to assess the carrying capacities of water resources in three districts of Changwu County of Shaanxi Province, the evaluation results were basically consistent with that of fuzzy assessment method. [ Conclusion] RBF model is simple and practical, and has universality and generality.%[目的]研究基于指标规范值的区域水资源承载力评价的径向基函数网络模型(RBF).[方法]在对指标进行规范变换的基础上,将指标各级标准规范值的平均值作为RBF的隐层节点基函数中心矢量各分量的规范值,因而基函数对各指标具有普适性,使基函数的表示和计算大为简化.[结果]将猴王算法优化网络权值得到的RBF模型应用于陕西省长武县3个区域水资源承载力的评价,其评价结果与模糊综合评价结果基本一致.[结论]RBF模型具有简单、实用的特点,具有普适性和通用性.
The Role of the Basis Set: Assessing Density Functional Theory
Boese, A D; Handy, N C; Martin, Jan M. L.; Handy, Nicholas C.
2003-01-01
When developing and assessing density functional theory methods, a finite basis set is usually employed. In most cases, however, the issue of basis set dependency is neglected. Here, we assess several basis sets and functionals. In addition, the dependency of the semiempirical fits to a given basis set for a generalised gradient approximation and a hybrid functional is investigated. The resulting functionals are then tested for other basis sets, evaluating their errors and transferability.
Institute of Scientific and Technical Information of China (English)
樊明璐; 陈旻; 张义平; 罗迪
2014-01-01
提出一种用于解决递推估计问题的优化算法，该算法基于递推粒子群优化。递推估计问题获得的数据并非一次性获得，而是陆续获得。在递推的粒子群算法中，粒子基于过去的数据信息和新获取的数据递推地更新自己位置。实验结果表明，基于递推算法的径向基函数网络模拟系统只需要较少的径向基函数，同时在解决动态问题时能够比传统粒子群算法获得更准确的结果。%A Recursive Particle Swarm Optimization (R-PSO)is proposed to solve dynamic optimization problems where the data is ob-tained not once but one by one.In R-PSO,the position of each particle swarm is updated recursively based on the continuous data and the historical knowledge.The experiment results indicate that RPSO-based radial basis function networks needs fewer radial basis func-tions and meanwhile gives more accurate results than traditional PSO in solving dynamic problems.
Institute of Scientific and Technical Information of China (English)
李昕; 郑宇; 江芳泽
2002-01-01
The performance of speaker verification systems is often compromised under real-world environments. For example, variations in handset characteristics could cause severe performance degradation. This paper presents a novel method to overcome this problem by using a non-linear handset mapper. Under this method, a mapper is constructed by training an elliptical basis function network using distorted speech features as inputs and the corresponding clean features as the desired outputs. During feature recuperation, clean features are recovered by feeding the distorted features to the feature mapper. The recovered features are then presented to a speaker model as if they were derived from clean speech. Experimental evaluations based on 258 speakers of the TIMIT and NTIMIT corpuses suggest that the feature mappers improve the verification performance remarkably.
Institute of Scientific and Technical Information of China (English)
张邦礼; 王小平; 杨小文
2001-01-01
连铸板坯缺陷形成的诸多影响因素之间的关系错综复杂，造成缺陷预报和诊断都非常困难.提出用粗糙集理论简化这些因素，然后采用径向基函数网络对连铸板坯缺陷进行预报诊断.仿真实验证明了该方法的有效性、先进性、实用性.%The relation of the factors which cause the continuous casting slab defect are anfractuous ,which cause the prediction and diagnosis of the defect diffcult. This research uses rough sets to reduce this factors ,then adopts radial basis function networks to predict and diagnose the continuous casting slab defect .The experiment indicates the validity advancement and practicability of this method.
Radial Basis Function Neural Network Modeling Using Fuzzy Subspace Clustering%模糊子空间聚类的径向基函数神经网络建模
Institute of Scientific and Technical Information of China (English)
张江滨; 邓赵红; 王士同
2015-01-01
传统径向基函数(radial basis function,RBF)神经网络模型在处理噪声环境下的数据时,会因缺乏去除噪音特征的机制而使得受训模型的泛化性能下降.针对此缺陷,根据模糊子空间聚类(fuzzy subspace clus-tering,FSC)算法的子空间特性,为RBF神经网络添加特征抽取机制,提出了一种模糊子空间聚类RBF神经网络建模新方法(RBF neural network modeling using fuzzy subspace clustering,FSC-RBF-NN).与传统RBF神经网络建模方法相比,FSC-RBF-NN方法可根据FSC的子空间特性和特征抽取机制,为不同的隐含层节点选取不同的特征子空间.当训练数据中含有大量噪音特征时,FSC-RBF-NN方法可通过特征抽取机制去除噪音特征,只保留对建模有积极作用的特征,使模型能保持良好的泛化性能.模拟和真实数据集上的实验结果亦验证了FSC-RBF-NN方法在噪声环境下具有更好的鲁棒性.%When training data in the noisy environment, the generalization performance of traditional RBF (radial basis function) neural network is degraded because of the deficiency of feature extraction mechanism. This paper pro-poses a novel modeling method, i.e., RBF neural network modeling using fuzzy subspace clustering (FSC-RBF-NN) which adds feature extraction mechanism to overcome this challenge. Compared with traditional RBF neural network modeling, the proposed method can extract different subspace features for different nodes in hidden layer according to the subspace features of FSC (fuzzy subspace clustering) method and the feature extraction mechanism. When the training data contain lots of noise features, the proposed method can still keep good generalization performance by using the feature extraction mechanism to remove noise features. The experimental results on the synthetic and real-world datasets prove that the FSC-RBF-NN method has strong robustness in the noisy environment.
涡喷发动机风车启动工况的神经网络建模%Turbojet modeling in windmilling based on radial basis function networks
Institute of Scientific and Technical Information of China (English)
于达仁; 郭钰锋; 牛军; 史新兴; 何保成
2001-01-01
弹用涡喷发动机的风车启动工况是复杂的非线性过程，由于此时压气机处于非设计工况(膨胀)而造成机理建模的困难。神经网络对于非线性映射具有任意逼近能力，应用径向基函数神经网络（RBFN）对涡喷发动机风车启动阶段进行了实验建模，通过适当地选取网络参数及训练样本，达到了很高的精度，对确定发动机可靠点火点和启动过程仿真等都有一定的价值。%The windmilling process of missile turbojet is such a complex nonlinear process that to obtain its dynamic model theoretically is very difficult , because the compressor works in expending mode ( non-normal operating mode) in this condition. Considering the great capacity of handling nonlinearity of the neural network , an experimental model of the windmilling process using radial basis function networks (RBFN) was established and a good precision through selecting the parameters and the training samples of the network properly was gained. The neural network model is of great value for computing the point of ignition or simulating the windmilling process.
Local-basis-function approach to computed tomography
Hanson, K. M.; Wecksung, G. W.
1985-12-01
In the local basis-function approach, a reconstruction is represented as a linear expansion of basis functions, which are arranged on a rectangular grid and possess a local region of support. The basis functions considered here are positive and may overlap. It is found that basis functions based on cubic B-splines offer significant improvements in the calculational accuracy that can be achieved with iterative tomographic reconstruction algorithms. By employing repetitive basis functions, the computational effort involved in these algorithms can be minimized through the use of tabulated values for the line or strip integrals over a single-basis function. The local nature of the basis functions reduces the difficulties associated with applying local constraints on reconstruction values, such as upper and lower limits. Since a reconstruction is specified everywhere by a set of coefficients, display of a coarsely represented image does not require an arbitrary choice of an interpolation function.
Institute of Scientific and Technical Information of China (English)
陈晓艳; 董朝轶; 刘月文
2011-01-01
农作物疾病的人工诊断效果常受到个人诊断经验和能力的限制,无法达到最令人满意的诊断结果.将丰富的植物病理学诊断经验和知识编入专家系统,利用模式识别算法对农作物常见疾病进行诊断,可以大大提高诊断准确率,显著地提高其产量和质量.本文研究基于一种人工神经元网络(Artificial Neural Network,ANN)--径向基函数(Radial BasisFunction,RBF)网络的模式识别技术在大豆疾病诊断中的应用.径向基函数神经网络是基于人脑的神经元细胞对外界反应的局部性而提出的一种前馈式神经网络,这种网络具有结构简单、全局逼近能力强、训练方法快速易行的优点.本文首先对大豆常见19种疾病症状进行收集和整理,构建试验样本集.然后利用人工神经元网络理论,建立基于径向基函数(RBF)的网络模型,实现对该网络的训练和测试.测试结果表明,该模型具有较高的农作物疾病诊断正确率和良好的泛化能力.%The manual diagnosis for the diseases of agricultural crops is often restricted by the individual ability and experiences so that one cannot obtain the precise results of diagnosis. To overcome this pitfall, the merge of expert systems with the rich pathological knowledge and the utilization of pattern recognition algorithm can significantly improve the precision of diagnosis. Therefore, it greatly increases the quantity and the quality of crop's production. In this paper, a pattern recognition technique, based on a radial basis function ( RBF) neural network is applied to the diagnosis of soybean diseases. The RBF neural network, which is a novel and efficient feed-forward network, is based on the local reflections of cortical neurons on the external stimulus. This network possesses variety of characteristics, for example, the simple structure, strong global convergence, and fast-speed training behavior, which together make RBF network to be used widely
Learning Mixtures of Truncated Basis Functions from Data
DEFF Research Database (Denmark)
Langseth, Helge; Nielsen, Thomas Dyhre; Pérez-Bernabé, Inmaculada;
2014-01-01
-likelihood), they are significantly faster, and therefore indicate that the MoTBF framework can be used for inference and learning in reasonably sized domains. Furthermore, we show how a particular sub- class of MoTBF potentials (learnable by the proposed methods) can be exploited to significantly reduce complexity during inference.......In this paper we investigate methods for learning hybrid Bayesian networks from data. First we utilize a kernel density estimate of the data in order to translate the data into a mixture of truncated basis functions (MoTBF) representation using a convex optimization technique. When utilizing...... propose an alternative learning method that relies on the cumulative distribution function of the data. Empirical results demonstrate the usefulness of the approaches: Even though the methods produce estimators that are slightly poorer than the state of the art (in terms of log...
Institute of Scientific and Technical Information of China (English)
罗青; 李智军; 等
2002-01-01
与监督学习从范例中学习的方式不同,强化学习不需要先验知识,而是具有从经验中学习的能力.将强化学习应用在大状态空间中,必须应用函数逼近的方法,如使用径向基函数网络建立输入和输出的映射关系.本文对基于径向基函数网络的强化学习在机器人足球这样的动态的多智能体环境中的应用进行了研究.实验结果证明了研究方法的可行性.%Reinforcement learning has the ability to learn from experience as opposed to supervised learning which learns from examples. Application of reinforcement learning to large state spaces necessitates the use of function approximators like Radial Basis Function Networks (RBFNs) to map between inputs and outputs. This study investigates the applicability of RBFNs based reinforcement learning methods in a dynamic multi-agent scenario of robot soccer. And the result of experiment proves that is a suitable approach.
Institute of Scientific and Technical Information of China (English)
刘述文; 潘宏侠; 刘涛涛
2015-01-01
局域均值分解(Local Mean Decomposition,LMD)是近年来出现的一种新的时频分析方法,在机械设备故障诊断领域中的应用日益广泛.针对齿轮箱振动故障信号的非平稳性和非线性,提出了一种基于局域均值分解和径向基函数神经网络(Radial BasisFunction Neural Network,RBF)相结合的齿轮箱故障诊断方法.该方法利用小波包对原始信号进行消噪;利用LMD对处理后信号进行分解,得到一系列PF分量(Product Function,PF);选取包含主要故障信息的PF分量并从中提取偏度系数等特征参数对RBF神经网络进行训练,并对齿轮箱故障进行识别和分类.通过实例验证了该方法的有效性.
Dynamics Model Abstraction Scheme Using Radial Basis Functions
Directory of Open Access Journals (Sweden)
Silvia Tolu
2012-01-01
Full Text Available This paper presents a control model for object manipulation. Properties of objects and environmental conditions influence the motor control and learning. System dynamics depend on an unobserved external context, for example, work load of a robot manipulator. The dynamics of a robot arm change as it manipulates objects with different physical properties, for example, the mass, shape, or mass distribution. We address active sensing strategies to acquire object dynamical models with a radial basis function neural network (RBF. Experiments are done using a real robot’s arm, and trajectory data are gathered during various trials manipulating different objects. Biped robots do not have high force joint servos and the control system hardly compensates all the inertia variation of the adjacent joints and disturbance torque on dynamic gait control. In order to achieve smoother control and lead to more reliable sensorimotor complexes, we evaluate and compare a sparse velocity-driven versus a dense position-driven control scheme.
Face Detection Based on Skin Color Model and Radial Basis Function Network%基于肤色模型和径向基函数网络的脸部检测
Institute of Scientific and Technical Information of China (English)
陈栋; 王丽荣
2014-01-01
The calculation of the closure of human eyes is commonly adopted to detect driver fatigue. In order to realize human eyes closure calculation, correct and rapid detection of human face is accomplished firstly, for the specific environment of cabs, this paper proposes a fast face detection algorithm based on skin color model and radial basis function network, which makes input image carry out RGB and YCbCr color space conversion, then establishes relevant skin model to achieve the coarse positioning of face region, finally, combines radial basis function network to train input image, so that whether it is the skin color is determined according to the training results, and the detection on face is finished. Simulation results show that the algorithm improves the human face correct detection un-der strong light, laying a foundation for drivers’ fatigue driving research.%驾驶员疲劳状态检测一般采用对人眼的闭合度进行计算，若实现对人眼的闭合度计算首先是对人脸的正确快速检测，针对驾驶室的特定环境，本文研究一种基于肤色模型和径向基函数网络为基础的快速人脸检测算法，该算法首先对输入图像进行RGB和YCbCr颜色空间的转换，其次建立相关的肤色模型，实现人脸区域的粗定位，然后结合径向基函数网络对输入的图像进行训练，这样就可以根据训练的结果判断是否是肤色，从而实现人脸检测。仿真结果表明，所研究的算法较好的提高了强光下人脸的正确检测，为驾驶员疲劳驾驶的研究奠定前期基础。
Institute of Scientific and Technical Information of China (English)
周贞贞; 孙桦
2013-01-01
Four algorithms including Gradient Descent(GD) algorithm , Extended Kalman Filter(EKF) algorithm,Unscented Kalman Filter(UKF) algorithm, and the new algorithm combined by Genetic Algorithm and Kalman Filter(GA&KF) algorithm, are adopted in order to establish Radial Basis Function(RBF) neural network based on the adaptive structure. These algorithms have been successfully used to optimize the weights and the center values of RBF neural network. Taking IRIS set as training samples, the detailed comparisons on approximation capability,output error, training effect and recognition accuracy among different algorithms are performed. It is indicated that the proposed method bears strong processing capacity on non-linear system, better adaptive ability and fast learning speed.% 为了提高神经网络模式识别的泛化能力，运用梯度下降、扩展卡尔曼滤波、无先导卡尔曼滤波和一种基于遗传算法与扩展卡尔曼滤波组合的新方法，对径向基神经网络的中心节点和权重进行了优化，建立了自适应结构的径向基神经网络模型，实现了对 IRIS 数据集的识别。通过仿真实验，对基于不同算法的径向基神经网络，从逼近能力、输出误差、学习效率与识别精确度等方面进行了分析比较。本文方法具有很强的非线性处理能力和自适应能力及较快的学习速度。
Institute of Scientific and Technical Information of China (English)
赵宇红; 汪普林; 梁海滨
2011-01-01
电力系统短期负荷预测是电力生产部门的重要工作之一，本文利用径向基函数网络（RBF）进行负荷预测，针对RBF在负荷预测中隐含层节点数难求问题，提出了一种改进的最近邻聚类学习算法即可解决该难点，又可提高RBF神经网络收敛速度和负荷预测精度．根据某地区电网的实例进行研究，结果发现本文算法比改进前的算法预测的最小、最大相对误差分别减小0．14和1．12，证明了改进后算法有效性和可行性，为电力系统负荷预测提供了一种新途径．%Power system Short term load forecasting is one important work of the electricity production sector. In this paper,radial basis function network （RBF） is used in load forecast ing. Load forecasting for the RBF in the hidden layer nodes is hard to find. An improved nearest neighbor clustering algorithm is proposed to solve the difficulties and improve RBF neural network convergence speed and load forecasting accuracy. According to the instance of a regional power grid study,we found that the minimum,maximmn relative error were reduced by 0. 14 and 1.12,if we used the improved algorithm to predict. Case study results prove its effectiveness and feasibility. It provides a new way for the power system load forecasting.
Institute of Scientific and Technical Information of China (English)
胡焱弟; 李新欣; 白志鹏; 冯银厂; 赵玉杰; 吴建会
2006-01-01
将径向基函数网络(Radial Basis Function Network,RBFN)应用于城市环境颗粒物来源解析工作.模拟数据计算的解析结果表明:RBFN可以实现对多源(14个可能源,其中13个为有效源)的解析,在5%～15%的源和受体测量误差的情况下,对于分担率大于15%的主要源,其解析结果与真实值的相对误差均不高于5%;对于分担率大于5%的源,其解析相对误差均低于15%.RBF网络可以很好地识别无效源.因此,在充分掌握可能污染源成分谱信息的基础上,该方法具有源解析应用潜力.
一类基于径向基函数网的分工协作混合系统%A DIVIDE-AND-COOPERATE HYBRID SYSTEM BASED ON RADIAL BASIS FUNCTION NETWORKS
Institute of Scientific and Technical Information of China (English)
黄榕波; 朱思铭
2004-01-01
径向基函数网络(Radial Basis Function Network,RBFN)是二十世纪八十年代末提出的一种神经网络.当网络的输入维数较大时,RBFN的系统复杂性大大提高,从而使RBFN的行为受到影响,因此降低RBFN输入维数已成为RBFN的研究热点.本文提出一类基于RBFN的分工协作系统及其学习算法(A Divide-and-Cooperate HybridSystem Based RBFN,DCRBFN).DCRBFN是一种由多个子RBFN组成的混合结构,每个子RBFN具有自己的输入空间.由于DCRBFN把高维模型分解为低维模型,所以DCRBFN不仅明显降低了RBFN的复杂性而且网络的收敛速度更快.实验表明,DCRBFN在处理高维模型的行为明显优于RBFN.
Institute of Scientific and Technical Information of China (English)
蔡珣; 陈智; Kanishka T yagi; 于宽3; 李子强; 朱波
2015-01-01
提出了一种混合加权距离测量（weighted distance measure ，weighted DM ）参数的构建和训练RBF（radial basis function）神经网络的两步批处理算法。该算法在引进了 DM 系数参数的基础上，采用Newton 法分别对径向基函数的覆盖参数、均值向量参数、加权距离测度系数以及输出权值进行了优化，并在优化过程中利用 OLS（orthogonal least squares）法来求解 New ton 法的方程组。通过实验数据，不仅分析了 New ton 法优化的各个参数向量对 RBF 网络训练的影响，而且比较了混合优化加权 DM 与RLS‐RBF（recursive least square RBF neural network）网络训练算法的收敛性和计算成本。所得到的结论表明整合了优化参数的加权 DM‐RBF 网络训练算法收敛速度比 RLS‐RBF 网络训练算法更快，而且具有比 LM‐RBF （Levenberg‐Marquardt RBF ）训练算法更小的计算成本，从而说明 OLS 求解的Newton 法对优化 RBF 网络参数具有重要应用价值。%A hybrid two‐step second‐order batch approach is presented for constructing and training radial basis function (RBF) neural networks .Unlike other RBF neural network learning algorithms , the proposed paradigm uses New ton’s method to train each set of network parameters ,i .e .spread parameters ,mean vector parameters and weighted distance measure (DM ) coefficients and output weights parameters .For efficiently calculating the second‐order equations of New ton’s method ,all the optimal parameters are found out using orthogonal least squares (OLS ) with the multiply optimal learning factors(MOLFs) for training mean vector parameters .The simulation results of the proposed hybrid training algorithm on a real dataset are compared with those of the recursive least square based RBF(RLS‐RBF) and Levenberg‐Marquardt method based RBF(LM‐RBF) training algorithms .Also , the analysis of the training performance for optimization of each
EEG Source Reconstruction using Sparse Basis Function Representations
DEFF Research Database (Denmark)
Hansen, Sofie Therese; Hansen, Lars Kai
2014-01-01
State of the art performance of 3D EEG imaging is based on reconstruction using spatial basis function representations. In this work we augment the Variational Garrote (VG) approach for sparse approximation to incorporate spatial basis functions. As VG handles the bias variance trade-off with cross...
Higher-Order Hierarchical Legendre Basis Functions in Applications
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter;
2007-01-01
degree of orthogonality. The basis functions are well-suited for solution of complex electromagnetic problems involving multiple homogeneous or inhomogeneous dielectric regions, metallic surfaces, layered media, etc. This paper presents real-life complex antenna radiation problems modeled...... with electromagnetic simulation tools based on the higher-order hierarchical Legendre basis functions....
Institute of Scientific and Technical Information of China (English)
2016-01-01
采用脉冲涡流技术进行检测时,为准确得到被测缺陷的轮廓,提出了一种基于径向基神经网络的缺陷轮廓重构方法.该方法为降低网络结构对重构结果的影响,采用主成分分析法对网络隐层应选择的最少节点数进行了计算,进而确定了较合理的网络结构;而后采用混合学习算法求得了网络参数,并通过引入梯度信息衰减系数对求解过程进行了优化;最后将其应用于脉冲涡流检测的缺陷轮廓重构实验,结果表明:基于径向基神经网络的缺陷轮廓重构方法不仅具有较高的重构精度而且具有较强的抗噪声干扰能力,是一种有效可行的脉冲涡流缺陷轮廓重构方法.%In order to obtain the defect profile when the pulsed eddy current testing was used, an approach of defect profile reconstruction from pulsed eddy current signals based on radial basis function neural network( RBFNN) was proposed in this paper. To reduce the effect of network structure on reconstruction result, principal components analysis was used to determine the least number of hidden nodes, then the appropriate network structure was determined. The hybrid learning algorithm was used to solve the parameter of RBFNN, and the solving process was optimized by attenuation coefficient of gradient information. Then the pro-posed approach was utilized in the experiment of defect profile reconstruction, the results indicate that the defect profile can be re-constructed accurately and the performance of noise interference suppression of the method is high, thus it is an effective and feasi-ble approach for pulsed eddy current defect profile reconstruction.
Radial Basis Function Neural Network Model Based on Orthogonal Least Squares%基于正交最小二乘法的径向基神经网络模型
Institute of Scientific and Technical Information of China (English)
刘道华; 张礼涛; 曾召霞; 孙文萧
2013-01-01
In order to improve the forecasting accuracy of the neural network model and the computational efficien -cy, the structure of Gaussian radial basis neural network based on orthogonal least squares was constructed and the re -gression models of neural network was given .The center parameters of Gaussian function were determined by the se -quence information of the sample point and the connection weights between the hidden layer and output layer was deter -mined by the recursive computation of the orthogonal least squares .The performances of this method and the other liter -ature method used to forecast the model based on chaotic Lorenz time series were compared in terms of forecasting accu -racy and the recursive time required .The results indicated that the designed model has many advantages such as higher forecasting accuracy and higher computational efficiency .% 为提高神经网络模型的预测精度以及提高模型的计算效率，减少获得高精度模型的计算量，构建了基于正交最小二乘法的高斯径向基神经网络模型结构，给出了最小二乘法高斯径向基神经网络的递归模型。依据样本点序列信息，给出了高斯径向基函数中心参数的确定方法，并采用正交最小二乘法回归迭代，从而获得隐层同输出层间的连接权参数值。采用混沌 Lorenz 时间序列预测问题对该设计的网络模型进行验证，并同其他文献对该序列预测的精度以及迭代所需的时间作对比。结果表明，采用该设计方法获得的网络模型具有时间预测精度高及计算效率高等优点。
Institute of Scientific and Technical Information of China (English)
程彩霞; 孙富春; 周心权
2011-01-01
In order to improve the environment suitability and the anti interferences capacity of the mine fire disaster detector, the radial basis function neural network with the approximation capacity, classification capacity and learning speed better than the BP network was applied to establish the mine fire disaster detection simulation model under the MATLAB environment. The temperature, smoke density and CO density was applied to the input for the multi information data integration to reach the target of the mine fire disaster detection. The simulation results showed that the identification probability error of the open fire, the shade fire and no fire by the method would be all less than 5％ and the method could highly reduce the missed detection and incorrect detection rate of the fire disaster early warning. The means combined with the fuzzy system and the neural network could effectively monitor and measure the mine fire disaster to be occurred and would have the reference value to the study on the intelligent fire disaster warning system.%为了提高矿井火灾探测器对环境的适应力和抗干扰能力,采用逼近能力、分类能力和学习速度等方面优于BP网络的径向基函数神经网络,在MATLAB环境下构建火灾探测仿真模型,以温度、烟雾浓度、CO气体浓度作为输入,进行多信息数据融合,达到矿井火灾探测目的.仿真结果表明,该方法对明火、阴燃火和无火概率的识别误差均小于5%,可大幅降低火灾报警的漏报和误报率.模糊系统和神经网络相结合的手段,能有效监测矿井火灾的产生,对于智能火灾报警系统研究具有参考价值.
Basis Functions in Image Reconstruction From Projections: A Tutorial Introduction
Herman, Gabor T.
2015-11-01
The series expansion approaches to image reconstruction from projections assume that the object to be reconstructed can be represented as a linear combination of fixed basis functions and the task of the reconstruction algorithm is to estimate the coefficients in such a linear combination based on the measured projection data. It is demonstrated that using spherically symmetric basis functions (blobs), instead of ones based on the more traditional pixels, yields superior reconstructions of medically relevant objects. The demonstration uses simulated computerized tomography projection data of head cross-sections and the series expansion method ART for the reconstruction. In addition to showing the results of one anecdotal example, the relative efficacy of using pixel and blob basis functions in image reconstruction from projections is also evaluated using a statistical hypothesis testing based task oriented comparison methodology. The superiority of the efficacy of blob basis functions over that of pixel basis function is found to be statistically significant.
Institute of Scientific and Technical Information of China (English)
连丽婷; 肖昌汉; 杨明明
2012-01-01
在解决闭环消磁绕组电流优化计算问题时,会面临将外部磁场推算误差带入电流反演计算或完备的基函数难以确定等问题.为了降低这些因素对舰船最终补偿效果的影响,从智能优化的角度出发,在讨论散布常数对模型预测误差的影响后,确定了适宜的散布常数,建立了内部磁场与补偿电流之间的径向基函数神经网络预报模型.该方法通过样本对网络进行训练,无须推算内外磁场,就能直接得到使绕组磁场与目标磁场拟合误差最小的补偿电流向量.对比其他数值建模方法,其换算精度有所提高,且选择不同的同维向量作为基函数对补偿结果影响较小.船模实验验证了该方法的有效性.%As the errors from off-board magnetic field evaluation and difficulties in determining basis functions tend to affect the result of calculating the degaussing currents, an intelligent control method was introduced. After discussing the influence from spread coefficient, a radial basis function (RBF) neural network model was established for predicting optimal currents from onboard measurements directly. The magnetic field produced by degaussing coils is very similar to ship' s object field. The method can avoid many problems from the numerical model. Its high accuracy and effectiveness were verified by mockup experiments.
Localizing and placement of network node functions in a network
Strijkers, R.J.; Meulenhoff, P.J.
2014-01-01
The invention enables placement and use of a network node function in a second network node instead of using the network node function in a first network node. The network node function is e.g. a server function or a router function. The second network node is typically located in or close to the cl
DEFF Research Database (Denmark)
Madsen, Per Printz
1999-01-01
The purpose of this paper is to describe a neural network (SNN), that is based on Shannons ideas of reconstruction of a real continuous function from its samples. The basic function, used in this network, is the Sinc-function. Two learning algorithms are described. A simple one called IM...
Industrial entrepreneurial network: Structural and functional analysis
Medvedeva, M. A.; Davletbaev, R. H.; Berg, D. B.; Nazarova, J. J.; Parusheva, S. S.
2016-12-01
Structure and functioning of two model industrial entrepreneurial networks are investigated in the present paper. One of these networks is forming when implementing an integrated project and consists of eight agents, which interact with each other and external environment. The other one is obtained from the municipal economy and is based on the set of the 12 real business entities. Analysis of the networks is carried out on the basis of the matrix of mutual payments aggregated over the certain time period. The matrix is created by the methods of experimental economics. Social Network Analysis (SNA) methods and instruments were used in the present research. The set of basic structural characteristics was investigated: set of quantitative parameters such as density, diameter, clustering coefficient, different kinds of centrality, and etc. They were compared with the random Bernoulli graphs of the corresponding size and density. Discovered variations of random and entrepreneurial networks structure are explained by the peculiarities of agents functioning in production network. Separately, were identified the closed exchange circuits (cyclically closed contours of graph) forming an autopoietic (self-replicating) network pattern. The purpose of the functional analysis was to identify the contribution of the autopoietic network pattern in its gross product. It was found that the magnitude of this contribution is more than 20%. Such value allows using of the complementary currency in order to stimulate economic activity of network agents.
Institute of Scientific and Technical Information of China (English)
高飞; 周长林; 党力明; 侯雪梅
2013-01-01
In this paper, a kind of algorithm for all-zero block detection based on Radial Basis Function (RBF) Neural Network (NN) was proposed to improve the accuracy of all-zero block detection algorithm. By analyzing the H. 264 encoder features, six effective features were selected, including Sum of Absolute Difference ( SAD), Sum of Absolute Transformed Difference (SATD), block type, Rate Distortion Optimization ( RDO) cost, Quantization Parameter ( QP) and the situation of reference block. Considering the SATD should be used in the Hadamard Transform ( HT), to get the relationship of QP and RBF network width parameter through the least square method, the algorithm used two classifiers to separate all-zero blocks from non-all-zero blocks based on the encoding situation of the reference block. This algorithm could improve coding speed over 50% on average while keeping bit rate and video quality almost unchanged. The experimental results show that the proposed algorithm can improve all-zero block detection accuracy effectively and coding efficiency based on NN.%针对目前全零块检测算法准确率不高的问题,提出了一种基于径向基函数(RBF)神经网络(NN)的全零块检测算法.通过分析H.264的编码特点,选取了绝对误差和(SAD)、变换绝对差值和(SATD)、编码块类型、率失真优化(RDO)代价、量化系数(QP)、参考块的全零块情况6个特征,考虑了哈达玛变换(HT)中应该使用SATD的情况,采用最小二乘法得到QP与RBF网络宽度参数的关系,根据参考块是否为零,设计了两个分类器来区分全零块与非全零块.在保证图像质量和编码率不变的前提下,平均能提高编码速度50％以上,实验结果表明,利用RBF神经网络很好地提高了全零块检测准确率和编码效率.
Institute of Scientific and Technical Information of China (English)
李启权; 王昌全; 张文江; 余勇; 李冰; 杨娟; 白根川; 刘泳宏
2012-01-01
土壤性质空间分布信息的准确表达是土壤资源优化利用和土壤环境保护的需要.为模拟川中丘陵区县域尺度上土壤有机质的空间分布格局,构建了以地理坐标、地形和植被因子为网络输入的径向基函数神经网络模型(RBFNN_E),并将该方法与普通克里格法(OK)、多元回归模型(MLR)和仅以地理坐标为网络输入的神经网络模型(RBFNN_C)相比较.结果表明:RBFNN_E对479个验证点模拟结果的平均绝对误差(MAE)、平均相对误差(MRE)和均方根误差(RMSE)较MLR分别降低了1.74％、1.45％和2.64％,较OK分别降低了7.77％、12.76％和3.92％,较RBFNN_C分别降低了8.89％、9.81％和7.68％.从模拟的空间分布图来看,RBFNN_E能较好地刻画环境变化引起的土壤有机质空间变异的细节信息.因此,融合环境因子的神经网络模型(RBFNN_E)不仅具有较高的模拟精度,还能更好地揭示复杂地形下土壤有机质的空间变异,使模拟结果更符合区域地学规律与实际情况,可为复杂环境条件下土壤管理、精准农业的实施以及区域环境规划等提供科学依据.%Accurate spatial information of soil properties at regional scale is essential to land use and environment management. This paper proposed a radial basis function neural network method for predicting the spatial distribution of soil organic carbon (SOM) in the typical hilly region of Sichuan Basin, which uses geographic coordinates, terrain factors and vegetation index as inputs(RBFNN_E). Its performance was compared with that of ordinary kriging(OK), multiple linear regression model(MLR) and a radial basis function neural network model only using geographic coordinates as inputs ( RBFNN_C ). The results of 479 validation points showed that RBFNN_E obtained lower estimation bias. The mean absolute error( MAE ), root mean squared error( RMSE ) and mean relative error( MRE ) of RBFNN_E were smaller than those of MLR respectively by 1
Efficient Diffuse Basis Sets for Density Functional Theory.
Papajak, Ewa; Truhlar, Donald G
2010-03-09
Eliminating all but the s and p diffuse functions on the non-hydrogenic atoms and all diffuse functions on the hydrogen atoms from the aug-cc-pV(x+d)Z basis sets of Dunning and co-workers, where x = D, T, Q, ..., yields the previously proposed "minimally augmented" basis sets, called maug-cc-pV(x+d)Z. Here, we present extensive and systematic tests of these basis sets for density functional calculations of chemical reaction barrier heights, hydrogen bond energies, electron affinities, ionization potentials, and atomization energies. The tests show that the maug-cc-pV(x+d)Z basis sets are as accurate as the aug-cc-pV(x+d)Z ones for density functional calculations, but the computational cost savings are a factor of about two to seven.
Construction of `Wachspress Type' Rational Basis Functions over Rectangles
Indian Academy of Sciences (India)
P L Powar; S S Rana
2000-02-01
In the present paper, we have constructed rational basis functions of 0 class over rectangular elements with wider choice of denominator function. This construction yields additional number of interior nodes. Hence, extra nodal points and the flexibility of denominator function suggest better approximation.
Practical identification of NARMAX models using radial basis functions
Chen, S.; S. A. Billings; Cowan, C.F.N.; Grant, P. M.
1990-01-01
A wide class of discrete time non-linear systems can be represented by the non-linear autoregressive moving average model with exogenous inputs or NARMAX model. This paper develops a practical algorithm for identifying NARMAX models based on radial basis functions from noise corrupted data. The algorithm consists of an iterative orthogonal-forward-regression routine coupled with model validity tests. The orthogonal-forward-regression routine selects parsimonious radial-basis-function models w...
