WorldWideScience

Sample records for basic biomedical sciences

  1. Truth in basic biomedical science will set future mankind free.

    Science.gov (United States)

    Ling, Gilbert N

    2011-01-01

    It is self-evident that continued wellbeing and prosperity of our species in time to come depends upon a steady supply of major scientific and technologic innovations. However, major scientific and technical innovations are rare. As a rule, they grow only in the exceptionally fertile minds of men and women, who have fully mastered the underlying basic sciences. To waken their interest in science at an early critical age and to nurture and enhance that interest afterward, good textbooks at all level of education that accurately portray the relevant up-to-date knowledge are vital. As of now, the field of science that offers by far the greatest promise for the future of humanity is the science of life at the most basic cell and below-cell level. Unfortunately, it is precisely this crucial part of the (standardized) biological textbooks for all high schools and colleges in the US and abroad that have become, so to speak, fossilized. As a result, generation after generation of (educated) young men and women have been and are still being force-fed as established scientific truth an obsolete membrane (pump) theory, which has been categorically disproved half a century ago (see Endnote 1.) To reveal this Trojan horse of a theory for what it really is demands the concerted efforts of many courageous individuals especially young biology teachers who take themselves and their career seriously. But even the most courageous and the most resourceful won't find the task easy. To begin with, they would find it hard to access the critical scientific knowledge, with which to convert the skeptic and to rally the friendly. For the wealth of mutually supportive evidence against the membrane (pump) theory are often hidden in inaccessible publications and/or in languages other than English. To overcome this seemingly trivial but in fact formidable obstacle and to reveal the beauty and coherence of the existing but untaught truth, I put together in this small package a collection of the

  2. Impact of the USMLE Step 1 on Teaching and Learning of the Basic Biomedical Sciences.

    Science.gov (United States)

    Swanson, David B.; And Others

    1992-01-01

    Discussion of the newly modified United States Medical Licensing Examination Step 1 reviews the test, phase-in plans, and potential impact on basic biomedical sciences education. It is recommended that medical schools not use the test as the sole criterion for promotion to the third year and carefully review other examination-related requirements…

  3. Clinical and basic science teachers' opinions about the required depth of biomedical knowledge for medical students.

    Science.gov (United States)

    Koens, Franciska; Custers, Eugène J F M; ten Cate, Olle T J

    2006-05-01

    The aim of the present study was to investigate whether basic scientists and physicians agree on the required depth of biomedical knowledge of medical students at graduation. A selection of basic science and clinical teachers rated the relevance of biomedical topics for students at graduation, illustrated by 80 example items. The items were derived from ten organ systems and designed at four levels: clinical, organ, cellular and molecular. Respondents were asked to identify for each item to what extent recently graduated medical students should have knowledge about it. In addition, they were asked to indicate whether the content of the item should be included in the medical curriculum. Analysis showed that basic scientists and physicians do not diverge at the clinical level. At the organ, cellular and molecular levels however, basic scientists judge that medical students should have more active knowledge. As expected, basic scientists also indicate that more deep level content should be included. Explanations for this phenomenon will be discussed.

  4. Is basic science disappearing from medicine? The decline of biomedical research in the medical literature.

    Science.gov (United States)

    Steinberg, Benjamin E; Goldenberg, Neil M; Fairn, Gregory D; Kuebler, Wolfgang M; Slutsky, Arthur S; Lee, Warren L

    2016-02-01

    Explosive growth in our understanding of genomics and molecular biology have fueled calls for the pursuit of personalized medicine, the notion of harnessing biologic variability to provide patient-specific care. This vision will necessitate a deep understanding of the underlying pathophysiology in each patient. Medical journals play a pivotal role in the education of trainees and clinicians, yet we suspected that the amount of basic science in the top medical journals has been in decline. We conducted an automated search strategy in PubMed to identify basic science articles and calculated the proportion of articles dealing with basic science in the highest impact journals for 8 different medical specialties from 1994 to 2013. We observed a steep decline (40-60%) in such articles over time in almost all of the journals examined. This rapid decline in basic science from medical journals is likely to affect practitioners' understanding of and interest in the basic mechanisms of disease and therapy. In this Life Sciences Forum, we discuss why this decline may be occurring and what it means for the future of science and medicine.

  5. Holography In Biomedical Sciences

    Science.gov (United States)

    von Bally, G.

    1988-01-01

    Today not only physicists and engineers but also biological and medical scientists are exploring the potentials of holographic methods in their special field of work. Most of the underlying physical principles such as coherence, interference, diffraction and polarization as well as general features of holography e.g. storage and retrieval of amplitude and phase of a wavefront, 3-d-imaging, large field of depth, redundant storage of information, spatial filtering, high-resolving, non-contactive, 3-d form and motion analysis are explained in detail in other contributions to this book. Therefore, this article is confined to the applications of holography in biomedical sciences. Because of the great number of contributions and the variety of applications [1,2,3,4,5,6,7,8] in this review the investigations can only be mentioned briefly and the survey has to be confined to some examples. As in all fields of optics and laser metrology, a review of biomedical applications of holography would be incomplete if military developments and their utilization are not mentioned. As will be demonstrated by selected examples the increasing interlacing of science with the military does not stop at domains that traditionally are regarded as exclusively oriented to human welfare like biomedical research [9]. This fact is actually characterized and stressed by the expression "Star Wars Medicine", which becomes increasingly common as popular description for laser applications (including holography) in medicine [10]. Thus, the consequence - even in such highly specialized fields like biomedical applications of holography - have to be discussed.

  6. Basics of biomedical ultrasound for engineers

    CERN Document Server

    Azhari, Haim

    2010-01-01

    "Basics of Biomedical Ultrasound for Engineers is a structured textbook for university engineering courses in biomedical ultrasound and for researchers in the field. This book offers a tool for building a solid understanding of biomedical ultrasound, and leads the novice through the field in a step-by-step manner. The book begins with the most basic definitions of waves, proceeds to ultrasounds in fluids, and then delves into solid ultrasounds, the most complicated kind of ultrasound. It encompasses a wide range of topics within biomedical ultrasound, from conceptual definitions of waves to the intricacies of focusing devices, transducers, and acoustic fields"--Provided by publisher.

  7. Basic Science Training Program.

    Science.gov (United States)

    Brummel, Clete

    These six learning modules were developed for Lake Michigan College's Basic Science Training Program, a workshop to develop good study skills while reviewing basic science. The first module, which was designed to provide students with the necessary skills to study efficiently, covers the following topics: time management; an overview of a study…

  8. Basic Probability Theory for Biomedical Engineers

    CERN Document Server

    Enderle, John

    2006-01-01

    This is the first in a series of short books on probability theory and random processes for biomedical engineers. This text is written as an introduction to probability theory. The goal was to prepare students, engineers and scientists at all levels of background and experience for the application of this theory to a wide variety of problems--as well as pursue these topics at a more advanced level. The approach is to present a unified treatment of the subject. There are only a few key concepts involved in the basic theory of probability theory. These key concepts are all presented in the first

  9. [Basic science and applied science].

    Science.gov (United States)

    Pérez-Tamayo, R

    2001-01-01

    A lecture was presented by the author at the Democratic Opinion Forum on Health Teaching and Research, organized by Mexico's National Health Institutes Coordinating Office, at National Cardiology Institute "Ignacio Chavez", where he presented a critical review of the conventional classification of basic and applied science, as well as his personal view on health science teaching and research. According to the author, "well-conducted science" is that "generating reality-checked knowledge" and "mis-conducted science" is that "unproductive or producing 'just lies' and 'non-fundable'. To support his views, the author reviews utilitarian and pejorative definitions of science, as well as those of committed and pure science, useful and useless science, and practical and esoterical science, as synonyms of applied and basic science. He also asserts that, in Mexico, "this classification has been used in the past to justify federal funding cutbacks to basic science, allegedly because it is not targeted at solving 'national problems' or because it was not relevant to priorities set in a given six-year political administration period". Regarding health education and research, the author asserts that the current academic programs are inefficient and ineffective; his proposal to tackle these problems is to carry out a solid scientific study, conducted by a multidisciplinary team of experts, "to design the scientific researcher curricula from recruitment of intelligent young people to retirement or death". Performance assessment of researchers would not be restricted to publication of papers, since "the quality of scientific work and contribution to the development of science is not reflected by the number of published papers". The English version of this paper is available at: http://www.insp.mx/salud/index.html

  10. Emulsion Science Basic Principles

    CERN Document Server

    Leal-Calderon, Fernando; Schmitt, Véronique

    2007-01-01

    Emulsions are generally made out of two immiscible fluids like oil and water, one being dispersed in the second in the presence of surface-active compounds.They are used as intermediate or end products in a huge range of areas including the food, chemical, cosmetic, pharmaceutical, paint, and coating industries. Besides the broad domain of technological interest, emulsions are raising a variety of fundamental questions at the frontier between physics and chemistry. This book aims to give an overview of the most recent advances in emulsion science. The basic principles, covering aspects of emulsions from their preparation to their destruction, are presented in close relation to both the fundamental physics and the applications of these materials. The book is intended to help scientists and engineers in formulating new materials by giving them the basics of emulsion science.

  11. Terahertz biomedical science and technology

    CERN Document Server

    Son, Joo-Hiuk

    2014-01-01

    Introduction to Biomedical Studies Using Terahertz WavesJoo-Hiuk SonSection I Terahertz TechnologyTerahertz Sources and DetectorsHyunyong Choi and Joo-Hiuk SonTabletop High-Power Terahertz Pulse Generation TechniquesYun-Shik LeeTerahertz Imaging and Tomography TechniquesHyunyong Choi and Joo-Hiuk SonCompact Solid-State Electronic Terahertz Devices and CircuitsJae-Sung Rieh, Daekeun Yoon, and Jongwon Yun<

  12. Basic science of osteoarthritis.

    Science.gov (United States)

    Cucchiarini, Magali; de Girolamo, Laura; Filardo, Giuseppe; Oliveira, J Miguel; Orth, Patrick; Pape, Dietrich; Reboul, Pascal

    2016-12-01

    Osteoarthritis (OA) is a prevalent, disabling disorder of the joints that affects a large population worldwide and for which there is no definitive cure. This review provides critical insights into the basic knowledge on OA that may lead to innovative end efficient new therapeutic regimens. While degradation of the articular cartilage is the hallmark of OA, with altered interactions between chondrocytes and compounds of the extracellular matrix, the subchondral bone has been also described as a key component of the disease, involving specific pathomechanisms controlling its initiation and progression. The identification of such events (and thus of possible targets for therapy) has been made possible by the availability of a number of animal models that aim at reproducing the human pathology, in particular large models of high tibial osteotomy (HTO). From a therapeutic point of view, mesenchymal stem cells (MSCs) represent a promising option for the treatment of OA and may be used concomitantly with functional substitutes integrating scaffolds and drugs/growth factors in tissue engineering setups. Altogether, these advances in the fundamental and experimental knowledge on OA may allow for the generation of improved, adapted therapeutic regimens to treat human OA.

  13. Positron emission tomography basic sciences

    CERN Document Server

    Townsend, D W; Valk, P E; Maisey, M N

    2003-01-01

    Essential for students, science and medical graduates who want to understand the basic science of Positron Emission Tomography (PET), this book describes the physics, chemistry, technology and overview of the clinical uses behind the science of PET and the imaging techniques it uses. In recent years, PET has moved from high-end research imaging tool used by the highly specialized to an essential component of clinical evaluation in the clinic, especially in cancer management. Previously being the realm of scientists, this book explains PET instrumentation, radiochemistry, PET data acquisition and image formation, integration of structural and functional images, radiation dosimetry and protection, and applications in dedicated areas such as drug development, oncology, and gene expression imaging. The technologist, the science, engineering or chemistry graduate seeking further detailed information about PET, or the medical advanced trainee wishing to gain insight into the basic science of PET will find this book...

  14. Improving Graduate Education to Support a Branching Career Pipeline: Recommendations Based on a Survey of Doctoral Students in the Basic Biomedical Sciences

    Science.gov (United States)

    Fuhrmann, C. N.; Halme, D. G.; O'Sullivan, P. S.; Lindstaedt, B.

    2011-01-01

    Today's doctoral programs continue to prepare students for a traditional academic career path despite the inadequate supply of research-focused faculty positions. We advocate for a broader doctoral curriculum that prepares trainees for a wide range of science-related career paths. In support of this argument, we describe data from our survey of…

  15. Application of infrared to biomedical sciences

    CERN Document Server

    Etehadtavakol, Mahnaz

    2017-01-01

    The book covers the latest updates in the application of infrared to biomedical sciences, a non-invasive, contactless, safe and easy approach imaging of skin and tissue temperatures. Its diagnostic procedure allows practitioners to identify the locations of abnormal chemical and blood vessel activity such as angiogenesis in body tissue. Its non-invasive approach works by applying the technology of the infrared camera and state-of-the-art software, where high-resolution digital infrared imaging technology benefits highly from enhanced image production, standardized image interpretation protocols, computerized comparison and storage, and sophisticated image enhancement and analysis. The book contains contributions from global prominent scientists in the area of infrared applications in biomedical studies. The target audience includes academics, practitioners, clinicians and students working in the area of infrared imaging in biomedicine.

  16. Dielectrophoresis for Biomedical Sciences Applications: A Review

    Directory of Open Access Journals (Sweden)

    Nurhaslina Abd Rahman

    2017-02-01

    Full Text Available Dielectrophoresis (DEP is a label-free, accurate, fast, low-cost diagnostic technique that uses the principles of polarization and the motion of bioparticles in applied electric fields. This technique has been proven to be beneficial in various fields, including environmental research, polymer research, biosensors, microfluidics, medicine and diagnostics. Biomedical science research is one of the major research areas that could potentially benefit from DEP technology for diverse applications. Nevertheless, many medical science research investigations have yet to benefit from the possibilities offered by DEP. This paper critically reviews the fundamentals, recent progress, current challenges, future directions and potential applications of research investigations in the medical sciences utilizing DEP technique. This review will also act as a guide and reference for medical researchers and scientists to explore and utilize the DEP technique in their research fields.

  17. Optimizing biomedical science learning in a veterinary curriculum: a review.

    Science.gov (United States)

    Warren, Amy L; Donnon, Tyrone

    2013-01-01

    As veterinary medical curricula evolve, the time dedicated to biomedical science teaching, as well as the role of biomedical science knowledge in veterinary education, has been scrutinized. Aside from being mandated by accrediting bodies, biomedical science knowledge plays an important role in developing clinical, diagnostic, and therapeutic reasoning skills in the application of clinical skills, in supporting evidence-based veterinary practice and life-long learning, and in advancing biomedical knowledge and comparative medicine. With an increasing volume and fast pace of change in biomedical knowledge, as well as increased demands on curricular time, there has been pressure to make biomedical science education efficient and relevant for veterinary medicine. This has lead to a shift in biomedical education from fact-based, teacher-centered and discipline-based teaching to applicable, student-centered, integrated teaching. This movement is supported by adult learning theories and is thought to enhance students' transference of biomedical science into their clinical practice. The importance of biomedical science in veterinary education and the theories of biomedical science learning will be discussed in this article. In addition, we will explore current advances in biomedical teaching methodologies that are aimed to maximize knowledge retention and application for clinical veterinary training and practice.

  18. USSR Report, Life Sciences Biomedical and Behavioral Sciences.

    Science.gov (United States)

    1987-05-13

    1880Ü JPRS-UBB-87-OlO 13 MAY 1987 USSR Report LIFE SCIENCES BIOMEDICAL AND BEHAVIORAL SCIENCES DISTRIBUTION STATEMENT I App*w#d lot pubfe...Preirradiation Status and Site of Irradiation (N.P. Didenko, V.M. Perelmuter, et al.; BIOFIZIKA, No 5, Sep-Oct 86) 41 Effects of Nonionizing Microwave ...20026 radiometer (GDR) as a scaling unit. Regression equations were calculated for the controlr and experimental groups were calculated based on

  19. Biomedical and Environmental Sciences INFORMATION FOR AUTHORS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Biomedical and Environmental Sciences, an international journal with emphasis on scientific findings in China, publishes articles dealing with biologic and toxic effects of environmental pollutants on man and other forms of life. The effects may be measured with pharmacological, biochemical, pathological, and immunological techniques. The journal also publishes reports dealing with the entry, transport, and fate of natural and anthropogenic chemicals in the biosphere, and their impact on human health and well-being.Papers describing biochemical, pharmacological, pathological, toxicological and immunological studies of pharmaceuticals (biotechnological products) are also welcome.

  20. Basic sciences agonize in Turkey!

    Science.gov (United States)

    Akdemir, Fatma; Araz, Asli; Akman, Ferdi; Durak, Rıdvan

    2016-04-01

    In this study, changes from past to present in the departments of physics, chemistry, biology and mathematics, which are considered as the basic sciences in Turkey, are shown. The importance of basic science for the country emphasized and the status of our country was discussed with a critical perspective. The number of academic staff, the number of students, opened quotas according to years for these four departments at universities were calculated and analysis of the resulting changes were made. In examined graphics changes to these four departments were similar. Especially a significant change was observed in the physics department. Lack of jobs employing young people who have graduated from basic science is also an issue that must be discussed. There are also qualitative results of this study that we have discussed as quantitative. Psychological problems caused by unemployment have become a disease among young people. This study was focused on more quantitative results. We have tried to explain the causes of obtained results and propose solutions.

  1. Signal and image analysis for biomedical and life sciences

    CERN Document Server

    Sun, Changming; Pham, Tuan D; Vallotton, Pascal; Wang, Dadong

    2014-01-01

    With an emphasis on applications of computational models for solving modern challenging problems in biomedical and life sciences, this book aims to bring collections of articles from biologists, medical/biomedical and health science researchers together with computational scientists to focus on problems at the frontier of biomedical and life sciences. The goals of this book are to build interactions of scientists across several disciplines and to help industrial users apply advanced computational techniques for solving practical biomedical and life science problems. This book is for users in t

  2. Modeling and control in the biomedical sciences

    CERN Document Server

    Banks, H T

    1975-01-01

    These notes are based on (i) a series of lectures that I gave at the 14th Biennial Seminar of the Canadian Mathematical Congress held at the University of Western Ontario August 12-24, 1973 and (li) some of my lectures in a modeling course that I have cotaught in the Division of Bio-Medical Sciences at Brown during the past several years. An earlier version of these notes appeared in the Center for Dynamical Systems Lectures Notes series (CDS LN 73-1, November 1973). I have in this revised and extended version of those earlier notes incorporated a number of changes based both on classroom experience and on my research efforts with several colleagues during the intervening period. The narrow viewpoint of the present notes (use of optimization and control theory in biomedical problems) reflects more the scope of the CMC lectures given in August, 1973 than the scope of my own interests. Indeed, my real interests have included the modeling process itself as well as the contributions made by investiga­ tors who e...

  3. The Impact of Regulating Social Science Research with Biomedical Regulations

    Science.gov (United States)

    Durosinmi, Brenda Braxton

    2011-01-01

    The Impact of Regulating Social Science Research with Biomedical Regulations Since 1974 Federal regulations have governed the use of human subjects in biomedical and social science research. The regulations are known as the Federal Policy for the Protection of Human Subjects, and often referred to as the "Common Rule" because 18 Federal…

  4. Basic sciences of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Magdy M. (ed.) [Imperial College London (United Kingdom). Biological Imaging Centre

    2011-07-01

    Nuclear medicine has become an ever-changing and expanding diagnostic and therapeutic medical profession. The day-to-day innovations seen in the field are, in great part, due to the integration of many scientific bases with complex technologic advances. The aim of this reference book, Basic Sciences of Nuclear Medicine, is to provide the reader with a comprehensive and detailed discussion of the scientific bases of nuclear medicine, covering the different topics and concepts that underlie many of the investigations and procedures performed in the field. Topics include radiation and nuclear physics, Tc-99m chemistry, single-photon radiopharmaceuticals and PET chemistry, radiobiology and radiation dosimetry, image processing, image reconstruction, quantitative SPECT imaging, quantitative cardiac SPECT, small animal imaging (including multimodality hybrid imaging, e.g., PET/CT, SPECT/CT, and PET/MRI), compartmental modeling, and tracer kinetics. (orig.)

  5. Basic Energy Sciences Program Update

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, and operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.

  6. Basic sciences curriculum in medical education

    Directory of Open Access Journals (Sweden)

    RITA REZAEE

    2013-01-01

    Full Text Available Introduction: Traditional methods are generally used for teaching basic science courses at Shiraz Medical School. Such courses are taught during the first and second years of a seven-year medical program. The goal of this study was to analyze teachers and students’ perceptions of basic science teaching in medical education. Methods: A descriptive cross-sectional study was conducted at the college of medicine of Shiraz University of Medical Sciences. Results: Regarding the students’ viewpoints, 71.4% reported that curriculum content in basic sciences was enough and had good relevance. 59.2% of students believed the objectives of basic sciences curriculum were clear. Conclusion: The burden of teaching basic sciences ranges from sustaining interest to clinical relevance. It is expected that medical schools will continuously monitor what works and what does not work with their curricula and make the necessary adaptations as required.

  7. Artificial Sight Basic Research, Biomedical Engineering, and Clinical Advances

    CERN Document Server

    Humayun, Mark S; Chader, Gerald; Greenbaum, Elias

    2008-01-01

    Artificial sight is a frontier area of modern ophthalmology combining the multidisciplinary skills of surgical ophthalmology, biomedical engineering, biological physics, and psychophysical testing. Many scientific, engineering, and surgical challenges must be surmounted before widespread practical applications can be realized. The goal of Artificial Sight is to summarize the state-of-the-art research in this exciting area, and to describe some of the current approaches and initiatives that may help patients in a clinical setting. The Editors are active researchers in the fields of artificial sight, biomedical engineering and biological physics. They have received numerous professional awards and recognition for their work. The artificial sight team at the Doheny Eye Institute, led by Dr. Mark Humayun, is a world leader in this area of biomedical engineering and clinical research. Key Features Introduces and assesses the state of the art for a broad audience of biomedical engineers, biophysicists, and clinical...

  8. Basic concepts in social sciences III

    NARCIS (Netherlands)

    Hoede, C.

    2004-01-01

    In this paper the set of concepts considered to be basic to the fields of Economics, Organization Theory, Political Science, Psychology and Sociology is completed. The set of 55 basic concepts in the first two papers on basic concepts was mainly determined by considering concepts in relation to soci

  9. Basic Energy Sciences FY 2014 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  10. Basic Energy Sciences FY 2011 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-01

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  11. Basic Energy Sciences FY 2012 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  12. Enlivening basic-science learning with current journal articles.

    Science.gov (United States)

    Beresford, W A

    1996-01-01

    Pre-clinical medical students are often unconvinced that the basic sciences are clinically valuable. Also, they are hesitant about formulating ideas on their own from non-textbook sources. First-year medical students taking histology or neurobiology were persuaded to consult articles from the current biomedical literature. I set brief short-answer and labeled-sketch questions well before the course theoretical examinations, where the answers counted toward the score. The answers could only be found by reading in articles made available in the laboratory. The articles were chosen to display basic-science knowledge in action in clinical contexts. The questions offer an additional curriculum that can be steered toward, for example, concerns of family practice, mechanisms of common diseases, and topics of fast-increasing clinical importance.

  13. Biomedical Applications of NASA Science and Technology

    Science.gov (United States)

    Brown, James N., Jr.

    1968-01-01

    During the period 15 September 1968 to 14 December 1968, the NASA supported Biomedical Application Team at the Research Triangle Institute has identified 6 new problems, performed significant activities on 15 of the active problems identified previously, performed 5 computer searches of the NASA aerospace literature, and maintained one current awareness search. As a partial result of these activities, one technology transfer was accomplished. As a part of continuing problem review, 13 problems were classified inactive. Activities during the quarter involved all phases of team activity with respect to biomedical problems. As has been observed in preceding years, it has been exceedingly difficult to arrange meetings with medical investigators during the fourth quarter of the calendar year. This is a result of a combination of factors. Teaching requirements, submission of grant applications and holidays are the most significant factors involved. As a result, the numbers of new problems identified and of transfers and potential transfers are relatively low during this quarter. Most of our activities have thus been directed toward obtaining information related to problems already identified. Consequently, during the next quarter we will follow up on these activities with the expectation that transfers will be accomplished on a number of them. In addition, the normal availability of researchers to the team is expected to be restored during this quarter, permitting an increase in new problem identification activities as well as follow-up with other researchers on old problems. Another activity scheduled for the next quarter is consultation with several interested biomedical equipment manufacturers to explore means of effective interaction between the Biomedical Application Team and these companies.

  14. Basic concepts in social sciences II

    OpenAIRE

    Hoede, C.

    2001-01-01

    In this paper an extension is given of the set of concepts considered to be basic to the fields of Economics, Organization Theory, Political Science, Psychology and Sociology. The modeling is in terms of automata and automata networks. In the first paper on basic concepts the simplest unit, the social atom, stood central. In this second paper social structures and processes are focused upon.

  15. Basic concepts in social sciences II

    NARCIS (Netherlands)

    Hoede, C.

    2001-01-01

    In this paper an extension is given of the set of concepts considered to be basic to the fields of Economics, Organization Theory, Political Science, Psychology and Sociology. The modeling is in terms of automata and automata networks. In the first paper on basic concepts the simplest unit, the soci

  16. Basic concepts in social sciences III

    OpenAIRE

    Hoede, C.

    2004-01-01

    In this paper the set of concepts considered to be basic to the fields of Economics, Organization Theory, Political Science, Psychology and Sociology is completed. The set of 55 basic concepts in the first two papers on basic concepts was mainly determined by considering concepts in relation to social atoms. The concepts that play a role in n-networks form the majority of the concepts added in this paper.

  17. Basic concepts in social sciences I

    NARCIS (Netherlands)

    Hoede, C.

    2000-01-01

    In this paper the results are given of an investigation into concepts from Economics, Organization Theory, Political Science, Psychology and Sociology. The goal of this investigation was to find out whether there is a set of concepts that may be considered to be basic to all these five social scienc

  18. Basic Energy Sciences: Summary of Accomplishments

    Science.gov (United States)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  19. Publications in biomedical and environmental sciences programs, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Pfuderer, H.A.; Moody, J.B.

    1981-07-01

    This bibliography contains 690 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1980. There are 529 references to articles published in journals and books and 161 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly and bimonthly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Energy, Environmental Sciences, and Computer Sciences.

  20. Evaluation of Biomedical Science Students Use and Perceptions of Podcasting

    Science.gov (United States)

    Smith, Katie; Morris, Neil P.

    2014-01-01

    The use of podcasting in higher education has escalated in recent years. The aim of this case study was to analyse undergraduate student use and perceptions of lecture audio recordings in the School of Biomedical Sciences at the University of Leeds. Students completed an online survey over a two-week period based on their use of lecture audio…

  1. Convergence of Terahertz Sciences in Biomedical Systems

    CERN Document Server

    Kim, Yong; Han, Haewook; Han, Joon; Ahn, Jaewook; Son, Joo-Hiuk; Park, Woong-Yang; Jeong, Young

    2012-01-01

    Recent technological breakthrough in the field of Terahertz radiation has triggered new applications in biology and biomedicine. Particularly, biological applications are based on the specific spectroscopic fingerprints of biological matter in this spectral region. Historically with the discovery of new electromagnetic wave spectrum, we have always discovered new medical diagnostic imaging systems. The use of terahertz wave was not realized due to the absence of useful terahertz sources. Now after successful generation of THz waves, it is reported that a great potential for THz wave exists for its resonance with bio-molecules. There are many challenging issues such as development of THz passive and active instrumentations, understanding of THz-Bio interaction for THz spectroscopy, THz-Bio nonlinear phenomena and safety guideline, and THz imaging systems. Eventually the deeper understanding of THz-Bio interaction and novel THz systems enable us to develop powerful THz biomedical imaging systems which can contr...

  2. Reaching Consensus on Essential Biomedical Science Learning Objectives in a Dental Curriculum.

    Science.gov (United States)

    Best, Leandra; Walton, Joanne N; Walker, Judith; von Bergmann, HsingChi

    2016-04-01

    This article describes how the University of British Columbia Faculty of Dentistry reached consensus on essential basic biomedical science objectives for DMD students and applied the information to the renewal of its DMD curriculum. The Delphi Method was used to build consensus among dental faculty members and students regarding the relevance of over 1,500 existing biomedical science objectives. Volunteer panels of at least three faculty members (a basic scientist, a general dentist, and a dental specialist) and a fourth-year dental student were formed for each of 13 biomedical courses in the first two years of the program. Panel members worked independently and anonymously, rating each course objective as "need to know," "nice to know," "irrelevant," or "don't know." Panel members were advised after each round which objectives had not yet achieved a 75% consensus and were asked to reconsider their ratings. After a maximum of three rounds to reach consensus, a second group of faculty experts reviewed and refined the results to establish the biomedical science objectives for the renewed curriculum. There was consensus on 46% of the learning objectives after round one, 80% after round two, and 95% after round three. The second expert group addressed any remaining objectives as part of its review process. Only 47% of previous biomedical science course objectives were judged to be essential or "need to know" for the general dentist. The consensus reached by participants in the Delphi Method panels and a second group of faculty experts led to a streamlined, better integrated DMD curriculum to prepare graduates for future practice.

  3. Theory and experiment in biomedical science

    Science.gov (United States)

    Allen, Roland

    2012-10-01

    A physicist might regard a person as a collection of electrons and quarks, and a biologist might regard her as an assemblage of biochemical molecules. But according to some speakers at a recent Welch conference [1] biology is a branch of physics. Then biomedical research is a branch of applied physics. Even if one adopts a more modest perspective, it is still true that physics can contribute strongly to biomedical research. An example on the experimental side is the recent studies of G protein-coupled receptors (targeted by more than 50 percent of therapeutic drugs) using synchrotron radiation and nuclear magnetic resonance. On the theory side, one might classify models as microscopic (e.g., simulations of molecules, ions, or electrons), mesoscopic (e.g., simulations of pathways within a cell), or macroscopic (e.g., calculations of processes involving the whole body). We have recently introduced a new macroscopic method for estimating the biochemical response to pharmaceuticals, surgeries, or other medical interventions, and applied it in a simple model of the response to bariatric surgeries [2]. An amazing effect is that the most widely used bariatric surgery (Roux-en-Y-gastric bypass) usually leads to remission of type 2 diabetes in days, long before there is any significant weight loss (with further beneficial effects in the subsequent months and years). Our results confirm that this effect can be largely explained by the enhanced post-meal excretion of glucagon-like peptide 1 (GLP-1), an incretin that increases insulin secretion from the pancreas, but also suggest that other mechanisms are likely to be involved, possibly including an additional insulin-independent pathway for glucose transport into cells. [4pt] [1] Physical Biology, from Atoms to Medicine, edited by Ahmed H. Zewail (Imperial College Press, London, 2008).[0pt] [2] Roland E. Allen, Tyler D. Hughes, Jia Lerd Ng, Roberto D. Ortiz, Michel Abou Ghantous, Othmane Bouhali, Abdelilah Arredouani

  4. Biomedical science postdocs: an end to the era of expansion.

    Science.gov (United States)

    Garrison, Howard H; Justement, Louis B; Gerbi, Susan A

    2016-01-01

    After >3 decades of steady growth, the number of biological and medical science postdoctorates at doctoral degree-granting institutions recently began to decline. From 2010 through 2013, the most recent survey years, the postdoctoral population decreased from 40,970 to 38,719, a loss of 5.5%. This decline represents a notable departure from the previous long-standing increases in the number of postdoctorates in the biomedical workforce. The rate of contraction appears to be accelerating in the most recent survey years, and this has important implications for the biomedical workforce.

  5. Basic concepts in social sciences I

    OpenAIRE

    Hoede, C.

    2000-01-01

    In this paper the results are given of an investigation into concepts from Economics, Organization Theory, Political Science, Psychology and Sociology. The goal of this investigation was to find out whether there is a set of concepts that may be considered to be basic to all these five social sciences. The set of concepts found will be modeled in terms of automata, thus providing a way of unifying the five fields in a general mathematical setting.

  6. Chinese Nuclear Science Basic Data Base (CNSBDB)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new research project on "Development of the Chinese Nuclear Science Basic Database (CNSBDB)for Fundamental Researches of Nuclear Physics and Interrelated Subjects, and Requirements of NuclearPower and Nuclear Technologies Application" has been commenced. The CNSBDB contains thefollowing eight segments: 1) Information on Nuclear Science (INFO); 2) Nuclear Structure Data Base(NSDB); 3) Nuclear Decay Data Base (NDDB); 4) Nuclear Reaction Data Base (NRDB); 5) Nuclear

  7. 76 FR 1212 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-01-07

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... areas of biomedical, behavioral and clinical science research. The panel meeting will be open to...

  8. Research-Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment

    Science.gov (United States)

    Lorden, Joan F., Ed.; Kuh, Charlotte V., Ed.; Voytuk, James A., Ed.

    2011-01-01

    "Research Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment" examines data on the biomedical sciences programs to gather additional insight about the talent, training environment, outcomes, diversity, and international participation in the biomedical sciences workforce. This report supports an earlier…

  9. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-12-21

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... biomedical, behavioral, and clinical science research. The panel meeting will be open to the public...

  10. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  11. Structural biology computing: Lessons for the biomedical research sciences.

    Science.gov (United States)

    Morin, Andrew; Sliz, Piotr

    2013-11-01

    The field of structural biology, whose aim is to elucidate the molecular and atomic structures of biological macromolecules, has long been at the forefront of biomedical sciences in adopting and developing computational research methods. Operating at the intersection between biophysics, biochemistry, and molecular biology, structural biology's growth into a foundational framework on which many concepts and findings of molecular biology are interpreted1 has depended largely on parallel advancements in computational tools and techniques. Without these computing advances, modern structural biology would likely have remained an exclusive pursuit practiced by few, and not become the widely practiced, foundational field it is today. As other areas of biomedical research increasingly embrace research computing techniques, the successes, failures and lessons of structural biology computing can serve as a useful guide to progress in other biomedically related research fields.

  12. Integration of Basic Sciences in Health's Courses

    Science.gov (United States)

    Azzalis, L. A.; Giavarotti, L.; Sato, S. N.; Barros, N. M. T.; Junqueira, V. B. C.; Fonseca, F. L. A.

    2012-01-01

    Concepts from disciplines such as Biochemistry, Genetics, Cellular and Molecular Biology are essential to the understanding and treatment of an elevated number of illnesses, but often they are studied separately, with no integration between them. This article proposes a model for basic sciences integration based on problem-based learning (PBL) and…

  13. Resident's morning report: an opportunity to reinforce principles of biomedical science in a clinical context.

    Science.gov (United States)

    Brass, Eric P

    2013-01-01

    The principles of biochemistry are core to understanding cellular and tissue function, as well as the pathophysiology of disease. However, the clinical utility of biochemical principles is often obscure to clinical trainees. Resident's Morning Report is a common teaching conference in which residents present clinical cases of interest to a faculty member for discussion. This venue provides an opportunity to illustrate how basic biomedical principles facilitate an understanding of the clinical presentation, the relevant pathophysiology, and the rationale for diagnostic and therapeutic strategies. A discussion of biochemical principles can easily be incorporated into these case discussions, with the potential to reinforce these concepts and to illustrate their application to clinical decision making. This approach maintains the effort to teach basic biomedical sciences in the context of clinical application across the educational continuum.

  14. Modern Trends in Imaging XI: Impedance Measurements in the Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Frederick D. Coffman

    2012-01-01

    Full Text Available Biological organisms and their component organs, tissues and cells have unique electrical impedance properties. Impedance properties often change with changes in structure, composition, and metabolism, and can be indicative of the onset and progression of disease states. Over the past 100 years, instruments and analytical methods have been developed to measure the impedance properties of biological specimens and to utilize these measurements in both clinical and basic science settings. This chapter will review the applications of impedance measurements in the biomedical sciences, from whole body analysis to impedance measurements of single cells and cell monolayers, and how cellular impedance measuring instruments can now be used in high throughput screening applications.

  15. The United Nations Basic Space Science Initiative

    Science.gov (United States)

    Haubold, Hans; Balogh, Werner

    2014-05-01

    The basic space science initiative was a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis, particularly in developing nations. Basic space science workshops were co-sponsored and co-organized by ESA, JAXA, and NASA. A series of workshops on basic space science was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004; http://neutrino.aquaphoenix.com/un-esa/) and addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia. Through the lead of the National Astronomical Observatory Japan, astronomical telescope facilities were inaugurated in seven developing nations and planetariums were established in twenty developing nations based on the donation of respective equipment by Japan.Pursuant to resolutions of the Committee on the Peaceful Uses of Outer Space of the United Nations (COPUOS) and its Scientific and Technical Subcommittee, since 2005, these workshops focused on the preparations for and the follow-ups to the International Heliophysical Year 2007 (UAE 2005, India 2006, Japan 2007, Bulgaria 2008, South Korea 2009; www.unoosa.org/oosa/SAP/bss/ihy2007/index.html). IHY's legacy is the current operation of 16 worldwide instrument arrays with more than 1000 instruments recording data on solar-terrestrial interaction from coronal mass ejections to variations of the total electron content in the ionosphere (http://iswisecretariat.org/). Instruments are provided to hosting institutions by entities of Armenia, Brazil, France, Israel, Japan, Switzerland, and the United States. Starting in 2010, the workshops focused on the International Space Weather Initiative (ISWI) as mandated in a three-year-work plan as part of the deliberations of COPUOS. Workshops on ISWI

  16. Four basic laws in design science

    Institute of Scientific and Technical Information of China (English)

    Xie Youbai

    2014-01-01

    A point on the distinction between design and science is given and the connotations of design science are discussed in the paper. Design should be understood as the first step of all human’s purposeful activity, which is a daily behavior for everyone. Four laws are summarized,which describe the basic patterns of design and are the constituents of design science. They are the law of design based on existed knowledge,law of in-completeness of design knowledge,law of design centered on new knowledge acquirement and law of competi-tiveness of design knowledge. The four basic laws show the knowledge essence of design. To enrich the existed knowledge,to make it convenient to be used,to teach designers with high intuition and inspiration in picking useful elements of existed knowledge and shaping competitive ideas and to have strong new knowledge acquire-ment facility are the basic conditions of good designs. Study of design science will promote the structure of tra-ditional engineering education. An important conclusion is derived that there will be no successful innovation without good design.

  17. What should biomedical sciences education in dental schools achieve?

    Science.gov (United States)

    Lantz, M S; Chaves, J F

    1997-05-01

    Education for the first professional degree in dentistry is intended to produce graduates capable of offering a wide range of high quality dental services to the general public. More than that, it is expected that graduates will be firmly grounded in the scientific basis for their professional practices and be equipped to evaluate critically and integrate selectively new scientific findings that emerge during their professional lifetimes. In addition, they are expected to be able to work effectively with diverse patient populations and to conduct their practices with a high level of sensitivity to the ethical and psychosocial dimensions of patient care. Indiana University School of Dentistry has undergone a process of curriculum reform that has yielded a new first professional degree program. Its hallmarks are large, multidisciplinary courses (seven courses in the first two years) that are taught using a variety of strategies including problem-based learning in small groups as well as lectures. The biomedical sciences curriculum is concept-based. Students will demonstrate their understanding of science concepts and methods by applying them to the solution of research and health care problems. Biomedical sciences will be taught at a level that will provide a comprehensive understanding of the functioning of the human body in health and disease, allow students to assimilate the coming revolution in molecular medicine, and selectively use new diagnostics, preventives, and therapeutics that evolve as molecular biological technologies yield solutions to current medical and dental problems. Using the biomedical sciences curriculum as a vehicle, we will also achieve the goal of training dentists as critical thinkers, problem solvers, lifelong learners, and ethical practitioners, skillful in peer and self-evaluation, and cognizant of the psychosocial as well as biomedical perspective of health and disease.

  18. Life and Biomedical Sciences and Applications Advisory Subcommittee Meeting

    Science.gov (United States)

    1996-01-01

    The proceedings of the August 1995 meeting of the Life and Biomedical Sciences and Applications Advisory Subcommittee (LBSAAS) are summarized. The following topics were addressed by the Subcommittee members: the activities and status of the LBSA Division; program activities of the Office of Life and Microgravity Sciences and Applications (OLMSA); the medical Countermeasures Program; and the Fettman Report on animal research activities at ARC. Also presented were a history and overview of the activities of the Space Station Utilization Advisory Committee and the Advanced Life Support Program (ALSP). The meeting agenda and a list of the Subcommittee members and meeting attendees are included as appendices.

  19. Developing Basic Space Science World Wide

    CERN Document Server

    Haubold, H J

    2004-01-01

    The UN/ESA Workshops on Basic Space Science is a long-term effort for the development of astronomy and regional and international co-operation in this field on a world wide basis, particularly in developing nations. The first four workshops in this series (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, and Egypt 1994) addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia, respectively. One major recommendation that emanated from the first four workshops was that small astronomical facilities should be established in developing nations for research and education programmes at the university level and that such facilities should be networked. Subsequently, material for teaching and observing programmes for small optical telescopes were developed or recommended and astronomical telescope facilities have been inaugurated at UN/ESA Workshops on Basic Space Science in Sri Lanka (1995), Honduras (1997), and Jordan (1999). UN/ESA Workshops on Bas...

  20. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-05-14

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to the... location changes have been made for the following panel meetings of the of the Joint Biomedical...

  1. Data science, learning, and applications to biomedical and health sciences.

    Science.gov (United States)

    Adam, Nabil R; Wieder, Robert; Ghosh, Debopriya

    2017-01-01

    The last decade has seen an unprecedented increase in the volume and variety of electronic data related to research and development, health records, and patient self-tracking, collectively referred to as Big Data. Properly harnessed, Big Data can provide insights and drive discovery that will accelerate biomedical advances, improve patient outcomes, and reduce costs. However, the considerable potential of Big Data remains unrealized owing to obstacles including a limited ability to standardize and consolidate data and challenges in sharing data, among a variety of sources, providers, and facilities. Here, we discuss some of these challenges and potential solutions, as well as initiatives that are already underway to take advantage of Big Data.

  2. Publications in biomedical and environmental sciences programs, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.B. (comp.)

    1982-07-01

    This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference.

  3. Integrating Contemplative Tools into Biomedical Science Education and Research Training Programs

    Directory of Open Access Journals (Sweden)

    Rodney R. Dietert

    2014-01-01

    Full Text Available Academic preparation of science researchers and/or human or veterinary medicine clinicians through the science, technology, engineering, and mathematics (STEM curriculum has usually focused on the students (1 acquiring increased disciplinary expertise, (2 learning needed methodologies and protocols, and (3 expanding their capacity for intense, persistent focus. Such educational training is effective until roadblocks or problems arise via this highly-learned approach. Then, the health science trainee may have few tools available for effective problem solving. Training to achieve flexibility, adaptability, and broadened perspectives using contemplative practices has been rare among biomedical education programs. To address this gap, a Cornell University-based program involving formal biomedical science coursework, and health science workshops has been developed to offer science students, researchers and health professionals a broader array of personal, contemplation-based, problem-solving tools. This STEM educational initiative includes first-person exercises designed to broaden perceptional awareness, decrease emotional drama, and mobilize whole-body strategies for creative problem solving. Self-calibration and journaling are used for students to evaluate the personal utility of each exercise. The educational goals are to increase student self-awareness and self-regulation and to provide trainees with value-added tools for career-long problem solving. Basic elements of this educational initiative are discussed using the framework of the Tree of Contemplative Practices.

  4. Annual report, Basic Sciences Branch, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL's in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy's National Photovoltaic Research Program plans.

  5. Annual report, Basic Sciences Branch, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL`s in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

  6. USSR Report, Life Sciences Biomedical and Behavioral Sciences

    Science.gov (United States)

    2007-11-02

    academician, Ukrainian SSSR Academy of Sciences, Physicochemical Institute, Ukrainian SSR Academy of Sciences, Odessa [Abstract] Polyacrylamide gel (PAAG...the canned chicken and beef products. For example, it has been demonstrated that one of the common additives in pediatric products, starch ... starch products may react with proteins leading to the formation of polycondensation products and eliminating 20-50% of the free amino acids in the

  7. Life sciences biomedical research planning for Space Station

    Science.gov (United States)

    Primeaux, Gary R.; Michaud, Roger; Miller, Ladonna; Searcy, Jim; Dickey, Bernistine

    1987-01-01

    The Biomedical Research Project (BmRP), a major component of the NASA Life Sciences Space Station Program, incorporates a laboratory for the study of the effects of microgravity on the human body, and the development of techniques capable of modifying or counteracting these effects. Attention is presently given to a representative scenario of BmRP investigations and associated engineering analyses, together with an account of the evolutionary process by which the scenarios and the Space Station design requirements they entail are identified. Attention is given to a tether-implemented 'variable gravity centrifuge'.

  8. Graduate Experience in Science Education: The Development of a Science Education Course for Biomedical Science Graduate Students

    Science.gov (United States)

    Markowitz, Dina G.; DuPre, Michael J.

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with…

  9. Publications in biomedical and environmental sciences programs, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.B. (comp.)

    1983-04-01

    This bibliography contains 725 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1982. There are 553 references to articles published in journals and books and 172 references to reports. The citations appear once ordered by the first author's division or by the performing division. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions are represented alphabetically. Indexes are provided by author, title, and journal reference. Reprints of articles referenced in this bibliography can be obtained from the author or the author's division.

  10. Agricultural Mechanics and Basic Plant Science. Agricultural Mechanics and Basic Animal Science. An Administrative Guide for Agricultural Education.

    Science.gov (United States)

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum Center.

    This basic instructional guide for the first two years of instruction in agricultural education is one in a series of such guides. It is useful in developing and selecting instructional material and implementing competency-based education for two courses: agricultural science and basic plant science and agricultural science and basic animal…

  11. USSR Report, Life Sciences Biomedical and Behavioral Sciences.

    Science.gov (United States)

    2007-11-02

    Poliomyelitis and Viral Encephalitides, USSR Academy of Medical Sciences, Moscow [Abstract] A study was made of the influence of tahyna virus on the...Suppression of Muscle Macrophage Function in Experimental Tahyna Virus Infection (V. V. Vargin, B. F. Semenov; VOPROSY VIRUSOLOGII, No 2, Mar-Apr 83) 14...Tick-Borne Encephalitis Virus Genome DNA-Copies Into Cellular DNA (I. D. Drynov, et al.; VOPROSY VIRUSOLOGII, No 2, Mar-Apr 83) 32 "Strict

  12. USSR Report, Life Sciences Biomedical and Behavioral Sciences

    Science.gov (United States)

    2007-11-02

    Studies) p 116 MARKYAVICHYUS, V. Yu., Institute of Botany , LiSSR Academy of Sciences, Nilnius [Abstract] Three species of mold of the genus Septoria...Jul-Sep 83 (manuscript received 19 Nov 82) pp 15-17 ZVYAGIN, V. N., Scientific Research Institute of Forensic Medicine (director- A. P. Gromov...received 2 Nov 82) pp 29-31 BOYKOVA, N. V., ZARAF’YANTS, G. N., KRAVTSOVA, G. B. and PETRACHKOVA, T. V., Chair of Forensic Medicine, Toxic Chemicals

  13. Basic Sciences Branch annual report, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1989, through September 30, 1990. Six technical sections of the report cover these main areas of NREL's in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Solid-State Spectroscopy. Each section of the report was written by the group leader principally in charge of the work. The task in each case was to explain the purpose and major accomplishments of the work in the context of the US Department of Energy's National Photovoltaic Research Program plans.

  14. Basic Sciences Branch annual report, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1989, through September 30, 1990. Six technical sections of the report cover these main areas of NREL`s in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Solid-State Spectroscopy. Each section of the report was written by the group leader principally in charge of the work. The task in each case was to explain the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

  15. [Evolutionary medicine: an emergent basic science].

