WorldWideScience

Sample records for based solar cells

  1. Polymer-based solar cells

    Directory of Open Access Journals (Sweden)

    Alex C. Mayer

    2007-11-01

    Full Text Available A significant fraction of the cost of solar panels comes from the photoactive materials and sophisticated, energy-intensive processing technologies. Recently, it has been shown that the inorganic components can be replaced by semiconducting polymers capable of achieving reasonably high power conversion efficiencies. These polymers are inexpensive to synthesize and can be solution-processed in a roll-to-roll fashion with high throughput. Inherently poor polymer properties, such as low exciton diffusion lengths and low mobilities, can be overcome by nanoscale morphology. We discuss polymer-based solar cells, paying particular attention to device design and potential improvements.

  2. Fullerene based organic solar cells

    NARCIS (Netherlands)

    Popescu, Lacramioara Mihaela

    2008-01-01

    The direct conversion of the sunlight into electricity is the most elegant process to generate environmentally-friendly renewable energy. Plastic solar cells offer the prospect of flexible, lightweight, lower cost of manufacturing, and hopefully an efficient way to produce electricity from sunlight.

  3. Nanowire-based All Oxide Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang*, Benjamin D. Yuhas and Peidong; Yang, Peidong

    2008-12-07

    We present an all-oxide solar cell fabricated from vertically oriented zinc oxide nanowires and cuprous oxide nanoparticles. Our solar cell consists of vertically oriented n-type zinc oxide nanowires, surrounded by a film constructed from p-type cuprous oxide nanoparticles. Our solution-based synthesis of inexpensive and environmentally benign oxide materials in a solar cell would allow for the facile production of large-scale photovoltaic devices. We found that the solar cell performance is enhanced with the addition of an intermediate oxide insulating layer between the nanowires and the nanoparticles. This observation of the important dependence of the shunt resistance on the photovoltaic performance is widely applicable to any nanowire solar cell constructed with the nanowire array in direct contact with one electrode.

  4. New Materials for Chalcogenide Based Solar Cells

    Science.gov (United States)

    Tosun, Banu Selin

    Thin film solar cells based on copper indium gallium diselenide (CIGS) have achieved efficiencies exceeding 20 %. The p-n junction in these solar cells is formed between a p-type CIGS absorber layer and a composite n-type film that consists of a 50-100 nm thin n-type CdS followed by a 50-200 nm thin n-type ZnO. This dissertation focuses on developing materials for replacing CdS and ZnO films to improve the damp-heat stability of the solar cells and for minimizing the use of Cd. Specifically, I demonstrate a new CIGS solar cell with better damp heat stability wherein the ZnO layer is replaced with SnO2. The efficiency of solar cells made with SnO2 decreased less than 5 % after 120 hours at 85 °C and 85 % relative humidity while the efficiency of solar cells made with ZnO declined by more than 70 %. Moreover, I showed that a SnO2 film deposited on top of completed CIGS solar cells significantly increased the device lifetime by forming a barrier against water diffusion. Semicrystalline SnO2 films deposited at room temperature had nanocrystals embedded in an amorphous matrix, which resulted in films without grain boundaries. These films exhibited better damp-heat stability than ZnO and crystalline SnO2 films deposited at higher temperature and this difference is attributed to the lack of grain boundary water diffusion. In addition, I studied CBD of Zn1-xCdxS from aqueous solutions of thiourea, ethylenediaminetetraacetic acid and zinc and cadmium sulfate. I demonstrated that films with varying composition (x) can be deposited through CBD and studied the structure and composition variation along the films' thickness. However, this traditional chemical bath deposition (CBD) approach heats the entire solution and wastes most of the chemicals by homogenous particle formation. To overcome this problem, I designed and developed a continuous-flow CBD approach to utilize the chemicals efficiently and to eliminate homogenous particle formation. Only the substrate is heated to

  5. Photoelectrochemical Solar Cells Based on Chitosan Electroylte

    Institute of Scientific and Technical Information of China (English)

    M.H.A.Buraidah; A.K.Arof

    2007-01-01

    1 Results ITO-ZnTe/Chitosan-NH4I-I2/ITO photoelectrochemical solar cells have been fabricated and characterized by current-voltage characteristics.In this work,the ZnTe thin film was prepared by electrodeposition on indium-tin-oxide coated glass.The chitosan electrolyte consists of NH4I salt and iodine.Iodine was added to provide the I3-/I- redox couple.The PEC solar cell was fabricated by sandwiching an electrolyte film between the ZnTe semiconductor and ITO conducting glass.The area of the solar cell...

  6. A Physics-based Analytical Model for Perovskite Solar Cells

    OpenAIRE

    Sun, Xingshu; Asadpour, Reza; Nie, Wanyi; Mohite, Aditya D.; Alam, Muhammad A.

    2015-01-01

    Perovskites are promising next-generation absorber materials for low-cost and high-efficiency solar cells. Although perovskite cells are configured similar to the classical solar cells, their operation is unique and requires development of a new physical model for characterization, optimization of the cells, and prediction of the panel performance. In this paper, we develop such a physics-based analytical model to describe the operation of different types of perovskite solar cells, explicitly...

  7. Organic Based Solar Cells with Morphology Control

    OpenAIRE

    Andersen, Thomas Rieks; Bundgaard, Eva; Jørgensen, Mikkel

    2013-01-01

    The field of organic solar cells has in the last years gone through an impressive development with efficiencies reported up to 12 %. For organic solar cells to take the leap from primarily being a laboratory scale technology to being utilized as renewable energy source, several issues need to be addressed. Among these are a more direct transfer of new materials tested on a laboratory scale to large scale production than offered by spincoating, a method offering direct control of the morpholog...

  8. Sensitizers for Aqueous-Based Solar Cells.

    Science.gov (United States)

    Li, Chun-Ting; Lin, Ryan Yeh-Yung; Lin, Jiann T

    2017-03-02

    Aqueous dye-sensitized solar cells (DSSCs) are attractive due to their sustainability, the use of water as a safe solvent for the redox mediators, and their possible applications in photoelectrochemical water splitting. However, the higher tendency of dye leaching by water and the lower wettability of dye molecules are two major obstacles that need to be tackled for future applications of aqueous DSSCs. Sensitizers designed for aqueous DSSCs are discussed based on their functions, such as modification of the molecular skeleton and the anchoring group for better stability against dye leaching by water, and the incorporation of hydrophilic entities into the dye molecule or the addition of a surfactant to the system to increase the wettability of the dye for more facile dye regeneration. Surface treatment of the photoanode to deter dye leaching or improve the wettability of the dye molecule is also discussed. Redox mediators designed for aqueous DSSCs are also discussed. The review also includes quantum-dot-sensitized solar cells, with a focus on improvements in QD loading and suppression of interfacial charge recombination at the photoanode.

  9. Graphene-Based Bulk-Heterojunction Solar Cells: A Review.

    Science.gov (United States)

    Singh, Eric; Nalwa, Hari Singh

    2015-09-01

    The current highest power-conversion efficiencies found for different types of solar cell devices range from 20% to 46%, depending on the nature of the photovoltaic materials used and device configuration. Graphene has emerged as an important organic photovoltaic material for photoenergy conversion, where graphene can be used as a transparent electrode, active interfacial layer, electron transport layer, hole transport layer, or electron/hole separation layer in fabricating solar cell devices. This review article briefly discusses some recent advances made in different types of photovoltaic materials, and then summarizes the current status of graphene-based bulk-heterojunction (BHJ) solar cells, including graphene-containing perovskite and tandem solar cell devices. Power-conversion efficiencies currently exceed 10% for heteroatom-doped multilayer graphene-based BHJ solar cells and 15.6% for graphene-containing perovskite-based solar cells. The role of graphene layer thickness, bending, thermal annealing, passivation, heteroatom doping, perovskite materials, and tandem solar cell structure on the photovoltaic performance of graphene-based solar cells is discussed. Besides aiming for high power-conversion efficiency, factors such as long-term environmental stability and degradation, and the cost-effectiveness of graphene-based solar cells for large-scale commercial production are challenging tasks.

  10. Efficiency improvement of silicon nanostructure-based solar cells.

    Science.gov (United States)

    Huang, Bohr-Ran; Yang, Ying-Kan; Yang, Wen-Luh

    2014-01-24

    Solar cells based on a high-efficiency silicon nanostructure (SNS) were developed using a two-step metal-assisted electroless etching (MAEE) technique, phosphorus silicate glass (PSG) doping and screen printing. This process was used to produce solar cells with a silver nitrate (AgNO3) etching solution in different concentrations. Compared to cells produced using the single MAEE technique, SNS-based solar cells produced with the two-step MAEE technique showed an increase in silicon surface coverage of ~181.1% and a decrease in reflectivity of ~144.3%. The performance of the SNS-based solar cells was found to be optimized (~11.86%) in an SNS with a length of ~300 nm, an aspect ratio of ~5, surface coverage of ~84.9% and a reflectivity of ~6.1%. The ~16.8% increase in power conversion efficiency (PCE) for the SNS-based solar cell indicates good potential for mass production.

  11. Flexible solar cells based on curved surface nano-pyramids

    Science.gov (United States)

    Shrestha, Anil; Mizuno, Genki; Oduor, Patrick; Dutta, Achyut K.; Dhar, Nibir K.; Lewis, Jay

    2016-05-01

    The advent of ultrathin crystalline silicon (c-Si) solar cells has significantly reduced the cost of silicon solar cells by consuming less material. However, the very small thickness of ultrathin solar cells poses a challenge to the absorption of sufficient light to provide efficiency that is competitive to commercial solar cells. Light trapping mechanisms utilizing nanostructure technologies have been utilized to alleviate this problem. Unfortunately, a significant portion of light is still being lost even before entering the solar cells because of reflection. Different kinds of nanostructures have been employed to reduce reflection from solar cells, but reflection losses still prevail. In an effort to reduce reflection loss, we have used an array of modified nanostructures based cones or pyramids with curved sides, which matches the refractive index of air to that of silicon. Moreover, use of these modified nano-pyramids provides a quintic (fifth power) gradient index layer between air and silicon, which significantly reduces reflection. The solar cells made of such nanostructures not only significantly increase conversion efficiency at reduced usage of crystalline silicon material (e.g. thinner), but it also helps to make the c-Si based solar cell flexible. Design and optimization of flexible c-Si solar cell is presented in the paper.

  12. Organic Based Solar Cells with Morphology Control

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks

    The field of organic solar cells has in the last years gone through an impressive development with efficiencies reported up to 12 %. For organic solar cells to take the leap from primarily being a laboratory scale technology to being utilized as renewable energy source, several issues need...... of the nanoparticles was investigated both internally and externally, both were attempted to be controlled by variation in preparation solvent and particle sizes. The inks were slot-die coated on both the R2R coater and mini roll coater but only after a number of inks modifications and adjustments of the coating...... deposition techniques which have been downscaled from the R2R coater i.e. slot-die coating and flexographic printing. Thereby allowing the device optimizations to be transferred almost directly from small to large scale. This is in contrast to devices prepared by spincoating. Another advantage...

  13. Novel Flexible Plastic-Based Solar Cells

    Science.gov (United States)

    2012-10-19

    different types of solar cells: 1) Synthesis of hole transporting low band gap polymers, development of ligand exchange in a nanocomposite, and...a) Energy band diagram of the device structure, (b) The SEM image of the cross section of the devices, (c) I-V characteristics of the TiO2 -PbS... band gap polymers have been investigated to exhibit PCE as high as 8~9% with a PCBM derivative (PC71BM). As a replacement of a typical organic

  14. Solar Cells Based on Low-dimensional Nanocomposite Structures

    Directory of Open Access Journals (Sweden)

    S.L. Khrypko

    2016-12-01

    Full Text Available Converting solar energy into electric energy with using of solar batteries is a major task for developers and research teams. In this article we will look at the development of different generations of solar batteries for to create a nanocomposite structure. Production of solar batteries has gone through some steps, taking into account technological and economic aspects that have been associated with improved of their parameters. Thus the first generations of solar batteries have been based on the single-crystal silicon substrates (с-Si. The use of polycrystalline silicon and multi- crystalline allowed lower costs of modules, but due to the efficiency of solar energy conversion. The solar batteries of the second generation were based on thin-film technology, in which use different materials: silicon films based on amorphous silicon (a-Si, a film based on cadmium telluride (CdTe and film selenide copper-indium-gallium (CuInGaSe2, or CIGS. The use of such technology has allowed increasing the coefficient of performance (COP solar cell with a significant reduction in costs. The solar batteries of third-generation based on nanotechnology, nanocrystals and nano-sized clusters of semiconductors. The creation of such solar cells requires availability of a low-dimensional composite structure. Low-dimensional nanocomposite structures that are constructed on quantum dots and nano-porous materials have new modified optoelectronic properties. They can be used in solar elements, where absorption bands can be optimally adapted to the wavelength of radiation light. These structures could theoretically can lead to increased efficiency of solar energy conversion more than 65%, which can double practically current efficiency of solar batteries.

  15. Silicon based solar cells using a multilayer oxide as emitter

    Science.gov (United States)

    Bao, Jie; Wu, Weiliang; Liu, Zongtao; Shen, Hui

    2016-08-01

    In this work, n-type silicon based solar cells with WO3/Ag/WO3 multilayer films as emitter (WAW/n-Si solar cells) were presented via simple physical vapor deposition (PVD). Microstructure and composition of WAW/n-Si solar cells were studied by TEM and XPS, respectively. Furthermore, the dependence of the solar cells performances on each WO3 layer thickness was investigated. The results indicated that the bottom WO3 layer mainly induced band bending and facilitated charge-carriers separation, while the top WO3 layer degraded open-circuit voltage but actually improved optical absorption of the solar cells. The WAW/n-Si solar cells, with optimized bottom and top WO3 layer thicknesses, exhibited 5.21% efficiency on polished wafer with area of 4 cm2 under AM 1.5 condition (25 °C and 100 mW/cm2). Compared with WO3 single-layer film, WAW multilayer films demonstrated better surface passivation quality but more optical loss, while the optical loss could be effectively reduced by implementing light-trapping structures. These results pave a new way for dopant-free solar cells in terms of low-cost and facile process flow.

  16. Innovative laser based solar cell scribing

    Science.gov (United States)

    Frei, Bruno; Schneeberger, Stefan; Witte, Reiner

    2011-03-01

    The solar photovoltaic market is continuously growing utilizing boths crystalline silicon (c-Si) as well as thin film technologies. This growth is directly dependant on the manufacturing costs for solar cells. Factors for cost reduction are innovative ideas for an optimization of precision and throughput. Lasers are excellent tools to provide highly efficient processes with impressive accuracy. They need to be used in combination with fast and precise motion systems for a maximum gain in the manufacturing process, yielding best cost of ownership. In this article such an innovative solution is presented for laser scribing in thin film Si modules. A combination of a new glass substrate holding system combined with a fast and precise motion system is the foundation for a cost effective scribing machine. In addition, the advantages of fiber lasers in beam delivery and beam quality guarantee not only shorter setup and down times but also high resolution and reproducibility for the scribing processes P1, P2 and P3. The precision of the whole system allows to reduce the dead zone to a minimum and therefore to improve the efficiency of the modules.

  17. Solar cells based on organic materials; Solceller av organisk materiale

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsen, Emil J.; Breiby, Dag W.

    2009-07-01

    Organic Solar cells are still in the early research phase, and the efficiency so far is merely 5 - 6 %. But since this field of technology is recognised to be highly promising and potentially important, the research and development effort is formidable, and one foresees an improvement in efficiency of 10 -15%. Introduction: Today's commercial solar cells are based on the semiconductive material silicium with an energy efficiency close to 15% , i e this share of the solar energy which hit the cell will be transformed into electric energy. Research versions of silicium cells have efficiencies up towards 25% and certain combined cells from other inorganic materials may attain 30 - 40%. For so called third generation solar cells one even expects figures up to 60%. Organic solar cells are not developed in order to compete with Si cells, but to complement them. They will be cheap, light, pliable and rugged, well suited for use under special conditions, as cruises and expeditions in mountains and wilderness, and the cells may be integrated in equipment and textiles. (EW)

  18. Experiment Based Teaching of Solar Cell Operation and Characterization Using the SolarLab Platform

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2014-01-01

    Experiment based teaching methods are a great way to get students involved and interested in almost any topic. This paper presents such a hands-on approach for teaching solar cell operation principles along with characterization and modelling methods. This is achieved with the SolarLab platform...... interfaces for exploring different solar cell principles and topics. The exercises presented in the current paper have been adapted from the original exercises developed for the SolarLab platform and are currently included in the Photovoltaic Power Systems courses (MSc and PhD level) taught at the Department...

  19. Graphene-based transparent electrodes for hybrid solar cells

    Directory of Open Access Journals (Sweden)

    Pengfei eLi

    2014-11-01

    Full Text Available The graphene-based transparent and conductive films were demonstrated to be cost-effective electrodes working in organic-inorganic hybrid Schottky solar cells. Large area graphene films were produced by chemical vapor deposition (CVD on copper foils and transferred onto glass as transparent electrodes. The hybrid solar cell devices consist of solution processed poly (3, 4-ethlenedioxythiophene: poly (styrenesulfonate (PEDOT: PSS which is sandwiched between silicon wafer and graphene electrode. The solar cells based on graphene electrodes, especially those doped with HNO3, has comparable performance to the reference devices using commercial indium tin oxide (ITO. Our work suggests that graphene-based transparent electrode is a promising candidate to replace ITO.

  20. Natural Pigment-Based Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    A.R. Hernández-Martínez

    2012-03-01

    Full Text Available The performance of dye-sensitized solar cells (DSSC based on natural dyes extracted from five different sources is reported. These are inexpensive, have no nutritional use, and are easy to find in Mexico. The solar cells were assembled using a thin film and a TiO2 mesoporous film on ITO-coated glass; these films were characterized by FTIR. The extracts were characterized using UV–Vis and typical I-V curves were obtained for the cells. The best performance was for Punica Granatum with a solar energy conversion efficiency of 1.86%, with a current density Jsc of 3.341 mA/cm2using an incident irradiation of 100 mW/cm2 at 25 ºC.

  1. Electron trapping in higher adduct fullerene-based solar cells

    NARCIS (Netherlands)

    Lenes, M.; Shelton, S.W.; Sieval, A.B.; Kronholm, D.F.; Hummelen, J.C.; Blom, P.W.M.

    2009-01-01

    Here, the performance of bulk-heterojunction solar cells based on a series of bisadduct analogues of commonly used derivatives of C60 and C 70, such PCBMs and theirthienyl versions, is investigated. Dueto their higher lowest unoccupied molecular orbital an increase in open-circuit voltage and thus p

  2. Dye-sensitized solar cells based on bisindolylmaleimide derivatives

    Institute of Scientific and Technical Information of China (English)

    Qiong ZHANG; Zhijun NING; Hongcui PEI; Wenjun WU

    2009-01-01

    Three organic dyes based on bisindolylmaleimide derivatives (11, 12 and 13) were synthesized and investigated as sensitizers for the application in nanocrystalline TiO2 solar cells. The indole group,maleimide group and carboxylic group functioned as electron donor, acceptor and anchoring group, respec-tively. Solar-to-electrical energy conversion efficiencies under simulated amplitude-modulated 1.5 irradiation based on 12 and of 1.87% and 1.50% for 13 and 11,respectively. The open circuit voltage Voc was demon-strated to be enhanced by the introduction of dodecyl or benzyl moieties on the indole groups. The nonplanar structure of bisindolylmaleimide was proven to be effective in aggregation resistance. This work suggests that organic sensitizers with maleimide as electron acceptor are promising candidates as organic sensiti-zers in dye-sensitized solar cells.

  3. Photo electrochemical and organic-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, N.S. [California Institute of Technology, Pasadena, CA (United States); Kamat, P. [Univ. of Notre Dame, IN (United States); Spitler, M. [Boston Univ., MA (United States)

    1996-09-01

    Research in solar photoconversion has resulted in significant advances in the fields of photoelectrochemistry and dye-sensitized solar cells. Progress is also evident in the understanding of solid state organic systems for energy transduction. It is evident, however, that the examination in this report of the accomplishments in these areas serves to highlight the great extent of research that is necessary to establish a technology base sufficient for practical application. Recommendations are made in this report on the directions that this research should take.

  4. Improved Electrodes and Electrolytes for Dye-Based Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Harry R. Allcock; Thomas E. Mallouk; Mark W. Horn

    2011-10-26

    The most important factor in limiting the stability of dye-sensitized solar cells is the use of volatile liquid solvents in the electrolytes, which causes leakage during extended operation especially at elevated temperatures. This, together with the necessary complex sealing of the cells, seriously hampers the industrial-scale manufacturing and commercialization feasibilities of DSSCs. The objective of this program was to bring about a significant improvement in the performance and longevity of dye-based solar cells leading to commercialization. This had been studied in two ways first through development of low volatility solid, gel or liquid electrolytes, second through design and fabrication of TiO2 sculptured thin film electrodes.

  5. High Performance InGaN-Based Solar Cells

    Science.gov (United States)

    2012-05-12

    electric field for an AlGaAs /GaAs MQW with 9.5 nm GaAs QWs (right). Regardless of the physical origin of the above observations, there was a clear...morphology, contact resistance, and carrier extraction; investigating the properties of solar cells grown by NH3-based molecular beam epitaxy (MBE); measuring...device performance are also discussed. Building on these advances, the unique thermal properties of high indium content multiple quantum well (MQW

  6. Nanocomposite-Based Bulk Heterojunction Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Bich Phuong Nguyen

    2014-01-01

    Full Text Available Photovoltaic devices based on nanocomposites composed of conjugated polymers and inorganic nanocrystals show promise for the fabrication of low-cost third-generation thin film photovoltaics. In theory, hybrid solar cells can combine the advantages of the two classes of materials to potentially provide high power conversion efficiencies of up to 10%; however, certain limitations on the current within a hybrid solar cell must be overcome. Current limitations arise from incompatibilities among the various intradevice interfaces and the uncontrolled aggregation of nanocrystals during the step in which the nanocrystals are mixed into the polymer matrix. Both effects can lead to charge transfer and transport inefficiencies. This paper highlights potential strategies for resolving these obstacles and presents an outlook on the future directions of this field.

