WorldWideScience

Sample records for basin utah final

  1. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Final technical progress report, October 1--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Allison, M.L.

    1996-01-15

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Five activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) regional facies evaluation, (2) evaluation of outcrop analogues, (3) field-scale geologic analysis, (4) reservoir analysis, and (5) technology transfer.

  2. Oil shale resources of the Uinta Basin, Utah and Colorado

    Science.gov (United States)

    ,

    2010-01-01

    The U.S. Geological Survey (USGS) recently completed a comprehensive assessment of in-place oil in oil shales of the Eocene Green River Formation of the Uinta Basin of eastern Utah and western Colorado. The oil shale interval was subdivided into eighteen roughly time-stratigraphic intervals, and each interval was assessed for variations in gallons per ton, barrels per acre, and total barrels in each township. The Radial Basis Function extrapolation method was used to generate isopach and isoresource maps, and to calculate resources. The total inplace resource for the Uinta Basin is estimated at 1.32 trillion barrels. This is only slightly lower than the estimated 1.53 trillion barrels for the adjacent Piceance Basin, Colorado, to the east, which is thought to be the richest oil shale deposit in the world. However, the area underlain by oil shale in the Uinta Basin is much larger than that of the Piceance Basin, and the average gallons per ton and barrels per acre values for each of the assessed oil shale zones are significantly lower in the depocenter in the Uinta Basin when compared to the Piceance Basin. These relations indicate that the oil shale resources in the Uinta Basin are of lower grade and are more dispersed than the oil shale resources of the Piceance Basin.

  3. TIN Dataset Model of the Mahogany Bed Structure in the Uinta Basin, Utah and Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI TIN data model of the Mahogany bed structure was needed to perform overburden calculations in the Uinta Basin, Utah and Colorado as part of a 2009 National...

  4. Raster Dataset Model of the Mahogany Bed Structure in the Uinta Basin, Utah and Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI GRID raster data model of the Mahogany bed structure was needed to perform overburden calculations in the Uinta Basin, Utah and Colorado as part of a 2009...

  5. Raster Dataset Model of Overburden Above the Mahogany Bed in the Uinta Basin, Utah and Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI GRID raster data model of the overburden material above the Mahogany bed was needed to perform calculations in the Uinta Basin, Utah and Colorado as part of...

  6. TIN Dataset Model of Overburden Above the Mahogany Bed in the Uinta Basin, Utah and Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI TIN data model of the overburden material above the Mahogany bed was needed to perform calculations in the Uinta Basin, Utah and Colorado as part of a 2009...

  7. Structure contour map of the greater Green River basin, Wyoming, Colorado, and Utah

    Science.gov (United States)

    Lickus, M.R.; Law, B.E.

    1988-01-01

    The Greater Green River basin of Wyoming, Colorado, and Utah contains five basins and associated major uplifts (fig. 1). Published structure maps of the region have commonly used the top of the Lower Cretaceous Dakota Sandstone as a structural datum (Petroleum Ownership Map Company (POMCO), 1984; Rocky Mountain Association of Geologists, 1972). However, because relatively few wells in this area penetrate the Dakota, the Dakota structural datum has to be constructed by projecting down from shallower wells. Extrapolating in this manner may produce errors in the map. The primary purpose of this report is to present a more reliable structure contour map of the Greater Green River basin based on datums that are penetrated by many wells. The final map shows the large- to small-scale structures present in the Greater Green River basin. The availability of subsurface control and the map scale determined whether or not a structural feature was included on the map. In general, large structures such as the Moxa arch, Pinedale anticline, and other large folds were placed on the map based solely on the structure contours. In comparison, smaller folds and some faults were placed on the map based on structure contours and other reports (Bader 1987; Bradley 1961; Love and Christiansen, 1985; McDonald, 1975; Roehler, 1979; Wyoming Geological Association Oil and Gas Symposium Committee, 1979). State geologic maps and other reports were used to position basin margin faults (Bryant, 1985; Gries, 1983a, b; Hansen 1986; Hintze, 1980; Love and Christiansen, 1985; Tweto, 1979, 1983). In addition, an interpreted east-west-trending regional seismic line by Garing and Tainter (1985), which shows the basin configuration in cross-section, was helpful in locating buried faults, such as the high-angle reverse or thrust fault along the west flank of the Rock Springs uplift.

  8. Emissions from Produced Water Treatment Ponds, Uintah Basin, Utah, USA

    Science.gov (United States)

    Mansfield, M. L.; Lyman, S. N.; Tran, H.; O'Neil, T.; Anderson, R.

    2015-12-01

    An aqueous phase, known as "produced water," usually accompanies the hydrocarbon fluid phases that are extracted from Earth's crust during oil and natural gas extraction. Produced water contains dissolved and suspended organics and other contaminants and hence cannot be discharged directly into the hydrosphere. One common disposal method is to discharge produced water into open-pit evaporation ponds. Spent hydraulic fracturing fluids are also often discharged into the same ponds. It is obvious to anyone with a healthy olfactory system that such ponds emit volatile organics to the atmosphere, but very little work has been done to characterize such emissions. Because oil, gas, and water phases are often in contact in geologic formations, we can expect that more highly soluble compounds (e.g., salts, alcohols, carbonyls, carboxyls, BTEX, etc.) partition preferentially into produced water. However, as the water in the ponds age, many physical, chemical, and biological processes alter the composition of the water, and therefore the composition and strength of volatile organic emissions. For example, some ponds are aerated to hasten evaporation, which also promotes oxidation of organics dissolved in the water. Some ponds are treated with microbes to promote bio-oxidation. In other words, emissions from ponds are expected to be a complex function of the composition of the water as it first enters the pond, and also of the age of the water and of its treatment history. We have conducted many measurements of emissions from produced water ponds in the Uintah Basin of eastern Utah, both by flux chamber and by evacuated canister sampling with inverse modeling. These measurements include fluxes of CO2, CH4, methanol, and many other volatile organic gases. We have also measured chemical compositions and microbial content of water in the ponds. Results of these measurements will be reported.

  9. Reproductive biology, hybridization, and flower visitors of rare Sclerocactus taxa in Utah's Uintah Basin

    Science.gov (United States)

    The mating system and flower visitors of two threatened species of Sclerocactus (Cactaceae) were studied in the Uintah Basin of eastern Utah, an area undergoing rapid energy development. We found that both S. wetlandicus and S. brevispinus, as well as a third presumptive taxon (undescribed) which w...

  10. Ground water in the southeastern Uinta Basin, Utah and Colorado

    Science.gov (United States)

    Holmes, Walter F.; Kimball, Briant A.

    1987-01-01

    The potential for developing oil-shale resources in the southeastern Uinta Basin of Utah and Colorado has created the need for information on the quantity and quality of water available in the area. This report describes the availability and chemical quality of ground water, which might provide a source or supplement of water supply for an oil-shale industry. Ground water in the southeastern Uinta Basin occurs in three major aquifers. Alluvial aquifers of small areal extent are present in valley-fill deposits of six major drainages. Consolidated-rock aquifers include the bird?s-nest aquifer in the Parachute Creek Member of the Green River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer, which includes parts of the Douglas Creek Member of the Green River Formation and parts of the intertonguing Renegade Tongue of the Wasatch Formation; this aquifer underlies most of the study area. The alluvial aquifers are recharged by infiltration of streamflow and leakage from consolidated-rock aquifers. Recharge is estimated to average about 32,000 acre-feet per year. Discharge from alluvial aquifers, primarily by evapotranspiration, also averages about 32,000 acre-feet per year. The estimated volume of recoverable water in storage in alluvial aquifers is about 200,000 acre-feet. Maximum yields to individual wells are less than 1,000 gallons per minute. Recharge to the bird's-nest aquifer, primarily from stream infiltration and downward leakage from the overlying Uinta Formation, is estimated to average 670 acre-feet per year. Discharge from the bird's-nest aquifer, which is primarily by seepage to Bitter Creek and the White River, is estimated to be at 670 acre-feet per year. The estimated volume of recoverable water in storage in the bird's-nest aquifer is 1.9 million acre-feet. Maximum yields to individual wells in some areas may be as much as 5,000 gallons per minute. A digital-computer model of the flow system was used to

  11. Selected Biological Characteristics of Streams in the Southeastern Uinta Basin, Utah and Colorado

    OpenAIRE

    United States Geological Survey

    1981-01-01

    Biological sampling was carried out during 1976-78 in five streams in the southeastern Uinta Basin, Utah and Colorado, in order to provide baseline water-quality data for an area of potential oil-shale development. The biological activity in the streams sampled generally is limited by physical factors more so than by chemical constituents and plant nutrients. Characteristics of streamflow, such as high turbidity, fluctuating water levels, and moderate to high salinity, limit production of f...

  12. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    Science.gov (United States)

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  13. Tracking the Archean-Proterozoic suture zone in the northeastern Great Basin, Nevada and Utah

    Science.gov (United States)

    Rodriguez, B.D.; Williams, J.M.

    2008-01-01

    It is important to know whether major mining districts in north-central Nevada are underlain by crust of the Archean Wyoming craton, known to contain major orogenic gold deposits or, alternatively, by accreted crust of the Paleoproterozoic Mojave province. Determining the location and orientation of the Archean-Proterozoic suture zone between these provinces is also important because it may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. The suture zone is exposed in northeastern Utah and south-western Wyoming and exhibits a southwest strike. In the Great Basin, the suture zone strike is poorly constrained because it is largely concealed below a Neoproterozoic-Paleozoic miogeocline and Cenozoic basin fill. Two-dimensional resistivity modeling of three regional north-south magnetotelluric sounding profiles in western Utah, north-central Nevada, and northeastern Nevada, and one east-west profile in northeastern Nevada, reveals a deeply penetrating (>10 km depth), broad (tens of kilometers) conductor (1-20 ohm-meters) that may be the Archean-Proterozoic suture zone, which formed during Early Proterozoic rifting of the continent and subsequent Proterozoic accretion. This major crustal conductor changes strike direction from southwest in Utah to northwest in eastern Nevada, where it broadens to ???100 km width that correlates with early Paleozoic rifting of the continent. Our results suggest that the major gold belts may be over-isolated blocks of Archean crust, so Phanerozoic mineral deposits in this region may be produced, at least in part, from recycled Archean gold. Future mineral exploration to the east may yield large gold tonnages. ?? 2008 Geological Society of America.

  14. Assessment of undiscovered oil and gas resources in the Paradox Basin Province, Utah, Colorado, New Mexico, and Arizona, 2011

    Science.gov (United States)

    Whidden, Katherine J.

    2012-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 560 million barrels of undiscovered oil, 12,701 billion cubic feet of undiscovered natural gas, and 490 million barrels of undiscovered natural gas liquids in the Paradox Basin of Utah, Colorado, New Mexico, and Arizona.

  15. REGIONAL PARADOX FORMATION STRUCTURE AND ISOCHORE MAPS, BLANDING SUB-BASIN, UTAH

    Energy Technology Data Exchange (ETDEWEB)

    Kevin McClure; Craig D. Morgan; Thomas C. Chidsey Jr.; David E. Eby

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field (figure 1). However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  16. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  17. Wintertime Distributed Ozone Measurement in Utah's Uintah Basin during UBWOS 2012

    Science.gov (United States)

    Moore, K. D.; Martin, R. S.; Harper, K.; Lyman, S. N.

    2012-12-01

    Recent wintertime measurements in two basins in the Rocky Mountains with significant fossil fuel production have revealed serious air quality concerns with respect to ozone (O3). Wintertime O3 levels greater than the current National Ambient Air Quality Standard (NAAQS) of 75 ppbv, expressed as a daily maximum 8-hr average, were observed first in the Upper Green River Basin of western Wyoming in 2005 and then in the Uintah Basin of eastern Utah in early 2010. This abstract reports on a part of the Uintah Basin Winter Ozone 2012 Study (UBWOS 2012) designed to better understand the temporal and spatial extents of elevated O3 in the Basin. A prior study in the Basin during winter 2010/2011 investigated the temporal and spatial extent of O3. Ten monitoring sites were setup throughout the Basin using 2B Technology 205 Ozone Monitors; data from six other monitoring sites around the Basin were also gathered. Hourly averaged O3 over 120 ppbv were recorded in many locations. Levels above the 75 ppbv 8-hr NAAQS were observed at 14 of the 16 sites, with 11 sites logging more than 3 exceedences. Two sites recorded 25 exceedences. The highest O3 and greatest number of exceedences occurred in areas with the greatest fossil fuel production density. Elevated O3 was also found in population centers but with a different diurnal pattern due to local sources. The follow-on study conducted during winter 2011/2012 expanded the number of ozone monitoring sites to 30 to provide better spatial coverage; 19 were operated by the investigators and 11 were operated by other groups. In contrast to the previous study, no elevated O3 levels were recorded at any location. The highest 1-hr O3 level observed was 65.8 ppbv and the highest 8-hr average level was 62.9 ppbv. The most significant difference between the two winters was the weather - winter 2010/2011 had snow cover from December through mid-March and experienced 6+ multi-day temperature inversion periods, while winter 2011/2012 had very

  18. Increased Oil Production and Reserves Utilizing Secondary/Terriary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    David E. Eby; Thomas C. Chidsey, Jr.

    1998-04-08

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO -) 2 flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. Two activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buildups in the Paradox basin: (1) diagenetic characterization of project field reservoirs, and (2) technology transfer.

  19. Selected biological characteristics of streams in the southeastern Uinta Basin, Utah and Colorado

    Science.gov (United States)

    Naten, Ronald W.; Fuller, Richard H.

    1981-01-01

    Biological sampling was carried out during 1976-78 in five streams in the southeastern Uinta Basin, Utah and Colorado, in order to provide baseline water-quality data for an area of potential oil-shale development. The biological activity in the streams sampled generally is limited by physical factors more so than by chemical constituents and plant nutrients. Characteristics of streamflow, such as high turbidity, fluctuating water levels, and moderate to high salinity, limit production of flora and fauna biomass. Samples were collected for the determination of bacterial and periphyton concentrations and benthic-invertebrate communities. Bacterial concentrations were generally small, with some fecal contamination, primarily from livestock and wildlife. Members of the order Chlorophyta (green algae) were the major periphytic algae present in three of the streams sampled. Bitter Creek was dominated by members of the order Cyanophyta (blue-green algae), and pennate diatoms were the predominant algae in Willow Creek. The benthic-invertebrate communities generally reflect a nonpolluted environment. Shannon-Weiner diversity indices ranged from 1.14 to 3.08. (USGS)

  20. Manual for estimating selected streamflow characteristics of natural-flow streams in the Colorado River basin in Utah

    Science.gov (United States)

    Christensen, R.C.; Johnson, E.B.; Plantz, G.G.

    1986-01-01

    Methods are presented for estimating 10 streamflow characteristics at three types of sites on natural flow streams in the Colorado River Basin in Utah. The streamflow characteristics include average discharge and annual maximum 1-, 7-, and 15-day mean discharges for recurrence intervals of 10, 50 and 100 years. At or near gaged sites, two methods weight gaging station data with regression equation values to estimate streamflow characteristics. At sites on ungaged streams, a method estimates streamflow characteristics using regression equations. The regression equations relate the streamflow characteristics to the following basin and climatic characteristics: contributing drainage area, mean basin elevation, mean annual precipitation, main channel slope, and forested area. Separate regression equations were developed for four hydrologically distinct regions in the study area. The standard error of estimate for the 10 streamflow characteristics ranges from 13% to 87%. Basin, climatic, and streamflow characteristics, available as of September 30, 1981, are presented for 135 gaging stations in Utah, Arizona, Colorado, and Wyoming. In addition, weighted estimates of the streamflow characteristics based on station data and the regression equation estimates are provided for most gaging stations. (Author 's abstract)

  1. Simulations of a cold-air pool associated with elevated wintertime ozone in the Uintah Basin, Utah

    Directory of Open Access Journals (Sweden)

    E. M. Neemann

    2014-06-01

    Full Text Available Numerical simulations are used to investigate the meteorological characteristics of the 1–6 February 2013 cold-air pool in the Uintah Basin, Utah, and the resulting high ozone concentrations. Flow features affecting cold-air pools and air quality in the Uintah Basin are studied, including: penetration of clean air into the basin from across the surrounding mountains, elevated easterlies within the inversion layer, and thermally-driven slope and valley flows. The sensitivity of the boundary layer structure to cloud microphysics and snow cover variations are also examined. Ice-dominant clouds enhance cold-air pool strength compared to liquid-dominant clouds by increasing nocturnal cooling and decreasing longwave cloud forcing. Snow cover increases boundary layer stability by enhancing the surface albedo, reducing the absorbed solar insolation at the surface, and lowering near-surface air temperatures. Snow cover also increases ozone levels by enhancing solar radiation available for photochemical reactions.

  2. Oil shale resources in the Eocene Green River Formation, Greater Green River Basin, Wyoming, Colorado, and Utah

    Science.gov (United States)

    ,

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed a comprehensive assessment of in-place oil in oil shales in the Eocene Green River in the Greater Green River Basin, Wyoming, Colorado, and Utah. This CD-ROM includes reports, data, and an ArcGIS project describing the assessment. A database was compiled that includes about 47,000 Fischer assays from 186 core holes and 240 rotary drill holes. Most of the oil yield data were analyzed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, and some analyses were made by private laboratories. Location data for 971 Wyoming oil-shale drill holes are listed in a spreadsheet and included in the CD-ROM. Total in-place resources for the three assessed units in the Green River Formation are: (1) Tipton Shale Member, 362,816 million barrels of oil (MMBO), (2) Wilkins Peak Member, 704,991 MMBO, and (3) LaClede Bed of the Laney Member, 377,184 MMBO, for a total of 1.44 trillion barrels of oil in place. This compares with estimated in-place resources for the Piceance Basin of Colorado of 1.53 trillion barrels and estimated in-place resources for the Uinta Basin of Utah and Colorado of 1.32 trillion barrels.

  3. Western spotted frog (Rana pretiosa) distribution in the Bonneville Basin of western Utah: Research in progress

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report provides information on the western spotted frog (Rana pretiosa) which occurs in Tule Valley, Utah. The following topics are discussed; general...

  4. 77 FR 66480 - Final Environmental Impact Statement, Narrows Project, Sanpete County, Utah

    Science.gov (United States)

    2012-11-05

    ... financing and located in part on Federal lands. The FEIS Analyzes Four Alternatives The FEIS describes and... published a Notice of Availability of the SDEIS in the Federal Register on March 29, 2010 (75 FR 15458). A... Eastern Utah, 451 East 400 North, Price, Utah 84501 Harold B. Lee Library, Brigham Young University,...

  5. Increased Oil Production and Reserves From Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, C.D.; Deo, M.D.

    1998-04-01

    The Bluebell field is productive from the Tertiary lower Green River and Colton (Wasatch) Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in the ancestral Lake Uinta. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1000 to 3000 vertical ft (300-900 m), then stimulating the entire interval with hydrochloric acid. This technique is often referred to as the shot gun completion. Completion techniques used in the Bluebell field were discussed in detail in the Second Annual Report (Curtice, 1996). The shot-gun technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The study was intended to improve the geologic characterization of the producing formations and thereby develop completion techniques specific to the producing beds or facies instead of a shot gun approach to stimulating all the beds. The characterization did not identify predictable-facies or predictable-fracture trends within the vertical stratigraphic column as originally hoped. Advanced logging techniques can identify productive beds in individual wells. A field-demonstration program was developed to use cased-hole advanced logging techniques in two wells and recompletion the wells at two different scales based on the logging. The first well was going to be completed at the interval scale using a multiple stage completion technique (about 500 ft [150 m] per stage). The second well will be recompleted at the bed-scale using bridge plug and packer to isolate three or more

  6. Final Environmental Impact Statement Related to Reclamation of the Uranium Mill Tailings at the Atlas Site, Moab, Utah

    OpenAIRE

    Division of Waste Management, Office of Nuclear Material Safety and Safeguards, U.S. Nuclear Regulatory Commission

    1999-01-01

    This Final Environmental Impact Statement (FEIS) has been prepared by the Nuclear Regulatory Commission (NRC), Office of Nuclear Material Safety and Safeguards, to address potential environmental impacts associated with a request by Atlas Corporation to amend its existing NRC License no. SUA-917 to reclaim in place an existing uranium mill tailings pile near Moab, Utah. The proposed reclamation would allow Atlas to (1) reclaim the tailings pile for permanent disposal and long-term custodia...

  7. Hydrology of the Price River basin, Utah, with emphasis on selected coal-field areas

    Science.gov (United States)

    Waddell, Kidd M.; Dodge, J.E.; Darby, D.W.; Theobald, S.M.

    1986-01-01

    Data obtained during a hydrologic study of the Price River basin, Utah, are used to describe seasonal variations of flow of springs, relation between ground water and surface water, hydraulic properties of the ground-water reservoir, ground-water recharge and discharge, flood characteristics of streams, mineralogic composition and depositional rates of sediments, nutrient and inorganic loading in streams and Scofield Reservoir, and water budgets for selected basins. Additional study and monitoring are needed to detect possible hydrologic changes caused by coal mining. Much of the ground-water discharge from the Star Point Sandstone in the Mesaverde Group in the Wasatch Plateau occurs along faults. In the Book Cliffs, where faulting is less extensive, most of the ground-water discharge is from the Flagstaff Limestone. The Flagstaff Limestone is greatly diffusive, has a small storage coefficient, and contains water which is perched. Springs issuing from the Star Point Sandstone in the Mud Creek drainage (Wasatch Plateau) had recession indexes greater than 365 days per log cycle. Springs issuing at higher altitudes from the Colton Formation and the Flagstaff Limestone in the Soldier Creek area (Book Cliffs) have great seasonal variability, with recession indexes ranging from 24 to 115 days per log cycle. Estimated transmissivities in the Soldier Creek area ranged from 0.003 foot squared per day in the lower part of the Castlegate Sandstone to 0.07 foot squared per day in the Price River Formation. Seepage from the Star Point Sandstone is the major contributor to base flow of the stream in Eccles Canyon (Wasatch Plateau). Gains of as much as 230 gallons per minute occurred near a fault zone which crosses Eccles Canyon at the junction with South Fork Canyon. The potentiometric surface of water in the Blackhawk Formation in the Wasatch Plateau (Mud Creek drainage) and the Book Cliffs (Soldier Creek area) generally is above the coal zones, and dewatering will be necessary

  8. Hydrogeology of the Pictured Cliffs Sandstone in the San Juan structural basin, New Mexico, Colorado, Arizona, and Utah

    Science.gov (United States)

    Dam, William L.; Kernodle, J.M.; Thorn, C.R.; Levings, G.W.; Craigg, S.D.

    1990-01-01

    This report is one in a series resulting from the U.S. Geological Survey's Regional Aquifer System Analysis (RASA) study of the San Juan structural basin that began in October 1984. The purposes of the study (Welder, 1986) are to: (1) Define and evaluate the aquifer system; (2) assess the effects of past, present, and potential ground-water use on aquifers and streams, and (3) determine the availability and quality of ground water. Previous reports in this series describe the hydrogeology of the Dakota Sandstone (Craigg and others, 1989), Gallup Sandstone (Kernodle and others, 1989), Morrison Formation (Dam and others, 1990), Point Lookout Sandstone (Craigg and others, 1990), Kirtland Shale and Fruitland Formation (Kernodle and others, 1990), Menefee Formation (Levings and others, 1990), Cliff House Sandstone (Thorn and others, 1990), and Ojo Alamo Sandstone (Thorn and others, 1990) in the San Juan structural basin. This report summarizes information on the geology and the occurrence and quality of water in the Pictured Cliffs Sandstone, one of the primary water-bearing units in the regional aquifer system. Data used in this report were collected during the RASA study or derived from existing records in the U.S. Geological Survey's computerized National Water Information System (NWIS) data base, the Petroleum Information Corporation's data base, and the Dwight's ENERGYDATA Inc. BRIN database. Although all data available for the Pictured Cliffs Sandstone were considered in formulating the discussions in the text, not all those data could be plotted on the illustrations. The San Juan structural basin in New Mexico, Colorado, Arizona, and Utah has an area of about 21,600 square miles (fig. 1). The structural basin is about 140 miles wide and about 200 miles long. The study area is that part of the structural basin that contains rocks of Triassic and younger age; therefore, the study area is less extensive than the structural basin. Triassic through Tertiary

  9. Hydrogeology of the Cliff House Sandstone in the San Juan structural basin, New Mexico, Colorado, Arizona and Utah

    Science.gov (United States)

    Thorn, Conde R.; Levings, G.W.; Craigg, S.D.; Dam, W.L.; Kernodle, J.M.

    1990-01-01

    This report is one in a series resulting from the U.S. Geological Survey's Regional Aquifer-System Analysis (RASA) study of the San Juan structural basin that began in October 1984. Previous reports in the series describe the hydrogeology of the Dakota Sandstone (Craigg and others, 1989), Point Lookout Sandstone (Craigg and others, 1990), Morrison Formation (Dam and others, 1990), Gallup Sandstone (Kernodle and others, 1989), and Menefee Formation (Levings and others, 1990) in the San Juan structural basin. The purposes of the RASA (Welder, 1986) are to: (1) Define and evaluate the aquifer system; (2) assess the effects of past, present, and potential ground-water use on aquifers and streams; and (3) determine the availability and quality of ground water. This report summarizes information on the geology and the occurrence and quality of water in the Cliff House Sandstone, one of the primary water-bearing units in the regional aquifer system. Data used in this report were collected during the study or were derived from existing records in the U.S. Geological Survey's computerized National Water Information System (NWIS) data base, the Petroleum Information Corporation's data base, and the Dwight's ENERGYDATA Inc. BRIN data base. Although all data available for the Cliff House Sandstone were considered in formulating the discussions in the text, not all those data could be plotted on the illustrations. The San Juan structural basin is in New Mexico, Colorado, Arizona, and Utah and has an area of about 21,600 square miles (fig. 1). The structural basin is about 140 miles wide and about 200 miles long. The study area is that part of the structural basin that contains rocks of Triassic or younger age and, therefore, is less extensive than the structural basin. Triassic through Tertiary sedimentary rocks are emphasized in this study because the major aquifers in the basin are present in these rocks. The study area is about 140 miles wide (about the same as the

  10. Hydrogeology of the Point Lookout Sandstone in the San Juan structural basin, New Mexico, Colorado, Arizona and Utah

    Science.gov (United States)

    Craigg, Steven D.; Dam, W.L.; Kernodle, J.M.; Thorn, C.R.; Levings, G.W.

    1990-01-01

    This report is one in a series resulting from the U.S. Geological Survey's Regional Aquifer-System Analysis (RASA) study of the San Juan structural basin that began in October 1984. Previous reports in the series describe the hydrogeology of the Dakota Sandstone (Craigg and others, 1989), Morrison Formation (Dam and others, 1990), Gallup Sandstone (Kernodle and others, 1989), Menefee Formation (Levings and others, 1990), and Cliff House Sandstone (Thorn and others, 1990), in the San Juan structural basin. The purposes of the RASA (Welder, 1986) are to: (1) Define and evaluate the aquifer system; (2) assess the effects of past, present, and potential ground-water use on aquifers and streams; and (3) determine the availability and quality of ground water. This report summarizes information on the geology and the occurrence and quality of water in the Point Lookout Sandstone, one of the primary water-bearing units in the regional aquifer system. Data used in this report were collected during the study or were derived from existing records in the U.S. Geological Survey's computerized National Water Information System (NWIS) data base, the Petroleum Information Corporation's database, and the Dwight's ENERGYDATA Inc. BRIN data base. Although all data available for the Point Lookout Sandstone were considered in formulating the discussions in the text, not all those data could be plotted on the illustrations. The San Juan structural basin is in New Mexico, Colorado, Arizona, and Utah and has an area of about 21,600 square miles (fig. 1). The structural basin is about 140 miles wide and about 200 miles long. The study area is that part of the structural basin that contains rocks of Triassic or younger age and, therefore, is less areally extensive than the structural basin. Triassic through Tertiary sedimentary rocks are emphasized in this study because the major aquifers in the basin are present in these rocks. The study area is about 140 miles wide (about the same as the

  11. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Michael Vanden; Anderson, Paul; Wallace, Janae; Morgan, Craig; Carney, Stephanie

    2012-04-30

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary

  12. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Allison, M. Lee; Chidsey, Jr., Thomas

    1999-11-03

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million bbl of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO-) flood 2 project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  13. CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH

    Energy Technology Data Exchange (ETDEWEB)

    Lauren P. Birgenheier; Michael D. Vanden Berg,

    2011-04-11

    An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warming events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.

  14. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey, Jr.

    2002-11-01

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which

  15. Geology and total petroleum systems of the Paradox Basin, Utah, Colorado, New Mexico, and Arizona

    Science.gov (United States)

    Whidden, Katherine J.; Lillis, Paul G.; Anna, Lawrence O.; Pearson, Krystal M.; Dubiel, Russell F.

    2014-01-01

    The geological model for the development of the Total Petroleum Systems (TPSs) within the Paradox Basin formed the foundation of the recent U.S. Geological Survey assessment of undiscovered, technically recoverable resources in the basin. Five TPSs were defined, of which three have known production and two are hypothetical. These TPSs are based on geologic elements of the basin and the potential development of Precambrian, Devonian, Pennsylvanian, Permian-Mississippian, and Cretaceous source rock intervals.

  16. The magnitude of the snow-sourced reactive nitrogen flux to the boundary layer in the Uintah Basin, Utah, USA

    Science.gov (United States)

    Zatko, Maria; Erbland, Joseph; Savarino, Joel; Geng, Lei; Easley, Lauren; Schauer, Andrew; Bates, Timothy; Quinn, Patricia K.; Light, Bonnie; Morison, David; Osthoff, Hans D.; Lyman, Seth; Neff, William; Yuan, Bin; Alexander, Becky

    2016-11-01

    Reactive nitrogen (Nr = NO, NO2, HONO) and volatile organic carbon emissions from oil and gas extraction activities play a major role in wintertime ground-level ozone exceedance events of up to 140 ppb in the Uintah Basin in eastern Utah. Such events occur only when the ground is snow covered, due to the impacts of snow on the stability and depth of the boundary layer and ultraviolet actinic flux at the surface. Recycling of reactive nitrogen from the photolysis of snow nitrate has been observed in polar and mid-latitude snow, but snow-sourced reactive nitrogen fluxes in mid-latitude regions have not yet been quantified in the field. Here we present vertical profiles of snow nitrate concentration and nitrogen isotopes (δ15N) collected during the Uintah Basin Winter Ozone Study 2014 (UBWOS 2014), along with observations of insoluble light-absorbing impurities, radiation equivalent mean ice grain radii, and snow density that determine snow optical properties. We use the snow optical properties and nitrate concentrations to calculate ultraviolet actinic flux in snow and the production of Nr from the photolysis of snow nitrate. The observed δ15N(NO3-) is used to constrain modeled fractional loss of snow nitrate in a snow chemistry column model, and thus the source of Nr to the overlying boundary layer. Snow-surface δ15N(NO3-) measurements range from -5 to 10 ‰ and suggest that the local nitrate burden in the Uintah Basin is dominated by primary emissions from anthropogenic sources, except during fresh snowfall events, where remote NOx sources from beyond the basin are dominant. Modeled daily averaged snow-sourced Nr fluxes range from 5.6 to 71 × 107 molec cm-2 s-1 over the course of the field campaign, with a maximum noontime value of 3.1 × 109 molec cm-2 s-1. The top-down emission estimate of primary, anthropogenic NOx in Uintah and Duchesne counties is at least 300 times higher than the estimated snow NOx emissions presented in this study. Our results suggest

  17. Stratigraphic architecture of a fluvial-lacustrine basin-fill succession at Desolation Canyon, Uinta Basin, Utah: Reference to Walthers’ Law and implications for the petroleum industry

    Science.gov (United States)

    Ford, Grace L.; David R. Pyles,; Dechesne, Marieke

    2016-01-01

    A continuous window into the fluvial-lacustrine basin-fill succession of the Uinta Basin is exposed along a 48-mile (77-kilometer) transect up the modern Green River from Three Fords to Sand Wash in Desolation Canyon, Utah. In ascending order the stratigraphic units are: 1) Flagstaff Limestone, 2) lower Wasatch member of the Wasatch Formation, 3) middle Wasatch member of the Wasatch Formation, 4) upper Wasatch member of the Wasatch Formation, 5) Uteland Butte member of the lower Green River Formation, 6) lower Green River Formation, 7) Renegade Tongue of the lower Green River Formation, 8) middle Green River Formation, and 9) the Mahogany oil shale zone marking the boundary between the middle and upper Green River Formations. This article uses regional field mapping, geologic maps, photographs, and descriptions of the stratigraphic unit including: 1) bounding surfaces, 2) key upward stratigraphic characteristics within the unit, and 3) longitudinal changes along the river transect. This information is used to create a north-south cross section through the basin-fill succession and a detailed geologic map of Desolation Canyon. The cross section documents stratigraphic relationships previously unreported and contrasts with earlier interpretations in two ways: 1) abrupt upward shifts in the stratigraphy documented herein, contrast with the gradual interfingering relationships proposed by Ryder et al., (1976) and Fouch et al., (1994), 2) we document fluvial deposits of the lower and middle Wasatch to be distinct and more widespread than previously recognized. In addition, we document that the Uteland Butte member of the lower Green River Formation was deposited in a lacustrine environment in Desolation Canyon.

  18. Ecological Observations of Native Geocoris pallens and G. punctipes Populations in the Great Basin Desert of Southwestern Utah.

    Science.gov (United States)

    Schuman, Meredith C; Kessler, Danny; Baldwin, Ian T

    2013-01-01

    Big-eyed bugs (Geocoris spp. Fallén, Hemiptera: Lygaeidae) are ubiquitous, omnivorous insect predators whose plant feeding behavior raises the question of whether they benefit or harm plants. However, several studies have investigated both the potential of Geocoris spp. to serve as biological control agents in agriculture and their importance as agents of plant indirect defense in nature. These studies have demonstrated that Geocoris spp. effectively reduce herbivore populations and increase plant yield. Previous work has also indicated that Geocoris spp. respond to visual and olfactory cues when foraging and choosing their prey and that associative learning of prey and plant cues informs their foraging strategies. For these reasons, Geocoris spp. have become models for the study of tritrophic plant-herbivore-predator interactions. Here, we present detailed images and ecological observations of G. pallens Stål and G. punctipes (Say) native to the Great Basin Desert of southwestern Utah, including observations of their life histories and color morphs, dynamics of their predatory feeding behavior and prey choice over space and time, and novel aspects of Geocoris spp.'s relationships to their host plants. These observations open up new areas to be explored regarding the behavior of Geocoris spp. and their interactions with plant and herbivore populations.

  19. Ecological Observations of Native Geocoris pallens and G. punctipes Populations in the Great Basin Desert of Southwestern Utah

    Directory of Open Access Journals (Sweden)

    Meredith C. Schuman

    2013-01-01

    Full Text Available Big-eyed bugs (Geocoris spp. Fallén, Hemiptera: Lygaeidae are ubiquitous, omnivorous insect predators whose plant feeding behavior raises the question of whether they benefit or harm plants. However, several studies have investigated both the potential of Geocoris spp. to serve as biological control agents in agriculture and their importance as agents of plant indirect defense in nature. These studies have demonstrated that Geocoris spp. effectively reduce herbivore populations and increase plant yield. Previous work has also indicated that Geocoris spp. respond to visual and olfactory cues when foraging and choosing their prey and that associative learning of prey and plant cues informs their foraging strategies. For these reasons, Geocoris spp. have become models for the study of tritrophic plant-herbivore-predator interactions. Here, we present detailed images and ecological observations of G. pallens Stål and G. punctipes (Say native to the Great Basin Desert of southwestern Utah, including observations of their life histories and color morphs, dynamics of their predatory feeding behavior and prey choice over space and time, and novel aspects of Geocoris spp.’s relationships to their host plants. These observations open up new areas to be explored regarding the behavior of Geocoris spp. and their interactions with plant and herbivore populations.

  20. Study of a conceptual nuclear energy center at Green River, Utah. Final summary report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.T. (ed.)

    1982-09-01

    This document summarizes a conceptual study on the feasibility and practicality of developing a nuclear energy center (NEC) at a representative Western site. The site selected for this conceptual study, an area of about 50 square miles, is located 15 miles south of Green River, Utah. The conceptual NEC would consist of nine nuclear electric generating units, arranged on the site in three clusters of three reactors each (triads), separated by about 2 1/2 miles. Of the total electric output of 11,250 MWe that the NEC could produce, about 82% is assumed to be transmitted out of Utah to Colorado, New Mexico, Arizona, Nevada, and California. The technical engineering issues studied included geology and seismology, plant design, low-level radioactive waste disposal, transmission, and construction schedules and costs. Socioeconomic issues included were demographics, land use, community service needs, and fiscal impacts. Environmental considerations included terrestrial and aquatic ecology, visual impact, and secondary population impacts. Radiological issues were concerned with the safety and risks of an NEC and an on-site low-level waste facility. Institutional issues included methods of ownership, taxation, implications of energy export, and water allocation. The basic finding was that an NEC would be technically feasible, but a number of socioeconomic and institutional issues would require resolution before a Western regional NEC could be considered a viable power plant siting option.

  1. Reserve estimates in western basins: Unita Basin. Final report, Part III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This study characterizes an extremely large gas resource located in low permeability, sandstone reservoirs of the Mesaverde group and Wasatch formation in the Uinta Basin, Utah. Total in-place resource is estimated at 395.5 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 3.8 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Two plays were included in this study and each was separately analyzed in terms of its tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources; in other words, to convert those resources to economically recoverable reserves. About 82.1% of the total evaluated resource is contained within sandstones that have extremely poor reservoir properties with permeabilities considered too low for commerciality using current frac technology.

  2. Silt and gas accumulation beneath an artificial recharge spreading basin, Southwestern Utah, U.S.A.

    Science.gov (United States)

    Heilweil, V.M.; Solomon, D.K.; Ortiz, G.

    2009-01-01

    Sand Hollow Reservoir in southwestern Utah, USA, is operated for both surface-water storage and artificial recharge to the underlying Navajo Sandstone. The total volume of estimated artificial recharge between 2002 and 2007 is 85 million cubic meters (69,000 acre-feet). Since 2002, artificial recharge rates have generally been declining and are inversely correlated with the increasing surface area of the reservoir. Permeability testing of core samples retrieved from beneath the reservoir indicates that this decline may not be due to silt accumulation. Artificial recharge rates also show much seasonal variability. Calculations of apparent intrinsic permeability show that these variations can only partly be explained by variation in water viscosity associated with seasonal changes in water temperature. Sporadic seasonal trends in recharge rates and intrinsic permeability during 2002-2004 could be associated with the large fluctuations in reservoir elevation and wetted area. From 2005 through 2007, the reservoir was mostly full and there has been a more consistent seasonal pattern of minimum recharge rates during the summer and maximum rates during the autumn. Total dissolved-gas pressure measurements indicate the presence of biogenic gas bubbles in the shallow sediments beneath the shallower parts of Sand Hollow Reservoir when the water is warmer. Permeability reduction associated with this gas clogging may contribute to the decrease in artificial recharge rates during the spring and summer, with a subsequently increasing recharge rates in the autumn associated with a decline in volume of gas bubbles. Other possible causes for seasonal variation in artificial recharge rates require further investigation.

  3. Reservoir Characterization of the Lower Green River Formation, Southwest Uinta Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Craig D.; Chidsey, Jr., Thomas C.; McClure, Kevin P.; Bereskin, S. Robert; Deo, Milind D.

    2002-12-02

    The objectives of the study were to increase both primary and secondary hydrocarbon recovery through improved characterization (at the regional, unit, interwell, well, and microscopic scale) of fluvial-deltaic lacustrine reservoirs, thereby preventing premature abandonment of producing wells. The study will encourage exploration and establishment of additional water-flood units throughout the southwest region of the Uinta Basin, and other areas with production from fluvial-deltaic reservoirs.

  4. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Chidsey, T.C. Jr.

    1997-02-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  5. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah - Draft Report

    Science.gov (United States)

    Welch, Alan H.; Bright, Daniel J.

    2007-01-01

    Summary of Major Findings This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 131 of the Lincoln County Conservation, Recreation, and Development Act of 2004) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins represent subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas represent the subdivision used for reporting summed and tabulated subbasin estimates.

  6. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    Science.gov (United States)

    Welch, Alan H.; Bright, Daniel J.; Knochenmus, Lari A.

    2008-01-01

    INTRODUCTION This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 301(e) of the Lincoln County Conservation, Recreation, and Development Act of 2004; PL108-424) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins are the subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas are the subdivision used for reporting summed and tabulated subbasin estimates.

  7. Geohydrology and numerical simulation of groundwater flow in the central Virgin River Basin of Iron and Washington Counties, Utah

    Science.gov (United States)

    Heilweil, V.M.; Freethey, G.W.; Wilkowske, C.D.; Stolp, B.J.; Wilberg, D.E.

    2000-01-01

    Because rapid growth of communities in Washington and Iron Counties, Utah, is expected to cause an increase in the future demand for water resources, a hydrologic investigation was done to better understand ground-water resources within the central Virgin River basin. This study focused on two of the principal ground-water reservoirs within the basin: the upper Ash Creek basin ground-water system and the Navajo and Kayenta aquifer system.The ground-water system of the upper Ash Creek drainage basin consists of three aquifers: the uppermost Quaternary basin-fill aquifer, the Tertiary alluvial-fan aquifer, and the Tertiary Pine Valley monzonite aquifer. These aquifers are naturally bounded by the Hurricane Fault and by drainage divides. On the basis of measurements, estimates, and numerical simulations of reasonable values for all inflow and outflow components, total water moving through the upper Ash Creek drainage basin ground-water system is estimated to be about 14,000 acre-feet per year. Recharge to the upper Ash Creek drainage basin ground-water system is mostly from infiltration of precipitation and seepage from ephemeral and perennial streams. The primary source of discharge is assumed to be evapotranspiration; however, subsurface discharge near Ash Creek Reservoir also may be important.The character of two of the hydrologic boundaries of the upper Ash Creek drainage basin ground-water system is speculative. The eastern boundary provided by the Hurricane Fault is assumed to be a no-flow boundary, and a substantial part of the ground-water discharge from the system is assumed to be subsurface outflow beneath Ash Creek Reservoir along the southern boundary. However, these assumptions might be incorrect because alternative numerical simulations that used different boundary conditions also proved to be feasible. The hydrogeologic character of the aquifers is uncertain because of limited data. Differences in well yield indicate that there is considerable

  8. Quaternary rhyolite from the Mineral Mountains, Utah, USA. Final report, Volume 77-10

    Energy Technology Data Exchange (ETDEWEB)

    Evans, S.H. Jr.; Nash, W.P.

    1978-03-01

    A suite of silicic volcanic rocks is associated with the Roosevelt Hot Springs geothermal area in southwestern Utah. The volcanic sequence includes Tertiary rhyolite 8 My old and obsidian, ash and rhyolite of Quaternary age. The Quaternary lavas are characterized by high silica content (76.5% Si0/sub 2/) and total alkalies in excess of 9 percent. Obsidians commonly contain greater amounts of fluorine than water. Two older flows (0.8 My) can be distinguished from younger dome and pyroclastic material (approximately 0.5 My) by subtle differences in their chemistry. The mineralogy of the rhyolites consists of alkali feldspar, plagioclase, and small amounts of Fe-Ti oxides, biotite, hornblende and rare allanite. Fe-Ti oxide temperatures are 740 to 785/sup 0/C for the flows and 635 to 665/sup 0/C for the domes; two feldspar temperatures give similar results. The phase relationships of bulk rock, glass and feldspar compositions demonstrate that the younger Quaternary rhyolites could have been derived from the earlier magma type, represented by the obsidian flows, by a process of crystal fractionation. The major phases which must fractionate are alkali feldspar, plagioclase and quartz with minor amounts of biotite, magnetite and ilmenite participating also. Trace element patterns support this scheme as well. The Tertiary lavas cannot be related to the Quaternary rhyolites and are thought to represent a separate event.

  9. Nonassociated gas resources in low-permeability sandstone reservoirs, lower tertiary Wasatch Formation, and upper Cretaceous Mesaverde Group, Uinta Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Fouch, T.D.; Schmoker, J.W.; Boone, L.E.; Wandrey, C.J.; Crovelli, R.A.; Butler, W.C.

    1994-08-01

    The US Geological Survey recognizes six major plays for nonassociated gas in Tertiary and Upper Cretaceous low-permeability strata of the Uinta Basin, Utah. For purposes of this study, plays without gas/water contacts are separated from those with such contacts. Continuous-saturation accumulations are essentially single fields, so large in areal extent and so heterogeneous that their development cannot be properly modeled as field growth. Fields developed in gas-saturated plays are not restricted to structural or stratigraphic traps and they are developed in any structural position where permeability conduits occur such as that provided by natural open fractures. Other fields in the basin have gas/water contacts and the rocks are water-bearing away from structural culmination`s. The plays can be assigned to two groups. Group 1 plays are those in which gas/water contacts are rare to absent and the strata are gas saturated. Group 2 plays contain reservoirs in which both gas-saturated strata and rocks with gas/water contacts seem to coexist. Most units in the basin that have received a Federal Energy Regulatory Commission (FERC) designation as tight are in the main producing areas and are within Group 1 plays. Some rocks in Group 2 plays may not meet FERC requirements as tight reservoirs. However, we suggest that in the Uinta Basin that the extent of low-permeability rocks, and therefore resources, extends well beyond the limits of current FERC designated boundaries for tight reservoirs. Potential additions to gas reserves from gas-saturated tight reservoirs in the Tertiary Wasatch Formation and Cretaceous Mesaverde Group in the Uinta Basin, Utah is 10 TCF. If the potential additions to reserves in strata in which both gas-saturated and free water-bearing rocks exist are added to those of Group 1 plays, the volume is 13 TCF.

  10. HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    David E. Eby; Thomas C. Chidsey, Jr.; Kevin McClure; Craig D. Morgan

    2003-07-01

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the second half of the third project year (October 6, 2002, through April 5, 2003). The primary work included describing and mapping regional facies of the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Regional cross sections show the development of ''clean carbonate'' packages that contain all of the productive reservoir facies. These clean carbonates abruptly change laterally into thick anhydrite packages that filled several small intra-shelf basins in the upper Ismay zone

  11. HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey, Jr.

    2002-12-01

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing, vertical, field wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the first half of the third project year (April 6 through October 5, 2002). This work included capillary pressure/mercury injection analysis, scanning electron microscopy, and pore casting on selected samples from Cherokee and Bug fields, Utah. The diagenetic fabrics and porosity types found at these fields are indicators of reservoir flow capacity, storage capacity, and potential for enhanced oil recovery via horizontal drilling. The reservoir quality of Cherokee and Bug fields has been affected by multiple generations of dissolution, anhydrite

  12. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chidsey, Jr., Thomas C.; Eby, David E.; Wray, Laural L.

    2001-11-26

    The project's primary objective was to enhance domestic petroleum production by demonstration and transfer of horizontal drilling technology in the Paradox Basin, Utah, Colorado, Arizona, and New Mexico. If this project can demonstrate technical and economic feasibility, then the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 25 to 50 million barrels (4-8 million m3) of oil. This project was designed to characterize several shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation, choose the best candidate(s) for a pilot demonstration project to drill horizontally from existing vertical wells, monitor well performance(s), and report associated validation activities.

  13. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chidsey, Thomas C. Jr.; Eby, David E.; Wray, Laura L.

    2001-04-19

    The primary objective of this project was to enhance domestic petroleum production by demonstration and transfer of horizontal drilling technology in the Paradox basin, Utah, Colorado, Arizona, and New Mexico. If this project can demonstrate technical and economic feasibility, then the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 25 to 50 million barrels (40-80 million m3) of oil. This project was designed to characterize several shallow-shelf carbonate reservoirs in the Pennsylvania (Desmoinesian) Paradox Formation, choose the best candidate(s) for a pilot demonstration project to drill horizontally from existing vertical wells, monitor well performances, and report associated validation activities.

  14. Target reservoirs for CO/sub 2/ miscible flooding. Task two: summary of available reservoir and geological data. Vol. II: Rocky Mountain states geological and reservoir data. Part 4: Paradox, Uinta, eastern Utah overthrust, Big Horn, Wind River, Powder River, Red Desert, and Great Divide basins; CACHE-Ismay through WERTZ-Madison fields. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, L.B.; Marlow, R.

    1981-10-01

    This report describes work performed by Gruy Federal, Inc., as the second of six tasks under contract with the US Department of Energy. The stated objective of this study is to build a solid engineering foundation to serve as the basis for field mini- and pilot tests in both high and low oil saturation carbonate reservoirs for the purpose of extending the technology base in carbon dioxide miscible flooding. The six tasks in this study are: (1) summary of available CO/sub 2/ field test data; (2) summary of existing reservoir and geological data; (3) selection of target reservoirs; (4) selection of specific reservoirs for CO/sub 2/ injection tests; (5) selection of specific sites for test wells in carbonate reservoirs; and (6) drilling and coring activities. The report for Task Two consists of a summary of existing reservoir and geological data on carbonate reservoirs located in west Texas, southeast New Mexico, and the Rocky Mountain states. It is contained in two volumes, each with several parts. The present volume, in four parts, is a summary of reservoir data for fields in the Rocky Mountain states. Volume One contains data for Permian basin fields in west Texas and southeast New Mexico. While a serious effort was made to obtain all publicly available data for the fields considered, sufficiently reliable data on important reservoir parameters were not always available for every field. The data in Volume II show 143 carbonate reservoirs in the study area may be suitable for CO/sub 2/ miscible flooding. Using a general estimate of enhanced oils recovery by CO/sub 2/ flooding of 10% of original oil in place, some 619 million barrels of oil could be recovered by widespread application of CO/sub 2/ flooding in the study area. Mississippian and Ordovician reservoirs appear to be the most promising targets for the process.

  15. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report, February 9, 1996--February 8, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Chidsey, T.C. Jr.

    1997-08-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The Anasazi field was selected for the initial geostatistical modeling and reservoir simulation. A compositional simulation approach is being used to model primary depletion, waterflood, and CO{sub 2}-flood processes. During this second year of the project, team members performed the following reservoir-engineering analysis of Anasazi field: (1) relative permeability measurements of the supra-mound and mound-core intervals, (2) completion of geologic model development of the Anasazi reservoir units for use in reservoir simulation studies including completion of a series of one-dimensional, carbon dioxide-displacement simulations to analyze the carbon dioxide-displacement mechanism that could operate in the Paradox basin system of reservoirs, and (3) completion of the first phase of the full-field, three-dimensional Anasazi reservoir simulation model, and the start of the history matching and reservoir performance prediction phase of the simulation study.