    Science.gov (United States)

    Spotorno, Angel E

    2005-02-01

    Evolutionary Medicine is an emergent basic science that offers new and varied perspectives to the comprehension of human health. The application of classic evolutionary theories (descent with modification, and natural selection) to the human organism, to its pathogens, and their mutual co-evolution, provides new explanations about why we get sick, how we can prevent this, and how we can heal. Medicine has focused mainly on the proximate or immediate causes of diseases and the treatment of symptoms, and very little on its evolutionary or mediate causes. For instance, the present human genome and phenotypes are essentially paleolithic ones: they are not adapted to modern life style, thus favoring the so-called diseases of civilization (ie: ateroesclerosis, senescence, myopia, phobias, panic attacks, stress, reproductive cancers). With the evolutionary approach, post-modern medicine is detecting better the vulnerabilities, restrictions, biases, adaptations and maladaptations of human body, its actual diseases, and its preventions.

  16. Cognitive and learning sciences in biomedical and health instructional design: A review with lessons for biomedical informatics education.

    Science.gov (United States)

    Patel, Vimla L; Yoskowitz, Nicole A; Arocha, Jose F; Shortliffe, Edward H

    2009-02-01

    Theoretical and methodological advances in the cognitive and learning sciences can greatly inform curriculum and instruction in biomedicine and also educational programs in biomedical informatics. It does so by addressing issues such as the processes related to comprehension of medical information, clinical problem-solving and decision-making, and the role of technology. This paper reviews these theories and methods from the cognitive and learning sciences and their role in addressing current and future needs in designing curricula, largely using illustrative examples drawn from medical education. The lessons of this past work are also applicable, however, to biomedical and health professional curricula in general, and to biomedical informatics training, in particular. We summarize empirical studies conducted over two decades on the role of memory, knowledge organization and reasoning as well as studies of problem-solving and decision-making in medical areas that inform curricular design. The results of this research contribute to the design of more informed curricula based on empirical findings about how people learn and think, and more specifically, how expertise is developed. Similarly, the study of practice can also help to shape theories of human performance, technology-based learning, and scientific and professional collaboration that extend beyond the domain of medicine. Just as biomedical science has revolutionized health care practice, research in the cognitive and learning sciences provides a scientific foundation for education in biomedicine, the health professions, and biomedical informatics.

  17. Basic Science Research and the Protection of Human Research Participants

    Science.gov (United States)

    Eiseman, Elisa

    2001-03-01

    Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in

  18. Context-Aware Adaptive Hybrid Semantic Relatedness in Biomedical Science

    Science.gov (United States)

    Emadzadeh, Ehsan

    Text mining of biomedical literature and clinical notes is a very active field of research in biomedical science. Semantic analysis is one of the core modules for different Natural Language Processing (NLP) solutions. Methods for calculating semantic relatedness of two concepts can be very useful in solutions solving different problems such as relationship extraction, ontology creation and question / answering [1--6]. Several techniques exist in calculating semantic relatedness of two concepts. These techniques utilize different knowledge sources and corpora. So far, researchers attempted to find the best hybrid method for each domain by combining semantic relatedness techniques and data sources manually. In this work, attempts were made to eliminate the needs for manually combining semantic relatedness methods targeting any new contexts or resources through proposing an automated method, which attempted to find the best combination of semantic relatedness techniques and resources to achieve the best semantic relatedness score in every context. This may help the research community find the best hybrid method for each context considering the available algorithms and resources.

  19. Art and science of authorship for biomedical research publication

    Directory of Open Access Journals (Sweden)

    S S Harsoor

    2016-01-01

    Full Text Available Completion of research is logically followed by process of submission of the outcomes for publication. The objective of this article is to sensitise the young potential authors to improve their skill of writing so that the acceptance rate of publication is improved without significant comments and efforts of the editors of the journal. The article is based on the available literature combined with the experience of the author himself as reviewer and editor of biomedical journals. The treatment patterns of clinicians are moving towards evidence-based medical practice. Hence, a clinically relevant research question based on the contemporary knowledge gap is studied using appropriate research methodology. The writers are informed about the criteria to be fulfilled to claim authorship. Finally, emphasis is laid on the essentials of good medical writing necessary for publication. The writing for submission to biomedical journal is both an art and science in itself. A scientifically well-conducted study along with a sound knowledge of the mechanics of writing will enable the novices to achieve better acceptance rate for publication.

  20. Art and science of authorship for biomedical research publication.

    Science.gov (United States)

    Harsoor, S S

    2016-09-01

    Completion of research is logically followed by process of submission of the outcomes for publication. The objective of this article is to sensitise the young potential authors to improve their skill of writing so that the acceptance rate of publication is improved without significant comments and efforts of the editors of the journal. The article is based on the available literature combined with the experience of the author himself as reviewer and editor of biomedical journals. The treatment patterns of clinicians are moving towards evidence-based medical practice. Hence, a clinically relevant research question based on the contemporary knowledge gap is studied using appropriate research methodology. The writers are informed about the criteria to be fulfilled to claim authorship. Finally, emphasis is laid on the essentials of good medical writing necessary for publication. The writing for submission to biomedical journal is both an art and science in itself. A scientifically well-conducted study along with a sound knowledge of the mechanics of writing will enable the novices to achieve better acceptance rate for publication.

  1. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-05-02

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... following three panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... review by the Board involve a wide range of medical specialties within the general areas of...

  2. 1st International Conference on Computational and Experimental Biomedical Sciences

    CERN Document Server

    Jorge, RM

    2015-01-01

    This book contains the full papers presented at ICCEBS 2013 – the 1st International Conference on Computational and Experimental Biomedical Sciences, which was organized in Azores, in October 2013. The included papers present and discuss new trends in those fields, using several methods and techniques, including active shape models, constitutive models, isogeometric elements, genetic algorithms, level sets, material models, neural networks, optimization, and the finite element method, in order to address more efficiently different and timely applications involving biofluids, computer simulation, computational biomechanics, image based diagnosis, image processing and analysis, image segmentation, image registration, scaffolds, simulation, and surgical planning. The main audience for this book consists of researchers, Ph.D students, and graduate students with multidisciplinary interests related to the areas of artificial intelligence, bioengineering, biology, biomechanics, computational fluid dynamics, comput...

  3. Big biomedical data as the key resource for discovery science.

    Science.gov (United States)

    Toga, Arthur W; Foster, Ian; Kesselman, Carl; Madduri, Ravi; Chard, Kyle; Deutsch, Eric W; Price, Nathan D; Glusman, Gustavo; Heavner, Benjamin D; Dinov, Ivo D; Ames, Joseph; Van Horn, John; Kramer, Roger; Hood, Leroy

    2015-11-01

    Modern biomedical data collection is generating exponentially more data in a multitude of formats. This flood of complex data poses significant opportunities to discover and understand the critical interplay among such diverse domains as genomics, proteomics, metabolomics, and phenomics, including imaging, biometrics, and clinical data. The Big Data for Discovery Science Center is taking an "-ome to home" approach to discover linkages between these disparate data sources by mining existing databases of proteomic and genomic data, brain images, and clinical assessments. In support of this work, the authors developed new technological capabilities that make it easy for researchers to manage, aggregate, manipulate, integrate, and model large amounts of distributed data. Guided by biological domain expertise, the Center's computational resources and software will reveal relationships and patterns, aiding researchers in identifying biomarkers for the most confounding conditions and diseases, such as Parkinson's and Alzheimer's.

  4. 76 FR 48147 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-08-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of renewal of the Basic Energy Sciences Advisory Committee. SUMMARY: Pursuant to Section 14(a)(2)(A) of...

  5. 76 FR 41234 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-07-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory...

  6. 78 FR 38696 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-06-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory...

  7. 77 FR 41395 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2012-07-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory...

  8. Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications

    Science.gov (United States)

    Geissner, Andreas; Seeberger, Peter H.

    2016-06-01

    A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.

  9. A brief simulation intervention increasing basic science and clinical knowledge

    OpenAIRE

    Sheakley, Maria L.; Gilbert, Gregory E.; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David

    2016-01-01

    Background: The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application.Purpose: To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant d...

  10. Database access and problem solving in the basic sciences.

    Science.gov (United States)

    de Bliek, R; Friedman, C P; Wildemuth, B M; Martz, J M; File, D; Twarog, R G; Reich, G M; Hoekstra, L

    1993-01-01

    This study examined the potential contribution that access to a database of biomedical information may offer in support of problem-solving exercises when personal knowledge is inadequate. Thirty-six medical students were assessed over four occasions and three domains in the basic sciences: bacteriology, pharmacology, and toxicology. Each assessment consisted of a two-pass protocol in which students were first assessed for their personal knowledge of a domain with a short-answer problem set. Then, for a sample of problems they had missed, they were asked to use a database, INQUIRER, to respond to questions which they had been unable to address with their personal knowledge. Results indicate that for a domain in which the database is well-integrated in course activities, useful retrieval of information which augmented personal knowledge increased over three assessment occasions, even continuing to increase several months after course exposure and experience with the database. For all domains, even at assessments prior to course exposure, students were able to moderately extend their ability to solve problems through access to the INQUIRER database.

  11. 76 FR 8358 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-02-14

    ... Friday, March 18, 2011; 9 a.m.-12 p.m. ADDRESS: Bethesda North Hotel and Conference Center, 5701... Science/DOE. News from the Office of Basic Energy Sciences. ] Discussion on the FY 2012 Budget. New...

  12. Teaching of the basic sciences in medicine: Changing trends.

    Science.gov (United States)

    Badyal, Dinesh K; Singh, Tejinder

    2015-01-01

    A number of medical schools throughout the world have tried to downsize the basic sciences, but studies have shown that teaching of basic sciences is of importance for the clinical years that lie ahead. While some students endorse this finding, others want instruction in these sciences to be limited in terms of content and time. With the increasing cost of medical education and healthcare, medical schools the world over are trying to contain expenditure on the teaching of the basic sciences. In India, too, instruction in these sciences has been curtailed. This trend may need to be reviewed and the new challenges in this area must be addressed.

  13. Keynote Lecture: The Problems and Challenges in Biomedical Sciences

    OpenAIRE

    Bruce Albert

    2015-01-01

    Distressed by the perverse incentives that have generated the current hyper-competitive biomedical research environment in the United States, four of us published an open-access article in April 2014 entitled: Rescuing US biomedical research from its systemic flaws (Alberts, B., Kirschner, Marc W., Tilghman, Shirley, and  Varmus, H.; Proc. Natl. Acad. Sci. USA 111, 5773-5777 (2014)). As announced in our follow-up piece, Opinion: Addressing systemic problems in the biomedical research enterpri...

  14. The rolling evolution of biomedical science as an essential tool in modern clinical practice.

    Science.gov (United States)

    Blann, Andrew

    2016-01-01

    The British Journal of Biomedical Science is committed to publishing high-quality original research that represents a clear advance in the practice of biomedical science, and reviews that summarise recent advances in the field of biomedical science. The overall aim of the Journal is to provide a platform for the dissemination of new and innovative information on the diagnosis and management of disease that is valuable to the practicing laboratory scientist. The Editorial that follows describes the Journal and provides a perspective of its aims and objectives.

  15. Biomedical Biopolymers, their Origin and Evolution in Biomedical Sciences: A Systematic Review.

    Science.gov (United States)

    Yadav, Preeti; Yadav, Harsh; Shah, Veena Gowri; Shah, Gaurav; Dhaka, Gaurav

    2015-09-01

    Biopolymers provide a plethora of applications in the pharmaceutical and medical applications. A material that can be used for biomedical applications like wound healing, drug delivery and tissue engineering should possess certain properties like biocompatibility, biodegradation to non-toxic products, low antigenicity, high bio-activity, processability to complicated shapes with appropriate porosity, ability to support cell growth and proliferation and appropriate mechanical properties, as well as maintaining mechanical strength. This paper reviews biodegradable biopolymers focusing on their potential in biomedical applications. Biopolymers most commonly used and most abundantly available have been described with focus on the properties relevant to biomedical importance.

  16. Horizontal integration of the basic sciences in the chiropractic curriculum.

    Science.gov (United States)

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  17. Basic mathematics for the biological and social sciences

    CERN Document Server

    Marriott, F H C

    2013-01-01

    Basic Mathematics for the Biological and Social Sciences deals with the applications of basic mathematics in the biological and social sciences. Mathematical concepts that are discussed in this book include graphical methods, differentiation, trigonometrical or circular functions, limits and convergence, integration, vectors, and differential equations. The exponential function and related functions are also considered. This monograph is comprised of 11 chapters and begins with an overview of basic algebra, followed by an introduction to infinitesimal calculus, scalar and vector quantities, co

  18. The Recognition of Biomedical Engineering Within the International Council for Science

    Science.gov (United States)

    2001-10-25

    Forty years separate the emergence of Biomedical Engineering in a meeting in Paris at UNESCO in 1959 from its recognition together with Medical...Physics in 1999 by the International Council for Science. The main problems of definition and of identity of Biomedical Engineering as a scientific

  19. Mining biomedical images towards valuable information retrieval in biomedical and life sciences.

    Science.gov (United States)

    Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas

    2016-01-01

    Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries.

  20. Applications of 14C-AMS in biomedical sciences (Bio-14C-AMS)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Accelerator mass spectrometry (AMS) is an ultrasensitive measure for tracing 14C labeled molecules in vivo or detecting the biomarker for assessment of carcinogenesis. In this review, basic principles, wide applications and new progresses of 14C-bio-AMS are presented. It has been a new advanced tool for measuring the adduction of biologcial molecules with xenobiotics, including carcinogens, drugs, agrochemicals, nicotine, etc. The successful applications have proven the effectiveness of AMS to assessing cancer risk, screening drug toxicity and studying nutrients uptake. In particular, AMS is characterized by measuring xenobiotics at very low dose levels relevant to human environmental exposure. It is sensitive and precise to an attomole (10-18 mole) or less of 14C per mg carbon. Although it has some shortcomings, undoubtedly, AMS possesses an evident merit of high sensitivity and will have widespread applications in the biomedical sciences.

  1. Advancement and applications of peptide phage display technology in biomedical science.

    Science.gov (United States)

    Wu, Chien-Hsun; Liu, I-Ju; Lu, Ruei-Min; Wu, Han-Chung

    2016-01-01

    Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.

  2. British Journal of Biomedical Science in 2015: what have we learned?

    Science.gov (United States)

    Blann, Andrew; Nation, Brian

    2016-01-01

    In 2015, the British Journal of Biomedical Science published 47 reports on topics relating to the various disciplines within biomedical science. Of these, the majority were in infection science (15 in microbiology and two in virology) and blood science (seven in biochemistry, four in haematology, three in immunology and one in transplantation), with a smaller number in cellular sciences (four reports) and with one review across disciplines. The present report will summarise key aspects of these publications that are of greatest relevance to laboratory scientists.

  3. Researchers warn of neglect to basic science

    Science.gov (United States)

    Banks, Michael

    2010-03-01

    Russia is losing its standing as a scientific powerhouse and its science is in a state of decline, according to a new report by the information-services provider Thomson Reuters. Entitled "The New Geography of Science: Research and Collaboration in Russia", the report warns that the country's research base "has a problem, and it shows little sign of a solution".

  4. TEACHING PHYSICS: Visual Basic science simulations

    Science.gov (United States)

    Evans, J. G.

    2000-01-01

    We are exploring the use of science simulation/modelling programs for teaching a variety of science concepts across the age range. The programs have been converted from the original RMBasic thanks to technological advances in equipment. We find that the programs complement practical work and allow in-depth analysis using multi-tasking with other programs.

  5. Basic proof skills of computer science students

    NARCIS (Netherlands)

    Hartel, P.H.; Es, van B.; Tromp, Th.J.M.

    1995-01-01

    Computer science students need mathematical proof skills. At our University, these skills are being taught as part of various mathematics and computer science courses. To test the skills of our students, we have asked them to work out a number of exercises. We found that our students are not as well

  6. Interactive Processing and Visualization of Image Data forBiomedical and Life Science Applications

    Energy Technology Data Exchange (ETDEWEB)

    Staadt, Oliver G.; Natarjan, Vijay; Weber, Gunther H.; Wiley,David F.; Hamann, Bernd

    2007-02-01

    Background: Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. Results: We show that new data processing tools and visualization systems can be used successfully in biomedical and life science applications. We present an adaptive high-resolution display system suitable for biomedical image data, algorithms for analyzing and visualization protein surfaces and retinal optical coherence tomography data, and visualization tools for 3D gene expression data. Conclusion: We demonstrated that interactive processing and visualization methods and systems can support scientists in a variety of biomedical and life science application areas concerned with massive data analysis.

  7. New frontiers in biomedical science and engineering during 2014-2015.

    Science.gov (United States)

    Liu, Feng; Lee, Dong-Hoon; Lagoa, Ricardo; Kumar, Sandeep

    2015-01-01

    The International Conference on Biomedical Engineering and Biotechnology (ICBEB) is an international meeting held once a year. This, the fourth International Conference on Biomedical Engineering and Biotechnology (ICBEB2015), will be held in Shanghai, China, during August 18th-21st, 2015. This annual conference intends to provide an opportunity for researchers and practitioners at home and abroad to present the most recent frontiers and future challenges in the fields of biomedical science, biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, etc. The papers published in this issue are selected from this Conference, which witness the advances in biomedical engineering and biotechnology during 2014-2015.

  8. From Bench to Bedside: A Communal Utility Value Intervention to Enhance Students' Biomedical Science Motivation

    Science.gov (United States)

    Brown, Elizabeth R.; Smith, Jessi L.; Thoman, Dustin B.; Allen, Jill M.; Muragishi, Gregg

    2015-01-01

    Motivating students to pursue science careers is a top priority among many science educators. We add to the growing literature by examining the impact of a utility value intervention to enhance student's perceptions that biomedical science affords important utility work values. Using an expectancy-value perspective, we identified and tested 2…

  9. A Robotic Irrigation System: motivating basic school students to science

    OpenAIRE

    Esteves, Zita; Costa, Manuel F. M.

    2012-01-01

    The active involvement of our students, from early ages, in the study of science requires a constant motivational effort. Robotics is an actual subject rather appealing to our youngsters. On the other hand interdisciplinary approaches are possible in different science subjects using robots or robotics systems or concepts. In the frames of the 2nd Portuguese “Hands-on Science” science fair a group of basic school students was suggested to develop a science fair project using a robotic kit. In ...

  10. Office of Basic Energy Sciences 1990 summary report

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Basic research is an important investment in the future which will help the US maintain and enhance its economic strength. The Office of Basic Energy Sciences (BES) basic research activities, carried out mainly in universities and Department of Energy (DOE) laboratories, are critical to the Nation's leadership in science, for training future scientists, and to fortify the Nation's foundations for social and economic well-being. Attainment of the national goals -- energy self-sufficiency, improved health and quality of life for all, economic growth, national security -- depends on both technological research achievements and the ability to exploit them rapidly. Basic research is a necessary element for technology development and economic growth. This report presents the Department of Energy's Office of Basic Energy Sciences program. The BES mission is to develop understanding and to stimulate innovative thinking needed to fortify the Department's missions.

  11. Teaching Basic Probability in Undergraduate Statistics or Management Science Courses

    Science.gov (United States)

    Naidu, Jaideep T.; Sanford, John F.

    2017-01-01

    Standard textbooks in core Statistics and Management Science classes present various examples to introduce basic probability concepts to undergraduate business students. These include tossing of a coin, throwing a die, and examples of that nature. While these are good examples to introduce basic probability, we use improvised versions of Russian…

  12. SPSS for applied sciences basic statistical testing

    CERN Document Server

    Davis, Cole

    2013-01-01

    This book offers a quick and basic guide to using SPSS and provides a general approach to solving problems using statistical tests. It is both comprehensive in terms of the tests covered and the applied settings it refers to, and yet is short and easy to understand. Whether you are a beginner or an intermediate level test user, this book will help you to analyse different types of data in applied settings. It will also give you the confidence to use other statistical software and to extend your expertise to more specific scientific settings as required.The author does not use mathematical form

  13. Science dialogues basic concepts and tools for effective science communication

    CERN Document Server

    2015-01-01

    The book is dedicated to scientists who decide to engage in science communication. It covers the main aspects of science communication, seen as an essential element in constructing the relationship between science and society. It outlines the international context, the principle forms of communication, and provides some tools for helping the reader to construct their own personal communication project.

  14. The Museum of Science and Industry Basic List of Children's Science Books, 1986.

    Science.gov (United States)

    Richter, Bernice, Comp.; Wenzel, Duane, Comp.

    This first supplement to the Museum of Science and Industry Basic List of Children's Science Books contains books received for the museum's 13th annual children's science book fair. Children's science books are listed under these headings: animals; astronomy; aviation and space; biography; careers; earth sciences; environment/conservation;…

  15. A Domino Game Developed To Integrate Basic Disciplines Of Graduation Courses In The Biomedical Area

    Directory of Open Access Journals (Sweden)

    J. D. Gonçalves

    2009-05-01

    Full Text Available Undergraduate students of the biomedical area, such as Medicine, Odontology, Biomedicine,  show considerable difficulty in learni ng basic disciplines, which contributes to the high degree of failure shown in these disciplines. Among them, Biochemistry is “accused” of being the most difficult one and integration of its contents with other  disciplines is still not fully achieved, despite the new technological tools available nowadays. Considering this, some Odontology students produced a domino game to exercise biochemistry knowledge while integrating it with microbiology, but keeping the fun of the original game. In this version of the classic game the number on the pieces were changed to specific subjects in biochemistry or microbiology. Associating the pieces require not only the ordinary strategies of the classic game, but also the academic experience on the related areas. The  students involved in the  development of this game acknowledged it as a helpful tool to better understanding biochemistry as well as microbiology. The formal presentation of the game to the others students of our class brought up similar considerations. The production and distribution of this kind of games might help young students of their career beginnings.

  16. Biomedical scientist training officers' evaluation of integrated (co-terminus) Applied Biomedical Science BSc programmes: a multicentre study.

    Science.gov (United States)

    Pitt, S J; Cunningham, J M

    2011-01-01

    The introduction of the Institute of Biomedical Science (IBMS) portfolio for pre-registration training in 2003 allowed universities to develop integrated (co-terminus) biomedical science BSc programmes. Students undertake structured placements within clinical pathology laboratories as part of their degree. The clinical training and professional development of students is undertaken by training officers (TOs), who are experienced Health Professions Council (HPC)-registered biomedical scientists and usually also members of the IBMS. This study aims to evaluate TOs' perceptions of these integrated degrees as a means of delivering pre-registration training for biomedical scientists. A questionnaire to collect quantitative data and be completed anonymously was sent to TOs, via staff at participating universities. Items considered TOs' perceptions in four categories: how well students fitted into the laboratory team, their professional and scientific development, the impact of delivering integrated degrees on service delivery, and the commitment to training students. Surveys took place in 2007, 2008 and 2009 and involved TOs taking students from 10, 14 and 17 universities each year, respectively. The response rates to the survey were 60% in 2007, 34% in 2008 and 12% in 2009. Participants were representative in terms of age, gender and pathology discipline and had a broad range of experience with students. The overall mean score for TOs perceptions was 3.38 in 2007 which increased significantly to 3.99 in 2009 (Kruskall Wallis test chi2 = 21.13, P<0.01). Mean scores in three of the four categories were positive in 2007, although the impact on service delivery was perceived negatively. In all areas, means were significantly greater in 2009. The results indicate that TOs view the integrated degrees favourably and are happy with the scientific and professional development of students. Although designing training sessions suitable for undergraduates took extra work initially

  17. IMPLICATIONS OF BASIC RESEARCH IN INFORMATION SCIENCES TO MACHINE DOCUMENTATION

    Science.gov (United States)

    Information sciences are considered as those basic to the understanding and creation of information systems, i.e. the apparatus or organizations for...carrying out and connecting the steps in the creation of information. Four functional areas to the information sciences are listed: pattern

  18. Welding As Science: Applying Basic Engineering Principles to the Discipline

    Science.gov (United States)

    Nunes, A. C., Jr.

    2010-01-01

    This Technical Memorandum provides sample problems illustrating ways in which basic engineering science has been applied to the discipline of welding. Perhaps inferences may be drawn regarding optimal approaches to particular welding problems, as well as for the optimal education for welding engineers. Perhaps also some readers may be attracted to the science(s) of welding and may make worthwhile contributions to the discipline.

  19. The Role Biomedical Science Laboratories Can Play in Improving Science Knowledge and Promoting First-Year Nursing Academic Success

    Science.gov (United States)

    Arneson, Pam

    2011-01-01

    The need for additional nursing and health care professionals is expected to increase dramatically over the next 20 years. With this in mind, students must have strong biomedical science knowledge to be competent in their field. Some studies have shown that participation in bioscience laboratories can enhance science knowledge. If this is true, an…

  20. The Faculty Costs to Educate a Biomedical Sciences Graduate Student

    Science.gov (United States)

    Smolka, Adam J.; Halushka, Perry V.; Garrett-Mayer, Elizabeth

    2015-01-01

    Academic medical centers nationwide face numerous fiscal challenges resulting from implementation of restructured healthcare delivery models, contracting state support for higher education, and increased competition for federal and other sources of biomedical research funding. In pursuing greater accountability and transparency in its fiscal…

  1. Race and Genetics: Controversies in Biomedical, Behavioral, and Forensic Sciences

    Science.gov (United States)

    Ossorio, Pilar; Duster, Troy

    2005-01-01

    Among biomedical scientists, there is a great deal of controversy over the nature of race, the relevance of racial categories for research, and the proper methods of using racial variables. This article argues that researchers and scholars should avoid a binary-type argument, in which the question is whether to use race always or never.…

  2. The Museum of Science and Industry Basic List of Children's Science Books, 1987.

    Science.gov (United States)

    Richter, Bernice, Comp.; Wenzel, Duane, Comp.

    Presented is the second annual supplement to the Museum of Science and Industry Basic List of Children's Science Books 1973-1984. In this supplement, children's science books are listed under the headings of animals, astronomy, aviation and space, biography, earth sciences, encyclopedias and reference books, environment and conservation, fiction,…

  3. Preparing for the unexpected: the pivotal role of social and behavioral sciences in trials of biomedical HIV prevention interventions.

    Science.gov (United States)

    Koblin, Beryl A; Andrasik, Michele; Austin, Judy

    2013-07-01

    A range of efficacies have been reported for biomedical HIV prevention interventions, including antiretroviral treatment, male circumcision, preexposure prophylaxis, microbicides, and preventive vaccines. This range of efficacies probably results from the influence of multiple inputs and processes during trials, including the strength and target of the intervention, host factors, target population characteristics, level of HIV exposure, and intervention dose. Expertise in social and behavioral sciences, in conjunction with basic science, clinical research, epidemiology, biostatistics, and community, is needed to understand the influence of these inputs and processes on intervention efficacy, improve trial design and implementation, and enable interpretation of trial results. In particular, social and behavioral sciences provide the means for investigating and identifying populations suitable for recruitment into and retention in trials and for developing and improving measures of HIV exposure and intervention dose, all within the larger sociocultural context. Integration of social and behavioral sciences early in idea generation and study design is imperative for the successful conduct of biomedical trials and for ensuring optimal data collection approaches necessary for the interpretation of findings, particularly in cases of unexpected results.

  4. Contribution of Electrochemistry to the Biomedical and Pharmaceutical Analytical Sciences.

    Science.gov (United States)

    Kauffmann, Jean-Michel; Patris, Stephanie; Vandeput, Marie; Sarakbi, Ahmad; Sakira, Abdul Karim

    2016-01-01

    All analytical techniques have experienced major progress since the last ten years and electroanalysis is also involved in this trend. The unique characteristics of phenomena occurring at the electrode-solution interface along with the variety of electrochemical methods currently available allow for a broad spectrum of applications. Potentiometric, conductometric, voltammetric and amperometric methods are briefly reviewed with a critical view in terms of performance of the developed instrumentation with special emphasis on pharmaceutical and biomedical applications.

  5. Keynote Lecture: The Problems and Challenges in Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Bruce Albert

    2015-08-01

    Full Text Available Distressed by the perverse incentives that have generated the current hyper-competitive biomedical research environment in the United States, four of us published an open-access article in April 2014 entitled: Rescuing US biomedical research from its systemic flaws (Alberts, B., Kirschner, Marc W., Tilghman, Shirley, and  Varmus, H.; Proc. Natl. Acad. Sci. USA 111, 5773-5777 (2014. As announced in our follow-up piece, Opinion: Addressing systemic problems in the biomedical research enterprise (Proc. Natl. Acad. Sci. USA 112, 1912-1913 (2015, we have formed a 16-member steering committee to oversee a new website that is designed to collect suggestions for actions that can ameliorate the identified problems, as well as to highlight promising changes that are either underway or proposed (see http://rescuingbiomedicalresearch.org.  Despite widespread agreement concerning the problems, any substantial change in the system is bound to be controversial. Experiments are therefore needed. In my talk, I will outline some possible ideas for overcoming the inertia that prevents moving forward.We are encouraging both national and international contributions to this effort, since the problems that we have described are by no means unique to the United States.

  6. Speaking of food: connecting basic and applied plant science.

    Science.gov (United States)

    Gross, Briana L; Kellogg, Elizabeth A; Miller, Allison J

    2014-10-01

    The Food and Agriculture Organization (FAO) predicts that food production must rise 70% over the next 40 years to meet the demands of a growing population that is expected to reach nine billion by the year 2050. Many facets of basic plant science promoted by the Botanical Society of America are important for agriculture; however, more explicit connections are needed to bridge the gap between basic and applied plant research. This special issue, Speaking of Food: Connecting Basic and Applied Plant Science, was conceived to showcase productive overlaps of basic and applied research to address the challenges posed by feeding billions of people and to stimulate more research, fresh connections, and new paradigms. Contributions to this special issue thus illustrate some interactive areas of study in plant science-historical and modern plant-human interaction, crop and weed origins and evolution, and the effects of natural and artificial selection on crops and their wild relatives. These papers provide examples of how research integrating the basic and applied aspects of plant science benefits the pursuit of knowledge and the translation of that knowledge into actions toward sustainable production of crops and conservation of diversity in a changing climate.

  7. Conventional Teaching in Basic Science: An inner view

    Directory of Open Access Journals (Sweden)

    Sukhendu Dutta

    2010-07-01

    Full Text Available Conventional teaching became debatable since early nineteenth century due to many factors. The most important was lack of basic science teacher that initiated to involve clinical teachers to teach basic sciences. Due to paucity of subject expert teacher, different forms of teaching modules were adopted namely problem-based learning, problem-solving learning, task-based learning, and so on. In mid nineteenth century controversy raised regarding outcome of new horizon of teaching. Therefore an effort was made to find out the opinions of the students and teaching fraternity about the applicability of conventional lecture based teaching by a subject expert in anatomy as well as other basic science subjects through literature survey. It is observed that conventional teaching, guided by subject expert is well appreciated by the students and that has been reflected in National Board of Examination part –I and United State Medical Licensing Examination. There are some inherent demerits also observed. To overcome weakness, study result suggests to adopt hybrid module of teaching that is combination of the merits of conventional and problem-based or problem-solving teaching. Horizontal integration is essential to correlate basic science subjects for firm foundation of basic knowledge before entering into clinical field. Care should be taken that under no circumstance novice is over loaded by the transmission of factual knowledge.

  8. Biomedical technical transfer. Applications of NASA science and technology

    Science.gov (United States)

    1976-01-01

    Lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative unit for evaluating heart patients. This technology is based on NASA research, using vacuum chambers to stress the cardiovascular system during space flight. Additional laboratory tests of an intracranial pressure transducer, have been conducted. Three new biomedical problems to which NASA technology is applicable are also identified. These are: a communication device for the speech impaired, the NASA development liquid-cooled garment, and miniature force transducers for heart research.

  9. Polymers in life sciences: Pharmaceutical and biomedical applications

    Science.gov (United States)

    Barba, Anna Angela; Dalmoro, Annalisa; d'Amore, Matteo; Lamberti, Gaetano; Cascone, Sara; Titomanlio, Giuseppe

    2015-12-01

    This paper deals with the work done by prof. Titomanlio and his group in the fields of pharmaceutical and biomedical applications of polymers. In particular, the main topics covered are: i) controlled drug release from pharmaceuticals based on hydrogel for oral delivery of drugs; ii) production and characterization of micro and nanoparticles based on stimuli-responsive polymers; iii) use of polymers for coronary stent gel-paving; iv) design and realization of novel methods (in-vitro and in-silico) to test polymer-based pharmaceuticals.

  10. Establishment of an index system for evaluating outstanding biomedical scientists for science foundation of Shanghai

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-jing; CHEN Xin; REN Xu-feng

    2007-01-01

    Objective:To establish a scientific, objective and applicable index system for evaluating outstanding biomedical scientists for science foundation of Shanghai. Methods: According to the principal indices that have been used in the developed countries for evaluating their talented personnel and the reality of our country, an index system was set up to evaluate the outstanding biomedical scientists for Shanghai science foundation. The following parameters were used to simplify the indices: correlation coefficient,multiple correlation coefficient, partial correlation coefficient, creditability, and discriminatory power.And analytic hierarchy process was used to determine the weights of each index. Results and Conclusions:The established index system is scientific and applicable; it is helpful for cultivating and evaluating outstanding biomedical scientists.

  11. A brief simulation intervention increasing basic science and clinical knowledge

    Directory of Open Access Journals (Sweden)

    Maria L. Sheakley

    2016-04-01

    Full Text Available Background: The United States Medical Licensing Examination (USMLE is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. Purpose: To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. Methods: This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l=515 and the intervention group received lecture plus a simulation exercise (nl+s=1,066. Assessment included summative exam questions (n=4 that were scored as pass/fail (≥75%. USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Results: Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003. Discussion: Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.

  12. A brief simulation intervention increasing basic science and clinical knowledge

    Science.gov (United States)

    Sheakley, Maria L.; Gilbert, Gregory E.; Leighton, Kim; Hall, Maureen; Callender, Diana; Pederson, David

    2016-01-01

    Background The United States Medical Licensing Examination (USMLE) is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. Purpose To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. Methods This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (nl=515) and the intervention group received lecture plus a simulation exercise (nl+s=1,066). Assessment included summative exam questions (n=4) that were scored as pass/fail (≥75%). USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Results Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003). Discussion Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum. PMID:27060102

  13. Basic science of nuclear medicine the bare bone essentials

    CERN Document Server

    Lee, Kai H

    2015-01-01

    Through concise, straightforward explanations and supporting graphics that bring abstract concepts to life, the new Basic Science of Nuclear Medicine—the Bare Bone Essentials is an ideal tool for nuclear medicine technologist students and nuclear cardiology fellows looking for an introduction to the fundamentals of the physics and technologies of modern day nuclear medicine.

  14. The New Millennium and an Education That Captures the Basic Spirit of Science.

    Science.gov (United States)

    Bybee, Rodger W.

    This document discusses reflections of the old and new millennium on education that capture the basic spirit of science. The explanation includes basic scientific ideas in physical sciences, earth systems, solar system and space; living systems; basic scientific thinking; the basic distinction between science and technology; basic connections…

  15. Basic Research in Materials Science and Economic Sustainable Growth

    Science.gov (United States)

    Habermeier, H.-U.

    2000-09-01

    The necessity of public funding of basic research has been proclaimed by V. Bush 1945 in the `social contract for science' and this concept has been unanimously accepted as a vital prerequisite for the wealth of nations during the past 50 years. Recent developments gave rise to a paradigm shift away from the Bush's concept. In this paper this development is critically explored and the economical impact of research is discussed. Current evolution in knowledge generation and a change of the political boundary conditions require a new concept for an integrated research system. Examples taken from the semiconductor industry serve as an indicator of the enabling importance of materials science and condensed matter physics in the past. Basic research in materials science of functional ceramics generated new developments that are believed to have similar impact in the future. Already appearing and in the years ahead more emphasized nature of materials science as an multidisciplinary activity serves a model for the proposal of the vision of an integrated system of basic research and education. This is a prerequisite to master the challenges we are facind in the next century. A science based winning culture is the model for the future.

  16. Competence of Science Foundation students in basic intellectual skills

    Directory of Open Access Journals (Sweden)

    Mailoo Selvaratnam

    2010-03-01

    Full Text Available The competence of Science Foundation students at the Mafikeng Campus of North-West University in some basic intellectual skills was studied, over a period of three years, utilising carefully designed questions. The skills tested included language, mathematical, graphical, three-dimensional visualisation, information processing and reasoning skills. The results showed that their competence in the basic intellectual skills needed to study science effectively was far below standard. This lack of competence could be expected to be detrimental to self-confidence and may also be an important reason for the high failure rate of students in their science courses. We concluded with the suggestion that much greater emphasis should be placed on the systematic and sustained training of students in intellectual skills and strategies of various types and that such training should be integrated, throughout the courses, with the teaching of subject content.

  17. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    Energy Technology Data Exchange (ETDEWEB)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  18. A New Voice in Science : Patient participation in decision-making on biomedical research

    NARCIS (Netherlands)

    Caron-Flinterman, J.F.

    2005-01-01

    End-users are increasingly involved in decision-making concerning science and technology. This dissertation focuses on a specific kind of end-user participation: patient participation in decision-making on bio-medical research. Since patients can be considered relevant experts and stakeholders with

  19. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, C.R.; Johnson, C.A.

    1988-02-01

    This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs.

  20. Drug design and discovery: translational biomedical science varies among countries.

    Science.gov (United States)

    Weaver, Ian N; Weaver, Donald F

    2013-10-01

    Drug design and discovery is an innovation process that translates the outcomes of fundamental biomedical research into therapeutics that are ultimately made available to people with medical disorders in many countries throughout the world. To identify which nations succeed, exceed, or fail at the drug design/discovery endeavor--more specifically, which countries, within the context of their national size and wealth, are "pulling their weight" when it comes to developing medications targeting the myriad of diseases that afflict humankind--we compiled and analyzed a comprehensive survey of all new drugs (small molecular entities and biologics) approved annually throughout the world over the 20-year period from 1991 to 2010. Based upon this analysis, we have devised prediction algorithms to ascertain which countries are successful (or not) in contributing to the worldwide need for effective new therapeutics.

  1. Biomedical technology transfer: Applications of NASA science and technology

    Science.gov (United States)

    1976-01-01

    The major efforts of the Stanford Biomedical Applications Team Program at the Stanford University School of Medicine for the period from October 1, 1975 to September 31, 1976 are covered. A completed EMG biotelemetry system which monitors the physiological signals of man and animals in space related research is discussed. The results of a pilot study involving lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative pressure unit for evaluating heart patients. This technology utilizes vacuum chambers to stress the cardiovascular system during space flight. Laboratory tests of an intracranial pressure transducer, have been conducted. Extremely stable long term data using capacative pressure sensors has lead to the order of commercially manufactured monitoring systems base. Projects involving commercialization are: flexible medical electrodes, an echocardioscope, a miniature biotelemetry system, and an on-line ventricular contour detector.

  2. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  3. Inclusion of policies on ethical standards in animal experiments in biomedical science journals.

    Science.gov (United States)

    Rands, Sean A

    2011-11-01

    Most published biomedical research involving animal models is evaluated carefully to ensure that appropriate ethical standards are met. In the current study, 500 journals randomly selected from MedLine were assessed for whether they presented animal research. Of the 138 journals that did, the instructions to authors of 85 (61.6%) included a requirement for author assurance of adherence to ethical standards during experiments involving animals. In comparison to a wider range of biologic journals, biomedical science journals were more likely to have some sort of ethical policy concerning the reporting and presentation of animal experiments.

  4. International Conference for Innovation in Biomedical Engineering and Life Sciences

    CERN Document Server

    Usman, Juliana; Mohktar, Mas; Ahmad, Mohd

    2016-01-01

    This volumes presents the proceedings of ICIBEL 2015, organized by the Centre for Innovation in Medical Engineering (CIME) under Innovative Technology Research Cluster, University of Malaya. It was held in Kuala Lumpur, Malaysia, from 6-8 December 2015. The ICIBEL 2015 conference promotes the latest researches and developments related to the integration of the Engineering technology in medical fields and life sciences. This includes the latest innovations, research trends and concerns, challenges and adopted solution in the field of medical engineering and life sciences. .

  5. Basic research in computer science and software engineering at SKLCS

    Institute of Scientific and Technical Information of China (English)

    Jian ZHANG; Xueyang ZHU; Wenhui ZHANG; Naijun ZHAN; Yidong SHEN; Haiming CHEN; Yunquan ZHANG; Yongji WANG; Enhua WU; Hongan WANG

    2008-01-01

    The State Key Laboratory of Computer Science (SKLCS) is committed to basic research in computer sci-ence and software engineering. The research topics of the laboratory include: concurrency theory, theory and algorithms for real-time systems, formal specifications based on context-free grammars, semantics of program-ming languages, model checking, automated reasoning, logic programming, software testing, software process improvement, middleware technology, parallel algo-rithms and parallel software, computer graphics and human-computer interaction. This paper describes these topics in some detail and summarizes some results obtained in recent years.

  6. 15th International Headache Congress: basic science highlights.

    Science.gov (United States)

    Cutrer, F Michael; Smith, Jonathan H

    2012-05-01

    The 15th Congress of the International Headache Society was held in Berlin from June 23rd to 26th of 2011. Interesting new data from several areas of the basic sciences of headache were presented. This is a review of some of the most exciting platform and poster presentations of the meeting. Research addressing 3 general areas of interest is presented in this review: pathophysiology, pharmacology, and genetics.

  7. Applying Nanotechnology to Human Health: Revolution in Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Siddhartha Shrivastava

    2009-01-01

    Full Text Available Recent research on biosystems at the nanoscale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, neuromorphic engineering, and developing a sustainable environment. Nanobiosystems research is a priority in many countries and its relevance within nanotechnology is expected to increase in the future. The realisation that the nanoscale has certain properties needed to solve important medical challenges and cater to unmet medical needs is driving nanomedical research. The present review explores the significance of nanoscience and latest nanotechnologies for human health. Addressing the associated opportunities, the review also suggests how to manage far-reaching developments in these areas.

  8. The placebo puzzle: examining the discordant space between biomedical science and illness/healing.

    Science.gov (United States)

    Pohlman, Shawn; Cibulka, Nancy J; Palmer, Janice L; Lorenz, Rebecca A; SmithBattle, Lee

    2013-03-01

    The placebo response presents an enigma to biomedical science: how can 'inert' or 'sham' procedures reduce symptoms and produce physiological changes that are comparable to prescribed treatments? In this study, we examine this puzzle by explicating the discordant space between the prevailing biomedical paradigm, which focuses on a technical understanding of diagnosis and treatment, and a broader understanding of illness and healing as relational and embodied. Although biomedical achievements are impressive, the knowledge resulting from this paradigm is limited by its ontological and epistemological assumptions. When the body and world are objectified, illness meanings, therapeutic relationships, and healing practices are dismissed or distorted. In spite of a robust critique of the tenets of biomedicine for guiding practice, the biomedical paradigm retains a tenacious hold on evidence-based medicine and nursing, downplaying our clinical understanding of the sentient body, patients' life-worlds, and illness and healing. In reality, skilled nurses rely on multiple forms of knowledge in providing high-quality care to particular patients. Clinically wise nurses integrate their experience and knowledge of patients' priorities, fears, and illness trajectories along with biomedical findings to make astute judgments and promote health and healing.

  9. A new paradigm for graduate research and training in the biomedical sciences and engineering.

    Science.gov (United States)

    Humphrey, J D; Coté, G L; Walton, J R; Meininger, G A; Laine, G A

    2005-06-01

    98Emphasis on the individual investigator has fostered discovery for centuries, yet it is now recognized that the complexity of problems in the biomedical sciences and engineering requires collaborative efforts from individuals having diverse training and expertise. Various approaches can facilitate interdisciplinary interactions, but we submit that there is a critical need for a new educational paradigm for the way that we train biomedical engineers, life scientists, and mathematicians. We cannot continue to train graduate students in isolation within single disciplines, nor can we ask any one individual to learn all the essentials of biology, engineering, and mathematics. We must transform how students are trained and incorporate how real-world research and development are done-in diverse, interdisciplinary teams. Our fundamental vision is to create an innovative paradigm for graduate research and training that yields a new generation of biomedical engineers, life scientists, and mathematicians that is more diverse and that embraces and actively pursues a truly interdisciplinary, team-based approach to research based on a known benefit and mutual respect. In this paper, we describe our attempt to accomplish this via focused training in biomechanics, biomedical optics, mathematics, mechanobiology, and physiology. The overall approach is applicable, however, to most areas of biomedical research.

  10. "Science Citation Index" Data as a Safety Net for Basic Science Books Considered for Weeding.

    Science.gov (United States)

    Burdick, Amrita J.

    1989-01-01

    Describes the use of the "Science Citation Index" in deciding whether to keep older basic science books that have failed to meet other criteria for collection retention. It is concluded that manual searching of the indexes proved feasible and reliable, while the lack of book titles on the online version reduced reliability of weeding…

  11. Opinions Of The Teachers Of Basic Medical Sciences Of Istanbul Medical Faculty On The Education In Basic Medical Sciences

    OpenAIRE

    ÖNER, Pernur

    2004-01-01

    In the present study which aims to assess the criticisms, opinions and suggestions of 63 teachers of basic medical sciences who teach in the 1st, and 2nd years, questionnaires were evaluated. Since the percentage of participating teachers is 70 %, the reliability of the results obtained are very high. Approximately 80 % of them revealed that, theoretical lessons are required to be presented by interactive education principles. Lecture presentations enriched with advanced technology-based...

  12. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-Health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-01-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia…

  13. Some Aspects of the State-of-the-Arts in Biomedical Science Research: A Perspective for Organizational Change in African Academia.

    Science.gov (United States)

    John, Theresa Adebola

    2014-01-01

    In the biomedical sciences, there is need to generate solutions for Africa's health and economic problems through the impact of university research. To guide organizational transformation, the author here presents some aspects of the state-of-the-arts of biomedical science research in advanced countries using a perspective derived from the FASEB journal publications. The author examines the thirty three peer reviewed scientific research articles in a centennial (April 2012) issue of the FASEB Journal [Volume 26(4)] using the following parameters: number of authors contributing to the paper; number of academic departments contributing to the paper; number of academic institutions contributing to the paper; funding of the research reported in the article. The articles were written by 7.97±0.61 authors from 3.46±0.3 departments of 2.79±0.29 institutions. The contributors were classified into four categories: basic sciences, clinical sciences, institutions and centers, and programs and labs. Amongst the publications, 21.2% were single disciplinary. Two tier collaboration amongst any two of the four categories were observed in 16/33 (48.5%) of the articles. Three tier and four tier collaborations were observed amongst 7/33 (21.2%) and 3/33 (9%) of the articles respectively. Therefore 26/33 (78.7%) of the articles were multidisciplinary. Collaborative efforts between basic science and clinical science departments were observed in 9/33 (27.3%) articles. Public funding through government agencies provided 85 out of a total of 143 (59.5%) grants. The collaborative and multidisciplinary nature and government support are characteristic of biomedical science in the US where research tends to result in solutions to problems and economic benefits.

  14. Tutorials for large classes of Common Foundation Program biomedical science students: successes and challenges.

    Science.gov (United States)

    al-Modhefer, Abdul-Kadhum J A; Roe, Sean M

    2010-05-01

    The aim of this paper is to investigate the problems encountered conducting biomedical science tutorials for nursing students in large classes with a typical student: staff ratio of 45:1. The study is based on level 1 Common Foundation Program students from the School of Nursing and Midwifery, Queen's University Belfast at the conclusion of two phases of biomedical sciences education which include a course of 12 interactive tutorials. Survey and interview methodologies were employed to investigate difficulties encountered by students in these large tutorial classes, to ascertain what characterises a good tutor and to explore student attitudes to interactive learning. The barriers to effective teaching and learning in tutorials are discussed and subsequently, a set of guidelines is proposed to enhance learning in them. These include being aware of the ability of the student group, having a compassionate questioning style, tailoring the teaching environment to fit the aims of the class and experimenting with different tutorial formats.