  7. Dye-sensitized solar cells based on purple corn sensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Phinjaturus, Kawin [Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Maiaugree, Wasan [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Suriharn, Bhalang [Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002 (Thailand); Pimanpaeng, Samuk; Amornkitbamrung, Vittaya [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Swatsitang, Ekaphan, E-mail: ekaphan@kku.ac.th [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand)

    2016-09-01

    Graphical abstract: - Highlights: • Extract from husk, cob and silk of purple corn was used as a photosensitizer in DSSC. • Effect of solvents i.e. acetone, ethanol and DI water on DSSC efficiency was studied. • The highest efficiency of 1.06% was obtained in DSSC based on acetone extraction. - Abstract: Natural dye extracted from husk, cob and silk of purple corn, were used for the first time as photosensitizers in dye sensitized solar cells (DSSCs). The dye sensitized solar cells fabrication process has been optimized in terms of solvent extraction. The resulting maximal efficiency of 1.06% was obtained from purple corn husk extracted by acetone. The ultraviolet–visible (UV–vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and incident photon-to-current efficiency (IPCE) were employed to characterize the natural dye and the DSSCs.

  8. ZnO nanotube based dye-sensitized solar cells.

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, A. B. F.; Elam, J. W.; Hupp, J. T.; Pellin, M. J. (Materials Science Division); (Northwestern Univ.)

    2007-05-25

    We introduce high surface area ZnO nanotube photoanodes templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is utilized to coat pores conformally, providing a direct path for charge collection over tens of micrometers thickness. Compared to similar ZnO-based devices, ZnO nanotube cells show exceptional photovoltage and fill factors, in addition to power efficiencies up to 1.6%. The novel fabrication technique provides a facile, metal-oxide general route to well-defined DSSC photoanodes.

  9. ZnO nanotube based dye-sensitized solar cells.

    Science.gov (United States)

    Martinson, Alex B F; Elam, Jeffrey W; Hupp, Joseph T; Pellin, Michael J

    2007-08-01

    We introduce high surface area ZnO nanotube photoanodes templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is utilized to coat pores conformally, providing a direct path for charge collection over tens of micrometers thickness. Compared to similar ZnO-based devices, ZnO nanotube cells show exceptional photovoltage and fill factors, in addition to power efficiencies up to 1.6%. The novel fabrication technique provides a facile, metal-oxide general route to well-defined DSSC photoanodes.

  10. Highly efficient vacuum processed BHJ solar cell based on merocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, Vera; Kronenberg, Nils M.; Lenze, Martin R.; Hertel, Dirk; Meerholz, Klaus [Department fuer Chemie, Universitaet Koeln (Germany); Buerckstuemmer, Hannah; Wuerthner, Frank [Institut fuer Organische Chemie, Roentgen Research Center for Complex Material Systems, Universitaet Wuerzburg (Germany)

    2011-07-01

    Bulk heterojunction (BHJ) organic solar cells have attracted considerable interest due to their potential for large-scale, cost-effective and environmentally friendly power generation. Small molecules have been successfully introduced in solution- (SOL) as well as vacuum- (VAC) processed devices, reporting efficiencies (PCE) up to 4.4% and 5.7% respectively. For simple layer stack devices (2-3 layers) based on CuPc as electron donor and C{sub 60} as electron acceptor PCEs up to 5.0% have been achieved. Recently, we presented a direct comparison of highly efficient SOL and VAC BHJ cells based on merocyanine dyes (MC) with a similarly simple layer stack as reported in the literature. Our most efficient devices exhibited PCEs up to 4.9%. Further optimizations on the VAC processed cells led to high PCEs exceeding 6% while keeping the same simple layer stack. In addition, these cells have demonstrated exceptional performance even at lower light intensities. Due to the simple chemical variability of MC dyes, they are ideally suited for tandem solar cells. We present first attempts in this direction.

  11. High-Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites.

    Science.gov (United States)

    Wang, Yuming; Bai, Sai; Cheng, Lu; Wang, Nana; Wang, Jianpu; Gao, Feng; Huang, Wei

    2016-06-01

    Flexible and light-weight solar cells are important because they not only supply power to wearable and portable devices, but also reduce the transportation and installation cost of solar panels. High-efficiency organometal halide perovskite solar cells can be fabricated by a low-temperature solution process, and hence are promising for flexible-solar-cell applications. Here, the development of perovskite solar cells is briefly discussed, followed by the merits of organometal halide perovskites as promising candidates as high-efficiency, flexible, and light-weight photovoltaic materials. Afterward, recent developments of flexible solar cells based on perovskites are reviewed.

  12. Recent developments in amorphous silicon-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Beneking, C.; Rech, B.; Foelsch, J.; Wagner, H. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Schicht- und Ionentechnik

    1996-03-01

    Two examples of recent advances in the field of thin-film, amorphous hydrogenated silicon (a-Si:H) pin solar cells are described: the improved understanding and control of the p/i interface, and the improvement of wide-bandgap a-Si:H material deposited at low substrate temperature as absorber layer for cells with high stabilized open-circuit voltage. Stacked a-Si:H/a-Si:H cells incorporating these concepts exhibit less than 10% (relative) efficiency degradation and show stabilized efficiencies as high as 9 to 10% (modules 8 to 9%). The use of low-gap a-Si:H and its alloys like a-SiGe:H as bottom cell absorber materials in multi-bandgap stacked cells offers additional possibilities. The combination of a-Si:H based top cells with thin-film crystalline silicon-based bottom cells appears as a promising new trend. It offers the perspective to pass significantly beyond the present landmark of 10% module efficiency reached by the technology utilizing exclusively amorphous silicon-based absorber layers, while keeping its advantages of potentially low-cost production. (orig.) 47 refs.

  13. Zinc-oxide-based nanostructured materials for heterostructure solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bobkov, A. A.; Maximov, A. I.; Moshnikov, V. A., E-mail: vamoshnikov@mail.ru; Somov, P. A.; Terukov, E. I. [St. Petersburg Electrotechnical University LETI (Russian Federation)

    2015-10-15

    Results obtained in the deposition of nanostructured zinc-oxide layers by hydrothermal synthesis as the basic method are presented. The possibility of controlling the structure and morphology of the layers is demonstrated. The important role of the procedure employed to form the nucleating layer is noted. The faceted hexagonal nanoprisms obtained are promising for the fabrication of solar cells based on oxide heterostructures, and aluminum-doped zinc-oxide layers with petal morphology, for the deposition of an antireflection layer. The results are compatible and promising for application in flexible electronics.

  14. Bulk heterojunction organic solar cells based on merocyanine colorants.

    Science.gov (United States)

    Kronenberg, Nils M; Deppisch, Manuela; Würthner, Frank; Lademann, Hans W A; Deing, Kaja; Meerholz, Klaus

    2008-12-28

    Traditional low-molecular weight colorants that are widely applied in textile coloration, for printing purposes and nonlinear optics, now afford bulk heterojunction solar cells in combination with soluble C(60) fullerene derivative PCBM with power conversion efficiencies up to 1.7% under standard solar radiation.

  15. InN-Based Quantum Dot Solar Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this STTR program is to employ nanostructured materials in advanced device designs to enhance the tolerance of solar cells to extreme conditions while...

  16. InN-Based Quantum Dot Solar Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this STTR program is to employ nanostructured materials in an advanced device design to enhance the tolerance of solar cells to extreme environments...

  17. Phototransistor Behavior Based on Dye-Sensitized Solar Cell

    CERN Document Server

    Wang, X Q; Wang, Y F; Zhou, W Q; Lu, Y M; Liu, Z Y

    2012-01-01

    In the present work, a light-controlled device cell is established based on the dye-sensitized solar cell using nanocrystalline TiO2 films. Voltage-current curves are characterized by three types of transport behaviors: linear increase, saturated plateau and breakdown-like increase, which are actually of the typical performances for a photo-gated transistor. Moreover, an asymmetric behavior is observed in the voltage-current loops, which is believed to arise from the difference in the effective photo-conducting areas. The photovoltaic voltage between the shared counter electrode and drain (VCE-D) is investigated as well, clarifying that the predominant dark process in source and the predominant photovoltaic process in drain are series connected, modifying the electric potential levels and thus resulting in the characteristic phototransistor behaviors.

  18. Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells

    Science.gov (United States)

    Minemoto, Takashi; Murata, Masashi

    2014-08-01

    Device modeling of CH3NH3PbI3-xCl3 perovskite-based solar cells was performed. The perovskite solar cells employ a similar structure with inorganic semiconductor solar cells, such as Cu(In,Ga)Se2, and the exciton in the perovskite is Wannier-type. We, therefore, applied one-dimensional device simulator widely used in the Cu(In,Ga)Se2 solar cells. A high open-circuit voltage of 1.0 V reported experimentally was successfully reproduced in the simulation, and also other solar cell parameters well consistent with real devices were obtained. In addition, the effect of carrier diffusion length of the absorber and interface defect densities at front and back sides and the optimum thickness of the absorber were analyzed. The results revealed that the diffusion length experimentally reported is long enough for high efficiency, and the defect density at the front interface is critical for high efficiency. Also, the optimum absorber thickness well consistent with the thickness range of real devices was derived.

  19. Copper zinc tin sulfide-based thin film solar cells

    CERN Document Server

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  20. Radiative efficiency of lead iodide based perovskite solar cells

    Science.gov (United States)

    Tvingstedt, Kristofer; Malinkiewicz, Olga; Baumann, Andreas; Deibel, Carsten; Snaith, Henry J.; Dyakonov, Vladimir; Bolink, Henk J.

    2014-08-01

    The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a sharp band-to-band transition that has a radiative efficiency much higher than that of an average OPV device. As a consequence, the perovskite have the benefit of retaining an open circuit voltage ~0.14 V closer to its radiative limit than the OPV cell. Additionally, and in contrast to OPVs, we show that the photoluminescence of the perovskite solar cell is substantially quenched under short circuit conditions in accordance with how an ideal photovoltaic cell should operate.

  1. Investigation of Organic Solar Cells Based on Donor——A ccepter Heterojunction%Investigation of Organic Solar Cells Based onDonor——A ccepter Heterojunction

    Institute of Scientific and Technical Information of China (English)

    Gao Yinhao

    2008-01-01

    The single-l ayer structure and heterojunction structure organic solar cells based on copper phthalocyanine (CuPc),3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA) and fullerene C60 were fabricated to study their photovoltaic (PV) properties. The PV performance of heterojunction structure solar cells was improved compared with the single layer structure cell.This is due to the introduction of donor-acceptor heterojunction that both expands the absorption range and offers efficient excit on dissociation site.In heterojunction structure solar cells,the PV performance of device with C60 as acceptor has highly improved because C60 has longer diffusion length o f excitons.

  2. Semitransparent Polymer Solar Cells Based on Liquid Crystal Reflectors

    Directory of Open Access Journals (Sweden)

    Shaopeng Yang

    2014-01-01

    Full Text Available The effects of liquid crystal (LC reflectors on semitransparent polymer solar cells (PSCs were investigated in this paper. By improving the cathode, we manufactured semitransparent PSCs based on the conventional PSCs. We then incorporated the LC reflector into the semitransparent PSCs, which increased the power conversion efficiency (PCE from 2.11% to 2.71%. Subsequently adjusting the concentration and spinning speed of the active layer material changed its thickness. The maximum light absorption for the active layer was obtained using the optimum thickness, and the PCE eventually reached 3.01%. These results provide a reference for selecting LC reflectors that are suitable for different active layer materials to improve the PCE of semitransparent PSCs.

  3. Bulk-heterojunction organic solar cells based on merocyanine colorants

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, Nils M.; Lademann, Hans W.A.; Meerholz, Klaus [Department fuer Chemie, Universitaet zu Koen (Germany); Buerckstuemmer, Hannah; Tulyakova, Elena V.; Deppisch, Manuela; Wuerthner, Frank [Institut fuer Organische Chemie, Universitaet Wuerzburg (Germany)

    2009-07-01

    To take advantage of the full potential of organic Bulk Heterojunction (BHJ) solar cells, there is a need to explore new materials. We introduced merocyanines dyes (MCs) as a new class of electron donor materials for the application in solution-processed BHJ solar cells. MCs are traditional low-molecular colorants that are widely applied in textile coloration, for printing purposes, and nonlinear optics. Due to their structure, consisting of an electron-donating and an electron-accepting subunit, they possess high absorption coefficients which is favorable for the use in solar cells. The vast variety of the MC synthesis allows for a variation of the absorption properties in a wide range and a tuning of the solar cell absorption to the emission spectrum of the sun. Another advantage of MCs compared to some long-wavelength absorbing polymers is the relatively low HOMO-energy (down to -6.0 eV), which is beneficial for large open-circuit voltages. We tested various different MC-dyes in the application as donor compound in BHJ solar cells in combination with the soluble C{sub 60} derivative PCBM. Power conversion efficiencies up to 2.1% under standard illumination and 2.7% at reduced intensities were achieved.

  4. Ambient roll-to-roll fabrication of flexible solar cells based on small molecules

    DEFF Research Database (Denmark)

    Lin, Yuze; Dam, Henrik Friis; Andersen, Thomas Rieks;

    2013-01-01

    All solution-processed roll-to-roll flexible solar cells based on a starshaped small molecule donor and PCBMacceptor were fabricated by slot-die coating, as the first successful example reported for small molecule roll-to-roll flexible solar cells.......All solution-processed roll-to-roll flexible solar cells based on a starshaped small molecule donor and PCBMacceptor were fabricated by slot-die coating, as the first successful example reported for small molecule roll-to-roll flexible solar cells....

  5. Dye-sensitized solar cells based on purple corn sensitizers

    Science.gov (United States)

    Phinjaturus, Kawin; Maiaugree, Wasan; Suriharn, Bhalang; Pimanpaeng, Samuk; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan

    2016-09-01

    Natural dye extracted from husk, cob and silk of purple corn, were used for the first time as photosensitizers in dye sensitized solar cells (DSSCs). The dye sensitized solar cells fabrication process has been optimized in terms of solvent extraction. The resulting maximal efficiency of 1.06% was obtained from purple corn husk extracted by acetone. The ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and incident photon-to-current efficiency (IPCE) were employed to characterize the natural dye and the DSSCs.

  6. Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Yun, Min Ju; Cha, Seung I; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y

    2016-10-06

    Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells-including the preparation of fibre-type solar cells woven into textiles-face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes' surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research.

  7. Performance enhancement of thin film silicon solar cells based on distributed Bragg reflector & diffraction grating

    Directory of Open Access Journals (Sweden)

    R. S. Dubey

    2014-12-01

    Full Text Available The influence of various designing parameters were investigated and explored for high performance solar cells. Single layer grating based solar cell of 50 μm thickness gives maximum efficiency up to 24 % whereas same efficiency is achieved with the use of three bilayers grating based solar cell of 30 μm thickness. Remarkably, bilayer grating based solar cell design not only gives broadband absorption but also enhancement in efficiency with reduced cell thickness requirement. This absorption enhancement is attributed to the high reflection and diffraction from DBR and grating respectively. The obtained short-circuit current were 29.6, 32.9, 34.6 and 36.05 mA/cm2 of 5, 10, 20 and 30 μm cell thicknesses respectively. These presented designing efforts would be helpful to design and realize new generation of solar cells.

  8. Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells

    Science.gov (United States)

    Yun, Min Ju; Cha, Seung I.; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y.

    2016-10-01

    Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells—including the preparation of fibre-type solar cells woven into textiles—face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes’ surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research.

  9. Hole transport parameters in a PTOPT based organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Gebremichael, B. [Addis Ababa Univ., Addis Ababa (Ethiopia). Dept. of Physics; Tessema, G. [Addis Ababa Univ., Addis Ababa (Ethiopia). Dept. of Physics; National Univ. of Lesotho (Lesotho). Dept. of Physics and Electronics

    2010-05-15

    Semiconductor polymers are light-weight and inexpensive to manufacture. As such, they are in demand for solar cell applications. In this study, a single layer photovoltaic (PV) device was used to examine the charge transport phenomena in a photoactive layer made of poly[3-(4-octylphenyl)-2, 2{sup '}-bithiophene] (PTOPT). The devices were prepared in a sandwich-type structure of the form Al/PTOPT/PEDOT:PSS/ITO. The diodes exhibited good rectification which is required in a PV cell. The device rectified at room temperature and lost rectification at around 273 K. The loss of rectification at low temperatures was due to the injection of holes from the aluminium electrode that rendered the device hole-dominated. The symmetric nature of the semilogarithmic J-V plot under dark and low temperature demonstrated that there is a unipolar charge injection in both sides of the electrodes. Based on the space charge limited region J-V data, it was possible to examine the electric field dependence of the hole transport. Important parameters such as the zero field mobility and the field activation factor were then derived. 9 refs., 4 figs.

  10. Highly efficient solar cells based on poly(3-butylthiophene) nanowires.

    Science.gov (United States)

    Xin, Hao; Kim, Felix Sunjoo; Jenekhe, Samson A

    2008-04-23

    Poly(3-butylthiophene) (P3BT) nanowires, prepared by solution-phase self-assembly, have been used to construct highly efficient P3BT/fullerene nanocomposite solar cells. The fullerene/P3BT nanocomposite films showed an electrically bicontinuous nanoscale morphology with average field-effect hole mobilities as high as 8.0 x 10(-3) cm2/Vs due to the interconnected P3BT nanowire network revealed by TEM and AFM imaging. The power conversion efficiency of fullerene/P3BT nanowire devices was 3.0% (at 100 mW/cm2, AM1.5) in air and found to be identical with our similarly tested fullerene/poly(3-hexylthiophene) photovoltaic cells. This discovery expands the scope of promising materials and architectures for efficient bulk heterojunction solar cells.

  11. Vertical InGaN-based green-band solar cells operating under high solar concentration up to 300 suns.

    Science.gov (United States)

    Sheu, Jinn-Kong; Chen, Fu-Bang; Wu, Shou-Hung; Lee, Ming-Lun; Chen, Po-Cheng; Yeh, Yu-Hsiang

    2014-08-25

    InGaN/GaN-based solar cells with vertical-conduction feature on silicon substrates were fabricated by wafer bonding technique. The vertical solar cells with a metal reflector sandwiched between the GaN-based epitaxial layers and the Si substrate could increase the effective thickness of the absorption layer. Given that the thermally resistive sapphire substrates were replaced by the Si substrate with high thermal conductivity, the solar cells did not show degradation in power conversion efficiency (PCE) even when the solar concentrations were increased to 300 suns. The open circuit voltage increased from 1.90 V to 2.15 V and the fill factor increased from 0.55 to 0.58 when the concentrations were increased from 1 sun to 300 suns. With the 300-sun illumination, the PCE was enhanced by approximately 33% compared with the 1-sun illumination.

  12. Key Success Factors and Future Perspective of Silicon-Based Solar Cells

    Directory of Open Access Journals (Sweden)

    S. Binetti

    2013-01-01

    Full Text Available Today, after more than 70 years of continued progress on silicon technology, about 85% of cumulative installed photovolatic (PV modules are based on crystalline silicon (c-Si. PV devices based on silicon are the most common solar cells currently being produced, and it is mainly due to silicon technology that the PV has grown by 40% per year over the last decade. An additional step in the silicon solar cell development is ongoing, and it is related to a further efficiency improvement through defect control, device optimization, surface modification, and nanotechnology approaches. This paper attempts to briefly review the most important advances and current technologies used to produce crystalline silicon solar devices and in the meantime the most challenging and promising strategies acting to increase the efficiency to cost/ratio of silicon solar cells. Eventually, the impact and the potentiality of using a nanotechnology approach in a silicon-based solar cell are also described.

  13. Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges.

    Science.gov (United States)

    Kim, Mee Rahn; Ma, Dongling

    2015-01-02

    Among next-generation photovoltaic systems requiring low cost and high efficiency, quantum dot (QD)-based solar cells stand out as a very promising candidate because of the unique and versatile characteristics of QDs. The past decade has already seen rapid conceptual and technological advances on various aspects of QD solar cells, and diverse opportunities, which QDs can offer, predict that there is still ample room for further development and breakthroughs. In this Perspective, we first review the attractive advantages of QDs, such as size-tunable band gaps and multiple exciton generation (MEG), beneficial to solar cell applications. We then analyze major strategies, which have been extensively explored and have largely contributed to the most recent and significant achievements in QD solar cells. Finally, their high potential and challenges are discussed. In particular, QD solar cells are considered to hold immense potential to overcome the theoretical efficiency limit of 31% for single-junction cells.

  14. An Investigation of High Performance Heterojunction Silicon Solar Cell Based on n-type Si Substrate

    Directory of Open Access Journals (Sweden)

    N. Memarian

    2016-12-01

    Full Text Available In this study, high efficient heterojunction crystalline silicon solar cells without using an intrinsic layer were systematically investigated. The effect of various parameters such as work function of transparent conductive oxide (ϕTCO, density of interface defects, emitter and crystalline silicon thickness on heterojunction silicon solar cell performance was studied. In addition, the effect of band bending and internal electric field on solar cell performance together with the dependency of cell performance on work function and reflectance of the back contact were investigated in full details. The optimum values of the solar cell properties for the highest efficiency are presented based on the results of the current study. The results represent a complete set of optimum values for a heterojunction solar cell with high efficiency up to the 24.1 % with VOC  0.87 V and JSC  32.69 mAcm – 2.

  15. Carbon Nanotube-Conducting Polymer Composites Based Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Prakash; R.Somani; M.Umeno

    2007-01-01

    1 Results Combination of carbon nanotubes (CN) with polymers is important for application towards value added composites,solar cells,fuel cells etc.Especially interesting is the combination of CN with π-conjugated polymers because of the potential interaction between the highly delocalized π-electrons of the CN and the π-electrons correlated with the lattice of polymer skeleton.Efficient exciton dissociation due to electron transfer from the photoexcited polymer to CN is of interest for photovoltaic app...