  16. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Appendix D. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-07-01

    This appendix is an assessment of the present conditions of the inactive uranium mill site near Mexican Hat, Utah. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan. Plan is to characterize the conditions at the mill and tailings site so that the Remedial Action Contractor may complete final designs of the remedial action.

  17. Final unioned file used for coal resource calculations, southern Wasatch Plateau, Central Utah (wsfing)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is a shapefile and the final unioned polygon coverage used to calculate coal resources of the lower Blackhawk Formation in the southern Wasatch coal assessment...

  18. The quality of our Nation's waters: Water quality in basin-fill aquifers of the southwestern United States: Arizona, California, Colorado, Nevada, New Mexico, and Utah, 1993-2009

    Science.gov (United States)

    Thiros, Susan A.; Paul, Angela P.; Bexfield, Laura M.; Anning, David W.

    2015-01-01

    The Southwest Principal Aquifers consist of many basin-fill aquifers in California, Nevada, Utah, Arizona, New Mexico, and Colorado. Demands for irrigation and drinking water have substantially increased groundwater withdrawals and irrigation return flow to some of these aquifers. These changes have increased the movement of contaminants from geologic and human sources to depths used to supply drinking water in several basin-fill aquifers in the Southwest.

  19. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey; Kevin McClure; Craig D. Morgan

    2003-10-05

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the first half of the fourth project year (April 6 through October 5, 2003). The work included (1) analysis of well-test data and oil production from Cherokee and Bug fields, San Juan County, Utah, and (2) diagenetic evaluation of stable isotopes from the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Production ''sweet spots'' and potential horizontal drilling candidates were identified for Cherokee and Bug fields. In Cherokee field, the most productive wells are located in the

  20. Hydrogeology of the Mammoth Spring groundwater basin and vicinity, Markagunt Plateau, Garfield, Iron, and Kane Counties, Utah

    Science.gov (United States)

    Spangler, Lawrence E.

    2012-01-01

    The Markagunt Plateau, in southwestern Utah, lies at an altitude of about 9,500 feet, largely within Dixie National Forest. The plateau is capped primarily by Tertiary- and Quaternary-age volcanic rocks that overlie Paleocene- to Eocene-age limestone of the Claron Formation, which forms escarpments on the west and south sides of the plateau. In the southwestern part of the plateau, an extensive area of sinkholes has formed that resulted primarily from dissolution of the underlying limestone and subsequent subsidence and (or) collapse of the basalt, producing sinkholes as large as 1,000 feet across and 100 feet deep. Karst development in the Claron Formation likely has been enhanced by high infiltration rates through the basalt. Numerous large springs discharge from the volcanic rocks and underlying limestone on the Markagunt Plateau, including Mammoth Spring, one of the largest in Utah, with discharge that ranges from less than 5 to more than 300 cubic feet per second (ft3/s). In 2007, daily mean peak discharge of Mammoth Spring was bimodal, reaching 54 and 56 ft3/s, while daily mean peak discharge of the spring in 2008 and in 2009 was 199 ft3/s and 224 ft3/s, respectively. In both years, the rise from baseflow, about 6 ft3/s, to peak flow occurred over a 4- to 5-week period. Discharge from Mammoth Spring accounted for about 54 percent of the total peak streamflow in Mammoth Creek in 2007 and 2008, and about 46 percent in 2009, and accounted for most of the total streamflow during the remainder of the year. Results of major-ion analyses for water samples collected from Mammoth and other springs on the plateau during 2006 to 2009 indicated calcium-bicarbonate type water, which contained dissolved-solids concentrations that ranged from 91 to 229 milligrams per liter. Concentrations of major ions, trace elements, and nutrients did not exceed primary or secondary drinking-water standards; however, total and fecal coliform bacteria were present in water from Mammoth and

  1. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Annual report, February 9, 1997--February 8, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Chidsey, T.C. Jr. [ed.] [comp.

    1998-03-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. At least 200 million barrels (31,800,000 m{sup 3}) of oil are at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. This study utilized representative core and modern geophysical logs to characterize and grade each of the five fields for suitability of enhanced recovery projects. The typical vertical sequence or cycle of lithofacies from each field, as determined from conventional core, was tied to its corresponding log response. The diagenetic fabrics and porosity types found in the various hydrocarbon-bearing rocks of each field can be an indicator of reservoir flow capacity, storage capacity, and potential for water- and/or CO{sub 2}-flooding. Diagenetic histories of the various Desert Creek reservoirs were determined from 50 representative samples selected from the conventional cores of each field. Thin sections were also made of each sample for petrographic description.

  2. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the middle Green River basin, Utah, 1986-87

    Science.gov (United States)

    Stephens, D.W.; Waddell, Bruce; Miller, J.B.

    1988-01-01

    Reconnaissance of wildlife areas in the middle Green River basin of Utah was conducted during 1986 and 1987 to determine whether irrigation drainage has caused, or has the potential to cause significant harmful effects on human health, fish, and wildlife, or may adversely affect the suitability of water for beneficial uses. Studies at Stewart Lake Waterfowl Management Area and Ouray National Wildlife Refuge indicated that concentrations of boron, selenium, and zinc in water, bottom sediment, and biological tissue were sufficiently large to be harmful to fish and wildlife, and to adversely affect beneficial uses of water. Selenium is the principal element of concern in both areas. Concentrations of dissolved selenium in irrigation drain water entering Stewart Lake Waterfowl Management Area ranged from 14-140 micrograms/L (ug/L) and consistently exceeded Utah standards for wildlife protection in water in two of the four drains. Concentrations of boron and zinc exceeded Utah standards only occasionally in the drain waters. Concentrations of total selenium in sediments collected where the drains discharge into the lake were 10-85 ug/gm. Liver tissue collected from American coots at Stewart Lake Waterfowl Management Area contained concentrations of selenium from 4.9-26 ug/gm (dry weight), and whole body samples of carp contained as much as 31 ug/gm (dry weight). Concentrations of selenium in Potamogeton and blue-green algae ranged from 2.1-27 ug/gm. Concentrations of boron, selenium, and zinc were also measured in water from Ouray National Wildlife Refuge. Liver tissue of American coots from the North Roadside Pond, which receives irrigation tailwater, contained a geometric-mean concentration of selenium of 32 ug/gm (dry weight). Five water-bird eggs collected from the North and South Roadside Ponds contained selenium concentrations of 63-120 ug/gm (dry weight). (Lantz-PTT)

  3. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Annual report, October 1, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Allison, M.L.; Morgan, C.D.

    1996-05-01

    The Bluebell field produces from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated deltaic lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then applying an acid-fracture stimulation treatment to the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been used to define improved completion techniques. The study identified reservoir characteristics of beds that have the greatest long-term production potential.

  4. Increased oil production and reserves utilizing secondary/teritiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Quarterly report, July 1 - September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Allison, M.L.

    1996-10-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization: (1) interpretation of outcrop analogues; (2) reservoir mapping, (3) reservoir engineering analysis of the five project fields; and (4) technology transfer.

  5. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Technical progress report, January 1--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Allison, M.L.

    1996-04-30

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}-)flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  6. Supplementation in the Columbia Basin : Summary Report Series : Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-12-01

    of Supplementation Project (RASP) was initiated as a result of a request by NPPC to address long-standing concerns about the need to coordinate supplementation research, monitoring and evaluation. Such coordination was also recommended by the Supplementation Technical Work Group. In August 1990, the NPPC gave conditional approval to proceed with the final design of the Yakima Production Project. The Council called on the Bonneville Power Administration (BPA) to fund immediately a supplementation assessment to reevaluate, prioritize and coordinate all existing and planned supplementation monitoring and evaluation activities in the basin. Providing for the participation of the fishery agencies and tribes and others having expertise in this area. RASP addresses four principal objectives: (1) provide an overview of ongoing and planned supplementation activities and identify critical uncertainties associated with supplementation, (2) construct a conceptual framework and model which estimates the potential benefits and risks of supplementation and prioritizes uncertainties, (3) provide guidelines for the development of supplementation projects, (4) develop a plan for regional coordination of research and monitoring. These objectives, once attained, will provide the technical tools fishery managers need to carry out the Council's direction to protect and enhance salmon and steelhead. RASP has further divided the four broad objectives into 12 technical topics: (1) definition of supplementation; (2) description of the diversity of supplementation projects; (3) objectives and performance standards; (4) identification of uncertainties; (5) supplementation theory; (6) development of a conceptual model of supplemented populations; (7) development of spreadsheet model of risks and benefits of supplementation; (8) classification of stocks, streams, and supplementation strategies; (9) regional design of supplementation evaluation and monitoring; (10) guidelines for planning

  7. Supplementation in the Columbia Basin : Summary Report Series : Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-12-01

    of Supplementation Project (RASP) was initiated as a result of a request by NPPC to address long-standing concerns about the need to coordinate supplementation research, monitoring and evaluation. Such coordination was also recommended by the Supplementation Technical Work Group. In August 1990, the NPPC gave conditional approval to proceed with the final design of the Yakima Production Project. The Council called on the Bonneville Power Administration (BPA) to fund immediately a supplementation assessment to reevaluate, prioritize and coordinate all existing and planned supplementation monitoring and evaluation activities in the basin. Providing for the participation of the fishery agencies and tribes and others having expertise in this area. RASP addresses four principal objectives: (1) provide an overview of ongoing and planned supplementation activities and identify critical uncertainties associated with supplementation, (2) construct a conceptual framework and model which estimates the potential benefits and risks of supplementation and prioritizes uncertainties, (3) provide guidelines for the development of supplementation projects, (4) develop a plan for regional coordination of research and monitoring. These objectives, once attained, will provide the technical tools fishery managers need to carry out the Council's direction to protect and enhance salmon and steelhead. RASP has further divided the four broad objectives into 12 technical topics: (1) definition of supplementation; (2) description of the diversity of supplementation projects; (3) objectives and performance standards; (4) identification of uncertainties; (5) supplementation theory; (6) development of a conceptual model of supplemented populations; (7) development of spreadsheet model of risks and benefits of supplementation; (8) classification of stocks, streams, and supplementation strategies; (9) regional design of supplementation evaluation and monitoring; (10) guidelines for planning

  8. Geodatabase of the available top and bottom surface datasets that represent the Basin and Range basin-fill aquifers, Arizona, California, Idaho, Nevada, New Mexico, Oregon, and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geodatabase includes spatial datasets that represent the Basin and Range basin-fill aquifers in the States of Arizona, California, Idaho, Nevada, New Mexico,...

  9. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Annual report, September 30, 1993--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Allison, M.

    1995-07-01

    The Bluebell field produces from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated deltaic lacustrine environment, sandstones deposited in fluvial-dominated deltas; and carbonates and some interbedded sandstones of the lower Wasatch transition deposited in mud flats. Bluebell project personnel are studying ways to improve completion techniques used in the field to increase primary production in both new wells and recompletions. The study includes detailed petrographic examination of the different lithologic reservoir types in both the outcrop and core. Outcrop, core, and geophysical logs are being used to identify and map important depositional cycles. Petrographic detail will be used to improve log calculation methods which are currently highly questionable due to varying water chemistry and clay content in the Green River and Wasatch Formations. Field mapping of fractures and their relationship to basin tectonics helps predict the orientation of open fractures in the subsurface. The project includes acquiring bore-hole imaging logs from new wells in the Bluebell field thereby obtaining detailed subsurface fracture data previously not available. Reservoir simulation models are being constructed to improve the understanding of pressure and fluid flow within the reservoir. A detailed database of well completion histories has been compiled and will be studied to determine which were the most and the least effective methods used in the past.

  10. Magnetotelluric survey to locate the Archean-Proterozoic suture zone in the northeastern Great Basin, Nevada, Utah, and Idaho

    Science.gov (United States)

    Sampson, Jay A.; Rodriguez, Brian D.

    2013-01-01

    North-central Nevada contains a large amount of gold in linear belts, the origin of which is not fully understood. During July 2008, September 2009, and August 2010, the U.S. Geological Survey, as part of the Assessment Techniques for Concealed Mineral Resources project, collected twenty-three magnetotelluric soundings along two profiles in Box Elder County, Utah; Elko County, Nevada; and Cassia, Minidoka, and Blaine Counties, Idaho. The main twenty-sounding north-south magnetotelluric profile begins south of Wendover, Nev., but north of the Deep Creek Range. It continues north of Wendover and crosses into Utah, with the north profile terminus in the Snake River Plain, Idaho. A short, three-sounding east-west segment crosses the main north-south profile near the northern terminus of the profile. The magnetotelluric data collected in this study will be used to better constrain the location and strike of the concealed suture zone between the Archean crust and the Paleoproterozoic Mojave province. This report releases the magnetotelluric sounding data that was collected. No interpretation of the data is included.

  11. Estimated dissolved-solids loads and trends at selected streams in and near the Uinta Basin, Utah, Water Years 1989–2013

    Science.gov (United States)

    Thiros, Susan A.

    2017-03-23

    The U.S. Geological Survey (USGS), in cooperation with the Colorado River Basin Salinity Control Forum, studied trends in dissolved-solids loads at selected sites in and near the Uinta Basin, Utah. The Uinta Basin study area includes the Duchesne River Basin and the Middle Green River Basin in Utah from below Flaming Gorge Reservoir to the town of Green River.Annual dissolved-solids loads for water years (WY) 1989 through 2013 were estimated for 16 gaging stations in the study area using streamflow and water-quality data from the USGS National Water Information System database. Eight gaging stations that monitored catchments with limited or no agricultural land use (natural subbasins) were used to assess loads from natural sources. Four gaging stations that monitored catchments with agricultural land in the Duchesne River Basin were used to assess loads from agricultural sources. Four other gaging stations were included in the dissolved-solids load and trend analysis to help assess the effects of agricultural areas that drain to the Green River in the Uinta Basin, but outside of the Duchesne River Basin.Estimated mean annual dissolved-solids loads for WY 1989–2013 ranged from 1,520 tons at Lake Fork River above Moon Lake, near Mountain Home, Utah (UT), to 1,760,000 tons at Green River near Green River, UT. The flow-normalized loads at gaging stations upstream of agricultural activities showed no trend or a relatively small change. The largest net change in modeled flow-normalized load was -352,000 tons (a 17.8-percent decrease) at Green River near Green River, UT.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show

  12. Characterization of Habitat and Biological Communities at Fixed Sites in the Great Salt Lake Basins, Utah, Idaho, and Wyoming, Water Years 1999-2001

    Science.gov (United States)

    Albano, Christine M.; Giddings, Elise M.P.

    2007-01-01

    Habitat and biological communities were sampled at 10 sites in the Great Salt Lake Basins as part of the U.S. Geological Survey National Water-Quality Assessment program to assess the occurrence and distribution of biological organisms in relation to environmental conditions. Sites were distributed among the Bear River, Weber River, and Utah Lake/Jordan River basins and were selected to represent stream conditions in different land-use settings that are prominent within the basins, including agriculture, rangeland, urban, and forested. High-gradient streams had more diverse habitat conditions with larger substrates and more dynamic flow characteristics and were typically lower in discharge than low-gradient streams, which had a higher degree of siltation and lacked variability in geomorphic channel characteristics, which may account for differences in habitat. Habitat scores were higher at high-gradient sites with high percentages of forested land use within their basins. Sources and causes of stream habitat impairment included effects from channel modifications, siltation, and riparian land use. Effects of hydrologic modifications were evident at many sites. Algal sites where colder temperatures, less nutrient enrichment, and forest and rangeland uses dominated the basins contained communities that were more sensitive to organic pollution, siltation, dissolved oxygen, and salinity than sites that were warmer, had higher degrees of nutrient enrichment, and were affected by agriculture and urban land uses. Sites that had high inputs of solar radiation and generally were associated with agricultural land use supported the greatest number of algal species. Invertebrate samples collected from sites where riffles were the richest-targeted habitat differed in species composition and pollution tolerance from those collected at sites that did not have riffle habitat (nonriffle sites), where samples were collected in depositional areas, woody snags, or macrophyte beds

  13. Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges: Cross-Jurisdictional Management and Impacts on Unconventional Fuel Development in Utah's Uinta Basin

    Energy Technology Data Exchange (ETDEWEB)

    Keiter, Robert; Ruple, John; Holt, Rebecca; Tanana, Heather; McNeally, Phoebe; Tribby, Clavin

    2012-10-01

    Secretarial Order 3310, Protecting Wilderness Characteristics on Lands Managed by the Bureau of Land Management. Supporters argue that the Order merely provides guidance regarding implementation of existing legal obligations without creating new rights or duties. Opponents describe Order 3310 as subverting congressional authority to designate Wilderness Areas and as closing millions of acres of public lands to energy development and commodity production. While opponents succeeded in temporarily defunding the Order’s implementation and forcing the Bureau of Land Management (BLM) to adopt a more collaborative approach, the fundamental questions remain: Which federal public lands possess wilderness characteristics and how should those lands be managed? The closely related question is: How might management of such resources impact unconventional fuel development within Utah? These questions remain pressing independent of the Order because the BLM, which manages the majority of federal land in Utah, is statutorily obligated to maintain an up-to-date inventory of federal public lands and the resources they contain, including lands with wilderness characteristics. The BLM is also legally obligated to develop and periodically update land use plans, relying on information obtained in its public lands inventory. The BLM cannot sidestep these hard choices, and failure to consider wilderness characteristics during the planning process will derail the planning effort. Based on an analysis of the most recent inventory data, lands with wilderness characteristics — whether already subject to mandatory protection under the Wilderness Act, subject to discretionary protections as part of BLM Resource Management Plan revisions, or potentially subject to new protections under Order 3310 — are unlikely to profoundly impact oil shale development within Utah’s Uinta Basin. Lands with wilderness characteristics are likely to v have a greater impact on oil sands resources, particularly those

  14. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Fourth quarterly technical progress report, July 1, 1994--september 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, C.D.

    1994-12-31

    Bluebell field ill tile Uinta Basin, Utah, is a rich petroleum reserve. The field has produced over 125 million barrels of oil from the lacustrine rocks of the Green River Formation. Standard completion techniques, which consist of perforating up to thousands of feet of section at one time, have resulted in opening thief, water-producing and non-productive zones. Low recoverabilitv is largely due to the lack of understanding of the relationship between heterolithic facies, reservoir fracture systems and clay migration. These areas were investigated by analyzing over 1,500 feet of core from the Bluebell area. Approximately 60% of the core consists of carbonates and 40% consists of clastics (predominantly sandstones). The carbonate rocks in general have good porosity and randomly oriented, interconnected macrofractures, whereas the macrofractures in the sandstones are more vertical and isolated. The sandstones however, do have the best reservoir capacity due to inherent interparticle porosity. Some shales display overpressured hydro-microfractures. Preliminary analysis of clay types indicates swelling illite-smectite mixed layer clays as well as kaolinite in both the clastic and carbonate rocks. These swelling, clay types combine with the high pour point waxy oils to reduce production efficiency and total recovery.

  15. Upper mantle diapers, lower crustal magmatic underplating, and lithospheric dismemberment of the Great Basin and Colorado Plateau regions, Nevada and Utah; implications from deep MT resistivity surveying

    Science.gov (United States)

    Wannamaker, P. E.; Doerner, W. M.; Hasterok, D. P.

    2005-12-01

    In the rifted Basin and Range province of the southwestern U.S., a common faulting model for extensional basins based e.g. on reflection seismology data shows dominant displacement along master faults roughly coincident with the main topographic scarp. On the other hand, complementary data such as drilling, earthquake focal mechanisms, volcanic occurrences, and trace indicators such as helium isotopes suggest that there are alternative geometries of crustal scale faulting and material transport from the deep crust and upper mantle in this province. Recent magnetotelluric (MT) profiling results reveal families of structures commonly dominated by high-angle conductors interpreted to reflect crustal scale fault zones. Based mainly on cross cutting relationships, these faults appear to be late Cenozoic in age and are of low resistivity due to fluids or alteration (including possible graphitization). In the Ruby Mtns area of north-central Nevada, high angle faults along the margins of the core complex connect from near surface to a regional lower crustal conductor interpreted to contain high-temperature fluids and perhaps melts. Such faults may exemplify the high angle normal faults upon which the major earthquakes of the Great Basin appear to nucleate. A larger-scale transect centered on Dixie Valley shows major conductive crustal-scale structures connecting to conductive lower crust below Dixie Valley, the Black Rock desert in NW Nevada, and in east-central Nevada in the Monitor-Diamond Valley area. In the Great Basin-Colorado Plateau transition of Utah, the main structures revealed are a series of nested low-angle detachment structures underlying the incipient development of several rift grabens. All these major fault zones appear to overlie regions of particularly conductive lower crust interpreted to be caused by recent basaltic underplating. In the GB-CP transition, long period data show two, low-resistivity upper mantle diapirs underlying the concentrated

  16. Direct utilization of geothermal resources field experiments at Monroe, Utah. Final report, July 14, 1978-July 13, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Blair, C.K.; Owen, L.B. (eds.)

    1982-12-01

    The City of Monroe, Utah undertook a project to demonstrate the economic and technical viability of utilizing a low temperature geothermal resource to provide space and hot water heating to commercial, municipal, and domestic users within the community. During the course of the project, resource development and assessment, including drilling of a production well, was successfully completed. Upon completion of the field development and assessment phase of the program and of a preliminary design of the district heating system, it was determined that the project as proposed was not economically viable. This was due to: (1) a significant increase in estimated capital equipment costs resulting from the general inflation in construction costs, the large area/low population density in Monroe, and a more remote fluid disposal well site than planned, could not balance increased construction costs, (2) a lower temperature resource than predicted, and (3) due to predicted higher pumping and operating costs. After a thorough investigation of alternatives for utilizing the resource, further project activities were cancelled because the project was no longer economical and an alternative application for the resource could not be found within the constraints of the project. The City of Monroe, Utah is still seeking a beneficial use for the 600 gpm, 164/sup 0/F geothermal well. A summary of project activities included.

  17. California Basin Studies (CaBS). Final contract report

    Energy Technology Data Exchange (ETDEWEB)

    Gorsline, D.S.

    1991-12-31

    The California Continental Borderland`s present configuration dates from about 4 to 5 X 10{sup 6} years Before Present (B.P.) and is the most recent of several configurations of the southern California margin that have evolved after the North America Plate over-rode the East Pacific Rise about 30 X 10{sup 6} years ago. The present morphology is a series of two to three northwest-southeast trending rows of depressions separated by banks and insular ridges. Two inner basins, Santa Monica and San Pedro, have been the site for the Department of Energy-funded California Basin Study (CaBS) Santa Monica and San Pedro Basins contain post-Miocene sediment thicknesses of about 2.5 and 1.5 km respectively. During the Holocene (past 10,000 years) about 10-12 m have accumulated. The sediment entered the basin by one or a combination of processes including particle infall (mainly as bioaggregates) from surface waters, from nepheloid plumes (surface, mid-depths and near-bottom), from turbidity currents, mass movements, and to a very minor degree direct precipitation. In Santa Monica Basin, during the last century, particle infall and nepheloid plume transport have been the most common processes. The former dominates in the central basin floor in water depths from 900 to 945 m. where a characteristic silt-clay with a typical mean diameter of about 0.006 mm, phi standard deviation.

  18. Selected Basin Characterization Model Parameters for the Great Basin Carbonate and Alluvial Aquifer System of Nevada, Utah, and Parts of Adjacent States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a study focusing on ground-water resources in the Great Basin carbonate and alluvial aquifer system (GBCAAS). The GBCAAS is a...

  19. Final unioned polygon coverage used in coal resource calculations, San Juan Basin, CO and NM (sjbfing)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is a shapefile and the final unioned polygon coverage used to calculate coal resources of the Fruitland Formation, San Juan Basin coal assessment area, Colorado...

  20. (U-Th)/He and U-Pb double dating constraints on the interplay between thrust deformation and basin development, Sevier foreland basin, Utah

    Science.gov (United States)

    Pujols, E.; Stockli, D. F.; Horton, B. K.; Steel, R. J.; Constenius, K. N.

    2015-12-01

    The degree of connectivity between thrust-belt deformation and foreland basin evolution has been a matter of debate for decades. This is in part due to the lack of temporal constraints on the relationship between thrust-belt deformation and associated deposition. New high-resolution zircon (U-Th)-(Pb-He) double dating of pre- and syn-tectonic sedimentary strata along the Sevier thrust front and basin provide an unprecedented geochronological framework to temporally and spatially link the Sevier foreland basin stratigraphy to deforming hinterland sources. Results improve constraints on timing and magnitude of deformation, depositional ages, sediment dispersal and sources. In Late Cretaceous proximal deposits of the Indianola Group (IG) and Canyon Range Conglomerates (CRC), detrital zircon U-Pb (zUPb) and (U-Th)/He ages (ZHe) chronicle the sequential unroofing of the Charlestone-Nebo Salient (CNS) and Canyon Range (CR) duplexes. Furthermore, short ZHe depositional lag-times indicate rapid hinterland exhumation (>1km/my) associated with active thrusting during Cenomanian and Coniacian-Santonian times as supported by bedrock ZHe ages in the CNS and CR thrust sheets. Detrital zircon analyses on the Late Cretaceous marine Book Cliffs strata suggest a more complex source-to-sink evolution compared to the time-equivalent IG and CRC proximal strata due to mixing of multi-source detrital zircons, sediment recycling and more prominent volcanic input. Nonetheless, the overall cooling history recorded in the Book Cliffs clearly reflects three hinterland exhumational phases, an early phase derived from the frontal thrusts and two additional phases with more integrated hinterland ZHe signatures. These three short lag-time phases correlate with fast clastic progradational wedges in the Sevier foreland. These results strengthen the role played by hinterland deformation on clastic progradation and elucidate the temporal relationship between thrusting and foreland basin architecture.

  1. Geohydrology and numerical simulation of ground-water flow in the central Virgin River basin of Iron and Washington Countries, Utah

    Science.gov (United States)

    Heilweil, V.M.; Freethey, G.W.; Wilkowske, C.D.; Stolp, B.J.; Wilberg, D.E.

    2000-01-01

    Because rapid growth of communities in Washington and Iron Counties, Utah, is expected to cause an increase in the future demand for water resources, a hydrologic investigation was done to better understand ground-water resources within the central Virgin River basin. This study focused on two of the principal ground-water reservoirs within the basin: the upper Ash Creek basin ground-water system and the Navajo and Kayenta aquifer system. The ground-water system of the upper Ash Creek drainage basin consists of three aquifers: the uppermost Quaternary basin-fill aquifer, the Tertiary alluvial-fan aquifer, and the Tertiary Pine Valley monzonite aquifer. These aquifers are naturally bounded by the Hurricane Fault and by drainage divides. On the basis of measurements, estimates, and numerical simulations of reasonable values for all inflow and outflow components, total water moving through the upper Ash Creek drainage basin ground-water system is estimated to be about 14,000 acre-feet per year. Recharge to the upper Ash Creek drainage basin ground-water system is mostly from infiltration of precipitation and seepage from ephemeral and perennial streams. The primary source of discharge is assumed to be evapotranspiration; however, subsurface discharge near Ash Creek Reservoir also may be important. The character of two of the hydrologic boundaries of the upper Ash Creek drainage basin ground-water system is speculative. The eastern boundary provided by the Hurricane Fault is assumed to be a no-flow boundary, and a substantial part of the ground-water discharge from the system is assumed to be subsurface outflow beneath Ash Creek Reservoir along the southern boundary. However, these assumptions might be incorrect because alternative numerical simulations that used different boundary conditions also proved to be feasible. The hydrogeologic character of the aquifers is uncertain because of limited data. Difference in well yield indicate that there is considerable

  2. Potential areas of ground-water discharge in the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent parts of Nevada and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent potential areas of ground-water discharge for selected hydrographic areas in eastern Nevada and western Utah. The data are based on phreatophyte...

  3. Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges: Cross-Jurisdictional Management and Impacts on Unconventional Fuel Development in Utah's Uinta Basin

    Energy Technology Data Exchange (ETDEWEB)

    Keiter, Robert [Univ. of Utah, Salt Lake City, UT (United States); Ruple, John [Univ. of Utah, Salt Lake City, UT (United States); Holt, Rebecca [Univ. of Utah, Salt Lake City, UT (United States); Tanana, Heather [Univ. of Utah, Salt Lake City, UT (United States); McNeally, Phoebe [Univ. of Utah, Salt Lake City, UT (United States); Tribby, Clavin [Univ. of Utah, Salt Lake City, UT (United States)

    2012-10-01

    Secretarial Order 3310, Protecting Wilderness Characteristics on Lands Managed by the Bureau of Land Management. Supporters argue that the Order merely provides guidance regarding implementation of existing legal obligations without creating new rights or duties. Opponents describe Order 3310 as subverting congressional authority to designate Wilderness Areas and as closing millions of acres of public lands to energy development and commodity production. While opponents succeeded in temporarily defunding the Order’s implementation and forcing the Bureau of Land Management (BLM) to adopt a more collaborative approach, the fundamental questions remain: Which federal public lands possess wilderness characteristics and how should those lands be managed? The closely related question is: How might management of such resources impact unconventional fuel development within Utah? These questions remain pressing independent of the Order because the BLM, which manages the majority of federal land in Utah, is statutorily obligated to maintain an up-to-date inventory of federal public lands and the resources they contain, including lands with wilderness characteristics. The BLM is also legally obligated to develop and periodically update land use plans, relying on information obtained in its public lands inventory. The BLM cannot sidestep these hard choices, and failure to consider wilderness characteristics during the planning process will derail the planning effort. Based on an analysis of the most recent inventory data, lands with wilderness characteristics — whether already subject to mandatory protection under the Wilderness Act, subject to discretionary protections as part of BLM Resource Management Plan revisions, or potentially subject to new protections under Order 3310 — are unlikely to profoundly impact oil shale development within Utah’s Uinta Basin. Lands with wilderness characteristics are likely to v have a greater impact on oil sands resources, particularly those

  4. Groundwater Availability Within the Salton Sea Basin Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, A; Demir, Z; Moran, J; Mason, D; Wagoner, J; Kollet, S; Mansoor, K; McKereghan, P

    2008-01-11

    It is widely recognized that increasing demands for water in Southern California are being affected by actions to reduce and redirect the amount of water imported from the Colorado River. In the Imperial Valley region, for example, import reductions will not only affect agricultural users but also could produce significant collateral impacts on the level and quality of water in the Salton Sea, its regional ecology, or even the long term air quality in the greater basin. The notion of using groundwater in the Imperial Valley as an additional source for agricultural or domestic needs, energy production, or Salton Sea restoration efforts, so as to offset reductions in imported water, is not a new concept. Even though it has been discussed recently (e.g., LLNL, 2002), the idea goes back, in part, to several studies performed by the US Department of Interior and other agencies that have indicated that there may be substantial, usable amounts of groundwater in some portions of the Imperial Valley. It has been estimated, for example, that between 1.1 and 3 billion acre-feet (AF) of groundwater lie within the extended, deep basin underlying the valley and Salton Sea region, even though much of it may be unrecoverable or too poor in its quality (Imperial County, 1997). This is a significant volume with respect to the total annual precipitation volume received in California, whose average is close to 200 million (or 0.2 billion) AF per year (DWR, 1998), and especially with respect to the total annual precipitation received in the Salton Sea watershed itself, which we estimate (Appendix A) to be approximately 2.5 million acre feet (MAF) per year. Clearly, a thorough appraisal of the groundwater resources in the Imperial Valley and Salton Sea region--i.e., an assessment of their overall physical availability--will be needed to determine how they can be used and managed to suit new or redirected demands in the region. Development of an improved or updated groundwater assessment

  5. Groundwater Availability Within the Salton Sea Basin Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, A; Demir, Z; Moran, J; Mason, D; Wagoner, J; Kollet, S; Mansoor, K; McKereghan, P

    2008-01-11

    It is widely recognized that increasing demands for water in Southern California are being affected by actions to reduce and redirect the amount of water imported from the Colorado River. In the Imperial Valley region, for example, import reductions will not only affect agricultural users but also could produce significant collateral impacts on the level and quality of water in the Salton Sea, its regional ecology, or even the long term air quality in the greater basin. The notion of using groundwater in the Imperial Valley as an additional source for agricultural or domestic needs, energy production, or Salton Sea restoration efforts, so as to offset reductions in imported water, is not a new concept. Even though it has been discussed recently (e.g., LLNL, 2002), the idea goes back, in part, to several studies performed by the US Department of Interior and other agencies that have indicated that there may be substantial, usable amounts of groundwater in some portions of the Imperial Valley. It has been estimated, for example, that between 1.1 and 3 billion acre-feet (AF) of groundwater lie within the extended, deep basin underlying the valley and Salton Sea region, even though much of it may be unrecoverable or too poor in its quality (Imperial County, 1997). This is a significant volume with respect to the total annual precipitation volume received in California, whose average is close to 200 million (or 0.2 billion) AF per year (DWR, 1998), and especially with respect to the total annual precipitation received in the Salton Sea watershed itself, which we estimate (Appendix A) to be approximately 2.5 million acre feet (MAF) per year. Clearly, a thorough appraisal of the groundwater resources in the Imperial Valley and Salton Sea region--i.e., an assessment of their overall physical availability--will be needed to determine how they can be used and managed to suit new or redirected demands in the region. Development of an improved or updated groundwater assessment

  6. Utah Southwest Regional Geothermal Development Operations Research Project. Appendix 10 of regional operations research program for development of geothermal energy in the Southeast United States. Final technical report, June 1977--August 1978

    Energy Technology Data Exchange (ETDEWEB)

    Green, Stanley; Wagstaff, Lyle W.

    1979-01-01

    The Southwest Regional Geothermal Operations/Research project was initiated to investigate geothermal development in the five states within the region: Arizona, Colorado, Nevada, New Mexico, and Utah. Although the region changed during the first year to include Idaho, Montana, North Dakota, South Dakota, and Wyoming, the project objectives and procedures remained unchanged. The project was funded by the DOE/DGE and the Four Corners Regional Commission with participation by the New Mexico Energy Resources Board. The study was coordinated by the New Mexico Energy Institute at New Mexico State University, acting through a 'Core Team'. A 'state' team, assigned by the states, conducted the project within each state. This report details most of the findings of the first year's efforts by the Utah Operations/Research team. It is a conscientious effort to report the findings and activities of the Utah team, either explicitly or by reference. The results are neither comprehensive nor final, and should be regarded as preliminary efforts to much of what the Operations/Research project was envisioned to accomplish. In some cases the report is probably too detailed, in other cases too vague; hopefully, however, the material in the report, combined with the Appendices, will be able to serve as source material for others interested in geothermal development in Utah.

  7. Correlation of aptian-albian carbon isotope excursions in continental strata of the cretaceous Foreland Basin, Eastern Utah, U.S.A.

    Science.gov (United States)

    Ludvigson, Greg A.; Joeckel, R.M.; Gonzalez, Luis A.; Gulbranson, E.L.; Rasbury, E.T.; Hunt, G.J.; Kirkland, J.I.; Madsen, S.

    2010-01-01

    Nodular carbonates ("calcretes") in continental foreland-basin strata of the Early Cretaceous Cedar Mountain Formation (CMF) in eastern Utah yield ??13C and ??O records of changes in the exogenic carbon cycle related to oceanic anoxic events (OAEs), and terrestrial paleoclimate. Chemostratigraphic profiles of both forebulge and foredeep sections show two prominent positive ??13C excursions, each with a peak value of -3% VPDB, and having background ??13C values of about -6% VPDB. These excursions correlate with the global early Aptian (Ap7) and late Aptian-early Albian (Apl2-All) carbon isotope excursions. Aptian-Albian positive ??13C excursions in the CMF also correspond to 3-4 per mil increases in carbonate ??18O. These phenomena record local aridification events. The chemostratigraphic profile on the thinner forebulge section of the CMF is calibrated, for the first time, by a radiogenic U-Pb date of 119.4 ?? 2.6 Ma on a carbonate bed, and by detrital zircon U-Pb dates on two bounding sandstone units (maximum depositional ages of 146 Ma and 112 Ma). P??trographie observations and diagenetic analyses of micritic to microsparitic carbonates from nodules indicate palustrine origins and demonstrate that they crystallized in shallow early meteoric phreatic environments. Meteoric calcite lines derived from CMF carbonates have ??18O values ranging between -8.1 to -7.5%o VPDB, supporting an estimate of zonal mean groundwater ??18O of -6% VSMOW for an Aptian-Albian paleolatitude of 34?? N. Furthermore, our two chemostratigraphic profiles exhibit a generally proportionate thinning of correlative strata from the foredeep on to the forebulge, suggesting that there were consistently lower rates of accumulation on the forebulge during the Aptian-Albian. Identification of the global Aptian-Albian ??13C excursions in purely continental strata, as demonstrated in this paper, opens a new avenue of research by identifying specific stratigraphie intervals that record the terrestrial

  8. Hydrology of Northern Utah Valley, Utah County, Utah, 1975-2005

    Science.gov (United States)

    Cederberg, Jay R.; Gardner, Philip M.; Thiros, Susan A.

    2009-01-01

    The ground-water resources of northern Utah Valley, Utah, were assessed during 2003-05 to describe and quantify components of the hydrologic system, determine a hydrologic budget for the basin-fill aquifer, and evaluate changes to the system relative to previous studies. Northern Utah Valley is a horst and graben structure with ground water occurring in both the mountain-block uplands surrounding the valley and in the unconsolidated basin-fill sediments. The principal aquifer in northern Utah Valley occurs in the unconsolidated basin-fill deposits where a deeper unconfined aquifer occurs near the mountain front and laterally grades into multiple confined aquifers near the center of the valley. Sources of water to the basin-fill aquifers occur predominantly as either infiltration of streamflow at or near the interface of the mountain front and valley or as subsurface inflow from the adjacent mountain blocks. Sources of water to the basin-fill aquifers were estimated to average 153,000 (+/- 31,500) acre-feet annually during 1975-2004 with subsurface inflow and infiltration of streamflow being the predominant sources. Discharge from the basin-fill aquifers occurs in the valley lowlands as flow to waterways, drains, ditches, springs, as diffuse seepage, and as discharge from flowing and pumping wells. Ground-water discharge from the basin-fill aquifers during 1975-2004 was estimated to average 166,700 (+/- 25,900) acre-feet/year where discharge to wells for consumptive use and discharge to waterways, drains, ditches, and springs were the principal sources. Measured water levels in wells in northern Utah Valley declined an average of 22 feet from 1981 to 2004. Water-level declines are consistent with a severe regional drought beginning in 1999 and continuing through 2004. Water samples were collected from 36 wells and springs throughout the study area along expected flowpaths. Water samples collected from 34 wells were analyzed for dissolved major ions, nutrients, and

  9. Final Environmental Impact Statement to construct and operate a facility to receive, store, and dispose of 11e.(2) byproduct material near Clive, Utah (Docket No. 40-8989)

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    A Final Environmental Impact Statement (FEIS) related to the licensing of Envirocare of Utah, Inc.`s proposed disposal facility in Tooele county, Utah (Docket No. 40-8989) for byproduct material as defined in Section 11e.(2) of the Atomic Energy Act, as amended, has been prepared by the Office of Nuclear Material Safety and Safeguards. This statement describes and evaluates the purpose of and need for the proposed action, the alternatives considered, and the environmental consequences of the proposed action. The NRC has concluded that the proposed action evaluated under the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51, is to permit the applicant to proceed with the project as described in this Statement.

  10. Reservoir heterogeneity in carboniferous sandstone of the Black Warrior basin. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-06-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  11. Reservoir heterogeneity in Carboniferous sandstone of the Black Warrior basin. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-04-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  12. Geology of tight oil and potential tight oil reservoirs in the lower part of the Green River Formation, Uinta, Piceance, and Greater Green River Basins, Utah, Colorado, and Wyoming

    Science.gov (United States)

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.; Brownfield, Michael E.

    2016-05-02

    The recent successful development of a tight oil play in the Eocene-age informal Uteland Butte member of the lacustrine Green River Formation in the Uinta Basin, Utah, using modern horizontal drilling and hydraulic fracturing techniques has spurred a renewed interest in the tight oil potential of lacustrine rocks. The Green River Formation was deposited by two large lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. These three basins contain the world’s largest in-place oil shale resources with recent estimates of 1.53 trillion, 1.33 trillion, and 1.44 trillion barrels of oil in place in the Piceance, Uinta, and Greater Green River Basins, respectively. The Uteland Butte member was deposited during an early freshwater stage of the lake in the Uinta Basin prior to deposition of the assessed oil shale intervals. This report only presents information on the early freshwater interval and overlying brackish-water interval in all three basins because these intervals are most likely to have tight oil potential. Burial histories of the three basins were reconstructed to study (1) variations in subsidence and lake development, and (2) post deposition burial that led to the development of a petroleum system in only the Uinta Basin. The Uteland Butte member is a successful tight oil play because it is thermally mature for hydrocarbon generation and contains organic-rich shale, brittle carbonate, and porous dolomite. Abnormally high pressure in parts of the Uteland Butte is also important to production. Variations in organic richness of the Uteland Butte were studied using Fischer assay analysis from oil shale assessments, and pressures were studied using drill-stem tests. Freshwater lacustrine intervals in the Piceance and Greater Green River Basins are immature for hydrocarbon generation and contain much less carbonate than the Uteland Butte member. The brackish-water interval in the Uinta Basin is thermally mature for

  13. Final Safety Evaluation Report to license the construction and operation of a facility to receive, store, and dispose of 11e.(2) byproduct material near Clive, Utah (Docket No. 40-8989)

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Final Safety Evaluation Report (FSER) summarizes the US Nuclear Regulatory Commission (NRC) staff`s review of Envirocare of Utah, Inc.`s (Envirocare`s) application for a license to receive, store, and dispose of uranium and thorium byproduct material (as defined in Section 11e.(2) of the Atomic Energy Act of 1954, as amended) at a site near Clive, Utah. Envirocare proposes to dispose of high-volume, low-activity Section 11e.(2) byproduct material in separate earthen disposal cells on a site where the applicant currently disposes of naturally occurring radioactive material (NORM), low-level waste, and mixed waste under license by the Utah Department of Environmental Quality. The NRC staff review of the December 23, 1991, license application, as revised by page changes dated July 2 and August 10, 1992, April 5, 7, and 10, 1993, and May 3, 6, 7, 11, and 21, 1993, has identified open issues in geotechnical engineering, water resources protection, radon attenuation, financial assurance, and radiological safety. The NRC will not issue a license for the proposed action until Envirocare adequately resolves these open issues.

  14. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Quarterly technical progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Allison, M.L.

    1996-08-01

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide (CO{sub 2}-)flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  15. Environmental assessment: Davis Canyon site, Utah

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of the five sites suitable for characterization.

  16. Environmental assessment: Davis Canyon site, Utah

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considering for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization.

  17. Environmental, genetic, and ecophysiological variation of western and Utah juniper and their hybrids: A model system for vegetation response to climate change. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, R.S. [Univ. of Nevada, Reno, NV (United States). Dept. of Environmental and Resource Sciences; Tausch, R.J. [Forest Service, Reno, NV (United States). Rocky Mountain Research Station

    1998-11-01

    This report focuses on the following two research projects relating to the biological effects of climate change: Hybridization and genetic diversity populations of Utah (Juniperus osteosperma) and western (Juniperus occidentalis) juniper: Evidence from nuclear ribosomal and chloroplast DNA; and Ecophysiological patterns of pinyon and juniper.

  18. Enhancement of the TORIS data base of Appalachian basin oil fields. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-31

    The Tertiary Oil Recovery Information System, or TORIS, was developed by the Department of Energy in the early 1980s with a goal of accounting for 70% of the nation`s original oil in place (OOIP). More than 3,700 oil reservoirs were included in TORIS, but coverage in the Appalachian basin was poor. This TORIS enhancement project has two main objectives: to increase the coverage of oil fields in the Appalachian basin; and to evaluate data for reservoirs currently in TORIS, and to add, change or delete data as necessary. Both of these objectives have been accomplished. The geological surveys in Kentucky, Ohio, Pennsylvania and West Virginia have identified 113 fields in the Appalachian basin to be included in TORIS that collectively contained 80% of the original oil in place in the basin. Furthermore, data in TORIS at the outset of the project was checked and additional data were added to the original 20 TORIS oil fields. This final report is organized into four main sections: reservoir selection; evaluation of data already in TORIS; industry assistance; and data base creation and validation. Throughout the report the terms pool and reservoir may be used in reference to a single zone of oil accumulation and production within a field. Thus, a field is composed of one or more pools at various stratigraphic levels. These pools or reservoirs also are referred to as pay sands that may be individually named sandstones within a formation or group.

  19. DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (July 2005)

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2005-08-05

    The U.S. Department of Energy (DOE or the Department) is proposing to clean up surface contamination and implement a ground water compliance strategy to address contamination that resulted from historical uranium-ore processing at the Moab Uranium Mill Tailings Site (Moab site), Grand County, Utah. Pursuant to the National Environmental Policy Act (NEPA), 42 United States Code (U.S.C.) {section} 4321 et seq., DOE prepared this environmental impact statement (EIS) to assess the potential environmental impacts of remediating the Moab site and vicinity properties (properties where uranium mill tailings were used as construction or fill material before the potential hazards associated with the tailings were known). DOE analyzed the potential environmental impacts of both on-site and off-site remediation and disposal alternatives involving both surface and ground water contamination. DOE also analyzed the No Action alternative as required by NEPA implementing regulations promulgated by the Council on Environmental Quality. DOE has determined that its preferred alternatives are the off-site disposal of the Moab uranium mill tailings pile, combined with active ground water remediation at the Moab site. The preferred off-site disposal location is the Crescent Junction site, and the preferred method of transportation is rail. The basis for this determination is discussed later in this Summary. DOE has entered into agreements with 12 federal, tribal, state, and local agencies to be cooperating agencies in the development and preparation of this EIS. Several of the cooperating agencies have jurisdiction by law and intend to use the EIS to support their own decisionmaking. The others have expertise relevant to potential environmental, social, or economic impacts within their geographic regions. During the preparation of the EIS, DOE met with the cooperating agencies, provided them with opportunities to review preliminary versions of the document, and addressed their comments

  20. An Examination of Avoided Costs in Utah

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan

    2005-01-07

    The Utah Wind Working Group (UWWG) believes there are currently opportunities to encourage wind power development in the state by seeking changes to the avoided cost tariff paid to qualifying facilities (QFs). These opportunities have arisen as a result of a recent renegotiation of Pacificorp's Schedule 37 tariff for wind QFs under 3 MW, as well as an ongoing examination of Pacificorp's Schedule 38 tariff for wind QFs larger than 3 MW. It is expected that decisions made regarding Schedule 38 will also impact Schedule 37. Through the Laboratory Technical Assistance Program (Lab TAP), the UWWG has requested (through the Utah Energy Office) that LBNL provide technical assistance in determining whether an alternative method of calculating avoided costs that has been officially adopted in Idaho would lead to higher QF payments in Utah, and to discuss the pros and cons of this method relative to the methodology recently adopted under Schedule 37 in Utah. To accomplish this scope of work, I begin by summarizing the current method of calculating avoided costs in Utah (per Schedule 37) and Idaho (the ''surrogate avoided resource'' or SAR method). I then compare the two methods both qualitatively and quantitatively. Next I present Pacificorp's four main objections to the use of the SAR method, and discuss the reasonableness of each objection. Finally, I conclude with a few other potential considerations that might add value to wind QFs in Utah.

  1. Results of mineral, chemical, and sulfate isotopic analyses of water, soil, rocks, and soil extracts from the Pariette Draw Watershed, Uinta Basin, Utah

    Science.gov (United States)

    Morrison, Jean M.; Tuttle, Michele L.W.; Fahy, Juli W.

    2015-08-06

    In 2010, Utah Department of Environmental Quality (DEQ) Division of Water Quality (UDWQ, 2010) determined that water quality in Pariette Draw was in violation of Federal and State water quality criteria for total dissolved solids (TDS), selenium (Se), and boron (B). The measure of total dissolved solids is the sum of all the major ion concentrations in solution and in this case, the dominant ions are sodium (Na) and sulfate (SO4), which can form salts like thenardite (Na2SO4) and mirabilite (Na2SO4⋅H2O). The Utah Department of Environmental Quality (2010) classified the contamination as natural background and from nonpoint sources related to regional lithology and irrigation practices. Although the daily loads of the constituents of concern and water chemistry have been characterized for parts of the watershed, little is known about the controls that bedrock and soil mineralogy have on salt, Se, and B storage and the water-rock interactions that influence the mobility of these components in ground and surface waters. Studies in the Uncompahgre River watershed in Colorado by Tuttle and others (2014a, 2014b) show that salt derived from weathering of shale in a semiarid climate is stored in a variety of minerals that contribute solutes to runoff and surface waters based on a complex set of conditions such as water availability, geomorphic position (for example, topography controls the depth of salt accumulation in soils), water-table fluctuations, redox conditions, mineral dissolution kinetics, ion-exchange reactions, and secondary mineral formation. Elements like Se and B commonly reside in soluble salt phases, so knowledge of the behavior of salt minerals also sheds light on the behavior of associated contaminants.

  2. Assessment of continuous (unconventional) oil and gas resources in the Late Cretaceous Mancos Shale of the Piceance Basin, Uinta-Piceance Province, Colorado and Utah, 2016

    Science.gov (United States)

    Hawkins, Sarah J.; Charpentier, Ronald R.; Schenk, Christopher J.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Brownfield, Michael E.; Finn, Tom M.; Gaswirth, Stephanie B.; Marra, Kristen R.; Le, Phoung A.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.

    2016-06-08

    The U.S. Geological Survey (USGS) completed a geology-based assessment of the continuous (unconventional) oil and gas resources in the Late Cretaceous Mancos Shale within the Piceance Basin of the Uinta-Piceance Province (fig. 1). The previous USGS assessment of the Mancos Shale in the Piceance Basin was completed in 2003 as part of a comprehensive assessment of the greater UintaPiceance Province (U.S. Geological Survey Uinta-Piceance Assessment Team, 2003). Since the last assessment, more than 2,000 wells have been drilled and completed in one or more intervals within the Mancos Shale of the Piceance Basin (IHS Energy Group, 2015). In addition, the USGS Energy Resources Program drilled a research core in the southern Piceance Basin that provided significant new geologic and geochemical data that were used to refine the 2003 assessment of undiscovered, technically recoverable oil and gas in the Mancos Shale.

  3. 1:1,000,000-scale hydrographic areas and flow systems for the Great Basin carbonate and alluvial aquifer system of Nevada, Utah, and parts of adjacent states

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a U.S. Geological Survey (USGS) study focusing on groundwater resources in the Great Basin carbonate and alluvial aquifer...

  4. Irrigated Acreage Within the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada and Adjacent Areas in Nevada and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Accurate delineations of irrigated acreage are needed for the development of water-use estimates and in determining water-budget calculations for the Basin and Range...