  15. Nutritional biology: a neglected basic discipline of nutritional science.

    Science.gov (United States)

    Döring, Frank; Ströhle, Alexander

    2015-11-01

    On the basis of a scientific-philosophical analysis, this paper tries to show that the approaches in current nutritional science-including its subdisciplines which focus on molecular aspects-are predominantly application-oriented. This becomes particularly evident through a number of conceptual problems characterized by the triad of 'dearth of theoretical foundation,' 'particularist research questions,' and 'reductionist understanding of nutrition.' The thesis presented here is that an interpretive framework based on nutritional biology is able to shed constructive light on the fundamental problems of nutritional science. In this context, the establishment of 'nutritional biology' as a basic discipline in research and education would be a first step toward recognizing the phenomenon of 'nutrition' as an oecic process as a special case of an organism-environment interaction. Modern nutritional science should be substantively grounded on ecological-and therefore systems biology as well as organismic-principles. The aim of nutritional biology, then, should be to develop near-universal 'law statements' in nutritional science-a task which presents a major challenge for the current science system.

  16. How neuroscience is taught to North American dental students: results of the Basic Science Survey Series.

    Science.gov (United States)

    Gould, Douglas J; Clarkson, Mackenzie J; Hutchins, Bob; Lambert, H Wayne

    2014-03-01

    The purpose of this study was to determine how North American dental students are taught neuroscience during their preclinical dental education. This survey represents one part of a larger research project, the Basic Science Survey Series for Dentistry, which covers all of the biomedical science coursework required of preclinical students in North American dental schools. Members of the Section on Anatomical Sciences of the American Dental Education Association assembled, distributed, and analyzed the neuroscience survey, which had a 98.5 percent response from course directors of the sixty-seven North American dental schools. The eighteen-item instrument collected demographic data on the course directors, information on the content in each course, and information on how neuroscience content is presented. Findings indicate that 1) most neuroscience instruction is conducted by non-dental school faculty members; 2) large content variability exists between programs; and 3) an increase in didactic instruction, integrated curricula, and use of computer-aided instruction is occurring. It is anticipated that the information derived from the survey will help guide neuroscience curricula in dental schools and aid in identifying appropriate content.

  17. Opportunities for discovery: Theory and computation in Basic Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Bruce; Kirby, Kate; McCurdy, C. William

    2005-01-11

    New scientific frontiers, recent advances in theory, and rapid increases in computational capabilities have created compelling opportunities for theory and computation to advance the scientific mission of the Office of Basic Energy Sciences (BES). The prospects for success in the experimental programs of BES will be enhanced by pursuing these opportunities. This report makes the case for an expanded research program in theory and computation in BES. The Subcommittee on Theory and Computation of the Basic Energy Sciences Advisory Committee was charged with identifying current and emerging challenges and opportunities for theoretical research within the scientific mission of BES, paying particular attention to how computing will be employed to enable that research. A primary purpose of the Subcommittee was to identify those investments that are necessary to ensure that theoretical research will have maximum impact in the areas of importance to BES, and to assure that BES researchers will be able to exploit the entire spectrum of computational tools, including leadership class computing facilities. The Subcommittee s Findings and Recommendations are presented in Section VII of this report.

  18. Geoengineering:Basic science and ongoing research efforts in China

    Institute of Scientific and Technical Information of China (English)

    CAO Long; GAO Chao-Chao; ZHAO Li-Yun

    2015-01-01

    Geoengineering (also called climate engineering), which refers to large-scale intervention in the Earth's climate system to counteract greenhouse gas-induced warming, has been one of the most rapidly growing areas of climate research as a potential option for tackling global warming. Here, we provide an overview of the scientific background and research progress of proposed geoengineering schemes. Geo-engineering can be broadly divided into two categories:solar geoengineering (also called solar radiation management, or SRM), which aims to reflect more sunlight to space, and carbon dioxide removal (CDR), which aims to reduce the CO2 content in the atmosphere. First, we review different proposed geoengineering methods involved in the solar radiation management and carbon dioxide removal schemes. Then, we discuss the fundamental science underlying the climate response to the carbon dioxide removal and solar radiation management schemes. We focus on two basic issues:1) climate response to the reduction in solar irradiance and 2) climate response to the reduction in atmospheric CO2. Next, we introduce an ongoing geoengineering research project in China that is supported by National Key Basic Research Program. This research project, being the first coordinated geoengineering research program in China, will systematically investigate the physical mechanisms, climate impacts, and risk and governance of a few targeted geoengineering schemes. It is expected that this research program will help us gain a deep under-standing of the physical science underlying geoengineering schemes and the impacts of geoengineering on global climate, in particular, on the Asia monsoon region.

  19. Geoengineering: Basic science and ongoing research efforts in China

    Directory of Open Access Journals (Sweden)

    Long Cao

    2015-09-01

    Full Text Available Geoengineering (also called climate engineering, which refers to large-scale intervention in the Earth's climate system to counteract greenhouse gas-induced warming, has been one of the most rapidly growing areas of climate research as a potential option for tackling global warming. Here, we provide an overview of the scientific background and research progress of proposed geoengineering schemes. Geoengineering can be broadly divided into two categories: solar geoengineering (also called solar radiation management, or SRM, which aims to reflect more sunlight to space, and carbon dioxide removal (CDR, which aims to reduce the CO2 content in the atmosphere. First, we review different proposed geoengineering methods involved in the solar radiation management and carbon dioxide removal schemes. Then, we discuss the fundamental science underlying the climate response to the carbon dioxide removal and solar radiation management schemes. We focus on two basic issues: 1 climate response to the reduction in solar irradiance and 2 climate response to the reduction in atmospheric CO2. Next, we introduce an ongoing geoengineering research project in China that is supported by National Key Basic Research Program. This research project, being the first coordinated geoengineering research program in China, will systematically investigate the physical mechanisms, climate impacts, and risk and governance of a few targeted geoengineering schemes. It is expected that this research program will help us gain a deep understanding of the physical science underlying geoengineering schemes and the impacts of geoengineering on global climate, in particular, on the Asia monsoon region.

  20. Discovery informatics in biological and biomedical sciences: research challenges and opportunities.

    Science.gov (United States)

    Honavar, Vasant

    2015-01-01

    New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science).

  1. Measuring revolutionary biomedical science 1992-2006 using Nobel prizes, Lasker (clinical medicine) awards and Gairdner awards (NLG metric).

    Science.gov (United States)

    Charlton, Bruce G

    2007-01-01

    The Nobel prize for medicine or physiology, the Lasker award for clinical medicine, and the Gairdner international award are given to individuals for their role in developing theories, technologies and discoveries which have changed the direction of biomedical science. These distinctions have been used to develop an NLG metric to measure research performance and trends in 'revolutionary' biomedical science with the aim of identifying the premier revolutionary science research institutions and nations from 1992-2006. I have previously argued that the number of Nobel laureates in the biomedical field should be expanded to about nine per year and the NLG metric attempts to predict the possible results of such an expansion. One hundred and nineteen NLG prizes and awards were made during the past fifteen years (about eight per year) when overlapping awards had been removed. Eighty-five were won by the USA, revealing a massive domination in revolutionary biomedical science by this nation; the UK was second with sixteen awards; Canada had five, Australia four and Germany three. The USA had twelve elite centres of revolutionary biomedical science, with University of Washington at Seattle and MIT in first position with six awards and prizes each; Rockefeller University and Caltech were jointly second placed with five. Surprisingly, Harvard University--which many people rank as the premier world research centre--failed to reach the threshold of three prizes and awards, and was not included in the elite list. The University of Oxford, UK, was the only institution outside of the USA which featured as a significant centre of revolutionary biomedical science. Long-term success at the highest level of revolutionary biomedical science (and probably other sciences) probably requires a sufficiently large number of individually-successful large institutions in open competition with one another--as in the USA. If this model cannot be replicated within smaller nations, then it implies

  2. Using educational games to engage students in veterinary basic sciences.

    Science.gov (United States)

    Buur, Jennifer L; Schmidt, Peggy L; Barr, Margaret C

    2013-01-01

    Educational games are an example of an active learning teaching technique based on Kolb's learning cycle. We have designed multiple games to provide concrete experiences for social groups of learners in the basic sciences. "Antimicrobial Set" is a card game that illustrates global patterns in antimicrobial therapy. "SHOCK!" is a card game designed to enhance student understanding of the four types of hypersensitivity reactions. After each game is played, students undergo a structured debriefing session with faculty members to further enhance their self-reflective skills. "Foodborne Outbreak Clue" utilizes the famous Parker Brothers® board game as a means to practice skills associated with outbreak investigation and risk assessment. This game is used as a review activity and fun application of epidemiologic concepts. Anecdotal feedback from students suggests that they enjoyed the activities. Games such as these can be easily implemented in large- or small-group settings and can be adapted to other disciplines as needed.

  3. Basics of laser physics for students of science and engineering

    CERN Document Server

    Renk, Karl F

    2017-01-01

    This textbook provides an introductory presentation of all types of lasers. It contains a general description of the laser, a theoretical treatment and a characterization of its operation as it deals with gas, solid state, free-electron and semiconductor lasers. This expanded and updated second edition of the book presents a description of the dynamics of free-electron laser oscillation using a model introduced in the first edition that allows a reader to understand basic properties of a free-electron laser and makes the difference to “conventional” lasers. The discussions and the treatment of equations are presented in a way that a reader can immediately follow. The book addresses graduate and undergraduate students in science and engineering, featuring problems with solutions and over 400 illustrations.

  4. Leading change: curriculum reform in graduate education in the biomedical sciences.

    Science.gov (United States)

    Dasgupta, Shoumita; Symes, Karen; Hyman, Linda

    2015-01-01

    The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were also 15 unique curricula. Departments and programs offered courses independently, and students participated in curricula that were overlapping combinations of these courses. This system created curricula that were not coordinated and that had redundant course content as well as content gaps. A partnership of key stakeholders began a curriculum reform process to completely restructure doctoral education at the Boston University School of Medicine. The key pedagogical goals, objectives, and elements designed into the new curriculum through this reform process created a curriculum designed to foster the interdisciplinary thinking that students are ultimately asked to utilize in their research endeavors. We implemented comprehensive student and peer evaluation of the new Foundations in Biomedical Sciences integrated curriculum to assess the new curriculum. Furthermore, we detail how this process served as a gateway toward creating a more fully integrated graduate experience, under the umbrella of the Program in Biomedical Sciences.

  5. Teaching authorship and publication practices in the biomedical and life sciences.

    Science.gov (United States)

    Macrina, Francis L

    2011-06-01

    Examination of a limited number of publisher's Instructions for Authors, guidelines from two scientific societies, and the widely accepted policy document of the International Committee of Medical Journal Editors (ICMJE) provided useful information on authorship practices. Three of five journals examined (Nature, Science, and the Proceedings of the National Academy of Sciences) publish papers across a variety of disciplines. One is broadly focused on topics in medical research (New England Journal of Medicine) and one publishes research reports in a single discipline (Journal of Bacteriology). Similar elements of publication policy and accepted practices were found across the policies of these journals articulated in their Instructions for Authors. A number of these same elements were found in the professional society guidelines of the Society for Neuroscience and the American Chemical Society, as well as the ICMJE Uniform Requirements for Manuscripts Submitted to Biomedical Journals. Taken together, these sources provide the basis for articulating best practices in authorship in scientific research. Emerging from this material is a definition of authorship, as well as policy statements on duplicative publication, conflict of interest disclosure, electronic access, data sharing, digital image integrity, and research requiring subjects' protection, including prior registration of clinical trials. These common elements provide a foundation for teaching about scientific authorship and publication practices across biomedical and life sciences disciplines.

  6. A proposal to establish master's in biomedical sciences degree programs in medical school environments.

    Science.gov (United States)

    Ingoglia, Nicholas A

    2009-04-01

    Most graduate schools associated with medical schools offer programs leading to the PhD degree but pay little attention to master's programs. This is unfortunate because many university graduates who are interested specifically in biomedical rather than pure science fields need further education before making decisions on whether to enter clinical, research, education, or business careers. Training for these students is done best in a medical school, rather than a graduate university, environment and by faculty who are engaged in research in the biomedical sciences. Students benefit from these programs by exploring career options they might not have previously considered while learning about disease-related subjects at the graduate level. Graduate faculty can also benefit by being compensated for their teaching with a portion of the tuition revenue, funds that can help run their laboratories and support other academic expenses. Faculty also may attract talented students to their labs and to their PhD programs by exposing them to a passion for research. The graduate school also benefits by collecting masters tuition revenue that can be used toward supporting PhD stipends. Six-year outcome data from the program at Newark show that, on completion of the program, most students enter educational, clinical, or research careers and that the graduate school has established a new and significant stream of revenue. Thus, the establishment of a master's program in biomedical sciences that helps students match their academic abilities with their career goals significantly benefits students as well as the graduate school and its faculty.

  7. Differential equation analysis in biomedical science and engineering partial differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world PDE problems across various fields With a step-by-step approach to solving partial differential equations (PDEs), Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R successfully applies computational techniques for solving real-world PDE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the com

  8. Should there be greater use of preprint servers for publishing reports of biomedical science?

    Science.gov (United States)

    Chalmers, Iain; Glasziou, Paul

    2016-01-01

    Vitek Tracz and Rebecca Lawrence declare the current journal publishing system to be broken beyond repair. They propose that it should be replaced by immediate publication followed by transparent peer review as the starting place for more open and efficient reporting of science. While supporting this general objective, we suggest that research is needed both to understand why biomedical scientists have been slow to take up preprint options, as well as to assess the relative merits of this and other alternatives to journal publishing.

  9. Spacelab Life Sciences 3 biomedical research using the Rhesus Research Facility

    Science.gov (United States)

    Ballard, R. W.; Searby, N. D.; Stone, L. S.; Hogan, R. P.; Viso, M.; Venet, M.

    1992-01-01

    In 1985, a letter of agreement was signed between the French space agency, CNES, and NASA, formally initiating a joint venture called the RHESUS Project. The goal of this project is to provide a facility to fly rhesus monkeys (Macaca mulatta) to support spaceflight experiments which are applicable but not practical to carry out on human subjects. Biomedical investigations in behavior/performance, immunology/microbiology, muscle physiology, cardiopulmonary physiology, bone/calcium physiology, regulatory physiology, and neurophysiology disciplines will be performed. The Rhesus Research Facility, hardware capable of supporting two adult rhesus monkeys in a microgravity environment, is being developed for a first flight on Spacelab Life Sciences in early 1996.

  10. Differential equation analysis in biomedical science and engineering ordinary differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world ODE problems across various fields With a step-by-step approach to solving ordinary differential equations (ODEs), Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R successfully applies computational techniques for solving real-worldODE problems that are found in a variety of fields, including chemistry, physics, biology,and physiology. The book provides readers with the necessary knowledge to reproduce andextend the comp

  11. Recent developments in fluorescence-based microscopy applied in biomedical sciences

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The present short review aims to give an overview of the most recent de velopments in fluorescence microscopy and its applications in biomedical science s. Apart from improvements in well-established methods based on conventional fl u orescence microscopy and confocal microscopy (fluorescence in situ hybridisa tion (FISH), tyramide signal amplification (TSA) in immunocytochemistry, new fluorop hores), more recently introduced techniques like fluorescence resonance energy t ransfer (FRET), fluorescence recovery after photobleaching (FRAP), multiphoton m icroscopy and fluorescence correlation spectroscopy (FCS) will be discussed.

  12. Predicting Transition and Adjustment to College: Biomedical and Behavioral Science Aspirants' and Minority Students' First Year of College

    Science.gov (United States)

    Hurtado, Sylvia; Han, June C.; Saenz, Victor B.; Espinosa, Lorelle L.; Cabrera, Nolan L.; Cerna, Oscar S.

    2007-01-01

    The purpose of this study is to explore key factors that impact the college transition of aspiring underrepresented minority students in the biomedical and behavioral sciences, in comparison with White, Asian students and non-science minority students. We examined successful management of the academic environment and sense of belonging during the…

  13. Boundary-Work in the Health Research Field: Biomedical and Clinician Scientists' Perceptions of Social Science Research

    Science.gov (United States)

    Albert, Mathieu; Laberge, Suzanne; Hodges, Brian D.

    2009-01-01

    Funding agencies in Canada are attempting to break down the organizational boundaries between disciplines to promote interdisciplinary research and foster the integration of the social sciences into the health research field. This paper explores the extent to which biomedical and clinician scientists' perceptions of social science research operate…

  14. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems-application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The pos

  15. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research.

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay

    2016-06-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules. Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist. Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes, are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: (i) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and (ii) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is planned

  16. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E.; Altintas, Ilkay

    2016-01-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules. Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist. Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes, are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: (i) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and (ii) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is planned

  17. Integrated Biomaterials for Biomedical Technology

    CERN Document Server

    Ramalingam, Murugan; Ramakrishna, Seeram; Kobayashi, Hisatoshi

    2012-01-01

    This cutting edge book provides all the important aspects dealing with the basic science involved in materials in biomedical technology, especially structure and properties, techniques and technological innovations in material processing and characterizations, as well as the applications. The volume consists of 12 chapters written by acknowledged experts of the biomaterials field and covers a wide range of topics and applications.

  18. Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice.

    Science.gov (United States)

    Kabat, Hugh F.; And Others

    1982-01-01

    A panel of pharmacy faculty ranked a broad inventory of basic pharmaceutical science topics in terms of their applicability to clinical pharmacy practice. The panel concluded that basic pharmaceutical sciences are essentially applications of foundation areas in biological, physical, and social sciences. (Author/MLW)

  19. 75 FR 65363 - Basic Behavioral and Social Science Opportunity Network (OppNet)

    Science.gov (United States)

    2010-10-22

    ... HUMAN SERVICES National Institutes of Health Basic Behavioral and Social Science Opportunity Network... promote and publicize the Basic Behavioral and Social Science Opportunity Network (OppNet) initiative... Behavioral and Social Science Opportunity Network (OppNet) is a trans-NIH initiative to expand the...

  20. Lecture 10: The European Bioinformatics Institute - "Big data" for biomedical sciences

    CERN Document Server

    CERN. Geneva; Dana, Jose

    2013-01-01

    Part 1: Big data for biomedical sciences (Tom Hancocks) Ten years ago witnessed the completion of the first international 'Big Biology' project that sequenced the human genome. In the years since biological sciences, have seen a vast growth in data. In the coming years advances will come from integration of experimental approaches and the translation into applied technologies is the hospital, clinic and even at home. This talk will examine the development of infrastructure, physical and virtual, that will allow millions of life scientists across Europe better access to biological data Tom studied Human Genetics at the University of Leeds and McMaster University, before completing an MSc in Analytical Genomics at the University of Birmingham. He has worked for the UK National Health Service in diagnostic genetics and in training healthcare scientists and clinicians in bioinformatics. Tom joined the EBI in 2012 and is responsible for the scientific development and delivery of training for the BioMedBridges pr...

  1. Basic science behind the cardiovascular benefits of exercise.

    Science.gov (United States)

    Wilson, Mathew G; Ellison, Georgina M; Cable, N Tim

    2016-01-01

    Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5-20 beats lower, with an increase in stroke volume of ∼20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be.

  2. The HelCat basic plasma science device

    Science.gov (United States)

    Gilmore, M.; Lynn, A. G.; Desjardins, T. R.; Zhang, Y.; Watts, C.; Hsu, S. C.; Betts, S.; Kelly, R.; Schamiloglu, E.

    2015-01-01

    The Helicon-Cathode(HelCat) device is a medium-size linear experiment suitable for a wide range of basic plasma science experiments in areas such as electrostatic turbulence and transport, magnetic relaxation, and high power microwave (HPM)-plasma interactions. The HelCat device is based on dual plasma sources located at opposite ends of the 4 m long vacuum chamber - an RF helicon source at one end and a thermionic cathode at the other. Thirteen coils provide an axial magnetic field B >= 0.220 T that can be configured individually to give various magnetic configurations (e.g. solenoid, mirror, cusp). Additional plasma sources, such as a compact coaxial plasma gun, are also utilized in some experiments, and can be located either along the chamber for perpendicular (to the background magnetic field) plasma injection, or at one of the ends for parallel injection. Using the multiple plasma sources, a wide range of plasma parameters can be obtained. Here, the HelCat device is described in detail and some examples of results from previous and ongoing experiments are given. Additionally, examples of planned experiments and device modifications are also discussed.

  3. Pharmacology of heart failure: From basic science to novel therapies.

    Science.gov (United States)

    Lother, Achim; Hein, Lutz

    2016-10-01

    Chronic heart failure is one of the leading causes for hospitalization in the United States and Europe, and is accompanied by high mortality. Current pharmacological therapy of chronic heart failure with reduced ejection fraction is largely based on compounds that inhibit the detrimental action of the adrenergic and the renin-angiotensin-aldosterone systems on the heart. More than one decade after spironolactone, two novel therapeutic principles have been added to the very recently released guidelines on heart failure therapy: the HCN-channel inhibitor ivabradine and the combined angiotensin and neprilysin inhibitor valsartan/sacubitril. New compounds that are in phase II or III clinical evaluation include novel non-steroidal mineralocorticoid receptor antagonists, guanylate cyclase activators or myosine activators. A variety of novel candidate targets have been identified and the availability of gene transfer has just begun to accelerate translation from basic science to clinical application. This review provides an overview of current pharmacology and pharmacotherapy in chronic heart failure at three stages: the updated clinical guidelines of the American Heart Association and the European Society of Cardiology, new drugs which are in clinical development, and finally innovative drug targets and their mechanisms in heart failure which are emerging from preclinical studies will be discussed.

  4. Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care

    Science.gov (United States)

    Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care, a 2010 workshop sponsored by the Epidemiology and Genomics Research Program.

  5. PNNL Highlights for the Office of Basic Energy Sciences (July 2013-July 2014)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Benjamin; Warren, Pamela M.; Manke, Kristin L.

    2014-08-13

    This report includes research highlights of work funded in part or whole by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences as well as selected leadership accomplishments.

  6. Hegemony in the marketplace of biomedical innovation: consumer demand and stem cell science.

    Science.gov (United States)

    Salter, Brian; Zhou, Yinhua; Datta, Saheli

    2015-04-01

    The global political economy of stem cell therapies is characterised by an established biomedical hegemony of expertise, governance and values in collision with an increasingly informed health consumer demand able to define and pursue its own interest. How does the hegemony then deal with the challenge from the consumer market and what does this tell us about its modus operandi? In developing a theoretical framework to answer these questions, the paper begins with an analysis of the nature of the hegemony of biomedical innovation in general, its close relationship with the research funding market, the current political modes of consumer incorporation, and the ideological role performed by bioethics as legitimating agency. Secondly, taking the case of stem cell innovation, it explores the hegemonic challenge posed by consumer demand working through the global practice based market of medical innovation, the response of the national and international institutions of science and their reassertion of the values of the orthodox model, and the supporting contribution of bioethics. Finally, the paper addresses the tensions within the hegemonic model of stem cell innovation between the key roles and values of scientist and clinician, the exacerbation of these tensions by the increasingly visible demands of health consumers, and the emergence of political compromise.

  7. Biomedical laboratory science education: standardising teaching content in resource-limited countries

    Directory of Open Access Journals (Sweden)

    Wendy Arneson

    2013-03-01

    Full Text Available Background: There is a worldwide shortage of qualified laboratory personnel to provide adequate testing for the detection and monitoring of diseases. In an effort to increase laboratory capacity in developing countries, new skills have been introduced into laboratory services. Curriculum revision with a focus on good laboratory practice is an important aspect of supplying entry-level graduates with the competencies needed to meet the current needs.Objectives: Gaps in application and problem-solving competencies of newly graduated laboratory personnel were discovered in Ethiopia, Tanzania and Kenya. New medical laboratory teaching content was developed in Ethiopia, Tanzania and Kenya using national instructors, tutors, and experts and consulting medical laboratory educators from the United States of America (USA.Method: Workshops were held in Ethiopia to create standardised biomedical laboratory science (BMLS lessons based on recently-revised course objectives with an emphasis on application of skills. In Tanzania, course-module teaching guides with objectives were developed based on established competency outcomes and tasks. In Kenya, example interactive presentations and lesson plans were developed by the USA medical laboratory educators prior to the workshop to serve as resources and templates for the development of lessons within the country itself.Results: The new teaching materials were implemented and faculty, students and other stakeholders reported successful outcomes.Conclusions: These approaches to updating curricula may be helpful as biomedical laboratory schools in other countries address gaps in the competencies of entry-level graduates.

  8. Science Serving the Nation: The Impact of Basic Research

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-01-01

    Impacts: The BES program supports basic research that underpins a broad range of energy technologies. Research in materials sciences and engineering leads to the development of materials that improve the efficiency, economy, environmental acceptability, and safety of energy generation, conversion, transmission, storage, and use. For example, advances in superconductivity have been introduced commercially in a number of demonstration projects around the country. Improvements in alloy design for high temperature applications are used in commercial furnaces and in green technologies such as lead-free solder. Research in chemistry has led to advances such as efficient combustion systems with reduced emissions of pollutants; new solar photoconversion processes; improved catalysts for the production of fuels and chemicals; and better separations and analytical methods for applications in energy processes, environmental remediation, and waste management. Research in geosciences results in advanced monitoring and measurement techniques for reservoir definition and an understanding of the fluid dynamics of complex fluids through porous and fractured subsurface rock. Research in the molecular and biochemical nature of photosynthesis aids the development of solar photo-energy conversion. The BES program also plays a major role in enabling the nanoscale revolution. The importance of nanoscience to future energy technologies is clearly reflected by the fact that all of the elementary steps of energy conversion (e.g., charge transfer, molecular rearrangement, and chemical reactions) take place on the nanoscale. The development of new nanoscale materials, as well as the methods to characterize, manipulate, and assemble them, create an entirely new paradigm for developing new and revolutionary energy technologies.

  9. Additive manufacturing in biomedical sciences and the need for definitions and norms.

    Science.gov (United States)

    Chhaya, Mohit P; Poh, Patrina S P; Balmayor, Elizabeth R; van Griensven, Martijn; Schantz, Jan-Thorsten; Hutmacher, Dietmar W

    2015-01-01

    The application of additive biomanufacturing represents one of the most rapidly advancing areas of biomedical science, in which engineers, scientists, and clinicians are contributing to the future of health care. The combined efforts of a large number of groups around the globe have developed a strong research thrust that has resulted in a large number of publications. Reviewing this body of literature, there is an increasing trend of research groups inventing their own definitions and terminology. This has made it difficult to find and compare the results. Therefore, to move the field constructively forward, it is a conditio sine qua non to clarify various terminologies and standards. Based on this background, this article advocates tightening the terminology and has the objective of penning out definitions that will ultimately allow the development of official industry standard terms, such as American Society for Testing and Materials and or International Organization for Standardization for technologies developed for Tissue Engineering and Regenerative Medicine.

  10. Science Awareness and Science Literacy through the Basic Physics Course: Physics with a bit of Metaphysics?

    Science.gov (United States)

    Rusli, Aloysius

    2016-08-01

    Until the 1980s, it is well known and practiced in Indonesian Basic Physics courses, to present physics by its effective technicalities: The ideally elastic spring, the pulley and moving blocks, the thermodynamics of ideal engine models, theoretical electrostatics and electrodynamics with model capacitors and inductors, wave behavior and its various superpositions, and hopefully closed with a modern physics description. A different approach was then also experimented with, using the Hobson and Moore texts, stressing the alternative aim of fostering awareness, not just mastery, of science and the scientific method. This is hypothesized to be more in line with the changed attitude of the so-called Millenials cohort who are less attentive if not interested, and are more used to multi-tasking which suits their shorter span of attention. The upside is increased awareness of science and the scientific method. The downside is that they are getting less experience of the scientific method which intensely bases itself on critical observation, analytic thinking to set up conclusions or hypotheses, and checking consistency of the hypotheses with measured data. Another aspect is recognition that the human person encompasses both the reasoning capacity and the mental- spiritual-cultural capacity. This is considered essential, as the world grows even smaller due to increased communication capacity, causing strong interactions, nonlinear effects, and showing that value systems become more challenging and challenged due to physics / science and its cosmology, which is successfully based on the scientific method. So students should be made aware of the common basis of these two capacities: the assumptions, the reasoning capacity and the consistency assumption. This shows that the limits of science are their set of basic quantifiable assumptions, and the limits of the mental-spiritual-cultural aspects of life are their set of basic metaphysical (non-quantifiable) assumptions. The

  11. Exploring lecturers' views of first-year health science students' misconceptions in biomedical domains.

    Science.gov (United States)

    Badenhorst, Elmi; Mamede, Sílvia; Hartman, Nadia; Schmidt, Henk G

    2015-05-01

    Research has indicated that misconceptions hamper the process of knowledge construction. Misconceptions are defined as persistent ideas not supported by current scientific views. Few studies have explored how misconceptions develop when first year health students conceptually move between anatomy and physiology to construct coherent knowledge about the human body. This explorative study analysed lecturers' perceptions of first-year health science students' misconceptions in anatomy and physiology to gain a deeper understanding of how and why misconceptions could potentially arise, by attempting to link sources of misconceptions with four schools of thought, namely theories on concept formation, complexity, constructivism and conceptual change. This was a qualitative study where ten lecturers involved in teaching anatomy and physiology in the health science curricula at the University of Cape Town were interviewed to explore perceptions of students' misconceptions. Analytical induction was used to uncover categories within the interview data by using a coding system. A deeper analysis was done to identify emerging themes that begins to explore a theoretical understanding of why and how misconceptions arise. Nine sources of misconceptions were identified, including misconceptions related to language, perception, three dimensional thinking, causal reasoning, curricula design, learning styles and moving between macro and micro levels. The sources of misconceptions were then grouped together to assist educators with finding educational interventions to overcome potential misconceptions. This explorative study is an attempt in theory building to understand what is at the core of biomedical misconceptions. Misconceptions identified in this study hold implications for educators as not all students have the required building blocks and cognitive skills to successfully navigate their way through biomedical courses. Theoretical insight into the sources of misconceptions can

  12. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Preston, E.L.; Getsi, J.A. (comps.)

    1982-07-01

    A major objective of the biomedical and environmental sciences (BES) research at the Oak Ridge National Laboratory (ORNL) is to provide information on environmental, health, and safety considerations that can be used in the formulation and implementation of energy technology decisions. Research is directed at securing information required for an understanding of both the short- and long-term consequences of the processes involved in new energy technologies. Investigation of the mechanisms responsible for biological and ecological damage caused by substances associated with energy production and of repair mechanisms is a necessary component of this research. The research is carried out by the staff of four divisions and one program: Biology Division, Environmental Sciences Division, Health and Safety Research Division, Information Division, and the Life Sciences Synthetic Fuels Program. Research programs underway in each of these divisions are discussed. Information on the following subjects is also included: interactions with universities; interactions with industry; technology transfer; recent accomplishments in the areas of program, publications, awards, and patents; and new initiatives. (JGB)

  13. Adventurism in biomedical science: Washington University-Monsanto program in biotechnology.

    Science.gov (United States)

    Gordon, J I

    1992-01-01

    The Washington University-Monsanto relationship has supported innovation in the biological sciences. It has done so in part by making the fence between an industrial and an academic institution more transparent and more easy to cross. A unique means of promoting intellectual adventurism may be lost, however, if this type of relationship is not structured to maximize the likelihood of obtaining products or if products are the only financial benefit that the industrial partner can derive from such interactions (for example other benefits could include governmental R&D tax credits for those relationships that satisfy some minimal criteria for size and/or length of commitment). I hope that this and other forms of industrial-university relationships that encourage discovery by providing institutional support for new ideas will flourish. Whatever their fate, the responsibility for promoting dreams must be shared by all of us: by those who are privileged to have students in their labs, by academic institutions as they seek to define their roles in the next century, by peer review boards, by national science policymakers, and perhaps by industry. I have presented the Washington University-Monsanto collaboration not as a complete answer to the question of how to promote intellectual adventurism in the biomedical sciences but rather as a concrete response to a problem that must be clearly articulated, thoroughly examined, and creatively addressed.

  14. Biomedical photonics handbook

    CERN Document Server

    Vo-Dinh, Tuan

    2003-01-01

    1.Biomedical Photonics: A Revolution at the Interface of Science and Technology, T. Vo-DinhPHOTONICS AND TISSUE OPTICS2.Optical Properties of Tissues, J. Mobley and T. Vo-Dinh3.Light-Tissue Interactions, V.V. Tuchin 4.Theoretical Models and Algorithms in Optical Diffusion Tomography, S.J. Norton and T. Vo-DinhPHOTONIC DEVICES5.Laser Light in Biomedicine and the Life Sciences: From the Present to the Future, V.S. Letokhov6.Basic Instrumentation in Photonics, T. Vo-Dinh7.Optical Fibers and Waveguides for Medical Applications, I. Gannot and

  15. Educational Status of Dental Basic Science Course and its Correlation with Students' Educational Background in Kermanshah University of Medical Sciences

    OpenAIRE

    Mozafar Khazaei; Fatemeh Abasi; Mohammad Rasool Khazaei; Farshad Rahimi

    2014-01-01

    Introduction: Basic science course plays a pivotal role in the academic achievement of the students. The scientific background and educational performance of the students are also influential in this period. The aim of the present study was to investigate the educational status of dental basic science course in the first three admissions (2009-2011) and its association with students’ educational background in Kermanshah University of Medical Sciences (KUMS). Methods: In this descriptive cr...

  16. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences.

    Science.gov (United States)

    Jun, Young-Wook; Seo, Jung-Wook; Cheon, Jinwoo

    2008-02-01

    Magnetic nanoparticles, which exhibit a variety of unique magnetic phenomena that are drastically different from those of their bulk counterparts, are garnering significant interest since these properties can be advantageous for utilization in a variety of applications ranging from storage media for magnetic memory devices to probes and vectors in the biomedical sciences. In this Account, we discuss the nanoscaling laws of magnetic nanoparticles including metals, metal ferrites, and metal alloys, while focusing on their size, shape, and composition effects. Their fundamental magnetic properties such as blocking temperature (Tb), spin life time (tau), coercivity (Hc), and susceptibility (chi) are strongly influenced by the nanoscaling laws, and as a result, these scaling relationships can be leveraged to control magnetism from the ferromagnetic to the superparamagnetic regimes. At the same time, they can be used in order to tune magnetic values including Hc, chi, and remanence (Mr). For example, life time of magnetic spin is directly related to the magnetic anisotropy energy (KuV) and also the size and volume of nanoparticles. The blocking temperature (Tb) changes from room temperature to 10 K as the size of cobalt nanoparticles is reduced from 13 to 2 nm. Similarly, H c is highly susceptible to the anisotropy of nanoparticles, while saturation magnetization is directly related to the canting effects of the disordered surface magnetic spins and follows a linear relationship upon plotting of ms (1/3) vs r(-1). Therefore, the nanoscaling laws of magnetic nanoparticles are important not only for understanding the behavior of existing materials but also for developing novel nanomaterials with superior properties. Since magnetic nanoparticles can be easily conjugated with biologically important constituents such as DNA, peptides, and antibodies, it is possible to construct versatile nano-bio hybrid particles, which simultaneously possess magnetic and biological functions

  17. Developmental programming: State-of-the-science and future directions-summary from a Pennington biomedical symposium

    Science.gov (United States)

    On December 8-9, 2014, the Pennington Biomedical Research Center convened a scientific symposium to review the state-of-the-science and future directions for the study of developmental programming of obesity and chronic disease. The objectives of the symposium were to discuss: (i) past and current s...

  18. Progress in the Utilization of High-Fidelity Simulation in Basic Science Education

    Science.gov (United States)

    Helyer, Richard; Dickens, Peter

    2016-01-01

    High-fidelity patient simulators are mainly used to teach clinical skills and remain underutilized in teaching basic sciences. This article summarizes our current views on the use of simulation in basic science education and identifies pitfalls and opportunities for progress.

  19. Mapping for meaning. Using concept maps to integrate clinical and basic sciences in medical education

    NARCIS (Netherlands)

    Vink, Cijlvia Christina (Sylvia)

    2014-01-01

    Medical curricula are intended to help students to relate clinical and basic science knowledge. Localizing underlying basic science mechanisms allows teacher and students to focus on relevant relations with clinical phenomena. Concept maps are promising for medical education because of the potential

  20. Correlation between Grades in the Medical Basic Science Course and Scores on the Comprehensive Basic Sciences Exam in Iran

    Directory of Open Access Journals (Sweden)

    Hamidreza Mahboobi

    2010-07-01

    Full Text Available Introduction: Medical students in Iran are required to undertake a Basic Sciences Comprehensive Exam (BSCE at the end of their BS course in order to progress to the next stage of medical education. BSCE results are widely used to evaluate medical education programs among different medical universities. The aim of this study is to explore the correlation between BSCE results and students’ mean BS course scores.Methods: A cross-sectional study, using secondary data analysis, was carried out in 2007 in Hormozgan University of Medical Sciences (HUMS in Iran. Data from the 20th BSCE (held in 1998 to the 36th BSCE (held in 2006 was collected. All medical students who took these exams and for whom the mean results of the BS course and the BSCE were available were eligible for inclusion in the study. For each medical student, data were obtained regarding age at the time of participation in BSCE, together with sex, entrance year, zone as categorised by the national quota system, mean BS course scores, BSCE result, duration of BS course (number of semesters and number of failed semesters. Students whose data was not complete were excluded from the study. Data was analysed by using SPSS 15 (SPSS Inc., Chicago, Illinois, USA software.Results: 372 students undertook the BSCE during the research study period. Complete data was available for 365 medical students (98.1%. Among the participants, 224 (61.4% were female and 141 (38.6% were male. The mean age at the time of sitting the BSCE was 22.01±1.22. Mean BSCE scores were higher among students who had not previously failed a semester and who also finished the BS course within five semesters. Students with higher BS course scores had higher BSCE scores (P=0.000.Conclusions: Students’ BS course scores were found to correlate to BSCE results. Hence it may be prudent to identify medical students with low BS course scores, in order to provide additional educational support to improve their medical knowledge

  1. The role biomedical science laboratories can play in improving science knowledge and promoting first-year nursing academic success

    Science.gov (United States)

    Arneson, Pam

    The Role Biomedical Science Laboratories Can Play In Improving Science Knowledge and Promoting First-Year Nursing Academic Success The need for additional nursing and health care professionals is expected to increase dramatically over the next 20 years. With this in mind, students must have strong biomedical science knowledge to be competent in their field. Some studies have shown that participation in bioscience laboratories can enhance science knowledge. If this is true, an analysis of the role bioscience labs have in first-year nursing academic success is apposite. In response, this study sought to determine whether concurrent enrollment in anatomy and microbiology lecture and lab courses improved final lecture course grades. The investigation was expanded to include a comparison of first-year nursing GPA and prerequisite bioscience concurrent lecture/lab enrollment. Additionally, research has indicated that learning is affected by student perception of the course, instructor, content, and environment. To gain an insight regarding students' perspectives of laboratory courses, almost 100 students completed a 20-statement perception survey to understand how lab participation affects learning. Data analyses involved comparing anatomy and microbiology final lecture course grades between students who concurrently enrolled in the lecture and lab courses and students who completed the lecture course alone. Independent t test analyses revealed that there was no significant difference between the groups for anatomy, t(285) = .11, p = .912, but for microbiology, the lab course provided a significant educational benefit, t(256) = 4.47, p = .000. However, when concurrent prerequisite bioscience lecture/lab enrollment was compared to non-concurrent enrollment for first-year nursing GPA using independent t test analyses, no significant difference was found for South Dakota State University, t(37) = -1.57, p = .125, or for the University of South Dakota, t(38) = -0.46, p

  2. Teaching of parasitology to students of veterinary medicine and biomedical sciences.

    Science.gov (United States)

    Thompson, R C A; Lymbery, A J; Hobbs, R P

    2002-10-02

    The teaching of an applied parasitology course suitable for both veterinary and biomedical students is described. A common lecture course is given complemented by separate and specific practical, research and problem-based learning components designed for veterinary and biomedical students. For veterinary and biomedical students, teaching of parasitology during the full course comprises a total of 46 lectures; 13 practical classes for veterinary students and five for biomedical students who also undertake an independent research project.

  3. Synergies and distinctions between computational disciplines in biomedical research: perspective from the Clinical andTranslational Science Award programs.

    Science.gov (United States)

    Bernstam, Elmer V; Hersh, William R; Johnson, Stephen B; Chute, Christopher G; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark G; Miller, Perry; DiLaura, Robert P; Overcash, Marc; Lehmann, Harold P; Eichmann, David; Athey, Brian D; Scheuermann, Richard H; Anderson, Nick; Starren, Justin; Harris, Paul A; Smith, Jack W; Barbour, Ed; Silverstein, Jonathan C; Krusch, David A; Nagarajan, Rakesh; Becich, Michael J

    2009-07-01

    Clinical and translational research increasingly requires computation. Projects may involve multiple computationally oriented groups including information technology (IT) professionals, computer scientists, and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays, and suboptimal results. Although written from the perspective of Clinical and Translational Science Award (CTSA) programs within academic medical centers, this article addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science, and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information, and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers.

  4. Basical information - KOME | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us ...ation about full-length cDNA clones Data file File name: kome_basical_information.zip File URL: ftp://ftp.biosciencedbc.jp/archiv...base Database Description Download License Update History of This Database Site Policy | Contact Us Basical information - KOME | LSDB Archive ...

  5. Biomedical and veterinary science can increase our understanding of coral disease

    Science.gov (United States)

    Work, Thierry M.; Richardson, Laurie L.; Reynolds, T.L.; Willis, Bette L.

    2008-01-01

    A balanced approach to coral disease investigation is critical for understanding the global decline of corals. Such an approach should involve the proper use of biomedical concepts, tools, and terminology to address confusion and promote clarity in the coral disease literature. Investigating disease in corals should follow a logical series of steps including identification of disease, systematic morphologic descriptions of lesions at the gross and cellular levels, measurement of health indices, and experiments to understand disease pathogenesis and the complex interactions between host, pathogen, and the environment. This model for disease investigation is widely accepted in the medical, veterinary and invertebrate pathology disciplines. We present standard biomedical rationale behind the detection, description, and naming of diseases and offer examples of the application of Koch's postulates to elucidate the etiology of some infectious diseases. Basic epidemiologic concepts are introduced to help investigators think systematically about the cause(s) of complex diseases. A major goal of disease investigation in corals and other organisms is to gather data that will enable the establishment of standardized case definitions to distinguish among diseases. Concepts and facts amassed from empirical studies over the centuries by medical and veterinary pathologists have standardized disease investigation and are invaluable to coral researchers because of the robust comparisons they enable; examples of these are given throughout this paper. Arguments over whether coral diseases are caused by primary versus opportunistic pathogens reflect the lack of data available to prove or refute such hypotheses and emphasize the need for coral disease investigations that focus on: characterizing the normal microbiota and physiology of the healthy host; defining ecological interactions within the microbial community associated with the host; and investigating host immunity, host

  6. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    Science.gov (United States)

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  7. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    Directory of Open Access Journals (Sweden)

    Joyeeta Dutta-Moscato

    2014-01-01

    Full Text Available This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC, Richard Hersheberger, PhD (Currently, Dean at Roswell Park, and Megan Seippel, MS (the administrator launched the University of Pittsburgh Cancer Institute (UPCI Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical

  8. Programmatic Efforts at the National Institutes of Health to Promote and Support the Careers of Women in Biomedical Science.

    Science.gov (United States)

    Plank-Bazinet, Jennifer L; Bunker Whittington, Kjersten; Cassidy, Sara K B; Filart, Rosemarie; Cornelison, Terri L; Begg, Lisa; Austin Clayton, Janine

    2016-08-01

    Although women have reached parity at the training level in the biological sciences and medicine, they are still significantly underrepresented in the professoriate and in mid- and senior-level life science positions. Considerable effort has been devoted by individuals and organizations across science sectors to understanding this disparity and to developing interventions in support of women's career development. The National Institutes of Health (NIH) formed the Office of Research on Women's Health (ORWH) in 1990 with the goals of supporting initiatives to improve women's health and providing opportunities and support for the recruitment, retention, reentry, and sustained advancement of women in biomedical careers. Here, the authors review several accomplishments and flagship activities initiated by the NIH and ORWH in support of women's career development during this time. These include programming to support researchers returning to the workforce after a period away (Research Supplements to Promote Reentry into Biomedical and Behavioral Research Careers), career development awards made through the Building Interdisciplinary Research Careers in Women's Health program, and trans-NIH involvement and activities stemming from the NIH Working Group on Women in Biomedical Careers. These innovative programs have contributed to advancement of women by supporting the professional and personal needs of women in science. The authors discuss the unique opportunities that accompany NIH partnerships with the scientific community, and conclude with a summary of the impact of these programs on women in science.

  9. Analysis of the basic science section of the orthopaedic in-training examination.

    Science.gov (United States)

    Sheibani-Rad, Shahin; Arnoczky, Steven Paul; Walter, Norman E

    2012-08-01

    Since 1963, the Orthopaedic In-Training Examination (OITE) has been administered to orthopedic residents to assess residents' knowledge and measure the quality of teaching within individual programs. The OITE currently consists of 275 questions divided among 12 domains. This study analyzed all OITE basic science questions between 2006 and 2010. The following data were recorded: number of questions, question taxonomy, category of question, type of imaging modality, and recommended journal and book references. Between 2006 and 2010, the basic science section constituted 12.2% of the OITE. The assessment of taxonomy classification showed that recall-type questions were the most common, at 81.4%. Imaging modalities typically involved questions on radiographs and constituted 6.2% of the OITE basic science section. The majority of questions were basic science questions (eg, genetics, cell replication, and bone metabolism), with an average of 26.4 questions per year. The Journal of Bone & Joint Surgery (American Volume) and the American Academy of Orthopaedic Surgeons' Orthopaedic Basic Science were the most commonly and consistently cited journal and review book, respectively. This study provides the first review of the question content and recommended references of the OITE basic science section. This information will provide orthopedic trainees, orthopedic residency programs, and the American Academy of Orthopaedic Surgeons Evaluation Committee valuable information related to improving residents' knowledge and performance and optimizing basic science educational curricula.

  10. Basic training in mathematics a fitness program for science students

    CERN Document Server

    Shankar, R

    1995-01-01

    Based on course material used by the author at Yale University, this practical text addresses the widening gap found between the mathematics required for upper-level courses in the physical sciences and the knowledge of incoming students This superb book offers students an excellent opportunity to strengthen their mathematical skills by solving various problems in differential calculus By covering material in its simplest form, students can look forward to a smooth entry into any course in the physical sciences

  11. Review and expectation of integrated curriculum of basic medical sciences of Shanghai Jiao Tong University

    Institute of Scientific and Technical Information of China (English)

    Xiao-yin NIU; Song YU; Xiao-kui GUO

    2015-01-01

    Since early 1950 s,many domestic and foreign medical schools have carried out the integrated teaching reform of medical education. In our school of basic medical sciences,there have been three types of integrated curriculum reform carried out in history,i. e. horizontally integrated courses,problem-oriented basic medical sciences curriculum, and organ system-based integrated curriculum. This article reviews the experience of these three teaching reforms and the problems encountered and hopes to provide some references for the integration of basic medical sciences curriculum of other medical schools.

  12. Basic science and energy research sector profile: Background for the National Energy Strategy

    Energy Technology Data Exchange (ETDEWEB)

    March, F.; Ashton, W.B.; Kinzey, B.R.; McDonald, S.C.; Lee, V.E.

    1990-11-01

    This Profile report provides a general perspective on the role of basic science in the spectrum of research and development in the United States, and basic research's contributions to the goals of the National Energy Strategy (NES). It includes selected facts, figures, and analysis of strategic issues affecting the future of science in the United States. It is provided as background for people from government, the private sector, academia, and the public, who will be reviewing the NES in the coming months; and it is intended to serve as the basis for discussion of basic science issues within the context of the developing NES.