Network-based functional enrichment
Directory of Open Access Journals (Sweden)
Poirel Christopher L
2011-11-01
Full Text Available Abstract Background Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network interactions into account. Results Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of interest, we compute the subgraph of the network induced by genes annotated to this function. We use the sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the statistical significance of the connectivity empirically by a permutation test. We present three applications of our method: i determine which functions are enriched in a given network, ii given a network and an interesting sub-network of genes within that network, determine which functions are enriched in the sub-network, and iii given two networks, determine the functions for which the connectivity improves when we merge the second network into the first. Through these applications, we show that our approach is a natural alternative to network clustering algorithms. Conclusions We presented a novel approach to functional enrichment that takes into account the pairwise relationships among genes annotated by a particular function. Each of the three applications discovers highly relevant functions. We used our methods to study biological data from three different organisms. Our results demonstrate the wide applicability of our methods. Our algorithms are
Multiscale adaptive basis function modeling of spatiotemporal vectorcardiogram signals.
Gang Liu; Hui Yang
2013-03-01
Mathematical modeling of cardiac electrical signals facilitates the simulation of realistic cardiac electrical behaviors, the evaluation of algorithms, and the characterization of underlying space-time patterns. However, there are practical issues pertinent to model efficacy, robustness, and generality. This paper presents a multiscale adaptive basis function modeling approach to characterize not only temporal but also spatial behaviors of vectorcardiogram (VCG) signals. Model parameters are adaptively estimated by the "best matching" projections of VCG characteristic waves onto a dictionary of nonlinear basis functions. The model performance is experimentally evaluated with respect to the number of basis functions, different types of basis function (i.e., Gaussian, Mexican hat, customized wavelet, and Hermitian wavelets), and various cardiac conditions, including 80 healthy controls and different myocardial infarctions (i.e., 89 inferior, 77 anterior-septal, 56 inferior-lateral, 47 anterior, and 43 anterior-lateral). Multiway analysis of variance shows that the basis function and the model complexity have significant effects on model performances while cardiac conditions are not significant. The customized wavelet is found to be an optimal basis function for the modeling of spacetime VCG signals. The comparison of QT intervals shows small relative errors (model representations and realworld VCG signals when the model complexity is greater than 10. The proposed model shows great potentials to model space-time cardiac pathological behaviors and can lead to potential benefits in feature extraction, data compression, algorithm evaluation, and disease prognostics.
Representation of Functional Data in Neural Networks
Rossi, Fabrice; Conan-Guez, Brieuc; Verleysen, Michel
2005-01-01
Functional Data Analysis (FDA) is an extension of traditional data analysis to functional data, for example spectra, temporal series, spatio-temporal images, gesture recognition data, etc. Functional data are rarely known in practice; usually a regular or irregular sampling is known. For this reason, some processing is needed in order to benefit from the smooth character of functional data in the analysis methods. This paper shows how to extend the Radial-Basis Function Networks (RBFN) and Multi-Layer Perceptron (MLP) models to functional data inputs, in particular when the latter are known through lists of input-output pairs. Various possibilities for functional processing are discussed, including the projection on smooth bases, Functional Principal Component Analysis, functional centering and reduction, and the use of differential operators. It is shown how to incorporate these functional processing into the RBFN and MLP models. The functional approach is illustrated on a benchmark of spectrometric data ana...
Institute of Scientific and Technical Information of China (English)
周泰; 王亚玲
2011-01-01
To effectively improve regional logistics capability and promote regional economic growth, the authors established investment structural optimization model of regional logistics capability. First of all, the authors analyzed the reasons why optimization of investment structure of regional industries can enhance regional logistics capability detailedly, and revealed the complex nonlinear relationship between regional logistics capability and investment structural from the perspective of the industrial structure; Then the authors implemented the nonlinear mapping by using radial basis function (RBF) network, and set up a nonlinear programming (NLP) optimization model with constraint conditions; Finally, based on the true data of industry's investment of Sichuan province in 2005, the authors solved the model by improved genetic algorithm(IGA), and obtained the approximate optimal solution of the optimization problem as well as the optimal direction of investment structural. The optimization results indicate that the model is effective and reasonable for optimization of industry's investment structure; it is a new practical and operable method for improving regional logistics capability.%针对如何有效地提高区域物流能力,以推动区域经济增长的问题,构建了区域物流能力的投资结构优化模型.首先详细分析了优化区域产业投资结构能增强区域物流能力的原因,从产业结构的角度揭示了区域物流能力与产业投资分配之间复杂的非线性关系;然后采用径向基函数神经网络实现了它们之间的非线性映射,进而建立了有约束条件限制的非线性规划投资结构优化模型;最后以四川省2005年的产业投资实际数据为基础,采用改进遗传算法对该模型进行求解,获得了优化问题的近似最优解以及投资结构的优化方向.优化结果表明:建立的模型对产业投资结构的优化是合理、有效的,从而提供了一个能提高区域
Institute of Scientific and Technical Information of China (English)
臧蕾; 李祚泳
2012-01-01
为了建立科学合理、计算简便和普适通用的水安全评价模型,在适当设定指标参照值cj0和指标值的规范变换式基础上,提出了基于径向基函数网络的指标规范化的水安全评价模型.采用具有全局优化的猴王遗传算法对模型中的参数进行优化,得出优化后对任意m(1≤m≤23)项水安全指标共同适用的水安全评价模型.应用模型对山东省水安全状况进行了评价分析,其评价结果与其它方法的评价结果基本一致,从而表明:指标规范值的径向基函数网络模型为水安全评价提供了一个简单实用、结果可靠的新方法.%In order to design a scientific, reasonable, universal, common, and easy-operating water safety assessment model, we proposed this model based on the setting reference values and normalized transformation form of indexes. The assessment model of water safety represented with normalized indices values was proposed based on radial basis function network (RBF). At the same time, the parameter involved in the model was also optimized by using Monkey Genetic algorithm. The results show that the optimized universal water safety assessment model is suitable to m (l≤m≤23) index items. The water security of Shandong Province was evaluated with this model. The evaluation results are consistent with the results of other methods. It shows that the NV-RBF model is simple and practical so as to be a useful evaluating method for water security.
Świetlicka, Izabela; Muszyński, Siemowit; Marzec, Agata
2015-04-01
The presented work covers the problem of developing a method of extruded bread classification with the application of artificial neural networks. Extruded flat graham, corn, and rye breads differening in water activity were used. The breads were subjected to the compression test with simultaneous registration of acoustic signal. The amplitude-time records were analyzed both in time and frequency domains. Acoustic emission signal parameters: single energy, counts, amplitude, and duration acoustic emission were determined for the breads in four water activities: initial (0.362 for rye, 0.377 for corn, and 0.371 for graham bread), 0.432, 0.529, and 0.648. For classification and the clustering process, radial basis function, and self-organizing maps (Kohonen network) were used. Artificial neural networks were examined with respect to their ability to classify or to cluster samples according to the bread type, water activity value, and both of them. The best examination results were achieved by the radial basis function network in classification according to water activity (88%), while the self-organizing maps network yielded 81% during bread type clustering.
Institute of Scientific and Technical Information of China (English)
江虹; 杨彦超; 伍春
2012-01-01
Cognitive radio (CR) is an intelligent wireless communication system, which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service (Qos). The core technology for CR is the design of cognitive engine, which can introduce reasoning and learning methods to achieve the perception, adaptation and learning. Considering the dynamical environment and demands, a scheme of cognitive engine was proposed based on the radial basis function (RBF) neural network. The scheme could study from experience and environment to reconfigure communication parameters and improve system performance. The cognitive engine was composed of two RBF_NN layers to solve the learning configurations of routing protocol and local parameters. The outer layer learned the global properties, while the inner layer learned the local attributes. After training, the learning model performance was evaluated according to two defined benchmark functions. The simulation results show that the learning model is effective and the cognitive engine can effectively achieve the study and reconfiguration function.%认知无线电（CR）是一种智能无线通信系统，它能根据环境变化、业务需求动态调整参数，提高系统性能，其核心技术是认知引擎的设计。认知引擎可引入人工智能领域的推理与学习方法来实现CR的感知、自适应与学习能力。为适应变化的无线环境和用户需求，提曲基于径向基神经网络（RBF）的CR认知引擎设计方法，该法通过对经验知识和环境的学习，重配置通信参数，以达到资源合理分配，提高系统性能。该引擎由两层RBF神经网络组成，外层神经网络学习全局属性，内层神经网络学习局部属性，以解决路由协议及局部参数的学习配置。在训练RBF神经网络学习模型后，根据定义的两个测试基准函数，评估模型性能，仿真验证了该学习模型
Aging and functional brain networks
Energy Technology Data Exchange (ETDEWEB)
Tomasi D.; Tomasi, D.; Volkow, N.D.
2011-07-11
Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the 'default-mode' network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis, we evaluated resting-state data sets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping (FCDM), a voxelwise and data-driven approach, together with parallel computing. Aging was associated with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that, in addition to the DMN, the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging.
Speech/Nonspeech Detection Using Minimal Walsh Basis Functions
Directory of Open Access Journals (Sweden)
Pwint Moe
2007-01-01
Full Text Available This paper presents a new method to detect speech/nonspeech components of a given noisy signal. Employing the combination of binary Walsh basis functions and an analysis-synthesis scheme, the original noisy speech signal is modified first. From the modified signals, the speech components are distinguished from the nonspeech components by using a simple decision scheme. Minimal number of Walsh basis functions to be applied is determined using singular value decomposition (SVD. The main advantages of the proposed method are low computational complexity, less parameters to be adjusted, and simple implementation. It is observed that the use of Walsh basis functions makes the proposed algorithm efficiently applicable in real-world situations where processing time is crucial. Simulation results indicate that the proposed algorithm achieves high-speech and nonspeech detection rates while maintaining a low error rate for different noisy conditions.
Point Set Denoising Using Bootstrap-Based Radial Basis Function
Ramli, Ahmad; Abd. Majid, Ahmad
2016-01-01
This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study. PMID:27315105
A basis in an invariant subspace of analytic functions
Energy Technology Data Exchange (ETDEWEB)
Krivosheev, A S [Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa (Russian Federation); Krivosheeva, O A [Bashkir State University, Ufa (Russian Federation)
2013-12-31
The existence problem for a basis in a differentiation-invariant subspace of analytic functions defined in a bounded convex domain in the complex plane is investigated. Conditions are found for the solvability of a certain special interpolation problem in the space of entire functions of exponential type with conjugate diagrams lying in a fixed convex domain. These underlie sufficient conditions for the existence of a basis in the invariant subspace. This basis consists of linear combinations of eigenfunctions and associated functions of the differentiation operator, whose exponents are combined into relatively small clusters. Necessary conditions for the existence of a basis are also found. Under a natural constraint on the number of points in the groups, these coincide with the sufficient conditions. That is, a criterion is found under this constraint that a basis constructed from relatively small clusters exists in an invariant subspace of analytic functions in a bounded convex domain in the complex plane. Bibliography: 25 titles.
Institute of Scientific and Technical Information of China (English)
葛彦强; 汪向征; 于江德
2012-01-01
We propose an adaptive Kohonen Self-Organizing Maps and Radial Basis Function Network-based method (KR) for network blocking forecasting in the paper. It shows that there are some problems in the network blocking forecasting now, especially when the data set is just small. Therefore, for achieving high accuracy in the network blocking forecasting, it is necessary to consider the relationships between each data within the original data set in the forecasting process. Now to get more valuable position information, a series of processes including Kohonen neural network and RBF network is proposed to meet the types of different data. The process makes the network can meet the different kinds of data. In this application to a city's network blocking forecasting, we investigate KR's and two other algorithms performance on a original data set. The comparison of experimental results shows that KR is better location performance than others.%文中提出了一种利用自组织映射（KSOM）和径向基函数（KR）神经网络进行网络拥塞预测的方法．目前的研究表明，预测网络拥塞还存在一些问题，尤其在数据集比较小的时候．因此，为了使网络拥塞问题预测精度高，在预测过程中有必要考虑原有的数据集中每个数据之间的关系．现在为了获得更多的有价值的位置信息，采取了一系列的措施去满足不同数据的情况，包括使用自组织映射神经网络和径向基函数神经网络算法．这一过程使网络能满足不同类型的数据．在本文网络拥塞预测中，采用同一原始数据集，分别对利用自组织映射和径向基函数神经网络的算法和另外两种算法的性能进行比较．实验结果表明，利用自组织映射和径向基函数神经网络的算法具有更好的效果．
EEG Source Reconstruction using Sparse Basis Function Representations
DEFF Research Database (Denmark)
Hansen, Sofie Therese; Hansen, Lars Kai
2014-01-01
State of the art performance of 3D EEG imaging is based on reconstruction using spatial basis function representations. In this work we augment the Variational Garrote (VG) approach for sparse approximation to incorporate spatial basis functions. As VG handles the bias variance trade-off with cross......-validation this approach is more automated than competing approaches such as Multiple Sparse Priors (Friston et al., 2008) or Champagne (Wipf et al., 2010) that require manual selection of noise level and auxiliary signal free data, respectively. Finally, we propose an unbiased estimator of the reproducibility...
Institute of Scientific and Technical Information of China (English)
Guo Hui-Jun; Yin You-Wei; Wang Hua-Min
2008-01-01
This paper presents a new method to synchronize different chaotic systems with disturbances via an active radial basis function (RBF) sliding controller.This method incorporates the advantages of active control,neural network and sliding mode control.The main part of the controller is given based on the output of the RBF neural networks and the weights of these single layer networks are tuned on-line based on the sliding mode reaching law.Only several radial basis functions are required for this controller which takes the sliding mode variable as the only input.The proposed controller can make the synchronization error converge to zero quickly and can overcome external disturbances.Analysis of the stability for the controller is carried out based on the Lyapunov stability theorem.Finally,five examples are given to illustrate the robustness and effectiveness of the proposed synchronization control strategy.
Optimal Piecewise Linear Basis Functions in Two Dimensions
Energy Technology Data Exchange (ETDEWEB)
Brooks III, E D; Szoke, A
2009-01-26
We use a variational approach to optimize the center point coefficients associated with the piecewise linear basis functions introduced by Stone and Adams [1], for polygonal zones in two Cartesian dimensions. Our strategy provides optimal center point coefficients, as a function of the location of the center point, by minimizing the error induced when the basis function interpolation is used for the solution of the time independent diffusion equation within the polygonal zone. By using optimal center point coefficients, one expects to minimize the errors that occur when these basis functions are used to discretize diffusion equations, or transport equations in optically thick zones (where they approach the solution of the diffusion equation). Our optimal center point coefficients satisfy the requirements placed upon the basis functions for any location of the center point. We also find that the location of the center point can be optimized, but this requires numerical calculations. Curiously, the optimum center point location is independent of the values of the dependent variable on the corners only for quadrilaterals.
Basis convergence of range-separated density-functional theory.
Franck, Odile; Mussard, Bastien; Luppi, Eleonora; Toulouse, Julien
2015-02-21
Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.
Institute of Scientific and Technical Information of China (English)
尚丽; 苏品刚; 陈杰
2012-01-01
As to the problems that Millimeter Wave ( MMW) image is contaminated by much unknown noise and has lower resolution, and considering the non-linear filter property of Fuzzy Radial Basis Function Neural Network ( F-RBFNN) and the self-adaptive denoising property of Sparse Representation (SR) based on K-Singular Value Decomposition (K-SVD), a MMW restoration method was proposed by combining F-RBFNN and sparse representation. In F-RBFNN, the knowledge expression of fuzzy logic and the reasoning ability were combined with the RBFNN's capabilities of fast learning and generalization. In order to realize the non-linear filtering to the MMW image, F-RBFNN's structure and parameters were adjusted according to the real problem. Furthermore, utilizing the advantages of sparse representation method, which the sparse representation behaves the visual characteristic and can denoise effectively when maintaining features of the object, the training results of F-RBFNN were locally denoised once again, and the MMW image with high resolution was obtained. Using the Relative Single Noise Ratio (RSNR) criterion to measure the quality of denoised images, the simulation results show that, compared with other denoising methods such as F-RBFNN, K-SVD denoising, and wavelet denoising, the proposed method combining F-RBFNN and SR can better restore the quality of MMW image.%针对毫米波(MMW)图像包含大量未知噪声、图像分辨率较低的问题,考虑模糊径向基函数神经网络(F-RBFNN)的非线性滤波特性和基于K-奇异值分解(K-SVD)稀疏表示(SR)的自适应消噪特性,提出了一种级联消噪的毫米波图像恢复方法.F-RBFNN将模糊逻辑的知识表达和推理能力与RBFNN的快速学习能力和泛化能力结合起来,可根据实际问题调整网络结构参数,对MMW图像达到非线性滤波的目的.进一步利用K-SVD稀疏表示具有人眼视觉特性,在保持目标特征的同时可有效消噪的优点,对FRBFNN的训练结果再
Network Decomposition and Maximum Independent Set Part Ⅰ: Theoretic Basis
Institute of Scientific and Technical Information of China (English)
朱松年; 朱嫱
2003-01-01
The structure and characteristics of a connected network are analyzed, and a special kind of sub-network, which can optimize the iteration processes, is discovered. Then, the sufficient and necessary conditions for obtaining the maximum independent set are deduced. It is found that the neighborhood of this sub-network possesses the similar characters, but both can never be allowed incorporated together. Particularly, it is identified that the network can be divided into two parts by a certain style, and then both of them can be transformed into a pair sets network, where the special sub-networks and their neighborhoods appear alternately distributed throughout the entire pair sets network. By use of this characteristic, the network decomposed enough without losing any solutions is obtained. All of these above will be able to make well ready for developing a much better algorithm with polynomial time bound for an odd network in the the application research part of this subject.
The Functional Requirements and Design Basis for Information Barriers
Energy Technology Data Exchange (ETDEWEB)
Fuller, James L.
2012-05-01
This report summarizes the results of the Information Barrier Working Group workshop held at Sandia National Laboratory in Albuquerque, NM, February 2-4, 1999. This workshop was convened to establish the functional requirements associated with warhead radiation signature information barriers, to identify the major design elements of any such system or approach, and to identify a design basis for each of these major elements. Such information forms the general design basis to be used in designing, fabricating, and evaluating the complete integrated systems developed for specific purposes.
GB-hash : Hash Functions Using Groebner Basis
Dey, Dhananjoy; Sengupta, Indranath
2010-01-01
In this paper we present an improved version of HF-hash, viz., GB-hash : Hash Functions Using Groebner Basis. In case of HF-hash, the compression function consists of 32 polynomials with 64 variables which were taken from the first 32 polynomials of hidden field equations challenge-1 by forcing last 16 variables as 0. In GB-hash we have designed the compression function in such way that these 32 polynomials with 64 variables form a minimal Groebner basis of the ideal generated by them with respect to graded lexicographical (grlex) ordering as well as with respect to graded reverse lexicographical (grevlex) ordering. In this paper we will prove that GB-hash is more secure than HF-hash as well as more secure than SHA-256. We have also compared the efficiency of our GB-hash with SHA-256 and HF-hash.
A T Matrix Method Based upon Scalar Basis Functions
Mackowski, D.W.; Kahnert, F. M.; Mishchenko, Michael I.
2013-01-01
A surface integral formulation is developed for the T matrix of a homogenous and isotropic particle of arbitrary shape, which employs scalar basis functions represented by the translation matrix elements of the vector spherical wave functions. The formulation begins with the volume integral equation for scattering by the particle, which is transformed so that the vector and dyadic components in the equation are replaced with associated dipole and multipole level scalar harmonic wave functions. The approach leads to a volume integral formulation for the T matrix, which can be extended, by use of Green's identities, to the surface integral formulation. The result is shown to be equivalent to the traditional surface integral formulas based on the VSWF basis.
AN IMPROVED RADIAL BASIS FUNCTION BASED METHOD FOR IMAGE WARPING
Institute of Scientific and Technical Information of China (English)
Nie Xuan; Zhao Rongchun; Zhang Cheng; Zhang Xiaoyan
2005-01-01
A new image warping method is proposed in this letter, which can warp a given image by some manual defined features. Based on the radial basis interpolation function algorithm, the proposed method can transform the original optimized problem into nonsingular linear problem by adding one-order term and affine differentiable condition. This linear system can get the steady unique solution by choosing suitable kernel function. Furthermore, the proposed method demonstrates how to set up the radial basis function in the target image so as to achieve supports to adopt the backward re-sampling technology accordingly which could gain the very slippery warping image. Theexperimental result shows that the proposed method can implement smooth and gradual image warping with multi-anchor points' accurate interpolation.
Algebraic evaluation of matrix elements in the Laguerre function basis
McCoy, A. E.; Caprio, M. A.
2016-02-01
The Laguerre functions constitute one of the fundamental basis sets for calculations in atomic and molecular electron-structure theory, with applications in hadronic and nuclear theory as well. While similar in form to the Coulomb bound-state eigenfunctions (from the Schrödinger eigenproblem) or the Coulomb-Sturmian functions (from a related Sturm-Liouville problem), the Laguerre functions, unlike these former functions, constitute a complete, discrete, orthonormal set for square-integrable functions in three dimensions. We construct the SU(1, 1) × SO(3) dynamical algebra for the Laguerre functions and apply the ideas of factorization (or supersymmetric quantum mechanics) to derive shift operators for these functions. We use the resulting algebraic framework to derive analytic expressions for matrix elements of several basic radial operators (involving powers of the radial coordinate and radial derivative) in the Laguerre function basis. We illustrate how matrix elements for more general spherical tensor operators in three dimensional space, such as the gradient, may then be constructed from these radial matrix elements.
Models of neural networks with fuzzy activation functions
Nguyen, A. T.; Korikov, A. M.
2017-02-01
This paper investigates the application of a new form of neuron activation functions that are based on the fuzzy membership functions derived from the theory of fuzzy systems. On the basis of the results regarding neuron models with fuzzy activation functions, we created the models of fuzzy-neural networks. These fuzzy-neural network models differ from conventional networks that employ the fuzzy inference systems using the methods of neural networks. While conventional fuzzy-neural networks belong to the first type, fuzzy-neural networks proposed here are defined as the second-type models. The simulation results show that the proposed second-type model can successfully solve the problem of the property prediction for time – dependent signals. Neural networks with fuzzy impulse activation functions can be widely applied in many fields of science, technology and mechanical engineering to solve the problems of classification, prediction, approximation, etc.
Institute of Scientific and Technical Information of China (English)
马伟华; 刘珑龙; 张建民
2006-01-01
将小波变换与神经网络相结合,对浮游植物活体的三维荧光光谱进行分类.首先利用小波变换对数据进行压缩,然后利用径向基函数(Radial Basis Function, RBF)神经网络对光谱曲线进行逼近,从而进行物种的识别,平均识别率高达95.8%.结果表明,该方法较传统的统计方法更方便、准确率更高.
Caffeine Modulates Attention Network Function
Brunye, Tad T.; Mahoney, Caroline R.; Lieberman, Harris R.; Taylor, Holly A.
2010-01-01
The present work investigated the effects of caffeine (0 mg, 100 mg, 200 mg, 400 mg) on a flanker task designed to test Posner's three visual attention network functions: alerting, orienting, and executive control [Posner, M. I. (2004). "Cognitive neuroscience of attention". New York, NY: Guilford Press]. In a placebo-controlled, double-blind…
Directory of Open Access Journals (Sweden)
Wang Pidong
2016-01-01
Full Text Available Blind source separation is a hot topic in signal processing. Most existing works focus on dealing with linear combined signals, while in practice we always encounter with nonlinear mixed signals. To address the problem of nonlinear source separation, in this paper we propose a novel algorithm using radial basis function neutral network, optimized by multi-universe parallel quantum genetic algorithm. Experiments show the efficiency of the proposed method.
Boolean networks with veto functions
Ebadi, Haleh; Klemm, Konstantin
2014-08-01
Boolean networks are discrete dynamical systems for modeling regulation and signaling in living cells. We investigate a particular class of Boolean functions with inhibiting inputs exerting a veto (forced zero) on the output. We give analytical expressions for the sensitivity of these functions and provide evidence for their role in natural systems. In an intracellular signal transduction network [Helikar et al., Proc. Natl. Acad. Sci. USA 105, 1913 (2008), 10.1073/pnas.0705088105], the functions with veto are over-represented by a factor exceeding the over-representation of threshold functions and canalyzing functions in the same system. In Boolean networks for control of the yeast cell cycle [Li et al., Proc. Natl. Acad. Sci. USA 101, 4781 (2004), 10.1073/pnas.0305937101; Davidich et al., PLoS ONE 3, e1672 (2008), 10.1371/journal.pone.0001672], no or minimal changes to the wiring diagrams are necessary to formulate their dynamics in terms of the veto functions introduced here.
Libcint: An efficient general integral library for Gaussian basis functions.
Sun, Qiming
2015-08-15
An efficient integral library Libcint was designed to automatically implement general integrals for Gaussian-type scalar and spinor basis functions. The library is able to evaluate arbitrary integral expressions on top of p, r and σ operators with one-electron overlap and nuclear attraction, two-electron Coulomb and Gaunt operators for segmented contracted and/or generated contracted basis in Cartesian, spherical or spinor form. Using a symbolic algebra tool, new integrals are derived and translated to C code programmatically. The generated integrals can be used in various types of molecular properties. To demonstrate the capability of the integral library, we computed the analytical gradients and NMR shielding constants at both nonrelativistic and 4-component relativistic Hartree-Fock level in this work. Due to the use of kinetically balanced basis and gauge including atomic orbitals, the relativistic analytical gradients and shielding constants requires the integral library to handle the fifth-order electron repulsion integral derivatives. The generality of the integral library is achieved without losing efficiency. On the modern multi-CPU platform, Libcint can easily reach the overall throughput being many times of the I/O bandwidth. On a 20-core node, we are able to achieve an average output 8.3 GB/s for C60 molecule with cc-pVTZ basis.
Libcint: An efficient general integral library for Gaussian basis functions
Sun, Qiming
2014-01-01
An efficient integral library Libcint was designed to automatically implement general integrals for Gaussian-type scalar and spinor basis functions. The library can handle arbitrary integral expressions on top of $\\mathbf{p}$, $\\mathbf{r}$ and $\\sigma$ operators with one-electron overlap and nuclear attraction, two-electron Coulomb and Gaunt operators. Using a symbolic algebra tool, new integrals are derived and translated to C code programmatically. The generated integrals can be used in various types of molecular properties. In the present work, we computed the analytical gradients and NMR shielding constants at both non-relativistic and four-component relativistic Hartree-Fock level to demonstrate the capability of the integral library. Due to the use of kinetically balanced basis and gauge including atomic orbitals, the relativistic analytical gradients and shielding constants requires the integral library to handle the fifth-order electron repulsion integral derivatives. The generality of the integral li...
Product design on the basis of fuzzy quality function deployment
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In the implementation of quality function deployment (QFD), the determination of the target values of engineering characteristics is a complex decision process with multiple variables and multiple objectives that should trade off, and optimize all kinds of conflicts and constraints. A fuzzy linear programming model (FLP) is proposed. On the basis of the inherent fuzziness of QFD system, triangular fuzzy numbers are used to represent all the relationships and correlations, and then, the functional relationships between the customer needs and engineering characteristics and the functional correlations among the engineering characteristics are determined with the information in the house of quality (HoQ) fully used. The fuzzy linear programming (FLP) model aims to find the optimal target values of the engineering characteristics to maximize the customer satisfaction. Finally, the proposed method is illustrated by a numerical example.
Huang, De-Shuang; Du, Ji-Xiang
2008-12-01
In this paper, a novel heuristic structure optimization methodology for radial basis probabilistic neural networks (RBPNNs) is proposed. First, a minimum volume covering hyperspheres (MVCH) algorithm is proposed to select the initial hidden-layer centers of the RBPNN, and then the recursive orthogonal least square algorithm (ROLSA) combined with the particle swarm optimization (PSO) algorithm is adopted to further optimize the initial structure of the RBPNN. The proposed algorithms are evaluated through eight benchmark classification problems and two real-world application problems, a plant species identification task involving 50 plant species and a palmprint recognition task. Experimental results show that our proposed algorithm is feasible and efficient for the structure optimization of the RBPNN. The RBPNN achieves higher recognition rates and better classification efficiency than multilayer perceptron networks (MLPNs) and radial basis function neural networks (RBFNNs) in both tasks. Moreover, the experimental results illustrated that the generalization performance of the optimized RBPNN in the plant species identification task was markedly better than that of the optimized RBFNN.
The Gaussian radial basis function method for plasma kinetic theory
Hirvijoki, E.; Candy, J.; Belli, E.; Embréus, O.
2015-10-01
Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker-Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker-Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas.
Heat Explosion In Porous Media Using Radial Basis Functions
Directory of Open Access Journals (Sweden)
Allali Karam
2016-01-01
Full Text Available The paper is devoted to the numerical investigation of the interaction between natural convection and heat explosion in a fluid-saturated porous media in a rectangular domain. The model consists of Darcy equations for an incompressible fluid in a porous medium coupled with the nonlinear heat equation. Numerical simulations are performed using the radial basis functions method (RBFs. We study the bifurcation of the periodic oscillation of the response born by Hopf bifurcation. First, a symmetry-breaking bifurcations observed; then is followed by successive period-doubling bifurcations leading to chaos.
The Gaussian Radial Basis Function Method for Plasma Kinetic Theory
Hirvijoki, Eero; Belli, Emily; Embréus, Ola
2015-01-01
A fundamental macroscopic description of a magnetized plasma is the Vlasov equation supplemented by the nonlinear inverse-square force Fokker-Planck collision operator [Rosenbluth et al., Phys. Rev., 107, 1957]. The Vlasov part describes advection in a six-dimensional phase space whereas the collision operator involves friction and diffusion coefficients that are weighted velocity-space integrals of the particle distribution function. The Fokker-Planck collision operator is an integro-differential, bilinear operator, and numerical discretization of the operator is far from trivial. In this letter, we describe a new approach to discretize the entire kinetic system based on an expansion in Gaussian Radial Basis functions (RBFs). This approach is particularly well-suited to treat the collision operator because the friction and diffusion coefficients can be analytically calculated. Although the RBF method is known to be a powerful scheme for the interpolation of scattered multidimensional data, Gaussian RBFs also...
APPROXIMATION MULTIDIMENSION FUCTION WITH FUNCTIONAL NETWORK
Institute of Scientific and Technical Information of China (English)
Li Weibin; Liu Fang; Jiao Licheng; Zhang Shuling; Li Zongling
2006-01-01
The functional network was introduced by E.Catillo, which extended the neural network. Not only can it solve the problems solved, but also it can formulate the ones that cannot be solved by traditional network.This paper applies functional network to approximate the multidimension function under the ridgelet theory.The method performs more stable and faster than the traditional neural network. The numerical examples demonstrate the performance.
Digital zoom algorithm with context derived basis functions
Schau, H. C.
2011-06-01
One of the goals of superresultion has been to achieve interpolation in excess of some externally imposed physical constraint. Initially it was the optical diffraction limit while the Nyquist Limit of sampled data systems has also become a more recent issue. Regardless of the setting, the limitations are the same; there generally is not enough available degrees of freedom to perform an interpolation without severe loss of information. While some success has been achieved in superresolution, magnification is generally limited to less than 2. In this paper we present a method where context based basis functions are developed for digital zoom where the magnifications were assumed to be greater that 2. The number of degrees of freedom are still less than the number formally required, because the basis functions are developed for scenes similar to scenes presented for interpolation, they are more efficient than those developed without regard to context. The technique is presented together with several still images and video examples of digital zoom for a magnification of 5 and 10. Results are compared with conventional B-Cubic Spline interpolation. Parallelization of the technique with graphic processors is discussed toward its real time implementation.
Computational optical distortion correction using a radial basis function-based mapping method.
Bauer, Aaron; Vo, Sophie; Parkins, Keith; Rodriguez, Francisco; Cakmakci, Ozan; Rolland, Jannick P
2012-07-01
A distortion mapping and computational image unwarping method based on a network interpolation that uses radial basis functions is presented. The method is applied to correct distortion in an off-axis head-worn display (HWD) presenting up to 23% highly asymmetric distortion over a 27°x21° field of view. A 10(-5) mm absolute error of the mapping function over the field of view was achieved. The unwarping efficacy was assessed using the image-rendering feature of optical design software. Correlation coefficients between unwarped images seen through the HWD and the original images, as well as edge superimposition results, are presented. In an experiment, images are prewarped using radial basis functions for a recently built, off-axis HWD with a 20° diagonal field of view in a 4:3 ratio. Real-time video is generated by a custom application with 2 ms added latency and is demonstrated.
Intergenerational Neighborhood Networks: A Basis for Aiding the Frail Elderly.
Pynoos, Jon; And Others
1984-01-01
Describes LINC (Living Independently through Neighborhood Cooperation), which formed intergenerational helping networks in which the elderly served as donors as well as service recipients. The project's evaluation indicated that frail older persons received services, acted as volunteers, developed friendships, and increased life satisfaction. (JAC)
Nikolaev, A. V.; Lamoen, D.; Partoens, B.
2016-07-01
In order to increase the accuracy of the linearized augmented plane wave (LAPW) method, we present a new approach where the plane wave basis function is augmented by two different atomic radial components constructed at two different linearization energies corresponding to two different electron bands (or energy windows). We demonstrate that this case can be reduced to the standard treatment within the LAPW paradigm where the usual basis set is enriched by the basis functions of the tight binding type, which go to zero with zero derivative at the sphere boundary. We show that the task is closely related with the problem of extended core states which is currently solved by applying the LAPW method with local orbitals (LAPW+LO). In comparison with LAPW+LO, the number of supplemented basis functions in our approach is doubled, which opens up a new channel for the extension of the LAPW and LAPW+LO basis sets. The appearance of new supplemented basis functions absent in the LAPW+LO treatment is closely related with the existence of the u ˙ l -component in the canonical LAPW method. We discuss properties of additional tight binding basis functions and apply the extended basis set for computation of electron energy bands of lanthanum (face and body centered structures) and hexagonal close packed lattice of cadmium. We demonstrate that the new treatment gives lower total energies in comparison with both canonical LAPW and LAPW+LO, with the energy difference more pronounced for intermediate and poor LAPW basis sets.
Calaminici, Patrizia; Janetzko, Florian; Köster, Andreas M; Mejia-Olvera, Roberto; Zuniga-Gutierrez, Bernardo
2007-01-28
Density functional theory optimized basis sets for gradient corrected functionals for 3d transition metal atoms are presented. Double zeta valence polarization and triple zeta valence polarization basis sets are optimized with the PW86 functional. The performance of the newly optimized basis sets is tested in atomic and molecular calculations. Excitation energies of 3d transition metal atoms, as well as electronic configurations, structural parameters, dissociation energies, and harmonic vibrational frequencies of a large number of molecules containing 3d transition metal elements, are presented. The obtained results are compared with available experimental data as well as with other theoretical data from the literature.
Localized Basis for Effective Lattice Hamiltonians Lattice Wannier Functions
Rabe, K M
1994-01-01
A systematic method is presented for constructing effective Hamiltonians for general phonon-related structural transitions. The key feature is the application of group theoretical methods to identify the subspace in which the effective Hamiltonian acts and construct for it localized basis vectors, which are the analogue of electronic Wannier functions. The results of the symmetry analysis for the perovskite, rocksalt, fluorite and A15 structures and the forms of effective Hamiltonians for the ferroelectric transition in $PbTiO_3$ and $BaTiO_3$, the oxygen-octahedron rotation transition in $SrTiO_3$, the Jahn-Teller instability in $La_{1-x}(Ca,Sr,Ba)_xMnO_3$ and the antiferroelectric transition in $PbZrO_3$ are discussed. For the oxygen- octahedron rotation transition in $SrTiO_3$, this method provides an alternative to the rotational variable approach which is well behaved throughout the Brillouin zone. The parameters appearing in the Wannier basis vectors and in the effective Hamiltonian, given by the corres...