  5. Evapotranspiration units in the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent parts of Nevada and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Accurate estimates of ground-water discharge are crucial in the development of a water budget for the Basin and Range Carbonate-rock Aquifer System (BARCAS) study...

  6. Hydrographic Areas Within the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada and Adjacent Areas in Nevada and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of sub delineations of the hydrographic area (HA) boundaries and polygons drawn at 1:1,000,000 scale for the Great Basin supplemented by...

  7. Three-dimensional hydrogeologic framework for the Great Basin carbonate and alluvial aquifer system of Nevada, Utah, and parts of adjacent states

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a study focusing on groundwater resources in the Great Basin carbonate and alluvial aquifer system (GBCAAS). The GBCAAS is a...

  8. 1:1,000,000-scale potentiometric contours and control points for the Great Basin carbonate and alluvial aquifer system of Nevada, Utah, and parts of adjacent states

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a U.S. Geological Survey (USGS) study focusing on groundwater resources in the Great Basin carbonate and alluvial aquifer...

  9. Migrants in Utah.

    Science.gov (United States)

    Nelson, Kerry D.

    Migration patterns, health standards, living conditions, and educational opportunities are the highlights of this report of migrant farm workers in Utah. A review of the migratory worker streams in the United States reveals that most migratory workers in Utah come from the Rio Grande valley area of southwest United States. Because most are Mexican…

  10. MAJOR OIL PLAYS IN UTAH AND VICINITY

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey Jr; Craig D. Morgan; Roger L. Bon

    2003-07-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the third quarter of the first project year (January 1 through March 31, 2003). This work included gathering field data and analyzing best practices in the eastern Uinta Basin, Utah, and the Colorado portion of the Paradox Basin. Best practices used in oil fields of the eastern Uinta Basin consist of conversion of all geophysical well logs into digital form, running small fracture treatments, fingerprinting oil samples from each producing zone, running spinner surveys biannually, mapping each producing zone, and drilling on 80-acre (32 ha) spacing. These practices ensure that induced fractures do not extend vertically out of the intended zone, determine the percentage each zone contributes to the overall

  11. Environmental assessment: Davis Canyon site, Utah

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has fond that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 181 figs., 175 tabs.

  12. Quantifying Ozone Production throughout the Boundary Layer from High Frequency Tethered Profile Measurements during a High Ozone Episode in the Uinta Basin, Utah

    Science.gov (United States)

    Sterling, C. W.; Johnson, B.; Schnell, R. C.; Oltmans, S. J.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Windell, J.; McClure-Begley, A.; Helmig, D.; Petron, G.

    2015-12-01

    During the Uinta Basin Winter Ozone Study (UBWOS) in Jan - Feb 2013, 735 tethered ozonesonde profiles were obtained at 3 sites including during high wintertime photochemical ozone production events that regularly exceeded 125 ppb. High resolution profiles of ozone and temperature with altitude, measured during daylight hours, showed the development of approximately week long high ozone episodes building from background levels of ~40 ppb to >150 ppb. The topography of the basin combined with a strong temperature inversion trapped oil and gas production effluents in the basin and the snow covered surface amplified the sun's radiation driving the photochemical ozone production at rates up to 13 ppb/hour in a cold layer capped at 1600-1700 meters above sea level. Beginning in mid-morning, ozone mixing ratios throughout the cold layer increased until late afternoon. Ozone mixing ratios were generally constant with height indicating that ozone production was nearly uniform throughout the depth of the cold pool. Although there was strong diurnal variation, ozone mixing ratios increased during the day more than decreased during the night, resulting in elevated levels the next morning; an indication that nighttime loss processes did not compensate for daytime production. Even though the 3 tethersonde sites were at elevations differing by as much as 140 m, the top of the high ozone layer was nearly uniform in altitude at the 3 locations. Mobile van surface ozone measurements across the basin confirmed this capped structure of the ozone layer; the vehicle drove out of high ozone mixing ratios at an elevation of ~1900 meters above sea level, above which free tropospheric ozone mixing ratios of ~50 ppb were measured. Exhaust plumes from a coal-fired power plant in the eastern portion of the basin were intercepted by the tethersondes. The structure of the profiles clearly showed that effluents in the plumes were not mixed downward and thus did not contribute precursor nitrogen

  13. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Seventh quarterly technical progress report, April 1, 1995--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, C.D.

    1995-09-01

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project. Technical progress for this quarter are discussed for subsurface and engineering studies.

  14. Rain Barrels in Utah

    OpenAIRE

    Greene, Brian; Mesner, Nancy; Brain, Roslynn

    2015-01-01

    Rain barrels are an easy way to conserve rain water and help protect our environment. This fact sheet tells how to find out about the current regulations in Utah and how to build a rain barrel for your own home.

  15. 77 FR 24975 - Endangered and Threatened Wildlife and Plants; Revised Recovery Plan for the Utah Prairie Dog

    Science.gov (United States)

    2012-04-26

    ... Utah Prairie Dog AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of document availability... recovery plan for the Utah prairie dog (Cynomys parvidens). This species is federally listed as threatened... preparation of the final revised recovery plan for the Utah prairie dog. The Service and other...

  16. Cooling Before Super-Eruption: No Evidence of Rejuvenation in a Crystal-Rich Dacite Magma Body, Southern Great Basin Ignimbrite Province, Utah and Nevada

    Science.gov (United States)

    Ross, K. T.; Christiansen, E. H.; Best, M. G.; Dorais, M.

    2015-12-01

    The model of rejuvenation of a near-solidus crystal mush to produce large volumes of crystal-rich magma is tested here by analyzing the mineralogical, chemical, modal, and physical characteristics of the 31.1 Ma super-eruptive (2000 km3) Cottonwood Wash Tuff. It is the oldest in a series of three so-called "monotonous intermediate" ignimbrites from the Indian Peak-Caliente volcanic field in southern Utah and Nevada. A crystal-rich (~50% Pl + Qz + Hbl + Bt + Mag + Ilm + Cpx + Zrn + Ap + Po) dacite (62 - 69 wt% SiO2), the Cottonwood Wash Tuff is similar in age, volume, mineralogy, crystallinity, and elemental composition to the 28.0 Ma, ~5000 km3 Fish Canyon Tuff (~45% Pl + Kfs + Qz + Hbl + Bt + Ttn + Mag + Ilm + Ap + Zrn + Po, 66 - 68 wt% SiO2), used as the basis of the rejuvenation model. The Cottonwood Wash magma chamber was compositionally varied as shown by mineral and juvenile clast compositions. Whole-rock compositional variations are likely due to the variation of mineral proportions induced by shear in the magma chamber. Mineral compositions and experimental phase relationships show the pre-eruption magma crystallized at 800°C, 2.5 kb under water-undersaturated but oxidized conditions (delta QFM = 2.1). The majority of plagioclase and amphibole grains exhibit small-scale oscillatory zonation; where systematic compositional zonation exists, normal and reverse zonation are equally present. Cathodoluminescence of quartz reveals typically normally zoned phenocrysts with late resorption, considered to be the result of eruptive decompression. Many of the characteristics used to identify the rejuvenation of a near-solidus mush for the Fish Canyon Tuff are not present in the Cottonwood Wash Tuff [i.e., reversely zoned hornblende or plagioclase, partially remelted mineral aggregates, evidence of fluid saturation, resorption textures not related to decompression, rapakivi mantles, and hybrid andesite inclusions.] The Cottonwood Wash magma system did not undergo

  17. Study of alternatives for future operations of the naval petroleum and oil shale reserves, NOSR-2, Uintah and Carbon Counties, Utah. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The US Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant and authorized a study and recommendations regarding future development of Naval Oil Shale Reserve No. 2 (NOSR-2) in Uintah and Carbon Counties, Utah. The US owns 100% of the mineral rights and about 60% of the surface rights in NOSR-2. The Ute Indian Tribe owns the other 40% of the surface. This 88,890-acre tract was set aside as an oil shale reserve for the US Navy by an Executive Order of President Wilson in 1916. Management of NOSR-2 is the responsibility of DOE. No drilling for oil and gas has occurred on the property and no production has been established. No reserves are present, although the area is hypothesized to overlay gas resources. Mapping by the US Geological Survey and others has resulted in speculative seismic leads for structures that may or may not hold conventional oil and gas. All of the mineral rights (including oil shale) must be considered exploratory and the mineral rights must be valued accordingly. The opinion recommended to maximize value to the US is Option 4, sale of the interest of the US of all or part of NOSR-2. Evaluation of this option results in an estimated value which is more than three times greater than the next highest estimated value, for Option 2, transfer to the Department of the Interior for leasing.

  18. Increased oil production and reserves from improved completion techniques in the Bluebell field, Uinta Basin, Utah. Tenth quarterly technical progress report, January 1, 1996--March 31, 1996. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Allison, M.L.

    1996-05-13

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin will is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil- bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch Formations in the Bluefell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project. Data (net pay thickness, porosity, and water saturation) of more than 100 individuals beds in he lower Green River and Wasatch Formations were used to generate geostatistical realization (numerical- representation) of the reservoir properties. The data set was derived from the Michelle Ute and Malnar Pike demonstration wells and 22 other wells in a 20 (52 km{sup 2}) square-mile area. Beds were studied independently of each other. Principles of sequential Gaussian simulations were used to generate geostatistical realizations of the beds.

  19. Assessment of dissolved-solids loading to the Colorado River in the Paradox Basin between the Dolores River and Gypsum Canyon, Utah

    Science.gov (United States)

    Shope, Christopher L.; Gerner, Steven J.

    2014-01-01

    Salinity loads throughout the Colorado River Basin have been a concern over recent decades due to adverse impacts on population, natural resources, and regional economics. With substantial financial resources and various reclamation projects, the salt loading to Lake Powell and associated total dissolved-solids concentrations in the Lower Colorado River Basin have been substantially reduced. The Colorado River between its confluence with the Dolores River and Lake Powell traverses a physiographic area where saline sedimentary formations and evaporite deposits are prevalent. However, the dissolved-solids loading in this area is poorly understood due to the paucity of water-quality data. From 2003 to 2011, the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation conducted four synoptic sampling events to quantify the salinity loading throughout the study reach and evaluate the occurrence and impacts of both natural and anthropogenic sources. The results from this study indicate that under late-summer base-flow conditions, dissolved-solids loading in the reach is negligible with the exception of the Green River, and that variations in calculated loads between synoptic sampling events are within measurement and analytical uncertainties. The Green River contributed approximately 22 percent of the Colorado River dissolved-solids load, based on samples collected at the lower end of the study reach. These conclusions are supported by water-quality analyses for chloride and bromide, and the results of analyses for the stable isotopes of oxygen and deuterium. Overall, no significant sources of dissolved-solids loading from tributaries or directly by groundwater discharge, with the exception of the Green River, were identified in the study area.

  20. Major Oil Plays in Utah and Vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

    2003-12-31

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively

  1. Oils and source rocks from the Anadarko Basin: Final report, March 1, 1985-March 15, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Philp, R. P. [School of Geology and Geophysics, Univ. of Oklahoma, Norman, OK (United States)

    1996-11-01

    The research project investigated various geochemical aspects of oils, suspected source rocks, and tar sands collected from the Anadarko Basin, Oklahoma. The information has been used, in general, to investigate possible sources for the oils in the basin, to study mechanisms of oil generation and migration, and characterization of depositional environments. The major thrust of the recent work involved characterization of potential source formations in the Basin in addition to the Woodford shale. The formations evaluated included the Morrow, Springer, Viola, Arbuckle, Oil Creek, and Sylvan shales. A good distribution of these samples was obtained from throughout the basin and were evaluated in terms of source potential and thermal maturity based on geochemical characteristics. The data were incorporated into a basin modelling program aimed at predicting the quantities of oil that could, potentially, have been generated from each formation. The study of crude oils was extended from our earlier work to cover a much wider area of the basin to determine the distribution of genetically-related oils, and whether or not they were derived from single or multiple sources, as well as attempting to correlate them with their suspected source formations. Recent studies in our laboratory also demonstrated the presence of high molecular weight components(C{sub 4}-C{sub 80}) in oils and waxes from drill pipes of various wells in the region. Results from such a study will have possible ramifications for enhanced oil recovery and reservoir engineering studies.

  2. MAJOR OIL PLAYS IN UTAH AND VICINITY

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey, Jr.

    2003-01-01

    Utah oil fields have produced a total of 1.2 billion barrels (191 million m{sup 3}). However, the 15 million barrels (2.4 million m{sup 3}) of production in 2000 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the first quarter of the first project year (July 1 through September 30, 2002). This work included producing general descriptions of Utah's major petroleum provinces, gathering field data, and analyzing best practices in the Utah Wyoming thrust belt. Major Utah oil reservoirs and/or source rocks are found in Devonian through Permian, Jurassic, Cretaceous, and Tertiary rocks. Stratigraphic traps include carbonate buildups and fluvial-deltaic pinchouts, and structural traps include basement-involved and detached faulted anticlines. Best practices used in Utah's oil fields consist of waterflood, carbon-dioxide flood, gas-injection, and horizontal drilling programs. Nitrogen injection and horizontal

  3. MAJOR OIL PLAYS IN UTAH AND VICINITY

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Grant C. Willis

    2003-09-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the fourth quarter of the first project year (April 1 through June 30, 2003). This work included describing outcrop analogs to the Jurassic Nugget Sandstone and Pennsylvanian Paradox Formation, the major oil producers in the thrust belt and Paradox Basin, respectively. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. The Nugget Sandstone was deposited in an extensive dune field that extended from Wyoming to

  4. Libraries in Utah: MedlinePlus

    Science.gov (United States)

    ... this page: https://medlineplus.gov/libraries/utah.html Libraries in Utah To use the sharing features on ... please enable JavaScript. Provo Utah Valley Hospital Medical Library ILL 1134 North 500 West Provo, UT 84604- ...

  5. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  6. Status Review of Wildlife Mitigation at Columbia Basin Hydroelectric Projects, Oregon Facilities, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bedrossian, Karen L.

    1984-08-01

    The report presents a review and documentation of existing information on wildlife resources at Columbia River Basin hydroelectric facilities within Oregon. Effects of hydroelectric development and operation; existing agreements; and past, current and proposed wildlife mitigation, enhancement, and protection activities were considered. (ACR)

  7. Agribusiness geothermal energy utilization potential of Klamath and Western Snake River Basins, Oregon. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.

    1978-03-01

    Resource assessment and methods of direct utilization for existing and prospective food processing plants have been determined in two geothermal resource areas in Oregon. Ore-Ida Foods, Inc. and Amalgamated Sugar Company in the Snake River Basin; Western Polymer Corporation (potato starch extraction) and three prospective industries--vegetable dehydration, alfalfa drying and greenhouses--in the Klamath Basin have been analyzed for direct utilization of geothermal fluids. Existing geologic knowledge has been integrated to indicate locations, depth, quality, and estimated productivity of the geothermal reservoirs. Energy-economic needs and balances, along with cost and energy savings associated with field development, delivery systems, in-plant applications and fluid disposal have been calculated for interested industrial representatives.

  8. 77 FR 46157 - Endangered and Threatened Wildlife and Plants; Revising the Special Rule for the Utah Prairie Dog

    Science.gov (United States)

    2012-08-02

    ... populations. Enzootic plague may be influenced by factors including genetics, prairie dog immunity and... Plants; Revising the Special Rule for the Utah Prairie Dog; Final Rule #0;#0;Federal Register / Vol. 77... Special Rule for the Utah Prairie Dog AGENCY: Fish and Wildlife Service, Interior. ACTION: Final...

  9. Aerial Gamma Ray and Magnetic Survey Raton Basin Project. Final Report Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-08-01

    The Flagstaff quadrangle in northern Arizona lies at the southwestern edge of the Colorado Plateau. Portions of the Black Mesa Basin and Mogollon Rim lie within the quadrangle. Mesozoic rocks cover 90% of the surface of the Black Mesa Basin, but Paleozoic rocks dominate the Mogollon Rim. Cenozoic instrusive and extrusive rocks of the San Francisco Volcanic Field and the Hopi Buttes are superimposed on the older sedimentary sequence. Magnetic data apparently show contributions from both deep and shallow sources. The San Francisco Volcanic Field is relatively well defined, but deeper-lying structural boundaries are largely masked by the younger igneous rocks in the area. The Flagstaff quadrangle has been relatively unproductive in terms of uranium mining. Some claims are present in the Black Mesa Basin, primarily in Triassic rocks. A total of 195 groups of sample responses in the uranium window qualify as anomalies as defined in Volume I. These anomalies primarily form two distinct groups, though others are scattered throughout the quadrangle. One group is associated with igneous rocks in the northern Hopi Buttes area, and the other, a larger and more indistinct group, is primarily associated with the Shinarump Member of the Triassic Chinle Formation in the northern Painted Desert area. None are directly associated with the locations of known claims.

  10. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Washington Facilities (Intrastate) Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, Jack

    1984-11-01

    This report was prepared for BPA in fulfillment of section 1004 (b)(1) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, to review the status of past, present, and proposed future wildlife planning and mitigation program at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Projects addressed are: Merwin Dam; Swift Project; Yale Project; Cowlitz River; Boundary Dam; Box Canyon Dam; Lake Chelan; Condit Project; Enloe Project; Spokane River; Tumwater and Dryden Dam; Yakima; and Naches Project.

  11. Comprehensive Plan for Rehabilitation of Anadromous Fish Stocks in the Umatilla River Basin, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, Raymond R.

    1986-01-01

    The goals of the project were to: establish fishery rehabilitation objectives for naturally and hatchery produced salmonids in the Umatilla Basin; estimate potential benefits of each of the rehabilitation and flow enhancement projects to naturally and hatchery produced salmonids; and develop a plan to set priorities, implement, and evaluate projects that will achieve rehabilitation objectives. This document identifies fishery needs, quantifies the contribution of proposed fishery projects under present and enhanced flows, provides cost estimates for projects, and provides a plan for prioritization, implementation, and evaluation of projects.

  12. Characterization of reactants, mechanisms, and species in South Coast Air Basin cloudwater. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Richards, L.W.; Anderson, J.A.; Alexander, N.L.; Blumenthal, D.L.; Knuth, W.R.

    1987-01-01

    Sonoma Technology, Inc. (STI) conducted a study in 1985 for the California Air Resources Board in which an aircraft was used to collect cloud water, aerosol, and gas samples and to make other air-quality and meteorological measurements in stratus clouds in the Los Angeles Basin. The study continued the research on Los Angeles Basin stratus begun in 1981. The ambient concentrations of most non-volatile dissolved species in the cloud water usually decreased with time, showing that removal processes were important. Increases with time in lead and ammonia concentrations in the cloud water showed that vertical mixing was important. There was a slight tendency for nitrate concentrations to increase with time, but sulfate concentrations were relatively constant because of the very small sulfur concentrations in the clouds. The settling of droplets out of stratus clouds through air below the clouds containing ammonia and the evaporation of these relatively large droplets is suggested as a significant mechanism for the formation of large, nitrate-containing aerosol particles below the clouds.

  13. Final technology report for D-Area oil seepage basin bioventing optimization test, environmental restoration support

    Energy Technology Data Exchange (ETDEWEB)

    Radway, J.C.; Lombard, K.H.; Hazen, T.C.

    1997-01-24

    One method proposed for the cleanup of the D-Area Oil Seepage Basin was in situ bioremediation (bioventing), involving the introduction of air and gaseous nutrients to stimulate contaminant degradation by naturally occurring microorganisms. To test the feasibility of this approach, a bioventing system was installed at the site for use in optimization testing by the Environmental Biotechnology Section of the Savannah River Technology Center. During the interim action, two horizontal wells for a bioventing remediation system were installed eight feet below average basin grade. Nine piezometers were also installed. In September of 1996, a generator, regenerative blower, gas cylinder station, and associated piping and nutrient injection equipment were installed at the site and testing was begun. After baseline characterization of microbial activity and contaminant degradation at the site was completed, four injection campaigns were carried out. These consisted of (1) air alone, (2) air plus triethylphosphate (TEP), (3) air plus nitrous oxide, and (4) air plus methane. This report describes results of these tests, together with conclusions and recommendations for further remediation of the site. Natural biodegradation rates are high. Oxygen, carbon dioxide, and methane levels in soil gas indicate substantial levels of baseline microbial activity. Oxygen is used by indigenous microbes for biodegradation of organics via respiration and hence is depleted in the soil gas and water from areas with high contamination. Carbon dioxide is elevated in contaminated areas. High concentrations of methane, which is produced by microbes via fermentation once the oxygen has been depleted, are found at the most contaminated areas of this site. Groundwater measurements also indicated that substantial levels of natural contaminant biodegradation occurred prior to air injection.

  14. The Ponto-Caspian basin as a final trap for southeastern Scandinavian Ice-Sheet meltwater

    Science.gov (United States)

    Tudryn, Alina; Leroy, Suzanne A. G.; Toucanne, Samuel; Gibert-Brunet, Elisabeth; Tucholka, Piotr; Lavrushin, Yuri A.; Dufaure, Olivier; Miska, Serge; Bayon, Germain

    2016-09-01

    This paper provides new data on the evolution of the Caspian Sea and Black Sea from the Last Glacial Maximum until ca. 12 cal kyr BP. We present new analyses (clay mineralogy, grain-size, Nd isotopes and pollen) applied to sediments from the river terraces in the lower Volga, from the middle Caspian Sea and from the western part of the Black Sea. The results show that during the last deglaciation, the Ponto-Caspian basin collected meltwater and fine-grained sediment from the southern margin of the Scandinavian Ice Sheet (SIS) via the Dniepr and Volga Rivers. It induced the deposition of characteristic red-brownish/chocolate-coloured illite-rich sediments (Red Layers in the Black Sea and Chocolate Clays in the Caspian Sea) that originated from the Baltic Shield area according to Nd data. This general evolution, common to both seas was nevertheless differentiated over time due to the specificities of their catchment areas and due to the movement of the southern margin of the SIS. Our results indicate that in the eastern part of the East European Plain, the meltwater from the SIS margin supplied the Caspian Sea during the deglaciation until ∼13.8 cal kyr BP, and possibly from the LGM. That led to the Early Khvalynian transgressive stage(s) and Chocolate Clays deposition in the now-emerged northern flat part of the Caspian Sea (river terraces in the modern lower Volga) and in its middle basin. In the western part of the East European Plain, our results confirm the release of meltwater from the SIS margin into the Black Sea that occurred between 17.2 and 15.7 cal kyr BP, as previously proposed. Indeed, recent findings concerning the evolution of the southern margin of the SIS and the Black Sea, show that during the last deglaciation, occurred a westward release of meltwater into the North Atlantic (between ca. 20 and 16.7 cal kyr BP), and a southward one into the Black Sea (between 17.2 and 15.7 cal kyr BP). After the Red Layers/Chocolate Clays deposition in both seas

  15. The Lincoln Highway in Utah

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This guidebook is on the Lincoln Highway in the state of Utah. Its purpose is to describe as closely as possible the original route of the Highway, the major changes...

  16. Kinetic modeling of petroleum formation in the Maracaibo Basin: Final report, Annex 12

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A.K.; Braun, R.L.; Sweeney, J.J.; Reynolds, J.G. [Lawrence Livermore National Lab., CA (United States); Vallejos, C.; Talukdar, S. [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)

    1992-07-01

    The purpose of this project is to develop and test improved kinetic models of petroleum generation and cracking, pore pressure buildup, and fluid expulsion. The work was performed jointly between Lawrence Livermore National Laboratory and Research Organization of the Venezuelan National Petroleum Company under Annex 12 of an agreement between DOE and the Venezuelan Ministry of Energy and Mines. Laboratory experiments were conducted at both LLNL and INTEVEP to obtain the reaction rate and product composition information needed to develop chemical kinetic models. Experiments at INTEVEP included hydrous pyrolysis and characterization of oils by gas and liquid chromatography. Experiments at LLNL included programmed pyrolysis in open and self-purging reactors, sometimes including on-line gas analysis by tandem mass spectrometry, and characterization of oils by gas chromatography and nuclear magnetic resonance. The PMOD code was used to develop a detailed pyrolysis mechanism from the extensive laboratory data. This mechanism is able to predict yield of bitumen, oil, and gas as a function of time and temperature for such diverse laboratory conditions as hydrous pyrolysis and rapid, programmed, open pyrolysis. PMOD calculations were compared to geologic observations for 22 wells in the Maracaibo basin. When permeability parameters are chosen to match calculated pore pressures with measured present day values, the PMOD calculations indicate that organic maturation reactions contribute a significant fraction of the overpressure during oil generation and early oil cracking. Calculations agreed with observed geochemical maturity parameters of the source rock. 37 refs., 64 figs., 20 tabs.

  17. Annotated geothermal bibliography of Utah

    Energy Technology Data Exchange (ETDEWEB)

    Budding, K.E.; Bugden, M.H. (comps.)

    1986-01-01

    The bibliography includes all the Utah geothermal references through 1984. Some 1985 citations are listed. Geological, geophysical, and tectonic maps and reports are included if they cover a high-temperature thermal area. The references are indexed geographically either under (1) United States (national studies), (2) regional - western United States or physiographic province, (3) Utah - statewide and regional, or (4) county. Reports concerning a particular hot spring or thermal area are listed under both the thermal area and the county names.

  18. Utah Heavy Oil Program

    Energy Technology Data Exchange (ETDEWEB)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  19. Columbia Basin Wildlife Mitigation Project : Rainwater Wildlife Area Final Management Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen

    2002-03-01

    This Draft Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary.

  20. Dirhinus texanus (Hymenoptera: Chalcididae) from Utah

    Science.gov (United States)

    Pech, L.L.; Gates, M.W.; Graham, T.B.

    2011-01-01

    We collected a Dirhinus texanus (Hymenoptera: Chalcididae) in Salt Creek Canyon, Canyonlands National Park, San Juan County, Utah. This is the first record for D. texanus in Utah. Copyright ?? 2011 BioOne All rights reserved.

  1. 75 FR 70024 - Notice of Expansion of the Lisbon Valley Known Potash Leasing Area, Utah

    Science.gov (United States)

    2010-11-16

    ... noncompetitive lease; or (2) If the BLM has access to information which shows that valuable deposits of potash... classification standards established in 1957. In 1983, under Secretarial Order 3087, the authority to designate... land classification standards for the Utah portion of the Paradox Basin geologic province,...

  2. Data to Accompany the Regional Potentiometric-Surface Map of the Great Basin Carbonate and Alluvial Aquifer System in Snake Valley and Surrounding Areas, Juab, Millard, and Beaver Counties, Utah and White Pine and Lincoln Counties, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Water-level measurements from 190 wells were used to develop a potentiometric-surface map of the east-central portion of the regional Great Basin carbonate and...

  3. 1:1,000,000-scale estimated outer extent of areas of groundwater discharge as evapotranspiration for the Great Basin carbonate and alluvial aquifer system of Nevada, Utah, and parts of adjacent states

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created in support of a study focusing on groundwater resources in the Great Basin carbonate and alluvial aquifer system (GBCAAS). The GBCAAS is a...

  4. Prehistory of the Carson Desert and Stillwater Mountains: Environment, Mobility, and Subsistence in a Great Basin Wetland, by Robert L. Kelly, University of Utah Anthropological Papers Number 123, Salt Lake City, 2001

    OpenAIRE

    Todd Bostwick

    2001-01-01

    The Great Basin of Western North America is one of the. legendary deserts of the world. This rugged, wide open, and apparently harsh landscape has long served as a backdrop for human drama. Gold seekers and immigrants of the 19th century immortalized the rigors of travelling across the Great Basin on their way to greener grass in California and Oregon. But archaeological research has shown that human occupation of the ...

  5. Investigation of MAGMA chambers in the Western Great Basin. Final report, 9 June 1982-31 October 1985

    Energy Technology Data Exchange (ETDEWEB)

    Peppin, W.A.

    1986-02-10

    This report summarizes efforts made by the Seismological Laboratory toward the detection and delineation of shallow crustal zones in the western Great Basin, and toward the development of methods to accomplish such detection. The work centers around the recently-active volcanic center near Long Valley, California. The work effort is broken down into three tasks: (1) network operations, (2) data analysis and interpretation, and (3) the study of shallow crustal amomalies (magma bodies). Section (1) describes the efforts made to record thousand of earthquakes near the Long Valley caldera, and focusses on the results obtained for the November 1984 round Valley earthquake. Section (2) describes the major effort of this contract, which was to quantify the large volume of seismic data being recorded as it pertains to the goals of this contract. Efforts described herein include (1) analysis of earthquake focal mechanisms, and (2) the classification, categorization, and interpretation of unusual seismic phases in terms of reflections and refractions from shallow-crustal anomalous zones. Section (3) summarizes the status of our research to date on the locations of magma bodies, with particular emphasis on a location corresponding to the map location of the south end of Hilton Creek fault. Five lines of independent evidence suggest that magma might be associated with this spot. Finally, new evidence on the large magma bodies within the Long Valley caldera, of interest to the DOE deep drilling project, is presented.

  6. Thermal Water of Utah Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Goode, Harry D.

    1978-11-01

    Western and central Utah has 16 areas whose wells or springs yield hot water (35 C or higher), warm water (20-34.5 C), and slightly warm water (15.5-19.5 C). These areas and the highest recorded water temperature for each are: Lower Bear River Area, 105 C; Bonneville Salt Flats, 88 C; Cove Fort-Sulphurdale, 77 C; Curlew Valley, 43 C; East Shore Area, 60 C; Escalante Desert, 149 C; Escalante Valley (Roosevelt, 269 C, and Thermo, 85C); Fish Springs, 60.5 C; Grouse Creek Valley, 42 C; Heber Valley (Midway, 45 C); Jordan Valley, 58.5 C; Pavant Valley-Black Rock Desert, 67 C; Sevier Desert ( Abraham-Crater Hot Springs, 82 C); Sevier Valley (Monroe-Red Hill, 76.5 C, and Joseph Hot Spring, 64 C); Utah Valley, 46 C; and Central Virgin River Basin, 42 C. The only hot water in eastern Utah comes from the oil wells of the Ashley Valley Oil Field, which in 1977 yielded 4400 acre-feet of water at 43 C to 55 C. Many other areas yield warm water (20 to 34.5 C) and slightly warm water (15.5 to 19.5 C). With the possible exception of the Roosevelt KGRA, Crater Hot Springs in the Sevier Desert, Escalante Desert, Pavant-Black Rock, Cove Fort-Sulphurdale, and Coyote Spring in Curlew Valley, which may derive their heat from buried igneous bodies, the heat that warms the thermal water is derived from the geothermal gradient. Meteoric water circulates through fractures or permeable rocks deep within the earth, where it is warmed; it then rises by convection or artesian pressure and issues at the surface as springs or is tapped by wells. Most thermal springs thus rise along faults, but some thermal water is trapped in confined aquifers so that it spreads laterally as it mixes with and warms cooler near-surface water. This spreading of thermal waters is evident in Cache Valley, in Jordan Valley, and in southern Utah Valley; likely the spreading occurs in many other artesian basins where it has not yet been recognized. In the East Shore Area thermal water trapped in confined aquifers warms

  7. Modification to the Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Volume 1, Text, Attachments 1--6. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-01-01

    This document provides the modifications to the 1988 Remedial Action Plan (RAP) of the contaminated materials at the Monument Valley, Arizona, and Mexican Hat, Utah. The text detailing the modifications and attachments 1 through 6 are provided with this document. The RAP was developed to serve a two-fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action. Pertinent information and data are included with reference given to the supporting documents.

  8. Methodologies for Assessing the Cumulative Environmental Effects of Hydroelectric Development of Fish and Wildlife in the Columbia River Basin, Volume 1, Recommendations, 1987 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Stull, Elizabeth Ann

    1987-07-01

    This volume is the first of a two-part set addressing methods for assessing the cumulative effects of hydropower development on fish and wildlife in the Columbia River Basin. Species and habitats potentially affected by cumulative impacts are identified for the basin, and the most significant effects of hydropower development are presented. Then, current methods for measuring and assessing single-project effects are reviewed, followed by a review of methodologies with potential for use in assessing the cumulative effects associated with multiple projects. Finally, two new approaches for cumulative effects assessment are discussed in detail. Overall, this report identifies and reviews the concepts, factors, and methods necessary for understanding and conducting a cumulative effects assessment in the Columbia River Basin. Volume 2 will present a detailed procedural handbook for performing a cumulative assessment using the integrated tabular methodology introduced in this volume. 308 refs., 18 figs., 10 tabs.

  9. Major Oil Plays In Utah And Vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Chidsey

    2007-12-31

    Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in

  10. Major Oil Plays In Utah And Vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Chidsey

    2007-12-31

    Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in

  11. General Investigation Reconnaissance Report Provo and Vicinity, Utah

    Science.gov (United States)

    1997-04-01

    Provo River from mid-May through mid-July ( Mizzi 1996 pers. com.). No fish species are known to occur in the eastside drainages due to the ephemeral...on cliffs or rocky places.1 Counties, Utah. 1 Zeiner et al. 1990 7 Peterson 1996 pers. com. Ŗ Nunn 1996 pers. com. s Mizzi 1996 pers. com. 3 60...riparian habitats of the Great Basin region: a community profile. U.S. Fish and Wildlife Service Biological Report 85(7.24). Mizzi , J. October 24, 1996

  12. University of Utah Oil Sand Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1993-12-31

    An overview of the Oil Sand Research and Development Program at the University of Utah will be presented. It will include resource characterization of the Uinta Basin oils and deposits and bitumens and bitumen-derived liquid recovery and upgrading technology and product utilization. The characterization studies will include the Whiterocks and Asphalt Ridge oil sands. The discussion of recovery and upgrading technologies will include aqueous separation, thermal recovery processes; solvent extraction, and thermal and catalytic upgrading of bitumen and bitumen-derived heavy oils. Product evaluation studies will include jet fuels, diesel fuel, asphalt and specialty chemicals. Plans for the future of the project will be discussed.

  13. Recruiting Quality Majors: New York High School Students Experience the Geology of Southern Utah

    Science.gov (United States)

    Colberg, M. R.; Eves, R. L.; Lohrengel, C. F.

    2003-12-01

    Southern Utah University (SUU), Division of Geosciences, is faced with seriously increased competition for students within its traditional recruiting area, the direct result of nearby two-year institutions expanding their missions to four-year roles. Because of this increased competition, it is obvious that students must be recruited from new source areas. Research indicates that New York State has one of the most outstanding high school Earth Science programs in the United States, and it became a target area for recruiting quality students to the SUU geoscience program. Located in the Colorado Plateau to Basin and Range transition zone, SUU is situated in one of the most spectacular and diverse geologic regions in the world. SUU is surrounded by classic southwestern geologic exposures and extensive public lands. In order to use this resource to its maximum advantage, a one-week field program was arranged that would accommodate a maximum of 30 students from New York high schools. The target audience is comprised of juniors and seniors who have participated in an Earth science course, and have expressed an interest in a geoscience career. The field program provides students with a positive learning experience, and stresses basic geologic concepts while utilizing the stunning regional geology of southern Utah as an outdoor classroom. Students receive transferable college credit for participation. To make contact with potential participants, a letter was sent to high school principals requesting the name(s) of the earth sciences teacher(s) in the school. The response was limited (apparently principals do not forward materials to faculty members). However, there was sufficient response to conduct a field experience during late July, 2003. This initial offering was extremely successful and received positive reviews from all participants. The final results of this pilot offering are not yet known, but we are convinced that enrollment of students into SUU's program will

  14. Hydrologic reconnaissance of the southern Great Salt Lake Desert and summary of the hydrology of west-central Utah

    Science.gov (United States)

    Gates, Joseph S.; Kruer, Stacie A.

    1981-01-01

    This report is the last of 19 hydrologic reconnaissances of the basins in western Utah. The purposes of this series of studies are (1) to analyze available hydrologic data and describe the hydrologic system, (2) to evaluate existing and potential water-resources development, and (3) to identify additional studies that might be needed. Part 1 of this report gives an estimate of recharge and discharge, an estimate of the potential for water-resources development, and a statement on the quality of water in the southern Great Salt Lake Desert part of west-central Utah. Part 2 deals with the same aspects of west-central Utah as a whole. Part 2 also summarizes the evidence of interbasin ground-water flow in west-central Utah and presents a theory for the origin of the water discharged from Fish Springs.

  15. Prehistory of the Carson Desert and Stillwater Mountains: Environment, Mobility, and Subsistence in a Great Basin Wetland, by Robert L. Kelly, University of Utah Anthropological Papers Number 123, Salt Lake City, 2001

    Directory of Open Access Journals (Sweden)

    Todd Bostwick

    2001-11-01

    Full Text Available The Great Basin of Western North America is one of the. legendary deserts of the world. This rugged, wide open, and apparently harsh landscape has long served as a backdrop for human drama. Gold seekers and immigrants of the 19th century immortalized the rigors of travelling across the Great Basin on their way to greener grass in California and Oregon. But archaeological research has shown that human occupation of the Great Basin dates back for thousands of years, and ethnographic accounts of Native Americans who lived in this desert have played an important role in the development of concepts of hunter-gatherer subsistence and settlement patterns. It is the Indians of the Great Basin that Julian Steward (1938 studied for his well-known model of sodo-political organiza­tion and evolution (Steward 1955; also see Service 1975, Jesse Jennings (1957 later used Steward's model in his development of the Desert Culture concept, which was widely adapted to other North America deserts.

  16. Final Environmental Assessment to protect “The Champion” lands in Essex County, Vermont, Options for protecting the Nulhegan Basin

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The United States Fish and Wildlife Service has proposed to establish a Nulhegan Basin Division of the Silvio 0. Conte National Fish and Wildlife Refuge to provide...

  17. Population structure and genetic characteristics of summer steelhead (Onchorhynchus mykiss) in the Deschutes River Basin, Oregon: Final report: January 2011

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Deschutes River Basin represents a region of substantial diversity among anadromous and resident forms of Oncorhynchus mykiss. However, the current distribution...

  18. 78 FR 35181 - Approval and Promulgation of Air Quality Implementation Plans; Utah; Revisions to Utah...

    Science.gov (United States)

    2013-06-12

    ... revisions contain new, amended and renumbered rules in Utah Administrative Code (UAC) Title R-307 that... Utah Administrative Code--Permit: New and Modified Sources AGENCY: Environmental Protection Agency (EPA... Implementation Plan. (vii) The initials UAC mean or refer to the Utah Administrative Code. I. General...

  19. Lead Levels in Utah Eagles

    Science.gov (United States)

    Arnold, Michelle

    2006-10-01

    Lead is a health hazard to most animals, causing adverse effects to the nervous and reproductive systems if in sufficient quantity. Found in most fishing jigs and sinkers, as well as some ammunition used in hunting, this metal can poison wildlife such as eagles. Eagles are raptors, or predatory birds, and their lead exposure would most likely comes from their food -- a fish which has swallowed a sinker or lead shot in carrion (dead animal matter). As part of an ongoing project to investigate the environment lead levels in Utah, the bone lead levels in the wing bones of eagles have been measured for eagle carcasses found throughout Utah. The noninvasive technique of x-ray fluorescence was used, consisting of a Cd-109 radioactive source to activate lead atoms and a HPGe detector with digital electronics to collect the gamma spectra. Preliminary results for the eagles measured to date will be presented.

  20. Cretaceous sedimentation and tectonism in the southeastern Kaiparowits region, Utah

    Science.gov (United States)

    Peterson, Fred

    1969-01-01

    waters during the final incursion of the seaway into the Kaiparowits region. The overlying Wahweap Formation was deposited in nonmarine environments. Slight but continued tectonism during Late Cretaceous time is indicated by lateral changes of facies and thickness variations that coincide at least partly with present structures. These criteria indicate that Laramide tectonism consisted of two phases. An early phase that lasted from about late Albian to late Campanian time included regional subsidence, basin downwarping, and movement on local folds and faults. A later phase that lasted from late Campanian to about late Paleocene time included regional uplift, monoclinal flexing, and probable new faulting, as well as continued basin downwarping and movement on local folds and probably on the older faults. The principal economic resource in the Kaiparowits region is bituminous or subbituminous coal in the john Henry Member. Because basin downwarping and movement on local folds occurred during deposition, the thicker and more continuous coal beds are in the ancestral synclines and tile deeper part of the structural basin. Presently indicated resources total 7.3 billion tons, but considerably larger quantities are probably present in the unexplored parts of the region. Several potential resources include ground water, titaniferous sandstone, and possibly oil and gas.

  1. The Newcastle geothermal system, Iron County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Blackett, R.E.; Shubat, M.A.; Bishop, C.E. (Utah Geological and Mineral Survey, Salt Lake City, UT (USA)); Chapman, D.S.; Forster, C.B.; Schlinger, C.M. (Utah Univ., Salt Lake City, UT (USA). Dept. of Geology and Geophysics)

    1990-03-01

    Geological, geophysical and geochemical studies contributed to conceptual hydrologic model of the blind'' (no surface expression), moderate-temperature (greater than 130{degree}C) Newcastle geothermal system, located in the Basin and Range-Colorado Plateau transition zone of southwestern Utah. Temperature gradient measurements define a thermal anomaly centered near the surface trace of the range-bounding Antelope Range fault with and elongate dissipative plume extending north into the adjacent Escalante Valley. Spontaneous potential and resistivity surveys sharply define the geometry of the dominant upflow zone (not yet explored), indicating that most of the thermal fluid issues form a short segment along the Antelope Range fault and discharges into a gently-dipping aquifer. Production wells show that this aquifer lies at a depth between 85 and 95 meter. Electrical surveys also show that some leakage of thermal fluid occurs over a 1.5 km (minimum) interval along the trace of the Antelope Range fault. Major element, oxygen and hydrogen isotopic analyses of water samples indicate that the thermal fluid is a mixture of meteoric water derived from recharge areas in the Pine Valley Mountains and cold, shallow groundwater. A northwest-southeast trending system of faults, encompassing a zone of increased fracture permeability, collects meteoric water from the recharge area, allows circulation to a depth of 3 to 5 kilometers, and intersects the northeast-striking Antelope Range fault. We postulate that mineral precipitates form a seal along the Antelope Range fault, preventing the discharge of thermal fluids into basin-fill sediments at depth, and allowing heated fluid to approach the surface. Eventually, continued mineral deposition could result in the development of hot springs at the ground surface.

  2. The Manti, Utah, landslide

    Science.gov (United States)

    Fleming, R.W.; Johnson, R.B.; Schuster, R.L.; Williams, G.P.

    1988-01-01

    PART A: The Manti landslide is in Manti Canyon on the west side of the Wasatch Plateau in central Utah. In early June 1974, coincident with the melting of a snowpack, a rock slump/debris flow occurred on the south rim of Manti Canyon. Part of the slumped material mixed with meltwater and mobilized into a series of debris flows that traveled down the slope a distance of as much as 1.2 km. Most of the flows were deposited either at the base of the steep rocks of the canyon rim or at the site of an old, silted reservoir. A small part of the debris flow deposit stopped on the head of the very large, relatively inactive Manti landslide. The upper part of the landslide began moving as cracks propagated downslope. A little more than a year later, August 1975, movement extended the full length of the old landslide, and about 19 million m 3 of debris about 3 km long and as much as 800 m wide threatened to block the canyon. The upper part of the landslide apparently had moved small amounts between 1939 and 1974. This part of the landslide, identifiable on pre-1974 aerial photographs, consisted of well-defined linears on the landslide flanks and two large internal toe bulges about 2 km downslope from the head. The abrupt reactivation in 1974 proceeded quickly after the debris flows had provided a surcharge in the head and crown area. Movement propagated downslope at 4-5 m/h for the first few days following reactivation. During 1974, the reactivation probably encompassed all the parts of the landslide that had moved small amounts between 1939 and 1974. Movement nearly or completely stopped during the winter of 1974-75, but began again in the spring of 1975. The landslide enlarged from the flanks of the internal toe bulges to Manti Creek at a rate of 2-3 m/h. Movement stopped again during the winter of 1975-76 and began again in the spring of 1976. Thereafter, the displacements have been small compared to earlier. The displacement rates for the landslide were variable depending

  3. LBNL deliverable to the Tricarb carbon sequestration partnership: Final report on experimental and numerical modeling activities for the Newark Basin

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Sumit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spycher, Nicolas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pester, Nick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Saldi, Giuseppe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Beyer, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Houseworth, Jim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Knauss, Kevin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-09-04

    This report presents findings for hydrological and chemical characteristics and processes relevant to large-scale geologic CO2 sequestration in the Newark Basin of southern New York and northern New Jersey. This work has been conducted in collaboration with the Tri-Carb Consortium for Carbon Sequestration — comprising Sandia Technologies, LLC; Conrad Geoscience; and Schlumberger Carbon Services.

  4. Oil shale and nahcolite resources of the Piceance Basin, Colorado

    Science.gov (United States)

    ,

    2010-01-01

    This report presents an in-place assessment of the oil shale and nahcolite resources of the Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin is one of three large structural and sedimentary basins that contain vast amounts of oil shale resources in the Green River Formation of Eocene age. The other two basins, the Uinta Basin of eastern Utah and westernmost Colorado, and the Greater Green River Basin of southwest Wyoming, northwestern Colorado, and northeastern Utah also contain large resources of oil shale in the Green River Formation, and these two basins will be assessed separately. Estimated in-place oil is about 1.5 trillion barrels, based on Fischer a ssay results from boreholes drilled to evaluate oil shale, making it the largest oil shale deposit in the world. The estimated in-place nahcolite resource is about 43.3 billion short tons.

  5. Mineral Occurrence data for the Eocene Green River Formation in the Piceance and Uinta Basins

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This legacy database lists occurrences of minerals identified in the Green River Formation in the Uinta and Piceance Basins, Utah and Colorado using X-ray...

  6. Hydrogeology of the Markagunt Plateau, Southwestern Utah

    Science.gov (United States)

    Spangler, Lawrence E.

    2010-01-01

    The Markagunt Plateau, in southwestern Utah, lies at an altitude of about 9,500 feet and is capped primarily by Quaternary-age basalt that overlies Eocene-age freshwater limestone of the Claron Formation. Over large parts of the Markagunt Plateau, dissolution of the Claron limestone and subsequent collapse of the overlying basalt have produced a terrain characterized by sinkholes as much as 1,000 feet across and 100 feet deep. Numerous large springs discharge from the basalt and underlying limestone on the plateau, including Mammoth Spring, one of the largest springs in Utah, with a discharge that can exceed 300 cubic feet per second. Discharge from Mammoth Spring is from the Claron Formation; however, recharge to the spring largely takes place by both focused and diffuse infiltration through the basalt that caps the limestone. Results of dye tracing to Mammoth Spring indicate that recharge originates largely southwest of the spring outside of the Mammoth Creek watershed, as well as from losing reaches along Mammoth Creek. Maximum groundwater travel time to the spring from dye-tracer tests during the snowmelt runoff period was about 1 week. Specific conductance and water temperature data from the spring show an inverse relation to discharge during snowmelt runoff and rainfall events, also indicating short groundwater residence times. Results of major-ion analyses for samples collected from Mammoth and other springs on the plateau indicate calcium-bicarbonate type water containing low (less than 200 mg/L) dissolved-solids concentrations. Investigations in the Navajo Lake area along the southern margin of the plateau have shown that water losing to sinkholes bifurcates and discharges to both Cascade and Duck Creek Springs, which subsequently flow into the Virgin and Sevier River basins, respectively. Groundwater travel times to these springs, on the basis of dye tracing, were about 8.5 and 53 hours, respectively. Similarly, groundwater travel time from Duck Creek

  7. 78 FR 9807 - Utah Regulatory Program

    Science.gov (United States)

    2013-02-12

    ..., Internet address: kwalker@OSMRE.gov . SUPPLEMENTARY INFORMATION: I. Background on the Utah Program II... borders by demonstrating that its State program includes, among other things, ``a State law which provides... Code (UAC) that Utah proposed to revise and/or add were: R645-100-200, Definition of Valid...

  8. 77 FR 61652 - Utah Disaster # UT-00015

    Science.gov (United States)

    2012-10-10

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Utah Disaster UT-00015 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of UTAH dated...

  9. University of Utah, Energy Commercialization Center

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, James [Univ. of Utah, Salt Lake City, UT (United States)

    2014-01-17

    culture all played a role in inhibiting the development and distribution of a regional ecosystem and commercialization process. Had the University and the ECC been able to develop a software platform, some of these challenges may have been overcome, but without the final development and release of the Western Innovation Network, the ECC realistically could not scale and distribute a commercialization platform. Further, cleantech startups need to engage in a more intensive customer validation process, and establish strong community connections if they are to succeed in commercializing their products. The university system incentivizes research and access to research funding and risk capital is competitive, so by nature collaboration on commercialization was difficult. Each of the local ecosystems within the Rocky Mountain West was unique. Utah did not, and does not, have a system outside of the universities to support entrepreneurs and cleantech commercialization. Through the ECC’s efforts developing a regional ecosystem, it became clear that successful ecosystems had a community and associated mechanisms that supported local entrepreneurs and startups. Most importantly the ECC aided in the creation of Utah’s cleantech ecosystem, one that supports entrepreneurs and startup companies that need help and support in their efforts to commercialize clean technologies. The absence of support for clean tech from state government and local organizations was a significant impediment to cleantech commercialization. To overcome this challenge, the ECC has formed Sustainable Startups. Sustainable Startups is a new non-profit organization designed to build a culture and community in Utah that supports and understands the importance of cleantech and sustainable development. While the ECC generated mixed success in building a regional commercialization ecosystem for cleantech, the organization did provide tremendous benefit to startups and the broader public. Over 60 companies were

  10. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Yakima River Basin, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1996-01-01

    This document contains summary reports of stream habitat surveys, conducted in the Yakima River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1934-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the Bonneville Power Administration

  11. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Willamette River Basin, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat-surveys, conducted in the Willamette River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1934-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the Bonneville Power

  12. PRODUCTION ANALYSIS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey Jr.

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  13. Groundwater conditions in Utah, spring of 2013

    Science.gov (United States)

    Burden, Carole B.; Birken, Adam S.; Derrick, V. Noah; Fisher, Martel J.; Holt, Christopher M.; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.

    2013-01-01

    This is the fiftieth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2012. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water. usgs.gov/publications/GW2013.pdf. Groundwater conditions in Utah for calendar year 2011 are reported in Burden and others (2012) and available online at http://ut.water.usgs.gov/ publications/GW2012.pdf

  14. A Wildlife Habitat Protection, Mitigation and Enhancement Plan for Eight Federal Hydroelectric Facilities in the Willamette River Basin: Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Preston, S.K.