  13. Teaching Basic Science Environmentally, The Concept: The cell is basic unit of structure of most organisms.

    Science.gov (United States)

    Busch, Phyllis S.

    1985-01-01

    Suggests simple ways to introduce students to the concept that the cell is the basic unit of structure of most organisms. Mentions materials for microscope study that are readily available and easy to handle, e.g., membranes from between the scales of the onion bulb, thin-leaved plants, pond water, and pollen. (JHZ)

  14. The Present State and Future Perspective of Biomedical Engineering in Japan

    Science.gov (United States)

    2007-11-02

    The Present State and Future Perspective of Biomedical Engineering in Japan Shunsuke Sato (Osaka University, Graduate School of Engineering...21st century is a century of life sciences. Biomedical engineering is a field of integrated science and biotechnology, a paradigm where the basic... biomedical engineering and technological development in Japan. The number of members of the society was 900 at the time of establishment, but has

  15. Should MD-PhD programs encourage graduate training in disciplines beyond conventional biomedical or clinical sciences?

    Science.gov (United States)

    O'Mara, Ryan J; Hsu, Stephen I; Wilson, Daniel R

    2015-02-01

    The goal of MD-PhD training programs is to produce physician-scientists with unique capacities to lead the future biomedical research workforce. The current dearth of physician-scientists with expertise outside conventional biomedical or clinical sciences raises the question of whether MD-PhD training programs should allow or even encourage scholars to pursue doctoral studies in disciplines that are deemed nontraditional, yet are intrinsically germane to major influences on health. This question is especially relevant because the central value and ultimate goal of the academic medicine community is to help attain the highest level of health and health equity for all people. Advances in medical science and practice, along with improvements in health care access and delivery, are steps toward health equity, but alone they will not come close to eliminating health inequalities. Addressing the complex health issues in our communities and society as a whole requires a biomedical research workforce with knowledge, practice, and research skills well beyond conventional biomedical or clinical sciences. To make real progress in advancing health equity, educational pathways must prepare physician-scientists to treat both micro and macro determinants of health. The authors argue that MD-PhD programs should allow and encourage their scholars to cross boundaries into less traditional disciplines such as epidemiology, statistics, anthropology, sociology, ethics, public policy, management, economics, education, social work, informatics, communications, and marketing. To fulfill current and coming health care needs, nontraditional MD-PhD students should be welcomed and supported as valuable members of our biomedical research workforce.

  16. Teaching Basic Classification through an Elementary Science Unit on Food.

    Science.gov (United States)

    Schubert, Nancy A.

    Five lesson plans are included in this unit designed to teach basic classification skills through the study of food. Each lesson plan contains an objective, list of materials needed, statement of the lesson problem, instructional strategies, learning outcomes, and evaluation method(s). Objectives of the lessons include: (1) grouping common animals…

  17. Handbook of Coherent-Domain Optical Methods Biomedical Diagnostics, Environmental Monitoring, and Materials Science

    CERN Document Server

    2013-01-01

    This Handbook provides comprehensive coverage of laser and coherent-domain methods as applied to biomedicine, environmental monitoring, and materials science. Worldwide leaders in these fields describe the fundamentals of light interaction with random media and present an overview of basic research. The latest results on coherent and polarization properties of light scattered by random media, including tissues and blood, speckles formation in multiple scattering media, and other non-destructive interactions of coherent light with rough surfaces and tissues, allow the reader to understand the principles and applications of coherent diagnostic techniques. The expanded second edition has been thoroughly updated with particular emphasis on novel coherent-domain techniques and their applications in medicine and environmental science. Volume 1 describes state-of-the-art methods of coherent and polarization optical imaging, tomography and spectroscopy; diffusion wave spectroscopy; elastic, quasi-elastic and inelasti...

  18. Using Soils to Teach Basic Concepts in Science and Art

    Science.gov (United States)

    Lindbo, David L.; Kozlowski, Deborah; Robinson, Clay; Chapman, Susan

    2014-05-01

    Teaching primary and secondary school students (K-12) about science and art, although absolutely critical, can be difficult. Teachers have specific standards or subject matters that they are required to cover and often soils and soil science is not included in that list. We have struggled with ways to bring soil science information to the larger audience as the direct approach meets with resistance due to the time commitments to other standards. Our approach now is to use soils as a media or vehicle to teach key concepts in broad subject areas. We have developed several lesson plans in science, geography, math and art that focus on a concept but use soils to convey it. For example students make "mini" monoliths of a state soil. During this exercise students need to use skills in geography to find where their state soil occurs in their state and in the country. They need to understand colors in order to choose the correct colors to use to make their monolith. Finally, they must understand how scales work in order to make the monolith accurate in terms of horizon depths. Throughout the exercise discussion on my certain colors occur in the soil can be discussed. This discussion can lead to a qualitative understanding of chemistry and biology. This presentation will demonstrate this lesson and several others that have been developed and available through the Soil Science Society of America's K12 Education Committee.

  19. Ciencia básica y ciencia aplicada Basic science and applied science

    Directory of Open Access Journals (Sweden)

    Ruy Pérez-Tamayo

    2001-08-01

    ://www.insp.mx/salud/index.htmlA lecture was presented by the author at the Democratic Opinion Forum on Health Teaching and Research, organized by Mexico´s National Health Institutes Coordinating Office, at National Cardiology Institute "Ignacio Chavez", where he presented a critical review of the conventional classification of basic and applied science, as well as his personal view on health science teaching and research. According to the author, "well-conducted science" is that "generating reality-checked knowledge" and "mis-conducted science" is that "unproductive or producing 'just lies' and 'non-fundable'. To support his views, the author reviews utilitarian and pejorative definitions of science, as well as those of committed and pure science, useful and useless science, and practical and esoterical science, as synonyms of applied and basic science. He also asserts that, in Mexico, "this classification has been used in the past to justify federal funding cutbacks to basic science, allegedly because it is not targeted at solving 'national problems' or because it was not relevant to priorities set in a given six-year political administration period". Regarding health education and research, the author asserts that the current academic programs are inefficient and ineffective; his proposal to tackle these problems is to carry out a solid scientific study, conducted by a multidisciplinary team of experts, "to design the scientific researcher curricula from recruitment of intelligent young people to retirement or death". Performance assessment of researchers would not be restricted to publication of papers, since "the quality of scientific work and contribution to the development of science is not reflected by the number of published papers". The English version of this paper is available at: http://www.insp.mx/salud/index.html

  20. Informal learning at school. Science fairs in basic schools

    OpenAIRE

    Esteves, Zita; Cabral, Andreia; Costa, Manuel F. M.

    2008-01-01

    The communication herein reports on the second edition of the annual Science Fair at Externato Maria Auxiliadora, in Viana do Castelo, Portugal. It was intended to give continuity to the research project on science fairs of the previous year improving, based on past conclusions, some aspects: the age group of the participants was enlarged to ages 10 to 15, and there was a major effort to engage parents and the whole school community in the process and in the development/construction of the pr...

  1. Low statistical power in biomedical science: a review of three human research domains

    Science.gov (United States)

    Dumas-Mallet, Estelle; Button, Katherine S.; Boraud, Thomas; Gonon, Francois

    2017-01-01

    Studies with low statistical power increase the likelihood that a statistically significant finding represents a false positive result. We conducted a review of meta-analyses of studies investigating the association of biological, environmental or cognitive parameters with neurological, psychiatric and somatic diseases, excluding treatment studies, in order to estimate the average statistical power across these domains. Taking the effect size indicated by a meta-analysis as the best estimate of the likely true effect size, and assuming a threshold for declaring statistical significance of 5%, we found that approximately 50% of studies have statistical power in the 0–10% or 11–20% range, well below the minimum of 80% that is often considered conventional. Studies with low statistical power appear to be common in the biomedical sciences, at least in the specific subject areas captured by our search strategy. However, we also observe evidence that this depends in part on research methodology, with candidate gene studies showing very low average power and studies using cognitive/behavioural measures showing high average power. This warrants further investigation.

  2. An Overview of SBIR Phase 2 Physical Sciences and Biomedical Technologies in Space

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in physical sciences and biomedical technologies in space, which is one of six core competencies at NASA Glenn Research Center. There are twenty two technologies featured with emphasis on a wide spectrum of applications such as reusable handheld electrolyte, sensor for bone markers, wideband single crystal transducer, mini treadmill for musculoskeletal, and much more. Each article in this report describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  3. United Nations Basic Space Science Initiative (UNBSSI) 1991-2012 and Beyond

    CERN Document Server

    Mathai, A M; Balogh, W R

    2015-01-01

    This paper contains an overview and summary on the achievements of the United Nations basic space science initiative in terms of donated and provided planetariums, astronomical telescopes, and space weather instruments, particularly operating in developing nations. This scientific equipment has been made available to respective host countries, particularly developing nations, through the series of twenty basic space science workshops, organized through the United Nations Programme on Space Applications since 1991. Organized by the United Nations, the European Space Agency (ESA), the National Aeronautics and Space Administration (NASA) of the United States of America, and the Japan Aerospace Exploration Agency (JAXA), the basic space science workshops were organized as a series of workshops that focused on basic space science (1991-2004), the International Heliophysical Year 2007 (2005-2009), and the International Space Weather Initiative (2010-2012) proposed by the Committee on the Peaceful Uses of Outer Spac...

  4. The Neuropsychoanalytic Approach: Using Neuroscience as the Basic Science of Psychoanalysis

    OpenAIRE

    Brian Johnson; Daniela Flores Mosri

    2016-01-01

    NEUROSCIENCE AS THE BASIC SCIENCE OF PSYCHOANALYSISNeuroscience was the basic science behind Freud’s psychoanalytic theory and technique. He worked as a neurologist for 20 years before being aware that a new approach to understand complex diseases, namely the hysterias, was needed. Solms coined the term neuropsychoanalysis to affirm that neuroscience still belongs in psychoanalysis. The neuropsychoanalytic field has continued Freud’s original ideas as stated in 1895. Developments in psychoana...

  5. Pacific Northwest Laboratory annual report for 1994 to the DOE Office of Energy Research Part 1: Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1995-04-01

    Research in the biomedical sciences at PNL is described. Activities reported include: inhaled plutonium in dogs; national radiobiology archives; statistical analysis of data from animal studies; genotoxicity of inhaled energy effluents; molecular events during tumor initiation; biochemistry of free radical induced DNA damage; radon hazards in homes; mechanisms of radon injury; genetics of radon induced lung cancer; and in vivo/in vitro radon induced cellular damage.

  6. The experiences of successful faculty members in medical school in teaching of basic sciences

    Directory of Open Access Journals (Sweden)

    M Avizhgan

    2016-03-01

    Full Text Available Introduction: Basic sciences are an important part of education in medical courses, which without it training the competent and efficient physicians is impossible. Given the complexities of teaching and in particular the teaching of basic sciences and its influence of various factors, comprehensive investigate this phenomenon was felt. This study was aimed to explore the underlying factors affecting the teaching based on experiences of successful faculty members of basic sciences in Isfahan medical school. Methods: This qualitative study was conducted using conventional content analysis. The data was collected using purposive sampling and semi-structured interviews with faculty members of basic sciences and group interviews with the students of basic sciences. Results: After analysis the data, the extracted data were divided into three main categories and seven sub- classes, including strengthen the construction of teaching infrastructures (lesson plans, useful and practical educational materials, and continuous curriculum reform, improving the teaching process (facilitating learning and appropriate transfering of content and completing the teaching process (appropriate evaluation tool and continuity assessment. Conclusion: Some positive experiences, such as reducing volume of materials, teaching useful and practical materials, attractive teaching, early clinical exsposure and provide the appropriate educational materials should be considered as a model and to eliminate negative experiences such as teaching of pure basic sciences, drowning in detail, the emphass on memorization, indulge in speech, the multiple choice tests systems and some faculty members were not ready for some of teaching methods should be taken account some items.

  7. Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective

    Directory of Open Access Journals (Sweden)

    Chia-Jung Wu

    2010-04-01

    Full Text Available Biomedical polymer-silicate nanocomposites have potential to become critically important to the development of biomedical applications, ranging from diagnostic and therapeutic devices, tissue regeneration and drug delivery matrixes to various bio-technologies that are inspired by biology but have only indirect biomedical relation. The fundamental understanding of polymer-nanoparticle interactions is absolutely necessary to control structure-property relationships of materials that need to work within the chemical, physical and biological constraints required by an application. This review summarizes the most recent published strategies to design and develop polymer-silicate nanocomposites (including clay based silicate nanoparticles and bioactive glass nanoparticles for a variety of biomedical applications. Emerging trends in bio-technological and biomedical nanocomposites are highlighted and potential new fields of applications are examined.

  8. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Directory of Open Access Journals (Sweden)

    Rahul Uppal

    2016-01-01

    Full Text Available The Computer Science, Biology, and Biomedical Informatics (CoSBBI program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4th year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI Academy (http://www.upci.upmc.edu/summeracademy/, and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  9. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Science.gov (United States)

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  10. An expanding universe of noncoding RNAs between the poles of basic science and clinical investigations.

    Science.gov (United States)

    Weil, Patrick P; Hensel, Kai O; Weber, David; Postberg, Jan

    2016-03-01

    The Keystone Symposium 'MicroRNAs and Noncoding RNAs in Cancer', Keystone, CO, USA, 7-12 June 2015 Since the discovery of RNAi, great efforts have been undertaken to unleash the potential biomedical applicability of small noncoding RNAs, mainly miRNAs, involving their use as biomarkers for personalized diagnostics or their usability as active agents or therapy targets. The research's focus on the noncoding RNA world is now slowly moving from a phase of basic discoveries into a new phase, where every single molecule out of many hundreds of cataloged noncoding RNAs becomes dissected in order to investigate these molecules' biomedical relevance. In addition, RNA classes neglected before, such as long noncoding RNAs or circular RNAs attract more attention. Numerous timely results and hypotheses were presented at the 2015 Keystone Symposium 'MicroRNAs and Noncoding RNAs in Cancer'.

  11. Handbook of photonics for biomedical engineering

    CERN Document Server

    Kim, Donghyun; Somekh, Michael

    2017-01-01

    Nanophotonics has emerged rapidly into technological mainstream with the advent and maturity of nanotechnology available in photonics and enabled many new exciting applications in the area of biomedical science and engineering that were unimagined even a few years ago with conventional photonic engineering techniques. Handbook of Nanophotonics in Biomedical Engineering is intended to be a reliable resource to a wealth of information on nanophotonics that can inspire readers by detailing emerging and established possibilities of nanophotonics in biomedical science and engineering applications. This comprehensive reference presents not only the basics of nanophotonics but also explores recent experimental and clinical methods used in biomedical and bioengineering research. Each peer-reviewed chapter of this book discusses fundamental aspects and materials/fabrication issues of nanophotonics, as well as applications in interfaces, cell, tissue, animal studies, and clinical engineering. The organization provides ...

  12. Flexner revisited: the role and value of the basic sciences in medical education.

    Science.gov (United States)

    Finnerty, Edward P; Chauvin, Sheila; Bonaminio, Giulia; Andrews, Mark; Carroll, Robert G; Pangaro, Louis N

    2010-02-01

    A central tenet of Flexner's report was the fundamental role of science in medical education. Today, there is tension between the time needed to teach an ever-expanding knowledge base in science and the time needed for increased instruction in clinical application and in the behavioral, ethical, and managerial knowledge and skills needed to prepare for clinical experiences. One result has been at least a perceived reduction in time and focus on the foundational sciences. In this context, the International Association of Medical Science Educators initiated a study to address the role and value of the basic sciences in medical education by seeking perspectives from various groups of medical educators to five questions: (1) What are the sciences that constitute the foundation for medical practice? (2) What is the value and role of the foundational sciences in medical education? (3) When and how should these foundational sciences be incorporated into the medical education curriculum? (4) What sciences should be prerequisite to entering the undergraduate medical curriculum? (5) What are examples of the best practices for incorporating the foundational sciences into the medical education curriculum? The results suggest a broad group of experts believes that an understanding of basic science content remains essential to clinical practice and that teaching should be accomplished across the entire undergraduate medical education experience and integrated with clinical applications. Learning the sciences also plays a foundational role in developing discipline and rigor in learners' thinking skills, including logical reasoning, critical appraisal, problem solving, decision making, and creativity.

  13. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-04-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia materials online and prior to engaging in classroom activities. Pre-lecture questions on both the medical content covered in the video media and the physics concepts in the written material were designed to engage students and probe their understanding of physics. The course featured group discussion and peer-lead instruction. Following in-class instruction, students engaged with homework assignments which explore the connections of physics and the medical field in a quantitative manner. Course surveys showed a positive response by the vast majority of students. Students largely indicated that the course helped them to make a connection between physics and the biomedical field. The biomedical focus and different course format were seen as an improvement to previous traditional physics instruction.

  14. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  15. Vitrification of oocytes: from basic science to clinical application.

    Science.gov (United States)

    Arav, Amir; Natan, Yehudit

    2013-01-01

    Vitrification is a physical process by which a liquid is transformed into a solid of amorphous glass form. It was only at the end of the nineteenth century (1898) that Gustav Heinrich Johann Apollon Tammann pointed out that a large number of substances can be obtained as glasses and suggested that this property might be universal (Tammann, Zeitschrift for Physikalische Chemie; 25: 441-479, 1898). Basically, vitrification is the supercooling of a liquid to a temperature at which the viscosity is so high that it can be defined as being at a solid state. The understanding of the vitrification process has been deepened over the years and has been applied for cryopreservation and currently is the method of choice for preserving oocytes and embryos.

  16. User Facilities of the Office of Basic Energy Sciences: A National Resource for Scientific Research

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-01-01

    The BES user facilities provide open access to specialized instrumentation and expertise that enable scientific users from universities, national laboratories, and industry to carry out experiments and develop theories that could not be done at their home institutions. These forefront research facilities require resource commitments well beyond the scope of any non-government institution and open up otherwise inaccessible facets of Nature to scientific inquiry. For approved, peer-reviewed projects, instrument time is available without charge to researchers who intend to publish their results in the open literature. These large-scale user facilities have made significant contributions to various scientific fields, including chemistry, physics, geology, materials science, environmental science, biology, and biomedical science. Over 16,000 scientists and engineers.pdf file (27KB) conduct experiments at BES user facilities annually. Thousands of other researchers collaborate with these users and analyze the data measured at the facilities to publish new scientific findings in peer-reviewed journals.

  17. Educational Status of Dental Basic Science Course and its Correlation with Students' Educational Background in Kermanshah University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Mozafar Khazaei

    2014-04-01

    Full Text Available Introduction: Basic science course plays a pivotal role in the academic achievement of the students. The scientific background and educational performance of the students are also influential in this period. The aim of the present study was to investigate the educational status of dental basic science course in the first three admissions (2009-2011 and its association with students’ educational background in Kermanshah University of Medical Sciences (KUMS. Methods: In this descriptive cross-sectional study, all dental students admitted to school of dentistry in 2009-2011 years were included. The students’ academic background (scores, grade point average, score of comprehensive basic sciences examination (CBSE were recorded. Data were analyzed by SPSS 16 using one-way analysis of variance (ANOVA and independent t-test. Results: Kermanshah dental students admitted to university in 2009-2011 were mostly female (59.2%, belonged to regions 2 and 3 (81.6% of university entrance exam, had sciences diploma (89.8% and their grade point average of diploma was nearly 18. There was a significant difference between the three groups of students admitted to university in Biology, Chemistry, Mathematics, Arabic, English language and Theology lessones of entrane exam (P<0.05. The students’ failure rate was 1.5% in university coureses. They all (100% passed CBSE and were ranked second nationally in the year. There was no significant difference between male and female students in terms of age, diploma grade point average, grade point average of basic sciences and score of CBSE. Conclusion: Basic science courses of dentistry in Kermanshah enjoyed a rather constant status and students had a good academic level in these courses.

  18. Japanese representation in leading general medicine and basic science journals: a comparison of two decades.

    Science.gov (United States)

    Fukui, Tsuguya; Takahashi, Osamu; Rahman, Mahbubur

    2013-01-01

    During 1991-2000, Japan contribution to the top general medicine journals was very small although the contribution to the top basic science journals was sizeable. However, it has not been examined whether the contribution to the top general medicine and basic science journals has changed during the last decade (2001-2010). The objective of this study was to compare Japan representation in high-impact general medicine and basic science journals between the years 1991-2000 and 2001-2010. We used PubMed database to examine the frequency of articles originated from Japan and published in 7 high-impact general medicine and 6 high-impact basic science journals. Several Boolean operators were used to connect name of the journal, year of publication and corresponding authors' affiliation in Japan. Compared to the 1991-2000 decade, Japan contribution to the top general medicine journals did not increase over the 2001-2010 period (0.66% vs. 0.74%, P = 0.255). However, compared to the same period, its contribution to the top basic science journals increased during 2001-2010 (2.51% vs. 3.60%, P journals showed an upward trend over the 1991-2000 period (P journals remained flat both during 1991-2000 (P = 0.273) and 2001-2010 (P = 0.073). Overall, Japan contribution to the top general medicine journals has remained small and unchanged over the last two decades. However, top basic science journals had higher Japan representation during 2001-2010 compared to 1991-2000.

  19. The Basic Science of Bone Marrow Aspirate Concentrate in Chondral Injuries

    Science.gov (United States)

    Holton, James; Imam, Mohamed; Ward, Jonathan; Snow, Martyn

    2016-01-01

    There has been great interest in bone marrow aspirate concentrate (BMAC) as a cost effective method in delivering mesenchymal stem cells (MSCs) to aid in the repair and regeneration of cartilage defects. Alongside MSCs, BMAC contains a range of growth factors and cytokines to support cell growth following injury. However, there is paucity of information relating to the basic science underlying BMAC and its exact biological role in supporting the growth and regeneration of chondrocytes. The focus of this review is the basic science underlying BMAC in relation to chondral damage and regeneration.

  20. Why Flies? Inexpensive Public Engagement Exercises to Explain the Value of Basic Biomedical Research on "Drosophila melanogaster"

    Science.gov (United States)

    Pulver, Stefan R.; Cognigni, Paola; Denholm, Barry; Fabre, Caroline; Gu, Wendy X. W.; Linneweber, Gerit; Prieto-Godino, Lucia; Urbancic, Vasja; Zwart, Maarten; Miguel-Aliaga, Irene

    2011-01-01

    Invertebrate model organisms are powerful systems for uncovering conserved principles of animal biology. Despite widespread use in scientific communities, invertebrate research is often severely undervalued by laypeople. Here, we present a set of simple, inexpensive public outreach exercises aimed at explaining to the public why basic research on…

  1. Surveys of current status in biomedical science grant review: funding organisations' and grant reviewers' perspectives

    DEFF Research Database (Denmark)

    Schroter, Sara; Groves, Trish; Højgaard, Liselotte

    2010-01-01

    The objectives of this research were (a) to describe the current status of grant review for biomedical projects and programmes from the perspectives of international funding organisations and grant reviewers, and (b) to explore funders' interest in developing uniform requirements for grant review...... aimed at making the processes and practices of grant review more consistent, transparent, and user friendly....

  2. Surveys of current status in biomedical science grant review: funding organisations' and grant reviewers' perspectives

    DEFF Research Database (Denmark)

    Schroter, Sara; Groves, Trish; Højgaard, Liselotte

    2010-01-01

    The objectives of this research were (a) to describe the current status of grant review for biomedical projects and programmes from the perspectives of international funding organisations and grant reviewers, and (b) to explore funders' interest in developing uniform requirements for grant review...

  3. Understanding public opinion in debates over biomedical research: looking beyond political partisanship to focus on beliefs about science and society.

    Science.gov (United States)

    Nisbet, Matthew; Markowitz, Ezra M

    2014-01-01

    As social scientists have investigated the political and social factors influencing public opinion in science-related policy debates, there has been growing interest in the implications of this research for public communication and outreach. Given the level of political polarization in the United States, much of the focus has been on partisan differences in public opinion, the strategies employed by political leaders and advocates that promote those differences, and the counter-strategies for overcoming them. Yet this focus on partisan differences tends to overlook the processes by which core beliefs about science and society impact public opinion and how these schema are often activated by specific frames of reference embedded in media coverage and popular discourse. In this study, analyzing cross-sectional, nationally representative survey data collected between 2002 and 2010, we investigate the relative influence of political partisanship and science-related schema on Americans' support for embryonic stem cell research. In comparison to the influence of partisan identity, our findings suggest that generalized beliefs about science and society were more chronically accessible, less volatile in relation to media attention and focusing events, and an overall stronger influence on public opinion. Classifying respondents into four unique audience groups based on their beliefs about science and society, we additionally find that individuals within each of these groups split relatively evenly by partisanship but differ on other important dimensions. The implications for public engagement and future research on controversies related to biomedical science are discussed.

  4. Understanding public opinion in debates over biomedical research: looking beyond political partisanship to focus on beliefs about science and society.

    Directory of Open Access Journals (Sweden)

    Matthew Nisbet

    Full Text Available As social scientists have investigated the political and social factors influencing public opinion in science-related policy debates, there has been growing interest in the implications of this research for public communication and outreach. Given the level of political polarization in the United States, much of the focus has been on partisan differences in public opinion, the strategies employed by political leaders and advocates that promote those differences, and the counter-strategies for overcoming them. Yet this focus on partisan differences tends to overlook the processes by which core beliefs about science and society impact public opinion and how these schema are often activated by specific frames of reference embedded in media coverage and popular discourse. In this study, analyzing cross-sectional, nationally representative survey data collected between 2002 and 2010, we investigate the relative influence of political partisanship and science-related schema on Americans' support for embryonic stem cell research. In comparison to the influence of partisan identity, our findings suggest that generalized beliefs about science and society were more chronically accessible, less volatile in relation to media attention and focusing events, and an overall stronger influence on public opinion. Classifying respondents into four unique audience groups based on their beliefs about science and society, we additionally find that individuals within each of these groups split relatively evenly by partisanship but differ on other important dimensions. The implications for public engagement and future research on controversies related to biomedical science are discussed.

  5. The Chemistry Component of Natural Science Education in Primary and Basic School: Some Major Issues

    Directory of Open Access Journals (Sweden)

    V. Lamanauskas

    2007-09-01

    Full Text Available Many researches of last years specify necessity of perfection of natural science education at all levels of an education system and especially at a level of a primary and basic school. The main accent of process of natural science education in a primary school should become a different sort of researches and experiments. The weak interest of the youth to natural sciences, and especially - to chemistry, is one of the most acute problems of the present education. There are many reasons for this unflavored situation is amongst these is the insufficient attention to a component of chemistry in the content of a primary education. For the period of primary school pupils does not receive the basic initial knowledge in chemistry and research skills. On the other hand, teachers of primary classes are not prepared at a sufficient level in sphere of modern natural science education. At the basic school fastening knowledge and skills in the chemistry, received in a primary school proceeds. It is very important, that before studying chemistry as an independent subject, students have received adequate representation about the basic phenomena of the nature. The integrated course of natural science subjects should promote it. In this article results of research in which students of the fourth and eight/ninth forms have taken part are presented. Students should explain such phenomena as diffusion, dissolution, condensation, evaporation, burning and others. The assumption is done that students have propaedeutic knowledge and are capable to give the explanation, as they understand the given phenomena. On the other hand, in the program of a primary school some themes in chemistry are stipulated. In this aspect the given research shows natural science literacy of students of a primary school. Research puts forward a thorny question - how to guarantee development of knowledge and skills in chemistry at the basic school.

  6. Reinventing Biostatistics Education for Basic Scientists.

    Science.gov (United States)

    Weissgerber, Tracey L; Garovic, Vesna D; Milin-Lazovic, Jelena S; Winham, Stacey J; Obradovic, Zoran; Trzeciakowski, Jerome P; Milic, Natasa M

    2016-04-01

    Numerous studies demonstrating that statistical errors are common in basic science publications have led to calls to improve statistical training for basic scientists. In this article, we sought to evaluate statistical requirements for PhD training and to identify opportunities for improving biostatistics education in the basic sciences. We provide recommendations for improving statistics training for basic biomedical scientists, including: 1. Encouraging departments to require statistics training, 2. Tailoring coursework to the students' fields of research, and 3. Developing tools and strategies to promote education and dissemination of statistical knowledge. We also provide a list of statistical considerations that should be addressed in statistics education for basic scientists.

  7. A simulation for teaching the basic and clinical science of fluid therapy.

    Science.gov (United States)

    Rawson, Richard E; Dispensa, Marilyn E; Goldstein, Richard E; Nicholson, Kimberley W; Vidal, Noni Korf

    2009-09-01

    The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical cases that, by nature, are diverse, change over time, and respond in unique ways to therapeutic interventions. We developed a dynamic model using STELLA software that simulates normal and abnormal fluid and electrolyte balance in the dog. Students interact, not with the underlying model, but with a user interface that provides sufficient data (skin turgor, chemistry panel, etc.) for the clinical assessment of patients and an opportunity for treatment. Students administer fluids and supplements, and the model responds in "real time," requiring regular reassessment and, potentially, adaptation of the treatment strategy. The level of success is determined by clinical outcome, including improvement, deterioration, or death. We expected that the simulated cases could be used to teach both the clinical and basic science of fluid therapy. The simulation provides exposure to a realistic clinical environment, and students tend to focus on this aspect of the simulation while, for the most part, ignoring an exploration of the underlying physiological basis for patient responses. We discuss how the instructor's expertise can provide sufficient support, feedback, and scaffolding so that students can extract maximum understanding of the basic science in the context of assessing and treating at the clinical level.

  8. Undergraduate Student Researchers, Preferred Learning Styles, and Basic Science Research: A Winning Combination

    Science.gov (United States)

    Woeste, Lori A.; Barham, Beverly J.

    2007-01-01

    In basic science research, student researchers are often challenged with not only the technical portion of the research design but also the team dynamic. Understanding how a student prefers to learn can provide an advantage for mentors to better meet these challenges. In this article, the authors describe the experience of working with student…

  9. Effect of Self Regulated Learning Approach on Junior Secondary School Students' Achievement in Basic Science

    Science.gov (United States)

    Nwafor, Chika E.; Obodo, Abigail Chikaodinaka; Okafor, Gabriel

    2015-01-01

    This study explored the effect of self-regulated learning approach on junior secondary school students' achievement in basic science. Quasi-experimental design was used for the study.Two co-educational schools were drawn for the study through simple random sampling technique. One school was assigned to the treatment group while the other was…

  10. Effects of Concept Mapping Instruction Approach on Students' Achievement in Basic Science

    Science.gov (United States)

    Ogonnaya, Ukpai Patricia; Okafor, Gabriel; Abonyi, Okechukwu S.; Ugama, J. O.

    2016-01-01

    The study investigated the effects of concept mapping on students' achievement in basic science. The study was carried out in Ebonyi State of Nigeria. The study employed a quasi-experimental design. Specifically the pretest posttest non-equivalent control group research design was used. The sample was 122 students selected from two secondary…

  11. Translating Basic Behavioral and Social Science Research to Clinical Application: The EVOLVE Mixed Methods Approach

    Science.gov (United States)

    Peterson, Janey C.; Czajkowski, Susan; Charlson, Mary E.; Link, Alissa R.; Wells, Martin T.; Isen, Alice M.; Mancuso, Carol A.; Allegrante, John P.; Boutin-Foster, Carla; Ogedegbe, Gbenga; Jobe, Jared B.

    2013-01-01

    Objective: To describe a mixed-methods approach to develop and test a basic behavioral science-informed intervention to motivate behavior change in 3 high-risk clinical populations. Our theoretically derived intervention comprised a combination of positive affect and self-affirmation (PA/SA), which we applied to 3 clinical chronic disease…

  12. An Analysis of Taiwanese Eighth Graders' Science Achievement, Scientific Epistemological Beliefs and Cognitive Structure Outcomes After Learning Basic Atomic Theory.

    Science.gov (United States)

    Tsai, Chin-Chung

    1998-01-01

    Explores the interrelationships between students' general science achievement, scientific epistemological beliefs, and cognitive structure outcomes derived from instruction of basic atomic theory. Contains 19 references. (DDR)

  13. Mesenchymal Stem Cells in Lipogems, a Reverse Story: from Clinical Practice to Basic Science.

    Science.gov (United States)

    Tremolada, Carlo; Ricordi, Camillo; Caplan, Arnold I; Ventura, Carlo

    2016-01-01

    The idea that basic science should be the starting point for modern clinical approaches has been consolidated over the years, and emerged as the cornerstone of Molecular Medicine. Nevertheless, there is increasing concern over the low efficiency and inherent costs related to the translation of achievements from the bench to the bedside. These burdens are also perceived with respect to the effectiveness of translating basic discoveries in stem cell biology to the newly developing field of advanced cell therapy or Regenerative Medicine. As an alternative paradigm, past and recent history in Medical Science provides remarkable reverse stories in which clinical observations at the patient's bedside have fed major advances in basic research which, in turn, led to consistent progression in clinical practice. Within this context, we discuss our recently developed method and device, which forms the core of a system (Lipogems) for processing of human adipose tissue solely with the aid of mild mechanical forces to yield a microfractured tissue product.

  14. United Nations/European Space Agency Workshops on Basic Space Science

    Science.gov (United States)

    Haubold, H. J.; Ocampo, A.; Torres, S.; Wamsteker, W.

    1995-01-01

    In 1958, the United Nations (UN) formally recognized a new potential for international cooperation by establishing an ad hoc Committee on the Peaceful Uses of Outer Space (COPUOS). A year later the Committee became a permanent body, and by 1983 membership had expanded to 53 states, with more than half of the members coming from the developing world. In 1970, COPUOS established the UN Program on Space Applications in order to strengthen cooperation in space science and technology between non-industrialized and industrialized countries. In the last few years, the UN and its COPUOS have paid increasing attention to education and research in space science and technology, including basic space science. In 1991 the UN, in cooperation with ESA, initiated the organization of annual Workshops in Basic Space Science for developing countries. These Workshops are designed to be held in one of the following major regions: Asia and the Pacific, Latin America and the Caribbean, Africa, Western Asia, and Europe. Accordingly, Basic Space Science Workshops have already been held in India (1991), Costa Rica andColombia (1992), and Nigeria (1993). The fourth Workshop was held from 27 June to 1 July 1994 at the Cairo University, in Egypt, for Western Asia.

  15. United Nations/European Space Agency Workshops on Basic Space Science

    Science.gov (United States)

    Haubold, H. J.; Ocampo, A.; Torres, S.; Wamsteker, W.

    1995-02-01

    In 1958, the United Nations (UN) formally recognized a new potential for international cooperation by establishing an ad hoc Committee on the Peaceful Uses of Outer Space (COPUOS). A year later the Committee became a permanent body, and by 1983 membership had expanded to 53 states, with more than half of the members coming from the developing world. In 1970, COPUOS established the UN Program on Space Applications in order to strengthen cooperation in space science and technology between non-industrialized and industrialized countries. In the last few years, the UN and its COPUOS have paid increasing attention to education and research in space science and technology, including basic space science. In 1991 the UN, in cooperation with ESA, initiated the organization of annual Workshops in Basic Space Science for developing countries. These Workshops are designed to be held in one of the following major regions: Asia and the Pacific, Latin America and the Caribbean, Africa, Western Asia, and Europe. Accordingly, Basic Space Science Workshops have already been held in India (1991), Costa Rica and Colombia (1992), and Nigeria (1993). The fourth Workshop was held from 27 June to 1 July 1994 at the Cairo University, in Egypt, for Western Asia.

  16. Interconnections of basic science research and product development in medical device design.

    Science.gov (United States)

    Privitera, Mary Beth; Design, M; Johnson, Jeffrey

    2009-01-01

    The relationship between basic science research and product design/development are intertwined. This paper explores the definition of basic science and design as it relates to medical device development. It is intended to serve as a reference for both researchers and device developers to assist in trans-disciplinary collaborative efforts in improving patient care as each are of equal importance. The definition of a medical device is broad and varied. This paper is aimed towards those devices which interact with tissue and are rooted in the tenets of science. Both the scientific method and the design process are compared with similarities and opposites identified. The paper concludes identifying fundamental principles of medical device development and highlights the importance of both entities.

  17. Status Report on the United Nations Basic Space Science Initiative (UNBSSI)

    CERN Document Server

    Haubold, H J

    2010-01-01

    Since 1990, the UN Programme on Space Applications leads the United Nations Basic Space Science Initiative by contributing to the international and regional development of astronomy and space science through annual UN/ESA/NASA/JAXA workshops on basic space science, International Heliophysical Year 2007, and the International Space Weather Initiative. Space weather is the conditions on the Sun and in the solar wind, magnetosphere, ionosphere and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and can endanger human life or health. The programme also coordinates the development of IHY/ISWI low-cost, ground-based, world-wide instrument arrays. To date, 14 world-wide instrument arrays comprising approximately 1000 instruments (GPS receivers, magnetometers, spectrometers, particle detectors) are operating in more than 71 countries. The most recent workshop was hosted by the Republic of Korea in 2009 for Asia and the Pacific. Annual workshops on ...

  18. Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-02-01

    This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide and the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the

  19. Changing educational needs of psychologists: do we need more medical knowledge, basic science and more psychological science?

    Science.gov (United States)

    Belar, Cynthia D

    2008-03-01

    Psychologists of the 21st century must be highly skilled and versatile to function effectively in academic health centers (AHCs). Thus, the current paper focuses on the training psychologists receive to prepare them for their diverse roles in AHCs. The paper is framed around the question: Do we need more medical knowledge, basic science and more psychological science? posed to the author by the conference organizers of the 3rd National Association of Psychologists in Academic Health Centers (APAHC) Conference and is based on the perspective of the author.

  20. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics.

    Science.gov (United States)

    Arteaga, Carlos L; Engelman, Jeffrey A

    2014-03-17

    ERBB receptors were linked to human cancer pathogenesis approximately three decades ago. Biomedical investigators have since developed substantial understanding of the biology underlying the dependence of cancers on aberrant ERBB receptor signaling. An array of cancer-associated genetic alterations in ERBB receptors has also been identified. These findings have led to the discovery and development of mechanism-based therapies targeting ERBB receptors that have improved outcome for many cancer patients. In this Perspective, we discuss current paradigms of targeting ERBB receptors with cancer therapeutics and our understanding of mechanisms of action and resistance to these drugs. As current strategies still have limitations, we also discuss challenges and opportunities that lie ahead as basic scientists and clinical investigators work toward more breakthroughs.

  1. OPERANT CONDITIONING OF SPINAL REFLEXES:FROM BASIC SCIENCE TO CLINICAL THERAPY

    Directory of Open Access Journals (Sweden)

    Aiko K. Thompson

    2014-03-01

    Full Text Available New appreciation of the adaptive capabilities of the nervous system, recent recognition that most spinal cord injuries are incomplete, and progress in enabling regeneration are generating growing interest in novel rehabilitation therapies. Here we review the 35-year evolution of one promising new approach, operant conditioning of spinal reflexes. This work began in the late 1970’s as basic science; its purpose was to develop and exploit a uniquely accessible model for studying the acquisition and maintenance of a simple behavior in the mammalian CNS. The model was developed first in monkeys and then in rats, mice, and humans. Studies with it showed that the ostensibly simple behavior (i.e., a larger or smaller reflex rests on a complex hierarchy of brain and spinal cord plasticity; and current investigations are delineating this plasticity and its interactions with the plasticity that supports other behaviors. In the last decade, the possible therapeutic uses of reflex conditioning have come under study, first in rats and then in humans. The initial results are very exciting, and they are spurring further studies. At the same time, the original basic science purpose and the new clinical purpose are enabling and illuminating each other in unexpected ways. The long course and current state of this work illustrate the practical importance of basic research and the valuable synergy that can develop between basic science questions and clinical needs.

  2. Evolution in health and medicine Sackler colloquium: Making evolutionary biology a basic science for medicine.

    Science.gov (United States)

    Nesse, Randolph M; Bergstrom, Carl T; Ellison, Peter T; Flier, Jeffrey S; Gluckman, Peter; Govindaraju, Diddahally R; Niethammer, Dietrich; Omenn, Gilbert S; Perlman, Robert L; Schwartz, Mark D; Thomas, Mark G; Stearns, Stephen C; Valle, David

    2010-01-26

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.

  3. Evaluation of research in biomedical ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Dumontier, Michel; Gkoutos, Georgios V

    2013-11-01

    Ontologies are now pervasive in biomedicine, where they serve as a means to standardize terminology, to enable access to domain knowledge, to verify data consistency and to facilitate integrative analyses over heterogeneous biomedical data. For this purpose, research on biomedical ontologies applies theories and methods from diverse disciplines such as information management, knowledge representation, cognitive science, linguistics and philosophy. Depending on the desired applications in which ontologies are being applied, the evaluation of research in biomedical ontologies must follow different strategies. Here, we provide a classification of research problems in which ontologies are being applied, focusing on the use of ontologies in basic and translational research, and we demonstrate how research results in biomedical ontologies can be evaluated. The evaluation strategies depend on the desired application and measure the success of using an ontology for a particular biomedical problem. For many applications, the success can be quantified, thereby facilitating the objective evaluation and comparison of research in biomedical ontology. The objective, quantifiable comparison of research results based on scientific applications opens up the possibility for systematically improving the utility of ontologies in biomedical research.

  4. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  5. THE NEUROPSYCHOANALYTIC APPROACH: USING NEUROSCIENCE AS THE BASIC SCIENCE OF PSYCHOANALYSIS

    Directory of Open Access Journals (Sweden)

    Brian Johnson

    2016-10-01

    Full Text Available NEUROSCIENCE AS THE BASIC SCIENCE OF PSYCHOANALYSISNeuroscience was the basic science behind Freud’s psychoanalytic theory and technique. He worked as a neurologist for 20 years before being aware that a new approach to understand complex diseases, namely the hysterias, was needed. Solms coined the term neuropsychoanalysis to affirm that neuroscience still belongs in psychoanalysis. The neuropsychoanalytic field has continued Freud’s original ideas as stated in 1895. Developments in psychoanalysis that have been created or revised by the neuropsychoanalysis movement include pain/relatedness/opioids, drive, structural model, dreams, cathexis, and dynamic unconscious. Neuroscience has contributed to the development of new psychoanalytic theory, such as Bazan’s (2011 description of anxiety driven by unconscious intentions or phantoms. Results of adopting the dual aspect monism approach of idiographic psychoanalytic clinical observation combined with nomothetic investigation of related human phenomena include clarification and revision of theory, restoration of the scientific base of psychoanalysis, and improvement of clinical treatments. By imbricating psychoanalytic thinking with neuroscience, psychoanalysts are also positioned to make contributions to neuroscience research. Freud’s original Project for a Scientific Psychology/Psychology for Neurologists can be carried forward in a way that moves psychoanalysis into the 21st century as a core contemporary science (Kandel 1999. Neuroscience as the basic science of psychoanalysis both improves the field, and enhances its scientific and cultural status.

  6. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  7. Adult-Rated Oceanography Part 1: A Project Integrating Ocean Sciences into Adult Basic Education Programs.

    Science.gov (United States)

    Cowles, S.; Collier, R.; Torres, M. K.

    2004-12-01

    Busy scientists seek opportunities to implement education and outreach efforts, but often don't know where to start. One easy and tested method is to form collaborations with federally-funded adult education and adult literacy programs. These programs exist in every U.S. state and territory and serve underrepresented populations through such major initiatives as adult basic education, adult secondary education (and GED preparation), and English language acquisition. These students are workers, consumers, voters, parents, grandparents, and members of every community. They have specific needs that are often overlooked in outreach activities. This presentation will describe the steps by which the Oregon Ocean Science and Math Collaborative program was developed. It is based on a partnership between the Oregon Department of Community Colleges and Workforce Development, Oregon State University College of Oceanic and Atmospheric Sciences, Oregon Sea Grant, and the OSU Hatfield Marine Science Center. It includes professional development through instructor institutes; teachers at sea and informal education opportunities; curriculum and web site development. Through the partnership described here, instructors in adult basic education programs participate in a yearlong experience in which they develop, test, and adapt innovative instructional strategies to meet the specific needs of adult learners. This, in turn, leads to new prospects for study in the areas of ocean science and math and introduces non-academic careers in marine science to a new community. Working directly with instructors, we have identified expertise level, instructional environment, instructor background and current teaching strategies used to address science literacy and numeracy goals of the adult learners in the State of Oregon. Preliminary evaluation of our ongoing project in meeting these goals will be discussed. These efforts contribute to national goals of science literacy for all, by providing

  8. Defense, basic, and industrial research at the Los Alamos Neutron Science Center: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Longshore, A.; Salgado, K. [comps.

    1995-10-01

    The Workshop on Defense, Basic, and Industrial Research at the Los Alamos Neutron Science Center gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss the use of neutrons in science-based stockpile stewardship, The workshop began with presentations by government officials, senior representatives from the three weapons laboratories, and scientific opinion leaders. Workshop participants then met in breakout sessions on the following topics: materials science and engineering; polymers, complex fluids, and biomaterials; fundamental neutron physics; applied nuclear physics; condensed matter physics and chemistry; and nuclear weapons research. They concluded that neutrons can play an essential role in science-based stockpile stewardship and that there is overlap and synergy between defense and other uses of neutrons in basic, applied, and industrial research from which defense and civilian research can benefit. This proceedings is a collection of talks and papers from the plenary, technical, and breakout session presentations. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  9. Applications of systems science in biomedical research regarding obesity and noncommunicable chronic diseases: opportunities, promise, and challenges.

    Science.gov (United States)

    Wang, Youfa; Xue, Hong; Liu, Shiyong

    2015-01-01

    Interest in the application of systems science (SS) in biomedical research, particularly regarding obesity and noncommunicable chronic disease (NCD) research, has been growing rapidly over the past decade. SS is a broad term referring to a family of research approaches that include modeling. As an emerging approach being adopted in public health, SS focuses on the complex dynamic interaction between agents (e.g., people) and subsystems defined at different levels. SS provides a conceptual framework for interdisciplinary and transdisciplinary approaches that address complex problems. SS has unique advantages for studying obesity and NCD problems in comparison to the traditional analytic approaches. The application of SS in biomedical research dates back to the 1960s with the development of computing capacity and simulation software. In recent decades, SS has been applied to addressing the growing global obesity epidemic. There is growing appreciation and support for using SS in the public health field, with many promising opportunities. There are also many challenges and uncertainties, including methodologic, funding, and institutional barriers. Integrated efforts by stakeholders that address these challenges are critical for the successful application of SS in the future.

  10. Computer Science, Biology and Biomedical Informatics academy: Outcomes from 5 years of Immersing High-school Students into Informatics Research.

    Science.gov (United States)

    King, Andrew J; Fisher, Arielle M; Becich, Michael J; Boone, David N

    2017-01-01

    The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM) pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist.

  11. Long-term retention of basic science knowledge: a review study.

    Science.gov (United States)

    Custers, Eugène J F M

    2010-03-01

    In this paper, a review of long-term retention of basic science knowledge is presented. First, it is argued that retention of this knowledge has been a long-standing problem in medical education. Next, three types of studies are described that are employed in the literature to investigate long-term retention of knowledge in general. Subsequently, first the results of retention studies in general education are presented, followed by those of studies of basic science knowledge in medical education. The results of the review, in the general educational domain as well as in medical education, suggest that approximately two-third to three-fourth of knowledge will be retained after one year, with a further decrease to slightly below fifty percent in the next year. Finally, some recommendations are made for instructional strategies in curricula to improve long term retention of the subject matter dealt with.

  12. Fostering Student Enrollment in Basic Sciences: the Case of Southern Tuscany

    CERN Document Server

    Montalbano, Vera

    2012-01-01

    In recent decades it has been detected in Italy a decrease in enrollment in basic sciences, i.e. Mathematics, Physics and Chemistry. The increase in specific orientation is strategically crucial to achieve the goal of maintaining and increasing the number of motivated and capable students who enroll in these courses. With the purpose of increasing scientific vocations, workshops were organized in high schools and teachers involved in planning and implementation of laboratories, conferences for scientific outreach, thematic exhibitions, guided tours of research laboratories, summer's schools for students and courses for teachers were realized for developing a cultural enhancement in teaching basic sciences. Particularly significant is the case of activities organized by the Department of Physics of the University of Siena for students and teachers in Southern Tuscany. The methods used in cultural enhancement of teachers and activities designed to support schools with limited laboratory facilities, together wit...