Recent advances in radial basis function collocation methods
Chen, Wen; Chen, C S
2014-01-01
This book surveys the latest advances in radial basis function (RBF) meshless collocation methods which emphasis on recent novel kernel RBFs and new numerical schemes for solving partial differential equations. The RBF collocation methods are inherently free of integration and mesh, and avoid tedious mesh generation involved in standard finite element and boundary element methods. This book focuses primarily on the numerical algorithms, engineering applications, and highlights a large class of novel boundary-type RBF meshless collocation methods. These methods have shown a clear edge over the traditional numerical techniques especially for problems involving infinite domain, moving boundary, thin-walled structures, and inverse problems. Due to the rapid development in RBF meshless collocation methods, there is a need to summarize all these new materials so that they are available to scientists, engineers, and graduate students who are interest to apply these newly developed methods for solving real world’s ...
The Gaussian radial basis function method for plasma kinetic theory
Energy Technology Data Exchange (ETDEWEB)
Hirvijoki, E., E-mail: eero.hirvijoki@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Candy, J.; Belli, E. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Embréus, O. [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)
2015-10-30
Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker–Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker–Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas. - Highlights: • A radically new method to address the velocity space discretization of the non-linear kinetic equation of plasmas. • Elegant and physically intuitive, flexible and mesh-free. • Demonstration of numerical solution of both 2-D and 3-D non-linear Fokker–Planck relaxation problem.
Optimized Radial Basis Function Classifier for Multi Modal Biometrics
Directory of Open Access Journals (Sweden)
Anand Viswanathan
2014-07-01
Full Text Available Biometric systems can be used for the identification or verification of humans based on their physiological or behavioral features. In these systems the biometric characteristics such as fingerprints, palm-print, iris or speech can be recorded and are compared with the samples for the identification or verification. Multimodal biometrics is more accurate and solves spoof attacks than the single modal bio metrics systems. In this study, a multimodal biometric system using fingerprint images and finger-vein patterns is proposed and also an optimized Radial Basis Function (RBF kernel classifier is proposed to identify the authorized users. The extracted features from these modalities are selected by PCA and kernel PCA and combined to classify by RBF classifier. The parameters of RBF classifier is optimized by using BAT algorithm with local search. The performance of the proposed classifier is compared with the KNN classifier, Naïve Bayesian classifier and non-optimized RBF classifier.
Relativistic Kinetic-Balance Condition for Explicitly Correlated Basis Functions
Simmen, Benjamin; Reiher, Markus
2015-01-01
This paper presents the derivation of a kinetic-balance condition for explicitly correlated basis functions employed in semi-classical relativistic calculations. Such a condition is important to ensure variational stability in algorithms based on the first-quantized Dirac theory of 1/2-fermions. We demonstrate that the kinetic-balance condition can be obtained from the row reduction process commonly applied to solve systems of linear equations. The resulting form of kinetic balance establishes a relation for the $4^N$ components of the spinor of an $N$-fermion system to the non-relativistic limit, which is in accordance with recent developments in the field of exact decoupling in relativistic orbital-based many-electron theory.
Adaptive radial basis function mesh deformation using data reduction
Gillebaart, T.; Blom, D. S.; van Zuijlen, A. H.; Bijl, H.
2016-09-01
Radial Basis Function (RBF) mesh deformation is one of the most robust mesh deformation methods available. Using the greedy (data reduction) method in combination with an explicit boundary correction, results in an efficient method as shown in literature. However, to ensure the method remains robust, two issues are addressed: 1) how to ensure that the set of control points remains an accurate representation of the geometry in time and 2) how to use/automate the explicit boundary correction, while ensuring a high mesh quality. In this paper, we propose an adaptive RBF mesh deformation method, which ensures the set of control points always represents the geometry/displacement up to a certain (user-specified) criteria, by keeping track of the boundary error throughout the simulation and re-selecting when needed. Opposed to the unit displacement and prescribed displacement selection methods, the adaptive method is more robust, user-independent and efficient, for the cases considered. Secondly, the analysis of a single high aspect ratio cell is used to formulate an equation for the correction radius needed, depending on the characteristics of the correction function used, maximum aspect ratio, minimum first cell height and boundary error. Based on the analysis two new radial basis correction functions are derived and proposed. This proposed automated procedure is verified while varying the correction function, Reynolds number (and thus first cell height and aspect ratio) and boundary error. Finally, the parallel efficiency is studied for the two adaptive methods, unit displacement and prescribed displacement for both the CPU as well as the memory formulation with a 2D oscillating and translating airfoil with oscillating flap, a 3D flexible locally deforming tube and deforming wind turbine blade. Generally, the memory formulation requires less work (due to the large amount of work required for evaluating RBF's), but the parallel efficiency reduces due to the limited
Institute of Scientific and Technical Information of China (English)
Ping Jiang; Hongyi Wu; Jieqing Tan
2006-01-01
The generalized Ball curves of Wang-Said type with a position parameter L not only unify the Wang-Ball curves and the Said-Ball curves, but also include several useful intermediate curves. This paper presents the dual functionals for the generalized Ball basis of Wang-Said type. The relevant basis transformation formulae are also worked out.
Collision avoidance for a mobile robot based on radial basis function hybrid force control technique
Institute of Scientific and Technical Information of China (English)
Wen Shu-Huan
2009-01-01
Collision avoidance is always difficult in the planning path for a mobile robot. In this paper, the virtual force field between a mobile robot and an obstacle is formed and regulated to maintain a desired distance by hybrid force control algorithm. Since uncertainties from robot dynamics and obstacle degrade the performance of a collision avoidance task, intelligent control is used to compensate for the uncertainties. A radial basis function (RBF) neural network is used to regulate the force field of an accurate distance between a robot and an obstacle in this paper and then simulation studies are conducted to confirm that the proposed algorithm is effective.
Wen, Shu-Huan
2009-10-01
Collision avoidance is always difficult in the planning path for a mobile robot. In this paper, the virtual force field between a mobile robot and an obstacle is formed and regulated to maintain a desired distance by hybrid force control algorithm. Since uncertainties from robot dynamics and obstacle degrade the performance of a collision avoidance task, intelligent control is used to compensate for the uncertainties. A radial basis function (RBF) neural network is used to regulate the force field of an accurate distance between a robot and an obstacle in this paper and then simulation studies are conducted to confirm that the proposed algorithm is effective.
A radial basis function sliding mode controller for chaotic Lorenz system
Energy Technology Data Exchange (ETDEWEB)
Guo Huijun [School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)]. E-mail: realghj@yahoo.com.cn; Lin Suifang [Department of Automation, Xi' an University of Technology, Xi' an 710048 (China); Liu Junhua [School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)
2006-03-06
This Letter presents a novel method to controlling Lorenz chaos via an adaptive radial basis function sliding mode controller. The proposed scheme combines the advantages of the adaptive control, neural network and sliding mode control strategies without precise system model information. It has on-line learning ability to deal with the parametric uncertainty and disturbance by adjusting the control parameters. A sliding mode controller is designed via the Lyapunov stability theory in order to guarantee the high quality of the controlled system. The simulation results show that this method is feasible and effective for chaos control, and the robustness to parametric changes and extern disturbance is provided.
Scale-Free Brain Functional Networks
Eguíluz, Victor M.; Chialvo, Dante R.; Cecchi, Guillermo A.; Baliki, Marwan; Apkarian, A. Vania
2005-01-01
Functional magnetic resonance imaging is used to extract functional networks connecting correlated human brain sites. Analysis of the resulting networks in different tasks shows that (a)the distribution of functional connections, and the probability of finding a link versus distance are both scale-free, (b)the characteristic path length is small and comparable with those of equivalent random networks, and (c)the clustering coefficient is orders of magnitude larger than those of equivalent random networks. All these properties, typical of scale-free small-world networks, reflect important functional information about brain states.
Computational network design from functional specifications
Peng, Chi Han
2016-07-11
Connectivity and layout of underlying networks largely determine agent behavior and usage in many environments. For example, transportation networks determine the flow of traffic in a neighborhood, whereas building floorplans determine the flow of people in a workspace. Designing such networks from scratch is challenging as even local network changes can have large global effects. We investigate how to computationally create networks starting from only high-level functional specifications. Such specifications can be in the form of network density, travel time versus network length, traffic type, destination location, etc. We propose an integer programming-based approach that guarantees that the resultant networks are valid by fulfilling all the specified hard constraints and that they score favorably in terms of the objective function. We evaluate our algorithm in two different design settings, street layout and floorplans to demonstrate that diverse networks can emerge purely from high-level functional specifications.
Kaye, Jason; Yang, Chao
2014-01-01
Kohn-Sham density functional theory is one of the most widely used electronic structure theories. The recently developed adaptive local basis functions form an accurate and systematically improvable basis set for solving Kohn-Sham density functional theory using discontinuous Galerkin methods, requiring a small number of basis functions per atom. In this paper we develop residual-based a posteriori error estimates for the adaptive local basis approach, which can be used to guide non-uniform basis refinement for highly inhomogeneous systems such as surfaces and large molecules. The adaptive local basis functions are non-polynomial basis functions, and standard a posteriori error estimates for $hp$-refinement using polynomial basis functions do not directly apply. We generalize the error estimates for $hp$-refinement to non-polynomial basis functions. We demonstrate the practical use of the a posteriori error estimator in performing three-dimensional Kohn-Sham density functional theory calculations for quasi-2D...
Time efficient aeroelastic simulations based on radial basis functions
Liu, Wen; Huang, ChengDe; Yang, Guowei
2017-02-01
Aeroelasticity studies the interaction between aerodynamic forces and structural responses, and is one of the fundamental problems to be considered in the design of modern aircraft. The fluid-structure interpolation (FSI) and mesh deformation are two key issues in the CFD-CSD coupling approach (the partitioned approach), which is the mainstream numerical strategy in aeroelastic simulations. In this paper, a time efficient coupling scheme is developed based on the radial basis function interpolations. During the FSI process, the positive definite system of linear equations is constructed with the introduction of pseudo structural forces. The acting forces on the structural nodes can be calculated more efficiently via the solution of the linear system, avoiding the costly computations of the aerodynamic/structural coupling matrix. The multi-layer sequential mesh motion algorithm (MSM) is proposed to improve the efficiency of the volume mesh deformations, which is adequate for large-scale time dependent applications with frequent mesh updates. Two-dimensional mesh motion cases show that the MSM algorithm can reduce the computing cost significantly compared to the standard RBF-based method. The computations of the AGARD 445.6 wing flutter and the static deflections of the three-dimensional high-aspect-ratio aircraft demonstrate that the developed coupling scheme is applicable to both dynamic and static aeroelastic problems.
Structural basis for functional tetramerization of lentiviral integrase.
Directory of Open Access Journals (Sweden)
Stephen Hare
2009-07-01
Full Text Available Experimental evidence suggests that a tetramer of integrase (IN is the protagonist of the concerted strand transfer reaction, whereby both ends of retroviral DNA are inserted into a host cell chromosome. Herein we present two crystal structures containing the N-terminal and the catalytic core domains of maedi-visna virus IN in complex with the IN binding domain of the common lentiviral integration co-factor LEDGF. The structures reveal that the dimer-of-dimers architecture of the IN tetramer is stabilized by swapping N-terminal domains between the inner pair of monomers poised to execute catalytic function. Comparison of four independent IN tetramers in our crystal structures elucidate the basis for the closure of the highly flexible dimer-dimer interface, allowing us to model how a pair of active sites become situated for concerted integration. Using a range of complementary approaches, we demonstrate that the dimer-dimer interface is essential for HIV-1 IN tetramerization, concerted integration in vitro, and virus infectivity. Our structures moreover highlight adaptable changes at the interfaces of individual IN dimers that allow divergent lentiviruses to utilize a highly-conserved, common integration co-factor.
Piecewise nonlinear image registration using DCT basis functions
Gan, Lin; Agam, Gady
2015-03-01
The deformation field in nonlinear image registration is usually modeled by a global model. Such models are often faced with the problem that a locally complex deformation cannot be accurately modeled by simply increasing degrees of freedom (DOF). In addition, highly complex models require additional regularization which is usually ineffective when applied globally. Registering locally corresponding regions addresses this problem in a divide and conquer strategy. In this paper we propose a piecewise image registration approach using Discrete Cosine Transform (DCT) basis functions for a nonlinear model. The contributions of this paper are three-folds. First, we develop a multi-level piecewise registration framework that extends the concept of piecewise linear registration and works with any nonlinear deformation model. This framework is then applied to nonlinear DCT registration. Second, we show how adaptive model complexity and regularization could be applied for local piece registration, thus accounting for higher variability. Third, we show how the proposed piecewise DCT can overcome the fundamental problem of a large curvature matrix inversion in global DCT when using high degrees of freedoms. The proposed approach can be viewed as an extension of global DCT registration where the overall model complexity is increased while achieving effective local regularization. Experimental evaluation results provide comparison of the proposed approach to piecewise linear registration using an affine transformation model and a global nonlinear registration using DCT model. Preliminary results show that the proposed approach achieves improved performance.
Connectomics and neuroticism : an altered functional network organization
Servaas, Michelle N; Geerligs, Linda; Renken, Remco J; Marsman, Jan-Bernard; Ormel, Johan; Riese, Harriëtte; Aleman, André
2015-01-01
The personality trait neuroticism is a potent risk marker for psychopathology. Although the neurobiological basis remains unclear, studies have suggested that alterations in connectivity may underlie it. Therefore, the aim of the current study was to shed more light on the functional network organiz
Higher Order Hierarchical Legendre Basis Functions for Electromagnetic Modeling
DEFF Research Database (Denmark)
Jørgensen, Erik; Volakis, John L.; Meincke, Peter
2004-01-01
This paper presents a new hierarchical basis of arbitrary order for integral equations solved with the Method of Moments (MoM). The basis is derived from orthogonal Legendre polynomials which are modified to impose continuity of vector quantities between neighboring elements while maintaining mos...
Institute of Scientific and Technical Information of China (English)
顾成奎; 王正欧; 孙雅明
2003-01-01
A new method for identifying nonlinear time-varying systems with unknown structure is presented. The method extends the application area of basis sequence identification. The essential idea is to utilize the learning and nonlinear approximating ability of neural networks to model the non-linearity of the system, characterize time-varying dynamics of the system by the time-varying parametric vector of the network, then the parametric vector of the network is approximated by a weighted sum of known basis sequences. Because of black-box modeling ability of neural networks, the presented method can identify nonlinear time-varying systems with unknown structure. In order to improve the real-time capability of the algorithm, the neural network is trained by a simple fast learning algorithm based on local least squares presented by the authors. The effectiveness and the performance of the method are demonstrated by some simulation results.
Network Physiology reveals relations between network topology and physiological function
Bashan, Amir; Kantelhardt, Jan W; Havlin, Shlomo; Ivanov, Plamen Ch; 10.1038/ncomms1705
2012-01-01
The human organism is an integrated network where complex physiologic systems, each with its own regulatory mechanisms, continuously interact, and where failure of one system can trigger a breakdown of the entire network. Identifying and quantifying dynamical networks of diverse systems with different types of interactions is a challenge. Here, we develop a framework to probe interactions among diverse systems, and we identify a physiologic network. We find that each physiologic state is characterized by a specific network structure, demonstrating a robust interplay between network topology and function. Across physiologic states the network undergoes topological transitions associated with fast reorganization of physiologic interactions on time scales of a few minutes, indicating high network flexibility in response to perturbations. The proposed system-wide integrative approach may facilitate the development of a new field, Network Physiology.
Institute of Scientific and Technical Information of China (English)
宋江腾; 曾攀; 赵加清; 李聪聪
2011-01-01
司太立(Stellite)合金是一种能耐各种类型磨损、腐蚀以及高温氧化的硬质合金.为研究其磨损性能,以Stellite6为例,在自行设计的摩擦磨损机上进行室温干摩擦和润滑条件下的磨损实验.以实验数据为基础,建立该合金磨损量的RBF神经网络预测模型.结果表明:RBF神经网络预测模型具有较好的收敛效果和预测精度,具有良好的应用前景.%The stellite alloys are hard alloys which can resist various wear,corrosion and oxidation at high temperature.In order to study the wearing behaviors of the stellite alloys, wear tests were carried out in the condition of dry friction and lubrication under room temperature by using a serf-designed tribometer. According to the experimental results, a RBF neural network model was proposed to predict the wear loss of stellite alloys. The results show that the RBF neural network has good application prospects for good convergence effect and prediction accuracy.
Functional brain network efficiency predicts intelligence.
Langer, Nicolas; Pedroni, Andreas; Gianotti, Lorena R R; Hänggi, Jürgen; Knoch, Daria; Jäncke, Lutz
2012-06-01
The neuronal causes of individual differences in mental abilities such as intelligence are complex and profoundly important. Understanding these abilities has the potential to facilitate their enhancement. The purpose of this study was to identify the functional brain network characteristics and their relation to psychometric intelligence. In particular, we examined whether the functional network exhibits efficient small-world network attributes (high clustering and short path length) and whether these small-world network parameters are associated with intellectual performance. High-density resting state electroencephalography (EEG) was recorded in 74 healthy subjects to analyze graph-theoretical functional network characteristics at an intracortical level. Ravens advanced progressive matrices were used to assess intelligence. We found that the clustering coefficient and path length of the functional network are strongly related to intelligence. Thus, the more intelligent the subjects are the more the functional brain network resembles a small-world network. We further identified the parietal cortex as a main hub of this resting state network as indicated by increased degree centrality that is associated with higher intelligence. Taken together, this is the first study that substantiates the neural efficiency hypothesis as well as the Parieto-Frontal Integration Theory (P-FIT) of intelligence in the context of functional brain network characteristics. These theories are currently the most established intelligence theories in neuroscience. Our findings revealed robust evidence of an efficiently organized resting state functional brain network for highly productive cognitions.
Nested Canalizing Functions and Their Networks
Kadelka, Claus; Adeyeye, John O; Laubenbacher, Reinhard
2014-01-01
The concept of a nested canalizing Boolean function has been studied over the last decade in the context of understanding the regulatory logic of molecular interaction networks, such as gene regulatory networks. Such networks are predominantly governed by nested canalizing functions. Derrida values are frequently used to analyze the robustness of a Boolean network to perturbations. This paper introduces closed formulas for the calculation of Derrida values of networks governed by Boolean nested canalizing functions, which previously required extensive simulations. Recently, the concept of nested canalizing functions has been generalized to include multistate functions, and a recursive formula has been derived for their number, as a function of the number of variables. This paper contains a detailed analysis of the class of nested canalizing functions over an arbitrary finite field. In addition, the concept of nested canalization is further generalized and closed formulas for the number of such generalized fun...
Structure and function in flow networks
Rubido, Nicolás; Baptista, Murilo S
2013-01-01
This Letter presents a unified approach for the fundamental relationship between structure and function in flow networks by solving analytically the voltages in a resistor network, transforming the network structure to an effective all-to-all topology, and then measuring the resultant flows. Moreover, it defines a way to study the structural resilience of the graph and to detect possible communities.
Understanding biological functions through molecular networks
Institute of Scientific and Technical Information of China (English)
Jing-Dong Jackie Han
2008-01-01
The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approaches have been employed to study the structure, function and dynamics of molecular networks, and begin to reveal important links of various network properties to the functions of the biological systems. In agreement with these functional links, evolutionary selection of a network is apparently based on the function, rather than directly on the structure of the network. Dynamic modularity is one of the prominent features of molecular networks. Taking advantage of such a feature may simplify network-based biological studies through construction of process-specific modular networks and provide functional and mechanistic insights linking genotypic variations to complex traits or diseases, which is likely to be a key approach in the next wave of understanding complex human diseases. With the development of ready-to-use network analysis and modeling tools the networks approaches will be infused into everyday biological research in the near future.
Framework for Ethernet Network Functionality Testing
Directory of Open Access Journals (Sweden)
Mirza Aamir Mehmood
2011-11-01
Full Text Available Computer networks and telecommunication systems use a wide range of applications. Therefore, the power and complexity of computer networks are increasing every day which enhances the possibilities of the end user, but also makes harder the work of those who have to design, maintain and make a network efficient, optimized and secure. Ethernet functionality testing as a generic term used for checking connectivity, throughput and capability to transfer packets over the network. Especially in the packet-switch environment, Ethernet testing has become an essential part for deploying a reliable network. A platform and vendor independent framework is required to verify and test the functionality of the Ethernet network and to verify the functionality and performance of the TCP/IP stack. NetBurst is developed for Ethernet functionality testing
Design of Multi-Parameter Steerable Functions Using Cascade Basis Reduction
Teo, P.; Hel-Or, Y.; Null, Cynthia H. (Technical Monitor)
1996-01-01
A new cascade basis reduction method of computing the optimal least-squares set of basis functions steering a given function is presented. The method combines the Lie group-theoretic and the singular value decomposition approaches in such a way that their respective strengths complement each other. Since the Lie group-theoretic approach is used, the set of basis and steering functions computed can be expressed analytically. Because the singular value decomposition method is used, this set of basis and steering functions is optimal in the least-squares sense. Furthermore, the computational complexity in designing basis functions for transformation groups with large numbers of parameters is significantly reduced. The efficiency of the cascade basis reduction method is demonstrated by designing a set of basis functions that steers a Gabor function under the four-parameter linear transformation group.
Kanungo, Bikash
2016-01-01
We present a computationally efficient approach to perform large-scale all-electron density functional theory calculations by enriching the classical finite element basis with compactly supported atom-centered numerical basis functions that are constructed from the solution of the Kohn-Sham (KS) problem for single atoms. We term these numerical basis functions as enrichment functions, and the resultant basis as the enriched finite element basis. The enrichment functions are compactly supported through the use of smooth cutoff functions, which enhances the conditioning and maintains the locality of the basis. The integrals involved in the evaluation of the discrete KS Hamiltonian and overlap matrix in the enriched finite element basis are computed using an adaptive quadrature grid based on the characteristics of enrichment functions. Further, we propose an efficient scheme to invert the overlap matrix by using a block-wise matrix inversion in conjunction with special reduced-order quadrature rules to transform...
Network architecture functional description and design
Energy Technology Data Exchange (ETDEWEB)
Stans, L.; Bencoe, M.; Brown, D.; Kelly, S.; Pierson, L.; Schaldach, C.
1989-05-25
This report provides a top level functional description and design for the development and implementation of the central network to support the next generation of SNL, Albuquerque supercomputer in a UNIX{reg sign} environment. It describes the network functions and provides an architecture and topology.
Controlled stochastic networks in heavy traffic: Convergence of value functions
Budhiraja, Amarjit; 10.1214/11-AAP784
2012-01-01
Scheduling control problems for a family of unitary networks under heavy traffic with general interarrival and service times, probabilistic routing and an infinite horizon discounted linear holding cost are studied. Diffusion control problems, that have been proposed as approximate models for the study of these critically loaded controlled stochastic networks, can be regarded as formal scaling limits of such stochastic systems. However, to date, a rigorous limit theory that justifies the use of such approximations for a general family of controlled networks has been lacking. It is shown that, under broad conditions, the value function of the suitably scaled network control problem converges to that of the associated diffusion control problem. This scaling limit result, in addition to giving a precise mathematical basis for the above approximation approach, suggests a general strategy for constructing near optimal controls for the physical stochastic networks by solving the associated diffusion control problem...
Directory of Open Access Journals (Sweden)
Lixia Pei
Full Text Available The clinical application of Traditional Chinese medicine (TCM, using several herbs in combination (called formulas, has a history of more than one thousand years. However, the bioactive compounds that account for their therapeutic effects remain unclear. We hypothesized that the material basis of a formula are those compounds with a high content in the decoction that are maintained at a certain level in the system circulation. Network pharmacology provides new methodological insights for complicated system studies. In this study, we propose combining pharmacokinetic (PK analysis with network pharmacology to explore the material basis of TCM formulas as exemplified by the Bushen Zhuanggu formula (BZ composed of Psoralea corylifolia L., Aconitum carmichaeli Debx., and Cnidium monnieri (L. Cuss. A sensitive and credible liquid chromatography tandem mass spectrometry (LC-MS/MS method was established for the simultaneous determination of 15 compounds present in the three herbs. The concentrations of these compounds in the BZ decoction and in rat plasma after oral BZ administration were determined. Up to 12 compounds were detected in the BZ decoction, but only 5 could be analyzed using PK parameters. Combined PK results, network pharmacology analysis revealed that 4 compounds might serve as the material basis for BZ. We concluded that a sensitive, reliable, and suitable LC-MS/MS method for both the composition and pharmacokinetic study of BZ has been established. The combination of PK with network pharmacology might be a potent method for exploring the material basis of TCM formulas.
Hierarchical modularity in human brain functional networks
Meunier, D; Fornito, A; Ersche, K D; Bullmore, E T; 10.3389/neuro.11.037.2009
2010-01-01
The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or "modules-within-modules") decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI) in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at ...
A Quasi-Interpolation Satisfying Quadratic Polynomial Reproduction with Radial Basis Functions
Institute of Scientific and Technical Information of China (English)
Li Zha; Renzhong Feng
2007-01-01
In this paper, a new quasi-interpolation with radial basis functions which satisfies quadratic polynomial reproduction is constructed on the infinite set of equally spaced data. A new basis function is constructed by making convolution integral with a constructed spline and a given radial basis function. In particular, for twicely differentiable function the proposed method provides better approximation and also takes care of derivatives approximation.
Multiprotocol label-switching network functional description
Owens, Kenneth R.; Kroculick, Joseph
1999-11-01
This paper integrates a functional transport and control layer network architecture for MPLS emphasizing Traffic Engineering concepts such as the specification and provisioning of end-to-end QoS service layer agreements. MPLS transport networks are provisioned considering administrator-defined policies on bandwidth allocation, security, and accounting techniques. The MPLS architecture consists of the transport and control layer networks. The transport layer network is concerned with configuration, packet forwarding, signaling, adaptation to higher layers, and support of higher layers. The control layer network is concerned with policy configuration, management, distribution, definitions, schemas, elements, settings, and enforcement.
Directory of Open Access Journals (Sweden)
M. Safish Mary
2012-04-01
Full Text Available Classification of large amount of data is a time consuming process but crucial for analysis and decision making. Radial Basis Function networks are widely used for classification and regression analysis. In this paper, we have studied the performance of RBF neural networks to classify the sales of cars based on the demand, using kernel density estimation algorithm which produces classification accuracy comparable to data classification accuracy provided by support vector machines. In this paper, we have proposed a new instance based data selection method where redundant instances are removed with help of a threshold thus improving the time complexity with improved classification accuracy. The instance based selection of the data set will help reduce the number of clusters formed thereby reduces the number of centers considered for building the RBF network. Further the efficiency of the training is improved by applying a hierarchical clustering technique to reduce the number of clusters formed at every step. The paper explains the algorithm used for classification and for conditioning the data. It also explains the complexities involved in classification of sales data for analysis and decision-making.
Simple models of human brain functional networks.
Vértes, Petra E; Alexander-Bloch, Aaron F; Gogtay, Nitin; Giedd, Jay N; Rapoport, Judith L; Bullmore, Edward T
2012-04-10
Human brain functional networks are embedded in anatomical space and have topological properties--small-worldness, modularity, fat-tailed degree distributions--that are comparable to many other complex networks. Although a sophisticated set of measures is available to describe the topology of brain networks, the selection pressures that drive their formation remain largely unknown. Here we consider generative models for the probability of a functional connection (an edge) between two cortical regions (nodes) separated by some Euclidean distance in anatomical space. In particular, we propose a model in which the embedded topology of brain networks emerges from two competing factors: a distance penalty based on the cost of maintaining long-range connections; and a topological term that favors links between regions sharing similar input. We show that, together, these two biologically plausible factors are sufficient to capture an impressive range of topological properties of functional brain networks. Model parameters estimated in one set of functional MRI (fMRI) data on normal volunteers provided a good fit to networks estimated in a second independent sample of fMRI data. Furthermore, slightly detuned model parameters also generated a reasonable simulation of the abnormal properties of brain functional networks in people with schizophrenia. We therefore anticipate that many aspects of brain network organization, in health and disease, may be parsimoniously explained by an economical clustering rule for the probability of functional connectivity between different brain areas.
Network Assemblies in the Functional Brain
Sepulcre, Jorge; Sabuncu, Mert R.; Johnson, Keith A.
2012-01-01
Purpose of review This review focuses on recent advances in functional connectivity MRI and renewed interest in knowing the large-scale functional network assemblies in the brain. We also consider some methodological aspects of graph theoretical analysis. Recent findings Network science applied to neuroscience is quickly growing in recent years. The characterization of the functional connectomes in normal and pathological brain conditions is now a priority for researchers in the neuropsychiatric field and current findings have provided new insights regarding the pivotal role of network epicenters and specific configurations of the functional networks in the brain. Summary Functional connectivity and its analytical tools are providing organization of the functional brain that will be key for the understanding of pathologies in neurology. PMID:22766721
Hybrid model decomposition of speech and noise in a radial basis function neural model framework
DEFF Research Database (Denmark)
Sørensen, Helge Bjarup Dissing; Hartmann, Uwe
1994-01-01
applied is based on a combination of the hidden Markov model (HMM) decomposition method, for speech recognition in noise, developed by Varga and Moore (1990) from DRA and the hybrid (HMM/RBF) recognizer containing hidden Markov models and radial basis function (RBF) neural networks, developed by Singer...... and Lippmann (1992) from MIT Lincoln Lab. The present authors modified the hybrid recognizer to fit into the decomposition method to achieve high performance speech recognition in noisy environments. The approach has been denoted the hybrid model decomposition method and it provides an optimal method...... for decomposition of speech and noise by using a set of speech pattern models and a noise model(s), each realized as an HMM/RBF pattern model...
Prediction of Reagents Needs Using Radial Basis Function in Teaching Hospital
Directory of Open Access Journals (Sweden)
Indrabayu
2015-08-01
Full Text Available A robust reagents prediction is able to support the service improvement in laboratories. In this paper, Radial Basis Function Networks (RBFN method with (3, Q, 1 architecture is used to predict two types of reagents needs, i.e. SD Bioline HBsAg and SD Bioline Anti HCV. Data of reagents from 2012 - 2013 are used as training data, whereas 2014 data are used as comparative data for the prediction result. In RBFN training, the best condition obtained when the spread value is 4 with RMSE 1.63E-06 for both types of reagents. The prediction results with RBFN methods reached 99% with correlation value of 0.99 for each reagents. RBFN method shows better prediction result compared to BPNN method with prediction of 92%.
Institute of Scientific and Technical Information of China (English)
朱国俊; 冯建军; 郭鹏程; 罗兴锜
2014-01-01
, the Bezier curve was used to parameterize the hydrofoil. The Latin Hypercube experiment design method was used to select the sample points in the design space which were used for training the Radial Basis Function neural network. The hydrodynamic performance for each sample was calculated by the computational fluid dynamic method, and then the Radial Basis Function neural network would be trained by these sample points. After the neural network had been trained, the multi-point optimization method of hydrofoil was solved by combining the NSGA-II method and the Radial Basis Function neural network. The method mentioned above was applied to the optimal design of NACA63-815 hydrofoil, and the optimization problems of the hydrofoil in three typical conditions in which the attack angle is 0, 6º and 12º were mainly studied in this paper. After optimization, two optimized hydrofoils were selected in the Pareto solution to compare with initial, which were named Optimal A and Optimal B. According to the CFD simulation, the optimized hydrofoil’s performance was gotten and compared with the initial hydrofoil. By comparison, it was found that the drag coefficient of the optimized hydrofoil in the three conditions are less than or equal to the initial. Moreover, the lift-drag ratios of the Optimal A hydrofoil in which the attack angles is 0, 6° and 12° have been improve by 4.6%, 4.4%and 22.8%respectively. And the lift-drag ratios of the Optimal B hydrofoils have also been improved by 6.6%, 3.8%and 16.6%respectively. In addition, according to the comparison of the optimized and initial hydrofoil’s pressure coefficient at the 12°attack angle, it can be found that the optimized hydrofoil can effectively suppress the stall phenomenon. Finally, two conclusions can be drawn from the optimal results. Firstly, use the Radial Basis Function neural network to replace the CFD simulation can effectively decrease the time that the optimization cycle spent. Secondly, the hydrofoil
A universal formula for network functions
DEFF Research Database (Denmark)
Skelboe, Stig
1975-01-01
A linear electrical network can be described in a convenient way by means of the node equations. This letter presents a universal formula which expresses any network function as the quotient of two determinants. The determinants belong to matrices derived from the indefinite nodal admittance...
Connectomics and neuroticism: an altered functional network organization.
Servaas, Michelle N; Geerligs, Linda; Renken, Remco J; Marsman, Jan-Bernard C; Ormel, Johan; Riese, Harriëtte; Aleman, André
2015-01-01
The personality trait neuroticism is a potent risk marker for psychopathology. Although the neurobiological basis remains unclear, studies have suggested that alterations in connectivity may underlie it. Therefore, the aim of the current study was to shed more light on the functional network organization in neuroticism. To this end, we applied graph theory on resting-state functional magnetic resonance imaging (fMRI) data in 120 women selected based on their neuroticism score. Binary and weighted brain-wide graphs were constructed to examine changes in the functional network structure and functional connectivity strength. Furthermore, graphs were partitioned into modules to specifically investigate connectivity within and between functional subnetworks related to emotion processing and cognitive control. Subsequently, complex network measures (ie, efficiency and modularity) were calculated on the brain-wide graphs and modules, and correlated with neuroticism scores. Compared with low neurotic individuals, high neurotic individuals exhibited a whole-brain network structure resembling more that of a random network and had overall weaker functional connections. Furthermore, in these high neurotic individuals, functional subnetworks could be delineated less clearly and the majority of these subnetworks showed lower efficiency, while the affective subnetwork showed higher efficiency. In addition, the cingulo-operculum subnetwork demonstrated more ties with other functional subnetworks in association with neuroticism. In conclusion, the 'neurotic brain' has a less than optimal functional network organization and shows signs of functional disconnectivity. Moreover, in high compared with low neurotic individuals, emotion and salience subnetworks have a more prominent role in the information exchange, while sensory(-motor) and cognitive control subnetworks have a less prominent role.