    1987-05-01

    The development and operation of eight federal hydroelectric projects in the Willamette River Basin impacted 30,776 acres of prime wildlife habitat. This study proposes mitigative measures for the losses to wildlife and wildlife habitat resulting from these projects, under the direction of the Columbia River Basin (CRB) Fish and Wildlife Program. The CRB Fish and Wildlife Program was adopted in 1982 by the Northwest Power Planning Council, pursuant to the Northwest Power Planning Act of 1980. The proposed mitigation plan is based on the findings of loss assessments completed in 1985, that used a modified Habitat Evaluation Procedure (HEP) to assess the extent of impact to wildlife and wildlife habitat, with 24 evaluation species. The vegetative structure of the impacted habitat was broken down into three components: big game winter range, riparian habitat and old-growth forest. The mitigation plan proposes implementation of the following, over a period of 20 years: (1) purchase of cut-over timber lands to mitigate, in the long-term, for big game winter range, and portions of the riparian habitat and old-growth forest (approx. 20,000 acres); (2) purchase approximately 4,400 acres of riparian habitat along the Willamette River Greenway; and (3) three options to mitigate for the outstanding old-growth forest losses. Monitoring would be required in the early stages of the 100-year plan. The timber lands would be actively managed for elk and timber revenue could provide O and M costs over the long-term.

  15. The Reaches Project : Ecological and Geomorphic Dtudies Supporting Normative Flows in the Yakima River Basin, Washington, Final Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, Jack A.; Lorang, Mark N.; Matson, Phillip L. (University of Montana, Flathead Lake Biological Station, Poison, MT)

    2002-10-01

    The Yakima River system historically produced robust annual runs of chinook, sockeye, chum and coho salmon and steelhead. Many different stocks or life history types existed because the physiography of the basin is diverse, ranging from very dry and hot in the high desert of the lower basin to cold and wet in the Cascade Mountains of the headwaters (Snyder and Stanford 2001). Habitat diversity and life history diversity of salmonids are closely correlated in the Yakima Basin. Moreover, habitat diversity for salmonids and many other fishes maximizes in floodplain reaches of river systems (Ward and Stanford 1995, Independent Scientific Group 2000). The flood plains of Yakima River likely were extremely important for spawning and rearing of anadromous salmonids (Snyder and Stanford 2001). However, Yakima River flood plains are substantially degraded. Primary problems are: revetments that disconnect main and side channel habitats; dewatering associated with irrigation that changes base flow conditions and degrades the shallow-water food web; chemical and thermal pollution that prevents proper maturation of eggs and juveniles; and extensive gravel mining within the floodplain reaches that has severed groundwater-channel connectivity, increased thermal loading and increased opportunities for invasions of nonnative species. The Yakima River is too altered from its natural state to allow anything close to the historical abundance and diversity of anadromous fishes. Habitat loss, overharvest and dam and reservoir passage problems in the mainstem Columbia River downstream of the Yakima, coupled with ocean productivity variation, also are implicated in the loss of Yakima fisheries. Nonetheless, in an earlier analysis, Snyder and Stanford (2001) concluded that a significant amount of physical habitat remains in the five floodplain reaches of the mainstem river because habitat-structuring floods do still occur on the remaining expanses of floodplain environment. Assuming main

  16. Diamond drilling for geologic information in the middle Precambrian basins in the western portion of northern Michigan. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Trow, J.

    1979-10-01

    Between September 26, 1977, and May 11, 1978, six initially vertical holes probed a total of 9896 feet (1109 feet or 11.2% in overburden, 155 feet or 1.6% in Precambrian Y mafic dikes, 8386 feet or 84.7% in Precambrian X Goodrich Quartzite and Michigamme Formation, and 246 feet or 2.5% in Precambrian W basement lithologies). In addition to normal examination of core, logging, and storing of core, the holes were extensively logged geophysically, acidized core was tested for phosphate content by ammonium molybdate, splits from five out of every thirty feet of core were subjected to chemical scrutiny, thin sections of all lithologies were examined, and radiometric determinations of geologic age were made for confirmation of Precambrian W basement which was encountered in each of the three basins in Marquette County.

  17. Assessment of Present Anadromous Fish Production Facilities in the Columbia River Basin, US Fish and Wildlife Hatcheries, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Delarm, Michael R.; Smith, Robert Z.

    1990-07-01

    The goal of this report is to document current production practices for hatcheries which rear anadromous fish in the Columbia River Basin and to identify those facilities where production can be increased. A total of 85 hatchery and satellite facilities operated by the Idaho Department of Fish and Game, Oregon Department of Fish and Game, US Fish and Wildlife Service, Washington Department of Wildlife, and Washington Department of Fisheries were evaluated. The years 1985 to 1987 were used in this evaluation. During those years, releases averaged 143,306,596 smolts weighing 7,693,589 pounds. A total of 48 hatchery or satellite facilities were identified as having expansion capability. They were estimated to have the potential for increasing production by an 84,448,000 smolts weighing 4,853,306 pounds. 2 refs., 25 tabs.

  18. Assessment of Present Anadromous Fish Production Facilities in the Columbia River Basin, Washington Department of Wildlife Hatcheries, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Delarm, Michael R.; Smith, Robert Z.

    1990-07-01

    The goal of this report is to document current production practices for hatcheries which rear anadromous fish in the Columbia River Basin and to identify those facilities where production can be increased. A total of 85 hatchery and satellite facilities operated by the Idaho Department of Fish and Game, Oregon Department of Fish and Game, US Fish and Wildlife Service, Washington Department of Wildlife, Washington Department of Wildlife, and Washington Department of Fisheries were evaluated. The years 1985 to 1987 were used in this evaluation. During those years, releases averaged 143,306,596 smolts weighing 7,693,589 pounds. A total of 48 hatchery or satellite facilities were identified as having expansion capability. They were estimated to have the potential for increasing production by an 84,448,000 smolts weighing 4,853,306 pounds. 2 refs., 25 tabs.

  19. Hydrologic Data Sites for Iron County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows the USGS (United States Geologic Survey), NWIS (National Water Inventory System) Hydrologic Data Sites for Iron County, Utah. The scope and purpose...

  20. Hydrologic Data Sites for Daggett County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows the USGS (United States Geologic Survey), NWIS (National Water Inventory System) Hydrologic Data Sites for Daggett County, Utah. The scope and...

  1. Hydrologic Data Sites for Cache County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows the USGS (United States Geologic Survey), NWIS (National Water Inventory System) Hydrologic Data Sites for Cache County, Utah. The scope and purpose...

  2. Hydrologic Data Sites for Sanpete County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows the USGS (United States Geologic Survey), NWIS (National Water Inventory System) Hydrologic Data Sites for Sanpete County, Utah. The scope and...

  3. Hydrologic Data Sites for Millard County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows the USGS (United States Geologic Survey), NWIS (National Water Inventory System) Hydrologic Data Sites for Millard County, Utah. The scope and purpose...

  4. Hydrologic Data Sites for Wayne County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows the USGS (United States Geologic Survey), NWIS (National Water Inventory System) Hydrologic Data Sites for Wayne County, Utah. The scope and purpose...

  5. Library outreach: addressing Utah's "Digital Divide".

    Science.gov (United States)

    McCloskey, K M

    2000-10-01

    A "Digital Divide" in information and technological literacy exists in Utah between small hospitals and clinics in rural areas and the larger health care institutions in the major urban area of the state. The goals of the outreach program of the Spencer S. Eccles Health Sciences Library at the University of Utah address solutions to this disparity in partnership with the National Network of Libraries of Medicine-- Midcontinental Region, the Utah Department of Health, and the Utah Area Health Education Centers. In a circuit-rider approach, an outreach librarian offers classes and demonstrations throughout the state that teach information-access skills to health professionals. Provision of traditional library services to unaffiliated health professionals is integrated into the library's daily workload as a component of the outreach program. The paper describes the history, methodology, administration, funding, impact, and results of the program.

  6. Hydrologic Data Sites for Sanjuan County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows the USGS (United States Geologic Survey), NWIS (National Water Inventory System) Hydrologic Data Sites for San Juan County, Utah. The scope and...

  7. Utah trumpeter swan project update #1

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Summary of activities for the Utah swan project for the year of 1996. This summary discusses core sampling that took place at Bear River Migratory Bird Refuge and...

  8. University of Utah, Energy Commercialization Center

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, James [Univ. of Utah, Salt Lake City, UT (United States)

    2014-01-17

    culture all played a role in inhibiting the development and distribution of a regional ecosystem and commercialization process. Had the University and the ECC been able to develop a software platform, some of these challenges may have been overcome, but without the final development and release of the Western Innovation Network, the ECC realistically could not scale and distribute a commercialization platform. Further, cleantech startups need to engage in a more intensive customer validation process, and establish strong community connections if they are to succeed in commercializing their products. The university system incentivizes research and access to research funding and risk capital is competitive, so by nature collaboration on commercialization was difficult. Each of the local ecosystems within the Rocky Mountain West was unique. Utah did not, and does not, have a system outside of the universities to support entrepreneurs and cleantech commercialization. Through the ECC’s efforts developing a regional ecosystem, it became clear that successful ecosystems had a community and associated mechanisms that supported local entrepreneurs and startups. Most importantly the ECC aided in the creation of Utah’s cleantech ecosystem, one that supports entrepreneurs and startup companies that need help and support in their efforts to commercialize clean technologies. The absence of support for clean tech from state government and local organizations was a significant impediment to cleantech commercialization. To overcome this challenge, the ECC has formed Sustainable Startups. Sustainable Startups is a new non-profit organization designed to build a culture and community in Utah that supports and understands the importance of cleantech and sustainable development. While the ECC generated mixed success in building a regional commercialization ecosystem for cleantech, the organization did provide tremendous benefit to startups and the broader public. Over 60 companies were

  9. Characterization of intrabasin faulting and deformation for earthquake hazards in southern Utah Valley, Utah, from high-resolution seismic imaging

    Science.gov (United States)

    Stephenson, William J.; Odum, Jack K.; Williams, Robert A.; McBride, John H.; Tomlinson, Iris

    2012-01-01

    We conducted active and passive seismic imaging investigations along a 5.6-km-long, east–west transect ending at the mapped trace of the Wasatch fault in southern Utah Valley. Using two-dimensional (2D) P-wave seismic reflection data, we imaged basin deformation and faulting to a depth of 1.4 km and developed a detailed interval velocity model for prestack depth migration and 2D ground-motion simulations. Passive-source microtremor data acquired at two sites along the seismic reflection transect resolve S-wave velocities of approximately 200 m/s at the surface to about 900 m/s at 160 m depth and confirm a substantial thickening of low-velocity material westward into the valley. From the P-wave reflection profile, we interpret shallow (100–600 m) bedrock deformation extending from the surface trace of the Wasatch fault to roughly 1.5 km west into the valley. The bedrock deformation is caused by multiple interpreted fault splays displacing fault blocks downward to the west of the range front. Further west in the valley, the P-wave data reveal subhorizontal horizons from approximately 90 to 900 m depth that vary in thickness and whose dip increases with depth eastward toward the Wasatch fault. Another inferred fault about 4 km west of the mapped Wasatch fault displaces horizons within the valley to as shallow as 100 m depth. The overall deformational pattern imaged in our data is consistent with the Wasatch fault migrating eastward through time and with the abandonment of earlier synextensional faults, as part of the evolution of an inferred 20-km-wide half-graben structure within Utah Valley. Finite-difference 2D modeling suggests the imaged subsurface basin geometry can cause fourfold variation in peak ground velocity over distances of 300 m.

  10. A spatially resolved fuel-based inventory of Utah and Colorado oil and natural gas emissions

    Science.gov (United States)

    Gorchov Negron, A.; McDonald, B. C.; De Gouw, J. A.; Frost, G. J.

    2015-12-01

    A fuel-based approach is presented for estimating emissions from US oil and natural gas production that utilizes state-level fuel surveys of oil and gas engine activity, well-level production data, and emission factors for oil and gas equipment. Emissions of carbon dioxide (CO2) and nitrogen oxides (NOx) are mapped on a 4 km x 4 km horizontal grid for 2013-14 in Utah and Colorado. Emission sources include combustion from exploration (e.g., drilling), production (e.g., heaters, dehydrators, and compressor engines), and natural gas processing plants, which comprise a large fraction of the local combustion activity in oil and gas basins. Fuel-based emission factors of NOx are from the U.S. Environmental Protection Agency, and applied to spatially-resolved maps of CO2 emissions. Preliminary NOx emissions from this study are estimated for the Uintah Basin, Utah, to be ~5300 metric tons of NO2-equivalent in 2013. Our result compares well with an observations-based top-down emissions estimate of NOx derived from a previous study, ~4200 metric tons of NO2-equivalent. By contrast, the 2011 National Emissions Inventory estimates oil and gas emissions of NOx to be ~3 times higher than our study in the Uintah Basin. We intend to expand our fuel-based approach to map combustion-related emissions in other U.S. oil and natural gas basins and compare with additional observational datasets.

  11. Wildlife and Wildlife Habitat Loss Assessment Summary at Federal Hydroelectric Facilities; Willamette River Basin, 1985 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, J.H.

    1986-02-01

    Habitat based assessments were conducted of the US Army Corps of Engineers' hydroelectric projects in the Willamette River Basin, Oregon, to determine losses or gains to wildlife and/or wildlife habitat resulting from the development and operation of the hydroelectric-related components of the facilities. Preconstruction, postconstruction, and recent vegetation cover types at the project sites were mapped based on aerial photographs. Vegetation cover types were identified within the affected areas and acreages of each type at each period were determined. Wildlife target species were selected to represent a cross-section of species groups affected by the projects. An interagency team evaluated the suitability of the habitat to support the target species at each project for each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the projects. The Willamette projects extensively altered or affected 33,407 acres of land and river in the McKenzie, Middle Fork Willamette, and Santiam river drainages. Impacts to wildlife centered around the loss of 5184 acres of old-growth conifer forest, and 2850 acres of riparian hardwood and shrub cover types. Impacts resulting from the Willamette projects included the loss of critical winter range for black-tailed deer and Roosevelt elk, and the loss of year-round habitat for deer, upland game birds, furbearers, spotted owls, pileated woodpeckers, and many other wildlife species. Bald eagles and ospreys were benefited by an increase in foraging habitat. The potential of the affected areas to support wildlife was greatly altered as a result of the Willamette projects. Losses or gains in the potential of the habitat to support wildlife will exist over the lives of the projects. Cumulative or system-wide impacts of the Willamette projects were not quantitatively assessed.

  12. Groundwater conditions in Utah, spring of 2012

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Holt, Christopher M.; Fisher, Martel J.; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.

    2012-01-01

    This is the forty-ninth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2011. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http:// www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs. gov/publications/GW2012.pdf. Groundwater conditions in Utah for calendar year 2010 are reported in Burden and others (2011) and available online at http://ut.water.usgs.gov/ publications/GW2011.pdf.

  13. Groundwater conditions in Utah, spring of 2011

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Marston, Thomas M.; Fisher, Martel J.; Balling, Ted J.; Downhour, Paul; Guzman, Manuel; Eacret, Robert J.; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2011-01-01

    This is the forty-eighth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2010. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http:// www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs. gov/publications/GW2011.pdf. Groundwater conditions in Utah for calendar year 2009 are reported in Burden and others (2010) and available online at http://ut.water.usgs.gov/ publications/GW2010.pdf.

  14. Groundwater conditions in Utah, spring of 2014

    Science.gov (United States)

    Burden, Carole B.; Birken, Adam S.; Gerner, Steven J.; Carricaburu, John P.; Derrick, V. Noah; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.

    2014-01-01

    This is the fifty-first in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions.This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2013. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water. usgs.gov/publications/GW2014.pdf. Groundwater conditions in Utah for calendar year 2012 are reported in Burden and others (2013) and are available online at http://ut.water.usgs. gov/publications/GW2013.pdf

  15. Groundwater conditions in Utah, spring of 2016

    Science.gov (United States)

    Burden, Carole B.; Birken, Adam S.; Carricaburu, John P.; Jones, Katherine K.; Derrick, V. Noah; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Freel, Andrew D.; Christiansen, Howard K.; Fisher, Martel J.

    2016-01-01

    This is the fifty-third in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions.This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to new wells constructed for withdrawal of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2015. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2016.pdf. Groundwater conditions in Utah for calendar year 2014 are reported in Burden and others (2015) and are available online at http://ut.water.usgs.gov/publications/GW2015.pdf

  16. Groundwater conditions in Utah, spring of 2015

    Science.gov (United States)

    Burden, Carole B.; Birken, Adam S.; Carricaburu, John P.; Fisher, Martel J.; Derrick, V. Noah; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.

    2015-01-01

    This is the fifty-second in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions.This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to new wells constructed for withdrawal of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2014. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2015.pdf. Groundwater conditions in Utah for calendar year 2013 are reported in Burden and others (2014) and are available online at http://ut.water.usgs.gov/publications/GW2014.pdf.

  17. Groundwater conditions in Utah, spring of 2010

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Cederberg, Jay R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Enright, Michael; Eacret, Robert J.; Guzman, Manuel; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2010-01-01

    This is the forty-seventh in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2009. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www. waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/ publications/GW2010.pdf. Groundwater conditions in Utah for calendar year 2008 are reported in Burden and others (2009) and available online at http://ut.water.usgs.gov/publications/ GW2009.pdf.

  18. Library outreach: addressing Utah's “Digital Divide”

    OpenAIRE

    McCloskey, Kathleen M.

    2000-01-01

    A “Digital Divide” in information and technological literacy exists in Utah between small hospitals and clinics in rural areas and the larger health care institutions in the major urban area of the state. The goals of the outreach program of the Spencer S. Eccles Health Sciences Library at the University of Utah address solutions to this disparity in partnership with the National Network of Libraries of Medicine—Midcontinental Region, the Utah Department of Health, and the Utah Area Health Ed...

  19. Utah Article Delivery: A New Model for Consortial Resource Sharing.

    Science.gov (United States)

    Kochan, Carol A.; Lee, Daniel R.

    1998-01-01

    Describes the UTAD (Utah Article Delivery) Pilot Project, an innovative resource-sharing service that provides journal articles to the Utah higher education community, developed by the Utah Academic Library Consortium (UALC) in partnership with EBSCO Document Services. Highlights include goals, options considered, challenges, and evaluation. The…

  20. Ground-water resources of Pavant Valley, Utah

    Science.gov (United States)

    Mower, R.W.

    1965-01-01

    Pavant Valley, in eastern Millard County in west-central Utah, is in the Great Basin section of the Basin and Range province. The area of investigation is 34 miles long from north to south and 9 miles wide from east to west and comprises about 300 square miles. Agriculture, tourist trade, and mining are the principal industries. The population of the valley is about 3,500, of which about half live in Fillmore, the county seat of Millard County. The climate is semiarid and temperatures are moderate. Average normal annual precipitation in the lowlands is estimated to range from 10 to 14 inches. Precipitation is heaviest during the late winter and spring, January through May. The average monthly temperature at Fillmore ranges from 29?F in January to 76?F in July; the average annual temperature is 52?F. Because of the aridity, most crops cannot be grown successfully without irrigation. Irrigation requirements were satisfied for about 60 years after the valley was settled by diverting streams tributary to the valley. Artesian water was discovered near Flowell in 1915. By 1920 flowing artesian wells supplied about 10 percent of the irrigation water used in the valley, not including water from the Central Utah Canal. The Central Utah Canal was constructed in 1916 to convey water to the Pavant Valley from the Sevier River. Especially since 1916, the quantity of surface water available each year for irrigation has changed with the vagaries of nature. The total percentage of irrigation water contributed by ground water, on the other hand, gradually increased to about 15 percent in 1945 and then increased rapidly to 45 percent in 1960; it will probably stabilize at about 50 percent. Sand and gravel deposits of Recent and Pleistocene age are the principal aquifers in Pavant Valley. These deposits are coarser, more extensive, and more permeable near the mountains and become progressively finer .and less .permeable westward away from the mountains. As ground water moves westward

  1. Perceptions and realities: progressive reform and Utah coal

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, N.J.

    1985-01-01

    The passage of the Hepburn Act by the United States Congress in 1906 led to intensive federal trust busting aimed particularly at railroad monopolies. As part of this effort, the Gould-owned Rio Grande Western Railroad (later the Denver and Rio Grande) came under fire for its coal monopoly in Utah. The government was continually at a disadvantage during the eleven years of litigation for a variety of reasons and could not win its suit. The antagonists finally reached a negotiated settlement. It was not only very unpopular with the public but destroyed local hopes for widespread change connected with concurrent development of independently-owned mines. Unfortunately, many of the new independent developers also faced federal attack for coal lands irregularities. When America entered the Great War, the United States government demanded that businesses cooperate, not compete. Wartime nationalization of industries improved production and recognized independent ascendancy in Utah coal. Once the mines returned to private ownership at war's end, owners actively combined to combat recession. An oligopoly replaced the old railroad monopoly. Little alteration in corporate structure has resulted since. Energy companies replaced the old independents in the late 1970s and early 1980s, but the pattern of ownership established during the Progressive Era still remains.

  2. Final report for Texas A&M University Group Contribution to DE-FG02-09ER25949/DE-SC0002505: Topology for Statistical Modeling of Petascale Data (and ASCR-funded collaboration between Sandia National Labs, Texas A&M University and University of Utah)

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Joseph Maurice [Texas A& M University

    2013-02-27

    We summarize the contributions of the Texas A\\&M University Group to the project (DE-FG02-09ER25949/DE-SC0002505: Topology for Statistical Modeling of Petascale Data - an ASCR-funded collaboration between Sandia National Labs, Texas A\\&M U, and U Utah) during 6/9/2011 -- 2/27/2013.

  3. Annual suspended-sediment loads in the Colorado River near Cisco, Utah, 1930-82

    Science.gov (United States)

    Thompson, K.R.

    1985-01-01

    The Colorado River upstream of gaging station 09180500 near Cisco, Utah, drains about 24,100 square miles in Utah and Colorado. Altitudes in the basin range from 12,480 feet near the headwaters to 4,090 feet at station 09180500. The average annual precipitation for 1894-1982 near the station was 7.94 inches. The average annual precipitation near the headwaters often exceeds 50 inches. Rocks ranging in age from Precambrian to Holocene are exposed in the drainage basin upstream from station 09180500. Shale, limestone, siltstone, mudstone, and sandstone probably are the most easily eroded rocks in the basin, and they contribute large quantities of sediment to the Colorado River. During 1930-82, the U.S. Geological Survey collected records of fluvial sediment at station 09180500. Based on these records, the mean annual suspended-sediment load was 11,390,000 tone, ranging from 2,038,000 tons in water year 1981 to 35,700,000 tons in water year 1938. The minimum daily load of 14 tons was on August 22, 1960, and the maximum daily load of 2,790,000 tons was on October 14, 1941. (USGS)

  4. Completion report for the UMTRA project Vitro processing site, Salt Lake City, Utah

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This completion report provides evidence that the final Salt Lake City, Utah, processing site property conditions are in accordance with the approval design and that all U.S. Environmental Protection Agency (EPA) standards have been satisfied. Included as appendixes to support the stated conclusions are the record drawings; a summary of grid test results; contract specifications and construction drawing and the EPA standards; the audit, inspection, and surveillance summary; the permit information; and project photographs. The principal objectives of remedial action at Salt Lake City were to remove the tailings from the former processing site, render the site free of contamination to EPA standards, and restore the site to the final design grade elevations. The final remedial action plan, which is approved by the U.S. Department of Energy and concurred upon by the U.S. Nuclear Regulator Commission and the state of Utah, contains the conceptual design used to develop the final approved design. During remedial action construction operations, conditions were encountered that required design features that differed form the conceptual design. These conditions and the associated design changes are noted in the record drawings. All remedial action activities were completed in conformance with the specifications and drawings. In the opinion of the state of Utah, the record drawings accurately reflect existing property conditions at the processing site.

  5. Great Basin geoscience data base

    Science.gov (United States)

    Raines, Gary L.; Sawatzky, Don L.; Connors, Katherine A.

    1996-01-01

    This CD-ROM serves as the archive for 73 digital GIS data set for the Great Basin. The data sets cover Nevada, eastern California, southeastern Oregon, southern Idaho, and western Utah. Some of the data sets are incomplete for the total area. On the CD-ROM, the data are provided in three formats, a prototype Federal Data Exchange standard format, the ESRI PC ARCVIEW1 format for viewing the data, and the ESRI ARC/INFO export format. Extensive documentation is provided to describe the data, the sources, and data enhancements. The following data are provided. One group of coverages comes primarily from 1:2,000,000-scale National Atlas data and can be assembled for use as base maps. These various forms of topographic information. In addition, public land system data sets are provided from the 1:2,500,000-scale Geologic Map of the United States and 1:500,000-scale geologic maps of Nevada, Oregon, and Utah. Geochemical data from the National Uranium Resource Evaluation (NURE) program are provided for most of the Great Basin. Geophysical data are provided for most of the Great Basin, typically gridded data with a spacing of 1 km. The geophysical data sets include aeromagnetics, gravity, radiometric data, and several derivative products. The thematic data sets include geochronology, calderas, pluvial lakes, tectonic extension domains, distribution of pre-Cenozoic terranes, limonite anomalies, Landsat linear features, mineral sites, and Bureau of Land Management exploration and mining permits.

  6. 77 FR 34892 - Utah Regulatory Program

    Science.gov (United States)

    2012-06-12

    ... Program AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule..., Title 78 of the Utah Code, that requires plaintiffs who obtain temporary relief (administrative stay or...Rulemaking Portal: www.regulations.gov . This proposed rule has been assigned Docket ID: OSM-2012-0011....

  7. Utah Governor's Mansion Library--Bibliography.

    Science.gov (United States)

    Reinwand, Louis, Comp.

    This document begins with a statement of purpose for the Utah Governor's Mansion Library. Acknowledgments of individual contributors, institutional contributors, and the Governor's Mansion Foundation Library Committee members are acknowledged. An extensive bibliography lists the Library's holdings; entries are divided into sections for nonfiction,…

  8. Increased Gonorrhea Cases - Utah, 2009-2014.

    Science.gov (United States)

    Watson, Joanna; Carlile, Jerry; Dunn, Angela; Evans, Megan; Fratto, Erin; Hartsell, Joel; Meinor, Lynn; Mietchen, Matthew; Nakashima, Allyn

    2016-09-02

    Gonorrhea (caused by infection with Neisseria gonorrhoeae) is the second most commonly reported notifiable disease in the United States (1). Left untreated, gonorrhea is associated with serious long-term adverse health effects, including pelvic inflammatory disease, ectopic pregnancy, and infertility. Infection also facilitates transmission of human immunodeficiency virus (2,3). Effective gonorrhea control relies upon early detection and effective antimicrobial treatment. To assess gonorrhea rate trends in Utah, the Utah Department of Health (UDOH) analyzed Utah National Electronic Disease Surveillance System (UT-NEDSS) data for the state during 2009-2014. After declining during 2009-2011, the statewide gonorrhea rate increased fivefold to 49 cases per 100,000 population in 2014. During 2009-2014, the proportion of cases among women increased from 21% to 39% (decreasing among males from 79% to 61%). Among male patients, the proportion who identified as men who have sex with men (MSM) decreased from 67% to 42%. These demographic changes suggest that increased heterosexual transmission of gonorrhea in Utah might be occurring. Health departments need to work with providers to ensure populations at high risk are being screened and properly treated for gonorrhea. Clinicians need to be aware of increases in the risk for infection among women and non-MSM males when making screening and testing decisions and educate their patients regarding gonorrhea transmission and prevention practices.

  9. Bibliography of Utah radioactive occurrences. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Doelling, H.H. (comp.)

    1983-07-01

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  10. Profiling Family Preservation Services in Utah.

    Science.gov (United States)

    Callister, Jerry P.; And Others

    1986-01-01

    Describes the Family Prevention Services projects operating in the largest service areas in Utah, which maintains (85 percent of) the most difficult-to-serve children and adolescents from troubled families in their homes, thus preventing out-of-home placements. A case study is presented. (Author/BB)

  11. Bibliography of Utah radioactive occurrences. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Doelling, H.H. (comp.)

    1983-07-01

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  12. 76 FR 15357 - Utah Disaster #UT-00009

    Science.gov (United States)

    2011-03-21

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Utah Disaster UT-00009 AGENCY: U.S. Small Business Administration. ACTION: Amendment 1. SUMMARY: This is an amendment of the Presidential declaration of a major disaster for Public Assistance Only...

  13. 76 FR 10081 - Utah Disaster #UT-00009

    Science.gov (United States)

    2011-02-23

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Utah Disaster UT-00009 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  14. 77 FR 7229 - Utah Disaster #UT-00011

    Science.gov (United States)

    2012-02-10

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Utah Disaster UT-00011 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  15. 76 FR 50807 - Utah Disaster #UT-00010

    Science.gov (United States)

    2011-08-16

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Utah Disaster UT-00010 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  16. 77 FR 67858 - Utah Disaster #UT-00021

    Science.gov (United States)

    2012-11-14

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Utah Disaster UT-00021 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  17. Origin and microfossils of the oil shale of the Green River formation of Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, W.H.

    1931-01-01

    The Green River formation of Colorado and Utah is a series of lakebeds of middle Eocene age that occupy two broad, shallow, simple, structural basins--the Piceance Creek basin in northwestern Colorado and the Uinta basin in northeastern Utah. The ancient lakes served as a basin for the accumulation of tremendous quantities of aquatic organisms. The predominance of microscopic fresh-water algae and protozoa over the remains of land plants, pollens and spores suggests that the greater part of the organic matter was derived from microorganisms that grew in the lakes. The pollens and spores were carried into the lakes by wind. Fish, mollusks, crustaceans, and aquatic insect larvae were also plentiful; and turtles, crocodiles, birds, small camels, and insects may have contributed to the organic matter. The ancient lakes apparently were shallow and had a large area, compared with depth. The abundance of organisms and the decaying organic matter produced a strongly reducing environment. Mechanical and chemical action, such as the mastication and digestion of the organic material by bottom-living organisms, caused disintegration of the original organic matter. When the residue was reduced to a gelatinous condition, it apparently resisted further bacterial decay, and other organisms accidently entombed in the gel were protected from disintegration. An accumulation of inorganic material occurred simultaneously with the disintegration of the organic ooze, and the entire mass became lithified. After most of the oil shale was deposited, the lake reverted nearly to the conditions that prevailed during its early stage, when the marlstone and low-grade oil shale of the basal member were formed. The streams in the vicinity of the lake were rejuvenated and carried great quantities of medium- to coarse-grained sand into the basin and formed a thick layer over the lakebeds.

  18. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Utah

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Utah. Moving to the 2015 IECC from the 2012 Utah State Code base code is cost-effective for residential buildings in all climate zones in Utah.

  19. Habitat Selection and Reproductive Success of White-faced Ibis in the Carson River Basin, Nevada: Final Progress Report for the 1996 Season

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Great Basin White-faced Ibis (Plegadis chihi) population is listed under category 2 of the Endangered Species Act because of its dependence on closed, isolated,...

  20. From the Mountains of the Moon to the Grand Renaissance: misinformation, disinformation and, finally, information for cooperation in the Nile River basin

    Science.gov (United States)

    Zaitchik, B. F.; Habib, S.; Anderson, M. C.; Ozdogan, M.

    2012-12-01

    The Nile River basin is shared by 11 nations and approximately 200 million people. Eight of the riparian States are defined as Least Developed Countries by the United Nations, and about 50% of the total basin population lives below the international poverty line. In addition, eight of the eleven countries have experienced internal or external wars in the past 20 years, six are predicted to be water scarce by 2025, and, at present, major water resource development projects are moving forward in the absence of a fully recognized basin-wide water sharing agreement. Nevertheless, the Nile basin presents remarkable opportunities for transboundary water cooperation, and today—notwithstanding significant substantive and perceived disagreements between stakeholders in the basin—this cooperation is beginning to be realized in topics ranging from flood early warning to hydropower optimization to regional food security. This presentation will provide an overview of historic and present challenges and opportunities for transboundary water management in the Nile basin and will present several case studies in which improved hydroclimatic information and communication systems are currently laying the groundwork for advanced cooperation. In this context climate change acts as both stress and motivator. On one hand, non-stationary hydrology is expected to tax water resources in the basin, and it undermines confidence in conventionally formulated water sharing agreements. On the other, non-stationarity is increasingly understood to be an exogenous threat to regional food and water security that will require informed, flexible cooperation between riparian states.

  1. Extinct mountain goat ( Oreamnos harringtoni) in Southeastern Utah

    Science.gov (United States)

    Mead, Jim I.; Agenbroad, Larry D.; Phillips, Arthur M.; Middleton, Larry T.

    1987-05-01

    The extinct Harrington's mountain goat ( Oreamnos harringtoni Stock) is predominantly known from dry cave localities in the Grand Canyon, Arizona, in addition to two sites in the Great Basin, Nevada, and from San Josecito Cave, Nuevo Leon, Mexico. A dry shelter in Natural Bridges National Monument, on the central Colorado Plateau, southeastern Utah, preserves numerous remains of the extinct mountain goat in addition to pack rat middens. Remains from a 100-cm stratigraphic profile indicate that O. harringtoni lived on the plateau >39,800 yr B.P., the oldest directly dated find of extinct mountain goat. Plant macrofossils indicate that Engelmann's spruce ( Picea engelmannii), limber pine ( Pinus flexilis), rose ( Rosa cf. woodsii), and Douglas fir ( Pseudotsuga menziesii) grew during the late Pleistocene where a riparian and a pinyon-juniper ( Pinus edulis-Juniperus osteosperma) community now predominates; Douglas fir are found only in mesic, protected, north-facing areas. Limber pine, Douglas fir, bark, and grasses were the major dietary components in the dung. A springtime diet of birch ( Betula) is determined from pollen clumps in dung pellets.

  2. BOX-DEATH HOLLOW ROADLESS AREA, UTAH.

    Science.gov (United States)

    Weir, Gordon W.; Lane, Michael

    1984-01-01

    Geologic mapping, geochemical sampling, and a search for prospects and mineralized rock in the Box-Death Hollow Roadless Area, Utah indicate that there is little promise for the occurrence of mineral or energy resources in the area. Additional exploratory drilling by industry seems warranted if wells elsewhere in the region find oil or gas in strata as yet untested in the Box-Death Hollow Roadless Area.

  3. Utah Bat Conservation Plan, 2008-2013

    Science.gov (United States)

    2008-06-01

    has been reported. 1This species occurs from s. British Columbia to c. México ( Jalisco and Querétaro), east to w. Kansas, w. Oklahoma, and w. Texas...Wildlife Service. 25 pp. Oliver, G. V. 1997. Inventory of sensitive species and ecosystems in Utah. Inventory of sensitive vertebrate and...potential wind energy development sites are ranked. Riparian Area: The vegetation, habitats, or ecosystems that are associated with streams, rivers

  4. Consumptive Use and Water Requirements for Utah

    OpenAIRE

    Huber, A. Leon; Haws, Frank W.; Hughes, Trevor C.; Bagley, Jay M.

    1982-01-01

    Foreword: Studies on the meteorological determinants of evapotranspiration were initiated at least as long ago as the 1920s and by the late 1940s had produced the Blaney-Criddle method for estimating crop consumptive use. The resulting ability to estimate water requirements by both location and crop added a new scientific dimension to water rights administration that was first introduced into the courts of Utah d...

  5. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J A

    1982-09-01

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1/sup 0/ x 2/sup 0/ Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains.

  6. Conservation planning for the Colorado River in Utah

    Science.gov (United States)

    Christine Rasmussen,; Shafroth, Patrick B.

    2016-01-01

    Strategic planning is increasingly recognized as necessary for providing the greatest possible conservation benefits for restoration efforts. Rigorous, science-based resource assessment, combined with acknowledgement of broader basin trends, provides a solid foundation for determining effective projects. It is equally important that methods used to prioritize conservation investments are simple and practical enough that they can be implemented in a timely manner and by a variety of resource managers. With the help of local and regional natural resource professionals, we have developed a broad-scale, spatially-explicit assessment of 146 miles (~20,000 acres) of the Colorado River mainstem in Grand and San Juan Counties, Utah that will function as the basis for a systematic, practical approach to conservation planning and riparian restoration prioritization. For the assessment we have: 1) acquired, modified or created spatial datasets of Colorado River bottomland conditions; 2) synthesized those datasets into habitat suitability models and estimates of natural recovery potential, fire risk and relative cost; 3) investigated and described dominant ecosystem trends and human uses, and; 4) suggested site selection and prioritization approaches. Partner organizations (The Nature Conservancy, National Park Service, Bureau of Land Management and Utah Forestry Fire and State Lands) are using the assessment and datasets to identify and prioritize a suite of restoration actions to increase ecosystem resilience and improve habitat for bottomland species. Primary datasets include maps of bottomland cover types, bottomland extent, maps of areas inundated during high and low flow events, as well as locations of campgrounds, roads, fires, invasive vegetation treatment areas and other features. Assessment of conditions and trends in the project area entailed: 1) assemblage of existing data on geology, changes in stream flow, and predictions of future conditions; 2) identification

  7. The Mississippian Leadville Limestone Exploration Play, Utah and Colorado-Exploration Techniques and Studies for Independents

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Chidsey

    2008-09-30

    The Mississippian (late Kinderhookian to early Meramecian) Leadville Limestone is a shallow, open-marine, carbonate-shelf deposit. The Leadville has produced over 53 million barrels (8.4 million m{sup 3}) of oil/condensate from seven fields in the Paradox fold and fault belt of the Paradox Basin, Utah and Colorado. The environmentally sensitive, 7500-square-mile (19,400 km{sup 2}) area that makes up the fold and fault belt is relatively unexplored. Only independent producers operate and continue to hunt for Leadville oil targets in the region. The overall goal of this study is to assist these independents by (1) developing and demonstrating techniques and exploration methods never tried on the Leadville Limestone, (2) targeting areas for exploration, (3) increasing deliverability from new and old Leadville fields through detailed reservoir characterization, (4) reducing exploration costs and risk especially in environmentally sensitive areas, and (5) adding new oil discoveries and reserves. The final results will hopefully reduce exploration costs and risks, especially in environmentally sensitive areas, and add new oil discoveries and reserves. The study consists of three sections: (1) description of lithofacies and diagenetic history of the Leadville at Lisbon field, San Juan County, Utah, (2) methodology and results of a surface geochemical survey conducted over the Lisbon and Lightning Draw Southeast fields (and areas in between) and identification of oil-prone areas using epifluorescence in well cuttings from regional wells, and (3) determination of regional lithofacies, description of modern and outcrop depositional analogs, and estimation of potential oil migration directions (evaluating the middle Paleozoic hydrodynamic pressure regime and water chemistry). Leadville lithofacies at Libon field include open marine (crinoidal banks or shoals and Waulsortian-type buildups), oolitic and peloid shoals, and middle shelf. Rock units with open-marine and restricted

  8. 78 FR 35956 - Utah Resource Advisory Council Subgroup Conference Call

    Science.gov (United States)

    2013-06-14

    ... Bureau of Land Management Utah Resource Advisory Council Subgroup Conference Call AGENCY: Bureau of Land Management, Interior. ACTION: Conference Call. SUMMARY: In accordance with the Federal Land Policy and... Advisory Council (RAC) Subgroup will host a conference call. DATES: The Utah RAC Subgroup will host...

  9. Grasses and Grasslike Plants of Utah, A Field Guide

    OpenAIRE

    Pratt, Mindy

    2011-01-01

    This guide is meant to serve as a help in identifying many of the grasses and grass-like plants common to the rangelands, forests, and farmlands of Utah. It is not an exhaustive guide to the plants contained herein, nor is it a comprehensive summary of all the grasses and grass-like plants in Utah.

  10. Utah System of Higher Education Data Book (Supplement to Operating Budget Request) 1998-99.

    Science.gov (United States)

    Utah State Board of Higher Education, Salt Lake City.

    This report provides detailed statistical data on the Utah System of Higher Education (USHE), including institution-specific data on the system's four universities and five community colleges. The institutions include the University of Utah, Utah State University, Weber State University, Southern Utah University, Snow College, Dixie College,…

  11. Utah System of Higher Education Data Book (Supplement to Operating Budget Request) 1997-98.

    Science.gov (United States)

    Utah State Board of Higher Education, Salt Lake City.

    This report provides detailed statistical data on the Utah System of Higher Education (USHE), including institution-specific data on the system's four universities and five community colleges. The institutions include the University of Utah, Utah State University, Weber State University, Southern Utah University, Snow College, Dixie College,…

  12. National Account Energy Alliance Final Report for the Basin Electric Project at Northern Border Pipeline Company's Compressor Station #7, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Sweetzer, Richard [Exergy Partners Corp.; Leslie, Neil [Gas Technology Institute

    2008-02-01

    A field research test and verification project was conducted at the recovered energy generation plant at Northern Border Pipeline Company Compressor Station #7 (CS#7) near St. Anthony. Recovered energy generation plant equipment was supplied and installed by ORMAT Technologies, Inc. Basin Electric is purchasing the electricity under a purchase power agreement with an ORMAT subsidiary, which owns and operates the plant.

  13. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain, Final Report and Topical Reports 5-8 on Smackover Petroleum system and Underdevelopment Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Ernest A.; Puckett, T. Markham; Parcell, William C.; Llinas, Juan Carlos; Kopaska-Merkel, David C.; Townsend, Roger N.

    2002-03-05

    The Smackover Formation, a major hydrocarbon-producing horizon in the Mississippi Interior Salt Basin (MISB), conformably overlies the Norphlet Formation and is conformably overlain by the Buckner Anhydrite Member of the Haynesville Formation. The Norphlet-Smackover contact can be either gradational or abrupt. The thickness and lithofacies distribution of the Smackover Formation were controlled by the configuration of incipient paleotopography. The Smackover Formation has been subdivided into three informal members, referred to as the lower, middle and upper members.

  14. CAPILLARY PRESSURE/MERCURY INJECTION ANALYSIS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey Jr; David E. Eby

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  15. CARBON AND OXYGEN ISOTOPIC ANALYSIS: BUG, CHEROKEE, AND PATTERSON CANYON FIELDS, SAN JUAN COUNTY, UTAH

    Energy Technology Data Exchange (ETDEWEB)

    David E. Eby; Thomas C. Chidsey Jr; Kevin McClure; Craig D. Morgan; Stephen T. Nelson

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  16. SCANNING ELECTRON MICROSCOPY AND PORE CASTING: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey Jr; David E. Eby; Louis H. Taylor

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  17. Methods for estimating peak discharge and flood boundaries of streams in Utah

    Science.gov (United States)

    Thomas, B.E.; Lindskov, K.L.

    1983-01-01

    Equations for estimating 2-, 5-, 10-, 25-, 50-, and 100-year peak discharges and flood depths at ungaged sites in Utah were developed using multiple-regression techniques. Ratios of 500- to 100-year values also were determined. The peak discharge equations are applicable to unregulated streams and the flood depth equations are applicable to the unregulated flow in natural stream channels. The flood depth data can be used to approximate flood prone areas. Drainage area and mean basin elevation are the two basin characteristics needed to use these equations. The standard error of estimate ranges from 38% to 74% for the 100-year peak discharge and from 23% to 33% for the 100-year flood depth. Five different flood mapping methods are described. Streams are classified into four categories as a basis for selecting a flood mapping method. Procedures for transferring flood depths obtained from the regression equations to a flood boundary map are outlined. Also, previous detailed flood mapping by government agencies and consultants is summarized to assist the user in quality control and to minimize duplication of effort. Methods are described for transferring flood frequency data from gaged to ungaged sites on the same stream. Peak discharge and flood depth frequency relations and selected basin characteristics data, updated through the 1980 water year, are tabulated for more than 300 gaging stations in Utah and adjoining states. In addition, weighted estimates of peak discharge relations based on the station data and the regression estimates are provided for each gaging station used in the regression analysis. (Author 's abstract)

  18. THIN SECTION DESCRIPTIONS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey Jr; David E. Eby

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  19. Timing and nature of tertiary plutonism and extension in the Grouse Creek Mountains, Utah

    Science.gov (United States)

    Egger, A.E.; Dumitru, T.A.; Miller, E.L.; Savage, C.F.I.; Wooden, J.L.

    2003-01-01

    of the crust that apparently resided as much as 10 km apart (in depth) at times as young as the Miocene. The varied structural, metamorphic, and intrusive relations obsreved in the Grouse Creek Mountains reflect their formation at different levels within the crust. Data from these various levels argue that plutonism has been a key mechanism far transferring heat into the middle and upper crust, and localizing strain during regional extension. Interestingly, events documented here correlate in a broad way with cooling events documented in the Raft River Mountains, although plutons are not exposed there. Major and trace element geochemistry imply a crustal component in all of the studied plutons, indicating significant degrees of crustal melting at depth during extension, and point to mantle heat sources during the timespan of Basin and Range extension as the cause of melting. Basin and Range faulting and final uplift of the range is recorded by apatite fission track ages, averaging 13.4 Ma, and deposition of about 2 km of syn-faulting basin fill deposits along the Grouse Creek fault mapped along the western flank of the range. Similar apatite ages from the Albion Mountains to the north indicate that the western side of the Albion-Raft River-Grouse Creek core complex behaved as a single rigid crustal block at this time.

  20. Lacustrine Basal Ages Constrain the Last Deglaciation in the Uinta Mountains, Utah, USA

    Science.gov (United States)

    Munroe, Jeffrey; Laabs, Benjamin

    2013-04-01

    Basal radiocarbon ages from 21 high-elevation lakes limit the timing of final Pleistocene deglaciation in the Uinta Mountains of northeastern Utah, USA. The lakes are located in glacial valleys and cirques 5 to 20 km upstream from LGM terminal moraines at elevations from 2830 to 3475 m. Many are impounded behind recessional moraines. Cores were retrieved from a floating platform with a percussion corer driven to the point of refusal. All penetrated inorganic silty clay beneath gyttja. AMS radiocarbon analyses were made on terrestrial macrofossils, daphnia ephippia, pollen concentrates, and bulk sediment retrieved from the base of each core. No radiocarbon reservoir effect was observed when bulk dates were checked against terrestrial material. Radiocarbon results were converted to calendar years using the IntCal09 calibration curve in OxCal 4.1. Given the stratigraphy observed in the cores, these calibrated basal ages are considered close limits on the timing of the local deglaciation and lake formation. The oldest three lakes have basal radiocarbon ages that calibrate to a few centuries after the Bölling/Alleröd warming, indicating that the landscape was becoming ice free at this time. These are followed by an overlapping group of five lakes with basal ages between 13.5 and 13.0 ka BP. Five more cores, from four separate lakes, have basal ages tightly clustered between 13.0 and 12.5 ka BP. Three of these lakes are dammed by moraines, suggesting glacial activity during the early part of the Younger Dryas interval. The lone kettle lake in the study yielded a basal age of 12.3 ka BP, considerably younger than the basal age of 13.9 ka BP from a nearby lake filling a bedrock basin, indicating that buried ice may have been locally stable for more than a millennium after deglaciation. The remaining seven lakes have basal ages between 12.0 and 11.0 ka BP. Four of these lakes are also dammed by moraines. These two non-overlapping clusters of basal ages for moraine

  1. K Basin Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  2. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Umatilla, Tucannon, Asotin, and Grande Ronde River Basins, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat surveys, conducted in the Umatilla and Grande Ronde River basins, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the

  3. Study of CO/sub 2/ recovery and tertiary oil production enhancement in the Los Angeles Basin. Final report, September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Shah, R.P.; Wittmeyer, E.E.; Sharp, S.D.; Griep, R.W.

    1979-01-01

    Results are presented of stuides conducted to evaluate carbon dioxide sources in the Los Angeles Basin, determine the requirements for upgrading and transmitting the gas, write the necessary material specifications, and determine where carbon dioxde may be effectively utilized as an enhanced recovery agent in oil fields, estimate recovery performance, and evaluate potential economic benefits. Study results show that there are two major sources of CO/sub 2/ in the Los Angeles Basin. Six oil refineries and one ammonia plant (all near Los Angeles Basin oil fields), have hydrogen plants with by-product streams of concentrated CO/sub 2/. The total available (uncommitted) CO/sub 2/ from these streams is about 3,000 tons per day. Six major electric power plants, all near L.A. Basin oil fields, discharge a combined total of 70,000 tons per day of CO/sub 2/ from 27 large boilers. Average CO/sub 2/ concentration in the flue gas is about 14 percent on a dry basis. CO/sub 2/ processing recommendations include modification of the existing hydrogen-CO/sub 2/ separation system, so that nitrogen is not used for stripping and therefore does not need to be removed, use propylene carbonate absorption, and use low-temperature separation. For CO/sub 2/ extraction from flue gas, monoethanolamine (MEA) absorption is recommended. Several reservoirs have been identified and are listed as prime candidates for CO/sub 2/ injection, using the major criteria of high oil saturation in the reservoir, suitable depth of the reservoir, and a good potential for zone control. (JRD)

  4. Regional operations research program for commercialization of geothermal energy in the Rocky Mountain basin and range. Final technical report, January 1980-March 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

  5. Ground-water conditions in Utah, spring of 2007

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Enright, Michael; Cillessen, J.L.; Gerner, S.J.; Eacret, Robert J.; Downhour, Paul; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.

    2007-01-01

    This is the forty-fourth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2006. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/ and http://ut.water.usgs.gov/newUTAH/GW2007.pdf.

  6. Two areas of probable holocene deformation in southwestern Utah

    Science.gov (United States)

    Anderson, R.E.; Bucknam, R.C.

    1979-01-01

    Recent geologic studies in southwestern Utah indicate two areas of probable Holocene ground deformation. 1. (1)A narrow arm of Lake Bonneville is known to have extended southward into Escalante Valley as far as Lund, Utah. Remnants of weakly developed shoreline features, which we have recently found, suggest that Lake Bonnevile covered an area of about 800 km2 beyond its previously recognized limits near Lund. Shoreline elevations show a gradual increase from 1553 m near Lund to 1584 m at a point 50 km further southwest, representing a reversal of the pattern that would result from isostatic rebound. The conspicuously flat floor of Escalante Valley covers an additional 100 km2 southward toward Enterprise, where its elevation is greater than 1610 m, but no shoreline features are recognizable; therefore, the former presence of the lake is only suspected. The measured 31-m rise over 50 km and the suspected 57-m rise in elevation over 70 km apparently occurred after Lake Bonnevile abandoned this area. The abandonment could have occurred as recently as 13,000 years ago, in which case the uplift is mainly of Holocene age. It probably has a deep-seated tectonic origin because it is situated above an inferred 9-km upwarp of the mantle that has been reported beneath the southern part of Escalante Valley on the basis of teleseismic P-wave residuals. 2. (2)Numerous closed topographic basins, ranging from a few hundred square meters to 1 km2 in area, are found at various elevations along the west margin of the Colorado Plateau northeast of Cedar City. Geologic mapping in that area indicates that the basins are located over complex structural depressions in which the rocks are faulted and folded. Several of the depressions are perched along the walls of the West Fork of Braffits Creek, one of a few north-draining creeks that have incised deeply into the plateau margin. Extremely active modern erosion by the creek has produced a 6-km-long gorge along which excellent exposures

  7. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Clearwater, Salmon, Weiser, and Payette River Basins, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat surveys, conducted in Idaho, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938-1942.. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. The Idaho portion of the survey consisted of extensive surveys of the Clearwater, Salmon, Weiser, and Payette River Subbasins. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database

  8. Survey of Job Skills in the Beef Cattle Industry in the Uintah Basin.

    Science.gov (United States)

    Wood, Kirk J.