  13. Neutron Transfer Reactions: Surrogates for Neutron Capture for Basic and Applied Nuclear Science

    Science.gov (United States)

    Cizewski, J. A.; Jones, K. L.; Kozub, R. L.; Pain, S. D.; Peters, W. A.; Adekola, A.; Allen, J.; Bardayan, D. W.; Becker, J. A.; Blackmon, J. C.; Chae, K. Y.; Chipps, K. A.; Erikson, L.; Gaddis, A.; Harlin, C.; Hatarik, R.; Howard, J.; Jandel, M.; Johnson, M. S.; Kapler, R.; Krolas, W.; Liang, F.; Livesay, R. J.; Ma, Z.; Matei, C.; Matthews, C.; Moazen, B.; Nesaraja, C. D.; O'Malley, P.; Patterson, N.; Paulauskas, S. V.; Pelham, T.; Pittman, S. T.; Radford, D.; Rogers, J.; Schmitt, K.; Shapira, D.; Shriner, J. F.; Sissom, D. J.; Smith, M. S.; Swan, T.; Thomas, J. S.; Vieira, D. J.; Wilhelmy, J. B.; Wilson, G. L.

    2009-03-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on 130,132Sn, 134Te and 75As are discussed.

  14. Neutron transfer reactions: Surrogates for neutron capture for basic and applied nuclear science

    Energy Technology Data Exchange (ETDEWEB)

    Cizewski, J. A. [Rutgers University; Jones, K. L. [University of Tennessee; Kozub, R. L. [Tennessee Technological University; Pain, Steven D [ORNL; Peters, W. A. [Rutgers University; Adekola, Aderemi S [ORNL; Allen, J. [Rutgers University; Bardayan, Daniel W [ORNL; Becker, J. [Lawrence Livermore National Laboratory (LLNL); Blackmon, Jeff C [ORNL; Chae, K. Y. [University of Tennessee; Chipps, K. [Colorado School of Mines, Golden; Erikson, Luke [Colorado School of Mines, Golden; Gaddis, A. L. [Furman University; Harlin, Christopher W [ORNL; Hatarik, Robert [Rutgers University; Howard, Joshua A [ORNL; Jandel, M. [Los Alamos National Laboratory (LANL); Johnson, Micah [ORNL; Kapler, R. [University of Tennessee; Krolas, W. [University of Warsaw; Liang, J Felix [ORNL; Livesay, Jake [ORNL; Ma, Zhanwen [ORNL; Matei, Catalin [Oak Ridge Associated Universities (ORAU); Matthews, C. [Rutgers University; Moazen, Brian [University of Tennessee; Nesaraja, Caroline D [ORNL; O' Malley, Patrick [Rutgers University; Patterson, N. P. [University of Surrey, UK; Paulauskas, Stanley [University of Tennessee; Pelham, T. [University of Surrey, UK; Pittman, S. T. [University of Tennessee, Knoxville (UTK); Radford, David C [ORNL; Rogers, J. [Tennessee Technological University; Schmitt, Kyle [University of Tennessee; Shapira, Dan [ORNL; ShrinerJr., J. F. [Tennessee Technological University; Sissom, D. J. [Tennessee Technological University; Smith, Michael Scott [ORNL; Swan, T. P. [University of Surrey, UK; Thomas, J. S. [Rutgers University; Vieira, D. J. [Los Alamos National Laboratory (LANL); Wilhelmy, J. B. [Los Alamos National Laboratory (LANL); Wilson, Gemma L [ORNL

    2009-04-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  15. Support of a Problem-Based Learning Curriculum by Basic Science Faculty

    Directory of Open Access Journals (Sweden)

    William L. Anderson

    2002-11-01

    Full Text Available Although published reports describe benefits to students of learning in a problem-based, student-centered environment, questions have persisted about the excessive faculty time commitments associated with the implementation of PBL pedagogy. The argument has been put forward that the excessive faculty costs of such a curriculum cannot be justified based upon the potential benefits to students. However, the magnitude of the faculty time commitment to a PBL curriculum to support the aforementioned argument is not clear to us and we suspect that it is also equally unclear to individuals charged with making resource decisions supporting the educational efforts of the institution. Therefore, to evaluate this cost - benefit question, we analyzed the actual basic science faculty time commitment in a hybrid PBL curriculum during the first phase 18 months of undergraduate medical education. The results of this analysis do demonstrate an increase in faculty time commitments but do not support the argument that PBL pedagogy is excessively costly in terms of faculty time. For the year analyzed in this report, basic science faculty members contributed on average of 27.4 hours to the instruction of medical students. The results of the analysis did show significant contributions (57% of instructional time by the clinical faculty during the initial 18 months of medical school. In addition, the data revealed a four-fold difference between time commitments of the four basic science departments. We conclude that a PBL curriculum does not place unreasonable demands on the time of basic science faculty. The demands on clinical faculty, in the context of their other commitments, could not be evaluated. Moreover, this type of analysis provides a tool that can be used to make faculty resource allocation decisions fairly.

  16. Application of basic science to clinical problems: traditional vs. hybrid problem-based learning.

    Science.gov (United States)

    Callis, Amber N; McCann, Ann L; Schneiderman, Emet D; Babler, William J; Lacy, Ernestine S; Hale, David Sidney

    2010-10-01

    It is widely acknowledged that clinical problem-solving is a key skill for dental practitioners. The aim of this study was to determine if students in a hybrid problem-based learning curriculum (h-PBL) were better at integrating basic science knowledge with clinical cases than students in a traditional, lecture-based curriculum (TC). The performance of TC students (n=40) was compared to that of h-PBL students (n=31). Participants read two clinical scenarios and answered a series of questions regarding each. To control for differences in ability, Dental Admission Test (DAT) Academic Average scores and predental grade point averages (GPAs) were compared, and an ANCOVA was used to adjust for the significant differences in DAT (t-test, p=0.002). Results showed that h-PBL students were better at applying basic science knowledge to a clinical case (ANCOVA, p=0.022) based on overall scores on one case. TC students' overall scores were better than h-PBL students on a separate case; however, it was not statistically significant (p=0.107). The h-PBL students also demonstrated greater skills in the areas of hypothesis generation (Mann-Whitney U, p=0.016) and communication (p=0.006). Basic science comprehension (p=0.01) and neurology (p<0.001) were two areas in which the TC students did score significantly higher than h-PBL students.

  17. Coordinating the undergraduate medical (MBBS basic sciences programme in a Nepalese medical school

    Directory of Open Access Journals (Sweden)

    Shankar PR

    2011-06-01

    Full Text Available KIST Medical College follows the curriculum of the Institute ofMedicine, Tribhuvan University. The programme aims toproduce socially responsible and competent physicians whoare willing and able to meet the existing and emergingchallenges of the national and international healthcaresystem. The first cohort of undergraduate medical students(MBBS students was admitted in November 2008 and threecohorts including the one admitted in 2008 have beenadmitted at the time of writing. The basic science subjects aretaught in an integrated, organ-system-based manner withcommunity medicine during the first two years. I wasappointed as the MBBS Phase I programme coordinator inSeptember 2008 and in this article I share my experiences ofrunning the basic sciences programme and also offersuggestions for running an efficient academic programme. Themanuscript will be of special interest to readers runningundergraduate medical programmes. The reader canunderstand our experiences in running the programme inadverse circumstances, learning to achieve greater integrationamong basic science, community medicine and clinicaldepartments, obtain information about a communitydiagnosis programme and know about running specialmodules on the medical humanities and pharmaceuticalpromotion.

  18. Science for Energy Technology: Strengthening the Link Between Basic Research and Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-04-01

    The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid

  19. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  20. A report of the Basic Energy Sciences Advisory Committee: 1992 review of the Basic Energy Sciences Program of the Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The general quality of BES research at each of the 4 laboratories is high. Diversity of management at the different laboratories is beneficial as long as the primary BES mission and goals are clearly identified and effectively pursued. External sources of personnel should be encouraged. DOE has been designing a new high flux research reactor, the Advanced Neutron Source, to replace DOE`s two aging research reactors; BESAC conducted a panel evaluation of neutron sources for the future. The two new light sources, Advanced Light Source and Advanced Photon source will come on line well before all of their beamline instrumentation can be funded, developed, and installed. Appointment of a permanent director and deputy for OBES would enhance OBES effectiveness in budget planning and intra-DOE program coordination. Some DOE and DP laboratories have substantial infrastructure which match well industry development-applications needs; interlaboratory partnerships in this area are encouraged. Funding for basic science research programs should be maintained at FY1993 levels, adjusted for inflation; OBES plans should be updated and monitored to maintain the balance between basic research and facilities construction and operation. The recommendations are discussed in detail in this document.

  1. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G. (comps.)

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  2. Training Multidisciplinary Biomedical Informatics Students: Three Years of Experience

    NARCIS (Netherlands)

    E.M. van Mulligen (Erik); M. Cases (Montserrat); K.M. Hettne (Kristina); E. Molero (Eva); M. Weeber (Marc); K.A. Robertson (Kevin); B. Oliva (Baldomero); G. de la Calle (Guillermo); V. Maojo (Victor)

    2008-01-01

    textabstractObjective: The European INFOBIOMED Network of Excellence1recognized that a successful education program in biomedical informatics should include not only traditional teaching activities in the basic sciences but also the development of skills for working in multidisciplinary teams. Desig

  3. Manpower development for the biomedical industry space.

    Science.gov (United States)

    Goh, James C H

    2013-01-01

    The Biomedical Sciences (BMS) Cluster is one of four key pillars of the Singapore economy. The Singapore Government has injected research funding for basic and translational research to attract companies to carry out their commercial R&D activities. To further intensify the R&D efforts, the National Research Foundation (NRF) was set up to coordinate the research activities of different agencies within the larger national framework and to fund strategic R&D initiatives. In recent years, funding agencies began to focus on support of translational and clinical research, particularly those with potential for commercialization. Translational research is beginning to have traction, in particular research funding for the development of innovation medical devices. Therefore, the Biomedical Sciences sector is projected to grow which means that there is a need to invest in human capital development to achieve sustainable growth. In support of this, education and training programs to strengthen the manpower capabilities for the Biomedical Sciences industry have been developed. In recent years, undergraduate and graduate degree courses in biomedical engineering/bioengineering have been developing at a rapid rate. The goal is to train students with skills to understand complex issues of biomedicine and to develop and implement of advanced technological applications to these problems. There are a variety of career opportunities open to graduates in biomedical engineering, however regardless of the type of career choices, students must not only focus on achieving good grades. They have to develop their marketability to employers through internships, overseas exchange programs, and involvement in leadership-type activities. Furthermore, curriculum has to be developed with biomedical innovation in mind and ensure relevance to the industry. The objective of this paper is to present the NUS Bioengineering undergraduate program in relation to manpower development for the biomedical

  4. The Neuropsychoanalytic Approach: Using Neuroscience as the Basic Science of Psychoanalysis

    Science.gov (United States)

    Johnson, Brian; Flores Mosri, Daniela

    2016-01-01

    Neuroscience was the basic science behind Freud's psychoanalytic theory and technique. He worked as a neurologist for 20 years before being aware that a new approach to understand complex diseases, namely the hysterias, was needed. Solms coined the term neuropsychoanalysis to affirm that neuroscience still belongs in psychoanalysis. The neuropsychoanalytic field has continued Freud's original ideas as stated in 1895. Developments in psychoanalysis that have been created or revised by the neuropsychoanalysis movement include pain/relatedness/opioids, drive, structural model, dreams, cathexis, and dynamic unconscious. Neuroscience has contributed to the development of new psychoanalytic theory, such as Bazan's (2011) description of anxiety driven by unconscious intentions or “phantoms.” Results of adopting the “dual aspect monism” approach of idiographic psychoanalytic clinical observation combined with nomothetic investigation of related human phenomena include clarification and revision of theory, restoration of the scientific base of psychoanalysis, and improvement of clinical treatments. By imbricating psychoanalytic thinking with neuroscience, psychoanalysts are also positioned to make contributions to neuroscience research. Freud's original Project for a Scientific Psychology/Psychology for Neurologists can be carried forward in a way that moves psychoanalysis into the twenty-first century as a core contemporary science (Kandel, 1999). Neuroscience as the basic science of psychoanalysis both improves the field, and enhances its scientific and cultural status. PMID:27790160

  5. Using a popular science nonfiction book to introduce biomedical research ethics in a biology majors course.

    Science.gov (United States)

    Walton, Kristen L W

    2014-12-01

    Although bioethics is an important topic in modern society, it is not a required part of the curriculum for many biology degree programs in the United States. Students in our program are exposed to biologically relevant ethical issues informally in many classes, but we do not have a requirement for a separate bioethics course. The Immortal Life of Henrietta Lacks is a recent nonfiction book that describes the life of the woman whose cervical cancer biopsy gave rise to the HeLa cell line, as well as discussing relevant medical, societal, and ethical issues surrounding human tissue use for research. Weekly reading assignments from the book with discussion questions and a final paper were used to engage students in learning about the ethics of human subjects and human tissues research. Students were surveyed for qualitative feedback on the usefulness of including this book as part of the course. This book has been a successful platform for increasing student knowledge and interest in ethics related to biomedical and biological research.

  6. Using a Popular Science Nonfiction Book to Introduce Biomedical Research Ethics in a Biology Majors Course

    Directory of Open Access Journals (Sweden)

    Kristen L.W. Walton

    2014-08-01

    Full Text Available Although bioethics is an important topic in modern society, it is not a required part of the curriculum for many biology degree programs in the United States.  Students in our program are exposed to biologically relevant ethical issues informally in many classes, but we do not have a requirement for a separate bioethics course.  The Immortal Life of Henrietta Lacks is a recent nonfiction book that describes the life of the woman whose cervical cancer biopsy gave rise to the HeLa cell line, as well as discussing relevant medical, societal, and ethical issues surrounding human tissue use for research.  Weekly reading assignments from the book with discussion questions and a final paper were used to engage students in learning about the ethics of human subjects and human tissues research.  Students were surveyed for qualitative feedback on the usefulness of including this book as part of the course.  This book has been a successful platform for increasing student knowledge and interest in ethics related to biomedical and biological research.

  7. The reincarnation of a biomedical researcher: from bench science to medical education.

    Science.gov (United States)

    Brawer, James R

    2008-02-01

    After 33 years as a biomedical research scientist, I embarked on a new career in medical education. The transformation was awkward, difficult and exciting. Although I had assumed that previous experience in research and scholarship would stand me in good stead, such was hardly the case. I had to learn to navigate a strange new literature, replete with terms that I did not understand, and to deal with concepts that challenged my physico-chemical mindset. As I learned, I found myself discovering a field rich in essential questions, controversial hypotheses, and important potential applications. With my newly acquired knowledge and skills, I began to reflect on my own educational endeavors. I identified a number of outstanding issues and I designed studies to address them. What made these investigations particularly significant for me was their applicability. Although medical education is an exciting and meaningful career path, because of its low profile in most medical schools, few faculty are aware of the academic opportunities that it affords.

  8. Mentoring Strategies and Outcomes of Two Federally Funded Cancer Research Training Programs for Underrepresented Students in the Biomedical Sciences.

    Science.gov (United States)

    Ford, Marvella E; Abraham, Latecia M; Harrison, Anita L; Jefferson, Melanie S; Hazelton, Tonya R; Varner, Heidi; Cannady, Kimberly; Frichtel, Carla S; Bagasra, Omar; Davis, Leroy; Rivers, David E; Slaughter, Sabra C; Salley, Judith D

    2016-06-01

    The US is experiencing a severe shortage of underrepresented biomedical researchers. The purpose of this paper is to present two case examples of cancer research mentoring programs for underrepresented biomedical sciences students. The first case example is a National Institutes of Health/National Cancer Institute (NIH/NCI) P20 grant titled "South Carolina Cancer Disparities Research Center (SC CaDRe)" Training Program, contributing to an increase in the number of underrepresented students applying to graduate school by employing a triple-level mentoring strategy. Since 2011, three undergraduate and four graduate students have participated in the P20 SC CaDRe program. One graduate student published a peer-reviewed scientific paper. Two graduate students (50 %) have completed their master's degrees, and the other two graduate students will receive their degrees in spring 2015. Two undergraduate students (67 %) are enrolled in graduate or professional school (grad./prof. school), and the other graduate student is completing her final year of college. The second case example is a prostate cancer-focused Department of Defense grant titled "The SC Collaborative Undergraduate HBCU Student Summer Training Program," providing 24 students training since 2009. Additionally, 47 students made scientific presentations, and two students have published peer-reviewed scientific papers. All 24 students took a GRE test preparation course; 15 (63 %) have applied to graduate school, and 11 of them (73 %) are enrolled in grad./prof. school. Thirteen remaining students (54 %) are applying to grad./prof. school. Leveraged funding provided research-training opportunities to an additional 201 National Conference on Health Disparities Student Forum participants and to 937 Ernest E. Just Research Symposium participants at the Medical University of South Carolina.

  9. Bridging the gap between basic science and clinical practice: a role for community clinicians

    Directory of Open Access Journals (Sweden)

    Cho Michelle

    2011-04-01

    Full Text Available Abstract Background Translating the extraordinary scientific and technological advances occurring in medical research laboratories into care for patients in communities throughout the country has been a major challenge. One contributing factor has been the relative absence of community practitioners from the US biomedical research enterprise. Identifying and addressing the barriers that prevent their participation in research should help bridge the gap between basic research and practice to improve quality of care for all Americans. Methods We interviewed over 200 clinicians and other healthcare stakeholders from 2004 through 2005 to develop a conceptual framework and set of strategies for engaging a stable cadre of community clinicians in a clinical research program. Results Lack of engagement of community practitioners, lack of necessary infrastructure, and the current misalignment of financial incentives and research participation emerged as the three primary barriers to community clinician research participation. Although every effort was made to learn key motivators for engagement in clinical research from interviewees, we did not observe their behavior and self-report by clinicians does not always track with their behavior. Conclusions A paradigm shift involving acknowledgement of the value of clinicians in the context of community research, establishment of a stable infrastructure to support a cohort of clinicians across time and research studies, and realignment of incentives to encourage participation in clinical research is required.

  10. Beyond Preparation: Identity, Cultural Capital, and Readiness for Graduate School in the Biomedical Sciences

    Science.gov (United States)

    Gazley, J. Lynn; Remich, Robin; Naffziger-Hirsch, Michelle E.; Keller, Jill; Campbell, Patricia B.; McGee, Richard

    2014-01-01

    In this study, we conducted in-depth interviews with 52 college graduates as they entered a Postbaccalaureate Research Education Program (PREP). Our goal was to investigate what it means for these aspiring scientists, most of whom are from groups underrepresented in the sciences, to feel ready to apply to a doctoral program in the biomedical…

  11. 77 FR 20489 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-04-04

    ... Town Alexandria. Cellular and Molecular June 4, 2012..... *VA Central Office. Medicine. Infectious... May 24, 2012..... Sheraton Suites--Old Science-B. Town Alexandria. Neurobiology-D May 24-25, 2012.... Neurobiology-A June 1, 2012..... Sheraton Suites--Old Town Alexandria. Clinical Application of June 1,...

  12. Making Bioinformatics Projects a Meaningful Experience in an Undergraduate Biotechnology or Biomedical Science Programme

    Science.gov (United States)

    Sutcliffe, Iain C.; Cummings, Stephen P.

    2007-01-01

    Bioinformatics has emerged as an important discipline within the biological sciences that allows scientists to decipher and manage the vast quantities of data (such as genome sequences) that are now available. Consequently, there is an obvious need to provide graduates in biosciences with generic, transferable skills in bioinformatics. We present…

  13. Subject Design and Factors Affecting Achievement in Mathematics for Biomedical Science

    Science.gov (United States)

    Carnie, Steven; Morphett, Anthony

    2017-01-01

    Reports such as Bio2010 emphasize the importance of integrating mathematical modelling skills into undergraduate biology and life science programmes, to ensure students have the skills and knowledge needed for biological research in the twenty-first century. One way to do this is by developing a dedicated mathematics subject to teach modelling and…

  14. Leading Change: Curriculum Reform in Graduate Education in the Biomedical Sciences

    Science.gov (United States)

    Dasgupta, Shoumita; Symes, Karen; Hyman, Linda

    2015-01-01

    The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were…

  15. Peer-assisted learning: filling the gaps in basic science education for preclinical medical students.

    Science.gov (United States)

    Sammaraiee, Yezen; Mistry, Ravi D; Lim, Julian; Wittner, Liora; Deepak, Shantal; Lim, Gareth

    2016-09-01

    In contrast to peer-assisted learning (PAL) in clinical training, there is scant literature on the efficacy of PAL during basic medical sciences teaching for preclinical students. A group of senior medical students aimed to design and deliver clinically oriented small-group tutorials after every module in the preclinical curriculum at a United Kingdom medical school. Twenty tutorials were delivered by senior students throughout the year to first- and second-year students. A baseline questionnaire was delivered to inform the development of the program followed by an end-point questionnaire the next year (n = 122). Quizzes were administered before and after five separate tutorials to assess changes in mean student scores. Additionally, each tutorial was evaluated via a questionnaire for participants (n = 949). All five posttutorial quizzes showed a significant improvement in mean student score (P < 0.05). Questionnaires showed students found the program to be relevant and useful for revision purposes and appreciated how tutorials contextualized basic science to clinical medicine. Students appreciated the interactive nature of the sessions and found receiving personalized feedback about their learning and consolidating information with someone familiar with the material to be useful. With the inclusion of the program, students felt there were now an adequate number of tutorials during the year. In conclusion, this study shows that senior medical students can design and deliver a program that adds value to the mostly lecture-based formal preclinical curriculum. We hope that our study can prompt further work to explore the effect of PAL on the teaching of basic sciences during preclinical studies.

  16. [A study of development of medicine and science in the nineteenth century science fiction: biomedical experiments in Mary Shelley's Frankenstein].

    Science.gov (United States)

    Choo, Jae-Uk

    2014-12-01

    As the sciences advanced rapidly in the modern European world, outstanding achievements have been made in medicine, chemistry, biology, physiology, physics and others, which have been co-influencing each of the scientific disciplines. Accordingly, such medical and scientific phenomena began to be reflected in novels. In particular, Mary Shelley's Frankenstein includes the diverse aspects of the change and development in the medicine and science. Associated with medical and scientific information reflected in Frankenstein and Frankenstein's experiments in the text, accordingly, this research will investigate the aspects of medical and scientific development taking place in the nineteenth century in three ways. First, the medical and scientific development of the nineteenth century has been reviewed by summerizing both the information of alchemy in which Frankenstein shows his interest and the new science in general that M. Waldman introduces in the text. Second, the actual features of medical and scientific development have been examined through some examples of the experimental methods that M. Waldman implicitly uttered to Frankenstein. Third, it has been checked how the medical and scientific development is related to the main issues of mechanism and vitalism which can be explained as principles of life. Even though this research deals with the developmental process of medicine & science and origin & principles of life implied in Mary Shelley's Frankenstein, its significance is that it is the interdisciplinary research focussing on how deeply medical and scientific discourse of Mary Shelley's period has been imbedded in the nineteenth century novel.

  17. The energy-climate continuum lessons from basic science and history

    CERN Document Server

    Bret, Antoine

    2014-01-01

    An entertaining, highly informative introduction to the intimate linkage between the energy and climate debates Illustrates the basic science behind energy and climate with back-of-the-envelope calculations, that even non-experts can easily follow without a calculator Thus provides an access to getting an accurate feeling for orders of magnitudes from simple estimations A conversation starter for some of the most debated topics of today Compares the actual situation with historic cases of societies at a turning point and finds warning as well as encouraging examples For everyone, who wan

  18. Magnet Science and Technology for Basic Research at the High Field Laboratory for Superconducting Materials

    Institute of Scientific and Technical Information of China (English)

    渡辺和雄

    2007-01-01

    Since the first practical cryocooled superconducting magnet using a GM-cryocooler and high temperature superconducting current leads has been demonstrated successfully at the High Field Laboratory for Superconducting Materials (HFLSM), various kinds of cryocooled superconducting magnets in fields up to 15 T have been used to provide access for new research areas in fields of magneto-science. Recently, the HFLSM has succeeded in demonstrating a cryocooed 18 T high temperature superconducting magnet and a high field cryocooled 27.5 T hybrid magnet. Cryocooled magnet technology and basic research using high field magnets at the HFLSM are introduced.

  19. Teaching Basic Science Environmentally, Concept: Water that Comes Down as Rain Is Used Over and Over Again.

    Science.gov (United States)

    Busch, Phyllis S.

    1985-01-01

    Provides directions for basic science experiments which demonstrate the rain cycle, fundamentals of cloud formation, and testing for the presence of acidity in local rainwater. Describes materials required, step-by-step instructions, and discussion topics. (NEC)

  20. Healthcare and biomedical technology in the 21st century an introduction for non-science majors

    CERN Document Server

    Baran, George R; Samuel, Solomon Praveen

    2014-01-01

    This textbook introduces students not pursuing degrees in science or engineering to the remarkable new applications of technology now available to physicians and their patients and discusses how these technologies are evolving to permit new treatments and procedures.  The book also elucidates the societal and ethical impacts of advances in medical technology, such as extending life and end of life decisions, the role of genetic testing, confidentiality, costs of health care delivery, scrutiny of scientific claims, and provides background on the engineering approach in healthcare and the scientific method as a guiding principle. This concise, highly relevant text enables faculty to offer a substantive course for students from non-scientific backgrounds that will empower them to make more informed decisions about their healthcare by significantly enhancing their understanding of these technological advancements. This book also: ·         Presents scientific concepts from modern medical science using r...

  1. Integration of Basic and Clinical Science Courses in US PharmD Programs.

    Science.gov (United States)

    Islam, Mohammed A; Talukder, Rahmat M; Taheri, Reza; Blanchard, Nicholas

    2016-12-25

    Objective. To determine the current status of and faculty perceptions regarding integration of basic and clinical science courses in US pharmacy programs. Methods. A 25-item survey instrument was developed and distributed to 132 doctor of pharmacy (PharmD) programs. Survey data were analyzed using Mann-Whitney U test or Kruskal-Wallis test. Thematic analysis of text-based comments was performed using the constant comparison method. Results. One hundred twelve programs responded for a response rate of 85%. Seventy-eight (70%) offered integrated basic and clinical science courses. The types of integration included: full integration with merging disciplinary contents (n=25), coordinated delivery of disciplinary contents (n=50), and standalone courses with integrated laboratory (n=3). Faculty perceptions of course integration were positive. Themes that emerged from text-based comments included positive learning experiences as well as the challenges, opportunities, and skepticism associated with course integration. Conclusion. The results suggest wide variations in the design and implementation of integrated courses among US pharmacy programs. Faculty training and buy-in play a significant role in successful implementation of curricular integration.

  2. Restructuring a basic science course for core competencies: an example from anatomy teaching.

    Science.gov (United States)

    Gregory, Jeremy K; Lachman, Nirusha; Camp, Christopher L; Chen, Laura P; Pawlina, Wojciech

    2009-09-01

    Medical schools revise their curricula in order to develop physicians best skilled to serve the public's needs. To ensure a smooth transition to residency programs, undergraduate medical education is often driven by the six core competencies endorsed by the Accreditation Council for Graduate Medical Education (ACGME): patient care, medical knowledge, practice-based learning, interpersonal skills, professionalism, and systems-based practice. Recent curricular redesign at Mayo Medical School provided an opportunity to restructure anatomy education and integrate radiology with first-year gross and developmental anatomy. The resulting 6-week (120-contact-hour) human structure block provides students with opportunities to learn gross anatomy through dissection, radiologic imaging, and embryologic correlation. We report more than 20 educational interventions from the human structure block that may serve as a model for incorporating the ACGME core competencies into basic science and early medical education. The block emphasizes clinically-oriented anatomy, invites self- and peer-evaluation, provides daily formative feedback through an audience response system, and employs team-based learning. The course includes didactic briefing sessions and roles for students as teachers, leaders, and collaborators. Third-year medical students serve as teaching assistants. With its clinical focus and competency-based design, the human structure block connects basic science with best-practice clinical medicine.

  3. Conducting correlation seminars in basic sciences at KIST Medical College, Nepal

    Directory of Open Access Journals (Sweden)

    P. Ravi Shankar

    2011-10-01

    Full Text Available KIST Medical College is a new medical school in Lalitpur, Nepal. In Nepal, six basic science subjects are taught together in an integrated organ system-based manner with early clinical exposure and community medicine. Correlation seminars are conducted at the end of covering each organ system. The topics are decided by the core academic group (consisting of members from each basic science department, the Department of Community Medicine, the academic director, and the clinical and program coordinators considering the public health importance of the condition and its ability to include learning objectives from a maximum number of subjects. The learning objectives are decided by individual departments and finalized after the meeting of the core group. There are two student coordinators for each seminar and an evaluation group evaluates each seminar and presenter. Correlation seminars help students revise the organ system covered and understand its clinical importance, promote teamwork and organization, and supports active learning. Correlation seminars should be considered as a learning modality by other medical schools.

  4. Handbook of coherent domain optical methods biomedical diagnostics, environmental and material science

    CERN Document Server

    2004-01-01

    For the first time in one set of books, coherent-domain optical methods are discussed in the framework of various applications, which are characterized by a strong light scattering. A few chapters describe basic research containing the updated results on coherent and polarized light non-destructive interactions with a scattering medium, in particular, diffraction, interference, and speckle formation at multiple scattering. These chapters allow for understanding coherent-domain diagnostic techniques presented in later chapters. A large portion of Volume I is dedicated to analysis of various aspects of optical coherence tomography (OCT) - a very new and growing field of coherent optics. Two chapters on laser scanning confocal microscopy give insight to recent extraordinary results on in vivo imaging and compare the possibilities and achievements of confocol, excitation multiphoton, and OCT microscopy. This two volume reference contains descriptions of holography, interferometry and optical heterodyning techniqu...

  5. Assessment of knowledge and perceptions toward generic medicines among basic science undergraduate medical students at Aruba

    Science.gov (United States)

    Shankar, P. Ravi; Herz, Burton L.; Dubey, Arun K.; Hassali, Mohamed A.

    2016-01-01

    Objective: Use of generic medicines is important to reduce rising health-care costs. Proper knowledge and perception of medical students and doctors toward generic medicines are important. Xavier University School of Medicine in Aruba admits students from the United States, Canada, and other countries to the undergraduate medical (MD) program. The present study was conducted to study the knowledge and perception about generic medicines among basic science MD students. Materials and Methods: The cross-sectional study was conducted among first to fifth semester students during February 2015. A previously developed instrument was used. Basic demographic information was collected. Respondent’s agreement with a set of statements was noted using a Likert-type scale. The calculated total score was compared among subgroups of respondents. One sample Kolmogorov–Smirnov test was used to study the normality of distribution, Independent samples t-test to compare the total score for dichotomous variables, and analysis of variance for others were used for statistical analysis. Results: Fifty-six of the 85 students (65.8%) participated. Around 55% of respondents were between 20 and 25 years of age and of American nationality. Only three respondents (5.3%) provided the correct value of the regulatory bioequivalence limits. The mean total score was 43.41 (maximum 60). There was no significant difference in scores among subgroups. Conclusions: There was a significant knowledge gap with regard to the regulatory bioequivalence limits for generic medicines. Respondents’ level of knowledge about other aspects of generic medicines was good but could be improved. Studies among clinical students in the institution and in other Caribbean medical schools are required. Deficiencies were noted and we have strengthened learning about generic medicines during the basic science years. PMID:28031604

  6. International cooperation in basic space science, Western Asian countries and the world

    Science.gov (United States)

    de Morais Mendonca Teles, Antonio

    The world will never better develop and attain a global peace state, if it does not exist a world-wide cooperation, union of interests among all countries on planet Earth, respecting and understanding each other culture differences. So, if the countries interested in space science want to create or better develop this field, they need to firstly construct peace states and social cooperation, while scientific and technological cooperation will develop -among them. Here in this paper, under the principles in the United Nations (UN)' Agenda 21 (UN UNCED, 1992), I propose four points that can lead to a practical and solid international cooperation in basic aerospace science and technology, based on ground studies, with sustainable space programs in countries with social necessities, and to the construction of an avenue of peace states in those areas and in the world, 1) The creation of LINKS among the "developing" countries, among the "developed" ones and between them -with scientists, engineers, educators and administrative personnel. This can catalyze a self-sustainable scientific and technological production in the "developing" countries. Financial matters could be done through the World Bank in coopera-tion with UNESCO. 2) The administration of this difficult enterprise of international coopera-tion. With the increasing complexity of relationships among the aerospace-interested countries, it will be necessary the creation of a center capable to serve as an INTERNATIONAL CO-ORDINATOR CENTER FOR AEROSPACE ACTIVITIES. 3) CULTURE: in Western Asian countries there is a cultural habit that when somebody gives something valuable to a person, this person should give something back. Thus, the Western Asian countries receiving infor-mation on basic aerospace science and technology from the "developed" ones, those countries would probably feel they should give something in return. Western Asian countries could trans-mit their costumes, thinking ways, habits, persons' worries

  7. A Plan for the Evaluation of a Project to Develop Basic Medical Sciences Lessons on PLATO IV.

    Science.gov (United States)

    Jones, Les A.; And Others

    A project to introduce PLATO IV computer-assisted instruction (CAI) in medical sciences education for health professionals was implemented at the School of Basic Medical Sciences at the University of Illinois. This paper describes the plan for evaluation of the project. Using a student questionnaire and additional general questions, the…

  8. Obstacles of Implementing the Science Curricula of the Basic Stage as Perceived by the Teachers in a Jordanian Town

    Science.gov (United States)

    Ayasra, Ahmad

    2015-01-01

    This study aimed to investigate obstacles that prevent implementation of science curriculum which was developed within the Education Reform for the Knowledge Economy project (ErfKE). To achieve this, a purposeful sample consisted of four teachers of science for the basic stage in the town located in the north of Jordan in the first semester of the…

  9. Biomedical Science, Unit II: Nutrition in Health and Medicine. Digestion of Foods; Organic Chemistry of Nutrients; Energy and Cell Respiration; The Optimal Diet; Foodborne Diseases; Food Technology; Dental Science and Nutrition. Student Text. Revised Version, 1975.

    Science.gov (United States)

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    This student text presents instructional materials for a unit of science within the Biomedical Interdisciplinary Curriculum Project (BICP), a two-year interdisciplinary precollege curriculum aimed at preparing high school students for entry into college and vocational programs leading to a career in the health field. Lessons concentrate on…

  10. The importance of being elegant: a discussion of elegance in nephrology and biomedical science.

    Science.gov (United States)

    Nathan, Marco J; Brancaccio, Diego

    2013-06-01

    Elegance is pursued and appreciated in virtually all aspects of our lives, from fashion to visual and performing arts, from literature to architecture. While most of us praise the elegance and beauty of science when we see it, elegance is typically treated as something that need not concern our research and thus does not belong inside the laboratory. In this article, we provide an alternative perspective, according to which elegance is more than an accessory ornament of scientific theories. We endorse and defend the view that elegance is an intrinsic feature of successful scientific practice and observation, a benchmark that demarcates between good experiments and bad ones. In support of our conclusions, we present and discuss three paradigms of scientific elegance: Jenner's discovery of vaccination, Bricker and Slatopolsky's trade-off hypothesis and Brenner's hypothesis regarding the role of residual nephrons in the decline of renal function.

  11. Review of the Lujan neutron scattering center: basic energy sciences prereport February 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

    2009-01-01

    The Lujan Neutron Scattering Center (Lujan Center) at LANSCE is a designated National User Facility for neutron scattering and nuclear physics studies with pulsed beams of moderated neutrons (cold, thermal, and epithermal). As one of five experimental areas at the Los Alamos Neutron Science Center (LANSCE), the Lujan Center hosts engineers, scientists, and students from around the world. The Lujan Center consists of Experimental Room (ER) 1 (ERl) built by the Laboratory in 1977, ER2 built by the Office of Basic Energy Sciences (BES) in 1989, and the Office Building (622) also built by BES in 1989, along with a chem-bio lab, a shop, and other out-buildings. According to a 1996 Memorandum of Agreement (MOA) between the Defense Programs (DP) Office of the National Nuclear Security Agency (NNSA) and the Office of Science (SC, then the Office of Energy Research), the Lujan Center flight paths were transferred from DP to SC, including those in ERI. That MOA was updated in 2001. Under the MOA, NNSA-DP delivers neutron beam to the windows of the target crypt, outside of which BES becomes the 'landlord.' The leveraging nature of the Lujan Center on the LANSCE accelerator is a substantial annual leverage to the $11 M BES operating fund worth approximately $56 M operating cost of the linear accelerator (LINAC)-in beam delivery.

  12. Embryology and histology education in North American dental schools: the Basic Science Survey Series.

    Science.gov (United States)

    Burk, Dorothy T; Lee, Lisa M J; Lambert, H Wayne

    2013-06-01

    As part of the Basic Science Survey Series (BSSS) for Dentistry, members of the American Dental Education Association (ADEA) Anatomical Sciences Section surveyed faculty members teaching embryology and histology courses at North American dental schools. The survey was designed to assess, among other things, curriculum content, utilization of laboratories, use of computer-assisted instruction (CAI), and recent curricular changes. Responses were received from fifty-nine (88.1 percent) of the sixty-seven U.S. and Canadian dental schools. Findings suggest the following: 1) a trend toward combining courses is evident, though the integration was predominantly discipline-based; 2) embryology is rarely taught as a stand-alone course, as content is often covered in gross anatomy, oral histology, and/or in an integrated curriculum; 3) the number of contact hours in histology is decreasing; 4) a trend toward reduction in formal laboratory sessions, particularly in embryology, is ongoing; and 5) use of CAI tools, including virtual microscopy, in both embryology and histology has increased. Additionally, embryology and histology content topic emphasis is identified within this study. Data, derived from this study, may be useful to new instructors, curriculum and test construction committees, and colleagues in the anatomical sciences, especially when determining a foundational knowledge base.

  13. Science as Knowledge, Practice, and Map Making: The Challenge of Defining Metrics for Evaluating and Improving DOE-Funded Basic Experimental Science

    Energy Technology Data Exchange (ETDEWEB)

    Bodnarczuk, M.

    1993-03-01

    Industrial R&D laboratories have been surprisingly successful in developing performance objectives and metrics that convincingly show that planning, management, and improvement techniques can be value-added to the actual output of R&D organizations. In this paper, I will discuss the more difficult case of developing analogous constructs for DOE-funded non-nuclear, non-weapons basic research, or as I will refer to it - basic experimental science. Unlike most industrial R&D or the bulk of applied science performed at the National Renewable Energy Laboratory (NREL), the purpose of basic experimental science is producing new knowledge (usually published in professional journals) that has no immediate application to the first link (the R) of a planned R&D chain. Consequently, performance objectives and metrics are far more difficult to define. My claim is that if one can successfully define metrics for evaluating and improving DOE-funded basic experimental science (which is the most difficult case), then defining such constructs for DOE-funded applied science should be much less problematic. With the publication of the DOE Standard - Implementation Guide for Quality Assurance Programs for Basic and Applied Research (DOE-ER-STD-6001-92) and the development of a conceptual framework for integrating all the DOE orders, we need to move aggressively toward the threefold next phase: (1) focusing the management elements found in DOE-ER-STD-6001-92 on the main output of national laboratories - the experimental science itself; (2) developing clearer definitions of basic experimental science as practice not just knowledge; and (3) understanding the relationship between the metrics that scientists use for evaluating the performance of DOE-funded basic experimental science, the management elements of DOE-ER-STD-6001-92, and the notion of continuous improvement.

  14. The Divergent Thinking of Basic Skills of Sciences Process Skills of Life Aspects on Natural Sciences Subject in Indonesian Elementary School Students

    Science.gov (United States)

    Subali, Bambang; Paidi; Mariyam, Siti

    2016-01-01

    This research aims at measuring the divergent thinking of basic skills of science process skills (SPS) of life aspects in Natural Sciences subjects on Elementary School. The test instruments used in this research have been standardized through the development of instruments. In this case, the tests were tried out to 3070 students. The results of…

  15. Biomedical signal analysis

    CERN Document Server

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  16. Career Coaches as a Source of Vicarious Learning for Racial and Ethnic Minority PhD Students in the Biomedical Sciences: A Qualitative Study

    Science.gov (United States)

    Williams, Simon N.; Thakore, Bhoomi K.; McGee, Richard

    2016-01-01

    Introduction Many recent mentoring initiatives have sought to help improve the proportion of underrepresented racial and ethnic minorities (URMs) in academic positions across the biomedical sciences. However, the intractable nature of the problem of underrepresentation suggests that many young scientists may require supplemental career development beyond what many mentors are able to offer. As an adjunct to traditional scientific mentoring, we created a novel academic career “coaching” intervention for PhD students in the biomedical sciences. Objective To determine whether and how academic career coaches can provide effective career-development-related learning experiences for URM PhD students in the biomedical sciences. We focus specifically on vicarious learning experiences, where individuals learn indirectly through the experiences of others. Method The intervention is being tested as part of a longitudinal randomized control trial (RCT). Here, we describe a nested qualitative study, using a framework approach to analyze data from a total of 48 semi-structured interviews from 24 URM PhD students (2 interviews per participant, 1 at baseline, 1 at 12-month follow-up) (16 female, 8 male; 11 Black, 12 Hispanic, 1 Native-American). We explored the role of the coach as a source of vicarious learning, in relation to the students’ goal of being future biomedical science faculty. Results Coaches were resources through which most students in the study were able to learn vicariously about how to pursue, and succeed within, an academic career. Coaches were particularly useful in instances where students’ research mentors are unable to provide such vicarious learning opportunities, for example because the mentor is too busy to have career-related discussions with a student, or because they have, or value, a different type of academic career to the type the student hopes to achieve. Implications Coaching can be an important way to address the lack of structured career

  17. Assessment of scientific thinking in basic science questions in the Iranian Fourth National Olympiad for medical sciences students

    Directory of Open Access Journals (Sweden)

    Morteza Ghojazadeh

    2014-08-01

    Full Text Available Introduction: Regarding to the importance of students Olympiads, and the need for evaluation of quality of questions, the aim of this study was to analyze questions (indices of difficulty coefficient and discrimination coefficient of Fourth Olympiad examination among Iranian medical sciences students in the area of scientific thinking in basic science. Methods: This study was descriptive-analytical study and was conducted in 2013 in the Tabriz University of Medical Sciences (Tabriz, Iran. The individual phase of this period, comprised from four phase and six parts included: designing conceptual map (CM (three part designing CM, summarizing CM, and designing three questions, hypothesis generating, selecting variables, and analyzing the findings. Data analyzed using descriptive statistics and statistical tests in SPSS for Windows. Results: According to difficulty coefficient of selecting variable (82% and making hypothesis was the easiest part (46%. And according to discriminate coefficient, analyzing the findings had the highest discriminate coefficient (83%, and selecting materials had the lowest discriminate coefficient (34%. Difficulty coefficient of the test was estimated about 63%, and discriminate coefficient was 66%. The results of Spearman correlation coefficient test showed that the correlation between scores related to designing CM with generating hypothesis equals to 85%, with selecting variable was 36% and with analyzing the results equals to 71%. Conclusion: Based on the result of this study, it is necessary for a designer of test to focus on selecting variable part of the test for improvement of quality and validity of the test. Furthermore, regarding to effectiveness of CM, it seems logical to pay more attention to their use.

  18. Aging and degeneration of the intervertebral disc: review of basic science

    Directory of Open Access Journals (Sweden)

    Josemberg da Silva Baptista

    2015-06-01

    Full Text Available Currently there is a growing interest in the study of intervertebral discs due to loss of manpower brought to society by low back and neck pains. These papers seek to delineate the difference between normal aging and disc degeneration, trying to understand what factor would be determining for the second condition. Thus, the morphology field was expanded and knowledge on the structure of intervertebral discs currently uses the research field of cell and molecular biology, and genetics. The results indicate that regardless of age or condition, the intervertebral disc undergoes long and extensive remodeling of its constituents, which are influenced by several factors: environmental, soluble, cell growth and extracellular matrix. In this literature review we describe the biological characteristics of the cervical and lumbar intervertebral disc with a focus on basic science of aging and degeneration, selecting the latest findings and discussions of the area, which influence future research and clinical thoughts.

  19. UN/ESA Workshops on Basic Space Science An Update on Their Achievements

    CERN Document Server

    Haubold, H J

    1999-01-01

    During the second half of the twentieth century, expensive observatories are being erected at La Silla (Chile), Mauna Kea (Hawai), Las Palmas (Canary Island), and Calar Alto (Spain), to name a view. In 1990, at the beginning of The Decade of Discovery in Astronomy and Astrophysics (Bahcall [2]), the UN/ESA Workshops on Basic Space Science initiated the establishment of small astronomical telescope facilities, among them many particularly supported by Japan, in developing countries in Asia and the Pacific (Sri Lanka, Philippines), Latin America and the Caribbean (Colombia, Costa Rica, Honduras, Paraguay), and Western Asia (Egypt, Jordan, Morocco). The annual UN/ESA Workshops continue to pursue an agenda to network these small observatory facilities through similar research and education programmes and at the same time encourage the incorporation of cultural elements predominant in the respective cultures. Cross-cultural integration and multi-lingual scientific cooperation may well be a dominant theme in the ne...

  20. Research and Education in Basic Space Science The Approach Pursued in the UN/ESA Workshops

    CERN Document Server

    Al-Naimiy, H M K; Chamcham, K; de Alwis, S P; De Carias, M C P; Haubold, H J; Boggino, A E T

    2000-01-01

    Since 1990, the United Nations in cooperation with the European Space Agencyis holding annually a workshop on basic space science for the benefit of theworldwide development of astronomy. These workshops have been held in countriesof Asia and the Pacific (India, Sri Lanka), Latin America and the Caribbean(Costa Rica, Colombia, Honduras), Africa (Nigeria), Western Asia (Egypt,Jordan), and Europe (Germany, France). Additional to the scientific benefits ofthe workshops and the strengthening of international cooperation, the workshopslead to the establishment of astronomical telescope facilities in Colombia,Egypt, Honduras, Jordan, Morocco, Paraguay, Peru, Philippines, Sri Lanka, andUruguay. The annual UN/ESA Workshops continue to pursue an agenda to networkthese astronomical telescope facilities through similar research and educationprogrammes. Teaching material and hands-on astrophysics material has beendeveloped for the operation of such astronomical telescope facilities in anuniversity environment.

  1. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences.

    Science.gov (United States)

    Nakajima, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on "Laser Acceleration and its future" [Toshiki Tajima, (2010)],(1)) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated.

  2. Development of Radio Astronomy at Centre for Basic Space Science Observatory, Nsukka Nigeria

    Science.gov (United States)

    Aliyu, Nasiru; Okere, Bonaventure I.; Lanre, Daniyan O.; Ezechi, Nwachukwu E.

    2015-08-01

    Radio telescopes for research, teaching and learning at Centre for Basic Space Science (CBSS) observatory are currently in place of development. A small parabolic radio telescope with diameter of 3.0 m working at 1420 MHz is already available for general purpose of radio astronomical observations. In addition, a Radio Jove telescope with dual dipole antenna working at 20 MHz and Sudden Ionospheric Disturbance (SID) monitor working at 24 KHz are also available. It is suitable to monitor daily solar burst, solar flares as well as Jupiter decametric emission. More over, CBSS radio interferometers are now under construction. It consists of non-tracking Radio Jove array and SID monitor as well as two radio telescope tracking interferometers. The latter is planned to utilize up to 4 antennas. Multi frequency receivers are made available at 24 KHz, 20 and 1420 MHz and will be used for VLBI in the near future.