  16. Design optimization of thin-film/wafer-based tandem junction solar cells using analytical modeling

    Science.gov (United States)

    Davidson, Lauren; Toor, Fatima

    2016-03-01

    Several research groups are developing solar cells of varying designs and materials that are high efficiency as well as cost competitive with the single junction silicon (Si) solar cells commercially produced today. One of these solar cell designs is a tandem junction solar cell comprised of perovskite (CH3NH3PbI3) and silicon (Si). Loper et al.1 was able to create a 13.4% efficient tandem cell using a perovskite top cell and a Si bottom cell, and researchers are confident that the perovskite/Si tandem cell can be optimized in order to reach higher efficiencies without introducing expensive manufacturing processes. However, there are currently no commercially available software capable of modeling a tandem cell that is based on a thin-film based bottom cell and a wafer-based top cell. While PC1D2 and SCAPS3 are able to model tandem cells comprised solely of thin-film absorbers or solely of wafer-based absorbers, they result in convergence errors if a thin-film/wafer-based tandem cell, such as the perovskite/ Si cell, is modeled. The Matlab-based analytical model presented in this work is capable of modeling a thin-film/wafer-based tandem solar cell. The model allows a user to adjust the top and bottom cell parameters, such as reflectivity, material bandgaps, donor and acceptor densities, and material thicknesses, in order to optimize the short circuit current, open circuit voltage, and quantum efficiency of the tandem solar cell. Using the Matlab-based analytical model, we were able optimize a perovskite/Si tandem cell with an efficiency greater than 30%.

  17. Vegetable-based dye-sensitized solar cells.

    Science.gov (United States)

    Calogero, Giuseppe; Bartolotta, Antonino; Di Marco, Gaetano; Di Carlo, Aldo; Bonaccorso, Francesco

    2015-05-21

    There is currently a large effort to improve the performance of low cost renewable energy devices. Dye-sensitized solar cells (DSSCs) are emerging as one of the most promising low cost photovoltaic technologies, addressing "secure, clean and efficient solar energy conversion". Vegetable dyes, extracted from algae, flowers, fruit and leaves, can be used as sensitizers in DSSCs. Thus far, anthocyanin and betalain extracts together with selected chlorophyll derivatives are the most successful vegetable sensitizers. This review analyses recent progress in the exploitation of vegetable dyes for solar energy conversion and compares them to the properties of synthetic dyes. We provide an in-depth discussion on the main limitation of cell performance e.g. dye degradation, effective electron injection from the dye into the conduction band of semiconducting nanoparticles, such as titanium dioxide and zinc oxide, outlining future developments for the use of vegetable sensitizers in DSSCs. We also discuss the cost of vegetable dyes and how their versatility can boost the advancement of new power management solutions, especially for their integration in living environments, making the practical application of such systems economically viable. Finally, we present our view on future prospects in the development of synthetic analogues of vegetable dyes as sensitizers in DSSCs.

  18. Nanostructured Solar Cells

    Science.gov (United States)

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-01-01

    We are glad to announce the Special Issue “Nanostructured Solar Cells”, published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  19. Efficiency Investigation of Dye-Sensitized Solar Cells Based on the Zinc Oxide Nanowires

    Directory of Open Access Journals (Sweden)

    Ahmad Afifi

    2014-03-01

    Full Text Available In this paper, we synthesized ZnO nanowires in dye sensitized solar cells. The nanowires have been fabricated using fast-microwave-hydrothermal process.We verify the effects of different lengths of ZnO nanowires on efficiency and absorptionofdye sensitized solar cells. J–V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cellsindicated that the short-circuit current density wouldincrease with increasing the length of nanowires.We also fabricate more efficient N719-sensitized solar cellsand investigate the effect of different length of Zno nanowires on the efficiency.

  20. Highly efficient graphene-based Cu(In, Ga)Se₂ solar cells with large active area.

    Science.gov (United States)

    Yin, Ling; Zhang, Kang; Luo, Hailin; Cheng, Guanming; Ma, Xuhang; Xiong, Zhiyu; Xiao, Xudong

    2014-09-21

    Two-dimensional graphene has tremendous potential to be used as a transparent conducting electrode (TCE), owing to its high transparency and conductivity. To date graphene films have been applied to several kinds of solar cells except the Cu(In, Ga)Se₂ (CIGS) solar cell. In this work, we present a novel TCE structure consisting of a doped graphene film and a thin layer of poly(methyl methacrylate) (PMMA) to replace the ZnO:Al (AZO) electrode for CIGS. By optimizing the contact between graphene and intrinsic ZnO (i-ZnO), a high power conversion efficiency (PCE) of 13.5% has been achieved, which is among the highest efficiencies of graphene-based solar cells ever reported and approaching those of AZO-based solar cells. Besides, the active area of our solar cells reaches 45 mm(2), much larger than other highly efficient graphene-based solar cells (>10%) reported so far. Moreover, compared with AZO-based CIGS solar cells, the total reflectance of the graphene-based CIGS solar cells is decreased and the quantum efficiency of the graphene-based CIGS is enhanced in the near infrared region (NIR), which strongly support graphene as a competitive candidate material for the TCE in the CIGS solar cell. Furthermore, the graphene/PMMA film can protect the solar cell from moisture, making the graphene-based solar cells much more stable than the AZO-based solar cells.

  1. Intermediate-Band Solar Cells Based on InAs/GaAs Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Guang; CHEN Yan-Ling; WANG Zhan-Guo; YANG Tao; WANG Ke-Fan; GU Yong-Xian; JI Hai-Ming; XU Peng-Fei; NI Hai-Qiao; NIU Zhi-Chuan; WANG Xiao-Dong

    2011-01-01

    We report the fabrication of intermediate-band solar cells(IBSCs) based on quantum dots(QDs), which consists of a standard P-I-N structure with multilayer stacks of InAs/GaAs QDs in the I-layer. Compared with conventional GaAs single-junction solar cells, the IBSCs based on InAs/GaAs QDs show a broader photo-response spectrum (> 1330 nm), a higher short-circle current(about 53% increase) and a stronger radiation hardness. The results have important applications for realizing high efficiency solar cells with stronger radiation hardness.

  2. Systematic process development towards high performance transferred thin silicon solar cells based on epitaxially grown absorbers

    Science.gov (United States)

    Murcia Salazar, Clara Paola

    ). First principles modeling, however, predicts that efficiencies of 20+% are achievable with less than 20 mum of c-Si. In addition to a high voltage design, this work reports state of the art epitaxial c-Si solar cell performance and a path towards 20+%-efficient transferred epitaxial solar cells. The design and fabrication approach is based on high open circuit voltage first, high short circuit current second. A first design is a thin solar cell grown on a conductive silicon wafer. This structure allows developing processes to increase bulk lifetime and reduce surface recombination. Important processes that can be used for a transferred solar cell such as increased fill factor (FF) are developed at this stage. A second design is based on the use of a separation layer prior to the solar cell growth. We achieve a comparable performance with the second design. A third design includes the transfer of the solar cell to a secondary substrate. Initial processing development is reported for the transferred solar cells. Improvements in solar cell critical parameters have been characterized with a combination of predictive modeling and solar cell diagnostic tools such as quantum efficiency and voltage measurements. Fabrication processes have been developed to improve solar cell performance. The combination of process development, test structures, systematic fabrication, testing and analysis concludes with a path to high voltage, transferred thin c-Si solar cells towards 20+% efficiencies.

  3. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  4. Porphyrin-Based Dye-Sensitized Solar Cells (DSSCs): a Review.

    Science.gov (United States)

    Birel, Özgül; Nadeem, Said; Duman, Hakan

    2017-02-16

    The current review aims to collect short information about photovoltaic performance and structure of porphyrin-based sensitizers used in dye-sensitized solar cells (DSSC). Sensitizer is the key component of the DSSC device. Structure of sensitizer is important to achieve high photovoltaic performance. Porphyrin derivatives are suitable for DSSC applications due to their thermal, electronic and photovoltaic properties. It describes some electrochemical and spectral properties as well as thestructure of porphyrin dyes used in dye based-solar cells.

  5. On the Uniqueness of Ideality Factor and Voltage Exponent of Perovskite-Based Solar Cells.

    Science.gov (United States)

    Agarwal, Sumanshu; Seetharaman, Madhu; Kumawat, Naresh K; Subbiah, Anand S; Sarkar, Shaibal K; Kabra, Dinesh; Namboothiry, Manoj A G; Nair, Pradeep R

    2014-12-04

    Perovskite-based solar cells have attracted much recent research interest with efficiency approaching 20%. While various combinations of material parameters and processing conditions are attempted for improved performance, there is still a lack of understanding in terms of the basic device physics and functional parameters that control the efficiency. Here we show that perovskite-based solar cells have two universal features: an ideality factor close to two and a space-charge-limited current regime. Through detailed numerical modeling, we identify the mechanisms that lead to these universal features. Our model predictions are supported by experimental results on solar cells fabricated at five different laboratories using different materials and processing conditions. Indeed, this work unravels the fundamental operation principle of perovskite-based solar cells, suggests ways to improve the eventual performance, and serves as a benchmark to which experimental results from various laboratories can be compared.

  6. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  7. Preparation of a Textile-Based Dye-Sensitized Solar Cell

    OpenAIRE

    Klaus Opwis; Jochen Stefan Gutmann; Ana Rosa Lagunas Alonso; Maria Jesus Rodriguez Henche; Mikel Ezquer Mayo; Fanny Breuil; Enrico Leonardi; Luca Sorbello

    2016-01-01

    Solar energy conversion is an object of continuous research, focusing on improving the energy efficiency as well as the structure of photovoltaic cells. With efficiencies continuously increasing, state-of-the-art PV cells offer a good solution to harvest solar energy. However, they are still lacking the flexibility and conformability to be integrated into common objects or clothing. Moreover, many sun-exposed surface areas are textile-based such as garments, tents, truck coverings, boat sails...

  8. A power pack based on organometallic perovskite solar cell and supercapacitor.

    Science.gov (United States)

    Xu, Xiaobao; Li, Shaohui; Zhang, Hua; Shen, Yan; Zakeeruddin, Shaik M; Graetzel, Michael; Cheng, Yi-Bing; Wang, Mingkui

    2015-02-24

    We present an investigation on a power pack combining a CH3NH3PbI3-based solar cell with a polypyrrole-based supercapacitor and evaluate its performance as an energy pack. The package achieved an energy storage efficiency of 10%, which is much higher than that of other systems combining a PV cell with a supercapacitor. We find a high output voltage of 1.45 V for the device under AM 1.5G illumination when the CH3NH3PbI3-based solar cell is connected in series with a polypyrrole-based supercapacitor. This system affords continuous output of electric power by using CH3NH3PbI3-based solar cell as an energy source mitigating transients caused by light intensity fluctuations or the diurnal cycle.

  9. Gold nanoparticles enhanced photocurrent in nanostructure-based bulk heterojunction solar cell

    Science.gov (United States)

    Long, Gen; Ching, Levine; Saqodi, Mostafa; Xu, Huizhong

    2016-04-01

    In this paper, we report a first hand study of enhanced photocurrent observed in nanostructure-based bulk heterojunction solar cell due to introduction of Au nanoparticles. The bulk heterojunction solar cell was fabricated using chemically synthesized narrow gap, IV-VI group semiconductor nanoparticles (PbS, ~3 nm), wide gap semiconductor ZnO nanowires (~1 μm length, ~50 nm diameter), and gold nanoparticles (~20 nm), by spin-coating method in N2-filled glove box. We have demonstrated that such a bulk heterojunction solar cell can be incorporated with metal nanoparticles (Au) to enhance solar device performance. Three types of solar cell devices were studied. An enhancement in the photocurrent due to introduction of Au nanoparticles was observed, compared to solar cell device without Au nanoparticles. The power conversion efficiency was also increased, possibly due to the plasmonic effects from Au nanoparticles. The fabrication procedures can be readily extended to other nanomaterial systems. Further optimization in the fabrication would be needed to realize high-efficient, stable solar cell devices.

  10. High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite.

    Science.gov (United States)

    Edri, Eran; Kirmayer, Saar; Cahen, David; Hodes, Gary

    2013-03-21

    Mesoscopic solar cells, based on solution-processed organic-inorganic perovskite absorbers, are a promising avenue for converting solar to electrical energy. We used solution-processed organic-inorganic lead halide perovskite absorbers, in conjunction with organic hole conductors, to form high voltage solar cells. There is a dire need for low-cost cells of this type, to drive electrochemical reactions or as the high photon energy cell in a system with spectral splitting. These perovskite materials, although spin-coated from solution, form highly crystalline materials. Their simple synthesis, along with high chemical versatility, allows tuning their electronic and optical properties. By judicious selection of the perovskite lead halide-based absorber, matching organic hole conductor, and contacts, a cell with a ∼ 1.3 V open circuit voltage was made. While further study is needed, this achievement provides a general guideline for additional improvement of cell performance.

  11. Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell

    Science.gov (United States)

    Halim, Mohammad A.

    2012-01-01

    Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley-Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun’s broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%.

  12. Harnessing Sun's Energy with Quantum Dots Based Next Generation Solar Cell.

    Science.gov (United States)

    Halim, Mohammad A

    2012-12-27

    Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley-Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun's broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%.

  13. Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell

    Directory of Open Access Journals (Sweden)

    Mohammad A. Halim

    2012-12-01

    Full Text Available Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley-Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun’s broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%.

  14. Photoelectrochemical solar cells based on Bi{sub 2}WO{sub 6}; Celdas solares fotoelectroquimicas basadas en Bi{sub 2}WO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Madriz, Lorean; Tata, Jose; Cuartas, Veronica; Cuellar, Alejandra; Vargas, Ronald, E-mail: lmadriz@usb.ve [Departamento de Quimica, Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of)

    2014-04-15

    In this study, photoelectrochemical solar cells based on bismuth tungstate electrodes were evaluated. Bi{sub 2}WO{sub 6} was synthesized by a hydrothermal method and characterized by scanning electron microscopy, UV-Vis reflectance spectroscopy, and X-ray powder diffraction. For comparison, solar cells based on TiO{sub 2} semiconductor electrodes were evaluated. Photoelectrochemical response of Grätzel-type solar cells based on these semiconductors and their corresponding sensitization with two inexpensive phthalocyanines dyes were determined. Bi{sub 2}WO{sub 6}-based solar cells presented higher values of photocurrent and efficiency than those obtained with TiO{sub 2} electrodes, even without sensitization. These results portray solar cells based on Bi{sub 2}WO{sub 6} as promising devices for solar energy conversion owing to lower cost of production and ease of acquisition. (author)

  15. Efficiency Investigation of Dye-Sensitized Solar Cells Based on the Zinc Oxide Nanowires

    OpenAIRE

    Ahmad Afifi; Mohammad Kazem Tabatabaei

    2014-01-01

    In this paper, we synthesized ZnO nanowires in dye sensitized solar cells. The nanowires have been fabricated using fast-microwave-hydrothermal process.We verify the effects of different lengths of ZnO nanowires on efficiency and absorptionofdye sensitized solar cells. J–V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cellsindicated that the short-circuit current density wouldincrease with increasing the length of nanowires.We also fabricate more efficient N719-se...

  16. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    Science.gov (United States)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-18

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  17. Highly Efficient InGaN-Based Solar Cells for High Intensity and High Temperature Operation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR Phase I program, we propose to fabricate high-efficiency and radiation hard solar cells based on InGaN material system that can cover the whole solar...

  18. Simulation of solid-state dye solar cells based on organic and Perovskite sensitizers

    Science.gov (United States)

    Di Carlo, Aldo; Gentilini, Desireé; Gagliardi, Alessio

    2015-03-01

    In this work we present a multiscale numerical simulation of solid-state Dye and Perovskite Solar Cells where the real morphology of the mesoporous active layer is taken into account. Band alignment and current densities are computed using the drift-diffusion model. In the case of Dye cells, a portion of the real interface is merged between two regions described using the effective medium approximation, casting light on the role of trapped states at the interface between TiO2 / Dye / hole transporting materials. A second case of study is the simulation of Perovskite Solar Cell where the performances of cells based on Alumina and Titania mesoporous layer are compared.

  19. Photoelectrochemical Characterizations Of ZnO Based Dye-Sensitized Solar Cell

    OpenAIRE

    Baviskar, P K; D. B. Salunkhe; Babasaheb R. Sankapal

    2010-01-01

    Dye-sensitized solar cells (DSSCs) based on organic dyes adsorbed on nano-particles of zinc oxide (ZnO) electrode have received considerable attention because of their high incident solar light to power conversion efficiency and low production cost. Multiple organic dyes with different chemical structure have been developed so far. They have been tested for their photovoltaic performances with combinations of different photo-anodes. In order to produce efficient DSSCs, it is imperative to dev...

  20. Salicylic Acid-Based Organic Dyes Acting as the Photosensitizer for Solar Cells.

    Science.gov (United States)

    Hong, Sungjun; Park, Jae-Hyeong; Han, Ah-Reum; Ko, Kwan-Woo; Eom, Jin Hee; Namgoong, Sung Keon; Lo, Alvie S V; Gordon, Keith C; Yoon, Sungho; Han, Chi-Hwan

    2016-05-01

    A D-π-A metal-free organic dye, featuring salicylic acid as a novel acceptor/anchoring unit, has been designed, synthesized and applied to dye-sensitized solar cell. The detailed photophysical, electrochemical, photovoltaic and sensitizing properties of the organic dye were investigated, in addition to the computational studies of the dye and dye-(TiO2)6 system. A solar cell device using this new organic dye as a sensitizer produced a solar to electric power conversion efficiency (PCE) of 3.49% (J(sc) = 6.69 mAcm-2, V(oc) = 0.74 V and ff = 0.70) under 100 mWcm(-2) simulated AM 1.5 G solar irradiation, demonstrating that the salicylic acid-based organic dye is a suitable alternative to currently used organometallic dyes.

  1. Barrier potential design criteria in multiple-quantum-well-based solar-cell structures

    Science.gov (United States)

    Mohaidat, Jihad M.; Shum, Kai; Wang, W. B.; Alfano, R. R.

    1994-01-01

    The barrier potential design criteria in multiple-quantum-well (MQW)-based solar-cell structures is reported for the purpose of achieving maximum efficiency. The time-dependent short-circuit current density at the collector side of various MQW solar-cell structures under resonant condition was numerically calculated using the time-dependent Schroedinger equation. The energy efficiency of solar cells based on the InAs/Ga(y)In(1-y)As and GaAs/Al(x)Ga(1-x)As MQW structues were compared when carriers are excited at a particular solar-energy band. Using InAs/Ga(y)In(1-y)As MQW structures it is found that a maximum energy efficiency can be achieved if the structure is designed with barrier potential of about 450 meV. The efficiency is found to decline linearly as the barrier potential increases for GaAs/Al(x)Ga(1-x)As MQW-structure-based solar cells.

  2. Recent progress in ZnO-based nanostructured ceramics in solar cell applications.

    Science.gov (United States)

    Loh, Leonard; Dunn, Steve

    2012-11-01

    ZnO is widely used as an n-type semiconductor in various solar cell structures; including dye-sensitized, organic, hybrid and solid-state solar cells. Here, we review advances in ZnO-based solar cell applications, looking at the influence of morphology, as well as the effect of different materials and sensitizers. ZnO morphologies play an important role in changing the surface area and charge transport properties, affecting the performance of the solar cells. External quantum efficiencies using purely ZnO as the active material has generally been below 3% with some dye-sensitized solar cells using liquid electrolytes above 5%. Sensitizers such as organic and inorganic dyes, quantum dots and hole conductors have been shown to influence cell efficiency by improving the absorption or providing improved charge transport. The combination of ZnO with other nanomaterials such as, TiO2, SiO2 and ZrO2 in core-shell structures or buffer layers creates improved electron transport by controlling recombination at interfaces and increasing stability of the device. The highest reported efficiencies to date were from combinational structures at 7.07% for ZnO nanosheets with TiO2 nanoparticulate coating and 7% for ZnO core-TiO2 shell structures.

  3. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  4. Space solar cells - tradeoff analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M.R. [ISRO Satellite Centre, Bangalore (India). Power Systems Group

    2003-05-15

    This paper summarizes the study that had the objective to tradeoff space solar cells and solar array designs to determine the best choice of solar cell and array technology that would be more beneficial in terms of mass, area and cost for different types of space missions. Space solar cells, which are commercially now available in the market and to be available in the near future, were considered for this trade study. Four solar array designs: rigid, flexible, thin film flexible and concentrator solar arrays were considered for assessment. Performance of the solar cells along with solar array designs were studied for two types of space missions:geo synchronous orbit (GEO) and low earth orbit (LEO) spacecraft. The Solar array designs assumed were to provide 15 kW power for 15 years mission life in GEO and 5 kW power for 5 years mission life in LEO altitudes. To perform tradeoff analysis a spread sheet model was developed that calculates the size, mass and estimates the cost of solar arrays based on different solar cell and array technologies for given set of mission requirements. Comparative performance metrics (W/kg, W/m{sup 2}, kg/m{sup 2}, and $/W) were calculated for all solar arrays studied and compared, at the solar array subsystem level and also at the spacecraft system level. The trade analysis results show that high-efficiency multijunction solar cells bring lot of cost advantages for both types of missions. The trade study also shows that thin film solar cells with moderate efficiency with ultra lightweight flexible array design may become competitive with well-established single crystalline solar cell technologies in the future. (author)

  5. Space solar cells. Tradeoff analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M. Raja [Power Systems Group, Solar Panels Division, ISRO Satellite Centre, Bangalore 560017 (India)

    2003-05-15

    This paper summarizes the study that had the objective to tradeoff space solar cells and solar array designs to determine the best choice of solar cell and array technology that would be more beneficial in terms of mass, area and cost for different types of space missions. Space solar cells, which are commercially now available in the market and to be available in the near future, were considered for this trade study. Four solar array designs: rigid, flexible, thin film flexible and concentrator solar arrays were considered for assessment. Performance of the solar cells along with solar array designs were studied for two types of space missions: geo synchronous orbit (GEO) and low earth orbit (LEO) spacecraft. The Solar array designs assumed were to provide 15kW power for 15 years mission life in GEO and 5kW power for 5 years mission life in LEO altitudes. To perform tradeoff analysis a spread sheet model was developed that calculates the size, mass and estimates the cost of solar arrays based on different solar cell and array technologies for given set of mission requirements. Comparative performance metrics (W/kg, W/m{sup 2}, kg/m{sup 2}, and $/W) were calculated for all solar arrays studied and compared, at the solar array subsystem level and also at the spacecraft system level. The trade analysis results show that high-efficiency multijunction solar cells bring lot of cost advantages for both types of missions. The trade study also show that thin film solar cells with moderate efficiency with ultra lightweight flexible array design may become competitive with well-established single crystalline solar cell technologies in the future.