    A study was conducted to identify the skills and training needs of Uintah Basin (Utah) beef cattle producers. A questionnaire form was mailed to a random sample of 210 beef producers. The questionnaire consisted of a list of 106 skills to be rated by the respondents. Two basic questions were asked about each skill: (1) How important is the skill…

  9. Evaluation of low-temperature geothermal potential in north-central Box Elder County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.C.; Kolesar, P.T.

    1984-12-01

    The low-temperature geothermal resources of north-central Box Elder County, Utah were assessed. Exploration techniques used included chemical analyses of water from wells and springs, temperature surveys, and temperature-depth measurements in unused wells within the study area. The highest water temperatures (31/sup 0/, 30/sup 0/, and 29/sup 0/C) recorded in this research were located in three separate geographic regions, suggesting that no single warm water occurrence dominates the study area. Total dissolved solid (TDS) concentrations ranged from 294 to 11,590 mg/l. Areas of warm water occurrences generally had TDS values of greater than 1100 mg/l. Reservoir temperatures were estimated using chemical geothermometers. Calculated temperatures ranged between 50/sup 0/ and 100/sup 0/C. Temperature-depth measurements were logged in 16 unused wells. Thermal gradients calculated from the profiles ranged from isothermal to 267/sup 0/C/km. The background gradient for the study area appears to be slightly above the average Basin and Range gradient of 35/sup 0/C/km. The highest gradients were calculated for the area approximately eight kilometers west of Snowville, Utah, which is also an area of warm water. 61 refs., 15 figs., 6 tabs.

  10. StreamNet; Northwest Aquatic Resource Information Network - Status of Salmon and Steelhead in the Columbia River Basin, 1995 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Duane A.; Beamesderfer, Raymond C. [Oregon Dept. of Fish and Wildlife, Enterprise, OR (United States); Woodard, Bob [Washington Dept. of Fish and Wildlife, Olympia, WA (United States)

    1996-04-01

    Information on fish populations, fisheries, and fish habitat is crucial to the success of ongoing program to protect, recover, enhance, and manage fish resources in the Columbia River Basin. However, pertinent data are often difficult to locate because it is scattered among many agencies and is often unpublished. The goal of this annual report is to bring many diverse data types and sources into a single comprehensive report on the status of anadromous fish runs in the Columbia River Basin and the environmental conditions that may affect that status. Brief summaries are provided to identify the type and scope of available information. This synopsis is intended to complement other more detailed reports to which readers are referred for comprehensive treatment of specific subjects. This first report focuses mainly on anadromous salmon and steelhead (primarily through 1994) but the authors intend to expand the scope of future issues to include resident species. This is the first of what the authors intend to be an annual report. They welcome constructive suggestions for improvements. This report is a product of the StreamNet (formerly Coordinated Information System and Northwest Environmental Data Base) project which is a part of the Bonneville Power Administration`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The project is called for in the Fish and Wildlife Program of the Northwest Power Planning Council. The project`s objective is to promote exchange and dissemination of information in a standardized electronic format throughout the basin. This project is administered by the Pacific States Marine Fisheries Commission with active participation by tribal, state, and federal fish and wildlife agencies.

  11. Plug in to the Utah Library Network, Reach Out to the World. Utah Library Network and Internet Training Handbook [for DOS]. Information Forum Publication #7.

    Science.gov (United States)

    Reinwand, Louis; And Others

    This manual is designed to assist public libraries in Utah in their use of the Internet. Many of the examples used were created specifically to explain the use of products that the Utah Library Network provides for public libraries in Utah. The introduction provides background history and general information about the Internet and general…

  12. Final Report for the Demonstration of Plasma In-situ Vitrification at the 904-65G K-Reactor Seepage Basin

    Energy Technology Data Exchange (ETDEWEB)

    Blundy, R.F. [Westinghouse Savannah River Company, AIKEN, SC (United States); Zionkowki, P.G.

    1997-12-22

    The In-situ Vitrification (ISV) process potentially offers the most stable waste-form for containment of radiologically contaminated soils while minimizing personnel contamination. This is a problem that is extensive, and at the same time unique, to the US Department of Energy`s (DOE) Weapons Complex. An earlier ISV process utilized joule heating of the soil to generate the subsurface molten glass product. However previous test work has indicated that the Savannah river Site soils (SRS) may not be entirely suitable for vitrification by joule heating due to their highly refractory nature. The concept of utilizing a plasma torch for soil remediation by in-situ vitrification has recently been developed, and laboratory test work on a 100 kW unit has indicated a potentially successful application with SRS soils. The Environmental Restoration Division (ERD) of Westinghouse Savannah River Company (WSRC) conducted the first field scale demonstration of this process at the (904-65G) K-Reactor Seepage Basin in October 1996 with the intention of determining the applicability and economics of the process for remediation of a SRS radioactive seepage basin. The demonstration was successful in completing three vitrification runs, including two consecutive runs that fused together adjacent columns of glass to form a continuous monolith. This report describes the demonstration, documents the engineering data that was obtained, summarizes the process economics and makes recommendations for future development of the process and equipment.

  13. Evaluation of geothermal potential of Rio Grande rift and Basin and Range province, New Mexico. Final technical report, January 1, 1977-May 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Callender, J.F.

    1985-04-01

    A study was made of the geological, geochemical and geophysical characteristics of potential geothermal areas in the Rio Grande rift and Basin and Range province of New Mexico. Both regional and site-specific information is presented. Data was collected by: (1) reconnaissance and detailed geologic mapping, emphasizing Neogene stratigraphy and structure; (2) petrologic studies of Neogene igneous rocks; (3) radiometric age-dating; (4) geochemical surveying, including regional and site-specific water chemistry, stable isotopic analyses of thermal waters, whole-rock and mineral isotopic studies, and whole-rock chemical analyses; and (5) detailed geophysical surveys, using electrical, gravity and magnetic techniques, with electrical resistivity playing a major role. Regional geochemical water studies were conducted for the whole state. Integrated site-specific studies included the Animas Valley, Las Cruces area (Radium Springs and Las Alturas Estates), Truth or Consequences region, the Albuquerque basin, the San Ysidro area, and the Abiquiu-Ojo Caliente region. The Animas Valley and Las Cruces areas have the most significant geothermal potential of the areas studied. The Truth or Consequences and Albuquerque areas need further study. The San Ysidro and Abiquiu-Ojo Caliente regions have less significant geothermal potential. 78 figs., 16 tabs.

  14. Library outreach: addressing Utah's “Digital Divide”

    Science.gov (United States)

    McCloskey, Kathleen M.

    2000-01-01

    A “Digital Divide” in information and technological literacy exists in Utah between small hospitals and clinics in rural areas and the larger health care institutions in the major urban area of the state. The goals of the outreach program of the Spencer S. Eccles Health Sciences Library at the University of Utah address solutions to this disparity in partnership with the National Network of Libraries of Medicine—Midcontinental Region, the Utah Department of Health, and the Utah Area Health Education Centers. In a circuit-rider approach, an outreach librarian offers classes and demonstrations throughout the state that teach information-access skills to health professionals. Provision of traditional library services to unaffiliated health professionals is integrated into the library's daily workload as a component of the outreach program. The paper describes the history, methodology, administration, funding, impact, and results of the program. PMID:11055305

  15. 75 FR 2154 - Central Utah Project Completion Act

    Science.gov (United States)

    2010-01-14

    ...), Bonneville Unit, Central Utah Project (CUP). It would provide an opportunity for more effective and efficient management of water, make efficient use of recycled water, provide opportunities for stream and...

  16. Photographs of historical mining operations in Colorado and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A collection of photographs of mine sites, mining operations, and tailings taken prior to 1980 at a variety of sites throughout Colorado and Utah. A database of...

  17. Utilities at Cedar Breaks National Monument, Utah (utilpnt)

    Data.gov (United States)

    National Park Service, Department of the Interior — This feature class represents various types of utilities, including water- and power-related utilities, at Cedar Breaks National Monument, Utah. The utilities were...

  18. Assessing approaches to manage Phragmites in Utah wetlands

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Given the extent of the Phragmites problem in Utah and elsewhere, managers are eager to understand what techniques are most effective for killing Phragmites while...

  19. Footprints of Buildings at Cedar Breaks National Monument, Utah (footprints)

    Data.gov (United States)

    National Park Service, Department of the Interior — This is an Arc/INFO coverage consisting of 10 polygons representing the buildings' footprints at Cedar Breaks National Monument, Utah. The footprints were collected...

  20. Springs at Cedar Breaks National Monument, Utah (allsprgs)

    Data.gov (United States)

    National Park Service, Department of the Interior — This is an Arc/Info coverage consisting of 151 points representing spring locations in and surrounding Cedar Breaks National Monument, Utah. This data originates...

  1. 76 FR 39434 - Notice of Utah's Resource Advisory Council (RAC)

    Science.gov (United States)

    2011-07-06

    ... floor Monument Conference Room, Salt Lake City, Utah. FOR FURTHER INFORMATION CONTACT: Sherry Foot..., a business meeting will be held to discuss the ecological, social, and economic values that can...

  2. Reserves in western basins

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, R.H.; Cotton, B.W. [Scotia Group, Dallas, TX (United States)

    1995-04-01

    The objective of this project is to investigate the reserves potential of tight gas reservoirs in three Rocky Mountain basins: the Greater Green River (GGRB), Uinta and Piceance basins. The basins contain vast gas resources that have been estimated in the thousands of Tcf hosted in low permeability clastic reservoirs. This study documents the productive characteristics of these tight reservoirs, requantifies gas in place resources, and characterizes the reserves potential of each basin. The purpose of this work is to promote understanding of the resource and to encourage its exploitation by private industry. At this point in time, the GGRB work has been completed and a final report published. Work is well underway in the Uinta and Piceance basins which are being handled concurrently, with reports on these basins being scheduled for the middle of this year. Since the GGRB portion of the project has been completed, this presentation win focus upon that basin. A key conclusion of this study was the subdivision of the resource, based upon economic and technological considerations, into groupings that have distinct properties with regard to potential for future producibility, economics and risk profile.

  3. Great Salt Lake, and precursors, Utah: The last 30,000 years

    Science.gov (United States)

    Spencer, R.J.; Baedecker, M.J.; Eugster, H.P.; Forester, R.M.; Goldhaber, M.B.; Jones, B.F.; Kelts, K.; McKenzie, J.; Madsen, D.B.; Rettig, S.L.; Rubin, M.; Bowser, C.J.

    1984-01-01

    Sediment cores up to 6.5 m in length from the South Arm of Great Salt Lake, Utah, have been correlated. Radiocarbon ages and volcanic tephra layers indicate a record of greater than 30,000 years. A variety of approaches have been employed to collect data used in stratigraphic correlation and lake elevation interpretation; these include acoustic stratigraphy, sedimentologic analyses, mineralogy, geochemistry (major element, C, O and S isotopes, and organics), paleontology and pollen. The results indicate that prior to 32,000 year B.P. an ephemeral saline lake-playa system was present in the basin. The perennial lake, which has occupied the basin since this time, rose in a series of three major steps; the freshest water conditions and presumably highest altitude was reached at about 17,000 year B.P. The lake remained fresh for a brief period, followed by a rapid increase in salinity and sharp lowering in elevation to levels below that of the present Great Salt Lake. The lake remained at low elevations, and divided at times into a north and south Basin, until about 8,000 year B.P. Since that time, with the exception of two short rises to about 1290 m, the lake level has remained near the present elevation of 1280 m. ?? 1984 Springer-Verlag.

  4. US hydropower resource assessment for Utah

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

  5. Ground-water conditions in Utah, spring of 2009

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Rowland, Ryan C.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Nielson, Ashley; Eacret, Robert J.; Myers, Andrew; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2009-01-01

    This is the forty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions. This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2008. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights. utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/ GW2009.pdf.

  6. Ground-water conditions in Utah, spring of 2008

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Enright, Michael; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2008-01-01

    This is the forty-fifth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2007. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2008.pdf.

  7. Anatomy of wintertime ozone associated with oil and natural gas extraction activity in Wyoming and Utah

    Directory of Open Access Journals (Sweden)

    Samuel Oltmans

    2014-03-01

    Full Text Available Abstract Winter maximum daily 8-hour average (MDA8 ozone concentrations in the Upper Green River Basin, Wyoming (UGRBWY and the Uintah Basin, Utah (UBUT have frequently exceeded 100 ppb in January, February and March, in the past few years. Such levels are well above the U.S. air quality standard of 75 ppb. In these two remote basins in the Rockies, local ozone precursor emissions result from intense oil and gas extraction activities that release methane, volatile organic compounds (VOCs, and nitrogen oxides (NOx to the atmosphere. These emissions become trapped beneath a stable and shallow (∼50–200 m boundary layer maintained in low wind conditions. Wintertime surface ozone formation conditions are more likely in the UBUT than in the UGRBWY as the topography of the UBUT is an enclosed basin whereas the UGRBWY is open on its southern perimeter thus allowing for more air turnover. With snow-covered ground, high ozone events regularly begin in mid-December and last into early March in the UBUT whereas they usually do not begin in earnest until about a month later in the UGRBWY and may persist until mid-March. Winters without snow cover and the accompanying cold pool meteorological conditions do not experience high ozone events in either basin. For nine years with ozone observations in the UGRBWY (2005–2013 and four in the UBUT (2010–2013, all years with adequate (≥6 inches and persistent snow cover, experienced days with ozone values ≥75 ppb except in 2012 in the UGRBWY when persistent high wind (>5 m/s conditions were prevalent. Year to year differences in the occurrences of high ozone episodes appear to be driven primarily by differing meteorological conditions rather than by variations in ozone precursor levels.

  8. Assessment of Present Anadromous Fish Production Facilities in the Columbia River Basin, Idaho Department of Fish and Game Hatcheries, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Delarm, Michael R.; Smith, Robert Z.

    1990-07-01

    The goal of this report is to document current production practices for hatcheries which rear anadromous fish in the Columbia River Basin and to identify those facilities where production can be increased. A total of 85 hatchery and satellite facilities operated by the Idaho Department of Fish and Game, Oregon Department of Fish and Game, US Fish and Wildlife Service, Washington Department of Wildlife, and Washington Department of Fisheries were evaluated. The years 1985 to 1987 were used in this evaluation. During those years, releases averaged 143,306,596 smolts weighing 7,693,589 pounds. A total of 48 hatchery or satellite facilities were identified as having expansion capability. They were estimated to have the potential for increasing production by an 84,448,000 smolts weighting 4,853,306 pounds. 2 refs., 25 figs.

  9. The role of active and ancient geothermal processes in the generation, migration, and entrapment of oil in the basin and Range Province, western USA. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Hulen, J.B.; Collister, J.W.; Curtiss, D.K. [and others

    1997-06-01

    The Basin and Range (B&R) physiographic province of the western USA is famous not only for its geothermal and precious-metal wealth, but also for its thirteen oil fields, small but in some cases highly productive. The Grant Canyon field in Railroad Valley, for example, for years boasted production of more than 6000 barrels of oil (BO) per day from just two wells; aggregate current production from the Blackburn field in Pine Valley commonly exceeds 1000 BO per day. These two and several other Nevada oil fields are unusually hot at reservoir depth--up to 130{degrees}C at depths as shallow as 1.1 km, up to three times the value expected from the prevailing regional geothermal gradient.

  10. Assessment of Present Anadromous Fish Production Facilities in the Columbia River Basin, Oregon Department of Fish and Wildlife Hatcheries, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Delarm, Michael R.; Smith, Robert Z.

    1990-07-01

    The goal of this report is to document current production practices for hatcheries which rear anadromous fish in the Columbia River Basin and to identify those facilities where production can be increased. A total of 85 hatchery and satellite facilities operated by the Idaho Department of Fish and Game, Oregon Department of Fish and Game, US Fish and Wildlife Service, Washington Department of Wildlife, and Washington Department of Fisheries were evaluated. The years 1985 to 1987 were used in this evaluation. During those years, releases averaged 143,306,596 smolts weighing 7,693,589 pounds. A total of 48 hatchery or satellite facilities were identified as having expansion capability. They were estimated to have the potential for increasing production by an 84,448,000 smolts weighing 4,853,306 pounds. 2 refs, 25 figs.

  11. Recovery of bypassed oil in the Dundee Formation (Devonian) of the Michigan Basin using horizontal drains. Final report, April 28, 1994--December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Wood, J.R.; Pennington, W.D.

    1998-09-01

    Total hydrocarbon production in the Michigan Basin has surpassed 1 billion barrels (Bbbls) and total unrecovered reserves are estimated at 1--2 BBbls. However, hydrocarbon production in Michigan has fallen from 35 MMbbls/yr in 1979 to about 10 MMbbls/yr in 1996. In an effort to slow this decline, a field demonstration project designed around using a horizontal well to recover bypassed oil was designed and carried out at Crystal Field in Montcalm County, MI. The project had two goals: to test the viability of using horizontal wells to recover bypassed oil from the Dundee Formation, and to characterize additional Dundee reservoirs (29) that are look alikes to the Crystal Field. As much as 85 percent of the oil known to exist in the Dundee Formation in the Michigan Basin remains in the ground as bypassed oil. Early production techniques in the 137 fields were poor, and the Dundee was at risk of being abandoned, leaving millions of barrels of oil behind. Crystal Field in Montcalm County, Michigan is a good example of a worn out field. Crystal Field was once a prolific producer which had been reduced to a handful of wells, the best of which produced only 5 barrels per day. The demonstration well drilled as a result of this project, however, has brought new life to the Crystal Field. Horizontal drilling is one of the most promising technologies available for oil production. The new well was completed successfully in October of 1995 and has been producing 100 barrels of oil per day, 20 times better than the best conventional well in the field.

  12. Carbonate mound reservoirs in the paradox formation: An outcrop analogue along the San Juan River, Southeastern Utah

    Energy Technology Data Exchange (ETDEWEB)

    Chidsey, T. C. Jr.; Morgan, C.D. [Utah Geological Survey, Salt Lake City, UT (United States); Eby, D.E. [Eby Petrography & Consulting, Inc., Littleton, CO (United States)] [and others

    1996-06-01

    Carbonate mound reservoirs within the Pennsylvanian (Desmoinesian) Paradox Formation are major producers of oil and gas in the Paradox basin of Utah, Colorado, and Arizona. Outcrops of the Paradox Formation along the San Juan River of southeastern Utah provide small-scale analogues of reservoir heterogeneity, flow barriers and baffles, lithofacies, and geometry. These characteristics can be used in reservoir simulation models for secondary/tertiary recovery of oil from small fields in the basin. Exposures of the Paradox Formation Ismay zone in the Wild Horse Canyon area display lateral facies changes from phylloid algal mounds to off-mound detrital wedges or fans bounded at the top by a flooding surface. The phylloid mounds are composed of bafflestone, skeletal grainstone, packstone, and cementstone. Algal plates, brachiopods, bryozoans, and rugose corals are commonly found in the phylloid mounds. The mound wall is composed of rudstone, lumpstone, and cementstone. The detrital fan consists of transported algal material, grainstone, and mudstone with open-marine fossils. Within the mound complex is an inter-mound trough tentatively interpreted to be a tidal channel. The geometry and composition of the rocks in the trough significantly add to the overall heterogeneity of the mound. Reservoir models are being developed for possible water- and carbon-dioxide floods of small Paradox basin fields to determine the most effective secondary/tertiary recovery method. The models will include lithologic fabrics, flooding surfaces, and inter-mound troughs, based on the mound complex exposed at Wild Horse Canyon. This project may also provide reservoir information for simulation models in small Paleozoic carbonate mound fields in other basins worldwide.

  13. The Mississippian Leadville Limestone Exploration Play, Utah and Colorado-Exploration Techniques and Studies for Independents

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Chidsey

    2008-09-30

    The Mississippian (late Kinderhookian to early Meramecian) Leadville Limestone is a shallow, open-marine, carbonate-shelf deposit. The Leadville has produced over 53 million barrels (8.4 million m{sup 3}) of oil/condensate from seven fields in the Paradox fold and fault belt of the Paradox Basin, Utah and Colorado. The environmentally sensitive, 7500-square-mile (19,400 km{sup 2}) area that makes up the fold and fault belt is relatively unexplored. Only independent producers operate and continue to hunt for Leadville oil targets in the region. The overall goal of this study is to assist these independents by (1) developing and demonstrating techniques and exploration methods never tried on the Leadville Limestone, (2) targeting areas for exploration, (3) increasing deliverability from new and old Leadville fields through detailed reservoir characterization, (4) reducing exploration costs and risk especially in environmentally sensitive areas, and (5) adding new oil discoveries and reserves. The final results will hopefully reduce exploration costs and risks, especially in environmentally sensitive areas, and add new oil discoveries and reserves. The study consists of three sections: (1) description of lithofacies and diagenetic history of the Leadville at Lisbon field, San Juan County, Utah, (2) methodology and results of a surface geochemical survey conducted over the Lisbon and Lightning Draw Southeast fields (and areas in between) and identification of oil-prone areas using epifluorescence in well cuttings from regional wells, and (3) determination of regional lithofacies, description of modern and outcrop depositional analogs, and estimation of potential oil migration directions (evaluating the middle Paleozoic hydrodynamic pressure regime and water chemistry). Leadville lithofacies at Libon field include open marine (crinoidal banks or shoals and Waulsortian-type buildups), oolitic and peloid shoals, and middle shelf. Rock units with open-marine and restricted

  14. 76 FR 46805 - Notice of Utah Adoption by Reference of the Pesticide Container Containment Rule

    Science.gov (United States)

    2011-08-03

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Notice of Utah Adoption by Reference of the Pesticide Container Containment Rule AGENCY... the State of Utah's adoption by reference of the federal Pesticide Container Containment (PCC)...

  15. 75 FR 80838 - Notice of Invitation to Participate In Coal Exploration License, Utah

    Science.gov (United States)

    2010-12-23

    ... Mining Company, 1407 West North Temple, Suite 310, Salt Lake City, Utah 84116. FOR FURTHER INFORMATION... States of America in Emery County, Utah. DATES: The notice of invitation to participate in this...

  16. Energy Efficient Buildings, Salt Lake County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through

  17. 78 FR 5489 - Notice of Utah's Recreation Resource Advisory Council/Resource Advisory Council Meeting

    Science.gov (United States)

    2013-01-25

    ... alternatives for regional planning through 2015 and interim guidance for Utah on Sage-grouse; an update on the draft strategic plan for Utah public lands within the BLM's National Landscape Conservation System; and... on the San Juan River in San Juan County, Utah; the BLM Red Cliffs National Conservation Area,...

  18. 78 FR 43225 - Utah Resource Advisory Council Meeting/Conference Call

    Science.gov (United States)

    2013-07-19

    ... Bureau of Land Management Utah Resource Advisory Council Meeting/Conference Call AGENCY: Bureau of Land Management, Interior. ACTION: Notice of Meeting/Conference Call SUMMARY: In accordance with the Federal Land...) Utah Resource Advisory Council (RAC) will host a meeting/conference call. DATES: The Utah RAC will...

  19. Nahcolite and halite deposition through time during the saline mineral phase of Eocene Lake Uinta, Piceance Basin, western Colorado

    Science.gov (United States)

    Johnson, Ronald C.; Brownfield, Michael E.

    2013-01-01

    Halite and the sodium bicarbonate mineral nahcolite were deposited during the saline phase of Eocene Lake Uinta in the Piceance Basin, western Colorado. Variations in the area of saline mineral deposition through time were interpreted from studies of core and outcrop. Saline minerals were extensively leached by groundwater, so the original extent of saline deposition was estimated from the distribution of empty vugs and collapse breccias. Vugs and breccias strongly influence groundwater movement, so determining where leaching has occurred is an important consideration for in-situ oil shale extraction methods currently being developed. Lake Uinta formed when two smaller fresh water lakes, one in the Uinta Basin of eastern Utah and the other in the Piceance Basin of western Colorado, expanded and coalesced across the Douglas Creek arch, an area of comparatively low subsidence rates. Salinity increased shortly after this expansion, but saline mineral deposition did not begin until later, after a period of prolonged infilling created broad lake-margin shelves and a comparatively small deep central lake area. These shelves probably played a critical role in brine evolution. A progression from disseminated nahcolite and nahcolite aggregates to bedded nahcolite and ultimately to bedded nahcolite and halite was deposited in this deep lake area during the early stages of saline deposition along with rich oil shale that commonly shows signs of slumping and lateral transport. The area of saline mineral and rich oil shale deposition subsequently expanded, in part due to infilling of the compact deep area, and in part because of an increase in water flow into Lake Uinta, possibly due to outflow from Lake Gosiute to the north. Finally, as Lake Uinta in the Piceance Basin was progressively filled from north to south by volcano-clastic sediment, the saline depocenter was pushed progressively southward, eventually covering much of the areas that had previously been marginal shelves

  20. Geoinformatics and Data Fusion in the Southwestern Utah Mineral Belt

    Science.gov (United States)

    Kiesel, T.; Enright, R.

    2012-12-01

    Data Fusion is a technique in remote sensing that combines separate geophysical data sets from different platforms to yield the maximum information of each set. Data fusion was employed on multiple sources of data for the purposes of investigating an area of the Utah Mineral Belt known as the San Francisco Mining District. In the past many mineral deposits were expressed in or on the immediate surface and therefore relatively easy to locate. More modern methods of investigation look for evidence beyond the visible spectrum to find patterns that predict the presence of deeply buried mineral deposits. The methods used in this study employed measurements of reflectivity or emissivity features in the infrared portion of the electromagnetic spectrum for different materials, elevation data collected from the Shuttle Radar Topography Mission and indirect measurement of the magnetic or mass properties of deposits. The measurements were collected by various spaceborne remote sensing instruments like Landsat TM, ASTER and Hyperion and ground-based statewide geophysical surveys. ASTER's shortwave infrared bands, that have been calibrated to surface reflectance using the atmospheric correction tool FLAASH, can be used to identify products of hydrothermal alteration like kaolinite, alunite, limonite and pyrophyllite using image spectroscopy. The thermal infrared bands once calibrated to emissivity can be used to differentiate between felsic, mafic and carbonate rock units for the purposes of lithologic mapping. To validate results from the extracted spectral profiles existing geological reports were used for ground truth data. Measurements of electromagnetic spectra can only reveal the composition of surface features. Gravimetric and magnetic information were utilized to reveal subsurface features. Using Bouguer anomaly data provided by the USGS an interpreted geological cross section can be created that indicates the shape of local igneous intrusions and the depth of

  1. Natural vibration dynamics of Rainbow Bridge, Utah

    Science.gov (United States)

    Moore, J. R.; Thorne, M. S.; Wood, J. R.; Doyle, S.; Stanfield, E.; White, B.

    2015-12-01

    We measured resonant frequencies of Rainbow Bridge, Utah, one of the world's longest rock spans, during a field experiment recording ambient vibration data. Measurements were generated over 20 hours on March 23-24, 2015 using two broadband three-component seismometers placed on the bridge, and compared to concurrent data from nearby reference stations 20 and 220 m distant. We identified seven distinct modes of vibration for Rainbow Bridge between 1 and 6 Hz. Data for each resonant frequency was then analyzed to determine the frequency-dependent polarization vector in an attempt to clarify mode shapes; e.g. the fundamental mode represents out-of-plane horizontal flexure. We compared experimental data to results of 3D numerical modal analysis, using a new photogrammetric model of Rainbow Bridge generated in this study imported into COMSOL Multiphysics. Results compare well with measured data for seven of the first eight modeled modes, matching vibrational frequencies and polarization orientations generally within 10%. Only predicted mode 6 was not explicitly apparent in our experimental data. Large site-to-reference spectral ratios resolved from experimental data indicate high amplification on the bridge as compared to nearby bedrock.

  2. Geophysical Framework Investigations Influencing Ground-Water Resources in East-Central Nevada and West-Central Utah

    Science.gov (United States)

    Watt, Janet T.; Ponce, David A.

    2007-01-01

    A geophysical investigation was undertaken as part of an effort to characterize the geologic framework influencing ground-water resources in east-central Nevada and west-central Utah. New gravity data were combined with existing aeromagnetic, drill-hole, and geologic data to help determine basin geometry, infer structural features, estimate depth to pre-Cenozoic basement rocks, and further constrain the horizontal extents of exposed and buried plutons. In addition, a three-dimensional (3D) geologic model was constructed to help illustrate the often complex geometries of individual basins and aid in assessing the connectivity of adjacent basins. In general, the thirteen major valleys within the study area have axes oriented north-south and frequently contain one or more sub-basins. These basins are often asymmetric and typically reach depths of 2 km. Analysis of gravity data helped delineate geophysical lineaments and accommodation zones. Structural complexities may further compartmentalize ground-water flow within basins and the influence of tectonics on basin sedimentation further complicates their hydrologic properties. The horizontal extent of exposed and, in particular, buried plutons was estimated over the entire study area. The location and subsurface extents of these plutons will be very important for regional water resource assessments, as these features may act as either barriers or pathways for groundwater flow. A previously identified basement gravity low strikes NW within the study area and occurs within a highly extended terrane between the Butte and Confusion synclinoria. Evidence from geophysical, geologic, and seismic reflection data suggests relatively lower density plutonic rocks may extend to moderate crustal depths and rocks of similar composition may be the source of the entire basement gravity anomaly.

  3. 75 FR 57055 - Endangered and Threatened Wildlife and Plants; Draft Revised Recovery Plan for Utah Prairie Dog

    Science.gov (United States)

    2010-09-17

    ... for Utah Prairie Dog AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of document... availability of a draft revised recovery plan for the Utah prairie dog (Cynomys parvidens). This species is.... The Utah prairie dog (Cynomys parvidens), found only in southwestern and central Utah, was listed...

  4. Uranium favorability of the San Rafael Swell area, east-central Utah

    Energy Technology Data Exchange (ETDEWEB)

    Mickle, D G; Jones, C A; Gallagher, G L; Young, P; Dubyk, W S

    1977-10-01

    The San Rafael Swell project area in east-central Utah is approximately 3,000 sq mi and includes the San Rafael Swell anticline and the northern part of the Waterpocket Fold monocline at Capitol Reef. Rocks in the area are predominantly sedimentary rocks of Pennsylvanian through Cretaceous age. Important deposits of uranium in the project area are restricted to two formations, the Chinle (Triassic) and Morrison (Jurassic) Formations. A third formation, the White Rim Sandstone (Permian), was also studied because of reported exploration activity. The White Rim Sandstone is considered generally unfavorable on the basis of lithologic characteristics, distance from a possible source of uranium, lack of apparent mineralization, and the scarcity of anomalies on gamma-ray logs or in rock, water, and stream-sediment samples. The lower Chinle from the Moss Back Member down to the base of the formation is favorable because it is a known producer. New areas for exploration are all subsurface. Both Salt Wash and Brushy Basin Members of the Morrison Formation are favorable. The Salt Wash Member is favorable because it is a known producer. The Brushy Basin Member is favorable as a low-grade resource.

  5. Assessment and use of drug information references in Utah pharmacies

    Directory of Open Access Journals (Sweden)

    Moorman KL

    2017-03-01

    Full Text Available Objective: To determine which drug references Utah pharmacists use most frequently. To determine which types of drug information questions are most commonly asked, and whether Utah pharmacists have access to adequate references to respond to these questions. Methods: A 19-question survey was created using Qualtrics, LLC (Provo, Utah software. An electronic survey link was sent to 1,431 pharmacists with a valid e-mail address listed in the Department of Professional Licensing database. Questions focused on available references in the participant’s pharmacy, how current the references are, and the participant’s use of the references. Surveys were analyzed for participants practicing in either community or hospital pharmacies in the state of Utah. Results: A total of 147 responses were included in the analysis. Approximately 44% of respondents practiced in the community, and 56% practiced in a hospital setting. The most commonly used references by Utah pharmacists are Micromedex, Lexicomp, UpToDate, Clinical Pharmacology, and Drug Facts & Comparisons. Pharmacists in the community frequently receive questions related to adverse drug reactions, drug interactions, and over-the-counter medications. Pharmacists in the hospital frequently receive questions relating to dosage and administration, drug interactions, and adverse drug reactions. About 89% of community pharmacists and 96% of hospital pharmacists feel available references are adequate to answer the questions they receive. Conclusions: Utah pharmacists generally use large reference suites to answer drug information questions. The majority of pharmacists consider the references available to them to be adequate to answer the questions they receive.

  6. Utah Science Vol. 48 No. 3, Fall 1987

    OpenAIRE

    1987-01-01

    114 GROWING OLD IN NORTHERN UTAH: AN EVALUATION OF SOCIAL SERVICES FOR THE ELDERLY Y. Kim. M. Wilson and S. Chiba How elderly residents of Cache and Box Elder counties view available services. 117 WILL IT PAY TO PROCESS VEGETABLES IN UTAH? D. L. Snyder. T. F. Glover. L. K. Bond. D. Bailey. J. C. Andersen. W. C. Lewis and H. H. Fullerton Economists say a multi-commodity processing facility might be economically Feasible, but it involves considerable economic risk. 124 EMPLOYMENT OPPORTUN...

  7. Monitoring Soil Erosion on a Burned Site in the Mojave-Great Basin Transition Zone: Final Report for the Jacob Fire Site

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Julianne [DRI; Etyemezian, Vic [DRI; Cablk, Mary E. [DRI; Shillito, Rose [DRI; Shafer, David [DOE Grand Junction, Colorado

    2013-06-01

    A historic return interval of 100 years for large fires in the U.S. southwestern deserts is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. The shortened return interval, which translates to an increase in fires, has implications for management of Soil Corrective Action Units (CAUs) and Corrective Action Sites (CASs) for which the Department of Energy, National Nuclear Security Administration Nevada Field Office has responsibility. A series of studies was initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn. The first of these studies was undertaken at the Jacob Fire site approximately 12 kilometers (7.5 miles) north of Hiko, Nevada. A lightning-caused fire burned approximately 200 hectares during August 6-8, 2008. The site is representative of a transition between Mojave and Great Basin desert ecoregions on the Nevada National Security Site (NNSS), where the largest number of Soil CAUs/CASs are located. The area that burned at the Jacob Fire site was primarily a Coleogyne ramosissima (blackbrush) and Ephedra nevadensis (Mormon tea) community, also an abundant shrub assemblage in the similar transition zone on the NNSS. This report summarizes three years of measurements after the fire. Seven measurement campaigns at the Jacob Fire site were completed. Measurements were made on burned ridge (upland) and drainage sites, and on burned and unburned sites beneath and between vegetation. A Portable In-Situ Wind Erosion Lab (PI-SWERL) was used to estimate emissions of suspended particles at different wind speeds. Context for these measurements was provided through a meteorological tower that was installed at the Jacob Fire site to obtain local, relevant environmental parameters. Filter samples, collected from the exhaust of the PI-SWERL during measurements, were analyzed for chemical composition. Runoff and water erosion were

  8. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future

  9. Monitoring Soil Erosion on a Burned Site in the Mojave-Great Basin Transition Zone: Final Report for the Jacob Fire Site

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Julianne [DRI; Etyemezian, Vic [DRI; Cablk, Mary E. [DRI; Shillito, Rose [DRI; Shafer, David [DOE Grand Junction, Colorado

    2013-06-01

    A historic return interval of 100 years for large fires in the U.S. southwestern deserts is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. The shortened return interval, which translates to an increase in fires, has implications for management of Soil Corrective Action Units (CAUs) and Corrective Action Sites (CASs) for which the Department of Energy, National Nuclear Security Administration Nevada Field Office has responsibility. A series of studies was initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn. The first of these studies was undertaken at the Jacob Fire site approximately 12 kilometers (7.5 miles) north of Hiko, Nevada. A lightning-caused fire burned approximately 200 hectares during August 6-8, 2008. The site is representative of a transition between Mojave and Great Basin desert ecoregions on the Nevada National Security Site (NNSS), where the largest number of Soil CAUs/CASs are located. The area that burned at the Jacob Fire site was primarily a Coleogyne ramosissima (blackbrush) and Ephedra nevadensis (Mormon tea) community, also an abundant shrub assemblage in the similar transition zone on the NNSS. This report summarizes three years of measurements after the fire. Seven measurement campaigns at the Jacob Fire site were completed. Measurements were made on burned ridge (upland) and drainage sites, and on burned and unburned sites beneath and between vegetation. A Portable In-Situ Wind Erosion Lab (PI-SWERL) was used to estimate emissions of suspended particles at different wind speeds. Context for these measurements was provided through a meteorological tower that was installed at the Jacob Fire site to obtain local, relevant environmental parameters. Filter samples, collected from the exhaust of the PI-SWERL during measurements, were analyzed for chemical composition. Runoff and water erosion were

  10. Analysis of Neogene deformation between Beaver, Utah and Barstow, California: Suggestions for altering the extensional paradigm

    Science.gov (United States)

    Anderson, R. Ernest; Beard, Sue; Mankinen, Edward A.; Hillhouse, John W.

    2013-01-01

    For more than two decades, the paradigm of large-magnitude (~250 km), northwest-directed (~N70°W) Neogene extensional lengthening between the Colorado Plateau and Sierra Nevada at the approximate latitude of Las Vegas has remained largely unchallenged, as has the notion that the strain integrates with coeval strains in adjacent regions and with plate-boundary strain. The paradigm depends on poorly constrained interconnectedness of extreme-case lengthening estimated at scattered localities within the region. Here we evaluate the soundness of the inferred strain interconnectedness over an area reaching 600 km southwest from Beaver, Utah, to Barstow, California, and conclude that lengthening is overestimated in most areas and, even if the estimates are valid, lengthening is not interconnected in a way that allows for published versions of province-wide summations.We summarize Neogene strike slip in 13 areas distributed from central Utah to Lake Mead. In general, left-sense shear and associated structures define a broad zone of translation approximately parallel to the eastern boundary of the Basin and Range against the Colorado Plateau, a zone we refer to as the Hingeline shear zone. Areas of steep-axis rotation (ranging to 2500 km2) record N-S shortening rather than unevenly distributed lengthening. In most cases, the rotational shortening and extension-parallel folds and thrusts are coupled to, or absorb, strike slip, thus providing valuable insight into how the discontinuous strike-slip faults are simply parts of a broad zone of continuous strain. The discontinuous nature of strike slip and the complex mixture of extensional, contractional, and steep-axis rotational structures in the Hingeline shear zone are similar to those in the Walker Lane belt in the west part of the Basin and Range, and, together, the two record southward displacement of the central and northern Basin and Range relative to the adjacent Colorado Plateau. Understanding this province

  11. 78 FR 2424 - Notice of Competitive Coal Lease Sale, Utah

    Science.gov (United States)

    2013-01-11

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Utah AGENCY: Bureau of Land Management, Interior. ACTION: Notice of competitive coal lease sale. SUMMARY: Notice is hereby given that the United... competitive sale by sealed bid, in accordance with the Federal regulations for competitive lease sale...

  12. 76 FR 63951 - Notice of Competitive Coal Lease Sale, Utah

    Science.gov (United States)

    2011-10-14

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Utah AGENCY: Bureau of Land Management, Interior. ACTION: Notice of competitive coal lease sale. SUMMARY: Notice is hereby given that that certain... competitive lease by sealed bid in accordance with the provisions of the Mineral Leasing Act of 1920,...

  13. Utah Public Library Service, 2001: An Annual Report.

    Science.gov (United States)

    Long, Sandi

    This annual report of Utah public library services presents data useful for local library planning. This information is presented in two sections: core performance measures and general tables. Statewide summary data and breakouts by the populations of the library jurisdictions are provided for the following core performance measures: (1) visits…

  14. Geology of Roosevelt Hot Springs KGRA, Beaver County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, D.L.; Sibbett, B.S.; McKinney, D.B.; Hulen, J.B.; Moore, J.N.; Samberg, S.M.

    1978-12-01

    The Roosevelt Hot Springs KGRA is located on the western margin on the Mineral Mountains in Beaver County, Utah. The bedrock geology of the area is presented. It is dominated by metamorphic and plutonic rocks of Precambrian age as well as felsic plutonic phases of the Tertiary Mineral Mountains Pluton. Rhyolite flows, domes, and pyroclastics reflect igneous activity between 0.8 and 0.5 million years ago. All lithologies present in the map area are described in detail with an emphasis on characteristics which will allow them to be distinguished in drill cuttings. The geothermal system at Roosevelt Hot Springs KGRA is structurally controlled with reservoir rocks demonstrating little primary permeability. North to north-northeast trending faults are the youngest structures in the area, and they control present fumarolic activity and recent hot spring activity which has deposited opaline and chalcedonic sinters. It is proposed here that the geothermal reservoirs are controlled primarily by intersections of the principal zones of faulting. Logs from Thermal Power Utah State 72-16, Getty Oil Utah State 52-21, and six shallow thermal gradient holes drilled by the University of Utah are presented in this report and have been utilized in the construction of geologic cross sections of the geothermal field.

  15. Lead Toxicity and Iron Deficiency in Utah Migrant Children.

    Science.gov (United States)

    Ratcliffe, Stephen D.; And Others

    1989-01-01

    Determines the frequency of presumptive iron deficiency and lead toxicity in 198 Utah migrant children, aged 9-72 months. There were no confirmed cases of lead toxicity. Thirteen percent of all children tested, and 30 percent of those aged 9-23 months, were iron deficient. Hematocrit determination is an insensitive screen for iron deficiency.…

  16. Prior Restraint of Utah High School Newspapers by Advisers.

    Science.gov (United States)

    Pulley, Cynthia Ford; Black, Jay

    Forty-seven high school newspaper advisers from Utah completed a questionnaire to determine their knowledge of First Amendment rights of student journalists, and to determine what variables may affect their publication decisions. Eight composite cases were developed from relevant First Amendment court decisions. Respondents were asked if they…

  17. Parental Attitudes Regarding School-Based Sexuality Education in Utah

    Science.gov (United States)

    Steadman, Mindy; Crookston, Benjamin; Page, Randy; Hall, Cougar

    2014-01-01

    Sexuality education programs can be broadly categorized as either risk-avoidance or risk-reduction approaches. Health educators in Utah public schools must teach a state mandated risk-avoidance curriculum which prohibits the advocacy or encouragement of contraception. Multiple national surveys indicate that parents prefer a risk-reduction approach…

  18. Tree-ring based reconstructions of interannual to decadal scale precipitation variability for northeastern Utah since 1226 A.D.

    Science.gov (United States)

    Gray, S.T.; Jackson, S.T.; Betancourt, J.L.

    2004-01-01

    Samples from 107 pin??on pines (Pinus edulis) at four sites were used to develop a proxy record of annual (June to June) precipitation spanning the 1226 to 2001 AD interval for the Uinta Basin Watershed of northeastern Utah. The reconstruction reveals significant precipitation variability at interannual to decadal scales. Single-year dry events before the instrumental period tended to be more severe than those after 1900. In general, decadal scale dry events were longer and more severe prior to 1900. In particular, dry events in the late 13th, 16th, and 18th Centuries surpass the magnitude and duration of droughts seen in the Uinta Basin after 1900. The last four decades of the 20th Century also represent one of the wettest periods in the reconstruction. The proxy record indicates that the instrumental record (approximately 1900 to the Present) underestimates the potential frequency and severity of severe, sustained droughts in this area, while over representing the prominence of wet episodes. In the longer record, the empirical probability of any decadal scale drought exceeding the duration of the 1954 through 1964 drought is 94 percent, while the probability for any wet event exceeding the duration of the 1965 through 1999 wet spell is only 1 percent. Hence, estimates of future water availability in the Uinta Basin and forecasts for exports to the Colorado River, based on the 1961 to 1990 and 1971 to 2000 "normal" periods, may be overly optimistic.

  19. A Needs Assessment of Marriage and Family Therapy Approved Supervision in Utah

    OpenAIRE

    2005-01-01

    This research presents data gathered through a needs assessment regarding approved supervision in Utah. A sample of ISO therapists in Utah gave descriptive facts about the current need for supervision in Utah as well as the number of therapists that are willing to provide supervision. Additionally, therapists that are not currently approved supervisors indicated whether or not they would be willing to become approved supervisors, what would make the designation more appealing, and what would ...

  20. A Profile of Professional Activities and Practice Patterns for Marriage and Family Therapists in Utah

    OpenAIRE

    1998-01-01

    This research project presents data on practitioner profiles and practice patterns for marriage and family therapists living in Utah . A sample of 77 clinical members and six associate members of the American Association for Marriage and ramily Therapy living in Utah gave descriptive facts on their demographics , training , years of experience , and specific information about their practice of marriage and family therapy. The findings indicate tha t marriage and family therapists in Utah are ...

  1. Updated streamflow reconstructions for the Upper Colorado River Basin

    Science.gov (United States)

    Woodhouse, C.A.; Gray, S.T.; Meko, D.M.

    2006-01-01

    Updated proxy reconstructions of water year (October-September) streamflow for four key gauges in the Upper Colorado River Basin were generated using an expanded tree ring network and longer calibration records than in previous efforts. Reconstructed gauges include the Green River at Green River, Utah; Colorado near Cisco, Utah; San Juan near Bluff, Utah; and Colorado at Lees Ferry, Arizona. The reconstructions explain 72-81% of the variance in the gauge records, and results are robust across several reconstruction approaches. Time series plots as well as results of cross-spectral analysis indicate strong spatial coherence in runoff variations across the subbasins. The Lees Ferry reconstruction suggests a higher long-term mean than previous reconstructions but strongly supports earlier findings that Colorado River allocations were based on one of the wettest periods in the past 5 centuries and that droughts more severe than any 20th to 21st century event occurred in the past. Copyright 2006 by the American Geophysical Union.

  2. Technical analysis of prospective photovoltaic systems in Utah.

    Energy Technology Data Exchange (ETDEWEB)

    Quiroz, Jimmy Edward; Cameron, Christopher P.

    2012-02-01

    This report explores the technical feasibility of prospective utility-scale photovoltaic system (PV) deployments in Utah. Sandia National Laboratories worked with Rocky Mountain Power (RMP), a division of PacifiCorp operating in Utah, to evaluate prospective 2-megawatt (MW) PV plants in different locations with respect to energy production and possible impact on the RMP system and customers. The study focused on 2-MW{sub AC} nameplate PV systems of different PV technologies and different tracking configurations. Technical feasibility was evaluated at three different potential locations in the RMP distribution system. An advanced distribution simulation tool was used to conduct detailed time-series analysis on each feeder and provide results on the impacts on voltage, demand, voltage regulation equipment operations, and flicker. Annual energy performance was estimated.

  3. Mechanical Mastication of Utah Juniper Encroaching Sagebrush Steppe Increases Inorganic Soil N

    Directory of Open Access Journals (Sweden)

    Kert R. Young

    2014-01-01

    Full Text Available Juniper (Juniperus spp. has encroached on millions of hectares of sagebrush (Artemisia spp. steppe. Juniper mechanical mastication increases cover of understory species but could increase resource availability and subsequently invasive plant species. We quantified the effects of juniper mastication on soil resource availability by comparing total C, total N, C : N ratio, Olsen extractable P, sulfate S, and pH using soil samples and inorganic N (NO3-+NH4+ using ion exchange membranes. We compared resource availability in paired masticated and untreated areas in three juniper-dominated sagebrush and bunchgrass ecosystems in the Utah portion of the Great Basin. Inorganic N was 4.7 times higher in masticated than in untreated areas across seasons (P<0.001. Within masticated areas, tree mounds of juniper leaf scales and twigs served as resource islands with 1.9 times higher inorganic N and total C, and 2.8 times higher total N than bare interspaces across seasons (P<0.01. Bare interspaces had 3.0–3.4 times higher inorganic N than interspaces covered with masticated trees during late-summer through winter (P<0.01. Soil fertility changes associated with mastication were not considered sufficient to favor establishment of annual over perennial grasses, and we expect both to increase in cover following juniper mastication.

  4. Reactive nitrogen partitioning and its relationship to winter ozone events in Utah

    Directory of Open Access Journals (Sweden)

    R. J. Wild

    2015-08-01

    Full Text Available High wintertime ozone levels have been observed in the Uintah Basin, Utah, a sparsely populated rural region with intensive oil and gas operations. The reactive nitrogen budget plays an important role in tropospheric ozone formation. Measurements were taken during three field campaigns in the winters of 2012, 2013, and 2014, which experienced varying climatic conditions. Average concentrations of ozone and total reactive nitrogen were observed to be 2.5 times higher in 2013 than 2012, with 2014 an intermediate year in most respects. However, photochemically active NOx(NO+NO2, remained remarkably similar all three years. Roughly half of the more oxidized forms of nitrogen were composed of nitric acid in 2013, with nighttime nitric acid formation through heterogeneous uptake of N2O5 contributing approximately 6 times more than daytime formation. The nighttime N2O5 lifetime between the high-ozone year 2013 and the low-ozone year 2012 is lower by a factor 2.6, and much of this is due to higher aerosol surface area in the high ozone year of 2013. A box-model simulation supports the importance of nighttime chemistry on the reactive nitrogen budget, showing a large sensitivity of NOx and ozone concentrations to nighttime processes.

  5. Utah Science Vol. 51 No. 1, Spring 1990

    OpenAIRE

    1990-01-01

    2 Families: Social Stability Amidst Cultural Diversity 5 Delegating Decisions in Marriages 6 Helping Strangers Become Neighbors: Mitigating the Effects of Rapid Change 10 Economic Clout of Retirees May Spur Growth in Utah 13 The High Cost of Divorce 14 Families Remain Crucible of Change 20 Child Care: Pressing Needs Demand Innovative Solutions 23 Research in Brief 31 Neither Husbands Nor Gadgets Lighten Household Chores 34 Single Parents: More Work, Less Housewor...

  6. Ringtail Distribution, Dermatoglyphics, and Diet in Zion National Park, Utah

    OpenAIRE

    2014-01-01

    Current scientific knowledge of the ringtail (Bassariscus astutus) is limited, thus impeding appropriate management decisions. Ringtails in Zion National Park, Utah, are rarely seen, but are involved in increasing occurrences of negative interactions with park visitors and employees such as food theft and denning in buildings, interactions which are harmful to both parties. To manage this conflict, an update to the general knowledge about the status of the population is required as the only p...

  7. Valuation of improved air quality in Utah County, USA

    Science.gov (United States)

    Pope, C. Arden; Miner, F. Dean

    1988-05-01

    A contingent valuation approach was used to estimate maximum willingness-to-pay for improved air quality in Utah County. Respondents demonstrated a high rate of concern over poor air quality and averaged a willingness-to-pay of 37 per month per household. Noniterative openended questions were used successfully. No information bias was observed but benchmark values did influence bids. Willingness-to-pay for improved air quality was large for both sexes and across all income groups, ages, and occupations.