  3. A prescription that addresses the decline of basic science education in medical school.

    Science.gov (United States)

    Miller, Daniel; Thornton, Christina S; Keough, Michael B; Roberts, Jodie I; Yipp, Bryan; Hollenberg, Morley; Bau, Jason T; Peplowski, Michael A; Beck, Paul L

    2014-10-04

    Over 30 years ago a cry rang out through the proverbial halls of academia; "The clinician scientist is an endangered species." These prophetic words have been reverberated in the ears of every specialty and every general medical organization in deafening tones. Why is the role of the clinician scientist or clinician investigator so important that this phrase has been repeated subsequently in medical and educational journals? Simply put, the clinician scientist bridges the ravine between the ever-growing mountain of scientific knowledge and the demanding patient centered clinical care. Here, we describe the current educational model established by the University of Calgary, Leaders in Medicine Program. Our program seeks to train future physicians and clinician scientists by incorporating training in basic science, translational and clinical research with clinical and medical education in a longitudinal program to students of traditional MD/PhD, MD/MSc or MD/MBA stream as well as interested Doctor of Medicine students.

  4. Web of Science, Scopus, and Google Scholar citation rates: a case study of medical physics and biomedical engineering: what gets cited and what doesn't?

    Science.gov (United States)

    Trapp, Jamie

    2016-12-01

    There are often differences in a publication's citation count, depending on the database accessed. Here, aspects of citation counts for medical physics and biomedical engineering papers are studied using papers published in the journal Australasian physical and engineering sciences in medicine. Comparison is made between the Web of Science, Scopus, and Google Scholar. Papers are categorised into subject matter, and citation trends are examined. It is shown that review papers as a group tend to receive more citations on average; however the highest cited individual papers are more likely to be research papers.

  5. Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, Peter E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Simonson, J. Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-10-24

    This report is based on the Department of Energy (DOE) Workshop on “Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery” that was held at the Bethesda Marriott in Maryland on October 24-25, 2011. The workshop brought together leading researchers from the Basic Energy Sciences (BES) facilities and Advanced Scientific Computing Research (ASCR). The workshop was co-sponsored by these two Offices to identify opportunities and needs for data analysis, ownership, storage, mining, provenance and data transfer at light sources, neutron sources, microscopy centers and other facilities. Their charge was to identify current and anticipated issues in the acquisition, analysis, communication and storage of experimental data that could impact the progress of scientific discovery, ascertain what knowledge, methods and tools are needed to mitigate present and projected shortcomings and to create the foundation for information exchanges and collaboration between ASCR and BES supported researchers and facilities. The workshop was organized in the context of the impending data tsunami that will be produced by DOE’s BES facilities. Current facilities, like SLAC National Accelerator Laboratory’s Linac Coherent Light Source, can produce up to 18 terabytes (TB) per day, while upgraded detectors at Lawrence Berkeley National Laboratory’s Advanced Light Source will generate ~10TB per hour. The expectation is that these rates will increase by over an order of magnitude in the coming decade. The urgency to develop new strategies and methods in order to stay ahead of this deluge and extract the most science from these facilities was recognized by all. The four focus areas addressed in this workshop were: Workflow Management - Experiment to Science: Identifying and managing the data path from experiment to publication. Theory and Algorithms: Recognizing the need for new tools for computation at scale, supporting large data sets and realistic

  6. Teaching population health as a basic science at Harvard Medical School.

    Science.gov (United States)

    Finkelstein, Jonathan A; McMahon, Graham T; Peters, Antoinette; Cadigan, Rebecca; Biddinger, Paul; Simon, Steven R

    2008-04-01

    In 2006-2007, Harvard Medical School implemented a new, required course for first-year medical and dental students entitled Clinical Epidemiology and Population Health. Conceived of as a "basic science" course, its primary goal is to allow students to develop an understanding of caring for individuals and promoting the health of populations as a continuum of strategies, all requiring the engagement of physicians. In the course's first iteration, topical content accessible to first-year students was selected to exemplify physicians' roles in addressing current threats to population health. Methodological areas included domains of clinical epidemiology, decision sciences, population-level prevention and health promotion, physicians' roles in the public health system, and population-level surveillance and intervention strategies. Large-group settings were selectively used to frame the relevance of each topic, and conceptual learning of statistical and epidemiologic methods occurred in conference groups of 24 students. Finally, tutorials of eight students and one or two faculty were used for critical reading of published studies, review of problem sets, and group discussion of population health issues. To help students appreciate the structure and function of the public health system and physicians' role in public health emergencies, the course included a role-playing exercise simulating response to an influenza pandemic. The first iteration of the course was well received, and assessment of students suggested mastery of basic skills. Preclinical courses represent a progressive step in developing a workforce of physicians who embrace their responsibility to improve the health of the population as a whole, as well as the health of the patient in front of them.

  7. Basic science and spine literature document bone morphogenetic protein increases cancer risk

    Directory of Open Access Journals (Sweden)

    Nancy E Epstein

    2014-01-01

    Full Text Available Background: Increasingly, clinical articles document that bone morphogenetic protein (BMP/INFUSE: Medtronic, Memphis, TN, USA and its derivatives utilized in spinal surgery increase the risk of developing cancer. However, there is also a large body of basic science articles that also document that various types of BMP and other members of the TGF-Beta (transforming growth factor beta family promote the growth of different types of cancers. Methods: This review looks at many clinical articles citing BMP/INFUSE′s role, largely "off-label", in contributing to complications encountered during spinal surgery. Next, however, specific attention is given to the clinical and basic science literature regarding how BMP and its derivatives (e.g. members of the TGF-beta family may also impact the development of breast and other cancers. Results: Utilizing BMP/INFUSE in spine surgery increased the risk of cancers/new malignancy as documented in several studies. For example, Carragee et al. found that for single-level instrumented posterolateral fusions (PLF using high-dose rhBMP-2 (239 patients vs. autograft (control group; n = 224, the risks of new cancers at 2 and 5 years postoperatively were increased. In laboratory studies, BMP′s along with other members of the TGF-Beta family also modulated/contributed to the proliferation/differentiation of breast cancer (e.g. bone formation/turnover, breast cancer-related solid tumors, and metastases, lung, adrenal, and colon cancer. Conclusions: BMP/INFUSE when utilized clinically in spinal fusion surgery appears to promote cancer at higher rates than observed in the overall population. Furthermore, BMP and TGF-beta are correlated with increased cancer growth both in the clinic and the laboratory.

  8. Why not just Google it? An assessment of information literacy skills in a biomedical science curriculum

    Science.gov (United States)

    2011-01-01

    Background Few issues in higher education are as fundamental as the ability to search for, evaluate, and synthesize information. The need to develop information literacy, the process of finding, retrieving, organizing, and evaluating the ever-expanding collection of online information, has precipitated the need for training in skill-based competencies in higher education, as well as medical and dental education. Methods The current study evaluated the information literacy skills of first-year dental students, consisting of two, consecutive dental student cohorts (n = 160). An assignment designed to evaluate information literacy skills was conducted. In addition, a survey of student online search engine or database preferences was conducted to identify any significant associations. Subsequently, an intervention was developed, based upon the results of the assessment and survey, to address any deficiencies in information literacy. Results Nearly half of students (n = 70/160 or 43%) missed one or more question components that required finding an evidence-based citation. Analysis of the survey revealed a significantly higher percentage of students who provided incorrect responses (n = 53/70 or 75.7%) reported using Google as their preferred online search method (p < 0.01). In contrast, a significantly higher percentage of students who reported using PubMed (n = 39/45 or 86.7%) were able to provide correct responses (p < 0.01). Following a one-hour intervention by a health science librarian, virtually all students were able to find and retrieve evidence-based materials for subsequent coursework. Conclusions This study confirmed that information literacy among this student population was lacking and that integration of modules within the curriculum can help students to filter and establish the quality of online information, a critical component in the training of new health care professionals. Furthermore, incorporation of these modules early in the curriculum may be of

  9. Pharmacology education in North American dental schools: the basic science survey series.

    Science.gov (United States)

    Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne

    2013-08-01

    As part of the Basic Science Survey Series (BSSS) for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed course directors of basic pharmacology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-nine of sixty-seven (73.1 percent) U.S. and Canadian dental schools. The findings suggest the following: 1) substantial variation exists in instructional hours, faculty affiliation, placement within curriculum, class size, and interdisciplinary nature of pharmacology courses; 2) pharmacology course content emphasis is similar among schools; 3) the number of contact hours in pharmacology has remained stable over the past three decades; 4) recent curricular changes were often directed towards enhancing the integrative and clinically relevant aspects of pharmacology instruction; and 5) a trend toward innovative content delivery, such as use of computer-assisted instruction applications, is evident. Data, derived from this study, may be useful to pharmacology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education.

  10. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D; Bronzino, Joseph D

    2006-01-01

    Over the last century,medicine has come out of the "black bag" and emerged as one of the most dynamic and advanced fields of development in science and technology. Today, biomedical engineering plays a critical role in patient diagnosis, care, and rehabilitation. As such, the field encompasses a wide range of disciplines, from biology and physiology to informatics and signal processing. Reflecting the enormous growth and change in biomedical engineering during the infancy of the 21st century, The Biomedical Engineering Handbook enters its third edition as a set of three carefully focused and

  11. Teaching Physiology in integrated basic medical sciences – sharing experiences from Nepal.

    Directory of Open Access Journals (Sweden)

    Pradhan AK

    2013-12-01

    Full Text Available Physiology is the basis of the medical profession [1]. Clear understanding of the mechanisms of the body functions always requires a high level of integration, apart from a descriptive approach [2, 3]. I worked as Professor in the Manipal College of Medical Sciences (MCOMS, Pokhara in the year 2009 -2010. Although my stay in Nepal was relatively short period, but the medical education system in Nepal influenced me. In Nepal, a traditional way of teaching pattern which is lecture-based, teacher-centered, discipline-based, examination-driven, and hospital-oriented is followed. Basic sciences and clinical sciences are the two main part of the medical curriculum in Nepal. The Bachelor of Medicine and Bachelor of Surgery degree is a four and half year's program, which is followed by one year internship. A large number of new medical colleges are coming up under Nepal Medical Council guidelines. There is a growing demand of Physicians in Nepal. Currently there are 18 medical colleges under Nepal Medical Council [4]. Manipal College of Medical Sciences is under Kathmandu University, one of the best and leading medical institutes in the country. This medical college is located in Pokhara. Students hailing from Nepal, India, Sri Lanka and other countries attend the four and a half year undergraduate medical (MBBS course. The MBBS course in Nepal is divided into nine semesters. Basic science subjects include Anatomy, Physiology, Biochemistry, Microbiology, Pathology, Pharmacology and Community Medicine which are taught in an integrated manner during the first four semesters (two years period. Community Medicine continues as a part of syllabus till the seventh semester and the clinical subjects like Medicine, Surgery, OBG, Ophthalmology, Orthopedics, Dermatology etc. are taught during the last five semesters of the MBBS course. At present Tribhuvan University (TU, Kathmandu University (KU, BP Koirala Institute of Health Sciences (BPKIHS and NAMS (National

  12. Proceedings of the 109th basic science seminar on research for quantum radiation measurement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    In the field of radiation measurement in next century, one of the main themes for researchers will be to develop new radiation detection techniques based on quantum effects. Thus three research projects for development of new neutron detection method using He-Ne laser cells, radiation-resistant optical fibers, and superconducting tunnel junction radiation detectors have been started five years before in our research group for quantum radiation measurement of the advanced science research center (ASRC) of JAERI. The joint workshop `Research for Quantum Radiation Measurement` was held as one of basic science seminars in ASRC on 19-20th of January 1998 on the occasion of the ending of the projects. There were many presentations concerning the above three themes and the participants had a good opportunity to exchange relating research information. This proceedings includes 13 papers of the presentations. It is not only useful to know the present status of advanced study but also very suggestive to see the direction and evolution of `radiation detection techniques based on quantum effects` in the future. (J.P.N.)

  13. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1984-02-01

    This report summarizes progress on Office of Health and Environmental Research (OHER) biomedical and health effects research conducted at PNL in FY 1983 to develop the information required for a comprehensive understanding of the interaction of energy-related pollutants with living organisms. The first section is devoted to an evaluation of possible health effects among nuclear workers. The next three sections, which contain reports of health effects research in biological systems, are grouped according to the major endpoint being studied: carcinogenesis, mutagenesis, and systems damage. Since some projects have multiple objectives, a section may contain data concerning other endpoints as well. The section on carcinogenesis presents results from laboratory animal dose-effect relationship studies from both nuclear and synfuels materials. These data, along with metabolism and modeling studies, provide a basis for predicting human risks in the absence of relevant human exposure. This year we include a report on our 22nd Hanford Life Sciences Symposium, which dealt with this problem of extrapolating the results of animal studies to man. Of particular importance in carcinogenesis has been the demonstration that the carcinogenic potencies of complex organic synfuel mixtures may be much lower (or, occasionally, higher) than the sum of the potencies of the individual components. The mutagenesis section is primarily concerned with the results of microbial mutagenesis studies with synfuel materials. These studies provide valuable information on the carcinogenic potential of these complex organic mixtures. With results from studies reported in the carcinogenesis section, they are also being used to establish an adequate data base for determining the correlation between mutagenic and carcinogenic processes. Separate abstracts have been prepared for each program for inclusion in the Energy Data Base.

  14. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a

  15. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  16. Designing and Implementing Basic Sciences Ontology Based on Concepts and Relationships of Relevant Thesauri

    Directory of Open Access Journals (Sweden)

    Molouk Sadat Hosseini Beheshti

    2015-05-01

    Full Text Available Currently, the main portion of knowledge is stored in electronic texts and documents and for transferring that knowledge effectively, we must use proper methods to gather and retrieve relevant information. Ontologies provide means to produce structured documents and use intelligent search instead of keyword search. Ontology defines the common words and concepts used to describe and represent an area of knowledge. However, developing ontologies is a time consuming and labor work, so many ontology developers try to facilitate and speed up this process by reusing other resources. In fact, thesaurus contains semantic information and hierarchical structure that make it an appropriate resource for ontology construction. Therefore, we determined to use the thesauri previously developed at Iranian Research Institute for Information Science and Technology (IRANDOC to construct ontology in basic sciences domain. At first, we synchronized common concepts in thesauri before integrating them as a macro thesaurus and removed inconsistencies. To reduce the amount of time and human resources which were needed for synchronizing process, Thesaurus Synchronizer was developed to illustrate differences between matched cases of two thesauri. It provides powerful tools for demonstrating differences and suggestions for each of the existing matters. Thus, domain experts synchronized each two thesaurus semi-automatically. Then we merged thesauri and transform the data format into ISO 25964 standard. The conceptual model have been designed based on the terms and their relationships in the integrated thesaurus and the concept maps that were designed by domain experts for each of basic sciences (Chemistry, Physics, Biology, Geology and Mathematics. We used the methodology called METHONTOLOGY in this stage. The main activity in this methodology is conceptualization and it enables the construction of ontologies at the knowledge level. Ultimately, the ontology was generated by

  17. 面向生物医学影像e-Science平台的审计监控系统%An Auditing and Monitoring System for Biomedical Image E-Science Platform

    Institute of Scientific and Technical Information of China (English)

    王土生; 杨媛媛; 张建国

    2013-01-01

    During Research in biomedical imaging and clinical applications for major diseases, it is often necessary to involve scientist of basic medicine, clinical medicine, physics and biomedical engineering for collaborative research. To do this, we built a grid-based biomedical image e-Science platform, providing data sharing and exchange between the different institutions. Due to the distribution of system and node heterogeneity, it is difficult to avoid the system hardware and software failures. Therefore, this paper designed an XMPP-based audit and monitoring system, which supports both real-time monitoring of each host, and auditing of the data business happening in e-Science. The system is running with e-Science platform, showing good convenient and soundness.%在面向重大疾病的生物医学成像与临床应用等研究中,常常需要包括基础医学、临床医学、物理学和生物医学工程多学科的科研工作者进行协同交互。为此采用网格技术构建了生物医学影像e-Science平台,实现了跨机构之间大数据的快速共享与交换。由于系统的分布性和节点的异构性,难以避免会碰到系统的软硬件故障。因此,设计了一种基于XMPP协议的审计监控系统,既对e-Science的各个主机系统资源进行实时监测,又对平台中数据业务进行审计跟踪。系统最终被部署应用在e-Science平台,具有良好的便捷性和稳健性。

  18. Educating for the 21st-Century Health Care System: An Interdependent Framework of Basic, Clinical, and Systems Sciences.

    Science.gov (United States)

    Gonzalo, Jed D; Haidet, Paul; Papp, Klara K; Wolpaw, Daniel R; Moser, Eileen; Wittenstein, Robin D; Wolpaw, Terry

    2017-01-01

    In the face of a fragmented and poorly performing health care delivery system, medical education in the United States is poised for disruption. Despite broad-based recommendations to better align physician training with societal needs, adaptive change has been slow. Traditionally, medical education has focused on the basic and clinical sciences, largely removed from the newer systems sciences such as population health, policy, financing, health care delivery, and teamwork. In this article, authors examine the current state of medical education with respect to systems sciences and propose a new framework for educating physicians in adapting to and practicing in systems-based environments. Specifically, the authors propose an educational shift from a two-pillar framework to a three-pillar framework where basic, clinical, and systems sciences are interdependent. In this new three-pillar framework, students not only learn the interconnectivity in the basic, clinical, and systems sciences but also uncover relevance and meaning in their education through authentic, value-added, and patient-centered roles as navigators within the health care system. Authors describe the Systems Navigation Curriculum, currently implemented for all students at the Penn State College of Medicine, as an example of this three-pillar educational model. Simple adjustments, such as including occasional systems topics in medical curriculum, will not foster graduates prepared to practice in the 21st-century health care system. Adequate preparation requires an explicit focus on the systems sciences as a vital and equal component of physician education.

  19. Motivating medical students to learn basic science concepts using chronic myeloid leukemia as an integration theme

    Directory of Open Access Journals (Sweden)

    Sara Teresinha Olalla Saad

    2015-02-01

    Full Text Available Objective: To report on the use of chronic myeloid leukemia as a theme of basic clinical integration for first year medical students to motivate and enable in-depth understanding of the basic sciences of the future physician. Methods: During the past thirteen years we have reviewed and updated the curriculum of the medical school of the Universidade Estadual de Campinas. The main objective of the new curriculum is to teach the students how to learn to learn. Since then, a case of chronic myeloid leukemia has been introduced to first year medical students and discussed in horizontal integration with all themes taught during a molecular and cell biology course. Cell structure and components, protein, chromosomes, gene organization, proliferation, cell cycle, apoptosis, signaling and so on are all themes approached during this course. At the end of every topic approached, the students prepare in advance the corresponding topic of clinical cases chosen randomly during the class, which are then presented by them. During the final class, a paper regarding mutations in the abl gene that cause resistance to tyrosine kinase inhibitors is discussed. After each class, three tests are solved in an interactive evaluation. Results: The course has been successful since its beginning, 13 years ago. Great motivation of those who participated in the course was observed. There were less than 20% absences in the classes. At least three (and as many as nine students every year were interested in starting research training in the field of hematology. At the end of each class, an interactive evaluation was performed and more than 70% of the answers were correct in each evaluation. Moreover, for the final evaluation, the students summarized, in a written report, the molecular and therapeutic basis of chronic myeloid leukemia, with scores ranging from 0 to 10. Considering all 13 years, a median of 78% of the class scored above 5 (min 74%-max 85%, and a median of 67

  20. Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, Peter E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Simonson, J. Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-10-24

    This report is based on the Department of Energy (DOE) Workshop on “Data and Communications in Basic Energy Sciences: Creating a Pathway for Scientific Discovery” that was held at the Bethesda Marriott in Maryland on October 24-25, 2011. The workshop brought together leading researchers from the Basic Energy Sciences (BES) facilities and Advanced Scientific Computing Research (ASCR). The workshop was co-sponsored by these two Offices to identify opportunities and needs for data analysis, ownership, storage, mining, provenance and data transfer at light sources, neutron sources, microscopy centers and other facilities. Their charge was to identify current and anticipated issues in the acquisition, analysis, communication and storage of experimental data that could impact the progress of scientific discovery, ascertain what knowledge, methods and tools are needed to mitigate present and projected shortcomings and to create the foundation for information exchanges and collaboration between ASCR and BES supported researchers and facilities. The workshop was organized in the context of the impending data tsunami that will be produced by DOE’s BES facilities. Current facilities, like SLAC National Accelerator Laboratory’s Linac Coherent Light Source, can produce up to 18 terabytes (TB) per day, while upgraded detectors at Lawrence Berkeley National Laboratory’s Advanced Light Source will generate ~10TB per hour. The expectation is that these rates will increase by over an order of magnitude in the coming decade. The urgency to develop new strategies and methods in order to stay ahead of this deluge and extract the most science from these facilities was recognized by all. The four focus areas addressed in this workshop were: Workflow Management - Experiment to Science: Identifying and managing the data path from experiment to publication. Theory and Algorithms: Recognizing the need for new tools for computation at scale, supporting large data sets and realistic

  1. NIH Funding for Biomedical Imaging

    Science.gov (United States)

    Conroy, Richard

    Biomedical imaging, and in particular MRI and CT, is often identified as among the top 10 most significant advances in healthcare in the 20th century. This presentation will describe some of the recent advances in medical physics and imaging being funded by NIH in this century and current funding opportunities. The presentation will also highlight the role of multidisciplinary research in bringing concepts from the physical sciences and applying them to challenges in biological and biomedical research.. NIH Funding for Biomedical Imaging.

  2. Patient exposure in the basic science classroom enhances differential diagnosis formation and clinical decision-making

    Directory of Open Access Journals (Sweden)

    Justin G. Peacock

    2015-02-01

    Full Text Available Purpose. The authors proposed that introducing real patients into a pathology classroom early in medical education would help integrate fundamental principles and disease pathology with clinical presentation and medical history.Methods. Three patients with different pathologies described their history and presentation without revealing their diagnosis. Students were required to submit a differential diagnosis in writing, and then were able to ask questions to arrive at the correct diagnosis. Students were surveyed on the efficacy of patient-based learning.Results. Average student scores on the differential diagnosis assignments significantly improved 32% during the course. From the survey, 72% of students felt that patient encounters should be included in the pathology course next year. Seventy-four percent felt that the differential diagnosis assignments helped them develop clinical decision-making skills. Seventy-three percent felt that the experience helped them know what questions to ask patients. Eighty-six percent felt that they obtained a better understanding of patients’ social and emotional challenges.Discussion. Having students work through the process of differential diagnosis formulation when encountering a real patient and their clinical presentation improved clinical decision-making skills and integrated fundamental concepts with disease pathology during a basic science pathology course.

  3. Patient exposure in the basic science classroom enhances differential diagnosis formation and clinical decision-making.

    Science.gov (United States)

    Peacock, Justin G; Grande, Joseph P

    2015-01-01

    Purpose. The authors proposed that introducing real patients into a pathology classroom early in medical education would help integrate fundamental principles and disease pathology with clinical presentation and medical history. Methods. Three patients with different pathologies described their history and presentation without revealing their diagnosis. Students were required to submit a differential diagnosis in writing, and then were able to ask questions to arrive at the correct diagnosis. Students were surveyed on the efficacy of patient-based learning. Results. Average student scores on the differential diagnosis assignments significantly improved 32% during the course. From the survey, 72% of students felt that patient encounters should be included in the pathology course next year. Seventy-four percent felt that the differential diagnosis assignments helped them develop clinical decision-making skills. Seventy-three percent felt that the experience helped them know what questions to ask patients. Eighty-six percent felt that they obtained a better understanding of patients' social and emotional challenges. Discussion. Having students work through the process of differential diagnosis formulation when encountering a real patient and their clinical presentation improved clinical decision-making skills and integrated fundamental concepts with disease pathology during a basic science pathology course.

  4. The Effectiveness of an Educational Game for Teaching Optometry Students Basic and Applied Science.

    Directory of Open Access Journals (Sweden)

    Richard Trevino

    Full Text Available To compare the effectiveness of an educational board game with interactive didactic instruction for teaching optometry students elements of the core optometric curriculum.Forty-two optometry students were divided into two GPA-matched groups and assigned to either 12 hours of game play (game group or 12 hours of interactive didactic instruction (lecture group. The same material from the core optometric curriculum was delivered to both groups. Game play was accomplished via an original board game. Written examinations assessed change in knowledge level. A post-intervention opinion survey assessed student attitudes.There was no significant difference in pre- or post-intervention test scores between the lecture and game groups (Pre-test: p = 0.9; Post-test: p = 0.5. Post-intervention test scores increased significantly from baseline (Game group: 29.3% gain, Didactic group: 31.5% gain; p<0.001 for each. The score increase difference between groups was not statistically significant (p = 0.6. The post-intervention attitude survey did not reveal any significant between group differences (p = 0.5.Our results indicate that an educational game and interactive didactic instruction can be equally effective in teaching optometry students basic and applied science. Furthermore, both modes of instruction have the potential to be equally engaging and enjoyable experiences.

  5. Physiology education in North American dental schools: the basic science survey series.

    Science.gov (United States)

    Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne

    2014-06-01

    As part of the Basic Science Survey Series for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed directors of physiology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-four of sixty-seven (65.7 percent) U.S. and Canadian dental schools. The findings suggest the following: substantial variation exists in instructional hours, faculty affiliation, class size, and interdisciplinary nature of physiology courses; physiology course content emphasis is similar between schools; student contact hours in physiology, which have remained relatively stable in the past fifteen years, are starting to be reduced; recent curricular changes have often been directed towards enhancing the integrative and clinically relevant aspects of physiology instruction; and a trend toward innovative content delivery, such as use of computer-assisted instruction, is evident. Data from this study may be useful to physiology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education.

  6. An International Basic Science and Clinical Research Summer Program for Medical Students

    Science.gov (United States)

    Ramjiawan, Bram; Pierce, Grant N.; Anindo, Mohammad Iffat Kabir; AlKukhun, Abedalrazaq; Alshammari, Abdullah; Chamsi, Ahmad Talal; Abousaleh, Mohannad; Alkhani, Anas; Ganguly, Pallab K.

    2012-01-01

    An important part of training the next generation of physicians is ensuring that they are exposed to the integral role that research plays in improving medical treatment. However, medical students often do not have sufficient time to be trained to carry out any projects in biomedical and clinical research. Many medical students also fail to…

  7. Collaborative diagramming during problem based learning in medical education: Do computerized diagrams support basic science knowledge construction?

    NARCIS (Netherlands)

    Leng, de Bas; Gijlers, Hannie

    2015-01-01

    Aim: To examine how collaborative diagramming affects discussion and knowledge construction when learning complex basic science topics in medical education, including its effectiveness in the reformulation phase of problem-based learning. Methods: Opinions and perceptions of students (n = 70) and

  8. Investigation of Pre-Service Teachers' Opinions about Science in Terms of the Basic Elements of the Education Program

    Science.gov (United States)

    Sengul, Ozge Aydin

    2016-01-01

    The purpose of the current study is to investigate the pre-service teachers' opinions about science within the context of the basic elements of the education program, such as objectives, content, learning-teaching process and evaluation. The study was designed as a case study, one of the qualitative research methods. The participants of the study…

  9. The articulation of integration of clinical and basic sciences in concept maps : differences between experienced and resident groups

    NARCIS (Netherlands)

    Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan

    2016-01-01

    To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesize

  10. Integration of clinical and basic sciences in concept maps : A mixed-method study on teacher learning

    NARCIS (Netherlands)

    Vink, Sylvia C.; Van Tartwijk, Jan|info:eu-repo/dai/nl/112629385; Bolk, Jan; Verloop, Nico

    2015-01-01

    Background: The explication of relations between clinical and basic sciences can help vertical integration in medical curricula. Concept mapping might be a useful technique for this explication. Little is known about teachers' ability regarding the articulation of integration. We examined therefore

  11. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, H.

    1983-02-01

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately.

  12. Thinking science with thinking machines: The multiple realities of basic and applied knowledge in a research border zone.

    Science.gov (United States)

    Hoffman, Steve G

    2015-04-01

    Some scholars dismiss the distinction between basic and applied science as passé, yet substantive assumptions about this boundary remain obdurate in research policy, popular rhetoric, the sociology and philosophy of science, and, indeed, at the level of bench practice. In this article, I draw on a multiple ontology framework to provide a more stable affirmation of a constructivist position in science and technology studies that cannot be reduced to a matter of competing perspectives on a single reality. The analysis is grounded in ethnographic research in the border zone of Artificial Intelligence science. I translate in-situ moments in which members of neighboring but differently situated labs engage in three distinct repertoires that render the reality of basic and applied science: partitioning, flipping, and collapsing. While the essences of scientific objects are nowhere to be found, the boundary between basic and applied is neither illusion nor mere propaganda. Instead, distinctions among scientific knowledge are made real as a matter of course.

  13. A Two-Dimensional Approach to Evaluate the Scientific Production of Countries (Case Study: The Basic Sciences)

    CERN Document Server

    Nejati, Ammar; 10.1007/s11192-009-0103-1

    2013-01-01

    The quantity and quality of scientific output of the topmost 50 countries in the four basic sciences (agricultural and biological sciences, chemistry, mathematics, and physics and astronomy) are studied in the period of the recent 12 years (1996-2007). In order to rank the countries, a novel two-dimensional method is proposed, which is inspired by the H-index and other methods based on quality and quantity measures. The countries data are represented in a "quantity-quality diagram", and partitioned by a conventional statistical algorithm (k-means), into three clusters, members of which are rather the same in all of the basic sciences. The results offer a new perspective on the global positions of countries with regards to their scientific output.

  14. Assessment of scientific thinking in basic science in the Iranian second national Olympiad

    Directory of Open Access Journals (Sweden)

    Azarpira Negar

    2012-01-01

    Full Text Available Abstract Background To evaluate the scientific reasoning in basic science among undergraduate medical students, we established the National Medical Science Olympiad in Iran. In this Olympiad, the drawing of a concept map was used to evaluate a student's knowledge framework; students' ability in hypothesis generation and testing were also evaluated in four different steps. All medical students were invited to participate in this program. Finally, 133 undergraduate medical students with average grades ≥ 16/20 from 45 different medical schools in Iran were selected. The program took the form of four exams: drawing a concept map (Exam I, hypothesis generation (Exam II, choosing variables based on the hypothesis (Exam III, measuring scientific thought (Exam IV. The examinees were asked to complete all examination items in their own time without using textbooks, websites, or personal consultations. Data were presented as mean ± SE of each parameter. The correlation coefficient between students' scores in each exam with the total final score and average grade was calculated using the Spearman test. Results Out of a possible score of 200, the mean ± SE of each exam were as follows: 183.88 ± 5.590 for Exam I; 78.68 ± 9.168 for Exam II; 92.04 ± 2.503 for exam III; 106.13 ± 2.345 for Exam IV. The correlation of each exam score with the total final score was calculated, and there was a significant correlation between them (p The average grade was significantly correlated with the total final score (R = 0.770, (p p R = 0.7708 and the average grade. This means students with higher average grades had better grades in each exam, especially in drawing the concept map. Conclusions We hope that this competition will encourage medical schools to integrate theory and practice, analyze data, and read research articles. Our findings relate to a selected population, and our data may not be applicable to all medical students. Therefore, further studies are

  15. Cannabinoid-Induced Hyperemesis: A Conundrum—From Clinical Recognition to Basic Science Mechanisms

    Directory of Open Access Journals (Sweden)

    Nissar A. Darmani

    2010-07-01

    Full Text Available Cannabinoids are used clinically on a subacute basis as prophylactic agonist antiemetics for the prevention of nausea and vomiting caused by chemotherapeutics. Cannabinoids prevent vomiting by inhibition of release of emetic neurotransmitters via stimulation of presynaptic cannabinoid CB1 receptors. Cannabis-induced hyperemesis is a recently recognized syndrome associated with chronic cannabis use. It is characterized by repeated cyclical vomiting and learned compulsive hot water bathing behavior. Although considered rare, recent international publications of numerous case reports suggest the contrary. The syndrome appears to be a paradox and the pathophysiological mechanism(s underlying the induced vomiting remains unknown. Although some traditional hypotheses have already been proposed, the present review critically explores the basic science of these explanations in the clinical setting and provides more current mechanisms for the induced hyperemesis. These encompass: (1 pharmacokinetic factors such as long half-life, chronic exposure, lipid solubility, individual variation in metabolism/excretion leading to accumulation of emetogenic cannabinoid metabolites, and/or cannabinoid withdrawal; and (2 pharmacodynamic factors including switching of the efficacy of Δ9-THC from partial agonist to antagonist, differential interaction of Δ9-THC with Gs and Gi signal transduction proteins, CB1 receptor desensitization or downregulation, alterations in tissue concentrations of endocannabinoid agonists/inverse agonists, Δ9-THC-induced mobilization of emetogenic metabolites of the arachidonic acid cascade, brainstem versus enteric actions of Δ9-THC, and/or hypothermic versus hyperthermic actions of Δ9-THC. In addition, human and animal findings suggest that chronic exposure to cannabis may not be a prerequisite for the induction of vomiting but is required for the intensity of emesis.

  16. Basic Energy Sciences Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Basic Energy Sciences, November 3-5, 2015, Rockville, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Aurora [Washington State Univ., Pullman, WA (United States); Millis, Andy [Columbia Univ., New York, NY (United States); Gagliardi, Laura [Univ. of Minnesota, Minneapolis, MN (United States); Panagiotopoulos, Thanos [Princeton Univ., NJ (United States); Siepmann, Ilja [Univ. of Minnesota, Minneapolis, MN (United States); Wolverton, Chris [Northwestern Univ., Evanston, IL (United States); Vashishta, Priya [Univ. of Southern California, Los Angeles, CA (United States); Stevens, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Mark [Iowa State Univ., Ames, IA (United States); Kent, Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); va DAm, Kerstin Kleese [Brookhaven National Lab. (BNL), Upton, NY (United States); Proffen, Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tull, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Diachin, Lori [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sethian, Jamie [Univ. of California, Berkeley, CA (United States); Benali, Anouar [Argonne National Lab. (ANL), Argonne, IL (United States); Chen, Jackie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Riley, Katherine [Argonne Leadership Computing Facility, IL (United States); Straatsma, Tjerk [Oak Ridge Leadership Computing Facility, TN (United States)

    2015-12-31

    Computers have revolutionized every aspect of our lives. Yet in science, the most tantalizing applications of computing lie just beyond our reach. The current quest to build an exascale computer with one thousand times the capability of today’s fastest machines (and more than a million times that of a laptop) will take researchers over the next horizon. The field of materials, chemical reactions, and compounds is inherently complex. Imagine millions of new materials with new functionalities waiting to be discovered — while researchers also seek to extend those materials that are known to a dizzying number of new forms. We could translate massive amounts of data from high precision experiments into new understanding through data mining and analysis. We could have at our disposal the ability to predict the properties of these materials, to follow their transformations during reactions on an atom-by-atom basis, and to discover completely new chemical pathways or physical states of matter. Extending these predictions from the nanoscale to the mesoscale, from the ultrafast world of reactions to long-time simulations to predict the lifetime performance of materials, and to the discovery of new materials and processes will have a profound impact on energy technology. In addition, discovery of new materials is vital to move computing beyond Moore’s law. To realize this vision, more than hardware is needed. New algorithms to take advantage of the increase in computing power, new programming paradigms, and new ways of mining massive data sets are needed as well. This report summarizes the opportunities and the requisite computing ecosystem needed to realize the potential before us. In addition to pursuing new and more complete physical models and theoretical frameworks, this review found that the following broadly grouped areas relevant to the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR) would directly affect the Basic Energy

  17. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  18. Engaging the community through an undergraduate biomedical physics course

    Science.gov (United States)

    Van Ness, G. R.; Widenhorn, Ralf

    2012-12-01

    We report on the development of an undergraduate biomedical physics course at Portland State University, motivated by both student interest and the desire of the university's Physics Department to provide an interdisciplinary intermediate-level physics course. The course was developed through the community engagement of physicians, clinical researchers, and basic science researchers. Class meetings were a combination of regular and guest lectures, hands-on exercises, web-based activities, class discussions, and a student poster information session for patrons at a local science museum. The course inspired students to engage in research projects in biomedical physics that enhance their understanding of science and education as well as benefit the learning of future students. Furthermore, this course offers an opportunity for traditionally underrepresented groups in physics courses, such as women, to gain additional exposure to physics.

  19. Progress of basic research in Parkinson's disease in China: data mini-review from the National Natural Science Foundation.

    Science.gov (United States)

    Cao, Heqi; Chen, Gang; Dong, Erdan

    2013-08-30

    This review is to analyze the role of National Natural Science Foundation of China (NSFC) on the development of basic research of Parkinson's disease from 1990 to 2012. Data on the total number of projects and funding of NSFC allocated to Parkinson's disease, as well as hotspots in western countries, papers published, awards, personnel training, subject construction were collected, and the role of NSFC on other sources of funding was evaluated. Over the past 23 years, a full range of continuous funding from NSFC has led to fruitful results and a strong impetus to the progress of basic research of Parkinson's disease.

  20. Opportunities to Learn in School and at Home: How can they predict students' understanding of basic science concepts and principles?

    Science.gov (United States)

    Wang, Su; Liu, Xiufeng; Zhao, Yandong

    2012-09-01

    As the breadth and depth of economic reforms increase in China, growing attention is being paid to equalities in opportunities to learn science by students of various backgrounds. In early 2009, the Chinese Ministry of Education and Ministry of Science and Technology jointly sponsored a national survey of urban eighth-grade students' science literacy along with their family and school backgrounds. The present study focused on students' understanding of basic science concepts and principles (BSCP), a subset of science literacy. The sample analyzed included 3,031 students from 109 randomly selected classes/schools. Correlation analysis, one-way analysis of variance, and two-level linear regression were conducted. The results showed that having a refrigerator, internet, more books, parents purchasing books and magazines related to school work, higher father's education level, and parents' higher expectation of the education level of their child significantly predicted higher BSCP scores; having siblings at home, owning an apartment, and frequently contacting teachers about the child significantly predicted lower BSCP scores. At the school level, the results showed that being in the first-tier or key schools, having school libraries, science popularization galleries, computer labs, adequate equipment for teaching, special budget for teacher training, special budget for science equipment, and mutual trust between teachers and students significantly predicated higher BSCP scores; and having science and technology rooms, offering science and technology interest clubs, special budget for science curriculum development, and special budget for science social practice activities significantly predicted lower BSCP scores. The implications of the above findings are discussed.

  1. The Relationship between Preservice Science Teachers' Attitude toward Astronomy and Their Understanding of Basic Astronomy Concepts

    Science.gov (United States)

    Bektasli, Behzat

    2016-01-01

    Turkish preservice science teachers have been taking a two-credit astronomy class during the last semester of their undergraduate program since 2010. The current study aims to investigate the relationship between preservice science teachers' astronomy misconceptions and their attitudes toward astronomy. Preservice science teachers were given an…

  2. Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice, Executive Summary and Final Report, October 1, 1978 - March 15, 1980.

    Science.gov (United States)

    Kabat, Hugh F.; And Others

    The areas of basic science pharmacy instruction and clinical pharmacy practice and their interrelationships were identified in order to help develop didactic and clinical experience alternatives. A 10-member advisory committee ranked basic pharmaceutical science topical areas in terms of their applicability to clinical practice utilizing a Delphi…

  3. Enhancing Science Teaching through Performing Marbling Art Using Basic Solutions and Base Indicators

    Science.gov (United States)

    Çil, Emine; Çelik, Kevser; Maçin, Tuba; Demirbas, Gülay; Gökçimen, Özlem

    2014-01-01

    Basic solutions are an indispensable part of our daily life. Basic solutions are commonly used in industries such as the textile industry, oil refineries, the fertilizer industry, and pharmaceutical products. Most cleaning agents, such as soap, detergent, and bleach, and some of our foods, such as chocolate and eggs, include bases. Bases are the…

  4. Magnetic Resonance Imaging in Biomedical Engineering

    Science.gov (United States)

    Kaśpar, Jan; Hána, Karel; Smrčka, Pavel; Brada, Jiří; Beneš, Jiří; Šunka, Pavel

    2007-11-01

    The basic principles of magnetic resonance imaging covering physical principles and basic imaging techniques will be presented as a strong tool in biomedical engineering. Several applications of MRI in biomedical research practiced at the MRI laboratory of the FBMI CTU including other laboratory instruments and activities are introduced.

  5. What is biomedical informatics?

    Science.gov (United States)

    Bernstam, Elmer V; Smith, Jack W; Johnson, Todd R

    2010-02-01

    Biomedical informatics lacks a clear and theoretically-grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of informatics as data plus meaning clearly distinguishes the field from related fields, such as computer science, statistics and biomedicine, which have different objects of study. The emphasis on data plus meaning also suggests that biomedical informatics problems tend to be difficult when they deal with concepts that are hard to capture using formal, computational definitions. In other words, problems where meaning must be considered are more difficult than problems where manipulating data without regard for meaning is sufficient. Furthermore, the definition implies that informatics research, teaching, and service should focus on biomedical information as data plus meaning rather than only computer applications in biomedicine.

  6. On Biomedical Research Policy in the Future

    Science.gov (United States)

    1989-01-01

    0 ON BIOMEDICAL RESEARCH POLICY IN THE FUTURE Albert P. Williams January 1989 DTIC ELECTE P-7520 "’T,, . The RAND Corporation Papers are issued by...BIOMEDICAL RESEARCH POLICY IN THE FUTURE[l] Mr. Walden, members of the Science Policy Task Force, I am honored to be invited to appear on this panel and...to offer my thoughts on future biomedical research policy . My perspective is that of an outsider with a longstanding interest in federal biomedical

  7. Basic Concepts of the Educational Science Sub-Discipline of Adult Education

    Science.gov (United States)

    Schneider, Kaethe

    2005-01-01

    In this study, a conceptual system is outlined for the educational science sub-discipline of adult education. Adults' attending instruction or not attending instruction is conceptually specified. Focusing as it does on a cardinal event of adult education, this represents a first step toward a system for the educational science sub-discipline of…

  8. Brain Basics

    Medline Plus

    Full Text Available ... science, such as: How the brain develops How genes and the environment affect the brain The basic ... that with brain development in people mental disorders. Genes and environmental cues both help to direct this ...

  9. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  10. Green fluorescent protein purification through Immobilized Metal Affinity Chromatografy (IMAC and its relevance for Biomedical Science students during Biochemistry practical classes at La Trobe University – Australia

    Directory of Open Access Journals (Sweden)

    Alex Jose José de Melo Silva

    2016-12-01

    Full Text Available This work was performed as an integrated practical of a Biomedical Science undergraduate course of Biochemistry subject, in order to demonstrate used techniques to purify of Green Fluorescent Protein (GFP. To perform the experiments the main methodology applied was the by immobilized metal affinity chromatography (IMAC.  The open reading frame for enhanced GFP was sub-cloned into the pQE30 expression vector. The subsequent production of protein tagged N-terminally with hexahistidine, facilitated its purification by IMAC.  An approximate 3-fold purification of GFP was achieved. Thus, the students who completed the course gained significant experience related to fundamental techniques in molecular cloning and a sound basis in the principles of recombinant protein expression and purification.

  11. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M.; Ellingson, R.; Overend, R.; Mazer, J.; Gress, M.; Horwitz, J.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2005-04-21

    World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploit this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.

  12. Database search services as a basic service in academic health sciences libraries.

    OpenAIRE

    Jankowski, T A; Martin, E. R.

    1994-01-01

    Mediated search services, usually offered for a fee, are commonplace in academic health sciences libraries. At the same time, users of these services have numerous self-service options available to them; for example, CD-ROMs and locally mounted databases. In keeping with its philosophy of access to rather than ownership of information, the University of Washington Health Sciences Library and Information Center (HSLIC) changed its policy from charging clients for mediated searching to offering...

  13. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K. (comps.)

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  14. Brain Basics

    Medline Plus

    Full Text Available ... Basics will introduce you to some of this science, such as: How the brain develops How genes and the environment affect the brain The basic structure of the brain How different parts of the brain communicate and work with each other How changes in the brain ...

  15. Basic and Advanced Bayesian Structural Equation Modeling With Applications in the Medical and Behavioral Sciences

    CERN Document Server

    Lee, Sik-Yum

    2012-01-01

    This book provides clear instructions to researchers on how to apply Structural Equation Models (SEMs) for analyzing the inter relationships between observed and latent variables. Basic and Advanced Bayesian Structural Equation Modeling introduces basic and advanced SEMs for analyzing various kinds of complex data, such as ordered and unordered categorical data, multilevel data, mixture data, longitudinal data, highly non-normal data, as well as some of their combinations. In addition, Bayesian semiparametric SEMs to capture the true distribution of explanatory latent variables are introduce

  16. Teaching Skills to Promote Clinical Reasoning in Early Basic Science Courses

    Science.gov (United States)

    Elizondo-Omana, Rodrigo Enrique; Morales-Gomez, Jesus Alberto; Morquecho-Espinoza, Orlando; Hinojosa-Amaya, Jose Miguel; Villarreal-Silva, Eliud Enrique; Garcia-Rodriguez, Maria de los Angeles; Guzman-Lopez, Santos

    2010-01-01

    Basic and superior reasoning skills are woven into the clinical reasoning process just as they are used to solve any problem. As clinical reasoning is the central competence of medical education, development of these reasoning skills should occur throughout the undergraduate medical curriculum. The authors describe here a method of teaching…

  17. Differences in citation frequency of clinical and basic science papers in cardiovascular research

    NARCIS (Netherlands)

    Opthof, Tobias

    2011-01-01

    In this article, a critical analysis is performed on differences in citation frequency of basic and clinical cardiovascular papers. It appears that the latter papers are cited at about 40% higher frequency. The differences between the largest number of citations of the most cited papers are even lar

  18. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1986-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1985 to develop information for a comprehensive understanding of the interaction of energy-related radiation and chemicals with man. Our continuing emphasis on decreasing the uncertainty of health-effects risk estimates to man from existing and/or developing energy-related technologies supports the DOE goal of increasing and diversifying national energy resources and decreasing risks to human health. The report is arranged to reflect the PNL research relative to OHER programmatic needs. The first section concerns evaluation of possible health effects among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include health effects of radiation and health effects of chemical mixtures. The last section is related to medical applications of nuclear technology.

  19. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 1, Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1987-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1986. The research develops the knowledge and scientific principles necessary to identify, understand and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect the PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological methods for assessing health risks among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include effects of radiation and of energy-related chemicals. The last section is related to medical applications of nuclear technology.

  20. Pacific Northwest Laboratory annual report for 1988 to the DOE Office of Energy Research: Part 1, Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1989-06-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1988. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals.

  1. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 1, Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1988-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at Pacific Northwest Laboratory in FY 1987. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals. The last section is related to medical applications of nuclear technology.

  2. Medicine's perception of reality - a split picture: critical reflections on apparent anomalies within the biomedical theory of science.

    Science.gov (United States)

    Kirkengen, Anna Luise; Ekeland, Tor-Johan; Getz, Linn; Hetlevik, Irene; Schei, Edvin; Ulvestad, Elling; Vetlesen, Arne Johan

    2016-08-01

    Escalating costs, increasing multi-morbidity, medically unexplained health problems, complex risk, poly-pharmacy and antibiotic resistance can be regarded as artefacts of the traditional knowledge production in Western medicine, arising from its particular worldview. Our paper presents a historically grounded critical analysis of this view. The materialistic shift of Enlightenment philosophy, separating subjectivity from bodily matter, became normative for modern medicine and yielded astonishing results. The traditional dichotomies of mind/body and subjective/objective are, however, incompatible with modern biological theory. Medical knowledge ignores central tenets of human existence, notably the physiological impact of subjective experience, relationships, history and sociocultural contexts. Biomedicine will not succeed in resolving today's poorly understood health problems by doing 'more of the same'. We must acknowledge that health, sickness and bodily functioning are interwoven with human meaning-production, fundamentally personal and biographical. This implies that the biomedical framework, although having engendered 'success stories' like the era of antibiotics, needs to be radically revised.