  6. n +-Microcrystalline-Silicon Tunnel Layer in Tandem Si-Based Thin Film Solar Cells

    Science.gov (United States)

    Lee, Ching-Ting; Lee, Hsin-Ying; Chen, Kuan-Hao

    2016-10-01

    In this study, the p-SiC/ i-Si/ n-Si cell and the p-SiC/ i-SiGe/ n-Si cell deposited using plasma-enhanced chemical vapor deposition were cascaded for forming the tandem Si-based thin film solar cells to absorb the wide solar spectrum. To further improve the performances of the tandem Si-based thin film solar cells, a 5-nm-thick n +-microcrystalline-Si ( n +-μc-Si) tunnel layer deposited using the laser-assisted plasma-enhanced chemical vapor deposition was inserted between the p-SiC/ i-Si/ n-Si cell and the p-SiC/ i-SiGe/ n-Si cell. Since both the plasma and the CO2 laser were simultaneously utilized to efficiently decompose the reactant and doping gases, the carrier concentration and the carrier mobility of the n +-μc-Si tunnel layer were significantly improved. The ohmic contact formed between the p-SiC layer and the n +-μc-Si tunnel layer with low resistance was beneficial to the generated current transportation and the carrier recombination rate. Therefore, the conversion efficiency of the tandem solar cells was promoted from 8.57% and 8.82% to 9.91% compared to that without tunnel layer and with 5-nm-thick n +-amorphous-Si tunnel layer.

  7. Nanostructured Organic Solar Cells

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Rubahn, Horst-Günter; Madsen, Morten

    Recent forecasts for alternative energy generation predict emerging importance of supporting state of art photovoltaic solar cells with their organic equivalents. Despite their significantly lower efficiency, number of application niches are suitable for organic solar cells. This work reveals...... the principles of bulk heterojunction organic solar cells fabrication as well as summarises major differences in physics of their operation....

  8. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  9. Solar cells based on InP/GaP/Si structure

    Science.gov (United States)

    Kvitsiani, O.; Laperashvil, D.; Laperashvili, T.; Mikelashvili, V.

    2016-10-01

    Solar cells (SCs) based on III-V semiconductors are reviewed. Presented work emphases on the Solar Cells containing Quantum Dots (QDs) for next-generation photovoltaics. In this work the method of fabrication of InP QDs on III-V semiconductors is investigated. The original method of electrochemical deposition of metals: indium (In), gallium (Ga) and of alloys (InGa) on the surface of gallium phosphide (GaP), and mechanism of formation of InP QDs on GaP surface is presented. The possibilities of application of InP/GaP/Si structure as SC are discussed, and the challenges arising is also considered.

  10. Plasma monitoring and PECVD process control in thin film silicon-based solar cell manufacturing

    Directory of Open Access Journals (Sweden)

    Gabriel Onno

    2014-02-01

    Full Text Available A key process in thin film silicon-based solar cell manufacturing is plasma enhanced chemical vapor deposition (PECVD of the active layers. The deposition process can be monitored in situ by plasma diagnostics. Three types of complementary diagnostics, namely optical emission spectroscopy, mass spectrometry and non-linear extended electron dynamics are applied to an industrial-type PECVD reactor. We investigated the influence of substrate and chamber wall temperature and chamber history on the PECVD process. The impact of chamber wall conditioning on the solar cell performance is demonstrated.

  11. PEROVSKITE SOLAR CELLS (REVIEW ARTICLE)

    OpenAIRE

    Benli, Deniz Ahmet

    2015-01-01

    A solar cell is a device that converts sunlight into electricity. There are different types of solar cells but this report mainly focuses on a type of new generation solar cell that has the name organo-metal halide perovskite, shortly perovskite solar cells. In this respect, the efficiency of power conversion is taken into account to replace the dominancy of traditional and second generation solar cell fields by perovskite solar cells. Perovskite solar cell is a type of solar cell including a...

  12. Tin- and Lead-Based Perovskite Solar Cells under Scrutiny: An Environmental Perspective

    DEFF Research Database (Denmark)

    Serrano-Luján, Lucía; Espinosa Martinez, Nieves; Larsen-Olsen, Thue Trofod

    2015-01-01

    The effect of substituting lead with tin in perovskite-based solar cells (PSCs) has shows that lead is preferred over tin by a lower cumulative energy demand. The results, which also include end-of-life management, show that a recycling scenario that carefully handles emission of lead enables use...

  13. Enhancing the Efficiency of Silicon-Based Solar Cells by the Piezo-Phototronic Effect.

    Science.gov (United States)

    Zhu, Laipan; Wang, Longfei; Pan, Caofeng; Chen, Libo; Xue, Fei; Chen, Baodong; Yang, Leijing; Su, Li; Wang, Zhong Lin

    2017-02-28

    Although there are numerous approaches for fabricating solar cells, the silicon-based photovoltaics are still the most widely used in industry and around the world. A small increase in the efficiency of silicon-based solar cells has a huge economic impact and practical importance. We fabricate a silicon-based nanoheterostructure (p(+)-Si/p-Si/n(+)-Si (and n-Si)/n-ZnO nanowire (NW) array) photovoltaic device and demonstrate the enhanced device performance through significantly enhanced light absorption by NW array and effective charge carrier separation by the piezo-phototronic effect. The strain-induced piezoelectric polarization charges created at n-doped Si-ZnO interfaces can effectively modulate the corresponding band structure and electron gas trapped in the n(+)-Si/n-ZnO NW nanoheterostructure and thus enhance the transport process of local charge carriers. The efficiency of the solar cell was improved from 8.97% to 9.51% by simply applying a static compress strain. This study indicates that the piezo-phototronic effect can enhance the performance of a large-scale silicon-based solar cell, with great potential for industrial applications.

  14. Experimental and Computer Modelling Studies of Metastability of Amorphous Silicon Based Solar Cells

    NARCIS (Netherlands)

    Munyeme, Geoffrey

    2003-01-01

    We present a combination of experimental and computer modelling studies of the light induced degradation in the performance of amorphous silicon based single junction solar cells. Of particular interest in this study is the degradation kinetics of different types of amorphous silicon single junction

  15. Bismuth Based Hybrid Perovskites A3Bi2 I9 (A: Methylammonium or Cesium) for Solar Cell Application.

    Science.gov (United States)

    Park, Byung-Wook; Philippe, Bertrand; Zhang, Xiaoliang; Rensmo, Håkan; Boschloo, Gerrit; Johansson, Erik M J

    2015-11-18

    Low-toxic bismuth-based perovskites are prepared for the possible replacement of lead perovskite in solar cells. The perovskites have a hexagonal crystalline phase and light absorption in the visible region. A power conversion efficiency of over 1% is obtained for a solar cell with Cs3 Bi2 I9 perovskite, and it is concluded that bismuth perovskites have very promising properties for further development in solar cells.

  16. Solar Cells Based on Inks of n-Type Colloidal Quantum Dots

    KAUST Repository

    Ning, Zhijun

    2014-10-28

    © 2014 American Chemical Society. New inorganic ligands including halide anions have significantly accelerated progress in colloidal quantum dot (CQD) photovoltaics in recent years. All such device reports to date have relied on halide treatment during solid-state ligand exchanges or on co-treatment of long-aliphatic-ligand-capped nanoparticles in the solution phase. Here we report solar cells based on a colloidal quantum dot ink that is capped using halide-based ligands alone. By judicious choice of solvents and ligands, we developed a CQD ink from which a homogeneous and thick colloidal quantum dot solid is applied in a single step. The resultant films display an n-type character, making it suitable as a key component in a solar-converting device. We demonstrate two types of quantum junction devices that exploit these iodide-ligand-based inks. We achieve solar power conversion efficiencies of 6% using this class of colloids.

  17. High-efficiency dye-sensitized solar cells using ferrocene-based electrolytes and natural photosensitizers

    Science.gov (United States)

    Sönmezoğlu, Savaş; Akyürek, Cafer; Akin, Seçkin

    2012-10-01

    A new and promising dye-sensitized solar cell (DSSC) bilayer design was developed using an Fe2+/Fe3+ (ferrocene) liquid electrolyte and natural dyes extracted from Hypericum perforatum, Rubia tinctorum L. and Reseda luteola. The photovoltaic parameters controlling the device performance were then investigated. A DSSC based on quercetin dye displayed the most efficient solar to electricity conversion efficiency compared with other dyes with a maximum η value of 2.17%. Maximum overall conversion efficiencies under simulated sunlight that was comparable to natural photosynthesis were increased by 15%. The identification of appropriate additives for improving VOC without causing dye degradation may result in further enhancement of cell performance, making the practical application of such systems more suitable for achieving economically viable solar energy devices.

  18. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  19. Simple, highly efficient vacuum-processed bulk heterojunction solar cells based on merocyanine dyes

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, Vera; Kronenberg, Nils M.; Lenze, Martin R.; Graf, Steven M.; Hertel, Dirk; Meerholz, Klaus [Department fuer Chemie, Universitaet Koeln, Luxemburger Strasse 116, 50939 Koeln (Germany); Buerckstuemmer, Hannah; Tulyakova, Elena V.; Wuerthner, Frank [Institut fuer Organische Chemie and Roentgen Research Center for Complex Material Systems, Universitaet Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany)

    2011-10-15

    In order to be competitive on the energy market, organic solar cells with higher efficiency are needed. To date, polymer solar cells have retained the lead with efficiencies of up to 8%. However, research on small molecule solar cells has been catching up throughout recent years and is showing similar efficiencies, however, only for more sophisticated multilayer device configurations. In this work, a simple, highly efficient, vacuum-processed small molecule solar cell based on merocyanine dyes - traditional colorants that can easily be mass-produced and purified - is presented. In the past, merocyanines have been successfully introduced in solution-processed as well as vacuum-processed devices, demonstrating efficiencies up to 4.9%. Here, further optimization of devices is achieved while keeping the same simple layer stack, ultimately leading to efficiencies beyond the 6% mark. In addition, physical properties such as the charge carrier transport and the cell performance under various light intensities are addressed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Cobalt-Based Electrolytes for Dye-Sensitized Solar Cells: Recent Advances towards Stable Devices

    Directory of Open Access Journals (Sweden)

    Federico Bella

    2016-05-01

    Full Text Available Redox mediators based on cobalt complexes allowed dye-sensitized solar cells (DSCs to achieve efficiencies exceeding 14%, thus challenging the emerging class of perovskite solar cells. Unfortunately, cobalt-based electrolytes demonstrate much lower long-term stability trends if compared to the traditional iodide/triiodide redox couple. In view of the large-scale commercialization of cobalt-based DSCs, the scientific community has recently proposed various approaches and materials to increase the stability of these devices, which comprise gelling agents, crosslinked polymeric matrices and mixtures of solvents (including water. This review summarizes the most significant advances recently focused towards this direction, also suggesting some intriguing way to fabricate third-generation cobalt-based photoelectrochemical devices stable over time.

  1. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology (Finland). Dept. of Electrical and Communications Engineering

    1998-12-31

    Photovoltaic research began at the Electron Physics Laboratory of the Helsinki University of Tehnology in 1993, when the laboratory joined the national NEMO 2 research program. During the early stages of the photovoltaic research the main objective was to establish necessary measurement and characterisation routines, as well as to develop the fabrication process. The fabrication process development work has been supported by characterisation and theoretical modelling of the solar cells. Theoretical investigations have been concerned with systematic studies of solar cell parameters, such as diffusion lengths, surface recombination velocities and junction depths. The main result of the modelling and characterisation work is a method which is based on a Laplace transform of the so-called spatial collection efficiency function of the cell. The basic objective of the research has been to develop a fabrication process cheap enough to be suitable for commercial production

  2. Effects of perimeter recombination on GaAs-based solar cells

    Science.gov (United States)

    Stellwag, T. B.; Dodd, P. E.; Carpenter, M. S.; Lundstrom, M. S.; Pierret, R. F.

    Perimeter recombination currents have been experimentally characterized on GaAs p/n heteroface diodes and solar cells with areas ranging from 2.5 x 10 to the -5th to 0.25 sq cm. Under 1-sun operation at the maximum power point, measurements show that the n = roughly 2 perimeter recombination current component degrades the cell's fill factor but does not greatly affect the open-circuit voltage. The n = roughly 2 perimeter recombination currents are examined theoretically on small-area cells using a two-dimensional drift-diffusion device simulator, PUPHS2D. This model verifies the importance and origin of perimeter recombination in heteroface GaAs-based solar cells. Two methods of reducing the n = roughly 2 perimeter recombination are explored.

  3. Theory of the high base resistivity n(+)pp(+) silicon solar cell and its application to radiation damage effects

    Science.gov (United States)

    Goradia, C.; Weinberg, I.

    1985-01-01

    Particulate radiation in space is a principal source of silicon solar cell degradation, and an investigation of cell radiation damage at higher base resistivities appears to have implication toward increasing solar cell and, therefore, useful satellite lifetimes in the space environment. However, contrary to expectations, it has been found that for cells with resistivities of 84 and 1250 ohm cm, the radiation resistance decreases as cell base resistivity increases. An analytical solar-cell computer model was developed with the objective to determine the reasons for this unexpected behavior. The present paper has the aim to describe the analytical model and its use in interpreting the behavior, under irradiation, of high-resistivity solar cells. Attention is given to boundary conditions at the space-charge region edges, cell currents, cell voltages, the generation of the theoretical I-V characteristic, experimental results, and computer calculations.

  4. Nickel Phosphide as a Copper Free Back Contact for CdTe-Based Solar Cells

    Science.gov (United States)

    Sunderland, Brian; Gupta, Akhlesh; Compaan, Alvin D.

    2002-03-01

    Nickel phosphide back contacts were deposited onto polycrystalline, thin-film, CdS/CdTe solar cells using DC magnetron sputtering. The effects of the etching procedure, substrate temperature, deposition duration, post-deposition diffusion temperature, and ambient on the initial performance and on the long term stability of the devices were studied. We found that the initial performance of nickel phosphide contacts was lower than typical Cu-based back contacts. However, the stability of the cells at open circuit under one-sun light soak for several months is better than for our standard contact with evaporated Cu and Au. The use of sputtered graphite as an interfacial layer improved the performance. Average efficiencies of over 8.6were achieved. The excellent stability makes Ni2P an attractive candidate for a Cu-free back contact to CdTe-based solar cells. Work supported by NREL and by NSF-REU.

  5. Steric and Solvent Effect in Dye-Sensitized Solar Cells Utilizing Phenothiazine-Based Dyes

    Directory of Open Access Journals (Sweden)

    Hany Kafafy

    2014-01-01

    Full Text Available Three phenothiazine-based dyes have been prepared and utilized as dye-sensitized solar cells (DSSCs. The effects of dye-adsorption solvent on the performances of dye-sensitized solar cells based on phenothiazine dyes were investigated in this study. The highest conversion efficiency of 3.78% was obtained using ethanol (EtOH and 2.53% for tetrahydrofuran (THF, respectively, as dye-adsorption solvents. Cell performance using EtOH as a dye-adsorption solvent showed relatively higher performance than that using THF. Electrochemical and photochemical tests of phenothiazine dyes in solution and adsorbed on the TiO2 surface showed less dye loading and coverage on the TiO2 surface during adsorption in the case of THF, which decreased the solar cell performance of the DSSC using THF as adsorption solvent compared with using EtOH as adsorption solvent. Meanwhile, the steric effect of phenothiazine-based (PT1–3 dyes was also investigated. Dye with longer and branched aliphatic chain in the order of PT1, PT2, and PT3 showed an increased resistance of the recombination reaction and electron lifetime, thereby increasing Voc and enhancing the overall cell performance because of the sterically hindered conformation of the phenothiazines.

  6. Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells

    Science.gov (United States)

    Kim, Areum; Lee, Hongseuk; Kwon, Hyeok-Chan; Jung, Hyun Suk; Park, Nam-Gyu; Jeong, Sunho; Moon, Jooho

    2016-03-01

    We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ~80% at 550 nm and sheet resistance of 18 Ω sq-1. Perovskite solar cells fabricated using a fully solution-processed transparent conductive electrode, Au/spiro-OMeTAD/CH3NH3PbI3 + m-Al2O3/ZnO/ITO/AgNW/ITO, exhibited a power conversion efficiency of 8.44% (comparable to that of the FTO/glass-based counterpart at 10.81%) and were stable for 30 days in ambient air. Our results demonstrate the feasibility of using AgNWs as a transparent bottom electrode in perovskite solar cells produced by a fully printable process.We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ~80% at 550 nm and sheet resistance of 18 Ω sq-1. Perovskite solar cells fabricated using a fully solution

  7. Numerical Analysis of Copper-Indium-Gallium-Diselenide-Based Solar Cells by SCAPS-1D

    Directory of Open Access Journals (Sweden)

    S. Ouédraogo

    2013-01-01

    Full Text Available We used a one-dimensional simulation program Solar Cell Capacitance Simulator in 1 Dimension (SCAPS-1D to investigate Copper-Indium-Gallium-Diselenide- (CIGS- based solar cells properties. Starting with a conventional ZnO-B/i-ZnO/CdS/CIGS structure, we simulated the parameters of current-voltage characteristics and showed how the absorber layer thickness, hole density, and band gap influence the short-circuit current density (Jsc, open-circuit voltage (Voc, fill factor (FF, and efficiency of solar cell. Our simulation results showed that all electrical parameters are greatly affected by the absorber thickness (w below 1000 nm, due to the increase of back-contact recombination and very poor absorption. Increasing hole density (p or absorber band gap (Eg improves Voc and leads to high efficiency, which equals value of 16.1% when p = 1016 cm−3 and Eg=1.2 eV. In order to reduce back-contact recombination, the effect of a very thin layer with high band gap inserted near the back contact and acting as electrons reflector, the so-called back-electron reflector (EBR, has been investigated. The performances of the solar cells are significantly improved, when ultrathin absorbers (w < 500 nm are used; the corresponding gain of Jsc due to the EBR is 3 mA/cm2. Our results are in good agreement with those reported in the literature from experiments.

  8. Solar cells based on the poly(N-vinylcarbazole):porphyrin:tris(8-hydroxyquinolinato) aluminium blend system

    Institute of Scientific and Technical Information of China (English)

    Zhang Tian-Hui; Zhao Su-Ling; Piao Ling-Yu; Xu Zheng; Ju Si-Ting; Liu Xiao-Dong; Kong Chao; Xu Xu-Rong

    2011-01-01

    Organic solar cells based on poly(N-vinylcarbazole) (PVK): porphyrin: tris (8-hydroxyquinolinato) aluminium (Alq3) blend p-n junction systems have been fabricated in this work. The roles of the different components in the blend system and of the amount of porphyrin have been investigated. The 5, 10, 15, 20-tetraphenylporphyrin (TPP) and 5, 10, 15, 20-tetra(o-chloro)phenylporphyrinato-copper (CuTCIPP) are used in the solar cells. The results show that TPP is better than CuTClPP in enhancing the performance of PVK:Alq3 solar cells. When the weight ratio of PVK:TPP:Alq3 is 1:1.5:1, the best performance of solar cell is obtained. The open circuit voltage (Voc) is 0.87 V, and the short circuit current (Jsc) is 17.5 μA·cm-2. In the ternary bulk hereojunction system, the device may be regarded as a cascade of three devices of PVK:TPP, TPP:Alq3 and PVK:Alq3. PVK, TPP and Alq3 can improve the hole mobility, light absorption intensity and electron mobility of the ternary bulk hereojunction system, respectively.

  9. Benzotrithiophene-Based Hole-Transporting Materials for 18.2 % Perovskite Solar Cells.

    Science.gov (United States)

    Molina-Ontoria, Agustín; Zimmermann, Iwan; Garcia-Benito, Inés; Gratia, Paul; Roldán-Carmona, Cristina; Aghazada, Sadig; Graetzel, Michael; Nazeeruddin, Mohammad Khaja; Martín, Nazario

    2016-05-17

    New star-shaped benzotrithiophene (BTT)-based hole-transporting materials (HTM) BTT-1, BTT-2 and BTT-3 have been obtained through a facile synthetic route by crosslinking triarylamine-based donor groups with a benzotrithiophene (BTT) core. The BTT HTMs were tested on solution-processed lead trihalide perovskite-based solar cells. Power conversion efficiencies in the range of 16 % to 18.2 % were achieved under AM 1.5 sun with the three derivatives. These values are comparable to those obtained with today's most commonly used HTM spiro-OMeTAD, which point them out as promising candidates to be used as readily available and cost-effective alternatives in perovskite solar cells (PSCs).

  10. Dye-sensitized solar cells based on porous conjugated polymer counter electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Torabi, Naeimeh; Behjat, Abbas, E-mail: abehjat@yazd.ac.ir; Jafari, Fatemeh

    2014-12-31

    In this paper, we report platinum-free dye-sensitized solar cells that were fabricated using a grown porous poly-3-methyl-thiophene (P3MT) counter electrode. The growing of the porous P3MT was performed by an electrochemical deposition method. This method is easy and affordable unlike the common expensive deposition methods. The morphology of P3MT films was studied by scanning electron microscopy images. It was observed that polymer layers grown with a current density of 2 mA/cm{sup 2} have a clear porous and rough structure as compared to layers grown with a lower current density. To understand the reaction kinetics and the catalytic activities of the counter electrodes with P3MT for 3I{sup −}/I{sub 3}{sup −} redox reaction, cyclic voltammetry (CV) was performed. Based on the analysis of CV, it was shown that this layer can be used as a counter electrode for dye-sensitized solar cells. The electro deposition conditions during the growth of polymer layers such as current density, the morphology of polymer films and the duration of polymerization have a significant role in the current–voltage characterization of the fabricated solar cells. The performance of the fabricated solar cells was improved by optimization of these parameters. The highest efficiency of 2.76% was obtained by using porous P3MT in the counter electrode. - Highlights: • Poly-3-methyl-thiophene (P3MT) layers were grown using electrochemical deposition method. • By controlling the growth conditions, porous P3MT can be produced. • Grown P3MT layers can be used as counter electrodes in dye-sensitized solar cells. • The growth rate of P3MT layers plays an essential role in the cell performance.