  8. Montane wetland water chemistry, Uinta Mountains, Utah

    Science.gov (United States)

    Severson, K. S.; Matyjasik, M.; Ford, R. L.; Hernandez, M. W.; Welsh, S. B.; Summers, S.; Bartholomew, L. M.

    2009-12-01

    This study attempts to determine the relationship between surface and groundwater chemistry and wetland characteristics within the Reader Lakes watershed, Uinta Mountains. The dominant rock type in the study area is quartz sandstone of the Hades Pass formation, Unita Mountain Group (Middle Proterozoic). Minor amounts of interbedded arkose and illite-bearing shale are also present. Water chemistry data have been collected from more than one hundred locations during the 2008 and 2009 summer seasons. The Reader Creek watershed is approximately 9.8 km long and about 3.5 km wide in the central portion of the basin. Direct precipitation is the primary source of groundwater recharge and the area is typically covered by snow from November until May. Four distinct wetland complexes, designated as the upper, middle, lower and the sloping fen, constitute the major wetland environments in the study area. The chemistry of the melt water from the high-elevation snowfield is affected by weathering of incorporated atmospheric dust and surface rocks. Total dissolved solids in both years were between 7 and 9 mg/L. Major anions include HCO3 (averaging 4.0 mg/L), SO4 (1.3 mg/L), NO3 (0.9 mg/L), Cl (0.8 mg/L), F (0.07 mg/L), PO4 (0.03 mg/L), and Br(0.015 mg/L). Major cations include Na (1.1 mg/L), Ca (1.0 mg/L), K (0.28 mg/L), and Mg (0.15 mg/L). Groundwater concentrations in the lower meadow, as measured in piezomters, are distinctly different, with the following maximum concentrations of anions: HCO3 (36.7 mg/L), SO4 (5.0 mg/L), Cl (3.4 mg/L), NO3 (0.9 mg/L), PO4 (0.28 mg/L), F (0.23 mg/L), Br (0.12 mg/L), and cations: Ca (22 mg/L), Na (4.6 mg/L), Mg (3.4 mg/L), and K (1.8 mg/L)- with a maximum value of 83 mg/L for total dissolved solids. Waters in Reader Creek, the main trunk channel, are typically sodium-potassium and sodium -potassium bicarbonate, with some calcium-bicarbonate, mostly in the middle part of the watershed. Groundwater from springs is sodium-potassium in the upper

  9. Ground-water conditions in Utah, spring of 2003

    Science.gov (United States)

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2003-01-01

    This is the fortieth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2002. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  10. Ground-water conditions in Utah, spring of 2002

    Science.gov (United States)

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2002-01-01

    This is the thirty-ninth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2001. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  11. Skin and Colon Cancer Media Campaigns in Utah

    Directory of Open Access Journals (Sweden)

    Camille Broadwater

    2004-10-01

    Full Text Available The mission of the Utah Cancer Action Network is to reduce cancer incidence and mortality in Utah. Established in 2003, the network selected skin and colon cancers as the first priorities in its comprehensive plan. In its first year of operation, the network planned and implemented a cancer awareness campaign that was organized along two tracks: 1 marketing research, consisting of two telephone surveys, and 2 two advertising/awareness campaigns, one for colon cancer and one for skin cancer. The first telephone survey was conducted in January 2003 to obtain a baseline measurement of the Utah population’s knowledge, attitudes, and behaviors. The advertising campaigns were launched in April 2003, and the second telephone survey was conducted in May. In January 2003, 18% of survey respondents reported seeing or hearing skin cancer prevention or sun protection announcements; in May, this percentage increased to 76%. In January, 36% indicated they had seen, read, or heard colorectal cancer early detection announcements; in May, this percentage increased to 79%.

  12. Conceptual model of the Great Basin carbonate and alluvial aquifer system

    Science.gov (United States)

    Heilweil, Victor M.; Brooks, Lynette E.

    2011-01-01

    A conceptual model of the Great Basin carbonate and alluvial aquifer system (GBCAAS) was developed by the U.S. Geological Survey (USGS) for a regional assessment of groundwater availability as part of a national water census. The study area is an expansion of a previous USGS Regional Aquifer Systems Analysis (RASA) study conducted during the 1980s and 1990s of the carbonate-rock province of the Great Basin. The geographic extent of the study area is 110,000 mi2, predominantly in eastern Nevada and western Utah, and includes 165 hydrographic areas (HAs) and 17 regional groundwater flow systems.

  13. Evaluation of low-temperature geothermal potential in Utah and Goshen Valleys and adjacent areas, Utah. Part I. Gravity survey

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D.A.; Cook, K.L.

    1983-04-01

    During 1980 and 1981 a total of 569 new gravity stations were taken in Utah and Goshen Valleys and adjacent areas, Utah. The new stations were combined with 530 other gravity stations taken in previous surveys which resulted in a compilation of 1099 stations which were used in this study. The additional surveys were undertaken to assist in the evaluation of the area for the possible development of geothermal resources by providing an interpreted structural framework by delineating faults, structural trends, intrusions, thickness of valley fill, and increased density of host rock. The gravity data are presented as (1) a complete Bouguer gravity anomaly map with a 2 mgal contour interval on a scale of 1:100,000 and (2) five generally east-trending gravity profiles. A geologic interpretation of the study area was made from the gravity map and from the interpretive geologic cross sections which were modeled along the gravity profiles.

  14. I. Cenozoic geology of Iran: An integrated study of extensional tectonics and related volcanism. II. Ediacaran stratigraphy of the North American Cordillera: New observations from eastern California and northern Utah

    Science.gov (United States)

    Verdel, Charles

    2009-12-01

    I. The late Oligocene to Miocene collision of Arabia and Eurasia was preceded by ~175 My of subduction of Neotethyan oceanic crust. Associated magmatic activity includes late Triassic(?) to Jurassic plutons in the Sanandaj-Sirjan zone of southern Iran, limited Cretaceous magmatism in the Alborz Mountains of northern Iran, and widespread Eocene volcanism across central Iran. Metamorphic core complexes of Eocene age have recently been recognized in widely separated parts of Iran, suggesting that Tertiary volcanism was related to extension. Geochemical data indicate that Eocene volcanism was typical of continental arcs and was followed by less voluminous Oligocene basaltic volcanism of the type often associated with back-arc basins. This set of observations suggests that mid-Mesozoic plutons in southern Iran are the remnants of an original volcanic arc that was only weakly developed because of slow subduction rate. Magmatic activity largely ceased in southern and central Iran during the Cretaceous and shifted to the north, suggesting a period of flat slab subduction. Subsequent slab-rollback during the Eocene extended the overriding plate, forming metamorphic core complexes and inducing pressure-release melting of partially hydrated lithospheric mantle and upwelling of asthenosphere. II. The Ediacaran Period spans from the base of cap carbonates overlying glacial deposits of the Marinoan "Snowball Earth" event to the Precambrian-Cambrian boundary, ~635 to 542 Ma. Sediments deposited during the rifting of southwest Laurentia, which are now exposed in a relatively narrow belt in the western US, are one of the best records on earth of the geological, geochemical, and geobiological events that occurred during this period. Evidence for one of the most significant of these, the final oxygenation of the oceans, is found within the upper Johnnie Formation in the southern Great Basin. C isotope data from thick, basinal facies of the Johnnie Fm. in the Panamint Range provide a

  15. 75 FR 52272 - Endangered and Threatened Wildlife and Plants; Removal of the Utah (Desert) Valvata Snail From...

    Science.gov (United States)

    2010-08-25

    ... Wildlife and Plants; Removal of the Utah (Desert) Valvata Snail From the Federal List of Endangered and... (Service), are removing the Utah (desert) valvata snail (Valvata utahensis) from the Federal List of... commercial data, we determined that the Utah valvata snail is more widespread and occurs in a greater...

  16. Implication of Agathic Acid from Utah Juniper Bark as an Abortifacient Compound in Cattle.

    Science.gov (United States)

    Freshly ground Utah juniper (Juniperus osteosperma (Torr.) Little) bark was given via gavage at a dosage of 2.3 kg/cow twice daily to three pregnant cows starting on day 255 of gestation. All three cows aborted the calves after four, five and six days of treatment. A fourth cow was dosed Utah juni...

  17. Utah Public Education Funding: The Fiscal Impact of School Choice. School Choice Issues in the State

    Science.gov (United States)

    Aud, Susan

    2007-01-01

    This study examines Utah's funding system for public education and provides an analysis of the fiscal impact of allowing parents to use a portion of their child's state education funding to attend a school of their choice, public or private. Like many states, Utah is facing pressure to improve its system of public education funding. The state's…

  18. 76 FR 77223 - PacifiCorp v. Utah Associated Municipal Power Systems; Notice of Complaint

    Science.gov (United States)

    2011-12-12

    ... Energy Regulatory Commission PacifiCorp v. Utah Associated Municipal Power Systems; Notice of Complaint Take notice that on December 2, 2011, pursuant to sections 206 and 306 of the Federal Power Act (FPA... Utah Associated Municipal Power Systems (Respondent) has failed to comply with the terms and...

  19. 76 FR 69673 - Tart Cherries Grown in Michigan, New York, Pennsylvania, Oregon, Utah, Washington, and Wisconsin...

    Science.gov (United States)

    2011-11-09

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 930 Tart Cherries Grown in Michigan, New... tart cherries grown in Michigan, New York, Pennsylvania, Oregon, Utah, Washington, and Wisconsin. These... handling of tart cherries grown in Michigan, New York, Pennsylvania, Oregon, Utah, Washington,...

  20. 76 FR 7845 - Public Water System Supervision Program Revision for the State of Utah

    Science.gov (United States)

    2011-02-11

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Public Water System Supervision Program Revision for the State of Utah AGENCY: Environmental... the State of Utah has revised its Public Water System Supervision (PWSS) Program by adopting...

  1. 76 FR 9770 - Utah Board of Water Resources Notice of Successive Preliminary Permit Application Accepted for...

    Science.gov (United States)

    2011-02-22

    ... Energy Regulatory Commission Utah Board of Water Resources Notice of Successive Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To Intervene, and Competing Applications On February 1, 2011, the Utah Board of Water Resources filed an application for a successive...

  2. Knowledge Assessment of Food Safety Managers in Utah and Its Implications on the Exam and Instruction

    Science.gov (United States)

    Nummer, Brian A.; Guy, Stanley M.; Bentley, Joanne P. H.

    2010-01-01

    Food Safety Manager's Certification is offered through a state-local Extension partnership in Utah using an online course management system. Exams and course materials were created by an Extension Specialist at Utah State Univ. Extension Agents provide exam and curriculum facilitation in each county. This form of distance education enables access…

  3. 78 FR 70960 - Utah Resource Advisory Council Meeting/Conference Call

    Science.gov (United States)

    2013-11-27

    ... Bureau of Land Management Utah Resource Advisory Council Meeting/Conference Call AGENCY: Bureau of Land Management, Interior. ACTION: Notice of Meeting/Conference Call. SUMMARY: In accordance with the Federal Land... host a meeting/conference call. DATES: The BLM-Utah RAC will host a meeting/conference call on...

  4. 78 FR 23290 - Notice of Utah's Resource Advisory Council Conference Call Meeting

    Science.gov (United States)

    2013-04-18

    ... Bureau of Land Management Notice of Utah's Resource Advisory Council Conference Call Meeting AGENCY: Bureau of Land Management, Interior. ACTION: Notice of Conference Call Meeting. ] SUMMARY: In accordance... Land Management's (BLM) Utah Resource Advisory Council (RAC) will host a conference call meeting....

  5. 76 FR 72969 - Call for Nominations for the Utah Resource Advisory Council

    Science.gov (United States)

    2011-11-28

    ... Bureau of Land Management Call for Nominations for the Utah Resource Advisory Council AGENCY: Bureau of... for the deaf (TDD) may call the Federal Information Relay Service (FIRS) at 1-(800) 877-8339 to... Utah RAC is hosting a call for nominations for a position in category three (description addressed...

  6. 78 FR 2430 - Notice of Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT

    Science.gov (United States)

    2013-01-11

    ... National Park Service Notice of Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT... City, UT 84108, telephone (801) 581-3876. SUPPLEMENTARY INFORMATION: Notice is here given in accordance... Utah counties, UT. This notice is published as part of the National Park Service's...

  7. The extraction of bitumen from western oil sands: Volume 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.

  8. The extraction of bitumen from western oil sands: Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains an executive summary and reports for five of these projects. 137 figs., 49 tabs.

  9. Correlation of basinal carbonate cycles to nearshore parasequences in the late Cretaceous Greenhorn seaway, Western Interior USA

    Science.gov (United States)

    Elder, W.P.; Gustason, E.R.; Sageman, B.B.

    1994-01-01

    In the central basin in Colorado and Kansas, these sedimentary cycles are represented by limestone-shale and marlstone-shale couplets ~0.5-1.0m in thickness. More calcareous parts of these couplets may be correlated westward into condensed, fossiliferous concretion and shell beds in proximal offshore lithofacies of Arizona and Utah. These concretion and shell beds are physically traceable farther landward (westward) into bioturbated, fossil-rich, transgressive lag deposits that bound 10-20m thick coarsening-upward progradational strand-plain deposits (parasequences) in southwestern Utah. We consider Milankovitch-style orbital forcing of climate and tectonically induced fluctuations in rates of foredeep basin subsidence as possible forcing mechanisms for these basinwide events. -from Authors

  10. POROSITY/PERMEABILITY CROSS-PLOTS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey Jr; David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  11. CROSS SECTIONS AND FIELD MAPS: CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey Jr; Craig D. Morgan; Kevin McClure; David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  12. GEOPHYSICAL WELL LOG/CORE DESCRIPTIONS, CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey Jr; David E. Eby; Laura L. Wray

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  13. Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Resources International

    2010-01-31

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the

  14. Drug Poisoning Deaths according to Ethnicity in Utah

    Directory of Open Access Journals (Sweden)

    Ray M. Merrill

    2013-01-01

    Full Text Available This study characterizes drug-related deaths according to ethnicity in Utah during 2005–2010, based on data from the Utah Violent Death Reporting System (UTVDRS. Hispanics made up 12.1% (12.5% male and 11.7% female of deaths. The most frequently identified drugs among decedents were opiates, then illicit drugs, benzodiazepines, over-the-counter medication, and antidepressants. Death rates for each drug were significantly greater in non-Hispanics than Hispanics. Most decedents used a combination of drugs. For each combination, rates were significantly greater for non-Hispanics than Hispanics, with an exception for opiates and illicit drugs combined, where there was no significant difference. Approximately 79% of non-Hispanics and 65% of Hispanics had one or more of the selected problems (e.g., mental, physical, or crisis related. Rates for each combination of problems were significantly greater in non-Hispanics, with the exception of crisis. Hispanics were less affected by the rise in prescription drug abuse. Hispanic decedents had a greater proportion of illegal drugs, consistent with it being more difficult to obtain prescription drugs. Hispanic decedents were less likely to have physical and mental health problems, which may be related to a smaller chance of diagnosis of such problems through the healthcare system.

  15. Hydrosalinity studies of the Virgin River, Dixie Hot Springs, and Littlefield Springs, Utah, Arizona, and Nevada

    Science.gov (United States)

    Gerner, Steven J.; Thiros, Susan A.; Gerner, Steven J.; Thiros, Susan A.

    2014-01-01

    The Virgin River contributes a substantial amount of dissolved solids (salt) to the Colorado River at Lake Mead in the lower Colorado River Basin. Degradation of Colorado River water by the addition of dissolved solids from the Virgin River affects the suitability of the water for municipal, industrial, and agricultural use within the basin. Dixie Hot Springs in Utah are a major localized source of dissolved solids discharging to the Virgin River. The average measured discharge from Dixie Hot Springs during 2009–10 was 11.0 cubic feet per second (ft3/s), and the average dissolved-solids concentration was 9,220 milligrams per liter (mg/L). The average dissolved-solids load—a measurement that describes the mass of salt that is transported per unit of time—from Dixie Hot Springs during this period was 96,200 tons per year (ton/yr). Annual dissolved-solids loads were estimated at 13 monitoring sites in the Virgin River Basin from streamflow data and discrete measurements of dissolved-solids concentrations and (or) specific conductance. Eight of the sites had the data needed to estimate annual dissolved-solids loads for water years (WYs) 1999 through 2010. During 1999–2010, the smallest dissolved-solids loads in the Virgin River were upstream of Dixie Hot Springs (59,900 ton/yr, on average) and the largest loads were downstream of Littlefield Springs (298,200 ton/yr, on average). Annual dissolved-solids loads were smallest during 2002–03, which was a period of below normal precipitation. Annual dissolved-solids loads were largest during 2005—a year that included a winter rain storm that resulted in flooding throughout much of the Virgin River Basin. An average seepage loss of 26.7 ft3/s was calculated from analysis of monthly average streamflow from July 1998 to September 2010 in the Virgin River for the reach that extends from just upstream of the Utah/Arizona State line to just above the Virgin River Gorge Narrows. Seepage losses from three river reaches

  16. New horned dinosaurs from Utah provide evidence for intracontinental dinosaur endemism.

    Directory of Open Access Journals (Sweden)

    Scott D Sampson

    Full Text Available BACKGROUND: During much of the Late Cretaceous, a shallow, epeiric sea divided North America into eastern and western landmasses. The western landmass, known as Laramidia, although diminutive in size, witnessed a major evolutionary radiation of dinosaurs. Other than hadrosaurs (duck-billed dinosaurs, the most common dinosaurs were ceratopsids (large-bodied horned dinosaurs, currently known only from Laramidia and Asia. Remarkably, previous studies have postulated the occurrence of latitudinally arrayed dinosaur "provinces," or "biomes," on Laramidia. Yet this hypothesis has been challenged on multiple fronts and has remained poorly tested. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe two new, co-occurring ceratopsids from the Upper Cretaceous Kaiparowits Formation of Utah that provide the strongest support to date for the dinosaur provincialism hypothesis. Both pertain to the clade of ceratopsids known as Chasmosaurinae, dramatically increasing representation of this group from the southern portion of the Western Interior Basin of North America. Utahceratops gettyi gen. et sp. nov.-characterized by short, rounded, laterally projecting supraorbital horncores and an elongate frill with a deep median embayment-is recovered as the sister taxon to Pentaceratops sternbergii from the late Campanian of New Mexico. Kosmoceratops richardsoni gen. et sp. nov.-characterized by elongate, laterally projecting supraorbital horncores and a short, broad frill adorned with ten well developed hooks-has the most ornate skull of any known dinosaur and is closely allied to Chasmosaurus irvinensis from the late Campanian of Alberta. CONCLUSIONS/SIGNIFICANCE: Considered in unison, the phylogenetic, stratigraphic, and biogeographic evidence documents distinct, co-occurring chasmosaurine taxa north and south on the diminutive landmass of Laramidia. The famous Triceratops and all other, more nested chasmosaurines are postulated as descendants of forms previously

  17. Thermo Hot Springs: MT and Gravity observations of a producing geothermal field in Utah, USA

    Science.gov (United States)

    Hardwick, C.; Chapman, D. S.; Gettings, P.

    2012-12-01

    Thermo Hot Springs, an existing 10 MW geothermal resource in southern Utah, is poorly understood with little constraint on subsurface extent and capacity. In an effort to expand geothermal production, the subsurface extent of the system is being explored by gravity and magnetotelluric (MT) surveys. Since summer of 2010 we have added 108 gravity stations and 90 MT stations in the study area. Complete Bouguer anomaly shows a prominent north-south regional trend of 10 to 15 mGal amplitude which is interpreted as a large Basin-and-Range normal fault. Northeast of the hot springs there is an east-west trending gravity low of 4 mGal amplitude which is interpreted as a fault with down throw to the north. These two trends intersect adjacent to the hot spring, and are interpreted to be the structural control of the fluid flow. Preliminary results from 2-dimensional inversion models of gravity and MT profiles provide depth-to-basement values as shallow as 200 m near the hot spring and as deep as 2 km in the southwest of the study area. We believe that the low resistivities observed in the southwest indicate the existence of hot fluids and/or clay rich sediments at a thickness of more than 1.5 km overlying hot, saturated basement rock. A deep, stratigraphically hosted geothermal system could be present in the southwest and may be connected to the hot springs through a north trending, deeply penetrating fracture zone. With the addition of regional borehole data, thermal gradient wells and water chemistry we aim to constrain the extent of the geothermal system, identify its source and quantify its total production potential.

  18. Practitioner profiles and practice patterns for marriage and family therapists in Utah.

    Science.gov (United States)

    Nelson, T S; Palmer, T R

    2001-07-01

    This report presents the results of a survey of practitioner profiles and practice patterns for marriage and family therapists (MFTs) in Utah. A sample of 77 clinical members of the Utah Association for Marriage and Family Therapy provided descriptive information on their demographics, training, years of experience, and specific information about their practice of MFT. The findings indicate that clinical members of the American Association for Marriage and Family Therapy in Utah are a mostly male, white, and highly educated group of practitioners who hold primary licensure in MFT and identify themselves primarily as MFTs. Similarities and differences with practice patterns research in Minnesota and 15 other states are discussed.

  19. Increased Levels of Harvest and Habitat Law Enforcement and Public Awareness for Anadromous Salmonids and Resident Fish in the Columbia River Basin -- Demonstration Period, 1992--1994, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    NeSmith, Frank (Idaho Department of Fish and Game, Boise, ID); Long, Mack (Montana Department of Fish, Wildlife and Paks, Kalispell, MT); Matthews, Dayne (Washington Department of Fish and Wildlife, Olympia, WA)

    1995-06-01

    This report was funded by the Bonneville Power Administration (BPA), US Department of Energy, as part of BPA`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. Illegal harvest and violation of habitat protection regulations are factors affecting the survival of many native species of anadromous and resident fish in the Columbia Basin.

  20. Proceedings from a Workshop on Ecological Carrying Capacity of Salmonids in the Columbia River Basin : Measure 7.1A of the Northwest Power Planning Council`s 1994 Fish and Wildlife Program : Report 3 of 4, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Neitzel, D.A.; Mavros, William V.

    1996-05-01

    This report contains the proceedings of a workshop held during 1995 in Portland, Oregon. The objective of the workshop was to assemble a group of experts that could help us define carrying capacity for Columbia River Basin salmonids. The workshop was one activity designed to answer the questions asked in Measure 7.1A of the Council`s Fish and Wildlife Program. Based, in part, on the information we learned during the workshop we concluded that the approach inherent in 7.1A will not increase understanding of ecology, carrying capacity, or limiting factors that influence salmon under current conditions. Measure 7.1A requires a definition of carrying capacity and a list of determinants (limiting factors) of capacity. The implication or inference then follows that by asking what we know and do not know about the determinants will lead to research that increases our understanding of what is limiting salmon survival. It is then assumed that research results will point to management actions that can remove or repair the limiting factors. Most ecologists and fisheries scientists that have studied carrying capacity clearly conclude that this approach is an oversimplification of complex ecological processes. To pursue the capacity parameter, that is, a single number or set of numbers that quantify how many salmon the basin or any part of the basin can support, is meaningless by itself and will not provide useful information.

  1. Paleomagnetism and environmental magnetism of GLAD800 sediment cores from Bear Lake, Utah and Idaho

    Science.gov (United States)

    Heil, C.W.; King, J.W.; Rosenbaum, J.G.; Reynolds, R.L.; Colman, Steven M.

    2009-01-01

    A ???220,000-year record recovered in a 120-m-long sediment core from Bear Lake, Utah and Idaho, provides an opportunity to reconstruct climate change in the Great Basin and compare it with global climate records. Paleomagnetic data exhibit a geomagnetic feature that possibly occurred during the Laschamp excursion (ca. 40 ka). Although the feature does not exhibit excursional behavior (???40?? departure from the expected value), it might provide an additional age constraint for the sequence. Temporal changes in salinity, which are likely related to changes in freshwater input (mainly through the Bear River) or evaporation, are indicated by variations in mineral magnetic properties. These changes are represented by intervals with preserved detrital Fe-oxide minerals and with varying degrees of diagenetic alteration, including sulfidization. On the basis of these changes, the Bear Lake sequence is divided into seven mineral magnetic zones. The differing magnetic mineralogies among these zones reflect changes in deposition, preservation, and formation of magnetic phases related to factors such as lake level, river input, and water chemistry. The occurrence of greigite and pyrite in the lake sediments corresponds to periods of higher salinity. Pyrite is most abundant in intervals of highest salinity, suggesting that the extent of sulfidization is limited by the availability of SO42-. During MIS 2 (zone II), Bear Lake transgressed to capture the Bear River, resulting in deposition of glacially derived hematite-rich detritus from the Uinta Mountains. Millennial-scale variations in the hematite content of Bear Lake sediments during the last glacial maximum (zone II) resemble Dansgaard-Oeschger (D-O) oscillations and Heinrich events (within dating uncertainties), suggesting that the influence of millennial-scale climate oscillations can extend beyond the North Atlantic and influence climate of the Great Basin. The magnetic mineralogy of zones IV-VII (MIS 5, 6, and 7

  2. 76 FR 51462 - Notice of Final Federal Agency Actions on Proposed Highway in Utah

    Science.gov (United States)

    2011-08-18

    ... Midvalley Highway Project, To Address Traffic Congestion on UT-36 and at the I-80 Lake Point interchange... anticipated congestion on SR-36, and reduce anticipated congestion at the Lake Point interchange with...

  3. Final Environmental Assessment: Proposed Composite Aircraft Inspection Facilities, Hill Air Force Base, Utah

    Science.gov (United States)

    2008-10-02

    Section 1251 et seq. • Industrial pretreatment permit number 110 issued by the North Davis Sewer District (NDSD), dated November 1, 2007, and...consisting of water, electricity, natural gas, steam lines, sanitary sewer, and storm sewer. Discussions related to preventing soil erosion...construed as being of interest to them. • Occupational Safety and Health (physical and chemical hazards, radiation, explosives , bird and wildlife hazards

  4. Final Environmental Assessment: Proposed Fire Crash Rescue Station, Hill Air Force Base, Utah

    Science.gov (United States)

    2008-10-02

    CWA), 33 USC Section 1251 et seq. • Industrial pretreatment permit number 110 issued by the North Davis Sewer District (NDSD), dated November 1, 2007...foundations; and buried utilities consisting of water, electricity, natural gas, steam lines, sanitary sewer, and storm sewer. Discussions related to...interest to them. • Occupational Safety and Health (physical and chemical hazards, radiation, explosives , bird and wildlife hazards to aircraft

  5. NWHL final report: 1985-86 Lead Poisoning Monitoring Program: Fish Springs National Wildlife Refuge, Utah

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document discusses results from necropies performed on waterfowl at Fish Springs National Wildlife Refuge. Livers from (3%) of 96 dabblers shot by hunters on...

  6. 76 FR 61476 - Notice of Final Federal Agency Actions on Proposed Highway in Utah

    Science.gov (United States)

    2011-10-04

    ... Protection Policy Act (FPPA) [7 U.S.C. 4201-4209]. 7. Executive Orders: E.O. 11990, Protection of Wetlands; E... Minority Populations and Low Income Populations; E.O. 13175, Consultation and Coordination with...

  7. 76 FR 77587 - Notice of Final Federal Agency Actions on Proposed Highway in Utah

    Science.gov (United States)

    2011-12-13

    ...)]; Farmland Protection Policy Act (FPPA) [7 U.S.C. 4201-4209]; 7. Executive Orders: E.O. 11990, Protection of... in Minority Populations and Low Income Populations; E.O. 13175, Consultation and Coordination...

  8. 77 FR 52108 - Notice of Final Federal Agency Actions on Proposed Highway in Utah

    Science.gov (United States)

    2012-08-28

    ... Economic: Civil Rights Act of 1964 [42 U.S.C. 2000(d)-2000(d)(1)]; Farmland Protection Policy Act (FPPA) [7... Management; E.O. 12898, Federal Actions to Address Environmental Justice in Minority Populations and...

  9. 77 FR 17564 - Notice of Final Federal Agency Actions on Proposed Highway in Utah

    Science.gov (United States)

    2012-03-26

    ... the National Historic Preservation Act of 1966, as amended ; 5. Social and Economic: Civil Rights Act... Management; E.O. 12898, Federal Actions to Address Environmental Justice in Minority Populations and...

  10. Evaluation of CHESS: Utah asthma study, 1971-1972. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, A.R.; Tolley, H.D.; Simpson, J.C.; Namekata, T.; Woods, J.S.

    1983-02-01

    This report is divided into five main sections. The first reviews the use of asthma as a health indicator in environmental epidemiology, including a review of selected asthma panel studies. The next two sections consider the impact of the data quality: the limitations and characteristics of the aerometric data and of the panelists' data, respectively. The last two sections contain statistical analyses: analyses correcting for variation among panelists and analyses based on person-days.

  11. Final Environmental Impact Statement for Proposed White Elk Military Operations Area, Hill Air Force Base, Utah

    Science.gov (United States)

    2011-04-01

    domestic livestock (cow, sheep and lambs, horses and ponies ). In addition, the rougher, more densely vegetated regions in the higher elevations also...public buildings, railroad depots, mining districts, ditches, cabins, schoolhouses, and a Pony Express station. Additionally, the State Register was...stage or Pony Express routes, or railroad stations (Table 3.7-4). Most of the ghost towns have not been subjected to professional archaeological and/or

  12. 78 FR 49400 - Approval and Promulgation of Air Quality Implementation Plans; Utah; Revisions to Utah...

    Science.gov (United States)

    2013-08-14

    ..., relevant literature and studies indicate that there is not an accepted correlation between opacity and... practical matter. Finally, relevant literature and studies suggest that adjusting diesel vehicles to reduce...-repair mass-emission transient testing on the contemporary fleet of diesel vehicles needed to...

  13. Space Radar Image of Salt Lake City, Utah

    Science.gov (United States)

    1994-01-01

    This radar image of Salt Lake City, Utah, illustrates the different land use patterns that are present in the Utah Valley. Salt Lake City lies between the shores of the Great Salt Lake (the dark area on the left side of the image) and the Wasatch Front Range (the mountains in the upper half of the image). The Salt Lake City area is of great interest to urban planners because of the combination of lake, valley and alpine environments that coexist in the region. Much of the southern shore of the Great Salt Lake is a waterfowl management area. The green grid pattern in the right center of the image is Salt Lake City and its surrounding communities. The Salt Lake City airport is visible as the brown rectangle near the center of the image. Interstate Highway 15 runs from the middle right edge to the upper left of the image. The bright white patch east of Interstate 15 is the downtown area, including Temple Square and the state capitol. The University of Utah campus is the yellowish area that lies at the base of the mountains, east of Temple Square. The large reservoir in the lower left center is a mine tailings pond. The semi-circular feature in the mountains at the bottom edge of the image is the Kennecott Copper Mine. The area shown is 60 kilometers by 40 kilometers (37 miles by 25 miles) and is centered at 40.6 degrees north latitude, 112.0 degrees west longitude. North is toward the upper left. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994. The colors in this image represent the following radar channels and polarizations: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  14. Bedrock aquifers of eastern San Juan County, Utah

    Science.gov (United States)

    Avery, Charles

    1986-01-01

    This study is one of a series of studies appraising the waterbearing properties of the Navajo Sandstone and associated formations in southern Utah.  The study area is about 4,600 square miles, extending from the Utah-Arizona State line northward to the San Juan-Grand County line and westward from the Utah-Colorado State line to the longitude of about 109°50'.Some of the water-yielding formations are grouped into aquifer systems. The C aquifer is comprised of the DeChelly Sandstone Member of the Cutler Formation.  The P aquifer is comprised of the Cedar Mesa Member of the Cutler Formation and the undifferentiated Cutler Formation. The N aquifer is comprised of the sedimentary section that includes the Wingate Sandstone, Kayenta Formation, Navajo Sandstone, Carmel Formation, and Entrada sandstone.  The M aquifer is comprised of the Bluff Sandstone Member and other sandstone units of the Morrison Formation.  The D aquifer is comprised of the Burro Canyon Formation and Dakota Sandstone.  Discharge from the ground-water reservoir to the San Juan River between gaging stations at Four Corners and Mexican Hat is about 66 cubic feet per second.The N aquifer is the main aquifer in the study area. Recharge by infiltration of precipitation is estimated to be 25,000 acre-feet per year.  A major ground-water divide exists under the broad area east of Monticello.  The thickness of the N aquifer, where the sedimentary section is fully preserved and saturated, generally is 750 to 1,250 feet.   Hydraulic conductivity values obtained from aquifer tests range from 0.02 to 0.34 foot per day.  The total volume of water in transient storage is about 11 million acre-feet. Well discharge somewhat exceeded 2,340 acre-feet during 1981.  Discharge to the San Juan River from the N aquifer is estimated to be 6.9 cubic feet per second. Water quality ranges from a calcium bicarbonate to sodium chloride type water

  15. Limitations On Canada Goose Production at Fish springs National Wildlife Refuge, Utah

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — We studied the western Canada goose (B. c. moffitti) population at Fish Springs National Wildlife Refuge in western Utah from March to July in 1996 and 1997 to...

  16. Institutional support for the Utah Consortium for Energy Research and Education. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The Utah Consortium for Energy Research and Education is made up of three colleges and universities in Utah. The scope of the Consortium plan is the marshalling of the academic research resources, as well as the appropriate non-academic resources within Utah to pursue, as appropriate, energy-related research activities. The heart of this effort has been the institutional contract between DOE and the University of Utah, acting as fiscal agent for the Consortium. Sixteen programs are currently being funded, but only ten of the projects are described in this report. Three projects are on fission/fusion; three on environment and safety; four on fossil energy; three on basic energy sciences; one each on conservation, geothermal, and solar.

  17. Spread and genetic relatedness of native vs. introduced Phragmites australis in Utah wetlands

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Utah is experiencing a dramatic invasion of an aggressive European subspecies of the common reed (Phragmites australis subsp. australis). This invasion is...

  18. Muskrat population estimates for Fish Springs NWR, Utah : An assessment of techniques

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Completion report for a study of muskrat population dynamics and vegetation utilization, being led by Utah State University for a doctorate dissertation. The study...

  19. Irrigation Wells from the Utah Division of Water Rights Point of Diversion Database

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data are derived from a point shapefile created nightly from data in the Utah Division of Water Rights Database. The source data were acquired on October 26,...

  20. Utah State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Utah State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Utah. The profile is the result of a survey of NRC licensees in Utah. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Utah.

  1. Supplementary report on Pony Express-Overland Stage sites in western Utah

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The following report is a description by site of Pony Express and Overland Stage stations between Rush Valley and Deep Creek, Utah. Descriptions, including...

  2. 14,097 acre Utah withdrawl approved for Fish Springs National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a news release from the Department of the Interior concerning the approval to purchase 14,097 acres of public lands in Utah for the Fish Springs National...

  3. A survey of locally endemic mollusca of Utah, Colorado, Wyoming, Montana, North Dakota, and South Dakota

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is a culmination of field, laboratory, and bibliographic work begun in August, 1974. The project as originally contracted called for a survey of Utah and...

  4. Tiger Team Assessment of the Naval Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    OpenAIRE

    1992-01-01

    This report documents the Tiger Team Assessment of the Naval Petroleum and Oil Shale Reserves in Colordao, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 (NPR-3) located near Casper, Wyoming; Naval Oil Shale Reserve Number 1 (NOSR-1) and Naval Oil Shale Reserve Number 3 (NOSR-3) located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 (NOSR-2) located near Vernal, Utah, which was not examined as part of this assessment.

  5. Observational and Synoptic Analyses of the Winter Precipitation Regime Change over Utah

    OpenAIRE

    Gillies, Robert R.; Wang, Shih-Yu; Booth, Marty R.

    2012-01-01

    Previous studies have indicated a widespread decline in snowpack over Utah accompanied by a decline in the snow–precipitation ratio while anecdotal evidence claims have been put forward that measured changes in Utah’s snowpack are spurious and do not reflect actual change. Using two distinct lines of investigation, this paper further analyzes the winter precipitation regime in the state of Utah. First, by means of observation-based, gridded daily temperature, precipitation, and remotely sense...

  6. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    Science.gov (United States)

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake

  7. Estimating pinyon and juniper cover across Utah using NAIP imagery

    Directory of Open Access Journals (Sweden)

    Darrell B. Roundy

    2016-11-01

    Full Text Available Expansion of Pinus L. (pinyon and Juniperus L. (juniper (P-J trees into sagebrush (Artemisia L. steppe communities can lead to negative effects on hydrology, loss of wildlife habitat, and a decrease in desirable understory vegetation. Tree reduction treatments are often implemented to mitigate these negative effects. In order to prioritize and effectively plan these treatments, rapid, accurate, and inexpensive methods are needed to estimate tree canopy cover at the landscape scale. We used object based image analysis (OBIA software (Feature AnalystTM for ArcMap 10.1®, ENVI Feature Extraction®, and Trimble eCognition Developer 8.2® to extract tree canopy cover using NAIP (National Agricultural Imagery Program imagery. We then compared our extractions with ground measured tree canopy cover (crown diameter and line point intercept on 309 plots across 44 sites in Utah. Extraction methods did not consistently over- or under-estimate ground measured P-J canopy cover except where tree cover was >45%. Estimates of tree canopy cover using OBIA techniques were strongly correlated with estimates using the crown diameter method (r = 0.93 for ENVI, 0.91 for Feature AnalystTM, and 0.92 for eCognition. Tree cover estimates using OBIA techniques had lower correlations with tree cover measurements using the line-point intercept method (r = 0.85 for ENVI, 0.83 for Feature AnalystTM, and 0.83 for eCognition. All software packages accurately and inexpensively extracted P-J canopy cover from NAIP imagery when the imagery was not blurred, and when P-J cover was not mixed with Amelanchier alnifolia (Utah serviceberry and Quercus gambelii (Gambel’s oak, which had similar spectral values as P-J.

  8. The University of Utah Urban Undertaking (U4)

    Science.gov (United States)

    Lin, J. C.; Mitchell, L.; Bares, R.; Mendoza, D. L.; Fasoli, B.; Bowling, D. R.; Garcia, M. A.; Buchert, M.; Pataki, D. E.; Crosman, E.; Horel, J.; Catharine, D.; Strong, C.; Ehleringer, J. R.

    2015-12-01

    The University of Utah is leading efforts to understand the spatiotemporal patterns in both emissions and concentrations of greenhouse gases (GHG) and criteria pollutants within urban systems. The urbanized corridor in northern Utah along the Wasatch Front, anchored by Salt Lake City, is undergoing rapid population growth that is projected to double in the next few decades. The Wasatch Front offers multiple advantages as an unique "urban laboratory": urban regions in multiple valleys spanning numerous orders of magnitude in population, each with unique airsheds, well-defined boundary conditions along deserts and tall mountains, strong signals during cold air pool events, seasonal contrasts in pollution, and a legacy of productive partnerships with local stakeholders and governments. We will show results from GHG measurements from the Wasatch Front, including one of the longest running continuous CO2 records in urban areas. Complementing this record are comprehensive meteorological observations and GHG/pollutant concentrations on mobile platforms: light rail, helicopter, and research vans. Variations in the GHG and pollutant observations illustrate human behavior and the resulting "urban metabolism" taking place on hourly, weekly, and seasonal cycles, resulting in a coupling between GHG and criteria pollutants. Moreover, these observations illustrate systematic spatial gradients in GHG and pollutant distributions between and within urban areas, traced to underlying gradients in population, energy use, terrain, and land use. Over decadal time scales the observations reveal growth of the "urban dome" due to expanding urban development. Using numerical models of the atmosphere, we further link concentrations of GHG and air quality-relevant pollutants to underlying emissions at the neighborhood scale as well as urban planning considerations.

  9. Quaternary geology of Fish Springs flat, Juab county, Utah

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Fish Springs Flat is a sediment-filled valley between two tilted mountain blocks, the Thomas Range and the Fish Springs Range, in the Basin and Range physiographic...

  10. Surficial geology of the lower Comb Wash, San Juan County, Utah

    Science.gov (United States)

    Longpré, Claire I.

    2001-01-01

    The surficial geologic map of lower Comb Wash was produced as part of a master’s thesis for Northern Arizona University Quaternary Sciences program. The map area includes the portion of the Comb Wash alluvial valley between Highway 163 and Highway 95 on the Colorado Plateau in southeastern Utah. The late Quaternary geology of this part of the Colorado Plateau had not previously been mapped in adequate detail. The geologic information in this report will be useful for biological studies, land management and range management for federal, state and private industries. Comb Wash is a south flowing ephemeral tributary of the San Juan River, flanked to the east by Comb Ridge and to the west by Cedar Mesa (Figure 1). The nearest settlement is Bluff, about 7 km to the east of the area. Elevations range from 1951 m where Highway 95 crosses Comb Wash to 1291 m at the confluence with the San Juan River. Primary vehicle access to lower Comb Wash is provided by a well-maintained dirt road that parallels the active channel of Comb Wash between Highway 163 and Highway 95. For much of the year this road can be traversed without the aid of four-wheel drive. However, during inclement weather such as rain or snow the road becomes treacherous even with four-wheel drive. The Comb Wash watershed is public land managed by the Bureau of Land management (BLM) office in Monticello, Utah. The semi-arid climate of Comb Wash and the surrounding area is typical of the Great Basin Desert. Temperature in Bluff, Utah ranges from a minimum of –8° C in January to a maximum of 35° C in July with a mean annual temperature of 9.8° C (U.S. Department of Commerce, 1999). The difference between day and nighttime temperatures is as great as 20° C. Between 1928 and 1998, annual rainfall in Bluff averaged 178 mm per year (U.S. Department of Commerce, 1999). Annual rainfall in Comb Wash averaged 240 mm per year from 1991 to 1999 while Bluff received an average of 193 mm for the same 8 year period

  11. 75 FR 29647 - Tart Cherries Grown in the States of Michigan, et al.; Final Free and Restricted Percentages for...

    Science.gov (United States)

    2010-05-27

    ... Service 7 CFR Part 930 Tart Cherries Grown in the States of Michigan, et al.; Final Free and Restricted... Federal marketing order regulating tart cherries grown in seven States (order). The percentages are 32... tart cherries grown in the States of Michigan, New York, Pennsylvania, Oregon, Utah, Washington,...

  12. 77 FR 12748 - Tart Cherries Grown in the States of Michigan, et al.; Final Free and Restricted Percentages for...

    Science.gov (United States)

    2012-03-02

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 930 Tart Cherries Grown in the States of Michigan, et al.; Final Free and Restricted Percentages for the 2011-12 Crop Year for Tart Cherries AGENCY... tart cherries grown in the states of Michigan, New York, Pennsylvania, Oregon, Utah, Washington,...

  13. 77 FR 15795 - Notice of Availability of a Final Environmental Impact Statement for the Gasco Energy Inc. Uinta...

    Science.gov (United States)

    2012-03-16

    ... Federal oil and gas leases. The Final EIS analysis allows the BLM to choose a course of action that.... would develop their existing oil and gas leases by drilling 1,491 wells from the same number of well... Vernal BLM Web site, and Utah BLM's Environmental Notification Bulletin Board. Juan Palma, State...

  14. 78 FR 36743 - Adoption of Final Environmental Assessment (UT-040-09-03) Prepared for the Upper Kanab Creek...

    Science.gov (United States)

    2013-06-19

    ... Natural Resources Conservation Service Adoption of Final Environmental Assessment (UT-040-09-03) Prepared... Lake City, Utah 84138; email at gary.mcrae@ut.usda.gov . SUPPLEMENTARY INFORMATION: NRCS announces its intent to adopt the Kanab Creek Watershed Vegetation Management Project EA (UT-040-09-03) prepared by...

  15. Constraining the location of the Archean--Proterozoic suture in the Great Basin based on magnetotelluric soundings

    Science.gov (United States)

    Rodriguez, Brian D.; Sampson, Jay A.

    2012-01-01

    It is important to understand whether major mining districts in north-central Nevada are underlain by Archean crust, known to contain major orogenic gold deposits, or, alternatively, by accreted crust of the Paleoproterozoic Mojave province. Determining the location and orientation of the Archean-Proterozoic suture zone between the Archean crust and Mojave province is also critical because it may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. In the Great Basin, the attitude of the suture zone is unknown because it is concealed below cover. A regional magnetotelluric sounding profile along the Utah-Nevada State line reveals a deeply penetrating, broad electrical conductor that may be the Archean-Proterozoic suture zone in the northwest corner of Utah. This major crustal conductor's strike direction is northwest, where it broadens to about 80 km wide below about 3-km depth. These results suggest that the southwestern limit of intact Archean crust in this part of the Great Basin is farther north than previously reported. These results also suggest that the major gold belts in north-central Nevada are located over the Paleoproterozoic Mojave province, and the Archean terrain lies northeast in the northwest corner of Utah. Rifted Archean crust segments south and west of the suture suggest that future mineral exploration northeast of current mineral trends may yield additional gold deposits.

  16. Stratigraphy, sedimentology, paleontology, and paleomagnetism of Pliocene-early Pleistocene lacustrine deposits in two cores from western Utah

    Science.gov (United States)

    Thompson, R.S.; Oviatt, Charles G.; Roberts, A.P.; Buchner, J.; Kelsey, R.; Bracht, C.J.; Forester, R.M.; Bradbury, J.P.

    1995-01-01

    The paleoclimatic history of western Utah is being investigated as part of the USGS Global Change and Climate History Program studies of long-term climatic changes in the western United States. The initial objective of the study is to document the environmental conditions during the mid-Pliocene period of warmer-than-modern global climates (the focus of the USGS Pliocene Research, Interpretation, and Synoptic Mapping [PRISM] project). The investigation also seeks to determine how and when these conditions gave way to the late Quaternary pattern of climatic variations (in which short periods of very moist climates have been separated by long periods of arid conditions). This is a collaborative project involving specialists from the USGS, Kansas State University, and the University of California-Davis in paleontology (Thompson, Buchner, Forester, Bradbury), stratigraphy and sedimentology (Oviatt, Kelsey, Bracht), and paleomagnetism and environmental magnetism (Roberts). The data presented herein represent preliminary findings of the analyses of two cores of Pliocene and early Pleistocene sediments from the eastern Great Basin.

  17. Biological and Physical Inventory of the Streams within the Nez Perce Reservation; Juvenile Steelhead Survey and Factors that Affect Abundance in Selected Streams in the Lower Clearwater River Basin, Idaho, 1983-1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kucera, Paul A.; Johnson, David B. (Nez Perce Tribe, Lapwai, ID)

    1986-08-01

    A biological and physical inventory of selected tributaries in the lower Clearwater River basin was conducted to collect information for the development of alternatives and recommendations for the enhancement of the anadromous fish resources in streams on the Nez Perce Reservation. Five streams within the Reservation were selected for study: Bedrock and Cottonwood Creeks were investigated over a two year period (1983 to 1984) and Big Canyon, Jacks and Mission Creeks were studied for one year (1983). Biological information was collected and analyzed on the density, biomass, production and outmigration of juvenile summer steelhead trout. Physical habitat information was collected on available instream cover, stream discharge, stream velocity, water temperature, bottom substrate, embeddedness and stream width and depth. The report focuses on the relationships between physical stream habitat and juvenile steelhead trout abundance.

  18. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  19. Miscellaneous High-Resolution Seismic Imaging Investigations in Salt Lake and Utah Valleys for Earthquake Hazards

    Science.gov (United States)

    Stephenson, W.J.; Williams, R.A.; Odum, J.K.; Worley, D.M.

    2007-01-01

    Introduction In support of earthquake hazards and ground motion studies by researchers at the Utah Geological Survey, University of Utah, Utah State University, Brigham Young University, and San Diego State University, the U.S. Geological Survey Geologic Hazards Team Intermountain West Project conducted three high-resolution seismic imaging investigations along the Wasatch Front between September 2003 and September 2005. These three investigations include: (1) a proof-of-concept P-wave minivib reflection imaging profile in south-central Salt Lake Valley, (2) a series of seven deep (as deep as 400 m) S-wave reflection/refraction soundings using an S-wave minivib in both Salt Lake and Utah Valleys, and (3) an S-wave (and P-wave) investigation to 30 m at four sites in Utah Valley and at two previously investigated S-wave (Vs) minivib sites. In addition, we present results from a previously unpublished downhole S-wave investigation conducted at four sites in Utah Valley. The locations for each of these investigations are shown in figure 1. Coordinates for the investigation sites are listed in Table 1. With the exception of the P-wave common mid-point (CMP) reflection profile, whose end points are listed, these coordinates are for the midpoint of each velocity sounding. Vs30 and Vs100, also shown in Table 1, are defined as the average shear-wave velocities to depths of 30 and 100 m, respectively, and details of their calculation can be found in Stephenson and others (2005). The information from these studies will be incorporated into components of the urban hazards maps along the Wasatch Front being developed by the U.S. Geological Survey, Utah Geological Survey, and numerous collaborating research institutions.

  20. Final report of the project GICC-MedWater (march 2003/february 2006). Impacts of the climatic change on the hydrological cycle of the mediterranean basin; Rapport final du projet GICC-MedWater (mars 2003/fevrier 2006). Impacts du changement climatique sur le cycle hydrologique du bassin mediterraneen

    Energy Technology Data Exchange (ETDEWEB)

    Li, L

    2006-03-15

    In the framework of the climatic change, the management of the impacts needs a precise knowledge of the change characteristics at the regional scale. The hydrological cycle is an important component of the mediterranean regional climate. The GICC-MedWater project is placed in the scope of climatic scenari regionalization and studies the characteristics of the climatic warming for the mediterranean basin. The main objective is to propose scenari of the climate evolution, for the mediterranean basin region and the impacts on the general circulation and the biology of Mediterranean Sea. It also includes a validation of the models in order to verify the the quality of the obtained scenari. (A.L.B.)

  1. Late Quaternary environmental change in the Bonneville basin, western USA

    Science.gov (United States)

    Madsen, D.B.; Rhode, D.; Grayson, D.K.; Broughton, J.M.; Livingston, S.D.; Hunt, J.; Quade, Jay; Schmitt, D.N.; Shaver, M. W.

    2001-01-01

    Excavation and analyses of small animal remains from stratified raptor deposits spanning the last 11.5 ka, together with collection and analysis of over 60 dated fossil woodrat midden samples spanning the last 50 ka, provide a detailed record of changing climate in the eastern Great Basin during the late Pleistocene and Holocene. Sagebrush steppe dominated the northern Bonneville basin during the Full Glacial, suggesting that conditions were cold and relatively dry, in contrast to the southern basin, which was also cold but moister. Limber pine woodlands dominated ???13-11.5 ka, indicating increased dryness and summer temperatures ???6-7??C cooler than present. This drying trend accelerated after ???11.5 ka causing Lake Bonneville to drop rapidly, eliminating 11 species of fish from the lake. From ???11.5-8.2 ka xerophytic sagebrush and shadscale scrub replaced more mesophilic shrubs in a step-wise fashion. A variety of small mammals and plants indicate the early Holocene was ???3??C cooler and moister than at present, not warmer as suggested by a number of climatic models. The diversity of plants and animals changed dramatically after 8.2 ka as many species disappeared from the record. Some of the upland species returned after ???4 ka and Great Salt Lake became fresh enough at ???3.4 and ???1.2 ka to support populations of Utah chub. ?? 2001 Elsevier Science B.V.