  3. The Central Importance of Laboratories for Reducing Waste in Biomedical Research.

    Science.gov (United States)

    Stroth, Nikolas

    2016-12-01

    The global biomedical research enterprise is driving substantial advances in medicine and healthcare. Yet it appears that the enterprise is rather wasteful, falling short of its true innovative potential. Suggested reasons are manifold and involve various stakeholders, such that there is no single remedy. In the present paper, I will argue that laboratories are the basic working units of the biomedical research enterprise and an important site of action for corrective intervention. Keeping laboratories relatively small will enable better training and mentoring of individual scientists, which in turn will yield better performance of the scientific workforce. The key premise of this argument is that people are at the heart of the successes and failures of biomedical research, yet the human dimension of science has been unduly neglected in practice. Renewed focus on the importance of laboratories and their constituent scientists is one promising approach to reducing waste and increasing efficiency within the biomedical research enterprise.

  4. ``The ESA XMM-Newton Science Operations Centre: Making Basic Space Science Available to the Whole Scientific World''

    Science.gov (United States)

    Gabriel, Carlos; Guainazzi, Matteo; Metcalfe, Leo

    2006-12-01

    XMM-Newton is a major X-ray observatory of the European Space Agency (ESA). Its observing time is open to astronomers from the whole scientific community on a peer reviewed competitive basis. The Science Operations Centre, located at ESA’s premises in Villafranca del Castillo, Spain, is responsible for the instrument operations, as well as for all the tasks related to facilitating the scientific exploitation of the data which the mission has been producing since its launch in December 1999. Among them, one may list: distribution of scientific data in different formats, from raw telemetry, up to processed and calibrated high-level science products, such as images, spectra, source lists, etc; development and distribution of dedicated science analysis software, as well as of continuously updated instrument calibration; regular organisation of training workshops (free of cost), for potential users of XMM-Newton data, where the procedures and techniques to successfully reduce and analyze XMM-Newton data are introduced; access to the data through state-of-the-art, in-house-developed archival facilities, either through the Internet or via CD-ROM; continuously updated documentation on all aspects of spacecraft and instrument operations, data reduction and analysis; maintenance of a comprehensive set of project web pages; a competent and responsive HelpDesk, providing dedicated support to individual XMM-Newton users. Everyone can be an XMM-Newton observer. So far, astronomers from 36 countries submitted observing programs. Public data can be accessed by every scientist in the world through the XMM-Newton Science Archive (XSA). Despite all these efforts, one can’t help noticing an asymmetric level of scientific exploitation in the realm of X-ray astronomy between developing and developed countries. The latter have traditionally enjoyed the comparative advantage of deeper know-how, deriving from direct experience in hardware and mission development. The XMM-Newton Science

  5. Building ontologies with basic formal ontology

    CERN Document Server

    Arp, Robert; Spear, Andrew D.

    2015-01-01

    In the era of "big data," science is increasingly information driven, and the potential for computers to store, manage, and integrate massive amounts of data has given rise to such new disciplinary fields as biomedical informatics. Applied ontology offers a strategy for the organization of scientific information in computer-tractable form, drawing on concepts not only from computer and information science but also from linguistics, logic, and philosophy. This book provides an introduction to the field of applied ontology that is of particular relevance to biomedicine, covering theoretical components of ontologies, best practices for ontology design, and examples of biomedical ontologies in use. After defining an ontology as a representation of the types of entities in a given domain, the book distinguishes between different kinds of ontologies and taxonomies, and shows how applied ontology draws on more traditional ideas from metaphysics. It presents the core features of the Basic Formal Ontology (BFO), now u...

  6. Developing a competency-based medical education curriculum for the core basic medical sciences in an African Medical School.

    Science.gov (United States)

    Olopade, Funmilayo Eniola; Adaramoye, Oluwatosin Adekunle; Raji, Yinusa; Fasola, Abiodun Olubayo; Olapade-Olaopa, Emiola Oluwabunmi

    2016-01-01

    The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the "old" curriculum was reviewed. This process was directed at identifying the strengths and weaknesses of the old curricula and the newer competences required for modern-day medical/dental practice. The admission criteria and processes and the learning methods of the students were also studied. At the end of the review, an integrated, system-based, community-oriented, person-centered, and competency-driven curriculum was produced and approved for implementation. Four sets of students have been admitted into the curriculum. There have been challenges to the implementation process, but these have been overcome by continuous faculty development and reorientation programs for the nonteaching staff and students. Two sets of students have crossed over to the clinical school, and the consensus among the clinical teachers is that their knowledge and application of the basic medical sciences are satisfactory. The Ibadan medical and dental schools are implementing their competency-based medical education curricula successfully. The modifications to the teaching and assessment of the core basic medical science subjects have resulted in improved learning and performance at the final examinations.

  7. Biomedical nanotechnology.

    Science.gov (United States)

    Hurst, Sarah J

    2011-01-01

    This chapter summarizes the roles of nanomaterials in biomedical applications, focusing on those highlighted in this volume. A brief history of nanoscience and technology and a general introduction to the field are presented. Then, the chemical and physical properties of nanostructures that make them ideal for use in biomedical applications are highlighted. Examples of common applications, including sensing, imaging, and therapeutics, are given. Finally, the challenges associated with translating this field from the research laboratory to the clinic setting, in terms of the larger societal implications, are discussed.

  8. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications.

    Science.gov (United States)

    Ryter, Stefan W; Alam, Jawed; Choi, Augustine M K

    2006-04-01

    The heme oxygenases, which consist of constitutive and inducible isozymes (HO-1, HO-2), catalyze the rate-limiting step in the metabolic conversion of heme to the bile pigments (i.e., biliverdin and bilirubin) and thus constitute a major intracellular source of iron and carbon monoxide (CO). In recent years, endogenously produced CO has been shown to possess intriguing signaling properties affecting numerous critical cellular functions including but not limited to inflammation, cellular proliferation, and apoptotic cell death. The era of gaseous molecules in biomedical research and human diseases initiated with the discovery that the endothelial cell-derived relaxing factor was identical to the gaseous molecule nitric oxide (NO). The discovery that endogenously produced gaseous molecules such as NO and now CO can impart potent physiological and biological effector functions truly represented a paradigm shift and unraveled new avenues of intense investigations. This review covers the molecular and biochemical characterization of HOs, with a discussion on the mechanisms of signal transduction and gene regulation that mediate the induction of HO-1 by environmental stress. Furthermore, the current understanding of the functional significance of HO shall be discussed from the perspective of each of the metabolic by-products, with a special emphasis on CO. Finally, this presentation aspires to lay a foundation for potential future clinical applications of these systems.

  9. Developing a competency-based medical education curriculum for the core basic medical sciences in an African Medical School

    Directory of Open Access Journals (Sweden)

    Olopade FE

    2016-07-01

    Full Text Available Funmilayo Eniola Olopade,1 Oluwatosin Adekunle Adaramoye,2 Yinusa Raji,3 Abiodun Olubayo Fasola,4 Emiola Oluwabunmi Olapade-Olaopa5 1Department of Anatomy, 2Department of Biochemistry, 3Department of Physiology, 4Department of Oral Pathology, 5Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria Abstract: The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the “old” curriculum was reviewed. This process was directed at identifying the strengths and weaknesses of the old curricula and the newer competences required for modern-day medical/dental practice. The admission criteria and processes and the learning methods of the students were also studied. At the end of the review, an integrated, system-based, community-oriented, person-centered, and competency-driven curriculum was produced and approved for implementation. Four sets of students have been admitted into the curriculum. There have been challenges to the implementation process, but these have been overcome by continuous faculty development and reorientation programs for the nonteaching staff and students. Two sets of students have crossed over to the clinical school, and the consensus among the clinical teachers is that their knowledge and application of the basic medical sciences are satisfactory. The Ibadan medical and dental schools are implementing their competency-based medical education curricula

  10. Integration of basic biological sciences and clinical dentistry in the dental curriculum. A clinically orientated approach to teaching oral and dental anatomy.

    Science.gov (United States)

    Gotjamanos, T

    1990-06-01

    Although dental curricula have undergone significant revision during the past three decades, the problem of linking basic science with clinical dentistry often remains an unmet challenge in dental education. This paper describes the content and method of presentation of a course in oral and dental anatomy which aims to integrate closely basic biological science and clinical dental practice. The course holds considerable promise for overcoming one of the major deficiencies of the horizontally structured curriculum by presenting basic science information and detailing its clinical relevance simultaneously. The academic background, clinical experience, and educational philosophy of the course co-ordinator and assisting teaching staff are undoubtedly important factors in determining the extent to which integration between basic and clinical science can be achieved.

  11. Report of the Defense Science Board Task Force on Basic Research

    Science.gov (United States)

    2012-01-01

    to become familiar with the particula rs of the research being done in different environments. This enables them to gain an understanding of the...performance, plasticity, brain-electronics interfaces 6. Nano -science and engineering: New structures, devices, manufacturing, and finding the nano -basis

  12. Chemical Nanotechnology: A Liberal Arts Approach to a Basic Course in Emerging Interdisciplinary Science and Technology

    Science.gov (United States)

    Porter, Lon A., Jr.

    2007-01-01

    The nanotechnology degree programs initiated at various institutions provided an excellent way of learning to look at the amazing opportunities that arise when various disciplines of science interact. The enrolled students were actively engaged in the subject matter and also expressed greater confidence in their ability to consider technology with…

  13. Basic Behavioral Science Research for Mental Health. Social Influence and Social Cognition.

    Science.gov (United States)

    American Psychologist, 1996

    1996-01-01

    Discusses social influence and social cognition's effect on health and social well-being, and examines the efficacy of public health campaigns, the effects of negative stereotyping, and why some teenagers resist drug use and others do not as part of the social problems addressed by behavioral science research. Future directions for research on…

  14. Early Science Education: Exploring Familiar Contexts To Improve the Understanding of Some Basic Scientific Concepts.

    Science.gov (United States)

    Martins, Isabel P.; Veiga, Luisa

    2001-01-01

    Argues that science education is a fundamental tool for global education and that it must be introduced in early years as a first step to a scientific culture for all. Describes testing validity of a didactic strategy for developing the learning of concepts, which was based upon an experimental work approach using everyday life contexts. (Author)

  15. Plant Science. IV-A-1 to IV-F-2. Basic V.A.I.

    Science.gov (United States)

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This packet contains six units of informational materials and transparency masters, with accompanying scripts, for teachers to use in a plant science course in vocational agriculture. Designed especially for use in Texas, the first unit introduces the course through the following topics: economic importance of major crops, major areas of…

  16. Animal Science Basic Core Curriculum. Kansas Postsecondary Farm and Ranch Management Project.

    Science.gov (United States)

    Albracht, James, Ed.

    Thirty-six units of instruction are included in this core curriculum in animal science for postsecondary farm and ranch management programs. Units of instruction are divided into seven instructional areas: (1) Livestock Types, (2) Livestock Programs, (3) Nutrition, (4) Animal Health, (5) Animal Breeding, (6) Animal Improvement, and (7) Livestock…

  17. Learning Environments as Basis for Cognitive Achievements of Students in Basic Science Classrooms in Nigeria

    Science.gov (United States)

    Atomatofa, Rachel; Okoye, Nnamdi; Igwebuike, Thomas

    2016-01-01

    The nature of classroom learning environments created by teachers had been considered very important for learning to take place effectively. This study investigated the effect of creating constructivist and transmissive learning environments on achievements of science students of different ability levels. 243 students formed the entire study…

  18. Materials Sciences programs, fiscal year 1978: Office of Basic Energy Services

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    A compilation and index are provided of the the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs. The report is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index.

  19. From biomedical-engineering research to clinical application and industrialization

    Science.gov (United States)

    Taguchi, Tetsushi; Aoyagi, Takao

    2012-12-01

    The rising costs and aging of the population due to a low birth rate negatively affect the healthcare system in Japan. In 2011, the Council for Science and Technology Policy released the 4th Japan's Science and Technology Basic Policy Report from 2011 to 2015. This report includes two major innovations, 'Life Innovation' and 'Green Innovation', to promote economic growth. Biomedical engineering research is part of 'Life Innovation' and its outcomes are required to maintain people's mental and physical health. It has already resulted in numerous biomedical products, and new ones should be developed using nanotechnology-based concepts. The combination of accumulated knowledge and experience, and 'nanoarchitechtonics' will result in novel, well-designed functional biomaterials. This focus issue contains three reviews and 19 original papers on various biomedical topics, including biomaterials, drug-delivery systems, tissue engineering and diagnostics. We hope that it demonstrates the importance of collaboration among scientists, engineers and clinicians, and will contribute to the further development of biomedical engineering.

  20. Biomedical Libraries

    Science.gov (United States)

    Pizer, Irwin H.

    1978-01-01

    Biomedical libraries are discussed as a distinct and specialized group of special libraries and their unique services and user interactions are described. The move toward professional standards, as evidenced by the Medical Library Association's new certification program, and the current state of development for a new section of IFLA established…

  1. MATLAB for Engineering and the Life Sciences

    CERN Document Server

    Tranquillo, Joseph

    2011-01-01

    In recent years, the life sciences have embraced simulation as an important tool in biomedical research. Engineers are also using simulation as a powerful step in the design process. In both arenas, Matlab has become the gold standard. It is easy to learn, flexible, and has a large and growing userbase. MATLAB for Engineering and the Life Sciences is a self-guided tour of the basic functionality of MATLAB along with the functions that are most commonly used in biomedical engineering and other life sciences. Although the text is written for undergraduates, graduate students and academics, those

  2. Proposal to DOE Basic Energy Sciences: Ultrafast X-ray science facility at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Schoenlein, Robert W.; Falcone, Roger W.; Abela, R.; Alivisatos, A.P.; Belkacem, A.; Berrah, N.; Bozek, J.; Bressler, C.; Cavalleri, A.; Chergui, M.; Glover, T.E.; Heimann, P.A.; Hepburn, J.; Larsson, J.; Lee, R.W.; McCusker, J.; Padmore, H.A.; Pattison, P.; Pratt, S.T.; Shank, C.V.; Wark, J.; Chang, Z.; Robin, D.W.; Schlueter, R.D.; Zholents, A.A.; Zolotorev, M.S.

    2001-12-12

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron.

  3. Using a Popular Science Nonfiction Book to Introduce Biomedical Research Ethics in a Biology Majors Course †

    Science.gov (United States)

    Walton, Kristen L. W.

    2014-01-01

    Although bioethics is an important topic in modern society, it is not a required part of the curriculum for many biology degree programs in the United States. Students in our program are exposed to biologically relevant ethical issues informally in many classes, but we do not have a requirement for a separate bioethics course. The Immortal Life of Henrietta Lacks is a recent nonfiction book that describes the life of the woman whose cervical cancer biopsy gave rise to the HeLa cell line, as well as discussing relevant medical, societal, and ethical issues surrounding human tissue use for research. Weekly reading assignments from the book with discussion questions and a final paper were used to engage students in learning about the ethics of human subjects and human tissues research. Students were surveyed for qualitative feedback on the usefulness of including this book as part of the course. This book has been a successful platform for increasing student knowledge and interest in ethics related to biomedical and biological research. PMID:25574289

  4. Translation of basic science into clinical medicine in man-agement for neurogenic bladder

    Institute of Scientific and Technical Information of China (English)

    Limin Liao; Guoqing Chen; Fan Zhang

    2016-01-01

    Neurogenic bladder ( NB) dysfunction caused by spinal cord injury ( SCI ) or diseases of the central nervous system or peripheral nerves is a major medical and social problem. Traditional treatments to NB include medication, injection of Botulinum toxin A into the detrusor, neuromodulation and surgery. There are also emerging approaches, such as tissue en-gineering, stem cell transplantation and gene therapy. In recent years, we have carried out explorations in both therapeutic areas and tried to translate basic re-search into clinical practice. This paper reviews our work in this regard, and provides references for future research.

  5. The basic science of platelet-rich plasma (PRP): what clinicians need to know.

    Science.gov (United States)

    Arnoczky, Steven P; Sheibani-Rad, Shahin; Shebani-Rad, Shahin

    2013-12-01

    Platelet-rich plasma (PRP) has been advocated for the biological augmentation of tissue healing and regeneration through the local introduction of increased levels (above baseline) of platelets and their associated bioactive molecules. In theory, the increased levels of autologous growth factors and secretory proteins provided by the concentrated platelets may enhance the wound healing process, especially in degenerative tissues or biologically compromised individuals. Although PRP has been increasingly utilized in the treatment of a variety of sports-related injuries, improvements in healing and clinical outcomes have not been universally reported. One reason for this may be the fact that all PRP preparations are not the same. Variations in the volume of whole blood taken, the platelet recovery efficacy, the final volume of plasma in which the platelets are suspended, and the presence or absence of white blood cells, and the addition of exogenous thrombin to activate the platelets or calcium chloride to induce fibrin formation, can all affect the character and potential efficacy of the final PRP product. This article will review the basic principles involved in creating PRP and examine the potential basic scientific significance of the individual blood components contained in the various forms of PRP currently used in sports medicine.

  6. Medical Students’ View about the Effects of Practical Courses on Learning the General Theoretical Concepts of Basic Medical Sciences

    Directory of Open Access Journals (Sweden)

    Leila Roshangar

    2014-05-01

    Full Text Available Introduction: The basic medical sciences section requires 2.5 years in the medical education curriculum. Practical courses complement theoretical knowledge in this period to improve their appreciation. Despite spending lots of disbursement and time, this period’s efficacy is not clearly known. Methods: One hundred thirty-three General Practitioner (GP students have been included in this descriptive cross-sectional study and were asked by questionnaire about the positive impact of practical courses on learning theoretical knowledge. Data were analyzed by descriptive statistics. Result: The agreement in “Practical Head and Neck Anatomy” was 40.91% ± 29.45, in “Practical Trunk Anatomy” was 63.62% ± 2.32 and in “Practical Anatomy of Extremities” was 56.16% ± 2.57. In “Practical Histology”, agreement was 69.50%±2.19; “Practical Biophysics” was 45.97%±2.25, “Practical Physiology” 61.75%±2.17; “Practical Biochemistry” 36.28%±2.42; “Practical Pathology” 59.80%±2.53; “Practical Immunology” 56.25%±26.40; “Practical Microbiology and Virology” 60.39%±2.27 and “Practical Mycology and Parasitology” 68.2%± 2.16.Conclusion: GP students in Tabriz University of Medical Sciences are not optimistic about the applicability of practical courses of basic medical sciences lessons.

  7. Biomedical journals in Republic of Macedonia: the current state.

    Science.gov (United States)

    Polenakovic, Momir; Danevska, Lenche

    2014-01-01

    Several biomedical journals in the Republic of Macedonia have succeeded in maintaining regular publication over the years, but only a few have a long-standing tradition. In this paper we present the basic characteristics of 18 biomedical journals that have been published without a break in the Republic of Macedonia. Of these, more details are given for 14 journals, a particular emphasis being on the journal Prilozi/Contributions of the Macedonian Academy of Sciences and Arts, Section of Medical Sciences as one of the journals with a long-term publishing tradition and one of the journals included in the Medline/PubMed database. A brief or broad description is given for the following journals: Macedonian Medical Review, Acta Morphologica, Physioacta, MJMS-Macedonian Journal of Medical Sciences, International Medical Journal Medicus, Archives of Public Health, Epilepsy, Macedonian Orthopaedics and Traumatology Journal, BANTAO Journal, Macedonian Dental Review, Macedonian Pharmaceutical Bulletin, Macedonian Veterinary Review, Journal of Special Education and Rehabilitation, Balkan Journal of Medical Genetics, Contributions of the Macedonian Scientific Society of Bitola, Vox Medici, Social Medicine: Professional Journal for Public Health, and Prilozi/Contributions of the Macedonian Academy of Sciences and Arts. Journals from Macedonia should aim to be published regularly, should comply with the Uniform requirements for manuscripts submitted to biomedical journals, and with the recommendations of reliable organizations working in the field of publishing and research. These are the key prerequisites which Macedonian journals have to accomplish in order to be included in renowned international bibliographic databases. Thus the results of biomedical science from the Republic of Macedonia will be presented to the international scientific arena.

  8. The basics of formation of expert systems for industry and science

    Directory of Open Access Journals (Sweden)

    Vidyaev Igor G.

    2016-01-01

    Full Text Available This paper considers the basics of development of a practice-oriented information system of examination of industrial and scientific projects realized in the field of machine building. The first part of the paper is devoted to the main problems which are necessary to solve while designing such systems. The methods of self-organisation and adaptation, the use of expert evaluations and other approaches, for instance, those connected with the study of various fundamental and applied aspects of intelligence control systems, were considered. The main problems that are solved when creating an effective system of the expert selection were structured and expounded. In addition, the information, based both on already existing models (DFD, BPMN and on modern approaches (a system approach, Delphi technique, artificial neural networks, concerning the creation of an effective system of expert evaluations was presented. A combination of the approved methods and new approaches allows adapting the system to different conditions of use.

  9. Toxicogenomics and clinical toxicology: an example of the connection between basic and applied sciences.

    Science.gov (United States)

    Ferrer-Dufol, Ana; Menao-Guillen, Sebastian

    2009-04-10

    The relationship between basic research and its potential clinical applications is often a difficult subject. Clinical toxicology has always been very dependent on experimental research whose usefulness has been impaired by the existence of huge differences in the toxicity expression of different substances, inter- and intra-species which make it difficult to predict clinical effects in humans. The new methods in molecular biology developed in the last decades are furnishing very useful tools to study some of the more relevant molecules implied in toxicokinetic and toxicodynamic processes. We aim to show some meaningful examples of how recent research developments with genes and proteins have clear applications to understand significant clinical matters, such as inter-individual variations in susceptibility to chemicals, and other phenomena related to the way some substances act to induce variations in the expression and functionality of these targets.

  10. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    Science.gov (United States)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-06-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to evaluate the (HIC) system, which incorporates augmented reality, virtual reality and cloud-classroom to teach basic materials science courses. The study followed a pretest-posttest quasi-experimental research design. A total of 92 students (aged 19-20 years), in a second-year undergraduate program, participated in this 18-week-long experiment. The students were divided into an experimental group and a control group. The experimental group (36 males and 10 females) was instructed utilizing the HIC system, while the control group (34 males and 12 females) was led through traditional teaching methods. Pretest, posttest, and delayed posttest scores were evaluated by multivariate analysis of covariance. The results indicated that participants in the experimental group who used the HIC system outperformed the control group, in the both posttest and delayed posttest, across three learning dimensions. Based on these results, the HIC system is recommended to be incorporated in formal materials science learning settings.

  11. Beyond the data - Topics that resonate with students when communicating basic climate science in a Geoscience course

    Science.gov (United States)

    Bouvier-Brown, N. C.

    2013-12-01

    Instructors will undoubtedly want to cover basic climate change science in undergraduate geosciences courses. When instructors have limited time in a course, they would like to know what topics will not only provide factual climate data, but also resonate with students. Instructors want to bring a variety of information to the classroom, but even if time allows, this can sometimes become too overwhelming and lead to diminishing returns. This study is based on a series of surveys conducted in an upper-division Air Pollution/Atmospheric Chemistry course at Loyola Marymount University to assess students' opinions on climate change, how these opinions change throughout the semester, and what teaching resources/topics were most effective in catalyzing those changes. Data will be presented to show that not only opinions, but also the level of student confidence in this politically-sensitive topic, shifted by the end of the semester. At the end of the semester, students evaluated their level of agreement with how much each specific topic presented significantly contributed to their understanding that 1) the climate is indeed changing, and 2) humans have a large role in climate change. In general, students find the timeline of the link between greenhouse gases and temperature particularly compelling. Lastly, even in this physical science course students clearly gained an appreciation for the role of science in politics and social justice. Not only is this a tenant of liberal arts education, but it seems as if students find this interdisciplinary connection empowering.

  12. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 1: Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, C.C. [ed.; Park, J.F.

    1994-03-01

    This report summarizes FY 1993 progress in biological and general life sciences research programs conducted for the Department of Energy`s Office of Health and Environmental REsearch (OHER) at Pacific Northwest Laboratory (PNL). This research provides knowledge of fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of exposure to energy-related radiation and chemicals. The Biological Research section contains reports of studies using laboratory animals, in vitro cell systems, and molecular biological systems. This research includes studies of the impact of radiation, radionuclides, and chemicals on biological responses at all levels of biological organization. The General Life Sciences Research section reports research conducted for the OHER human genome program.

  13. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research. Part 1, Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1992-09-01

    This report summarizes progress in OHER biological research and general life sciences research programs conducted conducted at PNL in FLY 1991. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long- term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and newly developed energy-related technologies through an increased understanding of the ways in which radiation and chemicals cause biological damage.

  14. Biomedical Materials

    Institute of Scientific and Technical Information of China (English)

    CHANG Jiang; ZHOU Yanling

    2011-01-01

    @@ Biomedical materials, biomaterials for short, is regarded as "any substance or combination of substances, synthetic or natural in origin, which can be used for any period of time, as a whole or as part of a system which treats, augments, or replaces any tissue, organ or function of the body" (Vonrecum & Laberge, 1995).Biomaterials can save lives, relieve suffering and enhance the quality of life for human being.

  15. Contextualizing the relevance of basic sciences: small-group simulation with debrief for first- and second-year medical students in an integrated curriculum

    Science.gov (United States)

    Ginzburg, Samara B; Brenner, Judith; Cassara, Michael; Kwiatkowski, Thomas; Willey, Joanne M

    2017-01-01

    Aim There has been a call for increased integration of basic and clinical sciences during preclinical years of undergraduate medical education. Despite the recognition that clinical simulation is an effective pedagogical tool, little has been reported on its use to demonstrate the relevance of basic science principles to the practice of clinical medicine. We hypothesized that simulation with an integrated science and clinical debrief used with early learners would illustrate the importance of basic science principles in clinical diagnosis and management of patients. Methods Small groups of first- and second-year medical students were engaged in a high-fidelity simulation followed by a comprehensive debrief facilitated by a basic scientist and clinician. Surveys including anchored and open-ended questions were distributed at the conclusion of each experience. Results The majority of the students agreed that simulation followed by an integrated debrief illustrated the clinical relevance of basic sciences (mean ± standard deviation: 93.8% ± 2.9% of first-year medical students; 96.7% ± 3.5% of second-year medical students) and its importance in patient care (92.8% of first-year medical students; 90.4% of second-year medical students). In a thematic analysis of open-ended responses, students felt that these experiences provided opportunities for direct application of scientific knowledge to diagnosis and treatment, improving student knowledge, simulating real-world experience, and developing clinical reasoning, all of which specifically helped them understand the clinical relevance of basic sciences. Conclusion Small-group simulation followed by a debrief that integrates basic and clinical sciences is an effective means of demonstrating the relationship between scientific fundamentals and patient care for early learners. As more medical schools embrace integrated curricula and seek opportunities for integration, our model is a novel approach that can be utilized

  16. Basic science and its relationship to environmental restoration: Preparing for the 21. century. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Department of Energy (DOE) funded the two day meeting in order to focus on ways to organize and mobilize the scientific community to effectively address the maze of global environmental problems. Using the Office of Energy Research (ER) as a Test Case, the participants were asked to address such questions as: What are the problems ER can effectively address? Is there a hierarchy of issues involved in attacking those problems? Are there new multi-disciplinary constructs that should be encouraged in the university environment, much like the applied science departments that developed at many institutions in the 1970`s and 1980`s; and/or in the national laboratories? What does it take to get the best minds in the university and national laboratory environments actively engaged in investigations of fundamental environmental problems? If such a beginning can be made, how should its significance be communicated to other agencies?

  17. United Nations Basic Space Science Initiative: 2011 Status Report on the International Space Weather Initiative

    CERN Document Server

    Gadimova, S; Danov, D; Georgieva, K; Maeda, G; Yumoto, K; Davila, J M; Gopalswami, N

    2011-01-01

    The UNBSSI is a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis. A series of workshops on BSS was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004; http://www.seas.columbia.edu/~ah297/un-esa/) and addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia. One major recommendation that emanated from these workshops was the establishment of astronomical facilities in developing nations for research and education programmes at the university level. Such workshops on BSS emphasized the particular importance of astrophysical data systems and the virtual observatory concept for the development of astronomy on a worldwide basis. Pursuant to resolutions of the United Nations Committee on the Peaceful ...

  18. The Tarsal Bone Test: A Basic Test of Health Sciences Students' Knowledge of Lower Limb Anatomy

    Directory of Open Access Journals (Sweden)

    José Manuel Castillo-López

    2014-01-01

    Full Text Available Objectives. The aim of the present study was to design an easy-to-use tool, the tarsal bone test (TBT, to provide a snapshot of podiatry students’ basic anatomical knowledge of the bones of the lower limb. Methods. The study included 254 podiatry students from three different universities, 145 of them were first-year students and 109 were in their fourth and final years. The TBT was administered without prior notice to the participants and was to be completed in 5 minutes. Results. The results show that 97.2% of the subjects (n=247 correctly labelled all tarsal bones, while the other 2.8% (n=7 incorrectly labelled at least one bone, that was either the cuboid (7 times or the navicular (6 times. Although only one fourth-year student inaccurately identified one bone, no significant differences in the distribution of the correct and incorrect responses were found between first and fourth-year students. Conclusions. The TBT seems to be a straightforward and easy-to-apply instrument, and provides an objective view of the level of knowledge acquired at different stages of podiatry studies.

  19. Bio-electrospraying and cell electrospinning: progress and opportunities for basic biology and clinical sciences.

    Science.gov (United States)

    Poncelet, Denis; de Vos, Paul; Suter, Nicolai; Jayasinghe, Suwan N

    2012-01-11

    Engineering of functional tissues is a fascinating and fertile arena of research and development. This flourishing enterprise weaves together many areas of research to tackle the most complex question faced to date, namely how to design and reconstruct a synthetic three-dimensional fully functional tissue on demand. At present our healthcare is under threat by several social and economical issues together with those of a more scientific and clinical nature. One such issue arises from our increasing life expectancy, resulting in an ageing society. This steeply growing ageing society requires functional organotypic tissues on demand for repair, replacement, and rejuvenation (R(3) ). Several approaches are pioneered and developed to assist conventional tissue/organ transplantation. In this Progress Report, "non-contact jet-based" approaches for engineering functional tissues are introduced and bio-electrosprays and cell electrospinning, i.e., biotechniques that have demonstrated as being benign for directly handling living cells and whole organisms, are highlighted. These biotechniques possess the ability to directly handle heterogeneous cell populations as suspensions with a biopolymer and/or other micro/nanomaterials for directly forming three-dimensional functional living reconstructs. These discoveries and developments have provided a promising biotechnology platform with far-reaching ramifications for a wide range of applications in basic biological laboratories to their utility in the clinic.

  20. Advances in classification, basic mechanisms and clinical science in ankylosing spondylitis and axial spondyloarthritis.

    Science.gov (United States)

    Robinson, P C; Benham, H

    2015-02-01

    The field of spondyloarthritis (SpA) has seen huge advances over the past 5 years. The classification of axial disease has been redefined by the axial SpA criteria that incorporate disease captured before radiographic damage is evident as well as established erosive sacroiliac joint disease. Our knowledge of genetics and basic immunological pathways has progressed significantly. In addition, revolutionary progress has been achieved with the availability of tumour necrosis factor inhibitors for treating patients with moderate to severe disease. In parallel, several of novel biomarkers have been identified that show significant promise for the future. Advances in magnetic resonance imaging have helped define positive disease. We have identified that T1 and short tau inversion recovery sequences are best for the diagnosis of axial SpA, and gadolinium contrast is not additive for diagnosis. Progress has been made in identifying potential agents and strategies that reduce radiographic progression. Several referral strategies aimed at appropriate identification of patients have been trialled and found to be effective. There is still substantial work ahead, but the advances of the last 5 years have made a huge and tangible difference at the clinical coalface, and we suggest that this trend will continue.

  1. A Review of Biomedical Composite Materials

    Institute of Scientific and Technical Information of China (English)

    吴珊珊

    2013-01-01

    This article addresses the review of the biomedical composite materials.It introduces the operational definition,the classification of biomedical composite materials,and its constituents within itself.In this thesis,the last part presents the application of this kind of material.By writing this paper,I hope that people will get a comprehensive knowledge of the biomedical composite material and make further and deeper research in this material by which way to animate the material science industry.

  2. Pacific Northwest Laboratory annual report for 1989 to the DOE Office of Energy Research - Part 1: Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1990-05-01

    This report summarizes progress on OHER human health, biological, general life sciences, and medical applications research programs conducted at PNL in FY 1989. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns statistical and epidemiological studies for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program, and the medical applications section summarizes commercial radioisotope production and distribution activities at DOE facilities. 6 refs., 50 figs., 35 tabs.

  3. United Nations Basic Space Science Initiative: 2010 Status Report on the International Space Weather Initiative

    Science.gov (United States)

    Gadimova, S.; Haubold, H. J.; Danov, D.; Georgieva, K.; Maeda, G.; Yumoto, K.; Davila, J. M.; Gopalswamy, N.

    2011-11-01

    The UNBSSI is a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis. A series of workshops on BSS was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004) Pursuant to resolutions of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS) and its Scientific and Technical Subcommittee, since 2005, these workshops focused on the International Heliophysical Year 2007 (UAE 2005, India 2006, Japan 2007, Bulgaria 2008, Ro Korea 2009) Starting in 2010, the workshops focus on the International Space Weather Initiative (ISWI) as recommended in a three-year-work plan as part of the deliberations of UNCOPUOS (www.iswi-secretariat.org/). Workshops on the ISWI have been scheduled to be hosted by Egypt in 2010 for Western Asia, Nigeria in 2011 for Africa, and Ecuador in 2012 for Latin America and the Caribbean. Currently, fourteen IHY/ISWI instrument arrays with more than five hundred instruments are operational in ninety countries.

  4. Rhythm Analysis by Heartbeat Classification in the Electrocardiogram (Review article of the research achievements of the members of the Centre of Biomedical Engineering, Bulgarian Academy of Sciences

    Directory of Open Access Journals (Sweden)

    Irena Jekova

    2009-08-01

    Full Text Available The morphological and rhythm analysis of the electrocardiogram (ECG is based on ventricular beats detection, wave parameters measurement, as amplitudes, widths, polarities, intervals and relations between them, and a subsequent classification supporting the diagnostic process. Number of algorithms for detection and classification of the QRS complexes have been developed by researchers in the Centre of Biomedical Engineering - Bulgarian Academy of Sciences, and are reviewed in this material. Combined criteria have been introduced dealing with the QRS areas and amplitudes, the waveshapes evaluated by steep slopes and sharp peaks, vectorcardiographic (VCG loop descriptors, RR intervals irregularities. Algorithms have been designed for application on a single ECG lead, a synthesized lead derived by multichannel synchronous recordings, or simultaneous multilead analysis. Some approaches are based on templates matching, cross-correlation or rely on a continuous updating of adaptive thresholds. Various beat classification methods have been designed involving discriminant analysis, the K-th nearest neighbors, fuzzy sets, genetic algorithms, neural networks, etc. The efficiency of the developed methods has been assessed using internationally recognized arrhythmia ECG databases with annotated beats and rhythm disturbances. In general, high values for specificity and sensitivity competitive to those reported in the literature have been achieved.

  5. Study of the impacts of patient-educators on the course of basic sciences in dental studies.

    Science.gov (United States)

    Renard, E; Alliot-Licht, B; Gross, O; Roger-Leroi, V; Marchand, C

    2015-02-01

    Ever since 2006, Nantes University dental educators have started organising lectures led by the mother of a young patient suffering from ectodermic dysplasia (patient-educator) to help second-year students to better understand how important it is for their future dental work to better understand basic sciences. In this study, we have analysed this training experience on students' motivation. For this purpose, students were asked to complete questionnaires 10 days after the patient-educator's lecture (early assessment; n = 193) and 4 years later, during the last year of their dental studies (delayed assessment; n = 47). Moreover, 3 years after the first lecture, we analysed the ability of students to diagnose a mother carrying the ectodermic dysplasia genetic disorder, using a case-based learning exercise with a patient showing dental features similar to those exposed by the patient-educator (measure of knowledge; n = 42). Ten days after the lecture, the early assessment shows that all the students were interested in the lecture and 59% of the students declared being motivated to find out more about genetics whilst 54% declared the same thing about embryology courses. Moreover, 4 years later, 67% of the students remembered the patient-educator's lecture a little or very well. Three years after the course, 83% of the students diagnosed ectodermal dysplasia whilst studying the case-based example that listed typical dental phenotypes. In conclusion, this study shows that this original educational approach enhances dental students' motivation in learning basic sciences and that patient-educators could offer many benefits for students and patients.

  6. Educational Neuroscience:From Basic Science to Practical Science%教育神经科学从基础科学迈向实践科学

    Institute of Scientific and Technical Information of China (English)

    姜永志

    2014-01-01

    教育神经科学借助先进的技术手段与方法,从基因-分子-突触-神经元-神经网络-神经系统-课堂行为-社会行为等不同层面,揭示了学生学习的完整过程。文章从教育神经科学的超学科特征切入,揭示了教育神经科学与课堂教学实践的关系,提出教育神经科学要通过构建综合话语体系与课堂教学实践相互借鉴与沟通的观点。%Educational neuroscience reveals the complete learning behavior of students from gene-molecular, synaptic, neurons, neural networks, nervous system, classroom behavior and social with the advanced techniques and a variety of research methods. Educational neuroscience is one of the most promising to be“Tran-disciplinary” on the basis of multi-disciplinary integration. However, the transformation between neuroscience and education practice always plagued the development of educational neuroscience and restricted the application of basic theories in educational practice. The article starts with the characteristic of “Tran-disciplinary”and systematically expounded the view to strengthen the communication of neuroscience and educational practice through a system of comprehensive discourse and to make educational neuroscience become a “Tran-disciplinary”from basic science to practice science.

  7. Toward Control of Matter: Basic Energy Science Needs for a New Class of X-Ray Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Arenholz, Elke; Belkacem, Ali; Cocke, Lew; Corlett, John; Falcone, Roger; Fischer, Peter; Fleming, Graham; Gessner, Oliver; Hasan, M. Zahid; Hussain, Zahid; Kevan, Steve; Kirz, Janos; McCurdy, Bill; Nelson, Keith; Neumark, Dan; Nilsson, Anders; Siegmann, Hans; Stocks, Malcolm; Schafer, Ken; Schoenlein, Robert; Spence, John; Weber, Thorsten

    2008-09-24

    Over the past quarter century, light-source user facilities have transformed research in areas ranging from gas-phase chemical dynamics to materials characterization. The ever-improving capabilities of these facilities have revolutionized our ability to study the electronic structure and dynamics of atoms, molecules, and even the most complex new materials, to understand catalytic reactions, to visualize magnetic domains, and to solve protein structures. Yet these outstanding facilities still have limitations well understood by their thousands of users. Accordingly, over the past several years, many proposals and conceptual designs for"next-generation" x-ray light sources have been developed around the world. In order to survey the scientific problems that might be addressed specifically by those new light sources operating below a photon energy of about 3 keV and to identify the scientific requirements that should drive the design of such facilities, a workshop"Science for a New Class of Soft X-Ray Light Sources" was held in Berkeley in October 2007. From an analysisof the most compelling scientific questions that could be identified and the experimental requirements for answering them, we set out to define, without regard to the specific technologies upon which they might be based, the capabilities such light sources would have to deliver in order to dramatically advance the state of research in the areas represented in the programs of the Department of Energy's Office of Basic Energy Sciences (BES). This report is based on the workshop presentations and discussions.

  8. Fluid-structure interaction and biomedical applications

    CERN Document Server

    Galdi, Giovanni; Nečasová, Šárka

    2014-01-01

    This book presents, in a methodical way, updated and comprehensive descriptions and analyses of some of the most relevant problems in the context of fluid-structure interaction (FSI). Generally speaking, FSI is among the most popular and intriguing problems in applied sciences and includes industrial as well as biological applications. Various fundamental aspects of FSI are addressed from different perspectives, with a focus on biomedical applications. More specifically, the book presents a mathematical analysis of basic questions like the well-posedness of the relevant initial and boundary value problems, as well as the modeling and the numerical simulation of a number of fundamental phenomena related to human biology. These latter research topics include blood flow in arteries and veins, blood coagulation and speech modeling. We believe that the variety of the topics discussed, along with the different approaches used to address and solve the corresponding problems, will help readers to develop a more holis...

  9. Trends of Students of the College of Basic Science towards Teaching the Course of Athletics and Health by Using Computer Technology in the World Islamic Sciences and Education University (WISE)

    Science.gov (United States)

    Salameh, Ibrahim Abdul Ghani; Khawaldeh, Mohammad Falah Ali

    2014-01-01

    The Study aimed at identifying the trends of the students of basic sciences College in the World Islamic Sciences and Education University towards teaching health and sport course by using computer technology as a teaching method, and to identify also the impact of the variables of academic level and the gender on the students' trends. The study…

  10. Introduction to applied statistical signal analysis guide to biomedical and electrical engineering applications

    CERN Document Server

    Shiavi, Richard

    2007-01-01

    Introduction to Applied Statistical Signal Analysis is designed for the experienced individual with a basic background in mathematics, science, and computer. With this predisposed knowledge, the reader will coast through the practical introduction and move on to signal analysis techniques, commonly used in a broad range of engineering areas such as biomedical engineering, communications, geophysics, and speech.Introduction to Applied Statistical Signal Analysis intertwines theory and implementation with practical examples and exercises. Topics presented in detail include: mathematical

  11. How to search, write, prepare and publish the scientific papers in the biomedical journals.

    Science.gov (United States)

    Masic, Izet

    2011-06-01

    This article describes the methodology of preparation, writing and publishing scientific papers in biomedical journals. given is a concise overview of the concept and structure of the System of biomedical scientific and technical information and the way of biomedical literature retreival from worldwide biomedical databases. Described are the scientific and professional medical journals that are currently published in Bosnia and Herzegovina. Also, given is the comparative review on the number and structure of papers published in indexed journals in Bosnia and Herzegovina, which are listed in the Medline database. Analyzed are three B&H journals indexed in MEDLINE database: Medical Archives (Medicinski Arhiv), Bosnian Journal of Basic Medical Sciences and Medical Gazette (Medicinki Glasnik) in 2010. The largest number of original papers was published in the Medical Archives. There is a statistically significant difference in the number of papers published by local authors in relation to international journals in favor of the Medical Archives. True, the Journal Bosnian Journal of Basic Medical Sciences does not categorize the articles and we could not make comparisons. Journal Medical Archives and Bosnian Journal of Basic Medical Sciences by percentage published the largest number of articles by authors from Sarajevo and Tuzla, the two oldest and largest university medical centers in Bosnia and Herzegovina. The author believes that it is necessary to make qualitative changes in the reception and reviewing of papers for publication in biomedical journals published in Bosnia and Herzegovina which should be the responsibility of the separate scientific authority/ committee composed of experts in the field of medicine at the state level.

  12. [Projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo].

    Science.gov (United States)

    Niimi, Shingo; Umezu, Mitsuo; Iseki, Hiroshi; Harada, Hiroshi Kasanuki Noboru; Mitsuishi, Mamoru; Kitamori, Takehiko; Tei, Yuichi; Nakaoka, Ryusuke; Haishima, Yuji

    2014-01-01

    Division of Medical Devices has been conducting the projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo. The TWIns has been studying to aim at establishment of preclinical evaluation methods by "Engineering Based Medicine", and established Regulatory Science Institute for Medical Devices. School of Engineering, The University of Tokyo has been studying to aim at establishment of assessment methodology for innovative minimally invasive therapeutic devices, materials, and nanobio diagnostic devices. This report reviews the exchanges of personnel, the implement systems and the research progress of these projects.

  13. Biomedical Engineering Education in Perspective

    Science.gov (United States)

    Gowen, Richard J.

    1973-01-01

    Discusses recent developments in the health care industry and their impact on the future of biomedical engineering education. Indicates that a more thorough understanding of the complex functions of the living organism can be acquired through the application of engineering techniques to problems of life sciences. (CC)

  14. NIH/NSF accelerate biomedical research innovations

    Science.gov (United States)

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  15. Rotation Covariant Image Processing for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Henrik Skibbe

    2013-01-01

    Full Text Available With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences.

  16. Conceiving "personality": Psychologist's challenges and basic fundamentals of the Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals.

    Science.gov (United States)

    Uher, Jana

    2015-09-01

    Scientists exploring individuals, as such scientists are individuals themselves and thus not independent from their objects of research, encounter profound challenges; in particular, high risks for anthropo-, ethno- and ego-centric biases and various fallacies in reasoning. The Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals (TPS-Paradigm) aims to tackle these challenges by exploring and making explicit the philosophical presuppositions that are being made and the metatheories and methodologies that are used in the field. This article introduces basic fundamentals of the TPS-Paradigm including the epistemological principle of complementarity and metatheoretical concepts for exploring individuals as living organisms. Centrally, the TPS-Paradigm considers three metatheoretical properties (spatial location in relation to individuals' bodies, temporal extension, and physicality versus "non-physicality") that can be conceived in different forms for various kinds of phenomena explored in individuals (morphology, physiology, behaviour, the psyche, semiotic representations, artificially modified outer appearances and contexts). These properties, as they determine the phenomena's accessibility in everyday life and research, are used to elaborate philosophy-of-science foundations and to derive general methodological implications for the elementary problem of phenomenon-methodology matching and for scientific quantification of the various kinds of phenomena studied. On the basis of these foundations, the article explores the metatheories and methodologies that are used or needed to empirically study each given kind of phenomenon in individuals in general. Building on these general implications, the article derives special implications for exploring individuals' "personality", which the TPS-Paradigm conceives of as individual-specificity in all of the various kinds of phenomena studied in individuals.

  17. Writing intelligible English prose for biomedical journals.

    Science.gov (United States)

    Ludbrook, John

    2007-01-01

    1. I present a combination of semi-objective and subjective evidence that the quality of English prose in biomedical scientific writing is deteriorating. 2. I consider seven possible strategies for reversing this apparent trend. These refer to a greater emphasis on good writing by students in schools and by university students, consulting books on science writing, one-on-one mentoring, using 'scientific' measures to reveal lexical poverty, making use of freelance science editors and encouraging the editors of biomedical journals to pay more attention to the problem. 3. I conclude that a fruitful, long-term, strategy would be to encourage more biomedical scientists to embark on a career in science editing. This strategy requires a complementary initiative on the part of biomedical research institutions and universities to employ qualified science editors. 4. An immediately realisable strategy is to encourage postgraduate students in the biomedical sciences to undertake the service courses provided by many universities on writing English prose in general and scientific prose in particular. This strategy would require that heads of departments and supervisors urge their postgraduate students to attend such courses. 5. Two major publishers of biomedical journals, Blackwell Publications and Elsevier Science, now provide lists of commercial editing services on their web sites. I strongly recommend that authors intending to submit manuscripts to their journals (including Blackwell's Clinical and Experimental Pharmacology and Physiology) make use of these services. This recommendation applies especially to those for whom English is a second language.

  18. Basic Ozone Layer Science

    Science.gov (United States)

    Learn about the ozone layer and how human activities deplete it. This page provides information on the chemical processes that lead to ozone layer depletion, and scientists' efforts to understand them.

  19. Track A Basic Science

    OpenAIRE

    Sargeant, D; Deverasetty, S.; Luo, Y.; Villahoz-Baleta, A.; Zobrist, S.; Rathnayake, V.; Russo, J.; Muesing, M.; Schiller, M.; Andrabi, R; Kumar, R.; Bala, M; Nair, A; Biswas, A; N Wig

    2012-01-01

    Background Many HIV databases and applications focus on a limited domain of HIV knowledge. Since even a “simple” organism like HIV represents a very complex system with many interacting elements, the fractured structure of existing databases and applications likely limits our ability to investigate and understand HIV. To facilitate research, therefore, we have built HIVToolbox, which integrates much of the knowledge about HIV proteins and presents the data in an interactive web application. H...