Indirect photobiomodulation in functional networks
Liu, Timon Cheng-Yi; Zhu, Wei-Wei; Yang, Xiang-Bo
2012-12-01
Photobiomodulation (PBM) is a non-damaged modulation of laser irradiation or monochromatic light (LI) on a biosystem function. It depends on whether the function is in its function-specific homeostasis (FSH), a negative feedback response for the function to be performed perfectly. Many redundant pathways (RPs) maintain the same cellular function. The full activation of any of RPs can maintain a normal function in its FSH, but partial activation of all the RPs can only maintain a dysfunctional function far from its FSH. A PBM may self-adaptively modulate the activation of a partially activated RP of a normal function until it is fully activated and the normal function is then upgraded. This PBM is called indirect PBM (iPBM). The iPBM on cells such as tumor cells, myoblast cells and fibroblasts and other biosystems and their applications would be reviewed in this paper.
Using symmetry-adapted optimized sum-of-products basis functions to calculate vibrational spectra
Leclerc, Arnaud
2016-01-01
Vibrational spectra can be computed without storing full-dimensional vectors by using low-rank sum-of-products (SOP) basis functions. We introduce symmetry constraints in the SOP basis functions to make it possible to separately calculate states in different symmetry subgroups. This is done using a power method to compute eigenvalues and an alternating least squares method to optimize basis functions. Owing to the fact that the power method favours the convergence of the lowest states, one must be careful not to exclude basis functions of some symmetries. Exploiting symmetry facilitates making assignments and improves the accuracy. The method is applied to the acetonitrile molecule.
Directory of Open Access Journals (Sweden)
Lin Wang
Full Text Available Phosphorylation and transcriptional regulation events are critical for cells to transmit and respond to signals. In spite of its importance, systems-level strategies that couple these two networks have yet to be presented. Here we introduce a novel approach that integrates the physical and functional aspects of phosphorylation network together with the transcription network in S.cerevisiae, and demonstrate that different network motifs are involved in these networks, which should be considered in interpreting and integrating large scale datasets. Based on this understanding, we introduce a HeRS score (hetero-regulatory similarity score to systematically characterize the functional relevance of kinase/phosphatase involvement with transcription factor, and present an algorithm that predicts hetero-regulatory modules. When extended to signaling network, this approach confirmed the structure and cross talk of MAPK pathways, inferred a novel functional transcription factor Sok2 in high osmolarity glycerol pathway, and explained the mechanism of reduced mating efficiency upon Fus3 deletion. This strategy is applicable to other organisms as large-scale datasets become available, providing a means to identify the functional relationships between kinases/phosphatases and transcription factors.
Biochemical basis for functional ingredient design from fruits.
Jacob, Jissy K; Tiwari, Krishnaraj; Correa-Betanzo, Julieta; Misran, Azizah; Chandrasekaran, Renu; Paliyath, Gopinadhan
2012-01-01
Functional food ingredients (nutraceuticals) in fruits range from small molecular components, such as the secondary plant products, to macromolecular entities, e.g., pectin and cellulose, that provide several health benefits. In fruits, the most visible functional ingredients are the color components anthocyanins and carotenoids. In addition, several other secondary plant products, including terpenes, show health beneficial activities. A common feature of several functional ingredients is their antioxidant function. For example, reactive oxygen species (ROS) can be oxidized and stabilized by flavonoid components, and the flavonoid radical can undergo electron rearrangement stabilizing the flavonoid radical. Compounds that possess an orthodihydroxy or quinone structure can interact with cellular proteins in the Keap1/Nrf2/ARE pathway to activate the gene transcription of antioxidant enzymes. Carotenoids and flavonoids can also exert their action by modulating the signal transduction and gene expression within the cell. Recent results suggest that these activities are primarily responsible for the health benefits associated with the consumption of fruits and vegetables.
From networks of protein interactions to networks of functional dependencies
Directory of Open Access Journals (Sweden)
Luciani Davide
2012-05-01
Full Text Available Abstract Background As protein-protein interactions connect proteins that participate in either the same or different functions, networks of interacting and functionally annotated proteins can be converted into process graphs of inter-dependent function nodes (each node corresponding to interacting proteins with the same functional annotation. However, as proteins have multiple annotations, the process graph is non-redundant, if only proteins participating directly in a given function are included in the related function node. Results Reasoning that topological features (e.g., clusters of highly inter-connected proteins might help approaching structured and non-redundant understanding of molecular function, an algorithm was developed that prioritizes inclusion of proteins into the function nodes that best overlap protein clusters. Specifically, the algorithm identifies function nodes (and their mutual relations, based on the topological analysis of a protein interaction network, which can be related to various biological domains, such as cellular components (e.g., peroxisome and cellular bud or biological processes (e.g., cell budding of the model organism S. cerevisiae. Conclusions The method we have described allows converting a protein interaction network into a non-redundant process graph of inter-dependent function nodes. The examples we have described show that the resulting graph allows researchers to formulate testable hypotheses about dependencies among functions and the underlying mechanisms.
Structural basis and functions of abscisic acid receptors PYLs
Zhang, Xing L.; Jiang, Lun; Xin, Qi; Liu, Yang; Tan, Jian X.; Chen, Zhong Z.
2015-01-01
Abscisic acid (ABA) plays a key role in many developmental processes and responses to adaptive stresses in plants. Recently, a new family of nucleocytoplasmic PYR/PYL/RCAR (PYLs) has been identified as bona fide ABA receptors. PYLs together with protein phosphatases type-2C (PP2Cs), Snf1 (Sucrose-non-fermentation 1)-related kinases subfamily 2 (SnRK2s) and downstream substrates constitute the core ABA signaling network. Generally, PP2Cs inactivate SnRK2s kinases by physical interaction and direct dephosphorylation. Upon ABA binding, PYLs change their conformations and then contact and inhibit PP2Cs, thus activating SnRK2s. Here, we reviewed the recent progress in research regarding the structures of the core signaling pathways of ABA, including the (+)-ABA, (−)-ABA and ABA analogs pyrabactin as well as 6AS perception by PYLs, SnRK2s mimicking PYLs in binding PP2Cs. PYLs inhibited PP2Cs in both the presence and absence of ABA and activated SnRK2s. The present review elucidates multiple ABA signal perception and transduction by PYLs, which might shed light on how to design small chemical compounds for improving plant performance in the future. PMID:25745428
Human brain networks function in connectome-specific harmonic waves.
Atasoy, Selen; Donnelly, Isaac; Pearson, Joel
2016-01-21
A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.
Fuzzy Functional Dependencies and Bayesian Networks
Institute of Scientific and Technical Information of China (English)
LIU WeiYi(刘惟一); SONG Ning(宋宁)
2003-01-01
Bayesian networks have become a popular technique for representing and reasoning with probabilistic information. The fuzzy functional dependency is an important kind of data dependencies in relational databases with fuzzy values. The purpose of this paper is to set up a connection between these data dependencies and Bayesian networks. The connection is done through a set of methods that enable people to obtain the most information of independent conditions from fuzzy functional dependencies.
Functional network organization of the human brain.
Power, Jonathan D; Cohen, Alexander L; Nelson, Steven M; Wig, Gagan S; Barnes, Kelly Anne; Church, Jessica A; Vogel, Alecia C; Laumann, Timothy O; Miezin, Fran M; Schlaggar, Bradley L; Petersen, Steven E
2011-11-17
Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships. These graphs contain many subgraphs in good agreement with known functional brain systems. Other subgraphs lack established functional identities; we suggest possible functional characteristics for these subgraphs. Further, graph measures of the areal network indicate that the default mode subgraph shares network properties with sensory and motor subgraphs: it is internally integrated but isolated from other subgraphs, much like a "processing" system. The modified voxelwise graph also reveals spatial motifs in the patterning of systems across the cortex.
Identifying Functional Modules in Complex Networks
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, we propose a new method that enables us to detect and describe the functional modules in complex networks. Using the proposed method, we can classify the nodes of networks into different modules according to their pattern of intra- and extra-module links. We use our method to analyze the modular structures of the ER random networks. We find that different modules of networks have different structure properties, such as the clustering coefficient. Moreover, at the same time, many nodes of networks participate different modules. Remarkably, we find that in the ER random networks, when the probability p is small, different modules or different roles of nodes can be identified by different regionsin the c-p parameter space.
Brown, James; Carrington, Tucker
2016-06-01
In this paper we show that it is possible to use an iterative eigensolver in conjunction with Halverson and Poirier's symmetrized Gaussian (SG) basis [T. Halverson and B. Poirier, J. Chem. Phys. 137, 224101 (2012)] to compute accurate vibrational energy levels of molecules with as many as five atoms. This is done, without storing and manipulating large matrices, by solving a regular eigenvalue problem that makes it possible to exploit direct-product structure. These ideas are combined with a new procedure for selecting which basis functions to use. The SG basis we work with is orders of magnitude smaller than the basis made by using a classical energy criterion. We find significant convergence errors in previous calculations with SG bases. For sum-of-product Hamiltonians, SG bases large enough to compute accurate levels are orders of magnitude larger than even simple pruned bases composed of products of harmonic oscillator functions.
Avian magnetic compass: Its functional properties and physical basis
Directory of Open Access Journals (Sweden)
Roswitha WILTSCHKO, Wolfgang WILTSCHKO
2010-06-01
Full Text Available The avian magnetic compass was analyzed in bird species of three different orders – Passeriforms, Columbiforms and Galliforms – and in three different behavioral contexts, namely migratory orientation, homing and directional conditioning. The respective findings indicate similar functional properties: it is an inclination compass that works only within a functional window around the ambient magnetic field intensity; it tends to be lateralized in favor of the right eye, and it is wavelength-dependent, requiring light from the short-wavelength range of the spectrum. The underlying physical mechanisms have been identified as radical pair processes, spin-chemical reactions in specialized photopigments. The iron-based receptors in the upper beak do not seem to be involved. The existence of the same type of magnetic compass in only very distantly related bird species suggests that it may have been present already in the common ancestors of all modern birds, where it evolved as an all-purpose compass mechanism for orientation within the home range [Current Zoology 56 (3: 265–276, 2010].
An efficient method for ectopic beats cancellation based on radial basis function.
Mateo, Jorge; Torres, Ana; Rieta, José J
2011-01-01
The analysis of the surface Electrocardiogram (ECG) is the most extended noninvasive technique in cardiological diagnosis. In order to properly use the ECG, we need to cancel out ectopic beats. These beats may occur in both normal subjects and patients with heart disease, and their presence represents an important source of error which must be handled before any other analysis. This paper presents a method for electrocardiogram ectopic beat cancellation based on Radial Basis Function Neural Network (RBFNN). A train-able neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care is presented. Six types of beats including: Normal Beats (NB); Premature Ventricular Contractions (PVC); Left Bundle Branch Blocks (LBBB); Right Bundle Branch Blocks (RBBB); Paced Beats (PB) and Ectopic Beats (EB) are obtained from the MIT-BIH arrhythmia database. Four morphological features are extracted from each beat after the preprocessing of the selected records. Average Results for the RBFNN based method provided an ectopic beat reduction (EBR) of (mean ± std) EBR = 7, 23 ± 2.18 in contrast to traditional compared methods that, for the best case, yielded EBR = 4.05 ± 2.13. The results prove that RBFNN based methods are able to obtain a very accurate reduction of ectopic beats together with low distortion of the QRST complex.
Basis Function Sampling: A New Paradigm for Material Property Computation
Whitmer, Jonathan K.; Chiu, Chi-cheng; Joshi, Abhijeet A.; de Pablo, Juan J.
2014-11-01
Wang-Landau sampling, and the associated class of flat histogram simulation methods have been remarkably helpful for calculations of the free energy in a wide variety of physical systems. Practically, convergence of these calculations to a target free energy surface is hampered by reliance on parameters which are unknown a priori. Here, we derive and implement a method built upon orthogonal functions which is fast, parameter-free, and (importantly) geometrically robust. The method is shown to be highly effective in achieving convergence. An important feature of this method is its ability to attain arbitrary levels of description for the free energy. It is thus ideally suited to in silico measurement of elastic moduli and other material properties related to free energy perturbations. We demonstrate the utility of such applications by applying our method to calculate the Frank elastic constants of the Lebwohl-Lasher model of liquid crystals.
The Neural Basis of Typewriting: A Functional MRI Study.
Directory of Open Access Journals (Sweden)
Yuichi Higashiyama
Full Text Available To investigate the neural substrate of typewriting Japanese words and to detect the difference between the neural substrate of typewriting and handwriting, we conducted a functional magnetic resonance imaging (fMRI study in 16 healthy volunteers. All subjects were skillful touch typists and performed five tasks: a typing task, a writing task, a reading task, and two control tasks. Three brain regions were activated during both the typing and the writing tasks: the left superior parietal lobule, the left supramarginal gyrus, and the left premotor cortex close to Exner's area. Although typing and writing involved common brain regions, direct comparison between the typing and the writing task revealed greater left posteromedial intraparietal cortex activation in the typing task. In addition, activity in the left premotor cortex was more rostral in the typing task than in the writing task. These findings suggest that, although the brain circuits involved in Japanese typewriting are almost the same as those involved in handwriting, there are brain regions that are specific for typewriting.
Schwenke, David W.; Truhlar, Donald G.
1990-01-01
The Generalized Newton Variational Principle for 3D quantum mechanical reactive scattering is briefly reviewed. Then three techniques are described which improve the efficiency of the computations. First, the fact that the Hamiltonian is Hermitian is used to reduce the number of integrals computed, and then the properties of localized basis functions are exploited in order to eliminate redundant work in the integral evaluation. A new type of localized basis function with desirable properties is suggested. It is shown how partitioned matrices can be used with localized basis functions to reduce the amount of work required to handle the complex boundary conditions. The new techniques do not introduce any approximations into the calculations, so they may be used to obtain converged solutions of the Schroedinger equation.
LANL2DZ basis sets recontracted in the framework of density functional theory.
Chiodo, S; Russo, N; Sicilia, E
2006-09-14
In this paper we report recontracted LANL2DZ basis sets for first-row transition metals. The valence-electron shell basis functions were recontracted using the PWP86 generalized gradient approximation functional and the hybrid B3LYP one. Starting from the original LANL2DZ basis sets a cyclic method was used in order to optimize variationally the contraction coefficients, while the contraction scheme was held fixed at the original one of the LANL2DZ basis functions. The performance of the recontracted basis sets was analyzed by direct comparison between calculated and experimental excitation and ionization energies. Results reported here compared with those obtained using the original basis sets show clearly an improvement in the reproduction of the corresponding experimental gaps.
Institute of Scientific and Technical Information of China (English)
于旭东; 魏学通; 李莹; 龙兴武
2012-01-01
在激光陀螺单轴旋转惯性导航系统中,单轴旋转可以自动补偿垂直于旋转轴上的惯性器件误差,却不能消除旋转轴方向上惯性器件的误差,因此单轴旋转惯性导航系统的导航精度主要由轴向陀螺漂移决定.提出了一种基于径向基函数神经网络的轴向陀螺漂移辨识方法,利用系统纬度误差和温度变化量作为训练集,针对系统热态、冷态两种情况对RBF神经网络进行训练,对轴向陀螺漂移的辨识精度达到0.0003°/h.试验结果表明:该方法能够有效地辨识轴向陀螺漂移,使系统达到较高的导航精度,满足实际应用的需要.%In the single-axis rotation inertial navigation system with ring laser gyroscope ( RLG), the single-axis rotation can compensate the vertical errors of the inertial apparatus automatically, but cannot compensate the axial vertical errors, so the precision of the system is determined by the drift of the axial RLG. A novel identification method based on radial basis function network is proposed for the axial RLG drift. The inputs of the network are the latitude error and change of the temperature, and the network is trained for steady and non-steady state, in which the identification capability is less than 0. 0003°/h. The experiments show that this method can estimate the axial RLG drift efficaciously, and the result of the navigation is excellent and can meet the practical demand.
Functional brain networks in schizophrenia: a review
Directory of Open Access Journals (Sweden)
Vince D Calhoun
2009-08-01
Full Text Available Functional magnetic resonance imaging (fMRI has become a major technique for studying cognitive function and its disruption in mental illness, including schizophrenia. The major proportion of imaging studies focused primarily upon identifying regions which hemodynamic response amplitudes covary with particular stimuli and differentiate between patient and control groups. In addition to such amplitude based comparisons, one can estimate temporal correlations and compute maps of functional connectivity between regions which include the variance associated with event related responses as well as intrinsic fluctuations of hemodynamic activity. Functional connectivity maps can be computed by correlating all voxels with a seed region when a spatial prior is available. An alternative are multivariate decompositions such as independent component analysis (ICA which extract multiple components, each of which is a spatially distinct map of voxels with a common time course. Recent work has shown that these networks are pervasive in relaxed resting and during task performance and hence provide robust measures of intact and disturbed brain activity. This in turn bears the prospect of yielding biomarkers for schizophrenia, which can be described both in terms of disrupted local processing as well as altered global connectivity between large scale networks. In this review we will summarize functional connectivity measures with a focus upon work with ICA and discuss the meaning of intrinsic fluctuations. In addition, examples of how brain networks have been used for classification of disease will be shown. We present work with functional network connectivity, an approach that enables the evaluation of the interplay between multiple networks and how they are affected in disease. We conclude by discussing new variants of ICA for extracting maximally group discriminative networks from data. In summary, it is clear that identification of brain networks and their
A Novel Learning Scheme for Chebyshev Functional Link Neural Networks
Directory of Open Access Journals (Sweden)
Satchidananda Dehuri
2011-01-01
dimensional-space where linear separability is possible. Moreover, the proposed HCFLNN combines the best attribute of particle swarm optimization (PSO, back propagation learning (BP learning, and functional link neural networks (FLNNs. The proposed method eliminates the need of hidden layer by expanding the input patterns using Chebyshev orthogonal polynomials. We have shown its effectiveness of classifying the unknown pattern using the publicly available datasets obtained from UCI repository. The computational results are then compared with functional link neural network (FLNN with a generic basis functions, PSO-based FLNN, and EFLN. From the comparative study, we observed that the performance of the HCFLNN outperforms FLNN, PSO-based FLNN, and EFLN in terms of classification accuracy.
Functional network inference of the suprachiasmatic nucleus
Energy Technology Data Exchange (ETDEWEB)
Abel, John H.; Meeker, Kirsten; Granados-Fuentes, Daniel; St. John, Peter C.; Wang, Thomas J.; Bales, Benjamin B.; Doyle, Francis J.; Herzog, Erik D.; Petzold, Linda R.
2016-04-04
In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure.
Functional network inference of the suprachiasmatic nucleus.
Abel, John H; Meeker, Kirsten; Granados-Fuentes, Daniel; St John, Peter C; Wang, Thomas J; Bales, Benjamin B; Doyle, Francis J; Herzog, Erik D; Petzold, Linda R
2016-04-19
In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure.
Design of chemical space networks on the basis of Tversky similarity.
Wu, Mengjun; Vogt, Martin; Maggiora, Gerald M; Bajorath, Jürgen
2016-01-01
Chemical space networks (CSNs) have been introduced as a coordinate-free representation of chemical space. In CSNs, nodes represent compounds and edges pairwise similarity relationships. These network representations are mostly used to navigate sections of biologically relevant chemical space. Different types of CSNs have been designed on the basis of alternative similarity measures including continuous numerical similarity values or substructure-based similarity criteria. CSNs can be characterized and compared on the basis of statistical concepts from network science. Herein, a new CSN design is introduced that is based upon asymmetric similarity assessment using the Tversky coefficient and termed TV-CSN. Compared to other CSNs, TV-CSNs have unique features. While CSNs typically contain separate compound communities and exhibit small world character, many TV-CSNs are also scale-free in nature and contain hubs, i.e., extensively connected central compounds. Compared to other CSNs, these hubs are a characteristic of TV-CSN topology. Hub-containing compound communities are of particular interest for the exploration of structure-activity relationships.
BioFNet: biological functional network database for analysis and synthesis of biological systems.
Kurata, Hiroyuki; Maeda, Kazuhiro; Onaka, Toshikazu; Takata, Takenori
2014-09-01
In synthetic biology and systems biology, a bottom-up approach can be used to construct a complex, modular, hierarchical structure of biological networks. To analyze or design such networks, it is critical to understand the relationship between network structure and function, the mechanism through which biological parts or biomolecules are assembled into building blocks or functional networks. A functional network is defined as a subnetwork of biomolecules that performs a particular function. Understanding the mechanism of building functional networks would help develop a methodology for analyzing the structure of large-scale networks and design a robust biological circuit to perform a target function. We propose a biological functional network database, named BioFNet, which can cover the whole cell at the level of molecular interactions. The BioFNet takes an advantage in implementing the simulation program for the mathematical models of the functional networks, visualizing the simulated results. It presents a sound basis for rational design of biochemical networks and for understanding how functional networks are assembled to create complex high-level functions, which would reveal design principles underlying molecular architectures.
Spectral basis neural networks for real-time travel time forecasting
Energy Technology Data Exchange (ETDEWEB)
Park, D.; Rilett, L.R.; Han, G.
1999-12-01
This paper examines how real-time information gathered as part of intelligent transportation systems can be used to predict link travel times for one through five time periods ahead (of 5-min duration). The study employed a spectral basis artificial neural network (SNN) that utilizes a sinusoidal transformation technique to increase the linear separability of the input features. Link travel times from Houston that had been collected as part of the automatic vehicle identification system of the TranStar system were used as a test bed. It was found that the SNN outperformed a conventional artificial neural network and gave similar results to that of modular neural networks. However, the SNN requires significantly less effort on the part of the modeler than modular neural networks. The results, of the best SNN were compared with conventional link travel time prediction techniques including a Kalman filtering model, exponential smoothing model, historical profile, and real-time profile. It was found that the SNN gave the best overall results.
Multiscale finite element methods for high-contrast problems using local spectral basis functions
Efendiev, Yalchin
2011-02-01
In this paper we study multiscale finite element methods (MsFEMs) using spectral multiscale basis functions that are designed for high-contrast problems. Multiscale basis functions are constructed using eigenvectors of a carefully selected local spectral problem. This local spectral problem strongly depends on the choice of initial partition of unity functions. The resulting space enriches the initial multiscale space using eigenvectors of local spectral problem. The eigenvectors corresponding to small, asymptotically vanishing, eigenvalues detect important features of the solutions that are not captured by initial multiscale basis functions. Multiscale basis functions are constructed such that they span these eigenfunctions that correspond to small, asymptotically vanishing, eigenvalues. We present a convergence study that shows that the convergence rate (in energy norm) is proportional to (H/Λ*)1/2, where Λ* is proportional to the minimum of the eigenvalues that the corresponding eigenvectors are not included in the coarse space. Thus, we would like to reach to a larger eigenvalue with a smaller coarse space. This is accomplished with a careful choice of initial multiscale basis functions and the setup of the eigenvalue problems. Numerical results are presented to back-up our theoretical results and to show higher accuracy of MsFEMs with spectral multiscale basis functions. We also present a hierarchical construction of the eigenvectors that provides CPU savings. © 2010.
Schizophrenia classification using functional network features
Rish, Irina; Cecchi, Guillermo A.; Heuton, Kyle
2012-03-01
This paper focuses on discovering statistical biomarkers (features) that are predictive of schizophrenia, with a particular focus on topological properties of fMRI functional networks. We consider several network properties, such as node (voxel) strength, clustering coefficients, local efficiency, as well as just a subset of pairwise correlations. While all types of features demonstrate highly significant statistical differences in several brain areas, and close to 80% classification accuracy, the most remarkable results of 93% accuracy are achieved by using a small subset of only a dozen of most-informative (lowest p-value) correlation features. Our results suggest that voxel-level correlations and functional network features derived from them are highly informative about schizophrenia and can be used as statistical biomarkers for the disease.
Institute of Scientific and Technical Information of China (English)
张超; 彭道黎
2012-01-01
Aiming at the problem of multicollinearity and low precision predictions by the regression prediction model of carbon storage, this study used forest resource inventory data and SPOT5 image to retrieve the aboveground forest carbon storage of Populus forests in Yanqing County. Firstly, 10 factors were analyzed by principal components analysis. Then this paper introduced a method based on PCA and radial basis function （RBF） neural network for predicting forest carbon storage. The research results show that forest resource inventory data combined SPOT5 image is very useful for retrieving study of carbon storage of Populus forests~ the fitting precision of the PCA-RBF neural network model was 99.90% ,and the average prediction reached 96.71%. The model has a good retrieval accuracy, which can be well used for retrieval of regional aboveground forest carbon storage.%针对碳储量回归预测模型存在共线性和精度较低的问题,利用森林资源二类调查数据和SPOT5影像数据对北京市延庆县的杨树林进行碳储量反演研究。先对选取的10个指标进行主成分分析,在此基础上采用径向基函数（RBF）神经网络方法构建碳储量反演模型,用预留测试样本验证,并与实测值进行比较。研究结果表明：SPOT5数据和二类数据可以很好地结合起来用于森林地上碳储量反演研究;PCA-RBF神经网络森林碳储量遥感反演模型拟合精度为99.90%,平均预测精度达到96.71%,预估效果较理想;模型训练完成后,可以应用于延庆县森林地上碳储量反演。
Distributed Function Calculation over Noisy Networks
Directory of Open Access Journals (Sweden)
Zhidun Zeng
2016-01-01
Full Text Available Considering any connected network with unknown initial states for all nodes, the nearest-neighbor rule is utilized for each node to update its own state at every discrete-time step. Distributed function calculation problem is defined for one node to compute some function of the initial values of all the nodes based on its own observations. In this paper, taking into account uncertainties in the network and observations, an algorithm is proposed to compute and explicitly characterize the value of the function in question when the number of successive observations is large enough. While the number of successive observations is not large enough, we provide an approach to obtain the tightest possible bounds on such function by using linear programing optimization techniques. Simulations are provided to demonstrate the theoretical results.
Gaussian continuum basis functions for calculating high-harmonic generation spectra
Coccia, Emanuele; Labeye, Marie; Caillat, Jérémie; Taieb, Richard; Toulouse, Julien; Luppi, Eleonora
2016-01-01
We explore the computation of high-harmonic generation spectra by means of Gaussian basis sets in approaches propagating the time-dependent Schr{\\"o}dinger equation. We investigate the efficiency of Gaussian functions specifically designed for the description of the continuum proposed by Kaufmann et al. [ J. Phys. B 22 , 2223 (1989) ]. We assess the range of applicability of this approach by studying the hydrogen atom , i. e. the simplest atom for which "exact" calculations on a grid can be performed. We notably study the effect of increasing the basis set cardinal number , the number of diffuse basis functions , and the number of Gaussian pseudo-continuum basis functions for various laser parameters. Our results show that the latter significantly improve the description of the low-lying continuum states , and provide a satisfactory agreement with grid calculations for laser wavelengths $\\lambda$0 = 800 and 1064 nm. The Kaufmann continuum functions therefore appear as a promising way of constructing Gaussian ...
Deep networks for motor control functions
Directory of Open Access Journals (Sweden)
Max eBerniker
2015-03-01
Full Text Available The motor system generates time-varying commands to move our limbs and body. Conventional descriptions of motor control and learning rely on dynamical representations of our body’s state (forward and inverse models, and control policies that must be integrated forward to generate feedforward time-varying commands; thus these are representations across space, but not time. Here we examine a new approach that directly represents both time-varying commands and the resulting state trajectories with a function; a representation across space and time. Since the output of this function includes time, it necessarily requires more parameters than a typical dynamical model. To avoid the problems of local minima these extra parameters introduce, we exploit recent advances in machine learning to build our function using a stacked autoencoder, or deep network. With initial and target states as inputs, this deep network can be trained to output an accurate temporal profile of the optimal command and state trajectory for a point-to-point reach of a nonlinear limb model, even when influenced by varying force fields. In a manner that mirrors motor babble, the network can also teach itself to learn through trial and error. Lastly, we demonstrate how this network can learn to optimize a cost objective. This functional approach to motor control is a sharp departure from the standard dynamical approach, and may offer new insights into the neural implementation of motor control.
Developing Functional Networks of Frontier Capital Markets
2011-10-01
capital. As Stiglitz and Gallegati (2011) note, “Some network designs may be good at absorbing small shocks, when there can be systemic failure when...functions in innovative ways. 3 Stiglitz , Joseph E. and Mauro Gallegati, “Heterogeneous Interacting Agent Models for Understanding Monetary
Neural network model for the efficient calculation of Green's functions in layered media
Soliman, E A; El-Gamal, M A; 10.1002/mmce.10066
2003-01-01
In this paper, neural networks are employed for fast and efficient calculation of Green's functions in a layered medium. Radial basis function networks (RBFNs) are effectively trained to estimate the coefficients and the exponents that represent a Green's function in the discrete complex image method (DCIM). Results show very good agreement with the DCIM, and the trained RBFNs are very fast compared with the corresponding DCIM. (23 refs).
A Frame of Intrusion Detection Learning System Utilizing Radial Basis Function
Directory of Open Access Journals (Sweden)
S.Selvakani Kandeeban
2012-02-01
Full Text Available The process of monitoring the events that occur in a computer system or network and analyzing them for signs of intrusion is known as Intrusion Detection System (IDS. Detection ability of most of the IDS are limited to known attack patterns; hence new signatures for novel attacks can be troublesome, time consuming and has high false alarm rate. To achieve this, system was trained and tested with known and unknown patterns with the help of Radial Basis Functions (RBF. KDD 99 IDE (Knowledge Discovery in Databases Intrusion Detection Evaluation data set was used for training and testing. The IDS is supposed to distinguish normal traffic from intrusions and to classify them into four classes: DoS, probe, R2L and U2R. The dataset is quite unbalanced, with 79% of the traffic belonging to the DoS category, 19% is normal traffic and less than 2% constitute the other three categories. The usefulness of the data set used for experimental evaluation has been demonstrated. The different metrics available for the evaluation of IDS were also introduced. Experimental evaluations were shown that the proposed methods were having the capacity of detecting a significant percentage ofrate and new attacks.
Fire Risk Assessment of Some Indian Coals Using Radial Basis Function (RBF) Technique
Nimaje, Devidas; Tripathy, Debi Prasad
2016-03-01
Fires, whether surface or underground, pose serious and environmental problems in the global coal mining industry. It is causing huge loss of coal due to burning and loss of lives, sterilization of coal reserves and environmental pollution. Most of the instances of coal mine fires happening worldwide are mainly due to the spontaneous combustion. Hence, attention must be paid to take appropriate measures to prevent occurrence and spread of fire. In this paper, to evaluate the different properties of coals for fire risk assessment, forty-nine in situ coal samples were collected from major coalfields of India. Intrinsic properties viz. proximate and ultimate analysis; and susceptibility indices like crossing point temperature, flammability temperature, Olpinski index and wet oxidation potential method of Indian coals were carried out to ascertain the liability of coal to spontaneous combustion. Statistical regression analysis showed that the parameters of ultimate analysis provide significant correlation with all investigated susceptibility indices as compared to the parameters of proximate analysis. Best correlated parameters (ultimate analysis) were used as inputs to the radial basis function network model. The model revealed that Olpinski index can be used as a reliable method to assess the liability of Indian coals to spontaneous combustion.
Fire Risk Assessment of Some Indian Coals Using Radial Basis Function (RBF) Technique
Nimaje, Devidas; Tripathy, Debi Prasad
2017-04-01
Fires, whether surface or underground, pose serious and environmental problems in the global coal mining industry. It is causing huge loss of coal due to burning and loss of lives, sterilization of coal reserves and environmental pollution. Most of the instances of coal mine fires happening worldwide are mainly due to the spontaneous combustion. Hence, attention must be paid to take appropriate measures to prevent occurrence and spread of fire. In this paper, to evaluate the different properties of coals for fire risk assessment, forty-nine in situ coal samples were collected from major coalfields of India. Intrinsic properties viz. proximate and ultimate analysis; and susceptibility indices like crossing point temperature, flammability temperature, Olpinski index and wet oxidation potential method of Indian coals were carried out to ascertain the liability of coal to spontaneous combustion. Statistical regression analysis showed that the parameters of ultimate analysis provide significant correlation with all investigated susceptibility indices as compared to the parameters of proximate analysis. Best correlated parameters (ultimate analysis) were used as inputs to the radial basis function network model. The model revealed that Olpinski index can be used as a reliable method to assess the liability of Indian coals to spontaneous combustion.
Combustion monitoring of a water tube boiler using a discriminant radial basis network.
Sujatha, K; Pappa, N
2011-01-01
This research work includes a combination of Fisher's linear discriminant (FLD) analysis and a radial basis network (RBN) for monitoring the combustion conditions for a coal fired boiler so as to allow control of the air/fuel ratio. For this, two-dimensional flame images are required, which were captured with a CCD camera; the features of the images-average intensity, area, brightness and orientation etc of the flame-are extracted after preprocessing the images. The FLD is applied to reduce the n-dimensional feature size to a two-dimensional feature size for faster learning of the RBN. Also, three classes of images corresponding to different burning conditions of the flames have been extracted from continuous video processing. In this, the corresponding temperatures, and the carbon monoxide (CO) emissions and those of other flue gases have been obtained through measurement. Further, the training and testing of Fisher's linear discriminant radial basis network (FLDRBN), with the data collected, have been carried out and the performance of the algorithms is presented.
Computationally efficient double hybrid density functional theory using dual basis methods
Byrd, Jason N
2015-01-01
We examine the application of the recently developed dual basis methods of Head-Gordon and co-workers to double hybrid density functional computations. Using the B2-PLYP, B2GP-PLYP, DSD-BLYP and DSD-PBEP86 density functionals, we assess the performance of dual basis methods for the calculation of conformational energy changes in C$_4$-C$_7$ alkanes and for the S22 set of noncovalent interaction energies. The dual basis methods, combined with resolution-of-the-identity second-order M{\\o}ller-Plesset theory, are shown to give results in excellent agreement with conventional methods at a much reduced computational cost.
Functional optimization of the arterial network
Mauroy, Benjamin
2014-01-01
We build an evolutionary scenario that explains how some crucial physiological constraints in the arterial network of mammals - i.e. hematocrit, vessels diameters and arterial pressure drops - could have been selected by evolution. We propose that the arterial network evolved while being constrained by its function as an organ. To support this hypothesis, we focus our study on one of the main function of blood network: oxygen supply to the organs. We consider an idealized organ with a given oxygen need and we optimize blood network geometry and hematocrit with the constraint that it must fulfill the organ oxygen need. Our model accounts for the non-Newtonian behavior of blood, its maintenance cost and F\\aa hr\\ae us effects (decrease in average concentration of red blood cells as the vessel diameters decrease). We show that the mean shear rates (relative velocities of fluid layers) in the tree vessels follow a scaling law related to the multi-scale property of the tree network, and we show that this scaling la...
DMS - basis for increasing of green distributed generation penetration in distribution networks
Directory of Open Access Journals (Sweden)
Strezoski Vladimir C.