  11. Analyses and Simulation of V-I Characteristics for Solar Cells Based on P-N Junction

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jian-bang; REN Ju; GUO Wen-ge; HOU Chao-qi

    2005-01-01

    Through theoretical analyses of the Shockley equation and the difference between a practical P-N junction and its ideal model, the mathematical models of P-N junction and solar cells had been obtained. With Matlab software, the V-I characteristics of diodes and solar cells were simulated, and a computer simulation model of the solar cells based on P-N junction was also established. Based on the simulation model, the influences of solar cell's internal resistances on open-circuit voltage and short-circuit current under certain illumination were numerically analyzed and solved. The simulation results showed that the equivalent series resistance and shunt resistance could strongly affect the V-I characteristics of solar cell, but their influence styles were different.

  12. Photon upconversion for thin film solar cells

    NARCIS (Netherlands)

    de Wild, J.

    2012-01-01

    In this research one of the many possible methods to increase the efficiency of solar cells is described. The method investigated is based on adapting the solar light in such a way that the solar cell can convert more light into electricity. The part of the solar spectrum that is adapted is the part

  13. Application of Ce3+ single-doped complexes as solar spectral downshifters for enhancing photoelectric conversion efficiencies of a-Si-based solar cells

    Science.gov (United States)

    Song, Pei; Jiang, Chun

    2013-05-01

    The effect on photoelectric conversion efficiency of an a-Si-based solar cell by applying a solar spectral downshifter of rare earth ion Ce3+ single-doped complexes including yttrium aluminum garnet Y3Al5O12 single crystals, nanostructured ceramics, microstructured ceramics and B2O3-SiO2-Gd2O3-BaO glass is studied. The photoluminescence excitation spectra in the region 360-460 nm convert effectively into photoluminescence emission spectra in the region 450-550 nm where a-Si-based solar cells exhibit a higher spectral response. When these Ce3+ single-doped complexes are placed on the top of an a-Si-based solar cell as precursors for solar spectral downshifting, theoretical relative photoelectric conversion efficiencies of nc-Si:H and a-Si:H solar cells approach 1.09-1.13 and 1.04-1.07, respectively, by means of AMPS-1D numerical modeling, potentially benefiting an a-Si-based solar cell with a photoelectric efficiency improvement.

  14. Optimal design of GaAs-based concentrator space solar cells for 100 AMO, 80 deg C operation

    Science.gov (United States)

    Goradia, C.; Ghalla-Goradia, M.; Curtis, H.

    1984-01-01

    Using a detailed computer code and reasonable values of electrical and optical material parameters from current published literature, parameter optimization studies were performed on three configurations of GaAs-based concentrator solar cells for 100 AMO, 80 C operation. These studies show the possibility of designing GaAs-based solar cells with efficiencies exceeding 22% at 100 AMO 80 C and probable efficiency degradation of less than 15% after a 70% reduction in diffusion length in each cell region.

  15. Molecular design of organic dyes based on vinylene hexylthiophene bridge for dye-sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Three donor-(π-spacer)-acceptor(D-π-A) organic dyes,containing different groups(triphenylamine,di(p-tolyl)phenylamine,and 9-octylcarbazole moieties) as electron donors,were designed and synthesized.Nanocrystalline TiO2 dye-sensitized solar cells were fabricated by using these dyes.It was found that the variation of electron donors in the D-π-A dyes played an important role in modifying and tuning photophysical properties of organic dyes.Under standard global AM 1.5 solar condition,the DSSC based on the dye D2 showed the best photovoltaic performance:a short-circuit photocurrent density(Jsc) of 13.93 mA/cm2,an open-circuit photovoltage(Voc) of 0.71 V,and a fill factor(FF) of 0.679,corresponding to solar-to-electric power conversion efficiency(η) of 6.72%.

  16. Molecular design of organic dyes based on vinylene hexylthiophene bridge for dye-sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    LIU DaXi; ZHAO Bin; SHEN Ping; HUANG Hui; LIU LiMing; TAN SongTing

    2009-01-01

    Three donor-(TT-spacer)-acceptor (D-tt-A) organic dyes,containing different groups (triphenylamine,di(p-tolyl)phenylamine,and 9-octylcarbazole moieties) as electron donors,were designed and synthesized. Nanocrystalline TiO2 dye-sensitized solar cells were fabricated by using these dyes. It was found that the variation of electron donors in the D-tt-A dyes played an important role in modifying and tuning photophysical properties of organic dyes. Under standard global AM 1.5 solar condition,the DSSC based on the dye D2 showed the best photovoltaic performance: a short-circuit photocurrent density (Jsc) of 13.93 mA/cm2,an open-circuit photovoltage (Voc) of 0.71 V,and a fill factor (FF) of 0.679,corresponding to solar-to-electric power conversion efficiency (77) of 6.72%.

  17. Inexpensive microcomputer-based system for solar cell I-V characterization

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acevedo, A.; Herrera, E.; Valencia, H.

    1989-03-01

    A simple solar cell measurement system is described. The instrument is based on an inexpensive microcomputer with a single bidirectional 8-bit I/O port, in addition to 4 output bits taken from the joystick port. Currents up to 1.5 A and voltages up to 0.7 V can be measured with this system. The temperature of the cell is also measured. Solar cell parameters like open circuit voltage (V/sub oc/), short circuit current (I/sub sc/), series resistance (R/sub s/), shunt resistance (R/sub sh/), and filling factor (F.F.) are determined by a high-level language program that also displays the I-V curve on the monitor screen and stores the data on disk files.

  18. Schottky solar cells based on CsSnI3 thin-films

    Science.gov (United States)

    Chen, Zhuo; Wang, Jian J.; Ren, Yuhang; Yu, Chonglong; Shum, Kai

    2012-08-01

    We describe a Schottky solar cell based on the perovskite semiconductor CsSnI3 thin-film. The cell consists of a simple layer structure of indium-tin-oxide/CsSnI3/Au/Ti on glass substrate. The measured power conversion efficiency is 0.9%, which is limited by the series and shunt resistance. The influence of light intensity on open-circuit voltage and short-circuit current supports the Schottky solar cell model. Additionally, the spectrally resolved short-circuit current was measured, confirming the unintentionally doped CsSnI3 is of p-type characteristics. The CsSnI3 thin-film was synthesized by alternately depositing layers of SnCl2 and CsI on glass substrate followed by a thermal annealing process.

  19. High efficiency thin film CdTe and a-Si based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A. D.; Deng, X.; Bohn, R. G.

    2000-01-04

    This report describes work done by the University of Toledo during the first year of this subcontract. During this time, the CdTe group constructed a second dual magnetron sputter deposition facility; optimized reactive sputtering for ZnTe:N films to achieve 10 ohm-cm resistivity and {approximately}9% efficiency cells with a copper-free ZnTe:N/Ni contact; identified Cu-related photoluminescence features and studied their correlation with cell performance including their dependence on temperature and E-fields; studied band-tail absorption in CdS{sub x}Te{sub 1{minus}x} films at 10 K and 300 K; collaborated with the National CdTe PV Team on (1) studies of high-resistivity tin oxide (HRT) layers from ITN Energy Systems, (2) fabrication of cells on the HRT layers with 0, 300, and 800-nm CdS, and (3) preparation of ZnTe:N-based contacts on First Solar materials for stress testing; and collaborated with Brooklyn College for ellipsometry studies of CdS{sub x}Te{sub 1{minus}x} alloy films, and with the University of Buffalo/Brookhaven NSLS for synchrotron X-ray fluorescence studies of interdiffusion in CdS/CdTe bilayers. The a-Si group established a baseline for fabricating a-Si-based solar cells with single, tandem, and triple-junction structures; fabricated a-Si/a-SiGe/a-SiGe triple-junction solar cells with an initial efficiency of 9.7% during the second quarter, and 10.6% during the fourth quarter (after 1166 hours of light-soaking under 1-sun light intensity at 50 C, the 10.6% solar cells stabilized at about 9%); fabricated wide-bandgap a-Si top cells, the highest Voc achieved for the single-junction top cell was 1.02 V, and top cells with high FF (up to 74%) were fabricated routinely; fabricated high-quality narrow-bandgap a-SiGe solar cells with 8.3% efficiency; found that bandgap-graded buffer layers improve the performance (Voc and FF) of the narrow-bandgap a-SiGe bottom cells; and found that a small amount of oxygen partial pressure ({approximately}2 {times} 10

  20. Progress in polymer solar cell

    Institute of Scientific and Technical Information of China (English)

    LI LiGui; LU GuangHao; YANG XiaoNiu; ZHOU EnLe

    2007-01-01

    This review outlines current progresses in polymer solar cell. Compared to traditional silicon-based photovoltaic (PV) technology, the completely different principle of optoelectric response in the polymer cell results in a novel configuration of the device and more complicated photovoltaic generation process. The conception of bulk-heterojunction (BHJ) is introduced and its advantage in terms of morphology is addressed. The main aspects including the morphology of photoactive layer, which limit the efficiency and stability of polymer solar cell, are discussed in detail. The solutions to boosting up both the efficiency and stability (lifetime) of the polymer solar cell are highlighted at the end of this review.

  1. Low-Pressure Vapor-Assisted Solution Process for Thiocyanate-Based Pseudohalide Perovskite Solar Cells.

    Science.gov (United States)

    Chiang, Yu-Hsien; Cheng, Hsin-Min; Li, Ming-Hsien; Guo, Tzung-Fang; Chen, Peter

    2016-09-22

    In this report, we fabricated thiocyanate-based perovskite solar cells with low-pressure vapor-assisted solution process (LP-VASP) method. Photovoltaic performances are evaluated with detailed materials characterizations. Scanning electron microscopy images show that SCN-based perovskite films fabricated using LP-VASP have long-range uniform morphology and large grain sizes up to 1 μm. The XRD and Raman spectra were employed to observe the characteristic peaks for both SCN-based and pure CH3 NH3 PbI3 perovskite. We observed that the Pb(SCN)2 film transformed to PbI2 before the formation of perovskite film. X-ray photoemission spectra (XPS) show that only a small amount of S remained in the film. Using LP-VASP method, we fabricated SCN-based perovskite solar cells and achieved a power conversion efficiency of 12.72 %. It is worth noting that the price of Pb(SCN)2 is only 4 % of PbI2 . These results demonstrate that pseudo-halide perovskites are promising materials for fabricating low-cost perovskite solar cells.

  2. All solution processed tandem polymer solar cells based on thermocleavable materials

    DEFF Research Database (Denmark)

    Hagemann, Ole; Bjerring, Morten; Nielsen, Niels Chr.

    2008-01-01

    Multilayer tandem polymer solar cells were prepared by solution processing using thermocleavable polymer materials that allow for conversion to an insoluble state through a short thermal treatment. The problems associated with solubility during application of subsequent layers in the stack were...... efficiently solved. Devices comprised a transparent front cathode based on solution processed zinc oxide nanoparticles, a large band gap active layer based on a bulk heterojunction between zinc oxide and poly(3-carboxydithiophene) (P3CT) followed by a layer of PEDOT:PSS processed from water. The second cell...

  3. Emerging Photovoltaics: Organic, Copper Zinc Tin Sulphide, and Perovskite-Based Solar Cells

    Directory of Open Access Journals (Sweden)

    Shraavya Rao

    2016-01-01

    Full Text Available As the photovoltaics industry continues to grow rapidly, materials other than silicon are being explored. The aim is to develop technologies that use environmentally friendly, abundant materials, low-cost manufacturing processes without compromising on efficiencies and lifetimes. This paper discusses three of the emerging technologies, organic, copper zinc tin sulphide (CZTS, and perovskite-based solar cells, their advantages, and the possible challenges in making these technologies commercially available.

  4. Flexible perovskite solar cells based on the metal-insulator-semiconductor structure.

    Science.gov (United States)

    Wei, Jing; Li, Heng; Zhao, Yicheng; Zhou, Wenke; Fu, Rui; Pan, Huiyue; Zhao, Qing

    2016-09-14

    The metal-insulator-semiconductor (MIS) structure is applied to perovskite solar cells, in which the traditional compact layer TiO2 is replaced by Al2O3 as the hole blocking material to realize an all-low-temperature process. Flexible devices based on this structure are also realized with excellent flexibility, which hold 85% of their initial efficiency after bending 100 times.

  5. Application of LiBOB-based liquid electrolyte in co-sensitized solar cell

    Science.gov (United States)

    Jun, H. K.; Buraidah, M. H.; Noor, M. M.; Kufian, M. Z.; Majid, S. R.; Sahraoui, B.; Arof, A. K.

    2013-11-01

    Co-sensitized solar cells have been fabricated using metal complex N3 dye and Ag2S/CdS quantum dots coupled with LiBOB-based liquid electrolyte. Quantum dots (QDs) were synthesized via the successive ionic layer adsorption and reaction (SILAR) route. The absorbance and band gap energy of Ag2S and CdS QDs were determined. Their refractive indices were observed to be in the range of 1.5175-1.5200. It has been shown that LiBOB-based liquid electrolyte is able to function in the QD/N3 dye co-sensitized solar cells but some stability issues of the QD were observed in the electrolyte system containing iodide whereby the QD-sensitized TiO2 was easily etched. Overall efficiencies and fill factors of the co-sensitized solar cells varied from 0.98% to 1.66% and 40% to 46% respectively. CdS QD was shown to be effective when coupled with polysulfide electrolyte while Ag2S QD was favorable towards the LiBOB-based liquid electrolyte.

  6. Preparation of a Textile-Based Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Klaus Opwis

    2016-01-01

    Full Text Available Solar energy conversion is an object of continuous research, focusing on improving the energy efficiency as well as the structure of photovoltaic cells. With efficiencies continuously increasing, state-of-the-art PV cells offer a good solution to harvest solar energy. However, they are still lacking the flexibility and conformability to be integrated into common objects or clothing. Moreover, many sun-exposed surface areas are textile-based such as garments, tents, truck coverings, boat sails, and home or outdoor textiles. Here, we present a new textile-based dye-sensitized solar cell (DSC which takes advantage from the properties inherent to fabrics: flexibility, low weight, and mechanical robustness. Due to the necessary thermostability during manufacturing, our DSC design is based on heat-resistant glass-fiber fabrics. After applying all needed layers, the overall structure was covered by a transparent and simultaneously conductive protective film. The light and still flexible large-area devices (up to 6 cm2 per individual unit are working with efficiencies up to 1.8% at 1/5 of the sun. Stability tests assure no loss of photovoltaic activity over a period of at least seven weeks. Therefore, our technology has paved the way for a new generation of flexible photovoltaic devices, which can be used for the generation of power in the mentioned applications as well as in modern textile architecture.

  7. Modified fullerenes for Efficient Electron Transport Layer-Free Perovskite:Fullerene Blend-Based Solar Cells.

    Science.gov (United States)

    Delgado, Juan L; Sandoval-Torrientes, Rafael; Martín, Nazario; Tena-Zaera, Ramón; Collavini, Silvia; Kosta, Ivet; Pascual, Jorge; García-Benito, Inés

    2017-03-15

    A variety of novel chemically modified fullerenes, showing different electron accepting capabilities, has been synthesized and used to prepare electron transport layer(ETL)-free solar cells based on perovskite:fullerene blends. In particular, isoxazolino[60] fullerenes are proven to be a good candidate for processing blend films with CH3NH3PbI3 and obtaining enhanced power conversion efficiency (PCE) ETL-free perovskite solar cells, improving state-of-the-art PCE (i.e. 14.3%) for this simplified device architecture. Beneficial impact for pyrazolino and methano[60]fullerene derivatives versus pristine [60]fullerene is also shown. Furthermore, a clear correlation between the LUMO energy level of the fullerene component and the open circuit voltage of the solar cells is found. Apart from the new knowledge on innovative fullerene derivatives for perovskite solar cells, the universality and versatility of perovskite:fullerene blend films to obtain efficient ETL-free perovskite solar cells is demonstrated.

  8. High Efficiency c-Silicon Solar Cells Based on Micro-Nanoscale Structure

    Science.gov (United States)

    2011-06-01

    film materials: (1) amorphous Si (a-Si) (4), cadmium telluride ( CdTe ) (5), and copper indium diselenide (CIS) (6), which are the most mature thin ...microblock design and fabrication. Current thin - film and c-Si solar cells have a limited conversion efficiency of 10–20% and cost $3–$5/W-peak and state...more efficient solar cells has been underway for several decades, from the development of thin - film solar cells with efficiencies greater than 10

  9. New 1,3,4-Oxadiazole Based Photosensitizers for Dye Sensitized Solar Cells (DSSCs

    Directory of Open Access Journals (Sweden)

    Umer Mehmood

    2015-01-01

    Full Text Available 1,3,4-Oxadiazole based photosensitizers with biphenyl, naphthalene, anthracene, and triphenylamine as the electron-donating moiety were synthesized for solar cell applications. In these photosensitizers, cyano groups were introduced as the electron acceptor and the anchor group because of their high electron-withdrawing ability and strong bonding to the semiconductor. Oxadiazole isomers were used as the π-conjugation system, which bridges the donor-acceptor systems. The electrochemical and optical properties of the sensitizers were investigated both in their native form and upon incorporation into dye sensitized solar cells. The results of UV-visible absorption spectroscopy, electrochemical impedance spectroscopic measurements, and photocurrent voltage characteristics indicate that 1,3,4-oxadiazole pi-spacer with the anthracene moiety has the highest efficiency of 2.58%. Density functional theory was employed to optimize the structures of the sensitizers and the TiO2 cluster.

  10. Toward high efficiency ultra-thin CIGSe based solar cells using light management techniques

    Science.gov (United States)

    Naghavi, Negar; Jehl, Zacharie; Donsanti, Frederique; Guillemoles, Jean-François; Gérard, Isabelle; Bouttemy, Muriel; Etcheberry, Arnaud; Pelouard, Jean-Luc; Collin, Stéphane; Colin, Clément; Péré-Laperne, Nicolas; Dahan, Nir; Greffet, Jean-Jacques; Morel, Boris; Djebbour, Zakaria; Darga, Arouna; Mencaraglia, Denis; Voorwinden, Georg; Dimmler, Bernhard; Powalla, Micheal; Lincot, Daniel

    2012-02-01

    This study addresses the potential of different approaches to improve the generated current density in ultrathin Cu(In,Ga)Se2 (CIGSe) based solar cells down to 0.1 μm. Advanced photon management, involving both absorption enhancement and reflection reduction in the absorber, is studied. In this contribution, the three main approaches used are: - The reduction of the CIGSe thickness by chemical etching which combines thickness reduction and smoothing effect on the absorber. - Optical management by front contact engineering and by the replacement of the back contact by the "lift-off" of CIGSe layer from the Mo layer and the deposition of a new reflective back contact. - Application of plasmonic structures to CIGSe solar cells enabling light confinement at the subwavelength scale.

  11. Wire-shaped perovskite solar cell based on TiO2 nanotubes

    Science.gov (United States)

    Wang, Xiaoyan; Kulkarni, Sneha A.; Li, Zhen; Xu, Wenjing; Batabyal, Sudip K.; Zhang, Sam; Cao, Anyuan; Wong, Lydia Helena

    2016-05-01

    In this work, a wire-shaped perovskite solar cell based on TiO2 nanotube (TNT) arrays is demonstrated for the first time by integrating a perovskite absorber on TNT-coated Ti wire. Anodization was adopted for the conformal growth of TNTs on Ti wire, together with the simultaneous formation of a compact TiO2 layer. A sequential step dipping process is employed to produce a uniform and compact perovskite layer on top of TNTs with conformal coverage as the efficient light absorber. Transparent carbon nanotube film is wrapped around Ti wire as the hole collector and counter electrode. The integrated perovskite solar cell wire by facile fabrication approaches shows a promising future in portable and wearable textile electronics.

  12. Fused-Thiophene Based Materials for Organic Photovoltaics and Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Prabakaran Kumaresan

    2014-10-01

    Full Text Available Organic photovoltaics (OPVs and dye-sensitized solar cells (DSSCs have drawn great interest from both academics and industry, due to the possibility of low-cost conversion of photovoltaic energy at reasonable efficiencies. This review focuses on recent progress in molecular engineering and technological aspects of fused-thiophene-based organic dye molecules for applications in solar cells. Particular attention has been paid to the design principles and stability of these dye molecules, as well as on the effects of various electrolyte systems for DSSCs. Importantly, it has been found that incorporation of a fused-thiophene unit into the sensitizer has several advantages, such as red-shift of the intramolecular charge transfer band, tuning of the frontier molecular energy level, and improvements in both photovoltaic performance and stability. This work also examines the correlation between the physical properties and placement of fused-thiophene in the molecular structure with regard to their performance in OPVs and DSSCs.

  13. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Shengbo; Ting, Hungkit; Ma, Yingzhuang; Zheng, Lingling; Zhang, Miwei [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Xiao, Lixin, E-mail: zjchen@pku.edu.cn, E-mail: lxxiao@pku.edu.cn; Chen, Zhijian, E-mail: zjchen@pku.edu.cn, E-mail: lxxiao@pku.edu.cn [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Haixi Collaborative Innovation Center for New Display Devices and Systems Integration, Fuzhou University, Fuzhou 350002 (China)

    2015-05-15

    In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark. The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading.

  14. Wire-shaped perovskite solar cell based on TiO2 nanotubes.

    Science.gov (United States)

    Wang, Xiaoyan; Kulkarni, Sneha A; Li, Zhen; Xu, Wenjing; Batabyal, Sudip K; Zhang, Sam; Cao, Anyuan; Wong, Lydia Helena

    2016-05-20

    In this work, a wire-shaped perovskite solar cell based on TiO2 nanotube (TNT) arrays is demonstrated for the first time by integrating a perovskite absorber on TNT-coated Ti wire. Anodization was adopted for the conformal growth of TNTs on Ti wire, together with the simultaneous formation of a compact TiO2 layer. A sequential step dipping process is employed to produce a uniform and compact perovskite layer on top of TNTs with conformal coverage as the efficient light absorber. Transparent carbon nanotube film is wrapped around Ti wire as the hole collector and counter electrode. The integrated perovskite solar cell wire by facile fabrication approaches shows a promising future in portable and wearable textile electronics.