  20. Student Failures on First-Year Medical Basic Science Courses and the USMLE Step 1: A Retrospective Study over a 20-Year Period

    Science.gov (United States)

    Burns, E. Robert; Garrett, Judy

    2015-01-01

    Correlates of achievement in the basic science years in medical school and on the Step 1 of the United States Medical Licensing Examination® (USMLE®), (Step 1) in relation to preadmission variables have been the subject of considerable study. Preadmissions variables such as the undergraduate grade point average (uGPA) and Medical College Admission…

  1. Physics Education: Effect of Micro-Teaching Method Supported by Educational Technologies on Pre-Service Science Teachers' Misconceptions on Basic Astronomy Subjects

    Science.gov (United States)

    Gurbuz, Fatih

    2016-01-01

    The purpose of this research study is to explore pre-service science teachers' misconceptions on basic astronomy subjects and to examine the effect of micro teaching method supported by educational technologies on correcting misconceptions. This study is an action research. Semi- structured interviews were used in the study as a data collection…

  2. Environmental/Biomedical Terminology Index

    Energy Technology Data Exchange (ETDEWEB)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.; Chilton, B.D.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index (EBTI).

  3. Innovations in Biomedical Engineering 2016

    CERN Document Server

    Tkacz, Ewaryst; Paszenda, Zbigniew; Piętka, Ewa

    2017-01-01

    This book presents the proceedings of the “Innovations in Biomedical Engineering IBE’2016” Conference held on October 16–18, 2016 in Poland, discussing recent research on innovations in biomedical engineering. The past decade has seen the dynamic development of more and more sophisticated technologies, including biotechnologies, and more general technologies applied in the area of life sciences. As such the book covers the broadest possible spectrum of subjects related to biomedical engineering innovations. Divided into four parts, it presents state-of-the-art achievements in: • engineering of biomaterials, • modelling and simulations in biomechanics, • informatics in medicine • signal analysis The book helps bridge the gap between technological and methodological engineering achievements on the one hand and clinical requirements in the three major areas diagnosis, therapy and rehabilitation on the other.

  4. On the Crisis in Biomedical Education: Is There an Overproduction of Biomedical PhDs?

    Science.gov (United States)

    Domer, Judith E.; And Others

    1996-01-01

    The debate over whether there is an oversupply of doctorates in the biomedical sciences is examined, and a case study of doctoral graduates and postdoctoral fellows at the Tulane University (Louisiana) Medical Center is reported. It is concluded that there is no biomedical doctoral glut and that doctoral program downsizing would have serious…

  5. Functionalized carbon nanotubes: biomedical applications

    Directory of Open Access Journals (Sweden)

    Vardharajula S

    2012-10-01

    Full Text Available Sandhya Vardharajula,1 Sk Z Ali,2 Pooja M Tiwari,1 Erdal Eroğlu,1 Komal Vig,1 Vida A Dennis,1 Shree R Singh11Center for NanoBiotechnology and Life Sciences Research, Alabama State University, Montgomery, AL, USA; 2Department of Microbiology, Osmania University, Hyderabad, IndiaAbstract: Carbon nanotubes (CNTs are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.Keywords: carbon nanotubes, cytotoxicity, functionalization, biomedical applications

  6. The influence of regional basic science campuses on medical students' choice of specialty and practice location: a historical cohort study

    Directory of Open Access Journals (Sweden)

    Brokaw James J

    2009-06-01

    Full Text Available Abstract Background Indiana University School of Medicine (IUSM employs eight regional basic science campuses, where half of the students complete their first two years of medical school. The other half complete all four years at the main campus in Indianapolis. The authors tested the hypothesis that training at regional campuses influences IUSM students to pursue primary care careers near the regional campuses they attended. Methods Medical school records for 2,487 graduates (classes of 1988–1997 were matched to the 2003 American Medical Association Physician Masterfile to identify the medical specialty and practice location of each graduate. Multivariate logistic regression was performed to assess the effect of regional campus attendance on students' choice of medical specialty and practice location, while simultaneously adjusting for several covariates thought to affect these career outcomes. Results Compared to Indianapolis students, those who attended a regional campus were somewhat more likely to be white, have parents with middle class occupations, and score slightly lower on the Medical College Admission Test. Any such differences were adjusted for in the regression models, which predicted that four of the regional campuses were significantly more likely than Indianapolis to produce family practitioners, and that five of the regional campuses were significantly more likely than the others to have former students practicing in the region. When analyzed collectively, attendance at any regional campus was a significant predictor of a primary care practice located outside the Indianapolis metropolitan area. Conclusion Attending a regional campus for preclinical training appears to increase the likelihood of practicing primary care medicine in local communities.

  7. Biomedical devices and their applications

    CERN Document Server

    2004-01-01

    This volume introduces readers to the basic concepts and recent advances in the field of biomedical devices. The text gives a detailed account of novel developments in drug delivery, protein electrophoresis, estrogen mimicking methods and medical devices. It also provides the necessary theoretical background as well as describing a wide range of practical applications. The level and style make this book accessible not only to scientific and medical researchers but also to graduate students.

  8. Computational Fluid Dynamics Methods and Their Applications in Medical Science

    OpenAIRE

    Kowalewski Wojciech; Roszak Magdalena; Kołodziejczak Barbara; Ren-Kurc Anna; Bręborowicz Andrzej

    2016-01-01

    As defined by the National Institutes of Health: “Biomedical engineering integrates physical, chemical, mathematical, and computational sciences and engineering principles to study biology, medicine, behavior, and health”. Many issues in this area are closely related to fluid dynamics. This paper provides an overview of the basic concepts concerning Computational Fluid Dynamics and its applications in medicine.

  9. Semiconducting silicon nanowires for biomedical applications

    CERN Document Server

    Coffer, JL

    2014-01-01

    Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffol

  10. Conception of Pharmacological Knowledge and Needs Amongst Nigerian Medical Students at Lagos State University College of Medicine: Implication for Future Biomedical Science in Africa.

    Science.gov (United States)

    Agaga, Luther Agbonyegbeni; John, Theresa Adebola

    2016-08-30

    In Nigeria, medical students are trained in more didactic environments than their counterparts in researchintensive academic medical centers. Their conception of pharmacology was thus sought. Students who are taking/have takenthe medical pharmacology course completed an 18-question survey within 10min by marking one/more choices fromalternatives. Instructions were: "Dear Participant, Please treat as confidential, give your true view, avoid influences, avoidcrosstalk, return survey promptly." Out of 301 students, 188 (62.46%) participated. Simple statistics showed: 61.3%respondents associated pharmacology with medicine, 24.9% with science, 16.8 % with industry, and 11.1% with government;32.8% want to know clinical pharmacology, 7.1% basic pharmacology, 6.7% pharmacotherapy, and 34.2% want a blend ofall three; 57.8% want to know clinical uses of drugs, 44.8% mechanisms of action, 44.4% side effects, and 31.1% differentdrugs in a group; 45.8% prefer to study lecturers' notes, 26.7% textbooks, 9.8% the Internet, and 2.7% journals; 46.7% usestandard textbooks, 11.5% revision texts, 2.66% advanced texts, and 8.4% no textbook; 40.4% study pharmacology to beable to treat patients, 39.1% to complete the requirements for MBBS degree, 8.9% to know this interesting subject, and 3.1%to make money. Respondents preferring aspects of pharmacology were: 42.7, 16, 16, and 10 (%) respectively for mechanismsof action, pharmacokinetics, side effects, and drug lists. Medical students' conception and need for pharmacology werebased on MBBS degree requirements; they lacked knowledge/interest in pharmacology as a science and may not be thepotential trusts for Africa's future pharmacology.

  11. Basic Research Needs for Solid-State Lighting. Report of the Basic Energy Sciences Workshop on Solid-State Lighting, May 22-24, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J. M.; Burrows, P. E.; Davis, R. F.; Simmons, J. A.; Malliaras, G. G.; So, F.; Misewich, J.A.; Nurmikko, A. V.; Smith, D. L.; Tsao, J. Y.; Kung, H.; Crawford, M. H.; Coltrin, M. E.; Fitzsimmons, T. J.; Kini, A.; Ashton, C.; Herndon, B.; Kitts, S.; Shapard, L.; Brittenham, P. W.; Vittitow, M. P.

    2006-05-24

    The workshop participants enthusiastically concluded that the time is ripe for new fundamental science to beget a revolution in lighting technology. SSL sources based on organic and inorganic materials have reached a level of efficiency where it is possible to envision their use for general illumination. The research areas articulated in this report are targeted to enable disruptive advances in SSL performance and realization of this dream. Broad penetration of SSL technology into the mass lighting market, accompanied by vast savings in energy usage, requires nothing less. These new ?good ideas? will be represented not by light bulbs, but by an entirely new lighting technology for the 21st century and a bright, energy-efficient future indeed.

  12. [Biomedical research in Revista de Biologia Tropical].

    Science.gov (United States)

    Gutiérrez, José María

    2002-01-01

    The contributions published in Revista de Biología Tropical in the area of Biomedical Sciences are reviewed in terms of number of contributions and scope of research subjects. Biomedical Sciences, particularly Parasitology and Microbiology, constituted the predominant subject in the Revista during the first decade, reflecting the intense research environment at the School of Microbiology of the University of Costa Rica and at Hospital San Juan de Dios. The relative weight of Biomedicine in the following decades diminished, due to the outstanding increment in publications in Biological Sciences; however, the absolute number of contributions in Biomedical Sciences remained constant throughout the last decades, with around 80 contributions per decade. In spite of the predominance of Parasitology as the main biomedical subject, the last decades have witnessed the emergence of new areas of interest in the Revista, such as Pharmacology of natural products, Toxinology, especially related to snake venoms, and Human Genetics. This retrospective analysis evidences that Biomedical Sciences, particularly those related to Tropical Medicine, were a fundamental component during the first years of Revista de Biología Tropical, and have maintained a significant presence in the scientific output of this journal, the most relevant scientific publication in biological sciences in Central America.

  13. Pharmacy Education Reaction to Presentations on Bridging the Gap Between the Basic Sciences and Clinical Practice: Teaching, Research, and Service.

    Science.gov (United States)

    Doluisio, James T.

    1980-01-01

    Issues in the conflict between clinical practice and basic research in pharmacy are reviewed: professional associations' role, curriculum needs and traditions, internal strains and diversity in the profession, computer use, scholarly work of faculty, using the medical profession as a model, and misperceptions of what clinical and basic sciences…

  14. Biomedical wellness challenges and opportunities

    Science.gov (United States)

    Tangney, John F.

    2012-06-01

    The mission of ONR's Human and Bioengineered Systems Division is to direct, plan, foster, and encourage Science and Technology in cognitive science, computational neuroscience, bioscience and bio-mimetic technology, social/organizational science, training, human factors, and decision making as related to future Naval needs. This paper highlights current programs that contribute to future biomedical wellness needs in context of humanitarian assistance and disaster relief. ONR supports fundamental research and related technology demonstrations in several related areas, including biometrics and human activity recognition; cognitive sciences; computational neurosciences and bio-robotics; human factors, organizational design and decision research; social, cultural and behavioral modeling; and training, education and human performance. In context of a possible future with automated casualty evacuation, elements of current science and technology programs are illustrated.

  15. Biomedical and environmental applications of magnetic nanoparticles

    Science.gov (United States)

    Tran, Dai Lam; Le, Van Hong; Linh Pham, Hoai; Nhung Hoang, Thi My; Quy Nguyen, Thi; Luong, Thien Tai; Thu Ha, Phuong; Phuc Nguyen, Xuan

    2010-12-01

    This paper presents an overview of syntheses and applications of magnetic nanoparticles (MNPs) at the Institute of Materials Science, Vietnam Academy of Science and Technology. Three families of oxide MNPs, magnetite, manganite and spinel ferrite materials, were prepared in various ways: coprecipitation, sol-gel and high energy mechanical milling. Basic properties of MNPs were characterized by Vibrating Sample Magnetometer (VSM) and Physical Properties Measurement Systems (PPMS). As for biomedical application, the aim was to design a novel multifunctional, nanosized magnetofluorescent water-dispersible Fe3O4-curcumin conjugate, and its ability to label, target and treat tumor cells was described. The conjugate possesses a magnetic nano Fe3O4 core, chitosan (CS) or Oleic acid (OL) as an outer shell and entrapped curcumin (Cur), serving the dual function of naturally autofluorescent dye as well as antitumor model drug. Fe3O4-Cur conjugate exhibited a high loading cellular uptake with the help of a macrophage, which was clearly visualized dually by Fluorescence Microscope and Laser Scanning Confocal Microscope (LSCM), as well as by magnetization measurement (PPMS). A preliminary magnetic resonance imaging (MRI) study also showed a clear contrast enhancement by using the conjugate. As for the environmental aspect, the use of magnetite MNPs for the removal of heavy toxic metals, such as Arsenic (As) and Lead (Pb), from contaminated water was studied.

  16. Advanced computational approaches to biomedical engineering

    CERN Document Server

    Saha, Punam K; Basu, Subhadip

    2014-01-01

    There has been rapid growth in biomedical engineering in recent decades, given advancements in medical imaging and physiological modelling and sensing systems, coupled with immense growth in computational and network technology, analytic approaches, visualization and virtual-reality, man-machine interaction and automation. Biomedical engineering involves applying engineering principles to the medical and biological sciences and it comprises several topics including biomedicine, medical imaging, physiological modelling and sensing, instrumentation, real-time systems, automation and control, sig

  17. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  18. Dormitory of Physical and Engineering Sciences: Sleeping Beauties May Be Sleeping Innovations Part 1: Basic Properties, Cognitive Environment, Characteristics of the Princes

    CERN Document Server

    van Raan, Anthony F J

    2015-01-01

    A Sleeping Beauty in Science is a publication that goes unnoticed (sleeps) for a long time and then, almost suddenly, attracts a lot of attention (is awakened by a prince). In this paper we investigate important properties of Sleeping Beauties, particularly to find out to what extent Sleeping Beauties are application-oriented and thus are potential Sleeping Innovations. In this study we focus primarily on physics (including materials science and astrophysics) and present first results for chemistry and for engineering & computer science. We find that more than half of the SBs are application-oriented. Therefore, it is important to investigate the reasons for and processes related to delayed recognition. First we analyze basic properties of the SBs such as the time-dependent distribution, author characteristics (names of authors, country, institution), as well as the journals and fields of the SBs are analyzed. Next we develop a new approach in which the cognitive environment of the SBs is analyzed, based ...

  19. Harnessing the Use of Open Learning Exchange to Support Basic Education in Science and Mathematics in the Philippines

    Science.gov (United States)

    Feliciano, Josephine S.; Mandapat, Louie Carl R.; Khan, Concepcion L.

    2013-01-01

    This paper presents the open learning initiatives of the Science Education Institute of the Department of Science and Technology to overcome certain barriers, such as enabling access, cost of replication, timely feedback, monitoring and continuous improvement of learning modules. Using an open-education model, like MIT's (Massachusetts Institute…

  20. Radiation safety education for laboratory animal science.

    Science.gov (United States)

    Emrich, J; Lambert, K

    2000-08-01

    Students enrolled in the laboratory animal science graduate program at MCP Hahnemann University seek to gain entrance to veterinary school or to manage an animal facility within an academic institution, pharmaceutical or biotechnology company conducting biomedical research. Ongoing interaction between faculty in the radiation oncology, radiation safety, and lab animal science disciplines revealed an acute need for radiation safety education for laboratory animal science students who will likely interact with researchers either designing and writing protocols for animal studies using radiation or radioactive materials, or veterinary staff who will use sources of radiation to diagnose and/or treat possible animal injuries and diseases. A core course in the Radiation Sciences graduate program was modified to address the needs of these students, instructing them in radiation safety, detection and counting instrumentation, and radiation biology. These fundamental areas were integrated to help the students gain a sound, basic knowledge of radiation and radioactive materials used in biomedical research.

  1. Education and research in biomedical engineering of the Budapest University of Technology and Economics.

    Science.gov (United States)

    Benyó, Z

    2006-03-01

    Biomedical Engineering is a relatively new interdisciplinary science. This review paper presents the biomedical engineering activity, which is carried out at the Budapest University of Technology and Economics (BUTE) and its partner institutions. In the first parts the main goals and the curriculum of the Biomedical Engineering Education Program is presented. The second part of the paper summarizes the most important biomedical engineering researches most of them carried out in the Biomedical Engineering Laboratory of BUTE.

  2. 15th International Conference on Biomedical Engineering

    CERN Document Server

    2014-01-01

    This volume presents the proceedings of the 15th ICMBE held from 4th to 7th December 2013, Singapore. Biomedical engineering is applied in most aspects of our healthcare ecosystem. From electronic health records to diagnostic tools to therapeutic, rehabilitative and regenerative treatments, the work of biomedical engineers is evident. Biomedical engineers work at the intersection of engineering, life sciences and healthcare. The engineers would use principles from applied science including mechanical, electrical, chemical and computer engineering together with physical sciences including physics, chemistry and mathematics to apply them to biology and medicine. Applying such concepts to the human body is very much the same concepts that go into building and programming a machine. The goal is to better understand, replace or fix a target system to ultimately improve the quality of healthcare. With this understanding, the conference proceedings offer a single platform for individuals and organisations working i...

  3. Biomedical engineering and society: policy and ethics.

    Science.gov (United States)

    Flexman, J A; Lazareck, L

    2007-01-01

    Biomedical engineering impacts health care and contributes to fundamental knowledge in medicine and biology. Policy, such as through regulation and research funding, has the potential to dramatically affect biomedical engineering research and commercialization. New developments, in turn, may affect society in new ways. The intersection of biomedical engineering and society and related policy issues must be discussed between scientists and engineers, policy-makers and the public. As a student, there are many ways to become engaged in the issues surrounding science and technology policy. At the University of Washington in Seattle, the Forum on Science Ethics and Policy (FOSEP, www.fosep.org) was started by graduate students and post-doctoral fellows interested in improving the dialogue between scientists, policymakers and the public and has received support from upper-level administration. This is just one example of how students can start thinking about science policy and ethics early in their careers.

  4. The Potential Improvement of Team-Working Skills in Biomedical and Natural Science Students Using a Problem-Based Learning Approach

    Science.gov (United States)

    Nowrouzian, Forough L.; Farewell, Anne

    2013-01-01

    Teamwork has become an integral part of most organisations today, and it is clearly important in Science and other disciplines. In Science, research teams increase in size while the number of single-authored papers and patents decline. Team-work in laboratory sciences permits projects that are too big or complex for one individual to be tackled.…

  5. Basic research championed

    Science.gov (United States)

    Friebele, Elaine

    In April, the Office of National Science and Technology Policy released its biennial report to Congress. Science and Technology: Shaping the Twenty-First Century addresses the President's policy for maintaining U.S. leadership in science and technology, significant developments, and important national issues in science, and opportunities to use science and technology in federal programs and national goals. The administration strongly supports basic research as a sound investment and an inspiration to society. As corporate laboratories increasingly favor applied R&D projects, the federal government is becoming the dominant sponsor of long-term, basic research.

  6. [A biomedical signal processing toolkit programmed by Java].

    Science.gov (United States)

    Xie, Haiyuan

    2012-09-01

    According to the biomedical signal characteristics, a new biomedical signal processing toolkit is developed. The toolkit is programmed by Java. It is used in basic digital signal processing, random signal processing and etc. All the methods in toolkit has been tested, the program is robust. The feature of the toolkit is detailed explained, easy use and good practicability.

  7. Science Translational Medicine – improving human health care worldwide by providing an interdisciplinary forum for idea exchange between basic scientists and clinical research practitioners

    Directory of Open Access Journals (Sweden)

    Forsythe, Katherine

    2010-09-01

    Full Text Available Science Translational Medicine’s mission is to improve human health care worldwide by providing a forum for communication and interdisciplinary idea exchange between basic scientists and clinical research practitioners from all relevant established and emerging disciplines. The weekly journal debuted in October 2009 and is published by the American Association for the Advancement of Science (AAAS, the publisher of Science and Science Signaling. The journal features peer-reviewed research articles, perspectives and commentary, and is guided by an international Advisory Board, led by Chief Scientific Adviser, Elias A. Zerhouni, M.D., former Director of the National Institutes of Health, and Senior Scientific Adviser, Elazer R. Edelman, M.D., Ph.D., Thomas D. and Virginia W. Cabot Professor of Health Sciences and Technology, Massachusetts Institute of Technology. The Science Translational Medicine editorial team is led by Katrina L. Kelner, Ph.D., AAAS. A profound transition is required for the science of translational medicine. Despite 50 years of advances in our fundamental understanding of human biology and the emergence of powerful new technologies, the rapid transformation of this knowledge into effective health measures is not keeping pace with the challenges of global health care. Creative experimental approaches, novel technologies, and new ways of conducting scientific explorations at the interface of established and emerging disciplines are now required to an unprecedented degree if real progress is to be made. To aid in this reinvention, Science and AAAS have created a new interdisciplinary journal, Science Translational Medicine. The following interview exemplefies the pioneering content found in Science Translational Medicine. It is an excerpt from a Podcast interview with Dr. Samuel Broder, former director of the National Cancer Institute and current Chief Medical Officer at Celera. The Podcast was produced in tangent with Dr

  8. 病毒样颗粒技术——现代生物医学应用的新平台%Virus-like particles: new platforms for the applications of contemporary biomedical sciences

    Institute of Scientific and Technical Information of China (English)

    龙遗芳; 郭中敏; 陆家海

    2013-01-01

    Virus-like particles (VLPs) are composed of one or several virus structural proteins but not packaged the virus genome inside the capsid.VLPs have remarkable advantages over the complete viruses such as VLP can closely mimick the three-dimensional nature of a real virus; VLPs are safe with strong immunogenicity,flexibility of structure and unique ability of bearing DNA and other molecules.VLP technology has been widely accepted especially in the field of vaccinology.In this review,we summarize the applications of VLPs in the field of biomedical research including basic research,development of immunoassays,novel vaccines and VLPs as vehicles for delivering therapeutic molecules.

  9. Integration of Basic-Clinical Sciences, PBL, CBL, and IPE in U.S. Dental Schools' Curricula and a Proposed Integrated Curriculum Model for the Future.

    Science.gov (United States)

    Elangovan, Satheesh; Venugopalan, Shankar Rengasamy; Srinivasan, Sreedevi; Karimbux, Nadeem Y; Weistroffer, Paula; Allareddy, Veerasathpurush

    2016-03-01

    The integration of basic and clinical sciences in dental curricula enhances the application of basic science principles to clinical decision making and improves students' critical thinking. The aim of this study was to define the characteristics of U.S. dental schools' curricula with regard to level of course integration and degree of incorporation of problem-based and case-based learning. A second aim was to propose a dental curriculum that supports effective integration of courses and addresses some of the concerns facing academic dentistry. A survey was sent to 58 academic deans in U.S. dental schools. The survey included questions about integrating courses in the schools' curricula and major changes in curricular structure or teaching pedagogy that respondents anticipated in the immediate future. A total of 31 schools responded to the survey, for a 53.4% response rate. The results showed that three-quarters of the responding schools still teach basic and clinical sciences separately, although 61.3% reported having an integrated curriculum. Among the responding schools, 16 had a PBL component integrated into their curricula (two had integrated PBL in all courses and 14 used a hybrid PBL approach). Two schools had CBL integrated in all courses, and ten had CBL integrated in >75% of courses. Only slightly more than half agreed that their curricula foster students' thinking "outside the box." Faculty shortages and lack of protected time and resources were the most frequent reasons given for a lack of integrated courses. The integrated model proposed in this article has the potential to provide a low stress environment for students and to address important issues like faculty shortages.

  10. VI Latin American Congress on Biomedical Engineering

    CERN Document Server

    Hadad, Alejandro

    2015-01-01

    This volume presents the proceedings of the CLAIB 2014, held in Paraná, Entre Ríos, Argentina 29, 30 & 31 October 2014. The proceedings, presented by the Regional Council of Biomedical Engineering for Latin America (CORAL) offer research findings, experiences and activities between institutions and universities to develop Bioengineering, Biomedical Engineering and related sciences. The conferences of the American Congress of Biomedical Engineering are sponsored by the International Federation for Medical and Biological Engineering (IFMBE), Society for Engineering in Biology and Medicine (EMBS) and the Pan American Health Organization (PAHO), among other organizations and international agencies and bringing together scientists, academics and biomedical engineers in Latin America and other continents in an environment conducive to exchange and professional growth. The Topics include: - Bioinformatics and Computational Biology - Bioinstrumentation; Sensors, Micro and Nano Technologies - Biomaterials, Tissu...

  11. The diversity of experimental organisms in biomedical research may be influenced by biomedical funding.

    Science.gov (United States)

    Erick Peirson, B R; Kropp, Heather; Damerow, Julia; Laubichler, Manfred D

    2017-03-30

    Contrary to concerns of some critics, we present evidence that biomedical research is not dominated by a small handful of model organisms. An exhaustive analysis of research literature suggests that the diversity of experimental organisms in biomedical research has increased substantially since 1975. There has been a longstanding worry that organism-centric funding policies can lead to biases in experimental organism choice, and thus negatively impact the direction of research and the interpretation of results. Critics have argued that a focus on model organisms has unduly constrained the diversity of experimental organisms. The availability of large electronic databases of scientific literature, combined with interest in quantitative methods among philosophers of science, presents new opportunities for data-driven investigations into organism choice in biomedical research. The diversity of organisms used in NIH-funded research may be considerably lower than in the broader biomedical sciences, and may be subject to greater constraints on organism choice.

  12. An introduction to biomedical instrumentation

    CERN Document Server

    Dewhurst, D J

    1976-01-01

    An Introduction to Biomedical Instrumentation presents a course of study and applications covering the basic principles of medical and biological instrumentation, as well as the typical features of its design and construction. The book aims to aid not only the cognitive domain of the readers, but also their psychomotor domain as well. Aside from the seminar topics provided, which are divided into 27 chapters, the book complements these topics with practical applications of the discussions. Figures and mathematical formulas are also given. Major topics discussed include the construction, handli

  13. Joseph F. Keithley Award For Advances in Measurement Science Lecture: Thermophotonic and Photoacoustic Radar Imaging Methods for Biomedical and Dental Imaging

    Science.gov (United States)

    Mandelis, Andreas

    2012-02-01

    In the first part of this presentation I will introduce thermophotonic radar imaging principles and techniques using chirped or binary-phase-coded modulation, methods which can break through the maximum detection depth/depth resolution limitations of conventional photothermal waves. Using matched-filter principles, a methodology enabling parabolic diffusion-wave energy fields to exhibit energy localization akin to propagating hyperbolic wave-fields has been developed. It allows for deconvolution of individual responses of superposed axially discrete sources, opening a new field: depth-resolved thermal coherence tomography. Several examples from dental enamel caries diagnostic imaging to metal subsurface defect thermographic imaging will be discussed. The second part will introduce the field of photoacoustic radar (or sonar) biomedical imaging. I will report the development of a novel biomedical imaging system that utilizes a continuous-wave laser source with a custom intensity modulation pattern, ultrasonic phased array for signal detection and processing coupled with a beamforming algorithm for reconstruction of photoacoustic correlation images. Utilization of specific chirped modulation waveforms (``waveform engineering'') achieves dramatic signal-to-noise-ratio increase and improved axial resolution over pulsed laser photoacoustics. The talk will conclude with aspects of instrumental sensitivity of the PA Radar to optical contrast using cancerous breast tissue-mimicking phantoms, super paramagnetic iron oxide nanoparticles as contrast enhancement agents and in-vivo tissue samples.

  14. Development of e-Learning Courses for Promoting Student's Global Competency-Basic Courses as a Guide to ESP Education in Advanced Science and Technology-

    Science.gov (United States)

    Nishikawa, Mikako; Nakajima, Mikio; Iwai, Chiharu; Ogasawara, Fumie; Kishino, Fumio; Fukui, Kiichi

    Osaka University has been chosen for the FY2005's “Selected Efforts of the Distinctive University Education Support Program (Gendai GP/Good Practice) ”by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) . The aim of this project is to improve English proficiency of undergraduate students with scientific backgrounds. Under this strategic fund, e-Learning course contents were developed for instructing basic, yet practical English for Biotechnology during FY2005. Throughout the project, e-Learning contents will be developed for five other selected subjects of science i.e., 1) biotechnology, 2) information technology, 3) nano-technology, 4) environmental technology and 5) robotics technology, for undergraduate students as guiding courses to ESP education in graduate (higher) level.

  15. 18 MArch 2008 - Director, Basic and Generic Research Division, Research Promotion Bureau, Japanese Ministry of Education, Culture, Sports, Science and Technology Prof.Ohtake visiting ATLAS cavern with Spokesperson P. Jenni.

    CERN Multimedia

    Maximilien Brice

    2008-01-01

    18 MArch 2008 - Director, Basic and Generic Research Division, Research Promotion Bureau, Japanese Ministry of Education, Culture, Sports, Science and Technology Prof.Ohtake visiting ATLAS cavern with Spokesperson P. Jenni.

  16. Changing the face of reference: adapting biomedical and health information services for the classroom, clinic, and beyond.

    Science.gov (United States)

    Tennant, Michele R; Auten, Beth; Botero, Cecilia E; Butson, Linda C; Edwards, Mary E; Garcia-Milian, Rolando; Lyon, Jennifer A; Norton, Hannah F

    2012-01-01

    This article describes how the reference department at a large academic health sciences library evolved to address the clinical and research information needs of the parent organization without losing its close connections to the classroom and curriculum. Closing the reference desk, moving to on-call and house call models, designing positions such as clinical research librarian and basic biomedical sciences librarian, finding alternative funding to grow the department, providing technology and training to facilitate librarians' work, and developing programming for and taking advice from library clients facilitated efforts to create a relevant presence and solidify the library's place in the university community.

  17. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    Science.gov (United States)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-01-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to…

  18. Final Report for the ZERT Project: Basic Science of Retention Issues, Risk Assessment & Measurement, Monitoring and Verification for Geologic Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Lee; Cunningham, Alfred; Lageson, David; Melick, Jesse; Gardner, Mike; Dobeck, Laura; Repasky, Kevin; Shaw, Joseph; Bajura, Richard; McGrail, B Peter; Oldenburg, Curtis M; Wagoner, Jeff; Pawar, Rajesh

    2011-03-31

    ZERT has made major contributions to five main areas of sequestration science: improvement of computational tools; measurement and monitoring techniques to verify storage and track migration of CO{sub 2}; development of a comprehensive performance and risk assessment framework; fundamental geophysical, geochemical and hydrological investigations of CO{sub 2} storage; and investigate innovative, bio-based mitigation strategies.

  19. Resource Handbook--Matter and Energy. A Supplement to Basic Curriculum Guide--Science, Grades K-6.

    Science.gov (United States)

    Starr, John W., 3rd., Ed.

    GRADES OR AGES: Grades K-6. SUBJECT MATTER: Science; matter and energy. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into the following six units: 1) Composition of Matter, with 27 concepts; 2) Light, with 20 concepts; 3) Heat, with 14 concepts; 4) Sound, with 12 concepts; 5) Electricity and Magnetism, with 17 concepts; and 6)…

  20. Physics of the Life Sciences

    CERN Document Server

    Newman, Jay

    2008-01-01

    Originally developed for the author's course at Union College, this text is designed for life science students who need to understand the connections of fundamental physics to modern biology and medicine. Almost all areas of modern life sciences integrally involve physics in both experimental techniques and in basic understanding of structure and function. Physics of the Life Sciences is not a watered-down, algebra-based engineering physics book with sections on relevant biomedical topics added as an afterthought. This authoritative and engaging text, which is designed to be covered in a two-semester course, was written with a thoroughgoing commitment to the needs and interests of life science students. Although covering most of the standard topics in introductory physics in a more or less traditional sequence, the author gives added weight and space to concepts and applications of greater relevance to the life sciences. Students benefit from occasional sidebars using calculus to derive fundamental relations,...

  1. Biomedical Engineering Laboratory

    Science.gov (United States)

    2007-11-02

    The Masters of Engineering program with concentration in Biomedical Engineering at Tennessee State University was established in fall 2000. Under... biomedical engineering . The lab is fully equipped with 10 Pentium5-based, 2 Pentium4-based laptops for mobile experiments at remote locations, 8 Biopac...students (prospective graduate students in biomedical engineering ) are regularly using this lab. This summer, 8 new prospective graduate students

  2. Molecular Theory of the Living Cell Concepts, Molecular Mechanisms, and Biomedical Applications

    CERN Document Server

    Ji, Sungchul

    2012-01-01

    This book presents a comprehensive molecular theory of the living cell based on over thirty concepts, principles and laws imported from thermodynamics, statistical mechanics, quantum mechanics, chemical kinetics, informatics, computer science, linguistics, semiotics, and philosophy. The author formulates physically, chemically and enzymologically realistic molecular mechanisms to account for the basic living processes such as ligand-receptor interactions, protein folding, single-molecule enzymic catalysis, force-generating mechanisms in molecular motors, signal transduction, regulation of the genome-wide RNA metabolism, morphogenesis, the micro-macro coupling in coordination dynamics, the origin of life, and the mechanisms of biological evolution itself. Possible solutions to basic and practical problems facing contemporary biology and biomedical sciences have been suggested, including pharmacotheragnostics and personalized medicine.

  3. 诺贝尔自然科学奖与基础研究%Nobel Natural Science Prize and Basic Research

    Institute of Scientific and Technical Information of China (English)

    陈其荣

    2013-01-01

    文章主要提出并探讨了三个具有内在关联的问题:一是基础研究的类型问题。基础研究是一个随着科学研究实践的发展而演进的范畴,通过对现代科学从“学院科学”向“后学院科学”转变的历史考析,得出基础研究的范畴已从只是“纯基础研究”的一种类型拓展为包括“纯基础研究”和“定向基础研究”两种类型的结论,结合诺贝尔自然科学奖获得者从事基础研究的实际案例,对这两种不同类型的基础研究范畴做出了新的阐释。二是诺贝尔自然科学奖获得者从事基础研究的比重究竟有多大。通过对诺贝尔自然科学奖获得者从事基础研究(分为“纯基础研究”与“定向基础研究”)与应用研究获奖工作的人数与比例的统计分析,发现高达90%左右的科学家是由于在基础科学领域取得重大原始性创新成果而被授予诺贝尔自然科学奖的,彰显了权威的诺贝尔自然科学奖对基础研究的“偏爱”,从而显示出基础研究的重要意义。三是诺贝尔自然科学奖获得者是如何从事基础研究的。依据真实、丰富而鲜活的思想资料,运用案例分析法,深入分析和揭示了他们作为科学精英在基础科学领域取得重大原始性创新成果的“奥秘”。%Three interrelated issues are explored in this paper.The first is about the category of basic re-search.The paper points out that the scope of basic research evolves with the progress of the practice of scien-tific research.Based on a close examination of the historical transformation of modern science from "academic science"to the "post-academic science",it argues that the scope of basic research has expanded.Besides "pure basic research",there appears the new category of"oriented basic research".These two categories are explained and interpreted in relation to the actual cases of basic research by Nobel Laureates for natural

  4. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  5. A Review of Biomedical Centrifugal Microfluidic Platforms

    Directory of Open Access Journals (Sweden)

    Minghui Tang

    2016-02-01

    Full Text Available Centrifugal microfluidic or lab-on-a-disc platforms have many advantages over other microfluidic systems. These advantages include a minimal amount of instrumentation, the efficient removal of any disturbing bubbles or residual volumes, and inherently available density-based sample transportation and separation. Centrifugal microfluidic devices applied to biomedical analysis and point-of-care diagnostics have been extensively promoted recently. This paper presents an up-to-date overview of these devices. The development of biomedical centrifugal microfluidic platforms essentially covers two categories: (i unit operations that perform specific functionalities, and (ii systems that aim to address certain biomedical applications. With the aim to provide a comprehensive representation of current development in this field, this review summarizes progress in both categories. The advanced unit operations implemented for biological processing include mixing, valving, switching, metering and sequential loading. Depending on the type of sample to be used in the system, biomedical applications are classified into four groups: nucleic acid analysis, blood analysis, immunoassays, and other biomedical applications. Our overview of advanced unit operations also includes the basic concepts and mechanisms involved in centrifugal microfluidics, while on the other hand an outline on reported applications clarifies how an assembly of unit operations enables efficient implementation of various types of complex assays. Lastly, challenges and potential for future development of biomedical centrifugal microfluidic devices are discussed.

  6. A study on knowledge and practice regarding biomedical waste management among staff nurses and nursing students of Rajendra Institute of Medical Sciences, Ranchi

    Directory of Open Access Journals (Sweden)

    Shamim Haider

    2015-03-01

    Full Text Available Background: Hospitals are the centre of cure and also the important centres of infectious waste generation. Effective management of Biomedical Waste (BMW is not only a legal necessity but also a social responsibility. Aims and Objectives: To assess the knowledge and practice in managing the biomedical wastes among nursing staff and student nurses in RIMS, Ranchi. Materials and methods: The study was conducted at RIMS, Ranchi from Oct 2013 to March 2014 (6 months. It was a descriptive, hospital based, cross-sectional study. A total of 240 nurses participated in the present study, randomly chosen from various departments A pre-designed, pre-tested, structured proforma was used for data collection after getting their informed consent. Self-made scoring system was used to categorize the participants as having good, average and poor scores. Data was tabulated and analyzed using percentages and chi-square test. Results: The knowledge regarding general information about BMW management was assessed(with scores 0-8,it was found  that level of knowledge was better in student nurses than staff nurses as student nurses scored good(6-8correct answers in more than half of the questions (65%.Whereas staff nurses scored good in only 33.33% questions. When the practical information regarding the BMW management is assessed (with scores 0-8, it was found that staff nurses had relatively better practice regarding BMW management than students as they scored good(6-8correct answers in 40% and 30% respectively. Conclusion: Though overall knowledge of study participants was good but still they need good quality training to improve their current knowledge about BMW. 

  7. Capturing the Value of Biomedical Research.

    Science.gov (United States)

    Bertuzzi, Stefano; Jamaleddine, Zeina

    2016-03-24

    Assessing the real-world impact of biomedical research is notoriously difficult. Here, we present the framework for building a prospective science-centered information system from scratch that has been afforded by the Sidra Medical and Research Center in Qatar. This experiment is part of the global conversation on maximizing returns on research investment.

  8. Developing biomedical devices design, innovation and protection

    CERN Document Server

    Andreoni, Giuseppe; Colombo, Barbara

    2013-01-01

    During the past two decades incredible progress has been achieved in the instruments and devices used in the biomedical field. This progress stems from continuous scientific research that has taken advantage of many findings and advances in technology made available by universities and industry. Innovation is the key word, and in this context legal protection and intellectual property rights (IPR) are of crucial importance. This book provides students and practitioners with the fundamentals for designing biomedical devices and explains basic design principles. Furthermore, as an aid to the dev

  9. IMPACT STATEMENTS ON THE K-12 SCIENCE PROGRAM IN THE ENHANCED BASIC EDUCATION CURRICULUM IN PROVINCIAL SCHOOLS

    Directory of Open Access Journals (Sweden)

    Marie Grace S. Cabansag,

    2014-04-01

    Full Text Available The study described the knowledge, observations, benefits, expectations or potentials and sources of misinterpretations on the K-12 science program on its first implementation in selected provincial high schools in the Philippines. The impact statements of teachers, students and parent-respondents were analyzed using thematic content coding technique. Coding frames were constructed by adopting both “a priori” and “in-vivo” codes. The results showed the respondents viewed the K-12 science program as a means of preparing students toward better employment opportunities in the country or abroad. It also reports the program is viewed for holistic development of the 21st century learners equipped with necessary life skills who can contribute for economic and social development of the family and community. The impact statements suggest the need for close monitoring of the program implementation and provision of continuous professional trainings for teachers to clear areas of misinterpretations. Misconceptions on the nature of additional years of study further suggest the provision and wide dissemination of policy standards on employment and education opportunities in the ASEAN Economic Community integration.

  10. Multipurpose monochromator for the Basic Energy Science Synchrotron Radiation Center Collaborative Access Team beamlines at the Advanced Photon Source x-ray facility

    Science.gov (United States)

    Ramanathan, M.; Beno, M. A.; Knapp, G. S.; Jennings, G.; Cowan, P. L.; Montano, P. A.

    1995-02-01

    The Basic Energy Science Synchrotron Radiation Center (BESSRC) Collaborative Access Team (CAT) will construct x-ray beamlines at two sectors of the Advanced Photon Source facility. In most of the beamlines the first optical element will be a monochromator, so that a standard design for this critical component is advantageous. The monochromator is a double-crystal, fixed exit scheme with a constant offset designed for ultrahigh vacuum windowless operation. In this design, the crystals are mounted on a turntable with the first crystal at the center of rotation. Mechanical linkages are used to correctly position the second crystal and maintain a constant offset. The main drive for the rotary motion is provided by a vacuum compatible Huber goniometer isolated from the main vacuum chamber. The design of the monochromator is such that it can accommodate water, gallium, or liquid-nitrogen cooling for the crystal optics.

  11. Powering biomedical devices

    CERN Document Server

    Romero, Edwar

    2013-01-01

    From exoskeletons to neural implants, biomedical devices are no less than life-changing. Compact and constant power sources are necessary to keep these devices running efficiently. Edwar Romero's Powering Biomedical Devices reviews the background, current technologies, and possible future developments of these power sources, examining not only the types of biomedical power sources available (macro, mini, MEMS, and nano), but also what they power (such as prostheses, insulin pumps, and muscular and neural stimulators), and how they work (covering batteries, biofluids, kinetic and ther

  12. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  13. Biomedical Engineering Desk Reference

    CERN Document Server

    Ratner, Buddy D; Schoen, Frederick J; Lemons, Jack E; Dyro, Joseph; Martinsen, Orjan G; Kyle, Richard; Preim, Bernhard; Bartz, Dirk; Grimnes, Sverre; Vallero, Daniel; Semmlow, John; Murray, W Bosseau; Perez, Reinaldo; Bankman, Isaac; Dunn, Stanley; Ikada, Yoshito; Moghe, Prabhas V; Constantinides, Alkis

    2009-01-01

    A one-stop Desk Reference, for Biomedical Engineers involved in the ever expanding and very fast moving area; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the biomedical engineering field. Material covers a broad range of topics including: Biomechanics and Biomaterials; Tissue Engineering; and Biosignal Processing* A hard-working desk reference providing all the essential material needed by biomedical and clinical engineers on a day-to-day basis * Fundamentals, key techniques,

  14. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  15. Radiation Leukemogenesis: Applying Basic Science of Epidemiological Estimates of Low Dose Risks and Dose-Rate Effects

    Energy Technology Data Exchange (ETDEWEB)

    Hoel, D. G.

    1998-11-01

    The next stage of work has been to examine more closely the A-bomb leukemia data which provides the underpinnings of the risk estimation of CML in the above mentioned manuscript. The paper by Hoel and Li (Health Physics 75:241-50) shows how the linear-quadratic model has basic non-linearities at the low dose region for the leukemias including CML. Pierce et. al., (Radiation Research 123:275-84) have developed distributions for the uncertainty in the estimated exposures of the A-bomb cohort. Kellerer, et. al., (Radiation and Environmental Biophysics 36:73-83) has further considered possible errors in the estimated neutron values and with changing RBE values with dose and has hypothesized that the tumor response due to gamma may not be linear. We have incorporated his neutron model and have constricted new A-bomb doses based on his model adjustments. The Hoel and Li dose response analysis has also been applied using the Kellerer neutron dose adjustments for the leukemias. Finally, both Pierce's dose uncertainties and Kellerer neutron adjustments are combined as well as the varying RBE with dose as suggested by Rossi and Zaider and used for leukemia dose-response analysis. First the results of Hoel and Li showing a significantly improved fit of the linear-quadratic dose response by the inclusion of a threshold (i.e. low-dose nonlinearity) persisted. This work has been complete for both solid tumor as well as leukemia for both mortality as well as incidence data. The results are given in the manuscript described below which has been submitted to Health Physics.

  16. Scientific Grand Challenges: Discovery In Basic Energy Sciences: The Role of Computing at the Extreme Scale - August 13-15, 2009, Washington, D.C.

    Energy Technology Data Exchange (ETDEWEB)

    Galli, Giulia [Univ. of California, Davis, CA (United States). Workshop Chair; Dunning, Thom [Univ. of Illinois, Urbana, IL (United States). Workshop Chair

    2009-08-13

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) and Office of Advanced Scientific Computing Research (ASCR) workshop in August 2009 on extreme-scale computing provided a forum for more than 130 researchers to explore the needs and opportunities that will arise due to expected dramatic advances in computing power over the next decade. This scientific community firmly believes that the development of advanced theoretical tools within chemistry, physics, and materials science—combined with the development of efficient computational techniques and algorithms—has the potential to revolutionize the discovery process for materials and molecules with desirable properties. Doing so is necessary to meet the energy and environmental challenges of the 21st century as described in various DOE BES Basic Research Needs reports. Furthermore, computational modeling and simulation are a crucial complement to experimental studies, particularly when quantum mechanical processes controlling energy production, transformations, and storage are not directly observable and/or controllable. Many processes related to the Earth’s climate and subsurface need better modeling capabilities at the molecular level, which will be enabled by extreme-scale computing.

  17. Towards the realization of a basic professional prole model forScience, Technology and Mathematics (STEM teachers

    Directory of Open Access Journals (Sweden)

    Juan Quílez

    2017-01-01

    Full Text Available In  this  work  it  is  both  discussed  and  provided  a  framework  of  specific  competences  that  may  serve  as a  guide  for  setting  up  an  ongoing  process  in  the  professional  development  of  Science,  Technology  and Mathematics  (STEM  teachers.  The  fundamentals  of  the  TPACK  model  serve  to  base  the  theoretical background of this scheme, to which we have incorporated an additional feature which means to consider the linguistic (L dimension, thus transforming it into the TPACLK model. The different detailed professional STEM capacities have been classified into six main sections. The two first points discussed establish the STEM disciplinary and didactic capacities; the third section corresponds to the role of language in the STEM classroom; the fourth category is focused on the motivational elements of the teaching and learning process;  the   fifth  corresponds  to  the  self-perception  of  teachers  and  the  last  section  summarises  how  to integrate effectively the information and communication technologies into the educational STEM activity. This professional development is framed within innovative and research educational activities.

  18. Integrating systems biology models and biomedical ontologies

    Directory of Open Access Journals (Sweden)

    de Bono Bernard

    2011-08-01

    Full Text Available Abstract Background Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. Results We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. Conclusions We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms.

  19. Bio-functionalization of biomedical metals.

    Science.gov (United States)

    Xiao, M; Chen, Y M; Biao, M N; Zhang, X D; Yang, B C

    2017-01-01

    Bio-functionalization means to endow biomaterials with bio-functions so as to make the materials or devices more suitable for biomedical applications. Traditionally, because of the excellent mechanical properties, the biomedical metals have been widely used in clinic. However, the utilized functions are basically supporting or fixation especially for the implantable devices. Nowadays, some new functions, including bioactivity, anti-tumor, anti-microbial, and so on, are introduced to biomedical metals. To realize those bio-functions on the metallic biomedical materials, surface modification is the most commonly used method. Surface modification, including physical and chemical methods, is an effective way to alter the surface morphology and composition of biomaterials. It can endow the biomedical metals with new surface properties while still retain the good mechanical properties of the bulk material. Having analyzed the ways of realizing the bio-functionalization, this article briefly summarized the bio-functionalization concepts of six hot spots in this field. They are bioactivity, bony tissue inducing, anti-microbial, anti-tumor, anticoagulation, and drug loading functions.

  20. Sensors for biomedical applications

    NARCIS (Netherlands)

    Bergveld, Piet

    1986-01-01

    This paper considers the impact during the last decade of modern IC technology, microelectronics, thin- and thick-film technology, fibre optic technology, etc. on the development of sensors for biomedical applications.