2012-01-01
Full Text Available Modern (electric power distribution utilities are faced with high penetration of distributed (electric generation. Renewable generation is of prime interest. Within this generation, the green one incorporating solar (photovoltaic and wind generation is the most important. Consequently, the following two imperatives are established in modern distribution utilities: 1 absorption of as much of available (connected to network green generation as possible and 2 increasing of the limit of green distributed generation penetration. This generation is a significant basis of Smart Distribution Grid Concept. Distributed generation transfers passive distribution network into active one. The active distribution network analysis, control, operation management and planning become significantly complex. This complexity radically hinders the achievement of two above stated imperatives referring to the distributed generation penetration. This paper proves that Distribution Management System is a unique powerful system that integrates all tools necessary for surpassing main difficulties in the achievement of the both imperatives. The proof is obtained by the elaboration of a set of power applications (mathematical calculations integrated in the Distribution Management System. The most important power applications, which deal with voltage / reactive power control, are specially stressed.
Functional model of biological neural networks.
Lo, James Ting-Ho
2010-12-01
A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.
Large-Scale Functional Brain Network Reorganization During Taoist Meditation.
Jao, Tun; Li, Chia-Wei; Vértes, Petra E; Wu, Changwei Wesley; Achard, Sophie; Hsieh, Chao-Hsien; Liou, Chien-Hui; Chen, Jyh-Horng; Bullmore, Edward T
2016-02-01
Meditation induces a distinct and reversible mental state that provides insights into brain correlates of consciousness. We explored brain network changes related to meditation by graph theoretical analysis of resting-state functional magnetic resonance imaging data. Eighteen Taoist meditators with varying levels of expertise were scanned using a within-subjects counterbalanced design during resting and meditation states. State-related differences in network topology were measured globally and at the level of individual nodes and edges. Although measures of global network topology, such as small-worldness, were unchanged, meditation was characterized by an extensive and expertise-dependent reorganization of the hubs (highly connected nodes) and edges (functional connections). Areas of sensory cortex, especially the bilateral primary visual and auditory cortices, and the bilateral temporopolar areas, which had the highest degree (or connectivity) during the resting state, showed the biggest decrease during meditation. Conversely, bilateral thalamus and components of the default mode network, mainly the bilateral precuneus and posterior cingulate cortex, had low degree in the resting state but increased degree during meditation. Additionally, these changes in nodal degree were accompanied by reorganization of anatomical orientation of the edges. During meditation, long-distance longitudinal (antero-posterior) edges increased proportionally, whereas orthogonal long-distance transverse (right-left) edges connecting bilaterally homologous cortices decreased. Our findings suggest that transient changes in consciousness associated with meditation introduce convergent changes in the topological and spatial properties of brain functional networks, and the anatomical pattern of integration might be as important as the global level of integration when considering the network basis for human consciousness.
Haghdani, Shokouh; Åstrand, Per-Olof; Koch, Henrik
2016-02-01
We have calculated the electronic optical rotation of seven molecules using coupled cluster singles-doubles (CCSD) and the second-order approximation (CC2) employing the aug-cc-pVXZ (X = D, T, or Q) basis sets. We have also compared to time-dependent density functional theory (TDDFT) by utilizing two functionals B3LYP and CAM-B3LYP and the same basis sets. Using relative and absolute error schemes, our calculations demonstrate that the CAM-B3LYP functional predicts optical rotation with the minimum deviations compared to CCSD at λ = 355 and 589.3 nm. Furthermore, our results illustrate that the aug-cc-pVDZ basis set provides the optical rotation in good agreement with the larger basis sets for molecules not possessing small-angle optical rotation at λ = 589.3 nm. We have also performed several two-point inverse power extrapolations for the basis set convergence, i.e., OR(∞) + AX(-n), using the CC2 model at λ = 355 and 589.3 nm. Our results reveal that a two-point inverse power extrapolation with the aug-cc-pVTZ and aug-cc-pVQZ basis sets at n = 5 provides optical rotation deviations similar to those of aug-cc-pV5Z with respect to the basis limit.
Efficient basis sets for non-covalent interactions in XDM-corrected density-functional theory.
Johnson, Erin R; Otero-de-la-Roza, Alberto; Dale, Stephen G; DiLabio, Gino A
2013-12-07
In the development and application of dispersion-corrected density-functional theory, the effects of basis set incompleteness have been largely mitigated through the use of very large, nearly-complete basis sets. However, the use of such large basis sets makes application of these methods inefficient for large systems. In this work, we examine a series of basis sets, including Pople-style, correlation-consistent, and polarization-consistent bases, for their ability to efficiently and accurately predict non-covalent interactions when used in conjunction with the exchange-hole dipole moment (XDM) dispersion model. We find that the polarization-consistent 2 (pc-2) basis sets, and two modifications thereof with some diffuse functions removed, give performance of comparable quality to that obtained with aug-cc-pVTZ basis sets, while being roughly 12 to 23 times faster computationally. The behavior is explained, in part, by the role of diffuse functions in recovering small density changes in the intermolecular region. The general performance of the modified basis sets is tested by application of XDM to standard intermolecular benchmark sets at, and away from, equilibrium.
Function Analyses of Geographic Information System on Rural Distribution Network
Institute of Scientific and Technical Information of China (English)
FANG Junlong; FAN Yongcun; ZHANG Chunmei; GU Shumin
2006-01-01
With the actuality and characteristic and requirement of rural power enterprise distribution network management, this article introduced the function of geographic information system on the framework of distribution network, in order to develop rural distribution network.
Network Coding Capacity Regions via Entropy Functions
Chan, Terence H
2012-01-01
In this paper, we use entropy functions to characterise the set of rate-capacity tuples achievable with either zero decoding error, or vanishing decoding error, for general network coding problems. We show that when sources are colocated, the outer bound obtained by Yeung, A First Course in Information Theory, Section 15.5 (2002) is tight and the sets of zero-error achievable and vanishing-error achievable rate-capacity tuples are the same. We also characterise the set of zero-error and vanishing-error achievable rate capacity tuples for network coding problems subject to linear encoding constraints, routing constraints (where some or all nodes can only perform routing) and secrecy constraints. Finally, we show that even for apparently simple networks, design of optimal codes may be difficult. In particular, we prove that for the incremental multicast problem and for the single-source secure network coding problem, characterisation of the achievable set is very hard and linear network codes may not be optimal...
Arithmetic functions in torus and tree networks
Bhanot, Gyan; Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos M.
2007-12-25
Methods and systems for performing arithmetic functions. In accordance with a first aspect of the invention, methods and apparatus are provided, working in conjunction of software algorithms and hardware implementation of class network routing, to achieve a very significant reduction in the time required for global arithmetic operation on the torus. Therefore, it leads to greater scalability of applications running on large parallel machines. The invention involves three steps in improving the efficiency and accuracy of global operations: (1) Ensuring, when necessary, that all the nodes do the global operation on the data in the same order and so obtain a unique answer, independent of roundoff error; (2) Using the topology of the torus to minimize the number of hops and the bidirectional capabilities of the network to reduce the number of time steps in the data transfer operation to an absolute minimum; and (3) Using class function routing to reduce latency in the data transfer. With the method of this invention, every single element is injected into the network only once and it will be stored and forwarded without any further software overhead. In accordance with a second aspect of the invention, methods and systems are provided to efficiently implement global arithmetic operations on a network that supports the global combining operations. The latency of doing such global operations are greatly reduced by using these methods.
Analysis of the segmented contraction of basis functions using density matrix theory.
Custodio, Rogério; Gomes, André Severo Pereira; Sensato, Fabrício Ronil; Trevas, Júlio Murilo Dos Santos
2006-11-30
A particular formulation based on density matrix (DM) theory at the Hartree-Fock level of theory and the description of the atomic orbitals as integral transforms is introduced. This formulation leads to a continuous representation of the density matrices as functions of a generator coordinate and to the possibility of plotting either the continuous or discrete density matrices as functions of the exponents of primitive Gaussian basis functions. The analysis of these diagrams provides useful information allowing: (a) the determination of the most important primitives for a given orbital, (b) the core-valence separation, and (c) support for the development of contracted basis sets by the segmented method.
Nonlinear System Identification via Basis Functions Based Time Domain Volterra Model
Directory of Open Access Journals (Sweden)
Yazid Edwar
2014-07-01
Full Text Available This paper proposes basis functions based time domain Volterra model for nonlinear system identification. The Volterra kernels are expanded by using complex exponential basis functions and estimated via genetic algorithm (GA. The accuracy and practicability of the proposed method are then assessed experimentally from a scaled 1:100 model of a prototype truss spar platform. Identification results in time and frequency domain are presented and coherent functions are performed to check the quality of the identification results. It is shown that results between experimental data and proposed method are in good agreement.
Hong, X; Harris, C J
2000-01-01
This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bézier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bézier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bézier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bézier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.
Directory of Open Access Journals (Sweden)
G. Shangytbayeva
2015-08-01
Full Text Available This study discusses the problem distributed network attacks, formalized of model of linear kind for differentiate distributed network attacks on the basis of a weight coefficients Structured the formalized mathematical models allow to consider structure of the On network to a basis big percent, a measure of influence of each type of attack that gives the fine chance effectively to design to protect information system taking into account information on threats. Based on classification of information threats, characteristic for distributed network attacks it is offered the formalized models of a linear look for differentiation of attacks on the basis of a method of weight coefficients. By these indicators and coefficients it is possible to define the main types of threats in computer systems allowing to design effectively systems of information security taking into account information threats.
Laury, Marie L; Carlson, Matthew J; Wilson, Angela K
2012-11-15
Calculated harmonic vibrational frequencies systematically deviate from experimental vibrational frequencies. The observed deviation can be corrected by applying a scale factor. Scale factors for: (i) harmonic vibrational frequencies [categorized into low (1000 cm(-1))], (ii) vibrational contributions to enthalpy and entropy, and (iii) zero-point vibrational energies (ZPVEs) have been determined for widely used density functionals in combination with polarization consistent basis sets (pc-n, n = 0,1,2,3,4). The density functionals include pure functionals (BP86, BPW91, BLYP, HCTH93, PBEPBE), hybrid functionals with Hartree-Fock exchange (B3LYP, B3P86, B3PW91, PBE1PBE, mPW1K, BH&HLYP), hybrid meta functionals with the kinetic energy density gradient (M05, M06, M05-2X, M06-2X), a double hybrid functional with Møller-Plesset correlation (B2GP-PLYP), and a dispersion corrected functional (B97-D). The experimental frequencies for calibration were from 41 organic molecules and the ZPVEs for comparison were from 24 small molecules (diatomics, triatomics). For this family of basis sets, the scale factors for each property are more dependent on the functional selection than on basis set level, and thus allow for a suggested scale factor for each density functional when employing polarization consistent basis sets (pc-n, n = 1,2,3,4). A separate scale factor is recommended when the un-polarized basis set, pc-0, is used in combination with the density functionals.
Coded Network Function Virtualization: Fault Tolerance via In-Network Coding
DEFF Research Database (Denmark)
Al-Shuwaili, A.; Simone, O.; Kliewer, J.
2016-01-01
Network function virtualization (NFV) prescribes the instantiation of network functions on general-purpose network devices, such as servers and switches. While yielding a more flexible and cost-effective network architecture, NFV is potentially limited by the fact that commercial off-the-shelf ha......Network function virtualization (NFV) prescribes the instantiation of network functions on general-purpose network devices, such as servers and switches. While yielding a more flexible and cost-effective network architecture, NFV is potentially limited by the fact that commercial off...
Institute of Scientific and Technical Information of China (English)
周洪煜; 张振华; 张军; 张伟; 赵乾
2011-01-01
喷氨量大小不仅影响超临界锅炉选择性催化还原(selective catalytic reduction,SCR)烟气脱硝装置的效率,过量喷氨也会导致下游空预器受热面的积灰、腐蚀和造成资源浪费、二次污染,且在变负荷时,传统PID控制方式很难实现最佳控制.通过引入混结构隐含层,改善传统RBF神经网络变工况控制时的非线性和扰动适应能力,设计了基于混结构RBF神经网络(MS-RBFNN)的喷氨流量最优控制系统,用MS-RBFNN综合学习当前主要相关状态参数,以SCR脱硝装置出口NQx排放量最小作为学习训练信号,实时并行计算出最优喷氨控制流量.实验结果表明,此优化方案相对传统PID控制,具有更好的NOx排放控制效果和变工况适应能力,同时节约了喷氨量.%Spraying ammonia flow can influence the efficiency of supercritical boiler's flue gas denitrification device based on selective catalytic reduction (SCR).Excessive spraying flow can also result in ash deposit and corruption of backward heating units such as air heater, simultaneously, it causes resource waste and second pollution.Moreover, optimal traditional PID control with variational load on the flow is difficult.And in order to improve traditional radial basis function (RBF) neural network (RBFNN)'s adaptivities of nonlinearity and disturbance during variational working condition, so, a new control scheme based on mixed structure RBFNN (MS-RBFNN) was proposed.This MS-RBFNN can synthetically study current main relative state parameters, so as to parallel calculate the optimal spraying ammonia flow by using least NOx discharge of SCR device as its training signal.Experimental results indicate, comparing with traditional PID control, this scheme's advantages on better NOx control effect and adaptability of variable working condition as well as little ammonia usage.
Time-dependent density functional theory quantum transport simulation in non-orthogonal basis.
Kwok, Yan Ho; Xie, Hang; Yam, Chi Yung; Zheng, Xiao; Chen, Guan Hua
2013-12-14
Basing on the earlier works on the hierarchical equations of motion for quantum transport, we present in this paper a first principles scheme for time-dependent quantum transport by combining time-dependent density functional theory (TDDFT) and Keldysh's non-equilibrium Green's function formalism. This scheme is beyond the wide band limit approximation and is directly applicable to the case of non-orthogonal basis without the need of basis transformation. The overlap between the basis in the lead and the device region is treated properly by including it in the self-energy and it can be shown that this approach is equivalent to a lead-device orthogonalization. This scheme has been implemented at both TDDFT and density functional tight-binding level. Simulation results are presented to demonstrate our method and comparison with wide band limit approximation is made. Finally, the sparsity of the matrices and computational complexity of this method are analyzed.
On Functional Module Detection in Metabolic Networks
Directory of Open Access Journals (Sweden)
Ina Koch
2013-08-01
Full Text Available Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models.
Symmetric multivariate polynomials as a basis for three-boson light-front wave functions.
Chabysheva, Sophia S; Elliott, Blair; Hiller, John R
2013-12-01
We develop a polynomial basis to be used in numerical calculations of light-front Fock-space wave functions. Such wave functions typically depend on longitudinal momentum fractions that sum to unity. For three particles, this constraint limits the two remaining independent momentum fractions to a triangle, for which the three momentum fractions act as barycentric coordinates. For three identical bosons, the wave function must be symmetric with respect to all three momentum fractions. Therefore, as a basis, we construct polynomials in two variables on a triangle that are symmetric with respect to the interchange of any two barycentric coordinates. We find that, through the fifth order, the polynomial is unique at each order, and, in general, these polynomials can be constructed from products of powers of the second- and third-order polynomials. The use of such a basis is illustrated in a calculation of a light-front wave function in two-dimensional ϕ(4) theory; the polynomial basis performs much better than the plane-wave basis used in discrete light-cone quantization.
Institute of Scientific and Technical Information of China (English)
叶林; 陈政; 赵永宁; 朱倩雯
2015-01-01
To deal with the problem of fluctuating photovoltaic power,a photovoltaic power forecasting model based on genetic algorithm (GA) and fuzzy radial basis function (RBF) neural network is proposed and the output power is applied to the battery energy storage system to mitigate the electric shock on the power system.A historical day of identical weather type,a close date and minimum temperature Euclidean distance is chosen as the similar day.The solar radiation intensity and temperature closely correlated with photovoltaic (PV) power are chosen as input variables of the model,a GA and fuzzy RBF neural network is built as the final prediction model based on the parameter optimization method of K-means clustering and genetic algorithm.Furthermore,a smooth control strategy considering PV power forecasting is used to control the grid-connected PV power,so as to smooth the PV power fluctuation.The experimental results show that the proposed forecasting model has high accuracy and the smooth control strategy for power fluctuation based on photovoltaic power forecasting is effective.%针对光伏发电系统出力波动问题，提出遗传算法(GA)—模糊径向基(RBF)神经网络的光伏发电功率预测模型，将功率预测值应用于光伏发电的蓄电池储能功率调节系统，以降低对电网的冲击。选择与待预测日天气类型相同、日期相近、温度欧氏距离最小的历史日作为相似日，把与光伏发电功率相关性大的太阳辐射强度和温度作为模型输入变量，提出 K 均值聚类和遗传算法的参数优化方法，建立基于 GA—模糊 RBF 神经网络的最终预测模型。在光伏功率预测的基础上，提出一种平滑控制策略，对光伏并网功率进行有效调节，从而达到平滑光伏功率波动的目的。实例证明，所述预测模型具有较高精度，并验证了平滑功率波动控制策略的有效性。
Yeh, Wei-Chang
2016-08-18
Network reliability is an important index to the provision of useful information for decision support in the modern world. There is always a need to calculate symbolic network reliability functions (SNRFs) due to dynamic and rapid changes in network parameters. In this brief, the proposed squeezed artificial neural network (SqANN) approach uses the Monte Carlo simulation to estimate the corresponding reliability of a given designed matrix from the Box-Behnken design, and then the Taguchi method is implemented to find the appropriate number of neurons and activation functions of the hidden layer and the output layer in ANN to evaluate SNRFs. According to the experimental results of the benchmark networks, the comparison appears to support the superiority of the proposed SqANN method over the traditional ANN-based approach with at least 16.6% improvement in the median absolute deviation in the cost of extra 2 s on average for all experiments.
Advanced Functionalities for Highly Reliable Optical Networks
DEFF Research Database (Denmark)
An, Yi
This thesis covers two research topics concerning optical solutions for networks e.g. avionic systems. One is to identify the applications for silicon photonic devices for cost-effective solutions in short-range optical networks. The other one is to realise advanced functionalities in order to in......) using two exclusive OR (XOR) gates realised by four-wave mixing (FWM) in semiconductor optical amplifiers (SOAs) is experimentally demonstrated and very low (~ 1 dB) total operation penalty is achieved....... to increase the availability of highly reliable optical networks. A cost-effective transmitter based on a directly modulated laser (DML) using a silicon micro-ring resonator (MRR) to enhance its modulation speed is proposed, analysed and experimentally demonstrated. A modulation speed enhancement from 10 Gbit...... interconnects and network-on-chips. A novel concept of all-optical protection switching scheme is proposed, where fault detection and protection trigger are all implemented in the optical domain. This scheme can provide ultra-fast establishment of the protection path resulting in a minimum loss of data...
Denis, Pablo A
2005-09-01
We have investigated the SX (X = first- or second-row atom), SO2, and SO3 molecules employing the correlation-consistent (cc), the recently developed polarization-consistent (pc), and three Pople-type basis sets, in conjunction with the B3LYP functional. The results confirmed that the aug-pc basis sets represent a great contribution in terms of cost-benefits. In the case of the B3LYP functional, when employing the aug-pc-3 and aug-pc-4 basis sets, it is possible to obtain results that are of aug-cc-pV(5+d)Z and aug-cc-pV(6+d)Z quality, respectively, at a much lower cost. The estimations obtained employing smaller members of the family are of nearly double-ζ quality and do not provide reliable results. There is no basis set of quadruple-ζ quality among the polarized-consistent basis sets, although in terms of composition, the aug-pc-3 basis set is a QZ basis set. A precise estimation of the Kohn-Sham complete basis set (CBS) limit with the aug-pc-X basis sets is too difficult for the B3LYP functional because the ∞(aug-pc-4, aug-pc-3, aug-pc-2) extrapolation gives the same results as those of the aug-pc-4 basis set. This is in contrast with the results observed for ab initio methodologies for which the largest basis sets provided the best estimation of the CBS limit. In our opinion, the closest results to the B3LYP/CBS limit are expected to be those obtained with a two-point extrapolation employing the aug-cc-pV(X+d)Z (X = 5, 6) basis sets. The results obtained with this extrapolation are very close to those predicted by the ∞(aug-pc-3, aug-pc-2, aug-pc-1) extrapolation, and that provides a cheaper but more inaccurate alternative to estimate the CBS limit. Minor problems were found for the aug-pc-X basis sets and the B3LYP functional for molecules in which sulfur is bound to a very electronegative element, such as SO, SF, SO2, and SO3. For these molecules, the cc basis sets were demonstrated to be more useful. The importance of tight d functions was observed
Institute of Scientific and Technical Information of China (English)
LI An-yong
2004-01-01
A new method based on angular momentum theory was proposed to construct the basis functions of the irreducible representations(IRs) of point groups. The transformation coefficients, i. e. , coefficients S, are the components of the eigenvectors of some Hermitian matrices, and can be made as real numbers for all pure rotation point groups. The general formula for coefficient S was deduced, and applied to constructing the basis functions of single-valued irreducible representations of icosahedral group from the spherical harmonics with angular momentum j≤7.
Complex network perspective on structure and function of Staphylococcus aureus metabolic network
Indian Academy of Sciences (India)
L Ying; D W Ding
2013-02-01
With remarkable advances in reconstruction of genome-scale metabolic networks, uncovering complex network structure and function from these networks is becoming one of the most important topics in system biology. This work aims at studying the structure and function of Staphylococcus aureus (S. aureus) metabolic network by complex network methods. We first generated a metabolite graph from the recently reconstructed high-quality S. aureus metabolic network model. Then, based on `bow tie' structure character, we explain and discuss the global structure of S. aureus metabolic network. The functional significance, global structural properties, modularity and centrality analysis of giant strong component in S. aureus metabolic networks are studied.
Vestibular and Attractor Network Basis of the Head Direction Cell Signal in Subcortical Circuits
Directory of Open Access Journals (Sweden)
Benjamin J Clark
2012-03-01
Full Text Available Accurate navigation depends on a network of neural systems that encode the moment-to-moment changes in an animal’s directional orientation and location in space. Within this navigation system are head direction (HD cells, which fire persistently when an animal’s head is pointed in a particular direction (Sharp et al., 2001a; Taube, 2007. HD cells are widely thought to underlie an animal’s sense of spatial orientation, and research over the last 25+ years has revealed that this robust spatial signal is widely distributed across subcortical and cortical limbic areas. Much of this work has been directed at understanding the functional organization of the HD cell circuitry, and precisely how this signal is generated from sensory and motor systems. The purpose of the present review is to summarize some of the recent studies arguing that the HD cell circuit is largely processed in a hierarchical fashion, following a pathway involving the dorsal tegmental nuclei → lateral mammillary nuclei → anterior thalamus → parahippocampal and retrosplenial cortical regions. We also review recent work identifying bursting cellular activity in the HD cell circuit after lesions of the vestibular system, and relate these observations to the long held view that attractor network mechanisms underlie HD signal generation. Finally, we summarize the work to date suggesting that this network architecture may reside within the tegmento-mammillary circuit.
Wang, Pengwei; Wang, Zhishun; He, Lianghua
2012-03-30
Functional Magnetic Resonance Imaging (fMRI), measuring Blood Oxygen Level-Dependent (BOLD), is a widely used tool to reveal spatiotemporal pattern of neural activity in human brain. Standard analysis of fMRI data relies on a general linear model and the model is constructed by convolving the task stimuli with a hypothesized hemodynamic response function (HRF). To capture possible phase shifts in the observed BOLD response, the informed basis functions including canonical HRF and its temporal derivative, have been proposed to extend the hypothesized hemodynamic response in order to obtain a good fitting model. Different t contrasts are constructed from the estimated model parameters for detecting the neural activity between different task conditions. However, the estimated model parameters corresponding to the orthogonal basis functions have different physical meanings. It remains unclear how to combine the neural features detected by the two basis functions and construct t contrasts for further analyses. In this paper, we have proposed a novel method for representing multiple basis functions in complex domain to model the task-driven fMRI data. Using this method, we can treat each pair of model parameters, corresponding respectively to canonical HRF and its temporal derivative, as one complex number for each task condition. Using the specific rule we have defined, we can conveniently perform arithmetical operations on the estimated model parameters and generate different t contrasts. We validate this method using the fMRI data acquired from twenty-two healthy participants who underwent an auditory stimulation task.
Graph theoretical analysis of resting magnetoencephalographic functional connectivity networks
Directory of Open Access Journals (Sweden)
Lindsay eRutter
2013-07-01
Full Text Available Complex networks have been observed to comprise small-world properties, believed to represent an optimal organization of local specialization and global integration of information processing at reduced wiring cost. Here, we applied magnitude squared coherence to resting magnetoencephalographic time series in reconstructed source space, acquired from controls and patients with schizophrenia, and generated frequency-dependent adjacency matrices modeling functional connectivity between virtual channels. After configuring undirected binary and weighted graphs, we found that all human networks demonstrated highly localized clustering and short characteristic path lengths. The most conservatively thresholded networks showed efficient wiring, with topographical distance between connected vertices amounting to one-third as observed in surrogate randomized topologies. Nodal degrees of the human networks conformed to a heavy-tailed exponentially truncated power-law, compatible with the existence of hubs, which included theta and alpha bilateral cerebellar tonsil, beta and gamma bilateral posterior cingulate, and bilateral thalamus across all frequencies. We conclude that all networks showed small-worldness, minimal physical connection distance, and skewed degree distributions characteristic of physically-embedded networks, and that these calculations derived from graph theoretical mathematics did not quantifiably distinguish between subject populations, independent of bandwidth. However, post-hoc measurements of edge computations at the scale of the individual vertex revealed trends of reduced gamma connectivity across the posterior medial parietal cortex in patients, an observation consistent with our prior resting activation study that found significant reduction of synthetic aperture magnetometry gamma power across similar regions. The basis of these small differences remains unclear.
Barca, Giuseppe M J; Gill, Peter M W
2016-01-01
Explicitly-correlated F12 methods are becoming the first choice for high-accuracy molecular orbital calculations, and can often achieve chemical accuracy with relatively small gaussian basis sets. In most calculations, the many three- and four-electron integrals that formally appear in the theory are avoided through judicious use of resolutions of the identity (RI). However, in order not to jeopardize the intrinsic accuracy of the F12 wave function, the associated RI auxiliary basis set must be large. Here, inspired by the Head-Gordon-Pople (HGP) and PRISM algorithms for two-electron integrals, we present an algorithm to compute directly three-electron integrals over gaussian basis functions and a very general class of three-electron operators, without invoking RI approximations. A general methodology to derive vertical, transfer and horizontal recurrence relations is also presented.
Institute of Scientific and Technical Information of China (English)
ZHENG Guangguo; ZHOU Dongsheng; WEI Xiaopeng; ZHANG Qiang
2012-01-01
Compactly supported radial basis function can enable the coefficient matrix of solving weigh linear system to have a sparse banded structure, thereby reducing the complexity of the algorithm. Firstly, based on the compactly supported radial basis function, the paper makes the complex quadratic function （Multiquadric, MQ for short） to be transformed and proposes a class of compactly supported MQ function. Secondly, the paper describes a method that interpolates discrete motion capture data to solve the motion vectors of the interpolation points and they are used in facial expression reconstruction. Finally, according to this characteris- tic of the uneven distribution of the face markers, the markers are numbered and grouped in accordance with the density level, and then be interpolated in line with each group. The approach not only ensures the accuracy of the deformation of face local area and smoothness, but also reduces the time complexity of computing.
High Performance 3D PET Reconstruction Using Spherical Basis Functions on a Polar Grid
Directory of Open Access Journals (Sweden)
J. Cabello
2012-01-01
Full Text Available Statistical iterative methods are a widely used method of image reconstruction in emission tomography. Traditionally, the image space is modelled as a combination of cubic voxels as a matter of simplicity. After reconstruction, images are routinely filtered to reduce statistical noise at the cost of spatial resolution degradation. An alternative to produce lower noise during reconstruction is to model the image space with spherical basis functions. These basis functions overlap in space producing a significantly large number of non-zero elements in the system response matrix (SRM to store, which additionally leads to long reconstruction times. These two problems are partly overcome by exploiting spherical symmetries, although computation time is still slower compared to non-overlapping basis functions. In this work, we have implemented the reconstruction algorithm using Graphical Processing Unit (GPU technology for speed and a precomputed Monte-Carlo-calculated SRM for accuracy. The reconstruction time achieved using spherical basis functions on a GPU was 4.3 times faster than the Central Processing Unit (CPU and 2.5 times faster than a CPU-multi-core parallel implementation using eight cores. Overwriting hazards are minimized by combining a random line of response ordering and constrained atomic writing. Small differences in image quality were observed between implementations.
Sparse Linear Parametric Modeling of Room Acoustics with Orthonormal Basis Functions
DEFF Research Database (Denmark)
Vairetti, G.; von Waterschoot, T.; Moonen, M.;
2014-01-01
Orthonormal Basis Function (OBF) models provide a stable and well-conditioned representation of a linear system. When used for the modeling of room acoustics, useful information about the true dynamics of the system can be introduced by a proper selection of a set of poles, which however appear non...
A data-driven approach to local gravity field modelling using spherical radial basis functions
Klees, R.; Tenzer, R.; Prutkin, I.; Wittwer, T.
2008-01-01
We propose a methodology for local gravity field modelling from gravity data using spherical radial basis functions. The methodology comprises two steps: in step 1, gravity data (gravity anomalies and/or gravity disturbances) are used to estimate the disturbing potential using least-squares techniqu
Wavelet Domain Image Reconstruction by Compactly-Supported Radial Basis Functions
Diago, Luis A.; Kitago, Masaki; Hagiwara, Ichiro
In this paper we propose the use of wavelets to accelerate the solution of the System of Linear Algebraic Equations that arise from the formulation of the problem of image interpolation from scattered data by means of Compactly-Supported Radial Basis Functions. Examples demonstrate the superiority of the solution in the wavelet domain using preconditioned iterative Krylov methods.
Ground state of medium-heavy doubly-closed shell nuclei in correlated basis function theory
Bisconti, C; Có, G; Fabrocini, A
2006-01-01
The correlated basis function theory is applied to the study of medium-heavy doubly closed shell nuclei with different wave functions for protons and neutrons and in the jj coupling scheme. State dependent correlations including tensor correlations are used. Realistic two-body interactions of Argonne and Urbana type, together with three-body interactions have been used to calculate ground state energies and density distributions of the 12C, 16O, 40Ca, 48Ca and 208Pb nuclei.
Rapid iterative method for electronic-structure eigenproblems using localised basis functions
Rayson, M. J.; Briddon, P. R.
2008-01-01
Eigenproblems resulting from the use of localised basis functions (typically Gaussian or Slater type orbitals) in density functional electronic-structure calculations are often solved using direct linear algebra. A full implementation is presented built around an iterative method known as 'residual minimisation—direct inversion of the iterative subspace' (RM-DIIS) to be used to solve many similar eigenproblems in a self-consistency cycle. The method is more efficient than direct methods and exhibits superior scaling on parallel supercomputers.
MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions
Novosad, Philip; Reader, Andrew J.
2016-06-01
Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral
MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions.
Novosad, Philip; Reader, Andrew J
2016-06-21
Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [(18)F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral
RCS Computation by Parallel MoM Using Higher-Order Basis Functions
Directory of Open Access Journals (Sweden)
Ying Yan
2012-01-01
Full Text Available A Message-Passing Interface (MPI parallel implementation of an integral equation solver that uses the Method of Moments (MoM with higher-order basis functions has been proposed to compute the Radar Cross-Section (RCS of various targets. The block-partitioned scheme for the large dense MoM matrix is designed to achieve excellent load balance and high parallel efficiency. Some numerical results demonstrate that higher-order basis in this parallelized scheme is more efficient than the conventional RWG method and able to efficiently analyze RCS of various electrically large platforms.
Network physiology reveals relations between network topology and physiological function
Bashan, Amir; Bartsch, Ronny P.; Kantelhardt, Jan W.; Havlin, Shlomo; Ivanov, Plamen Ch.
2012-01-01
The human organism is an integrated network where complex physiological systems, each with its own regulatory mechanisms, continuously interact, and where failure of one system can trigger a breakdown of the entire network. Identifying and quantifying dynamical networks of diverse systems with different types of interactions is a challenge. Here we develop a framework to probe interactions among diverse systems, and we identify a physiological network. We find that each physiological state is...
Hoyer, Chad E; Gagliardi, Laura; Truhlar, Donald G
2015-11-05
Time-dependent Kohn-Sham density functional theory (TD-KS-DFT) is useful for calculating electronic excitation spectra of large systems, but the low-energy spectra are often complicated by artificially lowered higher-energy states. This affects even the lowest energy excited states. Here, by calculating the lowest energy spin-conserving excited state for atoms from H to K and for formaldehyde, we show that this problem does not occur in multiconfiguration pair-density functional theory (MC-PDFT). We use the tPBE on-top density functional, which is a translation of the PBE exchange-correlation functional. We compare to a robust multireference method, namely, complete active space second-order perturbation theory (CASPT2), and to TD-KS-DFT with two popular exchange-correlation functionals, PBE and PBE0. We find for atoms that the mean unsigned error (MUE) of MC-PDFT with the tPBE functional improves from 0.42 to 0.40 eV with a double set of diffuse functions, whereas the MUEs for PBE and PBE0 drastically increase from 0.74 to 2.49 eV and from 0.45 to 1.47 eV, respectively.
Manifold learning on brain functional networks in aging.
Qiu, Anqi; Lee, Annie; Tan, Mingzhen; Chung, Moo K
2015-02-01
We propose a new analysis framework to utilize the full information of brain functional networks for computing the mean of a set of brain functional networks and embedding brain functional networks into a low-dimensional space in which traditional regression and classification analyses can be easily employed. For this, we first represent the brain functional network by a symmetric positive matrix computed using sparse inverse covariance estimation. We then impose a Log-Euclidean Riemannian manifold structure on brain functional networks whose norm gives a convenient and practical way to define a mean. Finally, based on the fact that the computation of linear operations can be done in the tangent space of this Riemannian manifold, we adopt Locally Linear Embedding (LLE) to the Log-Euclidean Riemannian manifold space in order to embed the brain functional networks into a low-dimensional space. We show that the integration of the Log-Euclidean manifold with LLE provides more efficient and succinct representation of the functional network and facilitates regression analysis, such as ridge regression, on the brain functional network to more accurately predict age when compared to that of the Euclidean space of functional networks with LLE. Interestingly, using the Log-Euclidean analysis framework, we demonstrate the integration and segregation of cortical-subcortical networks as well as among the salience, executive, and emotional networks across lifespan.
DevOps for network function virtualisation: an architectural approach
Karl, H.; Draexler, S.; Peuster, M; Galis, A.; Bredel, M.; RAMOS, A.; Martrat, J.; Siddiqui, M S; Van Rossem, S.; Tavernier, W; Xilouris, G.
2016-01-01
The Service Programming and Orchestration for Virtualised Software Networks (SONATA) project targets both the flexible programmability of software networks and the optimisation of their deployments by means of integrating Development and Operations in order to accelerate industry adoption of software networks and reduce time-to-market for networked services. SONATA supports network function chaining and orchestration, making service platforms modular and easier to customise to the needs of di...