  15. Natural dye sensitized TiO2 nanorods assembly of broccoli shape based solar cells.

    Science.gov (United States)

    Yuvapragasam, Akila; Muthukumarasamy, N; Agilan, S; Velauthapillai, Dhayalan; Senthil, T S; Sundaram, Senthilarasu

    2015-07-01

    TiO2 nanorods based thin films with rutile phase have been synthesized using template free low temperature hydrothermal method. The scanning electron microscope images showed that the prepared TiO2 samples were made of TiO2 nanorods and the nanorods had arranged by itself to form a broccoli like shape. The X-ray diffraction studies revealed that the prepared TiO2 samples exhibit rutile phase. The grown TiO2 nanorods had been sensitized using the flowers of Sesbania (S) grandiflora, leaves of Camellia (C) sinensis and roots of Rubia (R) tinctorum. Dye sensitized solar cells had been fabricated using the natural dye sensitized TiO2 nanorods based thin film photoelectrode and the open circuit voltage and short circuit current density were found to lie in the range of 0.45-0.6 V and 5.6-6.4 mA/cm(2) respectively. The photovoltaic performance of all the fabricated natural dye sensitized TiO2 solar cells indicate that natural dyes have the potential to be used as effective sensitizer in dye sensitized solar cells.

  16. Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    Wei, Jing; Zhao, Yicheng; Li, Heng; Li, Guobao; Pan, Jinlong; Xu, Dongsheng; Zhao, Qing; Yu, Dapeng

    2014-11-06

    The power conversion efficiency (PCE) of CH3NH3PbX3 (X = I, Br, Cl) perovskite solar cells has been developed rapidly from 6.5 to 18% within 3 years. However, the anomalous hysteresis found in I-V measurements can cause an inaccurate estimation of the efficiency. We attribute the phenomena to the ferroelectric effect and build a model based on the ferroelectric diode to explain it. The ferroelectric effect of CH3NH3PbI3-xClx is strongly suggested by characterization methods and the E-P (electrical field-polarization) loop. The hysteresis in I-V curves is found to greatly depend on the scan range as well as the velocity, which is well explained by the ferroelectric diode model. We also find that the current signals show exponential decay in ∼10 s under prolonged stepwise measurements, and the anomalous hysteresis disappears using these stabilized current values. The experimental results accord well with the model based on ferroelectric properties and prove that prolonged stepwise measurement is an effective way to evaluate the real efficiency of perovskite solar cells. Most importantly, this work provides a meaningful perspective that the ferroelectric effect (if it really exists) should be paid special attention in the optimization of perovskite solar cells.

  17. Direct X-ray detection with hybrid solar cells based on organolead halide perovskites

    Science.gov (United States)

    Gill, Hardeep Singh; Elshahat, Bassem; Sajo, Erno; Kumar, Jayant; Kokil, Akshay; Zygmanski, Piotr; Li, Lian; Mosurkal, Ravi

    2014-03-01

    Organolead halide perovskite materials are attracting considerable interest due to their exceptional opto-electronic properties, such as, high charge carrier mobilities, high exciton diffusion length, high extinction coefficients and broad-band absorption. These interesting properties have enabled their application in high performance hybrid photovoltaic devices. The high Z value of their constituents also makes these materials efficient for absorbing X-rays. Here we will present on the efficient use of hybrid solar cells based on organolead perovskite materials as X-ray detectors. Hybrid solar cells based on CH3NH3PbI3 were fabricated using facile processing techniques on patterned indium tin oxide coated glass substrates. The solar cells typically had a planar configuration of ITO/CH3NH3PbI3/P3HT/Ag. High sensitivity for X-rays due to high Z value, larger carrier mobility and better charge collection was observed. Detecting X-rays with energies relevant to medical oncology applications opens up the potential for diagnostic imaging applications.

  18. 14% sputtered thin-film solar cells based on CdTe

    Science.gov (United States)

    Compaan, A. D.; Gupta, A.; Drayton, J.; Lee, S.-H.; Wang, S.

    2004-02-01

    Polycrystalline II-VI semiconductor materials show great promise for thin-film photovoltaic cells and modules. Large-area deposition of these II-VI semiconductors such as CdTe is possible by a variety of methods but the use of a plasma-based method such as magnetron sputtering can have significant advantages. Here we present recent results in the fabrication of CdS/CdTe cells using rf magnetron sputtering and discuss some of the advantages that appear possible from the use of sputtering methods in this class of materials. Some of these advantages are particularly relevant as the polycrystalline thin-film PV community addresses issues related to the challenges of fabricating high efficiency tandem cells with efficiencies over 25%. Our best results have been obtained with sputtered ZnO:Al to achieve a CdTe solar cell with 14.0% efficiency at one sun for an air-mass-1.5 global spectrum. In addition, we have studied reactive sputtering of ZnTe:N which shows promise for use as a transparent back contact or recombination junction for alloyed II-VI-based top cells in a tandem solar-cell configuration.

  19. CVD-Based Valence-Mending Passivation for Crystalline-Si Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Meng [Arizona State Univ., Mesa, AZ (United States)

    2015-03-01

    The objective of this project is to investigate a new surface passivation technique, valence-mending passivation, for its applications in crystalline-Si solar cells to achieve significant efficiency improvement and cost reduction. As the enabling technique, the project includes the development of chemical vapor deposition recipes to passivate textured Si(100) and multicrystalline-Si surfaces by sulfur and the characterization of the passivated Si surfaces, including thermal stability, Schottky barrier height, contact resistance and surface recombination. One important application is to replace the Ag finger electrode in Si cells with Al to reduce cost, by ~$0.1/Wp, and allow terawatt-scale deployment of crystalline-Si solar cells. These all-Al Si cells require a low-temperature metallization process for the Al electrode, to be compatible with valence-mending passivation and to prevent Al diffusion into n-type Si. Another application is to explore valence-mending passivation of grain boundaries in multicrystalline Si by diffusing sulfur into grain boundaries, to reduce the efficiency gas between monocrystalline-Si solar cells and multicrystalline-Si cells. The major accomplishments of this project include: 1) Demonstration of chemical vapor deposition processes for valence-mending passivation of both monocrystalline Si(100) and multicrystalline Si surfaces. Record Schottky barriers have been demonstrated, with the new record-low barrier of less than 0.08 eV between Al and sulfur-passivated n-type Si(100) and the new record-high barrier of 1.14 eV between Al and sulfur-passivated p-type Si(100). On the textured p-type monocrystalline Si(100) surface, the highest barrier with Al is 0.85 eV by valence-mending passivation. 2) Demonstration of a low-temperature metallization process for Al in crystalline-Si solar cells. The new metallization process is based on electroplating of Al in a room-temperature ionic liquid. The resistivity of the electroplated Al is ~7×10–6

  20. Quasi-Solid-State Dye-Sensitized Solar Cells based on Mesoporous Silica SBA-15 Framework Materials

    Institute of Scientific and Technical Information of China (English)

    YANG Hong; CHENG Yun-Fei; LI Fu-You; ZHOU Zhi-Guo; YI Tao; HUANG Chun-Hui; JIA Neng-Qin

    2005-01-01

    @@ We develop a novel and efficient quasi-solid-state electrolyte based on the mesoporous silica SBA-15 as a framework material for a dye sensitized nanocrystalline TiO2 solar cell. A solar energy-to-electricity conversion efficiency of 4.34% is achieved under AM 1.5 illumination (100mW/cm2).

  1. Fabrication of CdS/CdTe-Based Thin Film Solar Cells Using an Electrochemical Technique

    Directory of Open Access Journals (Sweden)

    I. M. Dharmadasa

    2014-06-01

    Full Text Available Thin film solar cells based on cadmium telluride (CdTe are complex devices which have great potential for achieving high conversion efficiencies. Lack of understanding in materials issues and device physics slows down the rapid progress of these devices. This paper combines relevant results from the literature with new results from a research programme based on electro-plated CdS and CdTe. A wide range of analytical techniques was used to investigate the materials and device structures. It has been experimentally found that n-, i- and p-type CdTe can be grown easily by electroplating. These material layers consist of nano- and micro-rod type or columnar type grains, growing normal to the substrate. Stoichiometric materials exhibit the highest crystallinity and resistivity, and layers grown closer to these conditions show n → p or p → n conversion upon heat treatment. The general trend of CdCl2 treatment is to gradually change the CdTe material’s n-type electrical property towards i-type or p-type conduction. This work also identifies a rapid structural transition of CdTe layer at 385 ± 5 °C and a slow structural transition at higher temperatures when annealed or grown at high temperature. The second transition occurs after 430 °C and requires more work to understand this gradual transition. This work also identifies the existence of two different solar cell configurations for CdS/CdTe which creates a complex situation. Finally, the paper presents the way forward with next generation CdTe-based solar cells utilising low-cost materials in their columnar nature in graded bandgap structures. These devices could absorb UV, visible and IR radiation from the solar spectrum and combine impact ionisation and impurity photovoltaic (PV effect as well as making use of IR photons from the surroundings when fully optimised.

  2. Rectenna solar cells

    CERN Document Server

    Moddel, Garret

    2013-01-01

    Rectenna Solar Cells discusses antenna-coupled diode solar cells, an emerging technology that has the potential to provide ultra-high efficiency, low-cost solar energy conversion. This book will provide an overview of solar rectennas, and provide thorough descriptions of the two main components: the diode, and the optical antenna. The editors discuss the science, design, modeling, and manufacturing of the antennas coupled with the diodes. The book will provide concepts to understanding the challenges, fabrication technologies, and materials required to develop rectenna structures. Written by e

  3. 8% Efficient thin-film polycrystalline-silicon solar cells based on aluminium-induced crystallization and thermal CVD

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, I.; Carnel, L.; Van Gestel, D.; Beaucarne, G.; Poortmans, J. [IMEC VZW, Leuven (Belgium)

    2006-07-01

    A considerable cost reduction could be achieved in photovoltaics if efficient solar cells could be made from polycrystalline-silicon (pc-Si) thin films on inexpensive substrates. We recently showed promising solar cells results using pc-Si layers obtained by aluminium-induced crystallization (AlC) of amorphous silicon in combination with thermal chemical vapor deposition (CVD). To obtain highly efficient pc-Si solar cells, however, the material quality has to be optimized and cell processes different from those applied for standard bulk-Si solar cells have to be developed. In this work, we present the different process steps that we recently developed to enhance the efficiency of pc-Si solar cells on alumina substrates made by AlC in combination with thermal CVD. Our present pc-Si solar cell process yields cells in substrate configuration with efficiencies so far of up to 8.0%. Spin-on oxides are used to smoothen the alumina substrate surface to enhance the electronic quality of the absorber layers. The cells have heterojunction emitters consisting of thin a-Si layers that yield much higher V{sub oc} values than classical diffused emitters. Base and emitter contacts are on top of the cell in interdigitated finger patterns, leading to fill factors above 70%. The front surface of the cells is plasma textured to increase the current density. Our present pc-Si solar cell efficiency of 8% together with the fast progression that we have made over the last few years indicate the large potential of pc-Si solar cells based on the AlC seed layer approach. (author)

  4. Modeling and characterization of extremely thin absorber (eta) solar cells based on ZnO nanowires.

    Science.gov (United States)

    Mora-Seró, Iván; Giménez, Sixto; Fabregat-Santiago, Francisco; Azaceta, Eneko; Tena-Zaera, Ramón; Bisquert, Juan

    2011-04-21

    Extremely thin absorber (eta)-solar cells based on ZnO nanowires sensitized with a thin layer of CdSe have been prepared, using CuSCN as hole transporting material. Samples with significantly different photovoltaic performance have been analyzed and a general model of their behavior was obtained. We have used impedance spectroscopy to model the device discriminating the series resistance, the role of the hole conducting material CuSCN, and the interface process. Correlating the impedance analysis with the microstructural properties of the solar cell interfaces, a good description of the solar cell performance is obtained. The use of thick CdSe layers leads to high recombination resistances, increasing the open circuit voltage of the devices. However, there is an increase of the internal recombination in thick light absorbing layers that also inhibit a good penetration of CuSCN, reducing the photocurrent. The model will play an important role on the optimization of these devices. This analysis could have important implications for the modeling and optimization of all-solid devices using a sensitizing configuration.

  5. Microanalysis of Solar Cells

    Science.gov (United States)

    Kazmerski, Lawrence L.

    1980-11-01

    Applications of complementary surface analysis techniques (AES, SIMS, XPS) to solar cell device problems are discussed. Several examples of device interface and grain boundary problems are presented. Silicon, gallium arsenide and indium phosphide based devices are reviewed. Results of compositional and chemical analysis are correlated directly with EBIC measurements performed in-situ on identical sample areas. Those are, in turn, correlated with resulting photovoltaic device performance. The importance of microanalysis to the solution of critical device problems in the photovoltaics technology is emphasized.

  6. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres

    KAUST Repository

    Al-Amri, Amal M.

    2016-06-24

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%.

  7. Ultra high open circuit voltage (>1 V) of poly-3-hexylthiophene based organic solar cells with concentrated light

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Madsen, Morten Vesterager; Krebs, Frederik C

    2013-01-01

    One approach to increasing polymer solar cell efficiency is to blend poly-(3-hexyl-thiophene) with poorly electron accepting fullerene derivatives to obtain higher open circuit voltage (Voc). In this letter concentrated light is used to study the electrical properties of cell operation at up...... to 2000 solar intensities of these photoactive blends. Comparison of solar cells based on five different fullerene derivatives shows that at both short circuit and open circuit conditions, recombination remains unchanged up to 50 suns. Determination of Voc at 2000 suns demonstrated that the same...

  8. Development of Graphene Nano-Platelet Based Counter Electrodes for Solar Cells

    Directory of Open Access Journals (Sweden)

    Iftikhar Ahmad

    2015-09-01

    Full Text Available Graphene has been envisaged as a highly promising material for various field emission devices, supercapacitors, photocatalysts, sensors, electroanalytical systems, fuel cells and photovoltaics. The main goal of our work is to develop new Pt and transparent conductive oxide (TCO free graphene based counter electrodes (CEs for dye sensitized solar cells (DSSCs. We have prepared new composites which are based on graphene nano-platelets (GNPs and conductive polymers such as poly (3,4-ethylenedioxythiophene poly(styrenesulfonate (PEDOT:PSS. Films of these composites were deposited on non-conductive pristine glass substrates and used as CEs for DSSCs which were fabricated by the “open cell” approach. The electrical conductivity studies have clearly demonstrated that the addition of GNPs into PEDOT:PSS films resulted in a significant increase of the electrical conductivity of the composites. The highest solar energy conversion efficiency was achieved for CEs comprising of GNPs with the highest conductivity (190 S/cm and n-Methyl-2-pyrrolidone (NMP treated PEDOT:PSS in a composite film. The performance of this cell (4.29% efficiency compares very favorably to a DSSC with a standard commercially available Pt and TCO based CE (4.72% efficiency in the same type of open DSSC and is a promising replacement material for the conventional Pt and TCO based CE in DSSCs.

  9. A New Approach to Model-Based Simulation of Disordered Polymer Blend Solar Cells

    NARCIS (Netherlands)

    Stenzel, Ole; Koster, L. Jan Anton; Thiedmann, Ralf; Oosterhout, Stefan D.; Janssen, Rene A. J.; Schmidt, Volker

    2012-01-01

    The 3D nanomorphology of blends of two different (organic and inorganic) solid phases as used in bulk heterojunction solar cells is described by a spatial stochastic model. The model is fitted to 3D image data describing the photoactive layer of poly(3-hexylthiophene)-ZnO (P3HT-ZnO) solar cells fabr

  10. Multi-crystalline II-VI based multijunction solar cells and modules

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Brian E.; Connor, Stephen T.; Groves, James R.; Peters, Craig H.

    2015-06-30

    Multi-crystalline group II-VI solar cells and methods for fabrication of same are disclosed herein. A multi-crystalline group II-VI solar cell includes a first photovoltaic sub-cell comprising silicon, a tunnel junction, and a multi-crystalline second photovoltaic sub-cell. A plurality of the multi-crystalline group II-VI solar cells can be interconnected to form low cost, high throughput flat panel, low light concentration, and/or medium light concentration photovoltaic modules or devices.

  11. Simulation of characteristics of double-junction solar cells based on ZnSiP2 heterostructures on silicon substrate

    Science.gov (United States)

    Kudryashov, D. A.; Gudovskikh, A. S.; Mozharov, A. M.; Bol'shakov, A. D.; Mukhin, I. S.; Alferov, Zh. I.

    2015-12-01

    Design and operation modes of double-junction monolithic lattice-matched solar cells based on the ZnSiP2/Si system of materials have been calculated. The effect of the photoactive region thickness and minority carrier lifetime in ZnSiP2 layers on the efficiency of conversion of the incident solar light energy into electrical power was determined. It is shown that solar cells based on ZnSiP2/Si heterostructures can provide efficiencies of 28.8% at AM1.5D, 100 mW/cm2, and 33.3% at AM1.5D, 200 W/cm2.

  12. Solar conversion by concentration cells with hydrides. [Based on hydrogen pressure differential across protonic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Salomon, R.E.

    1979-01-01

    The efficiency of solar energy conversion in an electrochemical concentration cell which uses a metal hydride chemisorber is evaluated. It is shown that both constant volume and constant pressure cells can achieve the Carnot efficiency in principle. (SPH)

  13. High Efficiency Polymer Solar Cells Technologies

    Institute of Scientific and Technical Information of China (English)

    Abdrhman M G; LI Hang-quan; ZHANG Li-ye; ZHOU Bing

    2006-01-01

    The conjugated polymer-based solar cell is one of the most promising devices in search of sustainable, renewable energy sources in last decade. It is the youngest field in organic solar cell research and also is certainly the fastest growing one at the moment. In addition, the key factor for polymer-based solar cells with high-efficiency is to invent new materials. Organic solar cell has attracted significant researches and commercial interest due to its low cost in fabrication and flexibility in applications. However, they suffer from relatively low conversion efficiency. The summarization of the significance and concept of high efficiency polymer solar cell technologies are presented.

  14. Theory of plasmonic quantum-dot-based intermediate band solar cells.

    Science.gov (United States)

    Foroutan, Sina; Baghban, Hamed

    2016-05-01

    High scattering cross section of plasmonic nanoparticles in intermediate band solar cells (IBSCs) based on quantum dots (QDs) can obviate the low photon absorption in QD layers. In this report, we present a modeling procedure to extract the optical and electrical characteristics of a GaAs-based plasmonic intermediate band solar cell (PIBSC). It is shown that metal nanoparticles (MNPs) that are responsible for scattering of incident photons in the absorber layer can lead to photocurrent enhancement, provided that an optimum size and density is calculated. Proper design of QD layers that control the intermediate energy band location, as well as the loss-scattering trade-off of MNPs, can result in an efficiency increase of ∼4.2% in the PIBSC compared to a similar IBSC, and an increase of ∼5.9% compared to a reference GaAs PIN cell. A comprehensive discussion on the effect of intermediate band region width and current-voltage characteristics of the designed cell is presented.

  15. Vanadium oxide (VO) based low cost counter electrode in dye sensitized solar cell (DSSC) applications

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, P.; Pandian, Muthu Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in [SSN Research Centre, SSN College of Engineering, Kalavakkam-603 110, Chennai, Tamilnadu (India)

    2015-06-24

    Vanadium oxide nanostars were synthesized by chemical method. The prepared Vanadium oxide nanostars are introduced into dye sensitized solar cell (DSSC) as counter electrode (CE) catalyst to replace the expensive platinum (Pt). The products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) method. The photovoltaic performance of the VO as counter electrode based DSSC was evaluated under simulated standard global AM 1.5G sunlight (100 mW/cm{sup 2}). The solar to electrical energy conversion efficiency (η) of the DSSC was found to be 0.38%.This work expands the Counter electrode catalyst, which can help to reduce the cost of DSSC and thereby encourage their fundamental research and commercial application.

  16. Recent Development of Graphene-Based Cathode Materials for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Man-Ning Lu

    2016-01-01

    Full Text Available Dye-sensitized solar cells (DSSCs have attracted extensive attention for serving as potential low-cost alternatives to silicon-based solar cells. As a vital role of a typical DSSC, the counter electrode (CE is generally employed to collect electrons via the external circuit and speed up the reduction reaction of I3- to I- in the redox electrolyte. The noble Pt is usually deposited on a conductive glass substrate as CE material due to its excellent electrical conductivity, electrocatalytic activity, and electrochemical stability. To achieve cost-efficient DSSCs, reasonable efforts have been made to explore Pt-free alternatives. Recently, the graphene-based CEs have been intensively investigated to replace the high-cost noble Pt CE. In this paper, we provided an overview of studies on the electrochemical and photovoltaic characteristics of graphene-based CEs, including graphene, graphene/Pt, graphene/carbon materials, graphene/conducting polymers, and graphene/inorganic compounds. We also summarize the design and advantages of each graphene-based material and provide the possible directions for designing new graphene-based catalysts in future research for high-performance and low-cost DSSCs.