  2. Water availability for development of major tar sands areas in Utah

    Energy Technology Data Exchange (ETDEWEB)

    Keefer, T.N.; McQuivey, R.S.

    1979-05-01

    The Sutron Corporation, under contract with Colorado State University, has conducted a study for the Laramie Energy Technology Center (LETC) to determine the availability of water for future extraction of viscous petroleum (bitumen) from the six major tar sands deposits in Utah. Specifically, the areas are: Asphalt Ridge and Whiterocks, which lie immediately west of Vernal, Utah; P.R. Spring, a large area extending from the Colorado River to the White River along Utah's eastern border; Hill Creek, adjacent to P.R. Spring to the west; Sunnyside, immediately across the Green River from Hill Creek between the Price and Green Rivers; and Tar Sand Triangle, near the confluence of the Colorado and Dirty Devil Rivers. The study, conducted between September and December of 1978, was a fact-finding effort involving the compilation of information from publications of the US Geological Survey (USGS), Utah State Engineer, Utah Department of Natural Resources, and other federal and state agencies. The information covers the general physiographic and geologic features of the total area, the estimated water requirements for tar sands development, the availability of water in each of the six areas, and the legal and sociological restraints and impacts. The conclusions regarding water availability for tar sands development in each of the six areas and specific recommendations related to the development of each area are presented also.

  3. 75 FR 33673 - Tart Cherries Grown in the States of Michigan, New York, Pennsylvania, Oregon, Utah, Washington...

    Science.gov (United States)

    2010-06-15

    ... Service 7 CFR Part 930 Tart Cherries Grown in the States of Michigan, New York, Pennsylvania, Oregon, Utah... regulates the handling of tart cherries grown in Michigan, New York, Pennsylvania, Oregon, Utah, Washington... referendum among tart cherry growers and processors be conducted during the period February 1, 2010,...

  4. 77 FR 75186 - Notice of Closure, Target Shooting Public Safety Closure on the Lake Mountains in Utah County, UT

    Science.gov (United States)

    2012-12-19

    ... Bureau of Land Management Notice of Closure, Target Shooting Public Safety Closure on the Lake Mountains... approximately 900 acres of public land on the Lake Mountains in Utah County, Utah, to recreational target... Lake Mountains area. DATES: This target shooting closure within the described area will remain...

  5. 76 FR 51054 - Notice of Utah's Resource Advisory Council (RAC) Conference Call Meetings on the Statewide Travel...

    Science.gov (United States)

    2011-08-17

    ... the Statewide Travel and Transportation Management Planning Policy AGENCY: Bureau of Land Management... Utah RAC Subgroup on the Statewide Travel and Transportation Management Planning Policy will host a... a variety of planning and management issues associated with public land management in Utah....

  6. Data flows and water woes: The Utah Data Center

    Directory of Open Access Journals (Sweden)

    Mél Hogan

    2015-07-01

    Full Text Available Using a new materialist line of questioning that looks at the agential potentialities of water and its entanglements with Big Data and surveillance, this article explores how the recent Snowden revelations about the National Security Agency (NSA have reignited media scholars to engage with the infrastructures that enable intercepting, hosting, and processing immeasurable amounts of data. Focusing on the expansive architecture, location, and resource dependence of the NSA’s Utah Data Center, I demonstrate how surveillance and privacy can never be disconnected from the material infrastructures that allow and render natural the epistemological state of mass surveillance. Specifically, I explore the NSA’s infrastructure and the million of gallons of water it requires daily to cool its servers, while located in one of the driest states in the US. Complicating surveillance beyond the NSA, as also already imbricated with various social media companies, this article questions the emplacement and impact of corporate data centers more generally, and the changes they are causing to the landscape and local economies. I look at how water is an intriguing and politically relevant part of the surveillance infrastructure and how it has been constructed as the main tool for activism in this case, and how it may eventually help transform the public’s conceptualization of Big Data, as deeply material.

  7. Pore-scale Analysis on Physics Property Changes of CO2 Bleached Sandstone, Entrada Fromation, Utah

    Science.gov (United States)

    Han, J.; Keehm, Y.

    2012-12-01

    Since carbon dioxide injected into geological formations can cause a variety of physical and chemical reaction with minerals, it is important to evaluate the characteristics and aspects of these effects in CO2 geological sequestration. For the analog of the phenomena, we conducted pore-scale analysis on porosity and permeability changes and their characteristics for CO2-bleached Entrada formation, Utah due to natural leakage of CO2. From thin section analysis, we observed mineralogical and pore-shape changes: precipitation of carbonate minerals. Then, we estimated porosity and permeability from thin section, using a computational rock physics technique. The estimated porosity of unbleached sample is approximately 13% and that of bleached sample is around 10%, which implies the precipitation of carbonate minerals. The estimated permeability showed a little differences between two samples. This observations seems to imply that the precipitation would occur where permeability is not significantly affected: grain contacts. For more systematic analysis, we obtained 3D pore microstructures by X-ray microtomography technique. The preliminary analysis using the 3D pore microstructures showed similar results to what we found in the thin-section analysis. And a set of simulations for porosity and permeability are now being conducted. The final result will help understand how injected CO2 changes pore structures and physical properties such as porosity and permeability, and will also help accurate monitoring of geological storage sites. Acknowledgement: This work was supported by the Energy Resources R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2010201020001A).

  8. K Basins isolation barriers summary report

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, G.C., Westinghouse Hanford

    1996-07-31

    final disposition of the material. The Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1994), also known as the Tri-Party Agreement, commits to the removal of all fuel and sludge from the 105-K Basins by the year 2002.

  9. Gravity Analysis of the Jeffera Basin, Tunisia

    Science.gov (United States)

    Mickus, K.; Gabtni, H.; Jallouli, C.

    2004-12-01

    boundaries of subsurface density contrasts and emphasizes that the Jeffera basin is dominated by northwest-trending anomalies while the Saharan Platform consists of a series of northeast- and east-trending anomalies. The final interpretation of the gravity data will consist of constructing a series of two and one-half dimensional gravity models across the Jeffera basin.

  10. Geoscience/engineering characterization of the interwell environment in carbonate reservoirs based on outcrop analogs, Permian Basin, West Texas and New Mexico--waterflood performance analysis for the South Cowden Grayburg Reservoir, Ector County, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, J.W. Jr.

    1997-05-01

    A reservoir engineering study was conducted of waterflood performance in the South Cowden field, an Upper Permian Grayburg reservoir on the Central Basin Platform in West Texas. The study was undertaken to understand the historically poor waterflood performance, evaluate three techniques for incorporating petrophysical measurements and geological interpretation into heterogeneous reservoir models, and identify issues in heterogeneity modeling and fluid-flow scaleup that require further research. The approach included analysis of relative permeability data, analysis of injection and production data, heterogeneity modeling, and waterflood simulation. The poor South Cowden waterflood recovery is due, in part, to completion of wells in only the top half of the formation. Recompletion of wells through the entire formation is estimated to improve recovery in ten years by 6 percent of the original oil in place in some areas of the field. A direct three-dimensional stochastic approach to heterogeneity modeling produced the best fit to waterflood performance and injectivity, but a more conventional model based on smooth mapping of layer-averaged properties was almost as good. The results reaffirm the importance of large-scale heterogeneities in waterflood modeling but demonstrate only a slight advantage for stochastic modeling at this scale. All the flow simulations required a reduction to the measured whole-core k{sub v}/k{sub h} to explain waterflood behavior, suggesting the presence of barriers to vertical flow not explicitly accounted for in any of the heterogeneity models. They also required modifications to the measured steady-state relative permeabilities, suggesting the importance of small-scale heterogeneities and scaleup. Vertical flow barriers, small-scale heterogeneity modeling, and relative permeability scaleup require additional research for waterflood performance prediction in reservoirs like South Cowden.

  11. Short description of the Peruvian coal basins

    Energy Technology Data Exchange (ETDEWEB)

    Carrascal-Miranda, Eitel R. [UNI, Lima (Peru); Suarez-Ruiz, Isabel [Instituto Nacional del Carbon (CSIC), Ap. Co., 73, 33080 Oviedo (Spain)

    2004-04-23

    This work synthesizes the main general characteristics of the Peruvian Coal Basins in relation to age, coal facies and coal rank. Peruvian coals are located in a series of coal basins from the Paleozoic to the Cenozoic age. Paleozoic coal seams are mainly of Mississippian age (Carboniferous). They are of continental origin and their reduced thickness and ash content are their main characteristics. Mesozoic coal seams (Upper Jurassic-Lower Cretaceous) are located in the so-called Peruvian Western Basin and in the depressions close to the 'Maranon Geoanticline'. They were originated in deltaic facies under the influence of brackish and fresh waters. Some of these coal basins (those distributed in the central and northern parts of Peru) are relatively well known because they are of economic importance. Finally, Cenozoic coal seams (Tertiary) are found in both paralic and limnic basins and their reserves are limited. All the Peruvian coals are of humic character and are vitrinite-rich. Their rank is highly variable and normally related with the different orogenic events which strongly affected this region. Thus, Paleozoic and Mesozoic coals are of bituminous to anthracite/meta-anthracite coal rank while peats, lignite and subbituminous coals are found in Cenozoic basins.

  12. Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies

    Science.gov (United States)

    Normann, Richard A.; Fernandez, Eduardo

    2016-12-01

    This paper briefly describes some of the recent progress in the development of penetrating microelectrode arrays and highlights the use of two of these devices, Utah electrode arrays and Utah slanted electrode arrays, in two therapeutic interventions: recording volitional skeletal motor commands from the central nervous system, and recording motor commands and evoking somatosensory percepts in the peripheral nervous system (PNS). The paper also briefly explores other potential sites for microelectrode array interventions that could be profitably pursued and that could have important consequences in enhancing the quality of life of patients that has been compromised by disorders of the central and PNSs.

  13. Utah: basic data for thermal springs and wells as recorded in GEOTHERM

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, J.D.

    1983-05-01

    This GEOTHERM sample file contains 643 records for Utah. Records may be present which are duplicates for the same analyses. A record may contain data on location, sample description, analysis type (water, condensate, or gas), collection condition, flow rates, and the chemical and physical properties of the fluid. Stable and radioactive isotopic data are occasionally available. Some records may contain only location and temperature. This compilation should contain all the chemical data for geothermal fluids in Utah available as of December, 1981. 7 refs. (ACR)

  14. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    DeTar, Carleton [P.I.

    2012-12-10

    This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

  15. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gurney, Kevin R

    2015-01-12

    This document constitutes the final report under DOE grant DE-FG-08ER64649. The organization of this document is as follows: first, I will review the original scope of the proposed research. Second, I will present the current draft of a paper nearing submission to Nature Climate Change on the initial results of this funded effort. Finally, I will present the last phase of the research under this grant which has supported a Ph.D. student. To that end, I will present the graduate student’s proposed research, a portion of which is completed and reflected in the paper nearing submission. This final work phase will be completed in the next 12 months. This final workphase will likely result in 1-2 additional publications and we consider the results (as exemplified by the current paper) high quality. The continuing results will acknowledge the funding provided by DOE grant DE-FG-08ER64649.

  16. Strain localisation during basin inversion in the North German basin and the Donbas Fold Belt

    Energy Technology Data Exchange (ETDEWEB)

    Maystrenko, Y.; Bayer, U. [GFZ Potsdam (Germany); Gajewski, D. [Hamburg Univ. (Germany). Inst. fuer Geophysik

    2007-09-13

    The DEKORP Basin'96 and the DOBREflection-200 lines provide two world wide exceptional examples of successfully performed deep seismic lines. This is especially true for the inversion of the two basins by representing probably two stages in the amount of shortening accompanied by strain localization causing decoupling of the sedimentary fill from the deeper crust within the North East German basin and the Donbas Fold Belt. High-velocity bodies are observed in the DEKORP Basin'96 and DOBREflection-2000 reflection seismic lines. These bodies may have been essential in localizing strain localisation by counteracting compressive forces and causing folding and finally failure and faulting of the deep crust. (orig.)

  17. Migrant Programs in the Southwestern States -- Arizona, Colorado, Kansas, Nevada, New Mexico, and Utah.

    Science.gov (United States)

    National Migrant Information Clearinghouse, Austin, TX. Juarez-Lincoln Center.

    Part of the "Comprehensive National Survey of Migrant Programs" series, this directory was prepared for use by agencies working with migrant and seasonal farmworkers in the Southwestern states of Arizona, Colorado, Kansas, Nevada, New Mexico, and Utah. The directory lists programs, services, and resources available to migrants in these states.…

  18. Utah-Based Washakie Renewable Energy, LLC Settles Renewable Fuel Standard Violations

    Science.gov (United States)

    WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the U.S. Department of Justice (DOJ) today announced a settlement with Utah-based Washakie Renewable Energy, LLC, that resolves allegations that the company generated more than 7.2 million inv

  19. 76 FR 65357 - Tart Cherries Grown in Michigan, New York, Pennsylvania, Oregon, Utah, Washington, and Wisconsin...

    Science.gov (United States)

    2011-10-21

    ... Service 7 CFR Part 930 Tart Cherries Grown in Michigan, New York, Pennsylvania, Oregon, Utah, Washington... prescribed under the marketing order for tart cherries (order). The order regulates the handling of tart... amended (7 CFR part 930), regulating the handling of tart cherries grown in Michigan, New...

  20. 77 FR 13015 - Tart Cherries Grown in Michigan, New York, Pennsylvania, Oregon, Utah, Washington, and Wisconsin...

    Science.gov (United States)

    2012-03-05

    ... Agricultural Marketing Service 7 CFR Part 930 Tart Cherries Grown in Michigan, New York, Pennsylvania, Oregon... the handling of tart cherries grown in Michigan, New York, Pennsylvania, Oregon, Utah, Washington, and... 40 handlers of tart cherries subject to regulation under the order and approximately 600 producers...

  1. 76 FR 2881 - Fishlake National Forest; Utah; Oil and Gas Leasing EIS

    Science.gov (United States)

    2011-01-18

    ... Forest Service Fishlake National Forest; Utah; Oil and Gas Leasing EIS AGENCY: Forest Service, USDA... Leasing Analysis. The original notice was published on July 7, 2006. SUMMARY: The Fishlake National Forest... proposal to make lands administered by the FNF available for oil and gas leasing, and to determine...

  2. LC Card Order Experiment Conducted at University of Utah Marriott Library

    Science.gov (United States)

    Cluff, E. Dale; Anderson, Karen

    1973-01-01

    Between the months of October 1971 and March 1972 the University of Utah Marriott Library conducted an experiment to test the turn-around time of card orders sent to the Library of Congress. This article is a brief report of that experiment. (1 reference) (Author)

  3. Watershed Fact Sheet: Improving Utah's Water Quality, Little Bear River Watershed

    OpenAIRE

    2014-01-01

    The Little Bear River drains 185,000 acres at the southern end of Cache Valley in northern Utah. The river has two main forks that travel through relatively narrow and steep valleys, meeting at the approximate midpoint of the watershed near the town of Paradise.

  4. DOE Zero Energy Ready Home Case Study: Garbett Homes, Herriman, Utah

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-01

    As the first net zero-energy production home certified in Utah, this house incorporates two 94% efficient tankless water heaters and two roof-mounted solar panels that preheat the home's water supply. This home won a 2013 Housing Innovation Award in the production builder category.

  5. 77 FR 25734 - Notice of Invitation To Participate in Coal Exploration License, Utah

    Science.gov (United States)

    2012-05-01

    ... invited to participate with Ark Land Company on a pro rata cost-sharing basis in its program for the... written notice to both the Bureau of Land Management (BLM) and Ark Land Company, as provided in the..., Ark Land Company, c/o Canyon Fuel Company, LLC, Skylines Mines, HC35 Box 380, Helper, Utah 84526....

  6. 76 FR 16808 - Notice of Invitation to Participate In Coal Exploration License, Utah

    Science.gov (United States)

    2011-03-25

    ... invited to participate with Ark Land Company on a pro rata cost sharing basis in its program for the... program must send written notice to both the Bureau of Land Management (BLM) and Ark Land Company, as... Lands and Minerals, P.O. Box 45155, Salt Lake City, Utah 84145 and to Mark Bunnell, Geologist, Ark...

  7. 77 FR 58966 - Disapproval and Promulgation of Air Quality Implementation Plans; State of Utah; Revisions To...

    Science.gov (United States)

    2012-09-25

    ... environmental health or safety risk that we have reason to believe may have a disproportionate effect on... relaxation to Utah's General Burning rule, it will have a beneficial effect on children's health by not allowing additional air pollution. H. Executive Order 13211: Actions Concerning Regulations...

  8. Do You Really Want to Know? Elementary Music Programs and Potential in Utah

    Science.gov (United States)

    Walker, Loretta Niebur

    2015-01-01

    This is the first of two articles reporting the results of a study by the author regarding the status of elementary music education in the state of Utah. This article focuses on how elementary music programs are structured (regular instruction with a music specialist, truncated programs, delegated programs, no formal music instruction, no music…

  9. Job Satisfaction of Faculty and Staff at the College of Eastern Utah.

    Science.gov (United States)

    Seegmiller, Jesse F.

    Faculty and staff at the College of Eastern Utah were surveyed in order to ascertain the level of job satisfaction of the college's personnel. Over 90% of the faculty completed a 94-item job satisfaction questionnaire which was based on Herzberg's Motivation-Hygiene theory of motivation. College staff completed a slightly modified form of the…

  10. High Concentrations of Condensed Tannins in Utah Trefoil (Lotus utahensis Ottley)

    Science.gov (United States)

    Rangeland ecosystems in the western USA are increasingly vulnerable to wildland fires, weed invasion, and misuse. For many of these rangelands, revegetation/restoration may be required to improve degraded conditions, speed recovery, combat invasive weeds, and minimize soil erosion. Utah trefoil (L...

  11. UMTRA Project water sampling and analysis plan, Salt Lake City, Utah. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This water sampling and analysis plan describes planned, routine ground water sampling activities at the US Department of Energy Uranium Mill Tailings Remedial Action Project site in Salt Lake City, Utah. This plan identifies and justifies sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring of ground water, sediments, and surface waters at monitoring stations on the site.

  12. Agribusiness Standards: A Comparison of the Choices of Utah Agriscience and Technology Teachers and Agribusiness Representatives.

    Science.gov (United States)

    Joerger, Richard M.; Andreasen, Randall

    2000-01-01

    Secondary agriscience teachers (n=13) and agribusiness leaders (n=12) validated standards and objectives for agribusiness education in Utah, recommending a core of 12 standards. Written and oral communication skills and technologies for agricultural management and quality control were most important. (Contains 20 references.) (SK)

  13. 78 FR 53477 - Second Call for Nominations to the Utah Resource Advisory Council

    Science.gov (United States)

    2013-08-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management Second Call for Nominations to the Utah Resource Advisory Council AGENCY... (TDD) may call the Federal Information Relay Service (FIRS) at 1-800-877-8339 to leave a message...

  14. 78 FR 28240 - Call for Nominations for the Utah Resource Advisory Council

    Science.gov (United States)

    2013-05-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management Call for Nominations for the Utah Resource Advisory Council AGENCY: Bureau of...: sfoot@blm.gov . Persons who use a telecommunications device for the deaf (TDD) may call the...

  15. Environmental assessment: Geokinetics, Inc. oil shale research project, Uintah County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Geokinetics, Inc. (GKI) proposes to complete the remaining experimental program to develop the LOFRECO modified horizontal in situ oil shale retorting process. This Environmental Assessment Report addresses the impacts of the project, located in a remote area of east-central Utah, about 70 miles south of both Vernal and Roosevelt.

  16. Polygamy and the Public Library: The Establishment of Public Libraries in Utah before 1910

    Science.gov (United States)

    Stauffer, Suzanne M.

    2005-01-01

    Utah's libraries were perceived as instruments for "the establishment of a recognized social order" by each successive group that came to power and were often founded as the result of conflict between Mormon culture and the larger American society. On their arrival, Mormons established libraries primarily to provide access to information necessary…

  17. Assessment and Evaluation of the Utah Master Naturalist Program: Implications for Targeting Audiences

    Science.gov (United States)

    Larese-Casanova, Mark

    2011-01-01

    The Utah Master Naturalist Program trains citizens who provide education, outreach, and service to promote citizen stewardship of natural resources within their communities. In 2007-2008, the Watersheds module of the program was evaluated for program success, and participant knowledge was assessed. Assessment and evaluation results indicated that…

  18. Origin of quaternary basalts from the Black Rock Desert Region, Utah.

    Science.gov (United States)

    Condie, K. C.; Barsky, C. K.

    1972-01-01

    An evaluation has been made of the relative roles of fractional crystallization and crustal contamination in the genesis of basaltic magmas from the Black Rock Desert region in Utah. As a result, geochemical variations of these basalts have been defined as a function of their ages of eruption.

  19. 78 FR 2434 - Notice of Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT

    Science.gov (United States)

    2013-01-11

    ... National Park Service Notice of Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT..., Salt Lake City, UT 84108, telephone (801) 581-3876. SUPPLEMENTARY INFORMATION: Notice is here given in... Elder counties, UT. This notice is published as part of the National Park Service's...

  20. 75 FR 57288 - Notice of Inventory Completion: Utah Museum of Natural History, Salt Lake City, UT

    Science.gov (United States)

    2010-09-20

    ... National Park Service Notice of Inventory Completion: Utah Museum of Natural History, Salt Lake City, UT... of Natural History, Salt Lake City, UT. The human remains and associated funerary objects were removed from Millard and Washington Counties, UT. This notice is published as part of the National...

  1. 76 FR 28074 - Notice of Inventory Completion: Utah Museum of Natural History, Salt Lake City, UT

    Science.gov (United States)

    2011-05-13

    ... National Park Service Notice of Inventory Completion: Utah Museum of Natural History, Salt Lake City, UT... City, UT. The human remains were removed from Snow Canyon State Park, Washington County, UT. This... individual were removed from Snow Canyon State Park, Washington County, UT, by hikers and reposited...

  2. Basin entropy: a new tool to analyze uncertainty in dynamical systems.

    Science.gov (United States)

    Daza, Alvar; Wagemakers, Alexandre; Georgeot, Bertrand; Guéry-Odelin, David; Sanjuán, Miguel A F

    2016-08-12

    In nonlinear dynamics, basins of attraction link a given set of initial conditions to its corresponding final states. This notion appears in a broad range of applications where several outcomes are possible, which is a common situation in neuroscience, economy, astronomy, ecology and many other disciplines. Depending on the nature of the basins, prediction can be difficult even in systems that evolve under deterministic rules. From this respect, a proper classification of this unpredictability is clearly required. To address this issue, we introduce the basin entropy, a measure to quantify this uncertainty. Its application is illustrated with several paradigmatic examples that allow us to identify the ingredients that hinder the prediction of the final state. The basin entropy provides an efficient method to probe the behavior of a system when different parameters are varied. Additionally, we provide a sufficient condition for the existence of fractal basin boundaries: when the basin entropy of the boundaries is larger than log2, the basin is fractal.

  3. Potential impacts to perennial springs from tar sand mining, processing, and disposal on the Tavaputs Plateau, Utah, USA

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, William P.; Frederick, Logan E.; Millington, Mallory R. [University of Utah, Department of Geology & Geophysics, Salt lake City, UT 84112 (United States); Vala, David [Murray High School, Murray, UT 84107 (United States); Reese, Barbara K. [Butler Middle School, Cottonwood Heights, UT 84121 (United States); Freedman, Dina R. [Hillside Middle School, Salt Lake City, UT 84108 (United States); Stenten, Christina J. [Draper Park Middle School, Draper, UT 84020 (United States); Trauscht, Jacob S.; Tingey, Christopher E.; Kip Solomon, D.; Fernandez, Diego P.; Bowen, Gabriel J. [University of Utah, Department of Geology & Geophysics, Salt lake City, UT 84112 (United States)

    2015-11-01

    Similar to fracking, the development of tar sand mining in the U.S. has moved faster than understanding of potential water quality impacts. Potential water quality impacts of tar sand mining, processing, and disposal to springs in canyons incised approximately 200 m into the Tavaputs Plateau, at the Uinta Basin southern rim, Utah, USA, were evaluated by hydrogeochemical sampling to determine potential sources of recharge, and chemical thermodynamic estimations to determine potential changes in transfer of bitumen compounds to water. Because the ridgetops in an area of the Tavaputs Plateau named PR Spring are starting to be developed for their tar sand resource, there is concern for potential hydrologic connection between these ridgetops and perennial springs in adjacent canyons on which depend ranching families, livestock, wildlife and recreationalists. Samples were collected from perennial springs to examine possible progression with elevation of parameters such as temperature, specific conductance, pH, dissolved oxygen, isotopic tracers of phase change, water-rock interaction, and age since recharge. The groundwater age dates indicate that the springs are recharged locally. The progression of hydrogeochemical parameters with elevation, in combination with the relatively short groundwater residence times, indicate that the recharge zone for these springs includes the surrounding ridges, and thereby suggests a hydrologic connection between the mining, processing, disposal area and the springs. Estimations based on chemical thermodynamic approaches indicate that bitumen compounds will have greatly enhanced solubility in water that comes into contact with the residual bitumen–solvent mixture in disposed tailings relative to water that currently comes into contact with natural tar. - Highlights: • The potential water quality impacts of the first US tar sand development are considered. • Analyses of perennial springs in adjacent canyons indicate hydrologic

  4. Final Report

    DEFF Research Database (Denmark)

    Heiselberg, Per; Brohus, Henrik; Nielsen, Peter V.

    This final report for the Hybrid Ventilation Centre at Aalborg University describes the activities and research achievement in the project period from August 2001 to August 2006. The report summarises the work performed and the results achieved with reference to articles and reports published...

  5. Joint Geophysical Imaging of the Utah Area Using Seismic Body Waves, Surface Waves and Gravity Data

    Science.gov (United States)

    Zhang, H.; Maceira, M.; Toksoz, M. N.; Burlacu, R.; Yang, Y.

    2009-12-01

    We present a joint geophysical imaging method that makes use of seismic body wave arrival times, surface wave dispersion measurements, and gravity data to determine three-dimensional (3D) Vp and Vs models. An empirical relationship mapping densities to Vp and Vs for earth materials is used to link them together. The joint inversion method takes advantage of strengths of individual data sets and is able to better constrain the velocity models from shallower to greater depths. Combining three different data sets to jointly invert for the velocity structure is equivalent to a multiple-objective optimization problem. Because it is unlikely that the different “objectives” (data types) would be optimized by the same parameter choices, some trade-off between the objectives is needed. The optimum weighting scheme for different data types is based on relative uncertainties of individual observations and their sensitivities to model parameters. We will apply this joint inversion method to determine 3D Vp and Vs models of the Utah area. The seismic body wave arrival times are assembled from waveform data recorded by the University of Utah Seismograph Stations (UUSS) regional network for the past 7 years. The surface wave dispersion measurements are obtained from the ambient noise tomography study by the University of Colorado group using EarthScope/USArray stations. The gravity data for the Utah area is extracted from the North American Gravity Database managed by the University of Texas at El Paso. The preliminary study using the seismic body wave arrival times indicates strong low velocity anomalies in middle crust beneath some known geothermal sites in Utah. The joint inversion is expected to produce a reasonably well-constrained velocity structure of the Utah area, which is helpful for characterizing and exploring existing and potential geothermal reservoirs.

  6. 3D Geologic Model of the Southern Great Basin

    Science.gov (United States)

    Wagoner, J. L.; Myers, S. C.

    2006-12-01

    We have constructed a regional 3D geologic model of the southern Great Basin, in support of a seismic wave propagation investigation of the 1993 Nonproliferation Experiment (NPE) at the Nevada Test Site (NTS). The model is centered on the NPE and spans longitude -119.5° to -112.6°, latitude 34.5° to 39.8°, and a depth from the surface to 150 km below sea level. Hence, the model includes the southern half of Nevada, as well as parts of eastern California, western Utah, and a portion of northwestern Arizona. The upper crust is constrained by geologic and geophysical studies, and the lower crust and upper mantle are constrained by geophysical studies. The upper crustal geologic units are Quaternary basin fill, Tertiary deposits, pre-Tertiary deposits, intrusive rocks, and calderas. The lower crust and upper mantle are parameterized with 8 layers, including the Moho. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geology at the NTS. Digital geologic outcrop data were available for both Nevada and Arizona, whereas we scanned and hand digitized geologic maps for California and Utah. Published gravity data (2km spacing) were used to determine the thickness of the Cenozoic deposits and constrain the depth of the basins. The free surface is based on a 10m lateral resolution DEM at the NTS and a 90m resolution DEM elsewhere. The gross geophysical structure of the crust and upper mantle is taken from regional surface-wave studies. Variations in crustal thickness are based on receiver function analysis and a compilation of reflection/refraction studies. We used the Earthvision (Dynamic Graphics, Inc.) software to integrate the geologic and geophysical information into a model of x,y,z,p nodes, where p is an integer index representing the geologic unit. For regional seismic simulations we convert this realistic geologic model into elastic parameters. Upper crustal units are treated as seismically homogeneous

  7. Unpublished Digital Geologic Hazards Map of the Zion National Park Study Area, Utah (NPS, GRD, GRI, ZION, ZION geohazards digital map) adapted from a Utah Geological Survey Special Study Map by Lund, Knudsen, and Sharrow (2010)

    Data.gov (United States)

    National Park Service, Department of the Interior — The Unpublished Digital Geologic Hazards Map of the Zion National Park Study Area, Utah is composed of GIS data layers and GIS tables in a 10.0 file geodatabase...

  8. Tectonic differences between eastern and western sub-basins of the Qiongdongnan Basin and their dynamics

    Science.gov (United States)

    Liu, Jianbao; Sun, Zhen; Wang, Zhenfeng; Sun, Zhipeng; Zhao, Zhongxian; Wang, Zhangwen; Zhang, Cuimei; Qiu, Ning; Zhang, Jiangyang

    2015-03-01

    The central depression of the Qiongdongnan Basin can be divided into the eastern and western sub-basins by the Lingshui-Songnan paleo-uplift. To the northwest, the orientation of the faults turns from NE, to EW, and later to NW; In the southwest, the orientation of the faults turns from NE, to NNE, and then to NW, making the central depression much wider towards the west. In the eastern sub-basin, the NE-striking faults and the EW-striking faults made up an echelon, making the central depression turn wider towards the east. Fault activity rates indicate that faulting spreads gradually from both the east and west sides to the middle of the basin. Hence, extensional stress in the eastern sub-basin may be related to the South China Sea spreading system, whereas the western sub-basin was more under the effect of the activity of the Red River Fault. The extreme crustal stretching in the eastern sub-basin was probably related to magmatic setting. It seems that there are three periods of magmatic events that occurred in the eastern sub-basin. In the eastern part of the southern depression, the deformed strata indicate that the magma may have intruded into the strata along faults around T60 (23.3 Ma). The second magmatic event occurred earlier than 10.5 Ma, which induced the accelerated subsidence. The final magmatic event commenced later than 10 Ma, which led to today's high heat flow. As for the western sub-basin, the crust thickened southward, and there seemed to be a southeastward lower crustal flow, which happened during continental breakup which was possibly superimposed by a later lower crustal flow induced by the isostatic compensation of massive sedimentation caused by the right lateral slipping of the Red River Fault. Under the huge thick sediment, super pressure developed in the western sub-basin. In summary, the eastern sub-basin was mainly affected by the South China Sea spreading system and a magma setting, whereas the western sub-basin had a closer

  9. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stinis, Panos [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-07

    This is the final report for the work conducted at the University of Minnesota (during the period 12/01/12-09/18/14) by PI Panos Stinis as part of the "Collaboratory on Mathematics for Mesoscopic Modeling of Materials" (CM4). CM4 is a multi-institution DOE-funded project whose aim is to conduct basic and applied research in the emerging field of mesoscopic modeling of materials.

  10. The structure contours of the Calico sequence boundary in the Kaiparowits Plateau, southern Utah (csbstrc*g)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is a polygon coverage of the structure contours of the Calico sequence boundary in the Kaiparowits Plateau, southern Utah. Sequence boundary elevations are...

  11. Digital Geologic Map of Bryce Canyon National Park and Vicinity, Utah (NPS, GRD, GRI, BRCA, BRCA digital map)

    Data.gov (United States)

    National Park Service, Department of the Interior — The Digital Geologic Map of Bryce Canyon National Park and Vicinity, Utah is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary...

  12. Assessment of Contaminants in the Wetlands and Open Waters of the Great Salt Lake, Utah, 1996-2000

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 1996 and 1997, the United States Fish and Wildlife Service (Service) Utah Field Office undertook a comprehensive assessment of contaminants at over 30 wetland...

  13. Two-dimensional streamflow simulations of the Jordan River, Midvale and West Jordan, Utah

    Science.gov (United States)

    Kenney, Terry A.; Freeman, Michael L.

    2011-01-01

    The Jordan River in Midvale and West Jordan, Utah, flows adjacent to two U.S. Environmental Protection Agency Superfund sites: Midvale Slag and Sharon Steel. At both sites, geotechnical caps extend to the east bank of the river. The final remediation tasks for these sites included the replacement of a historic sheet-pile dam and the stabilization of the river banks adjacent to the Superfund sites. To assist with these tasks, two hydraulic modeling codes contained in the U.S. Geological Survey (USGS) Multi-Dimensional Surface-Water Modeling System (MD_SWMS), System for Transport and River Modeling (SToRM) and Flow and Sediment Transport and Morphological Evolution of Channels (FaSTMECH), were used to provide predicted water-surface elevations, velocities, and boundary shear-stress values throughout the study reach of the Jordan River. A SToRM model of a 0.7 mile subreach containing the sheet-pile dam was used to compare water-surface elevations and velocities associated with the sheet-pile dam and a proposed replacement structure. Maps showing water-surface elevation and velocity differences computed from simulations of the historic sheet-pile dam and the proposed replacement structure topographies for streamflows of 500 and 1,000 cubic feet per second (ft3/s) were created. These difference maps indicated that the velocities associated with the proposed replacement structure topographies were less than or equal to those associated with the historic sheet-pile dam. Similarly, water-surface elevations associated with the proposed replacement structure topographies were all either greater than or equal to water-surface elevations associated with the sheet-pile dam. A FaSTMECH model was developed for the 2.5-mile study reach to aid engineers in bank stabilization designs. Predicted water-surface elevations, velocities and shear-stress values were mapped on an aerial photograph of the study reach to place these parameters in a spatial context. Profile plots of predicted

  14. Net-Infiltration map of the Navajo Sandstone outcrop area in western Washington County, Utah

    Science.gov (United States)

    Heilweil, Victor M.; McKinney, Tim S.

    2007-01-01

    As populations grow in the arid southwestern United States and desert bedrock aquifers are increasingly targeted for future development, understanding and quantifying the spatial variability of net infiltration and recharge becomes critically important for inventorying groundwater resources and mapping contamination vulnerability. A Geographic Information System (GIS)-based model utilizing readily available soils, topographic, precipitation, and outcrop data has been developed for predicting net infiltration to exposed and soil-covered areas of the Navajo Sandstone outcrop of southwestern Utah. The Navajo Sandstone is an important regional bedrock aquifer. The GIS model determines the net-infiltration percentage of precipitation by using an empirical equation. This relation is derived from least squares linear regression between three surficial parameters (soil coarseness, topographic slope, and downgradient distance from outcrop) and the percentage of estimated net infiltration based on environmental tracer data from excavations and boreholes at Sand Hollow Reservoir in the southeastern part of the study area.Processed GIS raster layers are applied as parameters in the empirical equation for determining net infiltration for soil-covered areas as a percentage of precipitation. This net-infiltration percentage is multiplied by average annual Parameter-elevation Regressions on Independent Slopes Model (PRISM) precipitation data to obtain an infiltration rate for each model cell. Additionally, net infiltration on exposed outcrop areas is set to 10 percent of precipitation on the basis of borehole net-infiltration estimates. Soils and outcrop net-infiltration rates are merged to form a final map.Areas of low, medium, and high potential for ground-water recharge have been identified, and estimates of net infiltration range from 0.1 to 66 millimeters per year (mm/yr). Estimated net-infiltration rates of less than 10 mm/yr are considered low, rates of 10 to 50 mm/yr are

  15. Evolution of the quaternary magmatic system, Mineral Mountains, Utah: Interpretations from chemical and experimental modeling

    Energy Technology Data Exchange (ETDEWEB)

    Nash, W.P.; Crecraft, H.R.

    1982-09-01

    The evolution of silicic magmas in the upper crust is characterized by the establishment of chemical and thermal gradients in the upper portion of magma chambers. The chemical changes observed in rhyolite magmas erupted over a period of 300,000 years in the Mineral Mountains are similar to those recorded at Twin Peaks, Utah, and in the spatially zoned Bishop Tuff from Long Valley, California. Chemical and fluid dynamic models indicate that cooling of a silicic magma body from the top and sides can result in the formation of a roof zone above a convecting region which is chemically and thermally stratified, as well as highly fractionated and water rich. Crystallization experiments have been performed with sodium carbonate solutions as an analog to crystallization in magmatic systems. Top and side cooling of a homogeneous sodium carbonate solution results in crystallization along the top and sides and upward convection of sodium carbonate-depleted fluid. A stably stratified roof zone, which is increasingly water rich and cooler upwards, develops over a thermally and chemically homogeneous convecting region. Crystallization at the top ultimately ceases, and continued upward convection of water-rich fluid causes a slight undersaturation adjacent to the roof despite cooler temperatures. By analogy, crystallization at the margins of a magma chamber and buoyant rise of the fractionated boundary layer into the roof zone can account for the chemical evolution of the magma system at the Mineral Mountains. To produce compositionally stratified silicic magmas requires thermal input to a silicic system via mafic magmas. The small volume, phenocryst-poor rhyolite magma which persisted for at least 300,000 years in the Mineral Mountains requires the presence of a continued thermal input from a mafic magma source. The presence of silicic lavas signifies that there is a substantial thermal anomaly both in the crust and upper mantle. The production of silicic lavas requires (1) the

  16. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jarillo-Herrero, Pablo [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-02-07

    This is the final report of our research program on electronic transport experiments on Topological Insulator (TI) devices, funded by the DOE Office of Basic Energy Sciences. TIbased electronic devices are attractive as platforms for spintronic applications, and for detection of emergent properties such as Majorana excitations , electron-hole condensates , and the topological magneto-electric effect . Most theoretical proposals envision geometries consisting of a planar TI device integrated with materials of distinctly different physical phases (such as ferromagnets and superconductors). Experimental realization of physics tied to the surface states is a challenge due to the ubiquitous presence of bulk carriers in most TI compounds as well as degradation during device fabrication.

  17. Evaluation of the groundwater flow model for southern Utah and Goshen Valleys, Utah, updated to conditions through 2011, with new projections and groundwater management simulations

    Science.gov (United States)

    Brooks, Lynette E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Southern Utah Valley Municipal Water Association, updated an existing USGS model of southern Utah and Goshen Valleys for hydrologic and climatic conditions from 1991 to 2011 and used the model for projection and groundwater management simulations. All model files used in the transient model were updated to be compatible with MODFLOW-2005 and with the additional stress periods. The well and recharge files had the most extensive changes. Discharge to pumping wells in southern Utah and Goshen Valleys was estimated and simulated on an annual basis from 1991 to 2011. Recharge estimates for 1991 to 2011 were included in the updated model by using precipitation, streamflow, canal diversions, and irrigation groundwater withdrawals for each year. The model was evaluated to determine how well it simulates groundwater conditions during recent increased withdrawals and drought, and to determine if the model is adequate for use in future planning. In southern Utah Valley, the magnitude and direction of annual water-level fluctuation simulated by the updated model reasonably match measured water-level changes, but they do not simulate as much decline as was measured in some locations from 2000 to 2002. Both the rapid increase in groundwater withdrawals and the total groundwater withdrawals in southern Utah Valley during this period exceed the variations and magnitudes simulated during the 1949 to 1990 calibration period. It is possible that hydraulic properties may be locally incorrect or that changes, such as land use or irrigation diversions, occurred that are not simulated. In the northern part of Goshen Valley, simulated water-level changes reasonably match measured changes. Farther south, however, simulated declines are much less than measured declines. Land-use changes indicate that groundwater withdrawals in Goshen Valley are possibly greater than estimated and simulated. It is also possible that irrigation

  18. Tulare Basin protection plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Tulare Basin Protection Plan has been initiated by The Nature Conservancy to elucidate the problems and opportunities of natural diversity protection....

  19. Mitigation : Closed Basin Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The upcoming meeting on waterfowl mitigation for the Closed Basin Project will have several people talk about possible changes to the waterfowl mitigation program. A...

  20. California Air Basins

    Data.gov (United States)

    California Department of Resources — Air ResourcesCalifornia Air Resources BoardThe following datasets are from the California Air Resources Board: * arb_california_airbasins - California Air BasinsThe...

  1. Watershed Planning Basins

    Data.gov (United States)

    Vermont Center for Geographic Information — The Watershed Planning Basin layer is part of a larger dataset contains administrative boundaries for Vermont's Agency of Natural Resources. The dataset includes...

  2. K Basins Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    WEBB, R.H.

    1999-12-29

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  3. Ecological observations of native Geocoris pallens and G. punctipes populations in the Great Basin Desert of southwestern Utah

    OpenAIRE

    Meredith C Schuman; Danny Kessler; Baldwin, Ian T

    2013-01-01

    Big-eyed bugs (Geocoris spp. Fallén, Hemiptera: Lygaeidae) are ubiquitous, omnivorous insect predators whose plant feeding behavior raises the question of whether they benefit or harm plants. However, several studies have investigated both the potential of Geocoris spp. to serve as biological control agents in agriculture and their importance as agents of plant indirect defense in nature. These studies have demonstrated that Geocoris spp. effectively reduce herbivore populations and increase ...

  4. The Aquitaine basin

    Energy Technology Data Exchange (ETDEWEB)

    Biteau, J.-J.; Le Marrec, A.; Le Vot, M.; Masset, J.-M.

    2006-07-01

    The Aquitaine Basin is located in the southwest of France, between the Gironde Arch in the north and the Pyrenean Mountain Chain in the south. It is a triangular-shaped domain, extending over 35000km{sup 2}. From north to south, six main geological provinces can be identified: (1) the Medoc Platform located south of the Gironde Arch; (2) the Parentis sub-basin; (3) the Landes Saddle; (4) the North Aquitaine Platform; (5) the foreland of the Pyrenees (also known as the Adour, Arzacq and Comminges sub-basins); and (6) the Pyrenean fold-and-thrust belt. Only the Parentis sub-basin, the foreland of the Pyrenean Chain and a minor part of the fold-and-thrust belt itself are proven hydrocarbon provinces. The Aquitaine Basin, in turn, is subdivided into four sub-basins - the Parentis, Adour-Arzacq, Tarbes and Comminges areas. The lozenge shape of these depocentres is related to the Hercynian tectonic framework of the Palaeozoic basement, reactivated during Early Cretaceous rifting. This rift phase aborted at the end of the Albian (prior to the development of an oceanic crust) in response to the beginning of the subduction of the Iberian plate under the European plate. During the Upper Cretaceous, continued subduction led to the creation of northwards-migrating flexural basins. In the Eocene, a paroxysmal phase of compression was responsible for the uplift of the Pyrenean Mountain Chain and for the thin-skinned deformation of the foreland basin. The resulting structuration is limited to the south by the internal core of the chain and to the north by the leading edge of the fold-and-thrust belt, where the Lacq and Meillon gas fields are located. Four main petroleum provinces have been exploited since the Second World War: (1) the oil-prone Parentis sub-basin and (2) salt ridges surrounding the Arzacq and Tarbes sub-basins; and (3) the gas-prone southern Arzacq sub-basin (including the external Pyrenean fold-and-thrust belt and the proximal foreland sub-basin) and (4

  5. Estimating aboveground forest biomass carbon and fire consumption in the U.S. Utah High Plateaus using data from the Forest Inventory and Analysis program, Landsat, and LANDFIRE

    Science.gov (United States)

    Chen, X.; Liu, S.; Zhu, Z.; Vogelmann, J.; Li, Z.; Ohlen, D.

    2011-01-01

    The concentrations of CO2 and other greenhouse gases in the atmosphere have been increasing and greatly affecting global climate and socio-economic systems. Actively growing forests are generally considered to be a major carbon sink, but forest wildfires lead to large releases of biomass carbon into the atmosphere. Aboveground forest biomass carbon (AFBC), an important ecological indicator, and fireinduced carbon emissions at regional scales are highly relevant to forest sustainable management and climate change. It is challenging to accurately estimate the spatial distribution of AFBC across large areas because of the spatial heterogeneity of forest cover types and canopy structure. In this study, Forest Inventory and Analysis (FIA) data, Landsat, and Landscape Fire and Resource Management Planning Tools Project (LANDFIRE) data were integrated in a regression tree model for estimating AFBC at a 30-m resolution in the Utah High Plateaus. AFBC were calculated from 225 FIA field plots and used as the dependent variable in the model. Of these plots, 10% were held out for model evaluation with stratified random sampling, and the other 90% were used as training data to develop the regression tree model. Independent variable layers included Landsat imagery and the derived spectral indicators, digital elevation model (DEM) data and derivatives, biophysical gradient data, existing vegetation cover type and vegetation structure. The cross-validation correlation coefficient (r value) was 0.81 for the training model. Independent validation using withheld plot data was similar with r value of 0.82. This validated regression tree model was applied to map AFBC in the Utah High Plateaus and then combined with burn severity information to estimate loss of AFBC in the Longston fire of Zion National Park in 2001. The final dataset represented 24 forest cover types for a 4 million ha forested area. We estimated a total of 353 Tg AFBC with an average of 87 MgC/ha in the Utah High

  6. Utah Virtual Lab: JAVA interactivity for teaching science and statistics on line.

    Science.gov (United States)

    Malloy, T E; Jensen, G C

    2001-05-01

    The Utah on-line Virtual Lab is a JAVA program run dynamically off a database. It is embedded in StatCenter (www.psych.utah.edu/learn/statsampler.html), an on-line collection of tools and text for teaching and learning statistics. Instructors author a statistical virtual reality that simulates theories and data in a specific research focus area by defining independent, predictor, and dependent variables and the relations among them. Students work in an on-line virtual environment to discover the principles of this simulated reality: They go to a library, read theoretical overviews and scientific puzzles, and then go to a lab, design a study, collect and analyze data, and write a report. Each student's design and data analysis decisions are computer-graded and recorded in a database; the written research report can be read by the instructor or by other students in peer groups simulating scientific conventions.

  7. BENEFIT COST FOR BIOMASS CO-FIRING IN ELECTRICITY GENERATION: CASE OF UTAH, U.S.

    Directory of Open Access Journals (Sweden)

    Man-Keun Kim

    2015-07-01

    Full Text Available Policy making regarding biomass co-firing is difficult. The article provides a benefit-cost analysis for decision makers to facilitate policy making process to implement efficient biomass co-firing policy. The additional cost is the sum of cost of the biomass procurement and biomass transportation. Co-benefits are sales of greenhouse gas emission credits and health benefit from reducing harmful air pollutants, especially particulate matter. The benefit-cost analysis is constructed for semi-arid U.S. region, Utah, where biomass supply is limited. Results show that biomass co-firing is not economically feasible in Utah but would be feasible when co-benefits are considered. Benefit-cost ratio is critically dependent upon biomass and carbon credit prices. The procedure to build the benefit-cost ratio can be applied for any region with other scenarios suggested in this study.

  8. Small Wind Electric Systems: A Utah Consumer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    2007-08-01

    Small Wind Electric Systems: A Utah Consumer's Guide provides Utah consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  9. Using the stratigraphic record to document tectonic-geomorphologic interactions in a foreland basin setting: outcrop study of the Ainsa Basin, Spain

    Science.gov (United States)

    Pyles, D. R.; Moody, J.; Gordon, G.; Hoffman, M.; Moss-Russell, A.; Silalahi, H.; Setiawan, P.; Clark, J.; Bracken, B.; Guzofski, C.

    2013-12-01

    Eocene strata of the Ainsa Basin (Spain) contain clastic and carbonate strata deposited in a relatively small (100 km^2), structurally active piggyback foreland basin. The basin is bounded by the Mediano Anticline to the east and the Boltana Anticline to the west. Clastic strata were sourced by an eastern fluvial-deltaic system whereas carbonate strata were sourced from shallow-water carbonate systems that rimmed the southern and western margins of the basin. Four time-stratigraphic units, which form an upward transect through the basin-fill succession, were studied in detail: Ainsa, Morillo, Guaso, Sobrarbe-Escanilla. The study uses the stratigraphic record to document linkages between progressive uplift of the basin-bounding structures, spatial-temporal changes in the amount and location of subsidence, and temporal changes in the landscape. The Ainsa unit contains submarine channels that entered the basin from the east and exited the basin to the northwest, although some channels locally transfer to lobes near the northwest end of the basin. The Morillo unit contains submarine channels that entered the basin from the east, dispersed onto the basin floor, then converged at the western end of the basin where they continued onto the longitudinally adjacent Jaca Basin. The Guaso unit contains submarine channels that entered the basin from the east and transfer to a ponded distributive submarine fan at the center of the basin. The Escanilla-Sobrarbe unit contains a linked shelf-to-basin system that prograded from south to north and records the final filling of the basin. Four lines of evidence collectively support the basin-fill succession was deposited during structural growth. First, the depocenter, which is interpreted to reflect the position of maximum subsidence during deposition, of the systems systematically shifted westward as the basin filled. Second, the axial part of the clastic sediment systematically shifted southward as the basin filled. Third, the

  10. Genotype, soil type, and locale effects on reciprocal transplant vigor, endophyte growth, and microbial functional diversity of a narrow sagebrush hybrid zone in Salt Creek Canyon, Utah

    Science.gov (United States)

    Miglia, K.J.; McArthur, E.D.; Redman, R.S.; Rodriguez, R.J.; Zak, J.C.; Freeman, D.C.