A Modified Beam Propagation Method Based on the Galerkin Method with Hermite-Gauss Basis Functions
Institute of Scientific and Technical Information of China (English)
Xiao Jinbiao; Liu Xu; Cai Chun; Fan Hehong; Sun Xiaohan
2006-01-01
A beam propagation method based on the Galerkin method with Hermite-Gauss basis functions for studying optical field propagation in weakly guiding dielectric structures is described. The selected basis functions naturally satisfy the required boundary conditions at infinity so that the boundary truncation is avoided. The paraxial propagation equation is converted into a set of first-order ordinary differential equations,which are solved by means of standard numerical library routines. Besides, the calculation is efficient due to its small resulted matrix. The evolution of the injected field and its normalized power along the propagation distance in an asymmetric slab waveguide and directional coupler are presented, and the solutions are good agreement with those obtained by finite difference BPM, which tests the validity of the present approach.
Improving the Network Structure can lead to Functional Failures
Pade, Jan Philipp
2014-01-01
In many real-world networks the ability to synchronize is a key property for its performance. Examples include power-grid, sensor, and neuron networks as well as consensus formation. Recent work on undirected networks with diffusive interaction revealed that improvements in the network connectivity such as making the network more connected and homogeneous enhances synchronization. However, real-world networks have directed and weighted connections. In such directed networks, understanding the impact of structural changes on the network performance remains a major challenge. Here, we show that improving the structure of a directed network can lead to a failure in the network function. For instance, introducing new links to reduce the minimum distance between nodes can lead to instabilities in the synchronized motion. This counter-intuitive effect only occurs in directed networks. Our results allow to identify the dynamical importance of a link and thereby have a major impact on the design and control of direct...
Constructive feedforward neural networks using hermite polynomial activation functions.
Ma, Liying; Khorasani, K
2005-07-01
In this paper, a constructive one-hidden-layer network is introduced where each hidden unit employs a polynomial function for its activation function that is different from other units. Specifically, both a structure level as well as a function level adaptation methodologies are utilized in constructing the network. The functional level adaptation scheme ensures that the "growing" or constructive network has different activation functions for each neuron such that the network may be able to capture the underlying input-output map more effectively. The activation functions considered consist of orthonormal Hermite polynomials. It is shown through extensive simulations that the proposed network yields improved performance when compared to networks having identical sigmoidal activation functions.
Fukushima, Kimichika
2015-01-01
This paper presents analytical eigenenergies for a pair of confined fundamental fermion and antifermion under a linear potential derived from the Wilson loop for the non-Abelian Yang-Mills field. We use basis functions localized in spacetime, and the Hamiltonian matrix of the Dirac equation is analytically diagonalized. The squared system eigenenergies are proportional to the string tension and the absolute value of the Dirac's relativistic quantum number related to the total angular momentum, consistent with the expectation.
Error analysis of the Bergman kernel method with singular basis functions
Lytrides, M
2011-01-01
Let G be a bounded Jordan domain in the complex plane with piecewise analytic boundary. We present theoretical estimates and numerical evidence for certain phenomena, regarding the application of the Bergman kernel method with algebraic and pole singular basis functions, for approximating the conformal mapping of G onto the normalized disk. In this way, we complete the task of providing full theoretical justification of this method.
Roohani Ghehsareh, Hadi; Kamal Etesami, Seyed; Hajisadeghi Esfahani, Maryam
2016-08-01
In the current work, the electromagnetic (EM) scattering from infinite perfectly conducting cylinders with arbitrary cross sections in both transverse magnetic (TM) and transverse electric (TE) modes is numerically investigated. The problems of TE and TM EM scattering can be mathematically modelled via the magnetic field integral equation (MFIE) and the electric field integral equation (EFIE), respectively. An efficient technique is performed to approximate the solution of these surface integral equations. In the proposed numerical method, compactly supported radial basis functions (RBFs) are employed as the basis functions. The radial and compactly supported properties of these basis functions substantially reduce the computational cost and improve the efficiency of the method. To show the accuracy of the proposed technique, it has been applied to solve three interesting test problems. Moreover, the method is well used to compute the electric current density and also the radar cross section (RCS) for some practical scatterers with different cross section geometries. The reported numerical results through the tables and figures demonstrate the efficiency and accuracy of the proposed technique.
Hellmann-Feynman forces within the DFT + U in Wannier functions basis.
Novoselov, D; Korotin, Dm M; Anisimov, V I
2015-08-19
The most general way to describe localized atomic-like electronic states in strongly correlated compounds is to use Wannier functions. In the present paper we continue development of widely-used DFT + U method with the Wannier function basis set and propose a technique to calculate Hubbard contribution to atomic forces. The technique was implemented as a part of plane-waves pseudopotential code Quantum-ESPRESSO and tested on two compounds: charge transfer insulator NiO with cubic crystal structure and correlated metal SrVO3 with perovskite structure.
The molecular basis of convergence in hemoglobin function in high-altitude Andean birds
DEFF Research Database (Denmark)
Storz, Jay; Natarajan, Chandrasekhar; Witt, Christopher C.
2016-01-01
was correct that adaptive modifications of Hb function are typically attributable to a small number of substitutions at key positions, then the clear prediction is that the same mutations will be preferentially fixed in different species that have independently evolved Hbs with similar functional properties....... For example, in high-altitude ertebrates that have convergently evolved elevated Hb-O2 affinities, Perutz’s hypothesis predicts that parallel amino acid substitutions should be pervasive. We investigated the predictability of genetic adaptation by examining the molecular basis of convergence in hemoglobin (Hb...
Heidari, Mohammad; Heidari, Ali; Homaei, Hadi
2014-01-01
The static pull-in instability of beam-type microelectromechanical systems (MEMS) is theoretically investigated. Two engineering cases including cantilever and double cantilever microbeam are considered. Considering the midplane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps, and size effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear differential governing equations to obtain the static pull-in instability voltage of microbeams. Radial basis function artificial neural network with two functions has been used for modeling the static pull-in instability of microcantilever beam. The network has four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data, employed for training the network, and capabilities of the model have been verified in predicting the pull-in instability behavior. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. The results reveal significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS.
Application of Radial Basis Network Model for HIV/AIDs Regimen Specifications
Balasubramanie, P
2009-01-01
HIV/AIDs Regimen specification one of many problems for which bioinformaticians have implemented and trained machine learning methods such as neural networks. Predicting HIV resistance would be much easier, but unfortunately we rarely have enough structural information available to train a neural network. To network model designed to predict how long the HIV patient can prolong his/her life time with certain regimen specification. To learn this model 300 patient's details have taken as a training set to train the network and 100 patients medical history has taken to test this model. This network model is trained using MAT lab implementation.
Institute of Scientific and Technical Information of China (English)
尤文坚; 梁兵; 李荫军
2013-01-01
In view of problem that eddy-current sensor cannot reflect measured physical quantity accurately caused by higher nonlinear of output characteristic parameter, the paper proposed a scheme of using RBF neural network to fit output characteristic parameter of eddy-current sensor. The scheme uses newrb function to create RBF neural network, and takes measured physical quantity as input matrix and output of eddy-current sensor as output matrix to train the RBF neural network, so as to obtain low root-mean-square error and smooth output characteristic fitting curve of eddy-current sensor. The simulation result showed that RBF neural network can effectively realize fitting of output characteristic of eddy-current sensor by selecting proper creating function and expanding coefficient.%针对电涡流传感器的输出特性参数非线性较大,不能精确地反映被测物理量的问题,提出了一种采用径向基神经网络对电涡流传感器的输出特性参数进行拟合的方案.该方案采用newrb函数创建一个径向基神经网络,以被测物理量作为输入矩阵、电涡流传感器输出电压作为输出矩阵,对该径向基神经网络进行训练,从而可得到均方根误差小且光滑的电涡流传感器输出特性拟合曲线.实验结果表明,只要选择合适的创建函数和扩展系数,径向基神经网络能有效地实现电涡流传感器输出特性的拟合.
Functional alignment of regulatory networks: a study of temperate phages.
Directory of Open Access Journals (Sweden)
Ala Trusina
2005-12-01
Full Text Available The relationship between the design and functionality of molecular networks is now a key issue in biology. Comparison of regulatory networks performing similar tasks can provide insights into how network architecture is constrained by the functions it directs. Here, we discuss methods of network comparison based on network architecture and signaling logic. Introducing local and global signaling scores for the difference between two networks, we quantify similarities between evolutionarily closely and distantly related bacteriophages. Despite the large evolutionary separation between phage lambda and 186, their networks are found to be similar when difference is measured in terms of global signaling. We finally discuss how network alignment can be used to pinpoint protein similarities viewed from the network perspective.
Bjornsson, Ragnar; Bühl, Michael
2010-06-14
Electric field gradients (EFGs) were computed for the first-row transition metal nuclei in Cr(C(6)H(6))(CO)(3), MnO(3)F, Mn(CO)(5)H, MnCp(CO)(3), Co(CO)(4)H, Co(CO)(3)(NO) and VCp(CO)(4), for which experimental gas-phase data (in form of nuclear quadrupole coupling constants) are available from microwave spectroscopy. A variety of exchange-correlation functionals were assessed, among which range-separated hybrids (such as CAM-B3LYP or LC-omegaPBE) perform best, followed by global hybrids (such as B3LYP and PBE0) and gradient-corrected functionals (such as BP86). While large basis sets are required on the metal atom for converged EFGs, smaller basis sets can be employed on the ligands. In most cases, EFGs show little sensitivity toward the geometrical parameters.
Basis of symmetric polynomials for many-boson light-front wave functions.
Chabysheva, Sophia S; Hiller, John R
2014-12-01
We provide an algorithm for the construction of orthonormal multivariate polynomials that are symmetric with respect to the interchange of any two coordinates on the unit hypercube and are constrained to the hyperplane where the sum of the coordinates is one. These polynomials form a basis for the expansion of bosonic light-front momentum-space wave functions, as functions of longitudinal momentum, where momentum conservation guarantees that the fractions are on the interval [0,1] and sum to one. This generalizes earlier work on three-boson wave functions to wave functions for arbitrarily many identical bosons. A simple application in two-dimensional ϕ(4) theory illustrates the use of these polynomials.
Using neural networks to predict the functionality of reconfigurable nano-material networks
Greff, Klaus; Damme, van Ruud; Koutnik, Jan; Broersma, Hajo; Mikhal, Julia; Lawrence, Celestine; Wiel, van der Wilfred; Schmidhuber, Jürgen
2017-01-01
This paper demonstrates how neural networks can be applied to model and predict the functional behaviour of disordered nano-particle and nano-tube networks. In recently published experimental work, nano-particle and nano-tube networks show promising functionality for future reconfigurable devices, w
Nonequilibrium functional bosonization of quantum wire networks
Energy Technology Data Exchange (ETDEWEB)
Ngo Dinh, Stephane, E-mail: stephane.ngodinh@kit.edu [Institut fuer Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); DFG Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Bagrets, Dmitry A. [Institut fuer Theoretische Physik, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany); Mirlin, Alexander D. [Institut fuer Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Institut fuer Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); DFG Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Petersburg Nuclear Physics Institute, 188300 St. Petersburg (Russian Federation)
2012-11-15
We develop a general approach to nonequilibrium nanostructures formed by one-dimensional channels coupled by tunnel junctions and/or by impurity scattering. The formalism is based on nonequilibrium version of functional bosonization. A central role in this approach is played by the Keldysh action that has a form reminiscent of the theory of full counting statistics. To proceed with evaluation of physical observables, we assume the weak-tunneling regime and develop a real-time instanton method. A detailed exposition of the formalism is supplemented by two important applications: (i) tunneling into a biased Luttinger liquid with an impurity, and (ii) quantum Hall Fabry-Perot interferometry. - Highlights: Black-Right-Pointing-Pointer A nonequilibrium functional bosonization framework for quantum wire networks is developed Black-Right-Pointing-Pointer For the study of observables in the weak tunneling regime a real-time instanton method is elaborated. Black-Right-Pointing-Pointer We consider tunneling into a biased Luttinger liquid with an impurity. Black-Right-Pointing-Pointer We analyze electronic Fabry-Perot interferometers in the integer quantum Hall regime.
Analysis of Neural Networks through Base Functions
Zwaag, van der B.J.; Slump, C.H.; Spaanenburg, L.
2002-01-01
Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more
Alexandridis, Nikolaos; Bacher, Cédric; Desroy, Nicolas; Jean, Fred
2017-03-01
The accurate reproduction of the spatial and temporal dynamics of marine benthic biodiversity requires the development of mechanistic models, based on the processes that shape macroinvertebrate communities. The modelled entities should, accordingly, be able to adequately represent the many functional roles that are performed by benthic organisms. With this goal in mind, we applied the emergent group hypothesis (EGH), which assumes functional equivalence within and functional divergence between groups of species. The first step of the grouping involved the selection of 14 biological traits that describe the role of benthic macroinvertebrates in 7 important community assembly mechanisms. A matrix of trait values for the 240 species that occurred in the Rance estuary (Brittany, France) in 1995 formed the basis for a hierarchical classification that generated 20 functional groups, each with its own trait values. The functional groups were first evaluated based on their ability to represent observed patterns of biodiversity. The two main assumptions of the EGH were then tested, by assessing the preservation of niche attributes among the groups and the neutrality of functional differences within them. The generally positive results give us confidence in the ability of the grouping to recreate functional diversity in the Rance estuary. A first look at the emergent groups provides insights into the potential role of community assembly mechanisms in shaping biodiversity patterns. Our next steps include the derivation of general rules of interaction and their incorporation, along with the functional groups, into mechanistic models of benthic biodiversity.
Regional Gravity Field Modeling with Abel-Poisson Radial Basis Functions
Directory of Open Access Journals (Sweden)
MA Zhiwei
2016-09-01
Full Text Available With the increasing number of various types of high-resolution gravity observations, earth gravity models can be regionally refined. We use Abel-Poisson kernel to represent the gravity as the linear summation of finite radial basis functions and combine the multiple gravity data to build a regional gravity model with high resolution. The minimum root mean square criterion based on the data adaptive algorithm is proposed to calculate the base function, which promote the speed of computation significantly. Taking the central South China Sea as an example, two different types of gravity data, namely geoid undulations with resolution of 6'×6' and gravity anomaly with resolution of 2'×2', are used to construct the high-resolution regional gravity model. The model has a resolution of 2'×2', and has a great agreement with original gravity anomaly, reaching to ±0.8×10-5m/s2.Our results show that using radial basis functions to construct the regional gravity field can avoid the problem of slow convergence of spherical harmonic functions, and can improve the resolution remarkably.
Tuan, P. H.; Liang, H. C.; Tung, J. C.; Chiang, P. Y.; Huang, K. F.; Chen, Y. F.
2015-12-01
The coupling interaction between the driving source and the RLC network is explored and characterized as the effective impedance. The mathematical form of the derived effective impedance is verified to be identical to the meromorphic function of the singular billiards with a truncated basis. By using the derived impedance function, the resonant modes of the RLC network can be divided into the open-circuit and short-circuit states to manifest the evolution of eigenvalues and eigenstates from closed quantum billiards to the singular billiards with a truncated basis in the strongly coupled limit. The substantial differences of the wave patterns between the uncoupled and strongly coupled eigenmodes in the two-dimensional wave systems can be clearly revealed with the RLC network. Finally, the short-circuit resonant states are exploited to confirm that the experimental Chladni nodal-line patterns in the vibrating plate are the resonant modes subject to the strong coupling between the oscillation system and the driving source.
Boreal Atmospheric circulation patterns on the basis of the world network weather station data
Melnikov, V. A.; Moskalenko, L. V.; Golenko, N. N.; Golenko, M. N.
2012-04-01
Due to the recent developments of various methods of data representation in meteorology, the image of the globe-scale atmospheric circulation system has appeared. Basically, the circulation assessment is based on the indirect teleconnection method and rotated principal component analysis of the sea level pressure or geopotential height fields. These methods have several constraints because of the integration of intermittent and frontal atmospheric synoptic variability.As follows from the work of prof. B.L. Dzerdzeevskii, due to the existing of Arctic blocking processes, simplified geostrophic wind concept on the basis of the low-frequency baric patterns of the permanent centers of action, should be reconsidered in more details. For this purpose, weather station direct in-situ data with the use of progressive vector diagrams for wind speed and direction time series visualization are appropriate. Wind diagrams incorporate various fluctuations with time scales from synoptic to climatic, which can be considered without any filtration applied. The subject of work is to study the long-term wind regimes in the Northern Hemisphere, with the aim to obtain atmospheric circulation patterns in the regions of interest, in particular induced by the NAO(North Atlantic oscillation), EAWR(East Atlantic-West Russia) and SH(Siberian High) centers of action at different time and space scales. The analysis is based on the standard meteorological data (including wind direction and speed) of WMO network weather stations in the period since 1998 up to the present. For intercalibration and validation, NCEP-NCAR and QuickSCAT sea winds databases were considered, as well. Basic features of the wind variability are governed by the relevant types of the large-scale synoptic atmospheric processes, which depend upon the state of the global atmospheric circulation, their large-scale gyres and separate smaller vorticity cells. All the individual wind diagrams appear as having rather simple low
Deciphering the Molecular Basis of Human Cardiovascular Disease through Network Biology
Chan, Stephen Y.; White, Kevin; Loscalzo, Joseph
2012-01-01
Purpose of review This review introduces the fundamental concepts of network medicine and explores the feasibility and potential impact of network-based methods on predicting and ameliorating individual manifestations of human cardiovascular disease. Recent findings Complex cardiovascular diseases rarely result from an abnormality in a single molecular effector, but, rather, nearly always are the net result of multiple pathobiological pathways that interact through an interconnected network. In the post-genomic era, a framework has emerged of the potential complexity of the interacting pathways that govern molecular actions in the human cell. As a result, network approaches have been developed to understand more comprehensively those interconnections that influence human disease. “Network medicine” has already led to tangible discoveries of novel disease genes and pathways as well as improved mechanisms for rational drug development. Summary As methodologies evolve, network medicine may better capture the complexity of human pathogenesis and, thus, re-define personalized disease classification and therapies. PMID:22382498
Parametrization of analytic interatomic potential functions using neural networks.
Malshe, M; Narulkar, R; Raff, L M; Hagan, M; Bukkapatnam, S; Komanduri, R
2008-07-28
A generalized method that permits the parameters of an arbitrary empirical potential to be efficiently and accurately fitted to a database is presented. The method permits the values of a subset of the potential parameters to be considered as general functions of the internal coordinates that define the instantaneous configuration of the system. The parameters in this subset are computed by a generalized neural network (NN) with one or more hidden layers and an input vector with at least 3n-6 elements, where n is the number of atoms in the system. The Levenberg-Marquardt algorithm is employed to efficiently affect the optimization of the weights and biases of the NN as well as all other potential parameters being treated as constants rather than as functions of the input coordinates. In order to effect this minimization, the usual Jacobian employed in NN operations is modified to include the Jacobian of the computed errors with respect to the parameters of the potential function. The total Jacobian employed in each epoch of minimization is the concatenation of two Jacobians, one containing derivatives of the errors with respect to the weights and biases of the network, and the other with respect to the constant parameters of the potential function. The method provides three principal advantages. First, it obviates the problem of selecting the form of the functional dependence of the parameters upon the system's coordinates by employing a NN. If this network contains a sufficient number of neurons, it will automatically find something close to the best functional form. This is the case since Hornik et al., [Neural Networks 2, 359 (1989)] have shown that two-layer NNs with sigmoid transfer functions in the first hidden layer and linear functions in the output layer are universal approximators for analytic functions. Second, the entire fitting procedure is automated so that excellent fits are obtained rapidly with little human effort. Third, the method provides a
Bayesian Smoothing with Gaussian Processes Using Fourier Basis Functions in the spectralGP Package
Directory of Open Access Journals (Sweden)
Christopher J. Paciorek
2007-04-01
Full Text Available The spectral representation of stationary Gaussian processes via the Fourier basis provides a computationally efficient specification of spatial surfaces and nonparametric regression functions for use in various statistical models. I describe the representation in detail and introduce the spectralGP package in R for computations. Because of the large number of basis coefficients, some form of shrinkage is necessary; I focus on a natural Bayesian approach via a particular parameterized prior structure that approximates stationary Gaussian processes on a regular grid. I review several models from the literature for data that do not lie on a grid, suggest a simple model modification, and provide example code demonstrating MCMC sampling using the spectralGP package. I describe reasons that mixing can be slow in certain situations and provide some suggestions for MCMC techniques to improve mixing, also with example code, and some general recommendations grounded in experience.
A Functional Complexity Framework for the Analysis of Telecommunication Networks
Dzaferagic, Merim; Macaluso, Irene; Marchetti, Nicola
2016-01-01
The rapid evolution of network services demands new paradigms for studying and designing networks. In order to understand the underlying mechanisms that provide network functions, we propose a framework which enables the functional analysis of telecommunication networks. This framework allows us to isolate and analyse a network function as a complex system. We propose functional topologies to visualise the relationships between system entities and enable the systematic study of interactions between them. We also define a complexity metric $C_F$ (functional complexity) which quantifies the variety of structural patterns and roles of nodes in the topology. This complexity metric provides a wholly new approach to study the operation of telecommunication networks. We study the relationship between $C_F$ and different graph structures by analysing graph theory metrics in order to recognize complex organisations. $C_F$ is equal to zero for both a full mesh topology and a disconnected topology. We show that complexi...
Discovering functional interaction patterns in protein-protein interaction networks
Directory of Open Access Journals (Sweden)
Can Tolga
2008-06-01
Full Text Available Abstract Background In recent years, a considerable amount of research effort has been directed to the analysis of biological networks with the availability of genome-scale networks of genes and/or proteins of an increasing number of organisms. A protein-protein interaction (PPI network is a particular biological network which represents physical interactions between pairs of proteins of an organism. Major research on PPI networks has focused on understanding the topological organization of PPI networks, evolution of PPI networks and identification of conserved subnetworks across different species, discovery of modules of interaction, use of PPI networks for functional annotation of uncharacterized proteins, and improvement of the accuracy of currently available networks. Results In this article, we map known functional annotations of proteins onto a PPI network in order to identify frequently occurring interaction patterns in the functional space. We propose a new frequent pattern identification technique, PPISpan, adapted specifically for PPI networks from a well-known frequent subgraph identification method, gSpan. Existing module discovery techniques either look for specific clique-like highly interacting protein clusters or linear paths of interaction. However, our goal is different; instead of single clusters or pathways, we look for recurring functional interaction patterns in arbitrary topologies. We have applied PPISpan on PPI networks of Saccharomyces cerevisiae and identified a number of frequently occurring functional interaction patterns. Conclusion With the help of PPISpan, recurring functional interaction patterns in an organism's PPI network can be identified. Such an analysis offers a new perspective on the modular organization of PPI networks. The complete list of identified functional interaction patterns is available at http://bioserver.ceng.metu.edu.tr/PPISpan/.
Structure-function clustering in multiplex brain networks
Crofts, J. J.; Forrester, M.; O'Dea, R. D.
2016-10-01
A key question in neuroscience is to understand how a rich functional repertoire of brain activity arises within relatively static networks of structurally connected neural populations: elucidating the subtle interactions between evoked “functional connectivity” and the underlying “structural connectivity” has the potential to address this. These structural-functional networks (and neural networks more generally) are more naturally described using a multilayer or multiplex network approach, in favour of standard single-layer network analyses that are more typically applied to such systems. In this letter, we address such issues by exploring important structure-function relations in the Macaque cortical network by modelling it as a duplex network that comprises an anatomical layer, describing the known (macro-scale) network topology of the Macaque monkey, and a functional layer derived from simulated neural activity. We investigate and characterize correlations between structural and functional layers, as system parameters controlling simulated neural activity are varied, by employing recently described multiplex network measures. Moreover, we propose a novel measure of multiplex structure-function clustering which allows us to investigate the emergence of functional connections that are distinct from the underlying cortical structure, and to highlight the dependence of multiplex structure on the neural dynamical regime.
Changes in cognitive state alter human functional brain networks
Directory of Open Access Journals (Sweden)
Malaak Nasser Moussa
2011-08-01
Full Text Available The study of the brain as a whole system can be accomplished using network theory principles. Research has shown that human functional brain networks during a resting state exhibit small-world properties and high degree nodes, or hubs, localized to brain areas consistent with the default mode network (DMN. However, the study of brain networks across different tasks and or cognitive states has been inconclusive. Research in this field is important because the underpinnings of behavioral output are inherently dependent on whether or not brain networks are dynamic. This is the first comprehensive study to evaluate multiple network metrics at a voxel-wise resolution in the human brain at both the whole brain and regional level under various conditions: resting state, visual stimulation, and multisensory (auditory and visual stimulation. Our results show that despite global network stability, functional brain networks exhibit considerable task-induced changes in connectivity, efficiency, and community structure at the regional level.
Huang, Lei; Asundi, Anand Krishna
2013-08-20
A framework with a combination of the radial basis functions (RBFs) method and the least-squares integration method is proposed to improve the integration process from gradient to shape. The principle of the framework is described, and the performance of the proposed method is investigated by simulation. Improvement in accuracy is verified by comparing the result with the usual RBFs-based subset-by-subset stitching method. The proposed method is accurate, automatic, easily implemented, and robust and even works with incomplete data.
A correlated basis-function description of 16O with realistic interactions
Boscá, M. C.
1994-01-01
The correlated basis-function theory is applied at the lowest order to analyze the ground state and low-energy spectrum of the 16O nucleus. Results are quoted for both the Urbana and the Argonne υ 14 nucleon-nucleon interactions. The work includes state-dependent correlations and their radial components are determined by solving a set of Euler-Lagrange equations. The matrix elements are computed by using a cluster expansion and the sequential condition is imposed in order to insure convergence. The results clearly disagree with the experimental values.
Vo, P. T.; Eversman, W.
1978-01-01
The method of weighted residuals (MWR) in the form of a modified Galerkin method with trigonometric basis functions is used to compute the transmission of sound in an axisymmetric duct. The method is used to generate the axial wave number for uniform ducts. These are compared with exact solutions generated by a formal eigenvalue routine in the hard-wall case and a Runge-Kutta integration eigenvalue scheme in the soft-wall case. The method is applicable to both flow and no-flow cases.
Directory of Open Access Journals (Sweden)
1 Taiwo O. A
2013-01-01
Full Text Available The problem of solving special nth-order linear integro-differential equations has special importance in engineering and sciences that constitutes a good model for many systems in various fields. In this paper, we construct canonical polynomial from the differential parts of special nth-order integro-differential equations and use it as our basis function for the numerical solutions of special nth-order integro-differential equations. The results obtained by this method are compared with those obtained by Adomian Decomposition method. It is also observed that the new method is an effective method with high accuracy. Some examples are given to illustrate the method.
Resting-state brain organization revealed by functional covariance networks.
Directory of Open Access Journals (Sweden)
Zhiqiang Zhang
Full Text Available BACKGROUND: Brain network studies using techniques of intrinsic connectivity network based on fMRI time series (TS-ICN and structural covariance network (SCN have mapped out functional and structural organization of human brain at respective time scales. However, there lacks a meso-time-scale network to bridge the ICN and SCN and get insights of brain functional organization. METHODOLOGY AND PRINCIPAL FINDINGS: We proposed a functional covariance network (FCN method by measuring the covariance of amplitude of low-frequency fluctuations (ALFF in BOLD signals across subjects, and compared the patterns of ALFF-FCNs with the TS-ICNs and SCNs by mapping the brain networks of default network, task-positive network and sensory networks. We demonstrated large overlap among FCNs, ICNs and SCNs and modular nature in FCNs and ICNs by using conjunctional analysis. Most interestingly, FCN analysis showed a network dichotomy consisting of anti-correlated high-level cognitive system and low-level perceptive system, which is a novel finding different from the ICN dichotomy consisting of the default-mode network and the task-positive network. CONCLUSION: The current study proposed an ALFF-FCN approach to measure the interregional correlation of brain activity responding to short periods of state, and revealed novel organization patterns of resting-state brain activity from an intermediate time scale.
Enhancing the functional content of eukaryotic protein interaction networks.
Directory of Open Access Journals (Sweden)
Gaurav Pandey
Full Text Available Protein interaction networks are a promising type of data for studying complex biological systems. However, despite the rich information embedded in these networks, these networks face important data quality challenges of noise and incompleteness that adversely affect the results obtained from their analysis. Here, we apply a robust measure of local network structure called common neighborhood similarity (CNS to address these challenges. Although several CNS measures have been proposed in the literature, an understanding of their relative efficacies for the analysis of interaction networks has been lacking. We follow the framework of graph transformation to convert the given interaction network into a transformed network corresponding to a variety of CNS measures evaluated. The effectiveness of each measure is then estimated by comparing the quality of protein function predictions obtained from its corresponding transformed network with those from the original network. Using a large set of human and fly protein interactions, and a set of over 100 GO terms for both, we find that several of the transformed networks produce more accurate predictions than those obtained from the original network. In particular, the HC.cont measure and other continuous CNS measures perform well this task, especially for large networks. Further investigation reveals that the two major factors contributing to this improvement are the abilities of CNS measures to prune out noisy edges and enhance functional coherence in the transformed networks.
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2008-01-01
In this work, we present a new set of basis functions, defined over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also defined over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.
D'Ostilio, Kevin; Garraux, Gaëtan
2016-01-01
The high prevalence of major depressive disorder in people with Parkinson's disease (PD), its negative impact on health-related quality of life and the low response rate to conventional pharmacological therapies call to seek innovative treatments. Here, we review the new approaches for treating major depressive disorder in patients with PD within the framework of the network model of depression. According to this model, major depressive disorder reflects maladaptive neuronal plasticity. Non-invasive brain stimulation (NIBS) using high frequency repetitive transcranial magnetic stimulation (rTMS) over the prefrontal cortex has been proposed as a feasible and effective strategy with minimal risk. The neurobiological basis of its therapeutic effect may involve neuroplastic modifications in limbic and cognitive networks. However, the way this networks reorganize might be strongly influenced by the environment. To address this issue, we propose a combined strategy that includes NIBS together with cognitive and behavioral interventions.
Energy Technology Data Exchange (ETDEWEB)
Maiolo, M., E-mail: massimo.maiolo@zhaw.ch [SUPSI, Department of Innovative Technology, Galleria 2, 6928 Manno (Switzerland); ZHAW, Institut für Angewandte Simulation, Grüental, CH-8820 Wädenswil (Switzerland); Vancheri, A., E-mail: alberto.vancheri@supsi.ch [SUPSI, Department of Innovative Technology, Galleria 2, 6928 Manno (Switzerland); Krause, R., E-mail: rolf.krause@usi.ch [USI, Institute of Computational Science, Via Buffi 13, 6906 Lugano (Switzerland); Danani, A., E-mail: andrea.danani@supsi.ch [SUPSI, Department of Innovative Technology, Galleria 2, 6928 Manno (Switzerland)
2015-11-01
In this paper, we apply Multiresolution Analysis (MRA) to develop sparse but accurate representations for the Multiscale Coarse-Graining (MSCG) approximation to the many-body potential of mean force. We rigorously framed the MSCG method into MRA so that all the instruments of this theory become available together with a multitude of new basis functions, namely the wavelets. The coarse-grained (CG) force field is hierarchically decomposed at different resolution levels enabling to choose the most appropriate wavelet family for each physical interaction without requiring an a priori knowledge of the details localization. The representation of the CG potential in this new efficient orthonormal basis leads to a compression of the signal information in few large expansion coefficients. The multiresolution property of the wavelet transform allows to isolate and remove the noise from the CG force-field reconstruction by thresholding the basis function coefficients from each frequency band independently. We discuss the implementation of our wavelet-based MSCG approach and demonstrate its accuracy using two different condensed-phase systems, i.e. liquid water and methanol. Simulations of liquid argon have also been performed using a one-to-one mapping between atomistic and CG sites. The latter model allows to verify the accuracy of the method and to test different choices of wavelet families. Furthermore, the results of the computer simulations show that the efficiency and sparsity of the representation of the CG force field can be traced back to the mathematical properties of the chosen family of wavelets. This result is in agreement with what is known from the theory of multiresolution analysis of signals.
Functional imaging in oncology. Biophysical basis and technical approaches. Vol. 1
Energy Technology Data Exchange (ETDEWEB)
Luna, Antonio [Health Time Group, Jaen (Spain); University Hospitals, Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Radiology; Vilanova, Joan C. [Clinica Girona - Hospital Sta. Caterina, Girona (Spain); Hygino da Cruz, L. Celso Jr. [CDPI and IRM, Rio de Janeiro, RJ (Brazil). Dept. of Radiology; Rossi, Santiago E. (ed.) [Centro de Diagnostico, Buenos Aires (Argentina)
2014-07-01
Easy-to-read manual on new functional imaging techniques in oncology. Explains current clinical applications and outlines future avenues. Includes numerous high-quality illustrations to highlight the major teaching points. In the new era of functional and molecular imaging, both currently available imaging biomarkers and biomarkers under development are expected to lead to major changes in the management of oncological patients. This well-illustrated two-volume book is a practical manual on the various imaging techniques capable of delivering functional information on cancer, including preclinical and clinical imaging techniques, based on US, CT, MRI, PET and hybrid modalities. This first volume explains the biophysical basis for these functional imaging techniques and describes the techniques themselves. Detailed information is provided on the imaging of cancer hallmarks, including angiogenesis, tumor metabolism, and hypoxia. The techniques and their roles are then discussed individually, covering the full range of modalities in clinical use as well as new molecular and functional techniques. The value of a multiparametric approach is also carefully considered.
Triangles as basis to detect communities: an appication to Twitter's network
Abdelsadek, Youcef; Herrmann, Francine; Kacem, Imed; Otjacques, Benoît
2016-01-01
Nowadays, the interest given by the scientific community to the investigation of the data generated by social networks is increasing as much as the exponential increasing of social network data. The data structure complexity is one among the snags, which slowdown their understanding. On the other hand, community detection in social networks helps the analyzers to reveal the structure and the underlying semantic within communities. In this paper we propose an interactive visualization approach relying on our application NLCOMS, which uses synchronous and related views for graph and community visualization. Additionally, we present our algorithm for community detection in networks. A computation study is conducted on instances generated with the LFR [9]-[10] benchmark. Finally, in order to assess our approach on real-world data, we consider the data of the ANR-Info-RSN project. The latter addresses community detection in Twitter.
Network growth models: A behavioural basis for attachment proportional to fitness
Bell, Michael; Perera, Supun; Piraveenan, Mahendrarajah; Bliemer, Michiel; Latty, Tanya; Reid, Chris
2017-01-01
Several growth models have been proposed in the literature for scale-free complex networks, with a range of fitness-based attachment models gaining prominence recently. However, the processes by which such fitness-based attachment behaviour can arise are less well understood, making it difficult to compare the relative merits of such models. This paper analyses an evolutionary mechanism that would give rise to a fitness-based attachment process. In particular, it is proven by analytical and numerical methods that in homogeneous networks, the minimisation of maximum exposure to node unfitness leads to attachment probabilities that are proportional to node fitness. This result is then extended to heterogeneous networks, with supply chain networks being used as an example. PMID:28205599
The neural basis of deictic shifting in linguistic perspective-taking in high-functioning autism.