  17. Donor-acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells.

    Science.gov (United States)

    Wu, Jhong-Sian; Cheng, Sheng-Wen; Cheng, Yen-Ju; Hsu, Chain-Shu

    2015-03-07

    Harvesting solar energy from sunlight to generate electricity is considered as one of the most important technologies to address the future sustainability of humans. Polymer solar cells (PSCs) have attracted tremendous interest and attention over the past two decades due to their potential advantage to be fabricated onto large area and light-weight flexible substrates by solution processing at a lower cost. PSCs based on the concept of bulk heterojunction (BHJ) configuration where an active layer comprises a composite of a p-type (donor) and an n-type (acceptor) material represents the most useful strategy to maximize the internal donor-acceptor interfacial area allowing for efficient charge separation. Fullerene derivatives such as [6,6]-phenyl-C61 or 71-butyric acid methyl ester (PCBM) are the ideal n-type materials ubiquitously used for BHJ solar cells. The major effort to develop photoactive materials is numerously focused on the p-type conjugated polymers which are generally synthesized by polymerization of electron-rich donor and electron-deficient acceptor monomers. Compared to the development of electron-deficient comonomers (acceptor segments), the development of electron-rich donor materials is considerably flourishing. Forced planarization by covalently fastening adjacent aromatic and heteroaromatic subunits leads to the formation of ladder-type conjugated structures which are capable of elongating effective conjugation, reducing the optical bandgap, promoting intermolecular π-π interactions and enhancing intrinsic charge mobility. In this review, we will summarize the recent progress on the development of various well-defined new ladder-type conjugated materials. These materials serve as the superb donor monomers to prepare a range of donor-acceptor semi-ladder copolymers with sufficient solution-processability for solar cell applications.

  18. Dye sensitized solar cells.

    Science.gov (United States)

    Wei, Di

    2010-03-16

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO(2), ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  19. Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Di Wei

    2010-03-01

    Full Text Available Dye sensitized solar cell (DSSC is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  20. Triazoloisoquinoline-Based/Ruthenium-Hybrid Sensitizer for Efficient Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Che-Lung Lee

    2013-01-01

    Full Text Available Triazoloisoquinoline-based organic dyestuffs were synthesized and used in the fabrication of dye-sensitized solar cells (DSSCs. After cosensitization with ruthenium complex, the triazoloisoquinoline-based organic dyestuffs overcame the deficiency of ruthenium dyestuff absorption in the blue part of the visible spectrum. This method also fills the blanks of ruthenium dyestuff sensitized TiO2 film and forms a compact insulating molecular layer due to the nature of small molecular organic dyestuffs. The incident photon-to-electron conversion efficiency of N719 at shorter wavelength regions is 49%. After addition of a triazoloisoquinoline-based dyestuff for co-sensitization, the IPCE at 350–500 nm increased significantly. This can be attributed to the increased photocurrent of the cells, which improves the dye-sensitized photoelectric conversion efficiency from 6.23% to 7.84%, and the overall conversion efficiency increased by about 26%. As a consequence, this low molecular weight organic dyestuff is a promising candidate as coadsorbent and cosensitizer for highly efficient dye-sensitized solar cells.

  1. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes.

    Science.gov (United States)

    Abdou, E M; Hafez, H S; Bakir, E; Abdel-Mottaleb, M S A

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k=1.6, 2.1 and 1.9×10(-3)min(-1) for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100mWcm(-2), reveals highly stable DSSCs.

  2. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes

    Science.gov (United States)

    Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.

  3. Solar cell radiation handbook

    Science.gov (United States)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  4. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres

    OpenAIRE

    Amal M. Al-Amri; Po-Han Fu; Kun-Yu Lai; Hsin-Ping Wang; Lain-Jong Li; Jr-Hau He

    2016-01-01

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The ex...

  5. Cascade Organic Solar Cells

    KAUST Repository

    Schlenker, Cody W.

    2011-09-27

    We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.

  6. EDITORIAL: Nanostructured solar cells Nanostructured solar cells

    Science.gov (United States)

    Greenham, Neil C.; Grätzel, Michael

    2008-10-01

    Conversion into electrical power of even a small fraction of the solar radiation incident on the Earth's surface has the potential to satisfy the world's energy demands without generating CO2 emissions. Current photovoltaic technology is not yet fulfilling this promise, largely due to the high cost of the electricity produced. Although the challenges of storage and distribution should not be underestimated, a major bottleneck lies in the photovoltaic devices themselves. Improving efficiency is part of the solution, but diminishing returns in that area mean that reducing the manufacturing cost is absolutely vital, whilst still retaining good efficiencies and device lifetimes. Solution-processible materials, e.g. organic molecules, conjugated polymers and semiconductor nanoparticles, offer new routes to the low-cost production of solar cells. The challenge here is that absorbing light in an organic material produces a coulombically bound exciton that requires dissociation at a donor-acceptor heterojunction. A thickness of at least 100 nm is required to absorb the incident light, but excitons only diffuse a few nanometres before decaying. The problem is therefore intrinsically at the nano-scale: we need composite devices with a large area of internal donor-acceptor interface, but where each carrier has a pathway to the respective electrode. Dye-sensitized and bulk heterojunction cells have nanostructures which approach this challenge in different ways, and leading research in this area is described in many of the articles in this special issue. This issue is not restricted to organic or dye-sensitized photovoltaics, since nanotechnology can also play an important role in devices based on more conventional inorganic materials. In these materials, the electronic properties can be controlled, tuned and in some cases completely changed by nanoscale confinement. Also, the techniques of nanoscience are the natural ones for investigating the localized states, particularly at

  7. Doping saturation in dye-sensitized solar cells based on ZnO:Ga nanostructured photoanodes

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Agnaldo S. [Dpto. de Fisico-Quimica, Instituto de Quimica de Araraquara, Universidade Estadual Paulista, R. Prof. Francisco Degni n. 55, 14800-900, Araraquara, SP (Brazil); Institute of Chemistry, State University of Campinas, 13083-970, Campinas, SP (Brazil); Goes, Marcio S. [Dpto. de Fisico-Quimica, Instituto de Quimica de Araraquara, Universidade Estadual Paulista, R. Prof. Francisco Degni n. 55, 14800-900, Araraquara, SP (Brazil); Fabregat-Santiago, Francisco, E-mail: fran.fabregat@fca.uji.es [Grup de Dispositius Fotovotaics i Optoelectronics, Departament de Fisica, Universitat Jaume I, Av. Sos Baynat, s/n, 12071, Castello (Spain); Moehl, Thomas [Grup de Dispositius Fotovotaics i Optoelectronics, Departament de Fisica, Universitat Jaume I, Av. Sos Baynat, s/n, 12071, Castello (Spain); Davolos, Marian R. [Dpto. de Fisico-Quimica, Instituto de Quimica de Araraquara, Universidade Estadual Paulista, R. Prof. Francisco Degni n. 55, 14800-900, Araraquara, SP (Brazil); Bisquert, Juan [Grup de Dispositius Fotovotaics i Optoelectronics, Departament de Fisica, Universitat Jaume I, Av. Sos Baynat, s/n, 12071, Castello (Spain); Yanagida, Shozo [Center for Advanced Science and Innovation, Osaka University, Suita, Osaka, 565-0871 (Japan); Nogueira, Ana F. [Institute of Chemistry, State University of Campinas, 13083-970, Campinas, SP (Brazil); Bueno, Paulo R., E-mail: prbueno@iq.unesp.br [Dpto. de Fisico-Quimica, Instituto de Quimica de Araraquara, Universidade Estadual Paulista, R. Prof. Francisco Degni n. 55, 14800-900, Araraquara, SP (Brazil)

    2011-07-15

    Highlights: > ZnO:Ga-based photoelectrodes were compared to analogous ZnO solar cells. > The photoelectrodes capacitance is governed by Ga doping. > Short circuit current is determined by the increasing roughness factor. > The estimated donor density level exceeds 1021 cm-3. - Abstract: The origins of the performance of dye-sensitized solar cells based on ZnO:Ga nanostructured photoelectrodes, compared to analogous ZnO solar cells, were studied by means of impedance spectroscopy under illumination as a function of forward bias voltage. The film capacitance is governed by Ga doping. It can be assumed that the higher donor density of states of ZnO materials and, principally, ZnO:Ga-doped materials pin the Fermi level at a certain shallow energy level so that there is no photovoltage variation as a function of doping level. On the other hand, short circuit current is determined by the increasing roughness factor obtained at the higher doping levels while the lower fill factor values of DSCs based on ZnO:Ga, compared to analogous ZnO, were attributed to the higher ohmic resistive losses associated with the increasing photocurrent densities. In any case, the microstructure and morphological aspects were also considered as a possible origin of the low fill factor values. The estimated donor density level exceeds 10{sup 21} cm{sup -3}, indicating a high doping level in the semiconductor. As a consequence of the synthesis process of ZnO:Ga nanoparticles its size diminishes with the higher Ga contents producing an increase in the overall roughness factor of the films, and then a larger dye upload and short circuit current.

  8. Hybrid energy harvester based on nanopillar solar cells and PVDF nanogenerator.

    Science.gov (United States)

    Lee, Dae-Yeong; Kim, Hyunjin; Li, Hua-Min; Jang, A-Rang; Lim, Yeong-Dae; Cha, Seung Nam; Park, Young Jun; Kang, Dae Joon; Yoo, Won Jong

    2013-05-03

    A tandem device which integrates a PVDF nanogenerator and silicon (Si) nanopillar solar cell is fabricated. The Si nanopillar solar cell was fabricated using a mask-free plasma etching technique and annealing process. The PVDF nanogenerator was stacked on top of the Si nanopillar solar cell using a spinning method. The optical properties and the device performance of nanowire solar cells have been characterized, and the dependence of device performance versus annealing time or method has been investigated. Furthermore, the PVDF nanogenerator was operated with a 100 dB sound wave and a 0.8 V peak to peak output voltage was generated. This tandem device can successfully harvest energy from both sound vibration and solar light, demonstrating its strong potential as a future ubiquitous energy harvester.

  9. The investigation of an amidine-based additive in the perovskite films and solar cells

    Science.gov (United States)

    Zheng, Guanhaojie; Li, Liang; Wang, Ligang; Gao, Xingyu; Zhou, Huanping

    2017-01-01

    Here, we introduced acetamidine (C2H3N2H3, Aa)-based salt as an additive in the fabrication of perovskite (CH3NH3PbI3) layer for perovskite solar cells. It was found that as an amidine-based salt, this additive successfully enhanced the crystallinity of CH3NH3PbI3 and helped to form smooth and uniform films with comparable grain size and full coverage. Besides, perovskite film with additive showed a much longer carrier lifetime and an obviously enhanced open-circuit voltage in the corresponding devices, indicating that the acetamidine-based salt can reduce the carrier recombination in both the film and device. We further demonstrate a promising perovskite device based on acetamidine salt by using a configuration of ITO/TiO2/Perovskite/Spiro-OMeTAD/Au under < 150 °C fabrication condition. A power conversion efficiency (PCE) of 16.54% was achieved, which is much higher than the control device without acetamidine salt. These results present a simple method for film quality optimization of perovskite to further improve photovoltaic performances of perovskite solar cells, which may also benefit the exploration of A cation in perovskite materials. Project supported by Young Talent Thousand Program and ENN Group.

  10. Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells.

    Science.gov (United States)

    Lee, Jin-Wook; Kim, Hui-Seon; Park, Nam-Gyu

    2016-02-16

    Since the first report on the long-term durable 9.7% solid-state perovskite solar cell employing methylammonium lead iodide (CH3NH3PbI3), mesoporous TiO2, and 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-MeOTAD) in 2012, following the seed technologies on perovskite-sensitized liquid junction solar cells in 2009 and 2011, a surge of interest has been focused on perovskite solar cells due to superb photovoltaic performance and extremely facile fabrication processes. The power conversion efficiency (PCE) of perovskite solar cells reached 21% in a very short period of time. Such an unprecedentedly high photovoltaic performance is due to the intrinsic optoelectronic property of organolead iodide perovskite material. Moreover, a high dielectric constant, sub-millimeter scale carrier diffusion length, an underlying ferroelectric property, and ion migration behavior can make organolead halide perovskites suitable for multifunctionality. Thus, besides solar cell applications, perovskite material has recently been applied to a variety fields of materials science such as photodetectors, light emitting diodes, lasing, X-ray imaging, resistive memory, and water splitting. Regardless of application areas, the growth of a well-defined perovskite layer with high crystallinity is essential for effective utilization of its excellent physicochemical properties. Therefore, an effective methodology for preparation of high quality perovskite layers is required. In this Account, an effective methodology for production of high quality perovskite layers is described, which is the Lewis acid-base adduct approach. In the solution process to form the perovskite layer, the key chemicals of CH3NH3I (or HC(NH2)2I) and PbI2 are used by dissolving them in polar aprotic solvents. Since polar aprotic solvents bear oxygen, sulfur, or nitrogen, they can act as a Lewis base. In addition, the main group compound PbI2 is known to be a Lewis acid. Thus, PbI2 has a chance

  11. Sputtered Zn(O,S) for junction formation in chalcopyrite-based thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, A.; Just, J.; Kieven, D.; Lauermann, I.; Rissom, T.; Klenk, R. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Palm, J. [AVANCIS GmbH and Co. KG, Munich (Germany); Neisser, A. [Sulfurcell Solartechnik GmbH, Berlin (Germany)

    2010-06-15

    In an effort to eliminate the standard CdS buffer layer from chalcopyrite-based thin film solar cells we have investigated sputtered Zn(O,S) films. They were prepared by partially reactive sputtering from a ZnS target in an argon/oxygen mixture. Single phase, polycrystalline films were achieved for substrate temperatures of at least 100 C. Test devices prepared in a completely dry process showed superior blue response and active area conversion efficiencies up to 13.7%. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. PCDTBT based solar cells: one year of operation under real-world conditions

    Science.gov (United States)

    Zhang, Yiwei; Bovill, Edward; Kingsley, James; Buckley, Alastair R.; Yi, Hunan; Iraqi, Ahmed; Wang, Tao; Lidzey, David G.

    2016-02-01

    We present measurements of the outdoor stability of PCDTBT:PC71BM based bulk heterojunction organic solar cells for over the course of a year. We find that the devices undergo a burn-in process lasting 450 hours followed by a TS80 lifetime of up to 6200 hours. We conclude that in the most stable devices, the observed TS80 lifetime is limited by thermally-induced stress between the device layers, as well as materials degradation as a result of edge-ingress of water or moisture through the encapsulation.

  13. Optical and Structural Characterization of Pin Photodetector Based on Germanium Nanocrystals for Third Generation Solar Cells

    Directory of Open Access Journals (Sweden)

    K.K. Sossoe

    2016-11-01

    Full Text Available We investigated the structural and optoelectronic properties of p-n germanium nanocrystals based junctions embedded between GaAs substrate and layers of ZnO:Al or a-Si:H. Scanning electron microscopy and scanning tunneling microscopy were used on these junctions in this work. Calculations of tunneling current on the substrate showed effect of localized defects trapping Fermi level at the surface tending to make a semi-insulating substrate. The average value of the diameter of the Ge nanoparticle is around 12.5 nm. These results lay the foundation for the development of solar cells which active part is made of GeNCs.

  14. Organic photovoltaic solar cells based on some pure and sensitized dyes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.D. (Jodhpur Univ. (IN). Dept. of Physics); Mathur, S.C.; Dube, D.C. (Indian Inst. of Tech., Delhi (IN). Dept. of Physics)

    1991-12-15

    Organic photovoltaic solar cells based on metal-dye or sensitized dye-SnO{sub 2} junctions are formed. The electrical and photovoltaic characteristics of these Schottky junctions have been studied on two pure and sensitized dyes (Eriochrome Blue Black B and Rodamine B). From the photovoltaic action spectra the active region responsible for electric power generation was found to be confined to the SnO{sub 2}-dye interface. The effect of sensitization, electrode material and intensity on photovoltaic and electric parameters has also been discussed in detail. Finally the C-V characteristics are discussed in detail. (author).

  15. Obviating the requirement for oxygen in SnO2-based solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Docampo, Pablo; Snaith, Henry J

    2011-06-03

    Organic semiconductors employed in solar cells are perfectly stable to solar irradiation provided oxygen content can be kept below 1 ppm. Paradoxically, the state-of-the-art molecular hole-transporter-based solid-state dye-sensitized solar cells only operate efficiently if measured in an atmosphere containing oxygen. Without oxygen, these devices rapidly lose photovoltage and photocurrent and are rendered useless. Clearly this peculiar requirement has detrimental implications to the long term stability of these devices. Through characterizing the solar cells in air and in oxygen-free atmospheres, and considering the device architecture, we identify that direct contact between the metallic cathode and the mesoporous metal oxide photo-anode is responsible for a shunting path through the device. This metal-metal oxide contact forms a Schottky barrier under ambient conditions and the barrier is suitably high so as to prevent significant shunting of the solar cells. However, under light absorption in an anaerobic atmosphere the barrier reduces significantly, opening a low resistance shunting path which dominates the current-voltage characteristics in the solar cell. By incorporating an extra interlayer of insulating mesoporous aluminum oxide, on top of the mesoporous semiconducting metal oxide electrode, we successfully block this shunting path and subsequently the devices operate efficiently in an oxygen-free atmosphere, enabling the possibility of long term stability of solid-state dye-sensitized solar cells.

  16. Highly efficient betanin dye based ZnO and ZnO/Au Schottky barrier solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Thankappan, Aparna, E-mail: aparna.subhash@gmail.com [International School of Photonics (ISP), Cochin University of Science and Technology, Kochi (India); Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kochi (India); Divya, S.; Augustine, Anju K.; Girijavallaban, C.P.; Radhakrishnan, P.; Thomas, Sheenu; Nampoori, V.P.N. [International School of Photonics (ISP), Cochin University of Science and Technology, Kochi (India)

    2015-05-29

    Performance of dye sensitized solar cells based on betanin natural dye from red beets with various nanostructured photoanodes on transparent conducting glass has been investigated. In four different electrolyte systems cell efficiency of 2.99% and overall photon to current conversion efficiency of 20% were achieved using ZnO nanosheet electrode with iodide based electrolyte in acetonitrile solution. To enhance solar harvesting in organic solar cells, uniform sized metal nanoparticles (gold (Au) of ~ 8 nm) synthesized via microwave irradiation method were incorporated into the device consisting of ZnO. Enhanced power conversion efficiency of 1.71% was achieved with ZnO/Au nanocomposite compared to the 0.868% efficiency of the bare ZnO nanosheet cell with ferrocene based electrolyte. - Highlights: • The influence of electrolytes has been studied. • Cell efficiency of 2.99% was achieved by ZnO. • Enhancement of efficiency with incorporation of Au nano.

  17. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Boccard, Mathieu; Holman, Zachary C. [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706 (United States)

    2015-08-14

    Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  18. Photovoltaic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  19. Photovoltaic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  20. High-efficiency si/polymer hybrid solar cells based on synergistic surface texturing of Si nanowires on pyramids.

    Science.gov (United States)

    He, Lining; Lai, Donny; Wang, Hao; Jiang, Changyun; Rusli

    2012-06-11

    An efficient Si/PEDOT:PSS hybrid solar cell using synergistic surface texturing of Si nanowires (SiNWs) on pyramids is demonstrated. A power conversion efficiency (PCE) of 9.9% is achieved from the cells using the SiNW/pyramid binary structure, which is much higher than similar cells based on planar Si, pyramid-textured Si, and SiNWs. The PCE is the highest reported to-date for hybrid cells based on Si nanostructures and PEDOT.

  1. Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Colodrero, Silvia; Lopez-Lopez, Carmen; Miguez, Hernan [Instituto de Ciencia de Materiales de Sevilla (CSIC-US), Centro de Investigaciones Cientificas Isla de la Cartuja, C/Americo Vespucio 49, 41092 Sevilla (Spain); Forneli, Amparo; Pelleja, Laia [Institute of Chemical Research of Catalonia (ICIQ) Avda., Paisos Catalans 16, 43007 Tarragona (Spain); Palomares, Emilio [Institute of Chemical Research of Catalonia (ICIQ) Avda., Paisos Catalans 16, 43007 Tarragona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), Avda. Lluis Companys 23, 08010 Barcelona (Spain)

    2012-03-21

    A working electrode design based on a highly porous 1D photonic crystal structure that opens the path towards high photocurrents in thin, transparent, dye-sensitized solar cells is presented. By enlarging the average pore size with respect to previous photonic crystal designs, the new working electrode not only increases the device photocurrent, as predicted by theoretical models, but also allows the observation of an unprecedented boost of the cell photovoltage, which can be attributed to structural modifications caused during the integration of the photonic crystal. These synergic effects yield conversion efficiencies of around 3.5% by using just 2 {mu}m thick electrodes, with enhancements between 100% and 150% with respect to reference cells of the same thickness. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Electric Characterization and Modeling of Microfluidic-Based Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Adriano Sacco

    2012-01-01

    Full Text Available The electric response to an external periodic voltage of small amplitude of dye-sensitized solar cells (DSCs made up with an alternative architecture has been investigated. DSCs have been fabricated with a reversible sealing structure, based on microfluidic concepts, with a precise control on the geometric parameters of the active chamber. Cells with different electrolyte thicknesses have been characterized, without varying the thickness of the TiO2 layer, both under illumination and in dark conditions. Measurements of the electric impedance have been performed in the presence of an external bias ranging from 0 V to 0.8 V. The experimental data have been analyzed in terms of a transmission line model, with two transport channels. The results show that the photovoltaic performances of the microfluidic cell are comparable with those obtained in irreversibly sealed structures, actually demonstrating the reliability of the proposed device.