    2007-01-01

    When addressing the nature of ecological adaptation and environmental factors limiting population ranges and contributing to speciation, it is important to consider not only the plant's genotype and its response to the environment, but also any close interactions that it has with other organisms, specifically, symbiotic microorganisms. To investigate this, soils and seedlings were reciprocally transplanted into common gardens of the big sagebrush hybrid zone in Salt Creek Canyon, Utah, to determine location and edaphic effects on the fitness of parental and hybrid plants. Endophytic symbionts and functional microbial diversity of indigenous and transplanted soils and sagebrush plants were also examined. Strong selection occurred against the parental genotypes in the middle hybrid zone garden in middle hybrid zone soil; F1 hybrids had the highest fitness under these conditions. Neither of the parental genotypes had superior fitness in their indigenous soils and habitats; rather F1 hybrids with the nonindigenous maternal parent were superiorly fit. Significant garden-by-soil type interactions indicate adaptation of both plant and soil microorganisms to their indigenous soils and habitats, most notably in the middle hybrid zone garden in middle hybrid zone soil. Contrasting performances of F1 hybrids suggest asymmetrical gene flow with mountain, rather than basin, big sagebrush acting as the maternal parent. We showed that the microbial community impacted the performance of parental and hybrid plants in different soils, likely limiting the ranges of the different genotypes.

  11. Discriminant of validity the Wender Utah rating scale in Iranian adults.

    Directory of Open Access Journals (Sweden)

    Farideh Farokhzadi

    2014-05-01

    Full Text Available The aim of this study is the normalization of the Wender Utah rating scale which is used to detect adults with Attention-Deficit and Hyperactivity Disorder (ADHD. Available sampling method was used to choose 400 parents of children (200 parents of children with ADHD as compared to 200 parents of normal children. Wender Utah rating scale, which has been designed to diagnose ADHD in adults, is filled out by each of the parents to most accurately diagnose of ADHD in parents. Wender Utah rating scale was divided into 6 sub scales which consist of dysthymia, oppositional defiant disorder; school work problems, conduct disorder, anxiety, and ADHD were analyzed with exploratory factor analysis method. The value of (Kaiser-Meyer-Olkin KMO was 86.5% for dysthymia, 86.9% for oppositional defiant disorder, 77.5% for school related problems, 90.9% for conduct disorder, 79.6% for anxiety and 93.5% for Attention deficit/hyperactivity disorder, also the chi square value based on Bartlett's Test was 2242.947 for dysthymia, 2239.112 for oppositional defiant disorder, 1221.917 for school work problems, 5031.511 for conduct, 1421.1 for anxiety, and 7644.122 for ADHD. Since mentioned values were larger than the chi square critical values (P<0.05, it found that the factor correlation matrix is appropriate for factor analysis. Based on the findings, we can conclude that Wender Utah rating scale can be appropriately used for predicting dysthymia, oppositional defiant disorder, school work problems, conduct disorder, anxiety, in adults with ADHD.

  12. 77 FR 58132 - Public Water System Supervision Program Revision for the State of Utah

    Science.gov (United States)

    2012-09-19

    ...In accordance with the provisions of Section 1413 of the Safe Drinking Water Act (SDWA), 42 U.S.C. 300g-2, public notice is hereby given that the state of Utah has revised its Public Water System Supervision (PWSS) Program by adopting regulations for the Lead and Copper Short Term Revisions, Long Term 1 Enhanced Surface Water Treatment Rule, the Long Term 2 Enhanced Surface Water Treatment......

  13. Preliminary Assessment/Site Investigation: Tooele Army Depot, Utah. Volume 2. South Area

    Science.gov (United States)

    1988-12-29

    Classification) Preliminary Assessment/Site Investigation, Toefle Army Depot., Utah; Volume ’fl-South Area Q2 PERSONAL AUTHOR(S) Andris Lapins CPG, Li 3a...Regulations CERCLA Comprehensive Environmental Response, Compensation and Liability Act CES Civil Engineering Squadron CGW Chemistry Groundwater File CRL...area around s rEAD . 2-12 Low humidity is a characteristic of the valley climate and visibility is generally good. During winter months, however, storm

  14. 2014 Reassessment of Floodplain Wetland Connections in the Middle Green River, Utah

    Energy Technology Data Exchange (ETDEWEB)

    LaGory, K. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Walston, L. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Weber, C. C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    This report presents the results of floodplain wetland connection surveys conducted in 2014 at six priority floodplain wetland sites along the middle Green River between Jensen and Ouray, Utah. Surveys were conducted at levee breaches and within channels leading from the breaches to the wetlands (referred to here as connection channels) to characterize the flows needed to connect the river’s main channel with the floodplain wetlands.

  15. Osteology of the Basal Hadrosauroid Eolambia caroljonesa (Dinosauria: Ornithopoda) from the Cedar Mountain Formation of Utah

    OpenAIRE

    McDonald, Andrew T.; John Bird; Kirkland, James I.; Peter Dodson

    2012-01-01

    BACKGROUND: Eolambia caroljonesa is known from copious remains from the lower Cenomanian Mussentuchit Member of the Cedar Mountain Formation in eastern Utah; however, the taxon has been only briefly described. Thus, we present herein a complete osteological description of Eolambia. METHODOLOGY/PRINCIPAL FINDINGS: The description of Eolambia presented here is based upon the holotype partial skeleton (CEUM 9758), paratype partial skull (CEUM 5212), and abundant disarticulated elements from two ...

  16. Ground-water data for the Beryl-Enterprise area, Escalante Desert, Utah

    Science.gov (United States)

    Mower, R.W.

    1981-01-01

    This report contains a compilation of selected ground-water data for the Beryl-Enterprise area, Iron and Washington Counties, Utah. The records of the wells include such information as driller 's logs, yield, drawdown, use, and temperature of the well water. There are also records of water levels in selected wells for the period 1973-79, chemical analyses of ground water, records of selected springs, and a tabulation of ground-water withdrawals for 1937-78. (USGS)

  17. Tailings Pile Seepage Model The Atlas Corporation Moab Mill Moab, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, CE

    2001-11-05

    The project described in this report was conducted by personnel from Oak Ridge National Laboratory's Grand Junction Office (ORNL/GJ). This report has been prepared as a companion report to the Limited Groundwater Investigation of the Atlas Corporation Moab Mill, Moab, Utah. The purpose of this report is to present the results of the tailings pile seepage modeling effort tasked by the U.S. Nuclear Regulatory Commission (NRC).

  18. A Chronostratigraphic Record of Arroyo Entrenchment and Aggradation in Kanab Creek, Southern Utah

    OpenAIRE

    Townsend, Kirk F.

    2015-01-01

    Arroyos are entrenched channels characterized by near-vertical walls of alluvium and flat channel bottoms. Historic channel entrenchment in the southwest United States during the late AD 1800s and early 1900s has stimulated extensive research on these dynamic fluvial systems. The near-synchronous episodes of arroyo entrenchment and aggradation in Kanab Creek and other drainages in southern Utah during the last ~1 Ka has led many researches to argue that hydroclimatic forcings drive arroyo p...

  19. Geothermal exploration program, Hill Air Force Base, Davis and Weber Counties, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, W.E.; Chapman, D.S.; Foley, D.; Capuano, R.M.; Cole, D.; Sibbett, B.; Ward, S.H.

    1980-03-01

    Results obtained from a program designed to locate a low- or moderate-temperature geothermal resource that might exist beneath Hill Air Force Base (AFB), Ogden, Utah are discussed. A phased exploration program was conducted at Hill AFB. Published geological, geochemical, and geophysical reports on the area were examined, regional exploration was conducted, and two thermal gradient holes were drilled. This program demonstrated that thermal waters are not present in the shallow subsurface at this site. (MHR)

  20. Optimization of Dissolved Air Flotation for Algal Harvesting at the Logan, Utah Wastewater Treatment Plant

    OpenAIRE

    Elder, Andrew R.

    2011-01-01

    This research evaluated dissolved air flotation (DAF) as a separation method for algae and phosphorus from municipal wastewater at the City of Logan, Utah Wastewater Reclamation Facility. DAF uses the supersaturation of air to raise suspended algae and other particles to the surface, where they can be easily removed. DAF, in conjunction with chemical coagulants and flocculants, can approach 95% algae and phosphorus removal. The algae removed using the DAF process will be used in the productio...

  1. DETERMINATION OF PALEOEARTHQUAKE TIMING AND MAGNITUDES ON THE SOUTHERN SEGMENT OF THE EAST CACHE FAULT, UTAH

    OpenAIRE

    McCalpin, James P.

    2012-01-01

    We investigated the late Quaternary rupture history of the southern East Cache Fault zone [ECFZ], northern Utah with geologic mapping, paleoseismic logging of fault trenches, ground-penetrating radar, and optically stimulated luminescence dating. McCalpin (1989) indicated that the southern segment of the ECFZ consisted of three strands. We excavated four trenches across these strands, and evaluate the stratigraphy and structure of the sites. We conclude that the western fault strand of the EC...

  2. 2012 Reassessment of Floodplain Wetland Connections in the Middle Green River, Utah

    Energy Technology Data Exchange (ETDEWEB)

    LaGory, Kirk E. [Argonne National Lab. (ANL), Argonne, IL (United States); Walston, Leroy J. [Argonne National Lab. (ANL), Argonne, IL (United States); Weber, Cory C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    This report presents the results of floodplain wetland connection surveys conducted in 2012 at eight priority floodplain wetlands along the middle Green River between Jensen and Ouray, Utah. Surveys were conducted at levee breaches and within channels leading from the breaches to the wetlands (referred to here as connection channels) to characterize the flows needed to connect the river's main channel with the floodplain wetlands.

  3. Social Marketing Campaign for the National Eating Disorder Awareness Week among Utah State University Students

    OpenAIRE

    Despain, Kelsey; Miyairi, Maya

    2016-01-01

    As one of the Healthy Campus 2020 initiatives, college campuses nationwide are encouraged to focus on reducing the proportion of students who report experiencing an eating disorder/problem within the last 12 months from 5.3% to 4.8% (American College Health Association, 2015). In a survey of 639 Utah State University (USU) students, 0.6% of respondents reported an eating disorder/problem having a negative impact on their academic performance (American College Health Association, 2015). Althou...

  4. Environmental Assessment (EA): Proposed Missile Storage Improvements, Utah Test and Training Range

    Science.gov (United States)

    2013-06-11

    Prevention Plan TTU Thermal Treatment Unit UAC Utah Administrative Code US United States (of America ) USAF United States Air Force USC United States Code...activities. Wider roads and new missile storage facilities would create a minor loss of habitat, displacing reptiles , avian species, and mammals. The...Photography Guidelines, National Park Service, 2011. US 2010: Treaty Between the United States of America and the Russian Federation on Measures for the

  5. Periodic anoxic shelf in the Early-Middle Ordovician transition: ichnosedimentologic evidence from west-central Utah, USA

    Institute of Scientific and Technical Information of China (English)

    GONG; Yiming

    2001-01-01

    [1]Fortey, R. A., Droser, M. L., Trilobites at the base of the Middle Ordovician, western United States, Journal of Paleontology. 1996. 70(1): 73-99.[2]Droser. M. L., Sheehan, P. M., Palaeoecology of the Ordovician radiation: Resolution of large scale patterns with individual clade histories, palaeogeography and environments, Geobios, 1997, 20:221-229.[3]Li, X., Droser, M. L., Lower and Middle Ordovician shell beds from the Basin and Range Province of the western United States (California, Nevada, and Utah), Palaios, 1999, 14: 215-233.[4]Miller. J. F., Loch, J. D., Stitt, J. H. et al., Origins of the great Ordovician biodiversification: the record at Lawson Cove, Ibex area, Utah, USA, Acta Universitatis Carolinae-Geologica, 1999, 43( 1/2): 459-462.[5]Tolmacheva, T. Y., Holmer, L. E., Dronov, A. et al., Early Ordovician (Hunneberg-Volkhov) facial and faunal changes in the east Baltic, Acta Universitatis Carolinae-Geologica, 1999, 43(1/2): 467-470.[6]Sprinkle, J., Guensgurg, T. E., Rozhnov, S. V., Correlation anomaly shown by Ordovician shelly and trace fossils in Baltic Russia: redating the Ordovician radiation, Acta Universitatis Carolinae-Geologica, 1999, 43(1/2): 471-474.[7]Carrera, M. G.. Sanchez, T M., Benedetto, J. L., Paleoenvironmental controls on biofacies in the early Ordovician limestones of the Argentine Precordillera, Acta Universitatis Carolinae-Geologica, 1999, 43(1/2): 475-477.[8]Sepkoski. J. J. Jr., A factor analytic description of the Phanerozoic marine fossil record, Paleobiology, 1981, 7: 36-53.[9]Sepkoski, J. J. Jr., The Ordovician radiations: Diversification and extinction shown by global genus-level taxonomic data,in Ordovician Odyssey: Short Papers of the Seventh International Symposium on the Ordovician System (eds. Cooper, J. D.. Droser, M. L., Finney, S. C.), Fullerton, CA, Pacific Section, Society of Sedimentary Geology (SEPM), 1995, 78:393-396.[10]Hintze. L. F.. Lower Ordovician detailed

  6. Progression of Stellar Intensity Interferometry techniques using 3 meter telescopes at StarBase-Utah

    Science.gov (United States)

    Matthews, Nolan; Kieda, Dave; Lebohec, Stephan

    2015-04-01

    The emergence of large air Cherenkov telescope arrays have opened up the potential for high-resolution imaging of stellar surfaces using Intensity Interferometry techniques. Stellar Intensity Interferometry (SII) allows coverage into the optical and ultraviolet frequency bands which are traditionally inaccessible to classical Michelson interferometry. The relative insensitivity to atmospheric turbulence allows for unprecedented angular resolution scales as the baselines between telescopes can be made very large (>100m) without the need for precise spatial resolution as required by Michelson interferometry. In this talk I will illustrate the science capabilities of the SII technique and describe the progress achieved in developing a modern Stellar Intensity Interferometry system with a pair of 3 meter diameter optical telescopes located at StarBase-Utah. In particular, I will discuss the current status of the StarBase-Utah observatory and present results from two telescope low frequency optical correlation observations of the optical Crab pulsar. These measurements provide a first step towards actual intensity interferometry observations and establish the working condition of the StarBase-Utah telescopes.

  7. Overcoming the toxic influence of subtle messaging: Utah women who persist in STEM

    Science.gov (United States)

    Thackeray, Susan L.

    It is important to train more females to support the needs of a national and global economy workforce. The purpose of this thesis is to explore the proposition of the effect subtle messaging has on a Utah young woman's future career choice. The literature review will approach the science, technology, engineering, and math (STEM) subjects with historical, psychological, and cultural vantage points. An examination of three interconnected topics of research will include a history of women in the workforce and identified barriers to STEM education and careers to identify what types of messages are delivered to women as it relates to STEM and how it influences their career interest decisions. While there are historical barriers towards women in training for and entering STEM careers, no strong evidence is identified for sustained improvement. The changing concepts of social cognitive career theory can potentially provide a framework for constructivist assumptions regarding the topic of what can focus Utah young women learners to influence their own career development and surroundings to persist into STEM careers. Interpretative Phenomenology Analysis (IPA) provides increased understanding of the experiences of how Utah young women come to their decision and what role their environment contributes to that experience. Preliminary research outcomes demonstrate that the participants describe feelings of self-efficacy along with cultural expectations that do not align with their personal goals to enter into STEM education and careers.

  8. W.K.H. Panofsky Prize Talk: The Utah Fly's Eye Detector

    Science.gov (United States)

    Cassiday, George

    2008-04-01

    In 1963, John Linsley detected a 100 EeV extensive air shower (EAS) at Volcano Ranch, New Mexico. Greisen, Kuzmin and Zatsepin realized that the existence of cosmic rays exceeding 60 EeV (UHCR) was surprising since inverse photoproduction off the 3 K CMB should severely degrade their intensity, now called the GKZ cutoff. Greisen suggested that UHCR should generate enough air fluorescence light that they might be detected within an area exceeding 1000 km^ 2. The Utah group proposed such a detector, the Fly's Eye, which could realize Greisen's suggestion and detect UHCR at a greater rate than had been achieved by more conventional means. The expectation was to identify the primary particles and demonstrate that if they existed in significant number then the sources must be ``local,'' consistent with the prediction of GKZ. The detection of UHCR with a prototype Fly's Eye detector was carried out in coincidence with Linsley's Volcano Ranch array. Subsequently, the Utah group built two all sky detectors, Fly's Eye I and II, which operated together for many years in the remote western Utah desert. The design, construction and operational characteristics of the detector and some of its results will be presented in the talk.

  9. Stratigraphic sections of the phosphoria formation in Utah, 1949-1951

    Science.gov (United States)

    Cheney, T.M.; Smart, R.A.; Waring, R.G.; Warner, M.A.

    1953-01-01

    As part of a comprehensive investigation of the phosphate deposits of the western field begun in 1947, the U.S. Geological Survey has measured and sampled the full thickness of the Permian Phosphoria formation and its partial correlative, the Park City formation, at many localities in Utah and other states. Although these data will not be fully analyzed for several years, segments of the data, accompanied by little or no interpretation, are published as preliminary reports as they are assembled. This report, which contains abstracts of the sections measured in northeastern Utah in 1949, 1950, and 1951, is one of this series and the second report of data gathered in Utah. The field and laboratory procedures adopted in these investigations are described rather fully in a previous report (McKelvey and others, 1953a). Many people have taken part in this investigation. The program which this work is a part was organized by V. E. McKelvey and the field program was supervised by R. W. Swanson. R. P. Sheldon assisted in the location and selection of sample localities and F. J. Anderson, McKelvey, Sheldon, and H. W. Peirce participated in the description of strata and the collection of samples referred to in this report. T. K. Rigby assisted in the preparation of trenches and the crushing and splitting of samples in the field. The laboratory preparation of samples for chemical analysis was done in Denver, Colo., under the direction of W. P. Huleatt.

  10. Watershed Fact Sheet: Improving Utah's Water Quality, Upper Bear River Watershed

    OpenAIRE

    2012-01-01

    The Upper Watershed of the Bear River Basin extends from the river's headwaters to Pixley Dam in Wyoming. This is the largest watershed in the Bear River Basin, with an area of about 2,000 square miles.

  11. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Robert C. [Texas A& M University; Kamon, Teruki [Texas A& M University; Toback, David [Texas A& M University; Safonov, Alexei [Texas A& M University; Dutta, Bhaskar [Texas A& M University; Dimitri, Nanopoulos [Texas A& M University; Pope, Christopher [Texas A& M University; White, James [Texas A& M University

    2013-11-18

    Overview The High Energy Physics Group at Texas A&M University is submitting this final report for our grant number DE-FG02-95ER40917. This grant has supported our wide range of research activities for over a decade. The reports contained here summarize the latest work done by our research team. Task A (Collider Physics Program): CMS & CDF Profs. T. Kamon, A. Safonov, and D. Toback co-lead the Texas A&M (TAMU) collider program focusing on CDF and CMS experiments. Task D: Particle Physics Theory Our particle physics theory task is the combined effort of Profs. B. Dutta, D. Nanopoulos, and C. Pope. Task E (Underground Physics): LUX & NEXT Profs. R. Webb and J. White(deceased) lead the Xenon-based underground research program consisting of two main thrusts: the first, participation in the LUX two-phase xenon dark matter search experiment and the second, detector R&D primarily aimed at developing future detectors for underground physics (e.g. NEXT and LZ).

  12. Seasonality of Groundwater Recharge in the Basin and Range Province, Western North America

    Science.gov (United States)

    Neff, K.; Meixner, T.; De La Cruz, L.

    2014-12-01

    Groundwater recharge is the primary source of aquifer replenishment, an important source of freshwater for human consumption and riparian area sustainability in semi-arid regions. It is critical to understand the current groundwater recharge regimes in groundwater basins throughout the Western U.S. and how those regimes might shift in the face of climate change, land use change and management manipulations that impact the availability and composition of groundwater resources. Watersheds in the Basin and Range Province are characterized by a variable precipitation regime of wet winters, and variable summer precipitation. The horst-graben structure of these basins lends itself to orographic and continental precipitation effects that make mountain block and mountain front recharge critical components of annual recharge. The current assumption is that the relative contributions to groundwater recharge by summer and winter precipitation vary throughout the province, with winter precipitation dominating in the northern parts of the region, and summer monsoonal precipitation playing a more significant role in the south, where the North American Monsoon extends its influence. To test this hypothesis, stable water isotope data of groundwater and precipitation from sites in Sonora, Mexico and the U.S. states of California, Nevada, Utah, Arizona, Colorado, New Mexico, and Texas were examined to characterize and compare groundwater recharge regimes throughout the region. Preliminary stable water isotope results from the southernmost Rio San Miguel Basin in Sonora, Mexico indicate that groundwater is composed of 64%±14% summer monsoon precipitation, in contrast to more northern basins where winter precipitation is the source of 79-90% of basin groundwater.

  13. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    Science.gov (United States)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at

  14. Crustal structure across the Colorado Basin, offshore Argentina

    Science.gov (United States)

    Franke, Dieter; Neben, Soenke; Schreckenberger, Bernd; Schulze, Albrecht; Stiller, Manfred; Krawczyk, Charlotte M.

    2006-06-01

    continuation of the Ventana Hills, the Claromecó depocentre, and of Palaeozoic to Middle Mesozoic rocks of the Patagonia terrane. In the deepest part of the pre-/ synrift graben within the Colorado Basin a volcanic/igneous intrusion was interpreted forming an injection into an extensional fault. According to our interpretation most of the Colorado Basin developed in conjunction with an early opening phase of the South Atlantic (150-130 Ma) and thus represents a typical rift basin instead of an intracontinental sag basin. The origin of the oblique rift most probably resulted from extensional stress, acting either through or interfering with the prevailing Palaeozoic basement fabric, oriented NW-SE. Although there was certainly a strike-slip component in the basins evolution and it may be interpreted as pull-apart basin we suggest that the Colorado Basin represents a failed rift structure: The basin's floor is more or less flat across the shelf, shows a slow rise at the shelf break and deepens towards the deep-sea basin where it finally merges with the seaward-dipping reflector sequences, and the basin probably was affected by magmatic/volcanic intrusives/extrusives associated with the opening of the South Atlantic.

  15. Palaeoenvironmental changes across the Danian–Selandian boundary in the North Sea Basin

    DEFF Research Database (Denmark)

    Clemmensen, Anne; Thomsen, Erik

    2005-01-01

    and eastern part of the North Sea Basin resulted in a huge influx of reworked Cretaceous chalk and an almost complete stop of carbonate production. Finally, later in the early Selandian, in connection to a general sea-level rise and a reduction in the gateway between the North Sea Basin and the Tethys Sea...

  16. Late Quaternary sedimentary features of Bear Lake, Utah and Idaho

    Science.gov (United States)

    Smoot, J.P.

    2009-01-01

    Bear Lake sediments were predominantly aragonite for most of the Holocene, reflecting a hydrologically closed lake fed by groundwater and small streams. During the late Pleistocene, the Bear River flowed into Bear Lake and the lake waters spilled back into the Bear River drainage. At that time, sediment deposition was dominated by siliciclastic sediment and calcite. Lake-level fluctuation during the Holocene and late Pleistocene produced three types of aragonite deposits in the central lake area that are differentiated primarily by grain size, sorting, and diatom assemblage. Lake-margin deposits during this period consisted of sandy deposits including well-developed shoreface deposits on margins adjacent to relatively steep gradient lake floors and thin, graded shell gravel on margins adjacent to very low gradient lake-floor areas. Throughout the period of aragonite deposition, episodic drops in lake level resulted in erosion of shallow-water deposits, which were redeposited into the deeper lake. These sediment-focusing episodes are recognized by mixing of different mineralogies and crystal habits and mixing of a range of diatom fauna into poorly sorted mud layers. Lake-level drops are also indicated by erosional gaps in the shallow-water records and the occurrence of shoreline deposits in areas now covered by as much as 30 m of water. Calcite precipitation occurred for a short interval of time during the Holocene in response to an influx of Bear River water ca. 8 ka. The Pleistocene sedimentary record of Bear Lake until ca. 18 ka is dominated by siliciclastic glacial fl our derived from glaciers in the Uinta Mountains. The Bear Lake deep-water siliciclastic deposits are thoroughly bioturbated, whereas shallow-water deposits transitional to deltas in the northern part of the basin are upward-coarsening sequences of laminated mud, silt, and sand. A major drop in lake level occurred ca. 18 ka, resulting in subaerial exposure of the lake floor in areas now covered by

  17. Modifed Great Basin Extent (Buffered)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Two different great basin perimeter files were intersected and dissolved using ArcGIS 10.2.2 to create the outer perimeter of the great basin for use modeling...

  18. Basin Hopping Graph

    DEFF Research Database (Denmark)

    Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter

    2014-01-01

    Motivation RNA folding is a complicated kinetic process. The minimum free energy structure provides only a static view of the most stable conformational state of the system. It is insufficient to give detailed insights into the dynamic behavior of RNAs. A sufficiently sophisticated analysis...... of the folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...

  19. Conceptual understanding and groundwater quality of selected basin-fill aquifers in the Southwestern United States

    Science.gov (United States)

    Thiros, Susan A.; Bexfield, Laura M.; Anning, David W.; Huntington, Jena M.

    2010-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey has been conducting a regional analysis of water quality in the principal aquifer systems in the southwestern United States (hereinafter, 'Southwest') since 2005. Part of the NAWQA Program, the objective of the Southwest Principal Aquifers (SWPA) study is to develop a better understanding of water quality in basin-fill aquifers in the region by synthesizing information from case studies of 15 basins into a common set of important natural and human-related factors found to affect groundwater quality. The synthesis consists of three major components: 1. Summary of current knowledge about the groundwater systems, and the status of, changes in, and influential factors affecting quality of groundwater in basin-fill aquifers in 15 basins previously studied by NAWQA (this report). 2. Development of a conceptual model of the primary natural and human-related factors commonly affecting groundwater quality, thereby building a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to contaminants. 3. Development of statistical models that relate the concentration or occurrence of specific chemical constituents in groundwater to natural and human-related factors linked to the susceptibility and vulnerability of basin-fill aquifers to contamination. Basin-fill aquifers occur in about 200,000 mi2 of the 410,000 mi2 SWPA study area and are the primary source of groundwater supply for cities and agricultural communities. Four of the principal aquifers or aquifer systems of the United States are included in the basin-fill aquifers of the study area: (1) the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; (2) the Rio Grande aquifer system in New Mexico and Colorado; (3) the California Coastal Basin aquifers; and (4) the Central Valley aquifer system in California. Because of the generally limited availability of surface-water supplies in

  20. Water reform in the Murray-Darling Basin

    Science.gov (United States)

    Connell, Daniel; Grafton, R. Quentin

    2011-12-01

    In Australia's Murray-Darling Basin the Australian and state governments are attempting to introduce a system of water management that will halt ongoing decline in environmental conditions and resource security and provide a robust foundation for managing climate change. This parallels similar efforts being undertaken in regions such as southern Africa, the southern United States, and Spain. Central to the project is the Australian government's Water Act 2007, which requires the preparation of a comprehensive basin plan expected to be finalized in 2011. This paper places recent and expected developments occurring as part of this process in their historical context and examines factors that could affect implementation. Significant challenges to the success of the basin plan include human resource constraints, legislative tensions within the Australian federal system, difficulties in coordinating the network of water-related agencies in the six jurisdictions with responsibilities in the Murray-Darling Basin, and social, economic, and environmental limitations that restrict policy implementation.

  1. Uranium potential of precambrian rocks in the Raft River area of northwestern Utah and south-central Idaho. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Black, B.A.

    1980-09-01

    A total of 1214 geochemical samples were collected and analyzed. The sampling media included 334 waters, 616 stream sediments, and 264 rocks. In addition, some stratigraphic sections of Elba and Yost Quartzites and Archean metasedimentary rock were measured and sampled and numerous radiation determinations made of the various target units. Statistical evaluation of the geochemical data permitted recognition of 156 uranium anomalies, 52 in water, 79 in stream sediment, and 25 in rock. Geographically, 68 are located in the Grouse Creek Mountains, 43 in the Raft River Mountains, and 41 in the Albion Range. Interpretation of the various data leads to the conclusion that uranium anomalies relate to sparingly and moderately soluble uraniferous heavy minerals, which occur as sparse but widely distributed magmatic, detrital, and/or metamorphically segregated components in the target lithostratigraphic units. The uraniferous minerals known to occur and believed to account for the geochemical anomalies include allanite, monazite, zircon, and apatite. In some instances samarskite may be important. These heavy minerals contain uranium and geochemically related elements, such as Th, Ce, Y, and Zr, in sufficient quantities to account for both the conspicuous lithologic preference and the generally observed low amplitude of the anomalies. The various data generated in connection with this study, as well as those available in the published literature, collectively support the conclusion that the various Precambrian W and X lithostratigraphic units pre-selected for evaluation probably lack potential to host important Precambrian quartz-pebble conglomerate uranium deposits. Moreover it is also doubted that they possess any potential to host Proterozoic unconformity-type uranium deposits.

  2. Magmatism in rifting and basin formation

    Science.gov (United States)

    Thybo, H.

    2008-12-01

    Whether heating and magmatism cause rifting or rifting processes cause magmatic activity is highly debated. The stretching factor in rift zones can be estimated as the relation between the initial and the final crustal thickness provided that the magmatic addition to the crust is insignificant. Recent research demonstrates substantial magmatic intrusion into the crust in the form of sill like structures in the lowest crust in the presently active Kenya and Baikal rift zones and the DonBas palaeo-rift zone in Ukraine. This result may be surprising as the Kenya Rift is associated with large amounts of volcanic products, whereas the Baikal Rift shows very little volcanism. Identification of large amounts of magmatic intrusion into the crust has strong implications for estimation of stretching factor, which in the case of Baikal Rift Zone is around 1.7 but direct estimation gives a value of 1.3-1.4 if the magmatic addition is not taken into account. This may indicate that much more stretching has taken place on rift systems than hitherto believed. Wide sedimentary basins may form around aborted rifts due to loading of the lithosphere by sedimentary and volcanic in-fill of the rift. This type of subsidence will create wide basins without faulting. The Norwegian- Danish basin in the North Sea area also has subsided gradually during the Triassic without faulting, but only few rift structures have been identified below the Triassic sequences. We have identified several mafic intrusions in the form of large batholiths, typically more than 100 km long, 20-40 km wide and 20 km thick. The associated heating would have lifted the surface by about 2 km, which may have been eroded before cooling. The subsequent contraction due to solidification and cooling would create subsidence in a geometry similar to basins that developed by loading. These new aspects of magmatism will be discussed with regard to rifting and basin formation.

  3. The male-female health-survival paradox and sex differences in cohort life expectancy in Utah, Denmark, and Sweden 1850-1910

    DEFF Research Database (Denmark)

    Lindahl-Jacobsen, Rune; Hanson, Heidi A; Oksuzyan, Anna

    2013-01-01

    PURPOSE: In Utah, the prevalence of unhealthy male risk behaviors are lower than in most other male populations, whereas women experience higher mortality risk because of higher fertility rates. Therefore, we hypothesize that the Utah sex differential in mortality would be small and less than...... in Sweden and Denmark. METHODS: Life tables from Utah, Denmark, and Sweden were used to calculate cohort life expectancies for men and women born in 1850-1910. RESULTS: The sex difference in cohort life expectancy was similar or larger in Utah when compared with Denmark and Sweden. The change over time...... in the sex differences in cohort life expectancy was approximately 2 years smaller for active Mormons in Utah than for other groups suggesting lifestyle as an important component for the overall change seen in cohort life expectancy. Sex differences in cohort life expectancy at the age of 50 years were...

  4. Single-basined choice

    NARCIS (Netherlands)

    Bossert, W.; Peters, H.J.M.

    2013-01-01

    Single-basined preferences generalize single-dipped preferences by allowing for multiple worst elements. These preferences have played an important role in areas such as voting, strategy-proofness and matching problems. We examine the notion of single-basinedness in a choice-theoretic setting. In co

  5. Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S.

    Science.gov (United States)

    Gartner, J.E.; Cannon, S.H.; Santi, P.M.; deWolfe, V.G.

    2008-01-01

    Recently burned basins frequently produce debris flows in response to moderate-to-severe rainfall. Post-fire hazard assessments of debris flows are most useful when they predict the volume of material that may flow out of a burned basin. This study develops a set of empirically-based models that predict potential volumes of wildfire-related debris flows in different regions and geologic settings. The models were developed using data from 53 recently burned basins in Colorado, Utah and California. The volumes of debris flows in these basins were determined by either measuring the volume of material eroded from the channels, or by estimating the amount of material removed from debris retention basins. For each basin, independent variables thought to affect the volume of the debris flow were determined. These variables include measures of basin morphology, basin areas burned at different severities, soil material properties, rock type, and rainfall amounts and intensities for storms triggering debris flows. Using these data, multiple regression analyses were used to create separate predictive models for volumes of debris flows generated by burned basins in six separate regions or settings, including the western U.S., southern California, the Rocky Mountain region, and basins underlain by sedimentary, metamorphic and granitic rocks. An evaluation of these models indicated that the best model (the Western U.S. model) explains 83% of the variability in the volumes of the debris flows, and includes variables that describe the basin area with slopes greater than or equal to 30%, the basin area burned at moderate and high severity, and total storm rainfall. This model was independently validated by comparing volumes of debris flows reported in the literature, to volumes estimated using the model. Eighty-seven percent of the reported volumes were within two residual standard errors of the volumes predicted using the model. This model is an improvement over previous models in

  6. Seasonality of Groundwater Recharge in the Basin and Range Province, Western North America

    Science.gov (United States)

    Neff, K. L.; Meixner, T.; Ajami, H.; De La Cruz, L.

    2015-12-01

    For water-scarce communities in the western U.S., it is critical to understand groundwater recharge regimes and how those regimes might shift in the face of climate change and impact groundwater resources. Watersheds in the Basin and Range Geological Province are characterized by a variable precipitation regime of wet winters and variable summer precipitation. The relative contributions to groundwater recharge by summer and winter precipitation vary throughout the province, with winter precipitation recharge dominant in the northern parts of the region, and recharge from summer monsoonal precipitation playing a more significant role in the south, where the North American Monsoon (NAM) extends its influence. Stable water isotope data of groundwater and seasonal precipitation from sites in Sonora, Mexico and the U.S. states of California, Nevada, Utah, Arizona, Colorado, New Mexico, and Texas were examined to estimate and compare groundwater recharge seasonality throughout the region. Contributions of winter precipitation to annual recharge vary from 69% ± 41% in the southernmost Río San Miguel Basin in Sonora, Mexico, to 100% ± 36% in the westernmost Mojave Desert of California. The Normalized Seasonal Wetness Index (NSWI), a simple water budget method for estimating recharge seasonality from climatic data, was shown to approximate recharge seasonality well in several winter precipitation-dominated systems, but less well in basins with significant summer precipitation.

  7. Hydrothermal alteration at the Roosevelt Hot Springs Thermal Area, Utah: modal mineralogy, and geochemistry of sericite, chlorite, and feldspar from altered rocks, Thermal Power Company well Utah State 14-2

    Energy Technology Data Exchange (ETDEWEB)

    Ballantyne, J.M.

    1978-11-01

    Sericites, chlorites, feldspars, biotite and hornblende from hydrothermally altered rocks at several depths in Thermal Power Company well Utah State 14-2, Roosevelt Hot Springs Thermal Area, Utah, have been analyzed using the electron microprobe. Sericites and ferromagnesian minerals have been analyzed for 12 major elements, and feldspars for 3. The results have been used, along with whole rock chemical analyses, to computer calculate modal mineralogy for samples from the drillhole. Calculated modes for hydrothermal minerals are in reasonable agreement with observations from thin sections.

  8. Hydrology and numerical simulation of groundwater flow and streamflow depletion by well withdrawals in the Malad-Lower Bear River Area, Box Elder County, Utah

    Science.gov (United States)

    Stolp, Bernard J.; Brooks, Lynette E.; Solder, John

    2017-03-28

    The Malad-Lower Bear River study area in Box Elder County, Utah, consists of a valley bounded by mountain ranges and is mostly agricultural or undeveloped. The Bear and Malad Rivers enter the study area with a combined average flow of about 1,100,000 acre-feet per year (acre-ft/yr), and this surface water dominates the hydrology. Groundwater occurs in consolidated rock and basin fill. Groundwater recharge occurs from precipitation in the mountains and moves through consolidated rock to the basin fill. Recharge occurs in the valley from irrigation. Groundwater discharge occurs to rivers, springs and diffuse seepage areas, evapotranspiration, field drains, and wells. Groundwater, including springs, is a source for municipal and domestic water supply. Although withdrawal from wells is a small component of the groundwater budget, there is concern that additional groundwater development will reduce the amount of flow in the Malad River. Historical records of surface-water diversions, land use, and groundwater levels indicate relatively stable hydrologic conditions from the 1960s to the 2010s, and that current groundwater development has had little effect on the groundwater system. Average annual recharge to and discharge from the groundwater flow system are estimated to be 164,000 and 228,000 acre-ft/yr, respectively. The imbalance between recharge and discharge represents uncertainties resulting from system complexities, and the possibility of groundwater inflow from surrounding basins.This study reassesses the hydrologic system, refines the groundwater budget, and creates a numerical groundwater flow model that is used to analyze the effects of groundwater withdrawals on surface water. The model uses the detailed catalog of locations and amounts of groundwater recharge and discharge defined during this study. Calibrating the model to adequately simulate recharge, discharge, and groundwater levels results in simulated aquifer properties that can be used to understand

  9. Development and testing in practice of a multidimensional evaluation and decision support system for integrated river basin management in the context of ecology, technical systems and social-economy along with an example of the Lippe river basin. Final report; Entwicklung und Praxiserprobung eines mehrdimensionalen Bewertungs- und Entscheidungsunterstuetzungs-Systems fuer integriertes Flusseinzugsgebietsmanagement im Spannungsfeld von Oekologie, Technik und Sozio-Oekonomie am Beispiel der Lippe. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, G.A.; Finke, L.; Rudolph, K.U.; Petruck, A.

    2001-04-09

    The research project serves the only purpose of preparation of a detailed research proposal for the topic 'River Basin Management' in the research focus (BMBF) 'Research for the Environment'. The report contain those contents of the research proposal which are of basic interest and general validity. Furthermore the various aspects of its production are presented. The topics and problems dealt with in the research proposal are as follows: The Europen Union requires that water management in future should be handled in the sense of integrated river basin management. Thus one of the main objectives of the intended research project is the development of methods and instruments suitable for integrated river basin management, which presently hardly exist. This requires on the one hand development of theories, on the other hand their validation along with a real river system. For this purpose the basin of the Lippe river was chosen. River basin management requires the introduction of several measures suitable to change the present conditions of water quality in rivers and groundwater towards the conditions which are required by the framework directive. This, in turn, requires a multidimensional evaluation of those measures as far as ecology, technical efficiency and social economy are concerned. The decision support system to be developed shall aggregate those evaluated measures into few parameters relevant for decision making. This way it will be feasible for the decision makers to decide between prepared alternatives in a transparent way. It is expected that the project will lead to economically improved solutions and form the basis for future research. (orig.) [German] Das Forschungsvorhaben diente ausschliesslich der Vorbereitung eines detaillierten Forschungsantrags zum Thema 'Flusseinzugsgebietsmanagement' im Foerderprogramm 'Forschung fuer die Umwelt'. Der Bericht enthaelt die wesentlichen grundsaetzlich interessanten und

  10. Frontier petroleum basins of Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Keith, J.F. Jr.; Perez, V.E.

    1989-03-01

    The frontier basins of Colombia with hydrocarbon potential are numerous, have varying geological histories, and are in different stages of exploration development. In this paper, sedimentary or structural basins are classified as frontier petroleum basins if commercial discoveries of hydrocarbons are lacking, if the basin has not attained a high degree of exploration development, or if a new play concept has been perceived or developed for a portion of a mature exploration basin. Using these criteria for classification, the authors discuss the Cauca-Patia Choco-Pacifico, and Lower Magdalena basin complexes; the Cordillera Oriental foreland basin; and the Cesar-Rancheria, Sabana, and Amazonas basins. A comprehensive geological and structural setting of each of these frontier basins will be presented. The depositional and tectonic evolution of the basins will be highlighted, and the play concepts for each will be inventoried, catalogued, and categorized as to whether they are theoretical or established. The discussion of the available plays in each of these basins will include the main play concept elements of reservoirs traps, seals, source rocks, maturation, and timing. When detailed data permit, the reservoir and trap geometry will be presented.

  11. Evaporation from groundwater discharge playas, Estancia Basin, central New Mexico

    Science.gov (United States)

    Menking, Kirsten M.; Anderson, Roger Y.; Brunsell, Nathaniel A.; Allen, Bruce D.; Ellwein, Amy L.; Loveland, Thomas A.; Hostetler, Steven W.

    2000-07-01

    Bowen ratio meteorological stations have been deployed to measure rates of evaporation from groundwater discharge playas and from an adjacent vegetated bench in the Estancia Basin, in central New Mexico. The playas are remnants of late Pleistocene pluvial Lake Estancia and are discharge areas for groundwater originating as precipitation in the adjacent Manzano Mts. They also accumulate water during local precipitation events. Evaporation is calculated from measured values of net radiation, soil heat flux, atmospheric temperature, and relative humidity. Evaporation rates are strongly dependent on the presence or absence of standing water in the playas, with rates increasing more than 600% after individual rainstorms. Evaporation at site E-12, in the southeastern part of the playa complex, measured 74 cm over a yearlong period from mid-1997 through mid-1998. This value compares favorably to earlier estimates from northern Estancia playas, but is nearly three times greater than evaporation at a similar playa in western Utah. Differences in geographical position, salt crust composition, and physical properties may explain some of the difference in evaporation rates in these two geographic regions.

  12. Natural frequency of regular basins

    Science.gov (United States)

    Tjandra, Sugih S.; Pudjaprasetya, S. R.

    2014-03-01

    Similar to the vibration of a guitar string or an elastic membrane, water waves in an enclosed basin undergo standing oscillatory waves, also known as seiches. The resonant (eigen) periods of seiches are determined by water depth and geometry of the basin. For regular basins, explicit formulas are available. Resonance occurs when the dominant frequency of external force matches the eigen frequency of the basin. In this paper, we implement the conservative finite volume scheme to 2D shallow water equation to simulate resonance in closed basins. Further, we would like to use this scheme and utilizing energy spectra of the recorded signal to extract resonant periods of arbitrary basins. But here we first test the procedure for getting resonant periods of a square closed basin. The numerical resonant periods that we obtain are comparable with those from analytical formulas.

  13. A case for using grid architecture for state public health informatics: the Utah perspective

    Directory of Open Access Journals (Sweden)

    Rolfs Robert

    2009-06-01

    Full Text Available Abstract This paper presents the rationale for designing and implementing the next-generation of public health information systems using grid computing concepts and tools. Our attempt is to evaluate all grid types including data grids for sharing information and computational grids for accessing computational resources on demand. Public health is a broad domain that requires coordinated uses of disparate and heterogeneous information systems. System interoperability in public health is limited. The next-generation public health information systems must overcome barriers to integration and interoperability, leverage advances in information technology, address emerging requirements, and meet the needs of all stakeholders. Grid-based architecture provides one potential technical solution that deserves serious consideration. Within this context, we describe three discrete public health information system problems and the process by which the Utah Department of Health (UDOH and the Department of Biomedical Informatics at the University of Utah in the United States has approached the exploration for eventual deployment of a Utah Public Health Informatics Grid. These three problems are: i integration of internal and external data sources with analytic tools and computational resources; ii provide external stakeholders with access to public health data and services; and, iii access, integrate, and analyze internal data for the timely monitoring of population health status and health services. After one year of experience, we have successfully implemented federated queries across disparate administrative domains, and have identified challenges and potential solutions concerning the selection of candidate analytic grid services, data sharing concerns, security models, and strategies for reducing expertise required at a public health agency to implement a public health grid.

  14. Toward a better understanding of the comparatively high prostate cancer incidence rates in Utah

    Directory of Open Access Journals (Sweden)

    Wiggins Charles L

    2003-04-01

    Full Text Available Abstract Background This study assesses whether comparatively high prostate cancer incidence rates among white men in Utah represent higher rates among members of the Church of Jesus Christ of Latter-day Saints (LDS or Mormons, who comprise about 70% of the state's male population, and considers the potential influence screening has on these rates. Methods Analyses are based on 14,693 histologically confirmed invasive prostate cancer cases among men aged 50 years and older identified through the Utah Cancer Registry between 1985 and 1999. Cancer records were linked to LDS Church membership records to determine LDS status. Poisson regression was used to derive rate ratios of LDS to nonLDS prostate cancer incidence, adjusted for age, disease stage, calendar time, and incidental detection. Results LDS men had a 31% (95% confidence interval, 26% – 36% higher incidence rate of prostate cancer than nonLDS men during the study period. Rates were consistently higher among LDS men over time (118% in 1985–88, 20% in 1989–92, 15% in 1993–1996, and 13% in 1997–99; age (13% in ages 50–59, 48% in ages 60–69, 28% in ages 70–79, and 16% in ages 80 and older; and stage (36% in local/regional and 17% in unstaged. An age- and stage-shift was observed for both LDS and nonLDS men, although more pronounced among LDS men. Conclusions Comparatively high prostate cancer incidence rates among LDS men in Utah are explained, at least in part, by more aggressive screening among these men.

  15. Recent exploration and development of geothermal energy resources in the Escalante desert region, Southwestern Utah

    Science.gov (United States)

    Blackett, Robert E.; Ross, Howard P.

    1994-01-01

    Development of geothermal resources in southwest Utah's Sevier thermal area continued in the early 1990s with expansion of existing power-generation facilities. Completion of the Bud L. Bonnett geothermal power plant at the Cove Fort-Sulphurdale geothermal area brought total power generation capacity of the facility to 13.5 MWe (gross). At Cove Fort-Sulphurdate, recent declines in steam pressures within the shallow, vapor-dominated part of the resource prompted field developers to complete additional geothermal supply wells into the deeper, liquid-dominated portion of the resource. At Roosevelt Hot Springs near Milford, Intermountain Geothermal Company completed an additional supply well for Utah Power and Light Company's single-flash, Blundell plant. with the increased geothermal fluid supply from the new well, the Blundell plant now produces about 26 MWe (gross). The authors conducted several geothermal resource studies in undeveloped thermal areas in southwest Utah. Previous studies at Newcastle revealed a well-defined, self-potential minimum coincident with the intersection of major faults and the center of the heatflow anomaly. A detailed self-potential survey at Wood's Ranch, an area in northwest Iron County where thermal water was encountered in shallow wells, revealed a large (5,900 ?? 2,950 feet [1,800 ?? 900 m]) northeast-oriented self-potential anomaly which possibly results from the flow of shallow thermal fluid. Chemical geothermometry applied to Wood's Ranch water samples suggest reservoir temperatures between 230 and 248??F (110 and 120??C). At the Thermo Hot Springs geothermal area near Minersville, detailed self-potential surveys have also revealed an interesting 100 mV negative anomaly possibly related to the upward flow of hydrothermal fluid.

  16. Supreme Court issues limited ruling in challenge to Utah abortion ban.

    Science.gov (United States)

    1996-06-28

    A law passed in Utah in 1991 which prohibited abortion except in cases of life endangerment, rape, incest, risk of grave damage to a woman's medical health, or grave fetal defects. The exceptions for women who had been sexually abused were eliminated after 20 weeks gestation. In December 1992, US District Court Judge J. Thomas Greene found the ban unconstitutional as applied to abortions prior to 20 weeks but upheld it as applied to procedures after that point in pregnancy. A three-judge appellate panel later reversed the district court decision in August 1995 on the argument that the prohibition on post-20-week abortions could not stand independent of the ban on earlier procedures. The appeals court also struck down a requirement that physicians performing those abortions allowed after viability use the method most likely to give the fetus the best chance of survival, unless it would endanger a woman's life or cause grave damage to her medical health. In an unsigned opinion issued on June 17, 1996, the US Supreme Court reversed the appeals court decision which struck down Utah's original 1991 ban on abortions. Five justices ruling in Leavitt v. Jane L. found that the US Court of Appeals for the Tenth Circuit misapplied Utah precedent when it found that the criminal abortion statute could not be divided into two separate abortion bans, one before and one after 20 weeks gestation. Health care providers will now argue that the ban on post-20-week abortions should be struck down on constitutional grounds. This is the first challenge to a state abortion law to come under High Court review since Planned Parenthood v. Casey in 1992.

  17. Comprehensive study of LASL Well C/T-2 Roosevelt Hot Springs KGRA, Utah, and applications to geothermal well logging

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, W.E.; Hulen, J.B.; Nielson, D.L.

    1981-02-01

    Utah State Geothermal Well 9-1 in the Roosevelt Hot Springs KGRA, Beaver County, Utah, has been donated by Phillips Petroleum Company for calibration and testing of well-logging equipment in the hot, corrosive, geothermal environment. It is the second Calibration/Test Well (C/T-2) in the Geothermal Log Interpretation Program. A study of cuttings and well logs from Well C/T-2 was completed. This synthesis and data presentation contains most of the subsurface geologic information needed to effect the total evaluation of geophysical logs acquired in this geothermal calibration/test well, C/T-2.

  18. Environmental Assessment of Remedial Action at the Mexican Hat Uranium Mill Tailings Site, Mexican Hat, Utah

    OpenAIRE

    U.S. Department of Energy

    1987-01-01

    This document assesses the environmental impacts of the proposed remedial action at the Mexican Hat uranium mill tailings site located on the Navajo Reservation in southern Utah. The site covers 235 acres and contains 69 acres of tailings and several of the original mill structures. The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law 95-604 (PL95-604), authorized the U.S. Department of Energy to clean up the site to reduce the potential health impacts associated wit...

  19. Survey of literature relating to energy development in Utah's Colorado Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, A.

    1980-06-01

    This study examines various energy resources in Utah including oil impregnated rocks (oil shale and oil sand deposits), geothermal, coal, uranium, oil and natural gas in terms of the following dimensions: resurce potential and location; resource technology, development and production status; resource development requirements; potential environmental and socio-economic impacts; and transportation tradeoffs. The advantages of minemouth power plants in comparison to combined cycle or hybrid power plants are also examined. Annotative bibliographies of the energy resources are presented in the appendices. Specific topics summarized in these annotative bibliographies include: economics, environmental impacts, water requirements, production technology, and siting requirements.

  20. Publications and geothermal sample library facilities of the Earth Science Laboratory, University of Utah Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Phillip M.; Ruth, Kathryn A.; Langton, David R.; Bullett, Michael J.

    1990-03-30

    The Earth Science Laboratory of the University of Utah Research Institute has been involved in research in geothermal exploration and development for the past eleven years. Our work has resulted in the publication of nearly 500 reports, which are listed in this document. Over the years, we have collected drill chip and core samples from more than 180 drill holes in geothermal areas, and most of these samples are available to others for research, exploration and similar purposes. We hope that scientists and engineers involved in industrial geothermal development will find our technology transfer and service efforts helpful.