Mizuno, Akiko; Liu, Yanni; Williams, Diane L; Keller, Timothy A; Minshew, Nancy J; Just, Marcel Adam
2011-08-01
Personal pronouns, such as 'I' and 'you', require a speaker/listener to continuously re-map their reciprocal relation to their referent, depending on who is saying the pronoun. This process, called 'deictic shifting', may underlie the incorrect production of these pronouns, or 'pronoun reversals', such as referring to oneself with the pronoun 'you', which has been reported in children with autism. The underlying neural basis of deictic shifting, however, is not understood, nor has the processing of pronouns been studied in adults with autism. The present study compared the brain activation pattern and functional connectivity (synchronization of activation across brain areas) of adults with high-functioning autism and control participants using functional magnetic resonance imaging in a linguistic perspective-taking task that required deictic shifting. The results revealed significantly diminished frontal (right anterior insula) to posterior (precuneus) functional connectivity during deictic shifting in the autism group, as well as reliably slower and less accurate behavioural responses. A comparison of two types of deictic shifting revealed that the functional connectivity between the right anterior insula and precuneus was lower in autism while answering a question that contained the pronoun 'you', querying something about the participant's view, but not when answering a query about someone else's view. In addition to the functional connectivity between the right anterior insula and precuneus being lower in autism, activation in each region was atypical, suggesting over reliance on individual regions as a potential compensation for the lower level of collaborative interregional processing. These findings indicate that deictic shifting constitutes a challenge for adults with high-functioning autism, particularly when reference to one's self is involved, and that the functional collaboration of two critical nodes, right anterior insula and precuneus, may play a
Directory of Open Access Journals (Sweden)
Shuwei Zhang
2016-01-01
Full Text Available Aiming at the cavitation problem, the blade leading edge shape has been changed to analyze its impact on the cavitation performance for centrifugal pumps. And the response model has been established based on the Radial Basis Function. The calculation case results show that the leading edge extending forward along the shroud can improve the inlet flow condition and cavitation performance. But the cavitation performance has been reduced immensely when the leading edge extends backward along the shroud. Along with the leading edge which extends forward along the hub, the cavitation performance increases at first and then decreases. A better cavitation performance for centrifugal pumps has lower load of blade inlet and higher pressure of blade suction side. The pressure pulsation is affected by the vortex out of the impeller and the falling-off and collapsing of the cavitation bubbles. The lower the pressure pulsation for blade passing frequency and the second harmonics of the samples is, the better the cavitation performance is. A relatively accurate response model based on the Radial Basis Function has been established to predict the effect of the shape of blade leading edge on the cavitation performance of centrifugal pumps.
Accelerating wavefunction in density-functional-theory embedding by truncating the active basis set.
Bennie, Simon J; Stella, Martina; Miller, Thomas F; Manby, Frederick R
2015-07-14
Methods where an accurate wavefunction is embedded in a density-functional description of the surrounding environment have recently been simplified through the use of a projection operator to ensure orthogonality of orbital subspaces. Projector embedding already offers significant performance gains over conventional post-Hartree-Fock methods by reducing the number of correlated occupied orbitals. However, in our first applications of the method, we used the atomic-orbital basis for the full system, even for the correlated wavefunction calculation in a small, active subsystem. Here, we further develop our method for truncating the atomic-orbital basis to include only functions within or close to the active subsystem. The number of atomic orbitals in a calculation on a fixed active subsystem becomes asymptotically independent of the size of the environment, producing the required O(N(0)) scaling of cost of the calculation in the active subsystem, and accuracy is controlled by a single parameter. The applicability of this approach is demonstrated for the embedded many-body expansion of binding energies of water hexamers and calculation of reaction barriers of SN2 substitution of fluorine by chlorine in α-fluoroalkanes.
Design Methodology of a New Wavelet Basis Function for Fetal Phonocardiographic Signals
Directory of Open Access Journals (Sweden)
Vijay S. Chourasia
2013-01-01
Full Text Available Fetal phonocardiography (fPCG based antenatal care system is economical and has a potential to use for long-term monitoring due to noninvasive nature of the system. The main limitation of this technique is that noise gets superimposed on the useful signal during its acquisition and transmission. Conventional filtering may result into loss of valuable diagnostic information from these signals. This calls for a robust, versatile, and adaptable denoising method applicable in different operative circumstances. In this work, a novel algorithm based on wavelet transform has been developed for denoising of fPCG signals. Successful implementation of wavelet theory in denoising is heavily dependent on selection of suitable wavelet basis function. This work introduces a new mother wavelet basis function for denoising of fPCG signals. The performance of newly developed wavelet is found to be better when compared with the existing wavelets. For this purpose, a two-channel filter bank, based on characteristics of fPCG signal, is designed. The resultant denoised fPCG signals retain the important diagnostic information contained in the original fPCG signal.
Green's function multiple-scattering theory with a truncated basis set: An augmented-KKR formalism
Alam, Aftab; Khan, Suffian N.; Smirnov, A. V.; Nicholson, D. M.; Johnson, Duane D.
2014-11-01
The Korringa-Kohn-Rostoker (KKR) Green's function, multiple-scattering theory is an efficient site-centered, electronic-structure technique for addressing an assembly of N scatterers. Wave functions are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum orbital and azimuthal number Lmax=(l,mmax), while scattering matrices, which determine spectral properties, are truncated at Lt r=(l,mt r) where phase shifts δl >ltr are negligible. Historically, Lmax is set equal to Lt r, which is correct for large enough Lmax but not computationally expedient; a better procedure retains higher-order (free-electron and single-site) contributions for Lmax>Lt r with δl >ltr set to zero [X.-G. Zhang and W. H. Butler, Phys. Rev. B 46, 7433 (1992), 10.1103/PhysRevB.46.7433]. We present a numerically efficient and accurate augmented-KKR Green's function formalism that solves the KKR equations by exact matrix inversion [R3 process with rank N (ltr+1 ) 2 ] and includes higher-L contributions via linear algebra [R2 process with rank N (lmax+1) 2 ]. The augmented-KKR approach yields properly normalized wave functions, numerically cheaper basis-set convergence, and a total charge density and electron count that agrees with Lloyd's formula. We apply our formalism to fcc Cu, bcc Fe, and L 1 0 CoPt and present the numerical results for accuracy and for the convergence of the total energies, Fermi energies, and magnetic moments versus Lmax for a given Lt r.
Stability condition of FAST TCP in high speed network Oil the basis of control theory
Institute of Scientific and Technical Information of China (English)
Zhao Fuzhe; Zhou Jianzhong; Luo Zhimeng; Xiao Yang
2008-01-01
Considering the instability of data transferred existing in high speed network.a near method is proposed for improving the stability using control theory.Under this method,the mathematical model of such a network is established.Stability condition is derived from the mathematical model.Several sivaulation experiments are performed.The results show that the method can increase the stability of data transferred in terms of the congestion window,queue size,and sending rate of the source.
Pathprinting: An integrative approach to understand the functional basis of disease.
Altschuler, Gabriel M; Hofmann, Oliver; Kalatskaya, Irina; Payne, Rebecca; Ho Sui, Shannan J; Saxena, Uma; Krivtsov, Andrei V; Armstrong, Scott A; Cai, Tianxi; Stein, Lincoln; Hide, Winston A
2013-01-01
New strategies to combat complex human disease require systems approaches to biology that integrate experiments from cell lines, primary tissues and model organisms. We have developed Pathprint, a functional approach that compares gene expression profiles in a set of pathways, networks and transcriptionally regulated targets. It can be applied universally to gene expression profiles across species. Integration of large-scale profiling methods and curation of the public repository overcomes platform, species and batch effects to yield a standard measure of functional distance between experiments. We show that pathprints combine mouse and human blood developmental lineage, and can be used to identify new prognostic indicators in acute myeloid leukemia. The code and resources are available at http://compbio.sph.harvard.edu/hidelab/pathprint.
Falat, Lukas; Marcek, Dusan; Durisova, Maria
2016-01-01
This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.
Directory of Open Access Journals (Sweden)
Lukas Falat
2016-01-01
Full Text Available This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.
Hierarchical organization of brain functional network during visual task
Zhuo, Zhao; Fu, Zhong-Qian; Zhang, Jie
2011-01-01
In this paper, the brain functional networks derived from high-resolution synchronous EEG time series during visual task are generated by calculating the phase synchronization among the time series. The hierarchical modular organizations of these networks are systematically investigated by the fast Girvan-Newman algorithm. At the same time, the spatially adjacent electrodes (corresponding to EEG channels) are clustered into functional groups based on anatomical parcellation of brain cortex, and this clustering information are compared to that of the functional network. The results show that the modular architectures of brain functional network are in coincidence with that from the anatomical structures over different levels of hierarchy, which suggests that population of neurons performing the same function excite and inhibit in identical rhythms. The structure-function relationship further reveals that the correlations among EEG time series in the same functional group are much stronger than those in differe...
Rational design of functional and tunable oscillating enzymatic networks
Semenov, Sergey N.; Wong, Albert S. Y.; van der Made, R. Martijn; Postma, Sjoerd G. J.; Groen, Joost; van Roekel, Hendrik W. H.; de Greef, Tom F. A.; Huck, Wilhelm T. S.
2015-02-01
Life is sustained by complex systems operating far from equilibrium and consisting of a multitude of enzymatic reaction networks. The operating principles of biology's regulatory networks are known, but the in vitro assembly of out-of-equilibrium enzymatic reaction networks has proved challenging, limiting the development of synthetic systems showing autonomous behaviour. Here, we present a strategy for the rational design of programmable functional reaction networks that exhibit dynamic behaviour. We demonstrate that a network built around autoactivation and delayed negative feedback of the enzyme trypsin is capable of producing sustained oscillating concentrations of active trypsin for over 65 h. Other functions, such as amplification, analog-to-digital conversion and periodic control over equilibrium systems, are obtained by linking multiple network modules in microfluidic flow reactors. The methodology developed here provides a general framework to construct dissipative, tunable and robust (bio)chemical reaction networks.
Functional network macroscopes for probing past and present Earth system dynamics (Invited)
Donges, J. F.
2013-12-01
The Earth, as viewed from a physicist's perspective, is a dynamical system of great complexity. Functional complex networks are inferred from observational data and model runs or constructed on the basis of theoretical considerations. Representing statistical interdependencies or causal interactions between objects (e.g., Earth system subdomains, processes, or local field variables), functional complex networks are conceptually well-suited for naturally addressing some of the fundamental questions of Earth system analysis concerning, among others, major dynamical patterns, teleconnections, and feedback loops in the planetary machinery, as well as critical elements such as thresholds, bottlenecks, and switches. The first part of this talk concerns complex network theory and network-based time series analysis. Regarding complex network theory, the novel contributions include consistent frameworks for analyzing the topology of (i) general networks of interacting networks and (ii) networks with vertices of heterogeneously distributed weights, as well as (iii) an analytical theory for describing spatial networks. In the realm of time series analysis, (i) recurrence network analysis is put forward as a theoretically founded, nonlinear technique for the study of single, but possibly multivariate time series. (ii) Coupled climate networks are introduced as an exploratory tool of data analysis for quantitatively characterizing the intricate statistical interdependency structure within and between several fields of time series. The second part presents applications for detecting dynamical transitions (tipping points) in time series and studying bottlenecks in the atmosphere's general circulation structure. The analysis of paleoclimate data reveals a possible influence of large-scale shifts in Plio-Pleistocene African climate variability on events in human evolution. This presentation summarizes the contents of the dissertation titled "Functional network macroscopes for
Emotion-Induced Topological Changes in Functional Brain Networks.
Park, Chang-Hyun; Lee, Hae-Kook; Kweon, Yong-Sil; Lee, Chung Tai; Kim, Ki-Tae; Kim, Young-Joo; Lee, Kyoung-Uk
2016-01-01
In facial expression perception, a distributed network is activated according to stimulus context. We proposed that an interaction between brain activation and stimulus context in response to facial expressions could signify a pattern of interactivity across the whole brain network beyond the face processing network. Functional magnetic resonance imaging data were acquired for 19 young healthy subjects who were exposed to either emotionally neutral or negative facial expressions. We constructed group-wise functional brain networks for 12 face processing areas [bilateral inferior occipital gyri (IOG), fusiform gyri (FG), superior temporal sulci (STS), amygdalae (AMG), inferior frontal gyri (IFG), and orbitofrontal cortices (OFC)] and for 73 whole brain areas, based on partial correlation of mean activation across subjects. We compared the topological properties of the networks with respect to functional distance-based measures, global and local efficiency, between the two types of face stimulus. In both face processing and whole brain networks, global efficiency was lower and local efficiency was higher for negative faces relative to neutral faces, indicating that network topology differed according to stimulus context. Particularly in the face processing network, emotion-induced changes in network topology were attributable to interactions between core (bilateral IOG, FG, and STS) and extended (bilateral AMG, IFG, and OFC) systems. These results suggest that changes in brain activation patterns in response to emotional face stimuli could be revealed as changes in the topological properties of functional brain networks for the whole brain as well as for face processing areas.
A Game for Energy-Aware Allocation of Virtualized Network Functions
Directory of Open Access Journals (Sweden)
Roberto Bruschi
2016-01-01
Full Text Available Network Functions Virtualization (NFV is a network architecture concept where network functionality is virtualized and separated into multiple building blocks that may connect or be chained together to implement the required services. The main advantages consist of an increase in network flexibility and scalability. Indeed, each part of the service chain can be allocated and reallocated at runtime depending on demand. In this paper, we present and evaluate an energy-aware Game-Theory-based solution for resource allocation of Virtualized Network Functions (VNFs within NFV environments. We consider each VNF as a player of the problem that competes for the physical network node capacity pool, seeking the minimization of individual cost functions. The physical network nodes dynamically adjust their processing capacity according to the incoming workload, by means of an Adaptive Rate (AR strategy that aims at minimizing the product of energy consumption and processing delay. On the basis of the result of the nodes’ AR strategy, the VNFs’ resource sharing costs assume a polynomial form in the workflows, which admits a unique Nash Equilibrium (NE. We examine the effect of different (unconstrained and constrained forms of the nodes’ optimization problem on the equilibrium and compare the power consumption and delay achieved with energy-aware and non-energy-aware strategy profiles.
Mapping multiplex hubs in human functional brain networks
Directory of Open Access Journals (Sweden)
Alex Arenas
2016-07-01
Full Text Available Typical brain networks consist of many peripheral regions and a few highly centralones, i.e. hubs, playing key functional roles in cerebral inter-regional interactions. Studieshave shown that networks, obtained from the analysis of specific frequency components ofbrain activity, present peculiar architectures with unique profiles of region centrality. However,the identification of hubs in networks built from different frequency bands simultaneouslyis still a challenging problem, remaining largely unexplored. Here we identify eachfrequency component with one layer of a multiplex network and face this challenge by exploitingthe recent advances in the analysis of multiplex topologies. First, we show that eachfrequency band carries unique topological information, fundamental to accurately modelbrain functional networks. We then demonstrate that hubs in the multiplex network, in generaldifferent from those ones obtained after discarding or aggregating the measured signalsas usual, provide a more accurate map of brain’s most important functional regions, allowingto distinguish between healthy and schizophrenic populations better than conventionalnetwork approaches.
Kawashima, Yukio; Hirao, Kimihiko
2017-02-24
We introduced two methods to correct the singularity in the calculation of long-range Hartree-Fock (HF) exchange for long-range-corrected density functional theory (LC-DFT) calculations in plane-wave basis sets. The first method introduces an auxiliary function to cancel out the singularity. The second method introduces a truncated long-range Coulomb potential, which has no singularity. We assessed the introduced methods using the LC-BLYP functional by applying it to isolated systems of naphthalene and pyridine. We first compared the total energies and the HOMO energies of the singularity-corrected and uncorrected calculations and confirmed that singularity correction is essential for LC-DFT calculations using plane-wave basis sets. The LC-DFT calculation results converged rapidly with respect to the cell size as the other functionals, and their results were in good agreement with the calculated results obtained using Gaussian basis sets. LC-DFT succeeded in obtaining accurate orbital energies and excitation energies. We next applied LC-DFT with singularity correction methods to the electronic structure calculations of the extended systems, Si and SiC. We confirmed that singularity correction is important for calculations of extended systems as well. The calculation results of the valence and conduction bands by LC-BLYP showed good convergence with respect to the number of k points sampled. The introduced methods succeeded in overcoming the singularity problem in HF exchange calculation. We investigated the effect of the singularity correction on the excitation state calculation and found that careful treatment of the singularities is required compared to ground-state calculations. We finally examined the excitonic effect on the band gap of the extended systems. We calculated the excitation energies to the first excited state of the extended systems using a supercell model at the Γ point and found that the excitonic binding energy, supposed to be small for
Dimensionality reduction in conic section function neural network
Indian Academy of Sciences (India)
Tulay Yildirim; Lale Ozyilmaz
2002-12-01
This paper details how dimensionality can be reduced in conic section function neural networks (CSFNN). This is particularly important for hardware implementation of networks. One of the main problems to be solved when considering the hardware design is the high connectivity requirement. If the effect that each of the network inputs has on the network output after training a neural network is known, then some inputs can be removed from the network. Consequently, the dimensionality of the network, and hence, the connectivity and the training time can be reduced. Sensitivity analysis, which extracts the cause and effect relationship between the inputs and outputs of the network, has been proposed as a method to achieve this and is investigated for Iris plant, thyroid disease and ionosphere databases. Simulations demonstrate the validity of the method used.
Kollmar, Christian; Neese, Frank
2014-10-07
The role of the static Kohn-Sham (KS) response function describing the response of the electron density to a change of the local KS potential is discussed in both the theory of the optimized effective potential (OEP) and the so-called inverse Kohn-Sham problem involving the task to find the local KS potential for a given electron density. In a general discussion of the integral equation to be solved in both cases, it is argued that a unique solution of this equation can be found even in case of finite atomic orbital basis sets. It is shown how a matrix representation of the response function can be obtained if the exchange-correlation potential is expanded in terms of a Schmidt-orthogonalized basis comprising orbitals products of occupied and virtual orbitals. The viability of this approach in both OEP theory and the inverse KS problem is illustrated by numerical examples.
Functional Basis for Efficient Physical Layer Classical Control in Quantum Processors
Ball, Harrison; Nguyen, Trung; Leong, Philip H. W.; Biercuk, Michael J.
2016-12-01
The rapid progress seen in the development of quantum-coherent devices for information processing has motivated serious consideration of quantum computer architecture and organization. One topic which remains open for investigation and optimization relates to the design of the classical-quantum interface, where control operations on individual qubits are applied according to higher-level algorithms; accommodating competing demands on performance and scalability remains a major outstanding challenge. In this work, we present a resource-efficient, scalable framework for the implementation of embedded physical layer classical controllers for quantum-information systems. Design drivers and key functionalities are introduced, leading to the selection of Walsh functions as an effective functional basis for both programing and controller hardware implementation. This approach leverages the simplicity of real-time Walsh-function generation in classical digital hardware, and the fact that a wide variety of physical layer controls, such as dynamic error suppression, are known to fall within the Walsh family. We experimentally implement a real-time field-programmable-gate-array-based Walsh controller producing Walsh timing signals and Walsh-synthesized analog waveforms appropriate for critical tasks in error-resistant quantum control and noise characterization. These demonstrations represent the first step towards a unified framework for the realization of physical layer controls compatible with large-scale quantum-information processing.
Neural networks for function approximation in nonlinear control
Linse, Dennis J.; Stengel, Robert F.
1990-01-01
Two neural network architectures are compared with a classical spline interpolation technique for the approximation of functions useful in a nonlinear control system. A standard back-propagation feedforward neural network and a cerebellar model articulation controller (CMAC) neural network are presented, and their results are compared with a B-spline interpolation procedure that is updated using recursive least-squares parameter identification. Each method is able to accurately represent a one-dimensional test function. Tradeoffs between size requirements, speed of operation, and speed of learning indicate that neural networks may be practical for identification and adaptation in a nonlinear control environment.
Density functional and neural network analysis
DEFF Research Database (Denmark)
Jalkanen, K. J.; Bohr, Henrik
1997-01-01
dichroism (VCD) intensities. The large changes due to hydration on the structures, relative stability of conformers, and in the VA and VCD spectra observed experimentally are reproduced by the DFT calculations. Furthermore a neural network was constructed for reproducing the inverse scattering data (infer...... the structural coordinates from spectroscopic data) that the DFT method could produce. Finally the neural network performances are used to monitor a sensitivity or dependence analysis of the importance of secondary structures....
Discovering and Analyzing Network Function and Structure
2015-07-08
that the numerical linear algebra community has been seeking for a long time: sparse approximate inverses. To explain these, I recall that the classical...accelerate the computation. Our presently best algorithm computes the matrices L and U and applies them to solve a linear system in parallel time O(log6 n...imization, comes from Zhu, Ghahramani and Lafferty [ZGL+03], and only applies to undirected networks. Formally, one is given a network with vertex set
Directory of Open Access Journals (Sweden)
MALLESWARAN M,
2010-12-01
Full Text Available Global positioning System (GPS and Inertial Navigation System (INS data can be integrated together to provide a reliable navigation. GPS/INS data integration provides reliable navigation solutions by overcoming each of their shortcomings, including signal blockage for GPS and increase in position errors with time for INS. This paper aims to provide GPS/INS data integration utilizing Artificial Neural Network (ANN architecture. This architecture is based on Feed Forward Neural Networks, which generally includes Radial Basis Function (RBF neural network and Back Propagation neural network (BPN. These are systematic methods for training multi-layer artificial networks. The BPN-ANN and RBF-ANN modules are trained to predict the INS position error and provide accurate positioning of the moving vehicle. This paper also compares performance of theGPS/INS data integration system by using different activation function like Bipolar Sigmoidal Function (BPSF, Binary Sigmoidal Function (BISF, Hyperbolic Tangential Function (HTF and Gaussian Function (GF in BPN-ANN and using Gaussian function in RBF-ANN.
Changes in brain functional network connectivity after stroke
Institute of Scientific and Technical Information of China (English)
Wei Li; Yapeng Li; Wenzhen Zhu; Xi Chen
2014-01-01
Studies have shown that functional network connection models can be used to study brain net-work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore functional network connectivity changes in stroke patients. We used independent component analysis to find the motor areas of stroke patients, which is a novel way to determine these areas. In this study, we collected functional magnetic resonance imaging datasets from healthy controls and right-handed stroke patients following their ifrst ever stroke. Using independent component analysis, six spatially independent components highly correlat-ed to the experimental paradigm were extracted. Then, the functional network connectivity of both patients and controls was established to observe the differences between them. The results showed that there were 11 connections in the model in the stroke patients, while there were only four connections in the healthy controls. Further analysis found that some damaged connections may be compensated for by new indirect connections or circuits produced after stroke. These connections may have a direct correlation with the degree of stroke rehabilitation. Our ifndings suggest that functional network connectivity in stroke patients is more complex than that in hea-lthy controls, and that there is a compensation loop in the functional network following stroke. This implies that functional network reorganization plays a very important role in the process of rehabilitation after stroke.
Leclerc, Arnaud
2014-01-01
We propose an iterative method for computing vibrational spectra that significantly reduces the memory cost of calculations. It uses a direct product primitive basis, but does not require storing vectors with as many components as there are product basis functions. Wavefunctions are represented in a basis each of whose functions is a sum of products (SOP) and the factorizable structure of the Hamiltonian is exploited. If the factors of the SOP basis functions are properly chosen, wavefunctions are linear combinations of a small number of SOP basis functions. The SOP basis functions are generated using a shifted block power method. The factors are refined with a rank reduction algorithm to cap the number of terms in a SOP basis function. The ideas are tested on a 20-D model Hamiltonian and a realistic CH$_3$CN (12 dimensional) potential. For the 20-D problem, to use a standard direct product iterative approach one would need to store vectors with about $10^{20}$ components and would hence require about $8 \\tim...
SOME PROBLEMS WITH THE METHOD OF FUNDAMENTAL SOLUTION USING RADIAL BASIS FUNCTIONS
Institute of Scientific and Technical Information of China (English)
Wang Hui; Qin Qinghua
2007-01-01
The present work describes the application of the method of fundamental solutions (MFS) along with the analog equation method (AEM) and radial basis function (RBF) approximation for solving the 2D isotropic and anisotropic Helmholtz problems with different wave numbers.The AEM is used to convert the original governing equation into the classical Poisson's equation,and the MFS and RBF approximations are used to derive the homogeneous and particular solutions, respectively. Finally, the satisfaction of the solution consisting of the homogeneous and particular parts to the related governing equation and boundary conditions can produce a system of linear equations, which can be solved with the singular value decomposition (SVD) technique.In the computation, such crucial factors related to the MFS-RBF as the location of the virtual boundary, the differential and integrating strategies, and the variation of shape parameters in multi-quadric (MQ) are fully analyzed to provide useful reference.
Lam, Dao; Wunsch, Donald
2017-01-01
Ever-increasing size and complexity of data sets create challenges and potential tradeoffs of accuracy and speed in learning algorithms. This paper offers progress on both fronts. It presents a mechanism to train the unsupervised learning features learned from only one layer to improve performance in both speed and accuracy. The features are learned by an unsupervised feature learning (UFL) algorithm. Then, those features are trained by a fast radial basis function (RBF) extreme learning machine (ELM). By exploiting the massive parallel computing attribute of modern graphics processing unit, a customized compute unified device architecture (CUDA) kernel is developed to further speed up the computing of the RBF kernel in the ELM. Results tested on Canadian Institute for Advanced Research and Mixed National Institute of Standards and Technology data sets confirm the UFL RBF ELM achieves high accuracy, and the CUDA implementation is up to 20 times faster than CPU and the naive parallel approach.
Improved radial basis function approach with the odd-even corrections
Niu, Z M; Liang, H Z; Niu, Y F; Guo, J Y
2016-01-01
The radial basis function (RBF) approach has been used to improve the mass predictions of nuclear models. However, systematic deviations exist between the improved masses and the experimental data for nuclei with different odd-even parities of ($Z$, $N$), i.e., the (even $Z$, even $N$), (even $Z$, odd $N$), (odd $Z$, even $N$), and (odd $Z$, odd $N$). By separately training the RBF for these four different groups, it is found that the systematic odd-even deviations can be cured in a large extend and the predictive power of nuclear mass models can thus be further improved. Moreover, this new approach can better reproduce the single-nucleon separation energies. Based on the latest version of Weizs\\"acker-Skyrme model WS4, the root-mean-square deviation of the improved masses with respect to known data falls to $135$ keV, approaching the chaos-related unpredictability limit ($\\sim 100$ keV).
Radial Basis Function Based Implicit Surface Reconstruction Interpolating Arbitrary Triangular Mesh
Institute of Scientific and Technical Information of China (English)
PANG Mingyong
2006-01-01
In this paper, we present an approach for smooth surface reconstructions interpolating triangular meshes with arbitrary topology and geometry. The approach is based on the well-known radial basis functions (RBFs) and the constructed surfaces are generalized thin-plate spline surfaces. Our algorithm first defines a pair of offset points for each vertex of a given mesh to enhance the controllability of local geometry and to assure stability of the construction. A linear system is then solved by LU decomposition and the implicit governing equation of interpolating surface is obtained. The constructed surfaces finally are visualized by a Marching Cubes based polygonizer. The approach provides a robust and efficient solution for smooth surface reconstruction from various 3D meshes.
Genetic basis of cytokinin and auxin functions during root nodule development
Directory of Open Access Journals (Sweden)
Takuya eSuzaki
2013-03-01
Full Text Available The phytohormones cytokinin and auxin are essential for the control of diverse aspects of cell proliferation and differentiation processes in plants. Although both phytohormones have been suggested to play key roles in the regulation of root nodule development, only recently, significant progress has been made in the elucidation of the molecular genetic basis of cytokinin action in the model leguminous species, Lotus japonicus and Medicago truncatula. Identification and functional analyses of the putative cytokinin receptors LOTUS HISTIDINE KINASE 1 and M. truncatula CYTOKININ RESPONSE 1 have brought a greater understanding of how activation of cytokinin signaling is crucial to the initiation of nodule primordia. Recent studies have also started to shed light on the roles of auxin in the regulation of nodule development. Here, we review the history and recent progress of research into the roles of cytokinin and auxin, and their possible interactions, in nodule development.
The structure of bovine complement component 3 reveals the basis for thioester function
DEFF Research Database (Denmark)
Fredslund, Folmer; Jenner, Lasse Bohl; Husted, Lise Bjerre;
2006-01-01
The third component of complement (C3) is a 190 kDa glycoprotein essential for eliciting the complement response. The protein consists of two polypeptide chains (α and β) held together with a single disulfide bridge. The β-chain is made up of six MG domains of which one of which is shared...... but not in C5) is cleaved during complement activation. This mediates covalent attachment of the activated C3b to immune complexes and invading microorganisms hereby opsonising the target. We present the structure of bovine C3 determined at 3 Å resolution. The structure shows that the ester is deeply buried...... activation. This rearrangement is proposed to be the basis for the high reactivity of the thioester group. A strictly conserved glutamate is suggested to function catalytically in thioester proteins. Structure based design of inhibitors of C3 activation may target a conserved pocket between the α- and the β...
An Improved EMD and Its Applications to Find the Basis Functions of EMI Signals
Directory of Open Access Journals (Sweden)
Hongyi Li
2015-01-01
Full Text Available A B-spline empirical mode decomposition (BEMD method is proposed to improve the celebrated empirical mode decomposition (EMD method. The improvement of BEMD on EMD mainly concentrates on the sifting process. First, instead of the curve that resulted from computing the average of upper and lower envelopes, the curve interpolated by the midpoints of local maximal and minimal points is used as the mean curve, which can reduce the cost of computation. Second, the cubic spline interpolation is replaced with cubic B-spline interpolation on account of the advantages of B-spline over polynomial spline. The effectiveness of BEMD compared with EMD is validated by numerical simulations and an application to find the basis functions of EMI signals.
Interpolation by Hankel Translates of a Basis Function: Inversion Formulas and Polynomial Bounds
Directory of Open Access Journals (Sweden)
Cristian Arteaga
2014-01-01
Full Text Available For μ≥−1/2, the authors have developed elsewhere a scheme for interpolation by Hankel translates of a basis function Φ in certain spaces of continuous functions Yn (n∈ℕ depending on a weight w. The functions Φ and w are connected through the distributional identity t4n(hμ′Φ(t=1/w(t, where hμ′ denotes the generalized Hankel transform of order μ. In this paper, we use the projection operators associated with an appropriate direct sum decomposition of the Zemanian space ℋμ in order to derive explicit representations of the derivatives SμmΦ and their Hankel transforms, the former ones being valid when m∈ℤ+ is restricted to a suitable interval for which SμmΦ is continuous. Here, Sμm denotes the mth iterate of the Bessel differential operator Sμ if m∈ℕ, while Sμ0 is the identity operator. These formulas, which can be regarded as inverses of generalizations of the equation (hμ′Φ(t=1/t4nw(t, will allow us to get some polynomial bounds for such derivatives. Corresponding results are obtained for the members of the interpolation space Yn.
Interpolation by Hankel translates of a basis function: inversion formulas and polynomial bounds.
Arteaga, Cristian; Marrero, Isabel
2014-01-01
For μ≥-1/2, the authors have developed elsewhere a scheme for interpolation by Hankel translates of a basis function Φ in certain spaces of continuous functions Yn(n∈ℕ) depending on a weight w. The functions Φ and w are connected through the distributional identity t4n(hμ'Φ)(t)=1/w(t), where hμ' denotes the generalized Hankel transform of order μ. In this paper, we use the projection operators associated with an appropriate direct sum decomposition of the Zemanian space ℋμ in order to derive explicit representations of the derivatives SμmΦ and their Hankel transforms, the former ones being valid when m∈ℤ+ is restricted to a suitable interval for which SμmΦ is continuous. Here, Sμm denotes the mth iterate of the Bessel differential operator Sμ if m∈ℕ, while Sμ0 is the identity operator. These formulas, which can be regarded as inverses of generalizations of the equation (hμ'Φ)(t)=1/t4nw(t), will allow us to get some polynomial bounds for such derivatives. Corresponding results are obtained for the members of the interpolation space Y n .
DEFF Research Database (Denmark)
Zhou, Min; Jørgensen, Erik; Kim, Oleksiy S.;
2012-01-01
, thus providing the flexibility required in the analysis of printed reflectarrays. A comparison to DTU-ESA Facility measurements of a reference offset reflectarray shows that higher-order hierarchical Legendre basis functions produce results of the same accuracy as those obtained using singular basis...
Grimme, Stefan; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas
2015-08-07
A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of "low-cost" electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods
Energy Technology Data Exchange (ETDEWEB)
Grimme, Stefan, E-mail: grimme@thch.uni-bonn.de; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas [Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn (Germany)
2015-08-07
A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of “low-cost” electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT
Layered neural networks with non-monotonic transfer functions
Katayama, Katsuki; Sakata, Yasuo; Horiguchi, Tsuyoshi
2003-01-01
We investigate storage capacity and generalization ability for two types of fully connected layered neural networks with non-monotonic transfer functions; random patterns are embedded into the networks by a Hebbian learning rule. One of them is a layered network in which a non-monotonic transfer function of even layers is different from that of odd layers. The other is a layered network with intra-layer connections, in which the non-monotonic transfer function of inter-layer is different from that of intra-layer, and inter-layered neurons and intra-layered neurons are updated alternately. We derive recursion relations for order parameters for those layered networks by the signal-to-noise ratio method. We clarify that the storage capacity and the generalization ability for those layered networks are enhanced in comparison with those with a conventional monotonic transfer function when non-monotonicity of the transfer functions is selected optimally. We also point out that some chaotic behavior appears in the order parameters for the layered networks when non-monotonicity of the transfer functions increases.
The Efficiency of a Small-World Functional Brain Network
Institute of Scientific and Technical Information of China (English)
ZHAO Qing-Bai; ZHANG Xiao-Fei; SUI Dan-Ni; ZHOU Zhi-Jin; CHEN Qi-Cai; TANG Yi-Yuan
2012-01-01
We investigate whether the small-world topology of a functional brain network means high information processing efficiency by calculating the correlation between the small-world measures of a functional brain network and behavioral reaction during an imagery task.Functional brain networks are constructed by multichannel eventrelated potential data,in which the electrodes are the nodes and the functional connectivities between them are the edges.The results show that the correlation between small-world measures and reaction time is task-specific,such that in global imagery,there is a positive correlation between the clustering coefficient and reaction time,while in local imagery the average path length is positively correlated with the reaction time.This suggests that the efficiency of a functional brain network is task-dependent.%We investigate whether the small-world topology of a functional brain network means high information processing efficiency by calculating the correlation between the small-world measures of a functional brain network and behavioral reaction during an imagery task. Functional brain networks are constructed by multichannel event-related potential data, in which the electrodes are the nodes and the functional connectivities between them are the edges. The results show that the correlation between small-world measures and reaction time is task-specific, such that in global imagery, there is a positive correlation between the clustering coefficient and reaction time, while in local imagery the average path length is positively correlated with the reaction time. This suggests that the efficiency of a functional brain network is task-dependent.
Resting state functional network disruptions in a kainic acid model of temporal lobe epilepsy
Directory of Open Access Journals (Sweden)
Ravnoor Singh Gill
2017-01-01
Full Text Available We studied the graph topological properties of brain networks derived from resting-state functional magnetic resonance imaging in a kainic acid induced model of temporal lobe epilepsy (TLE in rats. Functional connectivity was determined by temporal correlation of the resting-state Blood Oxygen Level Dependent (BOLD signals between two brain regions during 1.5% and 2% isoflurane, and analyzed as networks in epileptic and control rats. Graph theoretical analysis revealed a significant increase in functional connectivity between brain areas in epileptic than control rats, and the connected brain areas could be categorized as a limbic network and a default mode network (DMN. The limbic network includes the hippocampus, amygdala, piriform cortex, nucleus accumbens, and mediodorsal thalamus, whereas DMN involves the medial prefrontal cortex, anterior and posterior cingulate cortex, auditory and temporal association cortex, and posterior parietal cortex. The TLE model manifested a higher clustering coefficient, increased global and local efficiency, and increased small-worldness as compared to controls, despite having a similar characteristic path length. These results suggest extensive disruptions in the functional brain networks, which may be the basis of altered cognitive, emotional and psychiatric symptoms in TLE.
Functional expansion representations of artificial neural networks
Gray, W. Steven
1992-01-01
In the past few years, significant interest has developed in using artificial neural networks to model and control nonlinear dynamical systems. While there exists many proposed schemes for accomplishing this and a wealth of supporting empirical results, most approaches to date tend to be ad hoc in nature and rely mainly on heuristic justifications. The purpose of this project was to further develop some analytical tools for representing nonlinear discrete-time input-output systems, which when applied to neural networks would give insight on architecture selection, pruning strategies, and learning algorithms. A long term goal is to determine in what sense, if any, a neural network can be used as a universal approximator for nonliner input-output maps with memory (i.e., realized by a dynamical system). This property is well known for the case of static or memoryless input-output maps. The general architecture under consideration in this project was a single-input, single-output recurrent feedforward network.
一类改进的插值基函数%A Kind of Interpolating Basis Functions with Improved Properties
Institute of Scientific and Technical Information of China (English)
章仁江; 蒋磊
2016-01-01
为了构造具有良好性质的插值基函数用来构造插值曲线与曲面，引入一类具有精确的局部支撑和无穷次可微的函数；将其与 sinc 函数结合并优化，构造一类相似于插值细分基函数的新基函数，这类新基函数保持了以往基函数的良好性质，并具有以往基函数所不具有的精确局部支撑性的优点。实例结果表明，文中构造的新基函数有很好的效果；与传统的Akima方法相比，所构造的曲线总体上具有较好的光顺性。%The main purpose of this work is to develop a kind of interpolating basis functions with good proper-ties for constructing interpolatory curves and surfaces. We first introduce a new class ofc¥functions with local support. Combined with the sinc function with parameter optimization, we obtain a new kind of interpolating ba-sis functions with similar properties to that of interpolatory subdivision basis functions. Compared with other similar basis functions in the literature, the new basis functions possess exact local support property. The curve example constructed using the new basis shows better visual effect compared with the well-known Akima’s me-thod, while other examples constructed by using the new basis exhibit similar visual effect compared with other similar basis functions in the literature.
Stable computations with flat radial basis functions using vector-valued rational approximations
Wright, Grady B.; Fornberg, Bengt
2017-02-01
One commonly finds in applications of smooth radial basis functions (RBFs) that scaling the kernels so they are 'flat' leads to smaller discretization errors. However, the direct numerical approach for computing with flat RBFs (RBF-Direct) is severely ill-conditioned. We present an algorithm for bypassing this ill-conditioning that is based on a new method for rational approximation (RA) of vector-valued analytic functions with the property that all components of the vector share the same singularities. This new algorithm (RBF-RA) is more accurate, robust, and easier to implement than the Contour-Padé method, which is similarly based on vector-valued rational approximation. In contrast to the stable RBF-QR and RBF-GA algorithms, which are based on finding a better conditioned base in the same RBF-space, the new algorithm can be used with any type of smooth radial kernel, and it is also applicable to a wider range of tasks (including calculating Hermite type implicit RBF-FD stencils). We present a series of numerical experiments demonstrating the effectiveness of this new method for computing RBF interpolants in the flat regime. We also demonstrate the flexibility of the method by using it to compute implicit RBF-FD formulas in the flat regime and then using these for solving Poisson's equation in a 3-D spherical shell.
Functional characterization and topological modularity of molecular interaction networks
Directory of Open Access Journals (Sweden)
Koyutürk Mehmet
2010-01-01
Full Text Available Abstract Background Analyzing interaction networks for functional characterization poses significant challenges arising from the noisy, incomplete, and generic nature of both the interaction data as well as functional annotation of molecules. Network-based methods focus on interacting molecules (pairs or sets occurring in close proximity to infer functional associations. Results In this paper we perform a formal comparative investigation of the relationship between functional coherence and topological proximity in networks. We investigate the problem of assessing the coherence of sets of biomolecules (or segments thereof taking into account functional specificity as well as the distribution of functional attributes across entity groups. We also propose novel measures of topological proximity that are more robust to noisy and incomplete interaction data. Conclusion We derive the following results in this paper: (i there exists strong correlation between functional similarity and topological proximity in various network abstractions, with domain interaction networks (DDIs demonstrating higher correlation than protein interaction networks (PPIs; (ii measures that quantify coherence among entire sets of proteins are superior to aggregates of known pair-wise measures; and (iii random-walk based measures of topological proximity are better suited to existing interaction data. We validate our methods on diverse data, including experimentally and computationally derived PPIs and DDIs, as well as on sets of known biologically related groups of molecules.
Kanungo, Bikash; Gavini, Vikram
2017-01-01
We present a computationally efficient approach to perform large-scale all-electron density functional theory calculations by enriching the classical finite element basis with compactly supported atom-centered numerical basis functions that are constructed from the solution of the Kohn-Sham (KS) problem for single atoms. We term these numerical basis functions as enrichment functions, and the resultant basis as the enriched finite element basis. The compact support for the enrichment functions is obtained by using smooth cutoff functions, which enhances the conditioning and maintains the locality of the enriched finite element basis. The integrals involved in the evaluation of the discrete KS Hamiltonian and overlap matrix in the enriched finite element basis are computed using an adaptive quadrature grid that is constructed based on the characteristics of enrichment functions. Further, we propose an efficient scheme to invert the overlap matrix by using a blockwise matrix inversion in conjunction with special reduced-order quadrature rules, which is required to transform the discrete Kohn-Sham problem to a standard eigenvalue problem. Finally, we solve the resulting standard eigenvalue problem, in each self-consistent field iteration, by using a Chebyshev polynomial based filtering technique to compute the relevant eigenspectrum. We demonstrate the accuracy, efficiency, and parallel scalability of the proposed method on semiconducting and heavy-metallic systems of various sizes, with the largest system containing 8694 electrons. We obtain accuracies in the ground-state energies that are ˜1 mHa with reference ground-state energies employing classical finite element as well as Gaussian basis sets. Using the proposed formulation based on enriched finite element basis, for accuracies commensurate with chemical accuracy, we observe a staggering 50 -300 -fold reduction in the overall computational time when compared to classical finite element basis. Further, we find a
Joint Modelling of Structural and Functional Brain Networks
DEFF Research Database (Denmark)
Andersen, Kasper Winther; Herlau, Tue; Mørup, Morten
Functional and structural magnetic resonance imaging have become the most important noninvasive windows to the human brain. A major challenge in the analysis of brain networks is to establish the similarities and dissimilarities between functional and structural connectivity. We formulate a non...... significant structures that are consistently shared across subjects and data splits. This provides an unsupervised approach for modeling of structure-function relations in the brain and provides a general framework for multimodal integration.......-parametric Bayesian network model which allows for joint modelling and integration of multiple networks. We demonstrate the model’s ability to detect vertices that share structure across networks jointly in functional MRI (fMRI) and diffusion MRI (dMRI) data. Using two fMRI and dMRI scans per subject, we establish...
Mackie, Iain D; Dilabio, Gino A
2010-06-21
B971, PBE and PBE1 density functionals with 6-31G(d) basis sets are shown to accurately describe the binding in dispersion bound dimers. This is achieved through the use of dispersion-correcting potentials (DCPs) in conjunction with counterpoise corrections. DCPs resemble and are applied like conventional effective core potentials that can be used with most computational chemistry programs without code modification. Rather, DCPs are implemented by simple appendage to the input files for these types of programs. Binding energies are predicted to within ca. 11% and monomer separations to within ca. 0.06 A of high-level wavefunction data using B971/6-31G(d)-DCP. Similar results are obtained for PBE and PBE1 with the 6-31G(d) basis sets and DCPs. Although results found using the 3-21G(d) are not as impressive, they never-the-less show promise as a means of initial study for a wide variety of dimers, including those dominated by dispersion, hydrogen-bonding and a mixture of interactions. Notable improvement is found in comparison to M06-2X/6-31G(d) data, e.g., mean absolute deviations for the S22-set of dimers of ca. 13.6 and 16.5% for B971/6-31G(d)-DCP and M06-2X, respectively. However, it should be pointed out that the latter data were obtained using a larger integration grid size since a smaller grid results in different binding energies and geometries for simple dispersion-bound dimers such as methane and ethene.
Functional Reorganizations of Brain Network in Prelingually Deaf Adolescents
Wenjing Li; Jianhong Li; Jieqiong Wang; Peng Zhou; Zhenchang Wang; Junfang Xian; Huiguang He
2016-01-01
Previous neuroimaging studies suggested structural or functional brain reorganizations occurred in prelingually deaf subjects. However, little is known about the reorganizations of brain network architectures in prelingually deaf adolescents. The present study aims to investigate alterations of whole-brain functional network using resting-state fMRI and graph theory analysis. We recruited 16 prelingually deaf adolescents (10~18 years) and 16 normal controls matched in age and gender. Brain ne...
Nodal centrality of functional network in the differentiation of schizophrenia.
Cheng, Hu; Newman, Sharlene; Goñi, Joaquín; Kent, Jerillyn S; Howell, Josselyn; Bolbecker, Amanda; Puce, Aina; O'Donnell, Brian F; Hetrick, William P
2015-10-01
A disturbance in the integration of information during mental processing has been implicated in schizophrenia, possibly due to faulty communication within and between brain regions. Graph theoretic measures allow quantification of functional brain networks. Functional networks are derived from correlations between time courses of brain regions. Group differences between SZ and control groups have been reported for functional network properties, but the potential of such measures to classify individual cases has been little explored. We tested whether the network measure of betweenness centrality could classify persons with schizophrenia and normal controls. Functional networks were constructed for 19 schizophrenic patients and 29 non-psychiatric controls based on resting state functional MRI scans. The betweenness centrality of each node, or fraction of shortest-paths that pass through it, was calculated in order to characterize the centrality of the different regions. The nodes with high betweenness centrality agreed well with hub nodes reported in previous studies of structural and functional networks. Using a linear support vector machine algorithm, the schizophrenia group was differentiated from non-psychiatric controls using the ten nodes with the highest betweenness centrality. The classification accuracy was around 80%, and stable against connectivity thresholding. Better performance was achieved when using the ranks as feature space as opposed to the actual values of betweenness centrality. Overall, our findings suggest that changes in functional hubs are associated with schizophrenia, reflecting a variation of the underlying functional network and neuronal communications. In addition, a specific network property, betweenness centrality, can classify persons with SZ with a high level of accuracy.
Language networks in children: Evidence from functional MRI studies
2009-01-01
We review functional MRI and other neuroimaging studies of language skills in children from infancy to adulthood. These studies show developmental changes in the networks of brain regions supporting language, which can be affected by brain injuries or neurological disorders. Particular aspects of language rely on networks that lateralize to the dominant hemisphere; others rely on bilateral or non-dominant mechanisms. Multiple fMRI tasks for pediatric patients characterize functional brain reo...
Statistical Network Analysis for Functional MRI: Mean Networks and Group Comparisons.
Directory of Open Access Journals (Sweden)
Cedric E Ginestet
2014-05-01
Full Text Available Comparing networks in neuroscience is hard, because the topological properties of a given network are necessarily dependent on the number of edges of that network. This problem arises in the analysis of both weighted and unweighted networks. The term density is often used in this context, in order to refer to the mean edge weight of a weighted network, or to the number of edges in an unweighted one. Comparing families of networks is therefore statistically difficult because differences in topology are necessarily associated with differences in density. In this review paper, we consider this problem from two different perspectives, which include (i the construction of summary networks, such as how to compute and visualize the mean network from a sample of network-valued data points; and (ii how to test for topological differences, when two families of networks also exhibit significant differences in density. In the first instance, we show that the issue of summarizing a family of networks can be conducted by either adopting a mass-univariate approach, which produces a statistical parametric network (SPN, or by directly computing the mean network, provided that a metric has been specified on the space of all networks with a given number of nodes. In the second part of this review, we then highlight the inherent problems associated with the comparison of topological functions of families of networks that differ in density. In particular, we show that a wide range of topological summaries, such as global efficiency and network modularity are highly sensitive to differences in density. Moreover, these problems are not restricted to unweighted metrics, as we demonstrate that the same issues remain present when considering the weighted versions of these metrics. We conclude by encouraging caution, when reporting such statistical comparisons, and by emphasizing the importance of constructing summary networks.
A Statistical Method to Distinguish Functional Brain Networks
Fujita, André; Vidal, Maciel C.; Takahashi, Daniel Y.
2017-01-01
One major problem in neuroscience is the comparison of functional brain networks of different populations, e.g., distinguishing the networks of controls and patients. Traditional algorithms are based on search for isomorphism between networks, assuming that they are deterministic. However, biological networks present randomness that cannot be well modeled by those algorithms. For instance, functional brain networks of distinct subjects of the same population can be different due to individual characteristics. Moreover, networks of subjects from different populations can be generated through the same stochastic process. Thus, a better hypothesis is that networks are generated by random processes. In this case, subjects from the same group are samples from the same random process, whereas subjects from different groups are generated by distinct processes. Using this idea, we developed a statistical test called ANOGVA to test whether two or more populations of graphs are generated by the same random graph model. Our simulations' results demonstrate that we can precisely control the rate of false positives and that the test is powerful to discriminate random graphs generated by different models and parameters. The method also showed to be robust for unbalanced data. As an example, we applied ANOGVA to an fMRI dataset composed of controls and patients diagnosed with autism or Asperger. ANOGVA identified the cerebellar functional sub-network as statistically different between controls and autism (p < 0.001). PMID:28261045
Density-dependence of functional spiking networks in vitro
Energy Technology Data Exchange (ETDEWEB)
Ham, Michael I [Los Alamos National Laboratory; Gintautuas, Vadas [Los Alamos National Laboratory; Rodriguez, Marko A [Los Alamos National Laboratory; Bettencourt, Luis M A [Los Alamos National Laboratory; Bennett, Ryan [UNIV OF NORTH TEXAS; Santa Maria, Cara L [UNIV OF NORTH TEXAS
2008-01-01
During development, the mammalian brain differentiates into specialized regions with unique functional abilities. While many factors contribute to this functional specialization, we explore the effect neuronal density can have on neuronal interactions. Two types of networks, dense (50,000 neurons and glia support cells) and sparse (12,000 neurons and glia support cells), are studied. A competitive first response model is applied to construct activation graphs that represent pairwise neuronal interactions. By observing the evolution of these graphs during development in vitro we observe that dense networks form activation connections earlier than sparse networks, and that link-!llltropy analysis of the resulting dense activation graphs reveals that balanced directional connections dominate. Information theoretic measures reveal in addition that early functional information interactions (of order 3) are synergetic in both dense and sparse networks. However, during development in vitro, such interactions become redundant in dense, but not sparse networks. Large values of activation graph link-entropy correlate strongly with redundant ensembles observed in the dense networks. Results demonstrate differences between dense and sparse networks in terms of informational groups, pairwise relationships, and activation graphs. These differences suggest that variations in cell density may result in different functional specialization of nervous system tissue also in vivo.
A framework for interpreting functional networks in schizophrenia
Directory of Open Access Journals (Sweden)
Peter eWilliamson
2012-06-01
Full Text Available Some promising genetic correlates of schizophrenia have emerged in recent years but none explain more than a small fraction of cases. The challenge of our time is to characterize the neuronal networks underlying schizophrenia and other neuropsychiatric illnesses. It has been proposed that schizophrenia arises from a uniquely human brain network associated with directed effort including the dorsal anterior and posterior cingulate cortex, auditory cortex, and hippocampus and while mood disorders arise from a different brain network associated with emotional encoding including the ventral anterior cingulate cortex, orbital frontal cortex, and amygdala. Both interact with a representation network including the frontal and temporal poles and the fronto-insular cortex, allowing the representation of the thoughts, feelings and actions of self and others. This paper reviews recent morphological and functional literature in light of the proposed networks underlying these disorders. It is suggested that there is considerable support for the involvement of the directed effort network in schizophrenia from studies of brain structure with voxel-based morphometry (VBM and diffusion tensor imaging (DTI. While early studies of resting brain networks are inconclusive, functional magnetic resonance imaging imaging (fMRI studies of task-related networks clearly implicate these regions. In keeping with the model, functional deficits in regions associated with directed effort and self-monitoring are associated with structural anomalies in action-related regions in schizophrenic patients. VBM, DTI, fMRI studies of mood disordered patients support the involvement of a different network associated with emotional encoding. The distinction between disorders is enhanced by combining structural and functional data. It is concluded that brain networks associated with directed effort are particularly vulnerable to failure in the human brain leading to the symptoms of
Mizera, Mikołaj; Lewadowska, Kornelia; Talaczyńska, Alicja; Cielecka-Piontek, Judyta
2015-02-01
The work was aimed at investigating the influence of diffusion of basis functions on the geometry optimization of molecule of losartan in acidic and salt form. Spectroscopic properties of losartan potassium were also calculated and compared with experiment. Density functional theory method with various basis sets: 6-31G(d,p) and its diffused variations 6-31G(d,p)+ and 6-31G(d,p)++ was used. Application of diffuse basis functions in geometry optimization resulted in significant change of total molecule energy. Total molecule energy of losartan potassium decreased by 112.91 kJ/mol and 114.32 kJ/mol for 6-31G(d,p)+ and 6-31G(d,p)++ basis sets, respectively. Almost the same decrease was observed for losartan: 114.99 kJ/mol and 117.08 kJ/mol respectively for 6-31G(d,p)+ and 6-31G(d,p)++ basis sets. Further investigation showed significant difference within geometries of losartan potassium optimized with investigated basis sets. Application of diffused basis functions resulted in average 1.29 Å difference in relative position between corresponding atoms of three obtained geometries. Similar study taken on losartan resulted in only average 0.22 Å of dislocation. Extensive analysis of geometry changes in molecules obtained with diffused and non-diffuse basis functions was carried out in order to elucidate observed changes. The analysis was supported by electrostatic potential maps and calculation of natural atomic charges. UV, FT-IR and Raman spectra of losartan potassium were calculated and compared with experimental results. No crucial differences between Raman spectra obtained with different basis sets were observed. However, FT-IR spectra of geometry of losartan potassium optimized with 6-31G(d,p)++ basis set resulted in 40% better correlation with experimental FT-IR spectra than FT-IR calculated with geometry optimized with 6-31G(d,p) basis set. Therefore, it is highly advisable to optimize geometry of molecules with ionic interactions using diffuse basis functions
Cellular and neurochemical basis of sleep stages in the thalamocortical network.
Krishnan, Giri P; Chauvette, Sylvain; Shamie, Isaac; Soltani, Sara; Timofeev, Igor; Cash, Sydney S; Halgren, Eric; Bazhenov, Maxim
2016-11-16
The link between the combined action of neuromodulators in the brain and global brain states remains a mystery. In this study, using biophysically realistic models of the thalamocortical network, we identified the critical intrinsic and synaptic mechanisms, associated with the putative action of acetylcholine (ACh), GABA and monoamines, which lead to transitions between primary brain vigilance states (waking, non-rapid eye movement sleep [NREM] and REM sleep) within an ultradian cycle. Using ECoG recordings from humans and LFP recordings from cats and mice, we found that during NREM sleep the power of spindle and delta oscillations is negatively correlated in humans and positively correlated in animal recordings. We explained this discrepancy by the differences in the relative level of ACh. Overall, our study revealed the critical intrinsic and synaptic mechanisms through which different neuromodulators acting in combination result in characteristic brain EEG rhythms and transitions between sleep stages.
Assortative mixing in functional brain networks during epileptic seizures
Bialonski, Stephan
2013-01-01
We investigate assortativity of functional brain networks before, during, and after one-hundred epileptic seizures with different anatomical onset locations. We construct binary functional networks from multi-channel electroencephalographic data recorded from 60 epilepsy patients, and from time-resolved estimates of the assortativity coefficient we conclude that positive degree-degree correlations are inherent to seizure dynamics. While seizures evolve, an increasing assortativity indicates a segregation of the underlying functional network into groups of brain regions that are only sparsely interconnected, if at all. Interestingly, assortativity decreases already prior to seizure end. Together with previous observations of characteristic temporal evolutions of global statistical properties and synchronizability of epileptic brain networks, our findings may help to gain deeper insights into the complicated dynamics underlying generation, propagation, and termination of seizures.
Directory of Open Access Journals (Sweden)
Delong Zhang
Full Text Available Many studies have demonstrated that the pathophysiology and clinical symptoms of Parkinson's disease (PD are inhomogeneous. However, the symptom-specific intrinsic neural activities underlying the PD subtypes are still not well understood. Here, 15 tremor-dominant PD patients, 10 non-tremor-dominant PD patients, and 20 matched normal controls (NCs were recruited and underwent resting-state functional magnetic resonance imaging (fMRI. Functional brain networks were constructed based on randomly generated anatomical templates with and without the cerebellum. The regional network efficiencies (i.e., the local and global efficiencies were further measured and used to distinguish subgroups of PD patients (i.e., with tremor-dominant PD and non-tremor-dominant PD from the NCs using linear discriminant analysis. The results demonstrate that the subtype-specific functional networks were small-world-organized and that the network regional efficiency could discriminate among the individual PD subgroups and the NCs. Brain regions involved in distinguishing between the study groups included the basal ganglia (i.e., the caudate and putamen, limbic regions (i.e., the hippocampus and thalamus, the cerebellum, and other cerebral regions (e.g., the insula, cingulum, and calcarine sulcus. In particular, the performances of the regional local efficiency in the functional network were better than those of the global efficiency, and the performances of global efficiency were dependent on the inclusion of the cerebellum in the analysis. These findings provide new evidence for the neurological basis of differences between PD subtypes and suggest that the cerebellum may play different roles in the pathologies of different PD subtypes. The present study demonstrated the power of the combination of graph-based network analysis and discrimination analysis in elucidating the neural basis of different PD subtypes.
Mapping distributed brain function and networks with diffuse optical tomography
Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.
2014-06-01
Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.
McClements, David Julian; Gumus, Cansu Ekin
2016-08-01
There is increasing consumer pressure for commercial products that are more natural, sustainable, and environmentally friendly, including foods, cosmetics, detergents, and personal care products. Industry has responded by trying to identify natural alternatives to synthetic functional ingredients within these products. The focus of this review article is on the replacement of synthetic surfactants with natural emulsifiers, such as amphiphilic proteins, polysaccharides, biosurfactants, phospholipids, and bioparticles. In particular, the physicochemical basis of emulsion formation and stabilization by natural emulsifiers is discussed, and the benefits and limitations of different natural emulsifiers are compared. Surface-active polysaccharides typically have to be used at relatively high levels to produce small droplets, but the droplets formed are highly resistant to environmental changes. Conversely, surface-active proteins are typically utilized at low levels, but the droplets formed are highly sensitive to changes in pH, ionic strength, and temperature. Certain phospholipids are capable of producing small oil droplets during homogenization, but again the droplets formed are highly sensitive to changes in environmental conditions. Biosurfactants (saponins) can be utilized at low levels to form fine oil droplets that remain stable over a range of environmental conditions. Some nature-derived nanoparticles (e.g., cellulose, chitosan, and starch) are effective at stabilizing emulsions containing relatively large oil droplets. Future research is encouraged to identify, isolate, purify, and characterize new types of natural emulsifier, and to test their efficacy in food, cosmetic, detergent, personal care, and other products.
Features of Discontinuous Galerkin Algorithms in Gkeyll, and Exponentially-Weighted Basis Functions
Hammett, G. W.; Hakim, A.; Shi, E. L.
2016-10-01
There are various versions of Discontinuous Galerkin (DG) algorithms that have interesting features that could help with challenging problems of higher-dimensional kinetic problems (such as edge turbulence in tokamaks and stellarators). We are developing the gyrokinetic code Gkeyll based on DG methods. Higher-order methods do more FLOPS to extract more information per byte, thus reducing memory and communication costs (which are a bottleneck for exascale computing). The inner product norm can be chosen to preserve energy conservation with non-polynomial basis functions (such as Maxwellian-weighted bases), which alternatively can be viewed as a Petrov-Galerkin method. This allows a full- F code to benefit from similar Gaussian quadrature employed in popular δf continuum gyrokinetic codes. We show some tests for a 1D Spitzer-Härm heat flux problem, which requires good resolution for the tail. For two velocity dimensions, this approach could lead to a factor of 10 or more speedup. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.
A numerically efficient technique of regional gravity field modeling using Radial Basis Functions
Shahbazi, Anahita; Safari, Abdolreza; Foroughi, Ismael; Tenzer, Robert
2016-02-01
Radial Basis Functions (RBFs) have been extensively used in regional gravity and (quasi)geoid modeling. Reliable models require the choice of an optimal number of RBFs and of their parameters. The RBF parameters are typically optimized using a regularization algorithm. Therefore, the determination of the number of RBFs is the most challenging task in the modeling procedure. For this purpose, we design a data processing scheme to optimize the number of RBFs and their parameters simultaneously. Using this scheme, the gravimetric quasi-geoid model can be validated without requiring additional information on the quasi-geoidal geometry obtained from GPS/leveling data. Furthermore, the Levenberg-Marquardt algorithm, used for regularization, is modified to enhance its numerical performance. We demonstrate that these modifications guarantee the convergence of the solution to the global minimum while substantially decreasing the number of iterations. The proposed methodology is evaluated using synthetic gravity data and compared with existing methods for validating the RBF parameterization of the gravity field.
Poirier, Vincent
Mesh deformation schemes play an important role in numerical aerodynamic optimization. As the aerodynamic shape changes, the computational mesh must adapt to conform to the deformed geometry. In this work, an extension to an existing fast and robust Radial Basis Function (RBF) mesh movement scheme is presented. Using a reduced set of surface points to define the mesh deformation increases the efficiency of the RBF method; however, at the cost of introducing errors into the parameterization by not recovering the exact displacement of all surface points. A secondary mesh movement is implemented, within an adjoint-based optimization framework, to eliminate these errors. The proposed scheme is tested within a 3D Euler flow by reducing the pressure drag while maintaining lift of a wing-body configured Boeing-747 and an Onera-M6 wing. As well, an inverse pressure design is executed on the Onera-M6 wing and an inverse span loading case is presented for a wing-body configured DLR-F6 aircraft.
Enhancing finite differences with radial basis functions: Experiments on the Navier-Stokes equations
Flyer, Natasha; Barnett, Gregory A.; Wicker, Louis J.
2016-07-01
Polynomials are used together with polyharmonic spline (PHS) radial basis functions (RBFs) to create local RBF-finite-difference (RBF-FD) weights on different node layouts for spatial discretizations that can be viewed as enhancements of the classical finite differences (FD). The presented method replicates the convergence properties of FD but for arbitrary node layouts. It is tested on the 2D compressible Navier-Stokes equations at low Mach number, relevant to atmospheric flows. Test cases are taken from the numerical weather prediction community and solved on bounded domains. Thus, attention is given on how to handle boundaries with the RBF-FD method, as well as a novel implementation for hyperviscosity. Comparisons are done on Cartesian, hexagonal, and quasi-uniform node layouts. Consideration and guidelines are given on PHS order, polynomial degree and stencil size. The main advantages of the present method are: 1) capturing the basic physics of the problem surprisingly well, even at very coarse resolutions, 2) high-order accuracy without the need of tuning a shape parameter, and 3) the inclusion of polynomials eliminates stagnation (saturation) errors. A MATLAB code is given to calculate the differentiation weights for this novel approach.
Ziegler, Andy; Köhler, Thomas; Nielsen, Tim; Proksa, Roland
2006-12-01
In cone-beam transmission tomography the measurements are performed with a divergent beam of x-rays. The reconstruction with iterative methods is an approach that offers the possibility to reconstruct the corresponding images directly from these measurements. Another approach based on spherically symmetric basis functions (blobs) has been reported with results demonstrating a better image quality for iterative reconstruction algorithms. When combining the two approaches (i.e., using blobs in iterative cone-beam reconstruction of divergent rays) the problem of blob sampling without introducing aliasing must be addressed. One solution to this problem is to select a blob size large enough to ensure a sufficient sampling, but this prevents a high resolution reconstruction, which is not desired. Another solution is a heuristic low-pass filtering, which removes this aliasing, but neglects the different contributions of blobs to the absorption depending on the spatial position in the volume and, therefore, cannot achieve the best image quality. This article presents a model of sampling the blobs which is motivated by the beam geometry. It can be used for high resolution reconstruction and can be implementedefficiently.
Wang, Zhiheng
2014-12-10
A meshless local radial basis function method is developed for two-dimensional incompressible Navier-Stokes equations. The distributed nodes used to store the variables are obtained by the philosophy of an unstructured mesh, which results in two main advantages of the method. One is that the unstructured nodes generation in the computational domain is quite simple, without much concern about the mesh quality; the other is that the localization of the obtained collocations for the discretization of equations is performed conveniently with the supporting nodes. The algebraic system is solved by a semi-implicit pseudo-time method, in which the convective and source terms are explicitly marched by the Runge-Kutta method, and the diffusive terms are implicitly solved. The proposed method is validated by several benchmark problems, including natural convection in a square cavity, the lid-driven cavity flow, and the natural convection in a square cavity containing a circular cylinder, and very good agreement with the existing results are obtained.
Development of large-scale functional networks over the lifespan.
Schlee, Winfried; Leirer, Vera; Kolassa, Stephan; Thurm, Franka; Elbert, Thomas; Kolassa, Iris-Tatjana
2012-10-01
The development of large-scale functional organization of the human brain across the lifespan is not well understood. Here we used magnetoencephalographic recordings of 53 adults (ages 18-89) to characterize functional brain networks in the resting state. Slow frequencies engage larger networks than higher frequencies and show different development over the lifespan. Networks in the delta (2-4 Hz) frequency range decrease, while networks in the beta/gamma frequency range (> 16 Hz) increase in size with advancing age. Results show that the right frontal lobe and the temporal areas in both hemispheres are important relay stations in the expanding high-frequency networks. Neuropsychological tests confirmed the tendency of cognitive decline with older age. The decrease in visual memory and visuoconstructive functions was strongly associated with the age-dependent enhancement of functional connectivity in both temporal lobes. Using functional network analysis this study elucidates important neuronal principles underlying age-related cognitive decline paving mental deterioration in senescence.
Uncovering Biological Network Function via Graphlet Degree Signatures
Directory of Open Access Journals (Sweden)
Nataša Pržulj
2008-01-01
Full Text Available Motivation: Proteins are essential macromolecules of life and thus understanding their function is of great importance. The number of functionally unclassiﬁed proteins is large even for simple and well studied organisms such as baker’s yeast. Methods for determining protein function have shifted their focus from targeting speciﬁc proteins based solely on sequence homology to analyses of the entire proteome based on protein-protein interaction (PPI networks. Since proteins interact to perform a certain function, analyzing structural properties of PPI networks may provide useful clues about the biological function of individual proteins, protein complexes they participate in, and even larger subcellular machines.Results: We design a sensitive graph theoretic method for comparing local structures of node neighborhoods that demonstrates that in PPI networks, biological function of a node and its local network structure are closely related. The method summarizes a protein’s local topology in a PPI network into the vector of graphlet degrees called the signature of the protein and computes the signature similarities between all protein pairs. We group topologically similar proteins under this measure in a PPI network and show that these protein groups belong to the same protein complexes, perform the same biological functions, are localized in the same subcellular compartments, and have the same tissue expressions. Moreover, we apply our technique on a proteome-scale network data and infer biological function of yet unclassiﬁed proteins demonstrating that our method can provide valuable guidelines for future experimental research such as disease protein prediction.Availability: Data is available upon request.
Exploring the "Middle Earth" of network spectra via a Gaussian matrix function
Estrada, Ernesto; Alhomaidhi, Alhanouf Ali; Al-Thukair, Fawzi
2017-02-01
We study a Gaussian matrix function of the adjacency matrix of artificial and real-world networks. We motivate the use of this function on the basis of a dynamical process modeled by the time-dependent Schrödinger equation with a squared Hamiltonian. In particular, we study the Gaussian Estrada index—an index characterizing the importance of eigenvalues close to zero. This index accounts for the information contained in the eigenvalues close to zero in the spectra of networks. Such a method is a generalization of the so-called "Folded Spectrum Method" used in quantum molecular sciences. Here, we obtain bounds for this index in simple graphs, proving that it reaches its maximum for star graphs followed by complete bipartite graphs. We also obtain formulas for the Estrada Gaussian index of Erdős-Rényi random graphs and for the Barabási-Albert graphs. We also show that in real-world networks, this index is related to the existence of important structural patterns, such as complete bipartite subgraphs (bicliques). Such bicliques appear naturally in many real-world networks as a consequence of the evolutionary processes giving rise to them. In general, the Gaussian matrix function of the adjacency matrix of networks characterizes important structural information not described in previously used matrix functions of graphs.
Directory of Open Access Journals (Sweden)
Ekaterina Kotelnikova
2007-01-01
Full Text Available Motivation: Although a great deal of progress is being made in the development of fast and reliable experimental techniques to extract genome-wide networks of protein-protein and protein-DNA interactions, the sequencing of new genomes proceeds at an even faster rate. That is why there is a considerable need for reliable methods of in-silico prediction of protein interaction based solely on sequence similarity information and known interactions from well-studied organisms. This problem can be solved if a dependency exists between sequence similarity and the conservation of the proteins’ functions.Results: In this paper, we introduce a novel probabilistic method for prediction of protein-protein interactions using a new empirical probabilistic formula describing the loss of interactions between homologous proteins during the course of evolution. This formula describes an evolutional process quite similar to the process of the Earth’s population growth. In addition, our method favors predictions confi rmed by several interacting pairs over predictions coming from a single interacting pair. Our approach is useful in working with “noisy” data such as those coming from high-throughput experiments. We have generated predictions for fi ve “model” organisms: H. sapiens, D. melanogaster, C. elegans, A. thaliana, and S. cerevisiae and evaluated the quality of these predictions.