  3. Investigation of Non-Vacuum Deposition Techniques in Fabrication of Chalcogenide-Based Solar Cell Absorbers

    KAUST Repository

    Alsaggaf, Ahmed

    2015-07-01

    The environmental challenges are increasing, and so is the need for renewable energy. For photovoltaic applications, thin film Cu(In,Ga)(S,Se)2 (CIGS) and CuIn(S,Se)2 (CIS) solar cells are attractive with conversion efficiencies of more than 20%. However, the high-efficiency cells are fabricated using vacuum technologies such as sputtering or thermal co-evaporation, which are very costly and unfeasible at industrial level. The fabrication involves the uses of highly toxic gases such as H2Se, adding complexity to the fabrication process. The work described here focused on non-vacuum deposition methods such as printing. Special attention has been given to printing designed in a moving Roll-to-Roll (R2R) fashion. The results show potential of such technology to replace the vacuum processes. Conversion efficiencies for such non-vacuum deposition of Cu(In,Ga)(S,Se)2 solar cells have exceeded 15% using hazardous chemicals such as hydrazine, which is unsuitable for industrial scale up. In an effort to simplify the process, non-toxic suspensions of Cu(In,Ga)S2 molecular-based precursors achieved efficiencies of ~7-15%. Attempts to further simplify the selenization step, deposition of CuIn(S,Se)2 particulate solutions without the Ga doping and non-toxic suspensions of Cu(In,Ga)Se2 quaternary precursors achieved efficiencies (~1-8%). The contribution of this research was to provide a new method to monitor printed structures through spectral-domain optical coherence tomography SD-OCT in a moving fashion simulating R2R process design at speeds up to 1.05 m/min. The research clarified morphological and compositional impacts of Nd:YAG laser heat-treatment on Cu(In,Ga)Se2 absorber layer to simplify the annealing step in non-vacuum environment compatible to R2R. Finally, the research further simplified development methods for CIGS solar cells based on suspensions of quaternary Cu(In,Ga)Se2 precursors and ternary CuInS2 precursors. The methods consisted of post deposition reactive

  4. Efficient nanorod-based amorphous silicon solar cells with advanced light trapping

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Y. [Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, High Tech Campus, Building 21, 5656 AE Eindhoven (Netherlands); Department of Applied Physics, Plasma & Materials Processing, Eindhoven University of Technology (TUE), P.O. Box 513, 5600 MB Eindhoven (Netherlands); Lare, M. C. van; Polman, A. [Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Veldhuizen, L. W.; Schropp, R. E. I., E-mail: r.e.i.schropp@tue.nl [Department of Applied Physics, Plasma & Materials Processing, Eindhoven University of Technology (TUE), P.O. Box 513, 5600 MB Eindhoven (Netherlands); Rath, J. K. [Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, High Tech Campus, Building 21, 5656 AE Eindhoven (Netherlands)

    2015-11-14

    We present a simple, low-cost, and scalable approach for the fabrication of efficient nanorod-based solar cells. Templates with arrays of self-assembled ZnO nanorods with tunable morphology are synthesized by chemical bath deposition using a low process temperature at 80 °C. The nanorod templates are conformally coated with hydrogenated amorphous silicon light absorber layers of 100 nm and 200 nm thickness. An initial efficiency of up to 9.0% is achieved for the optimized design. External quantum efficiency measurements on the nanorod cells show a substantial photocurrent enhancement both in the red and the blue parts of the solar spectrum. Key insights in the light trapping mechanisms in these arrays are obtained via a combination of three-dimensional finite-difference time-domain simulations, optical absorption, and external quantum efficiency measurements. Front surface patterns enhance the light incoupling in the blue, while rear side patterns lead to enhanced light trapping in the red. The red response in the nanorod cells is limited by absorption in the patterned Ag back contact. With these findings, we develop and experimentally realize a further advanced design with patterned front and back sides while keeping the Ag reflector flat, showing significantly enhanced scattering from the back reflector with reduced parasitic absorption in the Ag and thus higher photocurrent generation. Many of the findings in this work can serve to provide insights for further optimization of nanostructures for thin-film solar cells in a broad range of materials.

  5. Industrial Silicon Wafer Solar Cells

    Directory of Open Access Journals (Sweden)

    Dirk-Holger Neuhaus

    2007-01-01

    Full Text Available In 2006, around 86% of all wafer-based silicon solar cells were produced using screen printing to form the silver front and aluminium rear contacts and chemical vapour deposition to grow silicon nitride as the antireflection coating onto the front surface. This paper reviews this dominant solar cell technology looking into state-of-the-art equipment and corresponding processes for each process step. The main efficiency losses of this type of solar cell are analyzed to demonstrate the future efficiency potential of this technology. In research and development, more various advanced solar cell concepts have demonstrated higher efficiencies. The question which arises is “why are new solar cell concepts not transferred into industrial production more frequently?”. We look into the requirements a new solar cell technology has to fulfill to have an advantage over the current approach. Finally, we give an overview of high-efficiency concepts which have already been transferred into industrial production.

  6. Effective solid electrolyte based on benzothiazolium for dye-sensitized solar cells.

    Science.gov (United States)

    Han, Lu; Wang, Ye Feng; Zeng, Jing Hui

    2014-12-24

    Thiaozole/benzothiaozole-based dicationic conductors were synthesized and applied as solid-state electrolyte in dye-sensitized solar cells (DSSCs). X-ray diffraction, scanning electron microscopy, thermal gravimetric analysis, steady-state voltammogram, photocurrent intensity-photovoltage test, and electrochemical impedance spectroscopy are used to characterize the materials and the mechanism of the cell performance. Compared to the traditional monocationic crystals, the dicationic crystals have a larger size and can provide more opportunities to fine-tune their physical/chemical properties. As a consequence, this solid-state electrolyte-based DSSC achieved photoelectric conversion efficiency of 7.90% under full air-mass (AM 1.5) sunlight (100 mW·cm(-2)).

  7. Thin-film Organic-based Solar Cells for Space Power

    Science.gov (United States)

    Bailey, Sheila G.; Harris, Jerry D.; Hepp, Aloysius F.; Anglin, Emily J.; Raffaelle, Ryne P.; Clark, Harry R., Jr.; Gardner, Susan T. P.; Sun, Sam S.

    2002-01-01

    Recent advances in dye-sensitized and organic polymer solar cells have lead NASA to investigate the potential of these devices for space power generation. Dye-sensitized solar cells were exposed to simulated low-earth orbit conditions and their performance evaluated. All cells were characterized under simulated air mass zero (AM0) illumination. Complete cells were exposed to pressures less than 1 x 10(exp -7) torr for over a month, with no sign of sealant failure or electrolyte leakage. Cells from Solaronix SA were rapid thermal cycled under simulated low-earth orbit conditions. The cells were cycled 100 times from -80 C to 80 C, which is equivalent to 6 days in orbit. The best cell had a 4.6 percent loss in efficiency as a result of the thermal cycling. In a separate project, novel -Bridge-Donor-Bridge- Acceptor- (-BDBA-) type conjugated block copolymer systems have been synthesized and characterized by photoluminescence (PL). In comparison to pristine donor or acceptor, the PL emissions of final -B-D-B-A- block copolymer films were quenched over 99 percent. Effective and efficient photo induced electron transfer and charge separation occurs due to the interfaces of micro phase separated donor and acceptor blocks. The system is very promising for a variety high efficiency light harvesting applications. Under an SBIR contract, fullerene-doped polymer-based photovoltaic devices were fabricated and characterized. The best devices showed overall power efficiencies of approx. 0.14 percent under white light. Devices fabricated from 2 percent solids content solutions in chlorobenzene gave the best results. Presently, device lifetimes are too short to be practical for space applications.

  8. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  9. Imine-linked receptors decorated ZnO-based dye-sensitized solar cells

    Indian Academy of Sciences (India)

    SATBIR SINGH; AMARPAL SINGH; NAVNEET KAUR

    2016-10-01

    This study reports the synthesis, characterization and photophysical properties of imine-linked receptors decorated ZnO nanoparticles using wet precipitation method. Initially, polymer dye 3 was synthesized usingcondensation reaction between 2-furancarboxaldehyde 1 and polyethylenimine 2. The decoration of imine-linked receptors on ZnO nanoparticles (sample A) was characterized and investigated by X-ray diffraction, scanning electronmicroscope and dynamic light scattering spectroscopic studies. Further, polymer dye 3 was added to ruthenium chloride (RuCl$_3$) to form a polymer–ruthenium-based composite dye-capped ZnO nanoparticles (sample B).The optical properties of sample A were evaluated by fluorescence and UV–Vis spectroscopy. The samples A and B were further processed to dye-sensitized solar cells using wet precipitation method. The results of observationsrevealed that the addition of ruthenium–polymer dye molecules increased the light harvesting capacity of ZnO-based DSSCs. A maximum solar power to electricity conversion efficiency ($\\eta$) of 3.83% was recorded for sample B-based DSSCs with ruthenium–metal complex dye as a good photosensitizer. The recorded photovoltaic efficiency of sample B-based DSSCs was enhanced by 1.36% compared to sample A-based DSSCs.

  10. 25th anniversary article: isoindigo-based polymers and small molecules for bulk heterojunction solar cells and field effect transistors.

    Science.gov (United States)

    Wang, Ergang; Mammo, Wendimagegn; Andersson, Mats R

    2014-03-26

    Driven by the potential advantages and promising applications of organic solar cells, donor-acceptor (D-A) polymers have been intensively investigated in the past years. One of the strong electron-withdrawing groups that were widely used as acceptors for the construction of D-A polymers for applications in polymer solar cells and FETs is isoindigo. The isoindigo-based polymer solar cells have reached efficiencies up to ∼7% and hole mobilities as high as 3.62 cm(2) V(-1) s(-1) have been realized by FETs based on isoindigo polymers. Over one hundred isoindigo-based small molecules and polymers have been developed in only three years. This review is an attempt to summarize the structures and properties of the isoindigo-based polymers and small molecules that have been reported in the literature since their inception in 2010. Focus has been given only to the syntheses and device performances of those polymers and small molecules that were designed for use in solar cells and FETs. Attempt has been made to deduce structure-property relationships that would guide the design of isoindigo-based materials. It is expected that this review will present useful guidelines for the design of efficient isoindigo-based materials for applications in solar cells and FETs.

  11. Welded solar cell interconnection

    Science.gov (United States)

    Stofel, E. J.; Browne, E. R.; Meese, R. A.; Vendura, G. J.

    1982-01-01

    The efficiency of the welding of solar-cell interconnects is compared with the efficiency of soldering such interconnects, and the cases in which welding may be superior are examined. Emphasis is placed on ultrasonic welding; attention is given to the solar-cell welding machine, the application of the welding process to different solar-cell configurations, producibility, and long-life performance of welded interconnects. Much of the present work has been directed toward providing increased confidence in the reliability of welding using conditions approximating those that would occur with large-scale array production. It is concluded that there is as yet insufficient data to determine which of three methods (soldering, parallel gap welding, and ultrasonic welding) provides the longest-duration solar panel life.

  12. Optimizing the fabrication process and interplay of device components of polymer solar cells using a field-based multiscale solar-cell algorithm

    Science.gov (United States)

    Donets, Sergii; Pershin, Anton; Baeurle, Stephan A.

    2015-05-01

    Both the device composition and fabrication process are well-known to crucially affect the power conversion efficiency of polymer solar cells. Major advances have recently been achieved through the development of novel device materials and inkjet printing technologies, which permit to improve their durability and performance considerably. In this work, we demonstrate the usefulness of a recently developed field-based multiscale solar-cell algorithm to investigate the influence of the material characteristics, like, e.g., electrode surfaces, polymer architectures, and impurities in the active layer, as well as post-production treatments, like, e.g., electric field alignment, on the photovoltaic performance of block-copolymer solar-cell devices. Our study reveals that a short exposition time of the polymer bulk heterojunction to the action of an external electric field can lead to a low photovoltaic performance due to an incomplete alignment process, leading to undulated or disrupted nanophases. With increasing exposition time, the nanophases align in direction to the electric field lines, resulting in an increase of the number of continuous percolation paths and, ultimately, in a reduction of the number of exciton and charge-carrier losses. Moreover, we conclude by modifying the interaction strengths between the electrode surfaces and active layer components that a too low or too high affinity of an electrode surface to one of the components can lead to defective contacts, causing a deterioration of the device performance. Finally, we infer from the study of block-copolymer nanoparticle systems that particle impurities can significantly affect the nanostructure of the polymer matrix and reduce the photovoltaic performance of the active layer. For a critical volume fraction and size of the nanoparticles, we observe a complete phase transformation of the polymer nanomorphology, leading to a drop of the internal quantum efficiency. For other particle-numbers and -sizes

  13. Dye Sysentized Solar Cell (Dyssc

    Directory of Open Access Journals (Sweden)

    A. Dileep,

    2015-11-01

    Full Text Available This paper presents a Dye sensitized solar cell (DYSSC, which is called as future generation solar cell. It is a new class of green photovoltaic cell based on photosynthesis principle in nature. DYSSCs are fabricated using two different natural dyes as sensitizers, which extracted from the materials existing in nature and our life, such as flowers, leaves, fruits, traditional Chinese medicines, and beverages. The use of sensitizers having a broad absorption band in conjunction with oxide films of nanocrystalline morphology permits to harvest a large fraction of sunlight. There are good prospects to produce these cells at lower cost and much better efficiency than conventional semiconductor devices by introducing various chemical and natural dyes. DYSSC are implemented with simple and new technique to overcome the energy crisis and excess cost of semiconductor solar cells.

  14. Characterisation of CuInSe2-based solar cells with different buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Werth, Anton; Ohland, Joerg; Riedel, Ingo; Parisi, Juergen [Abteilung EHF, Institiut fuer Physik, Carl von Ossietzky Universitaet, Oldenburg (Germany); Rechid, Juan [CIS Solartechnik GmbH and Co. KG, c/o Aurubis AG, Hamburg (Germany)

    2010-07-01

    The optoelectronic properties of the buffer layer in chalcopyrite solar cells may present strong efficiency limitation due to parasitic absorption, interface states and band discontinuities in respect of the light absorber. In this work we investigated CuInSe{sub 2}-based (CIS) solar cells processed on flexible steel substrates with In{sub 2}S{sub 3} and CdS buffer layers by means of temperature dependent current-voltage (J-V) measurements at varying illumination intensity and external quantum efficiency (EQE) measurements. Under illumination the J-V curves of both cell types exhibit distinct ''s''-shape non-ideality (roll over) at temperatures below 260 K. The occurrence of the ''s''-shape in the 4th and/or 1st quadrant is explained by an heuristic model which relates the band discontinuity being present at the buffer CIS interface to limitation of the minority carrier extraction and injection. Further, we employed the suns-V{sub oc} method to extract the diode parameters saturation current and diode ideality from the J-V characteristics under illumination (small effect of series resistance) in order to identify clues on dominant surface or bulk recombination. We conclude that interface recombination is less dominant in the investigated samples independent of the used buffer material.

  15. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency

    Science.gov (United States)

    Qin, Peng; Tanaka, Soichiro; Ito, Seigo; Tetreault, Nicolas; Manabe, Kyohei; Nishino, Hitoshi; Nazeeruddin, Mohammad Khaja; Grätzel, Michael

    2014-05-01

    Organo-lead halide perovskites have attracted much attention for solar cell applications due to their unique optical and electrical properties. With either low-temperature solution processing or vacuum evaporation, the overall conversion efficiencies of perovskite solar cells with organic hole-transporting material were quickly improved to over 15% during the last 2 years. However, the organic hole-transporting materials used are normally quite expensive due to complicated synthetic procedure or high-purity requirement. Here, we demonstrate the application of an effective and cheap inorganic p-type hole-transporting material, copper thiocyanate, on lead halide perovskite-based devices. With low-temperature solution-process deposition method, a power conversion efficiency of 12.4% was achieved under full sun illumination. This work represents a well-defined cell configuration with optimized perovskite morphology by two times of lead iodide deposition, and opens the door for integration of a class of abundant and inexpensive material for photovoltaic application.

  16. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency

    KAUST Repository

    Qin, Peng

    2014-05-12

    Organo-lead halide perovskites have attracted much attention for solar cell applications due to their unique optical and electrical properties. With either low-temperature solution processing or vacuum evaporation, the overall conversion efficiencies of perovskite solar cells with organic hole-transporting material were quickly improved to over 15% during the last 2 years. However, the organic hole-transporting materials used are normally quite expensive due to complicated synthetic procedure or high-purity requirement. Here, we demonstrate the application of an effective and cheap inorganic p-type hole-transporting material, copper thiocyanate, on lead halide perovskite-based devices. With low-temperature solution-process deposition method, a power conversion efficiency of 12.4% was achieved under full sun illumination. This work represents a well-defined cell configuration with optimized perovskite morphology by two times of lead iodide deposition, and opens the door for integration of a class of abundant and inexpensive material for photovoltaic application. © 2014 Macmillan Publishers Limited.

  17. Synthesis, characterization, and transistor and solar cell applications of a naphthobisthiadiazole-based semiconducting polymer.

    Science.gov (United States)

    Osaka, Itaru; Shimawaki, Masafumi; Mori, Hiroki; Doi, Iori; Miyazaki, Eigo; Koganezawa, Tomoyuki; Takimiya, Kazuo

    2012-02-22

    We report the synthesis and characterization of a novel donor-acceptor semiconducting polymer bearing naphthobisthiadiazole (NTz), a doubly benzothiadiazole (BTz)-fused ring, and its applications to organic field-effect transistors and bulk heterojunction solar cells. With NTz's highly π-extended structure and strong electron affinity, the NTz-based polymer (PNTz4T) affords a smaller bandgap and a deeper HOMO level than the BTz-based polymer (PBTz4T). PNTz4T exhibits not only high field-effect mobilities of ~0.56 cm(2)/(V s) but also high photovoltaic properties with power conversion efficiencies of ~6.3%, both of which are significantly high compared to those for PBTz4T. This is most likely due to the more suitable electronic properties and, importantly, the more highly ordered structure of PNTz4T in the thin film than that of PBTz4T, which might originate in the different symmetry between the cores. NTz, with centrosymmetry, can lead to a more linear backbone in the present polymer system than BTz with axisymmetry, which might be favorable for better molecular ordering. These results demonstrate great promise for using NTz as a bulding unit for high-performance semiconducting polymers for both transistors and solar cells.

  18. Specifications of ZnO growth for heterostructure solar cell and PC1D based simulations

    Directory of Open Access Journals (Sweden)

    Babar Hussain

    2015-12-01

    Full Text Available This data article is related to our recently published article (Hussain et al., in press [1] where we have proposed a new solar cell model based on n-ZnO as front layer and p-Si as rear region. The ZnO layer will act as an active n-layer as well as antireflection (AR coating saving considerable processing cost. There are several reports presenting use of ZnO as window/antireflection coating in solar cells (Mansoor et al., 2015; Haq et al., 2014; Hussain et al., 2014; Matsui et al., 2014; Ding et al., 2014 [2–6] but, here, we provide data specifically related to simultaneous use of ZnO as n-layer and AR coating. Apart from the information we already published, we provide additional data related to growth of ZnO (with and without Ga incorporation layers using MOCVD. The data related to PC1D based simulation of internal and external quantum efficiencies with and without antireflection effects of ZnO as well as the effects of doping level in p-Si on current–voltage characteristics have been provided.

  19. Effective Improvement of the Photovoltaic Performance of Carbon-Based Perovskite Solar Cells by Additional Solvents

    Institute of Scientific and Technical Information of China (English)

    Chenxi Zhang; Yudan Luo; Xiaohong Chen; Yiwei Chen; Zhuo Sun; Sumei Huang

    2016-01-01

    A solvent-assisted methodology has been developed to synthesize CH3NH3PbI3 perovskite absorber layers. It involved the use of a mixed solvent of CH3NH3I, PbI2,γ-butyrolactone, and dimethyl sulfoxide (DMSO) followed by the addition of chlorobenzene (CB). The method produced ultra-flat and dense perovskite capping layers atop mesoporous TiO2 films, enabling a remarkable improvement in the performance of free hole transport material (HTM) carbon elec-trode-based perovskite solar cells (PSCs). Toluene (TO) was also studied as an additional solvent for comparison. At the annealing temperature of 100 °C, the fabricated HTM-free PSCs based on drop-casting CB demonstrated power conversion efficiency (PCE) of 9.73%, which is 36 and 71% higher than those fabricated from the perovskite films using TO or without adding an extra solvent, respectively. The interaction between the PbI2–DMSO–CH3NH3I intermediate phase and the additional solvent was discussed. Furthermore, the influence of the annealing temperature on the absorber film formation, morphology, and crystalline structure was investigated and correlated with the photovoltaic performance. Highly efficient, simple, and stable HTM-free solar cells with a PCE of 11.44% were prepared utilizing the optimum perovskite absorbers annealed at 120 °C.

  20. Self-sustained cabinet based on fuel cell technology and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Rafael Augusto de Oliveira; Valentim, Rafael Bertier; Glir, Joao Raphael Zanlorensi; Stall, Alexandre; Sommer, Elise Meister; Sanches, Luciana Schimidilin; Dias, Fernando Gallego; Korndorfer, Heitor Medeiros de Albuquerque; Vargas, Jose Viriato Coelho [Universidade Federal do Parana (DEMEC/UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica], Email: rafaelcorrea123@hotmail.com; Ordonez, Juan Carlos [Florida State University, Tallahasse, Florida (United States). Dept. of Mechanical Engineering. Center for Advanced Power Systems

    2010-07-01

    Along the past few years, there has been intensive research on clean and renewable energy production. Two main reasons have been pointed out: pollution caused by oil based fuels consumption and their availability diminution, which increases their production costs. Fuel Cells have shown to be a clean and renewable energy source, which reveals them as a promising solution, although their technology needs further development. Fuel Cells produce electricity, water and heat consuming hydrogen and oxygen, this provided pure or from a natural air source. Present research has combined different equipment to compose a self-sustaining fuel cells technology based cabinet for energy production, which is a Regenerative Fuel Cell System (RFC). This system contains: fuel cells stack, electrolyzer, photovoltaic panel, batteries, current inverter and a charge controller. Photovoltaic panel charges the batteries, while charge controller controls the batteries loading. Batteries are connected to an inverter which converts direct current into alternating current. Inverter is connected to an electrolyzer (Hogen GC 600) which splits the water molecule into hydrogen and oxygen molecules. Produced hydrogen supplies the fuel cell stack and the oxygen is released directly to the atmosphere. Fuel cell stacks power production is transformed into mechanical energy by a fan. Electrical power generated by Ballard stack is 5.124 W, with a voltage of 36.6 V and current of 0.14 A. The system proved to have a great efficiency and to be capable to assemble two renewable energy sources (solar and fuel cell technology) in a self-sustainable cabinet. It has also been shown that equipment such as Electrolyzer, Fuel Cell Stack and Photovoltaic panel can be fit together in the order to produce energy. Therefore, research on Fuel Cells Regenerative System reveals great importance for developing a new, clean, renewable and regenerative energy production system. (author)

  1. Semitransparent polymer-based solar cells with aluminum-doped zinc oxide electrodes.

    Science.gov (United States)

    Wilken, Sebastian; Wilkens, Verena; Scheunemann, Dorothea; Nowak, Regina-Elisabeth; von Maydell, Karsten; Parisi, Jürgen; Borchert, Holger

    2015-01-14

    With the use of two transparent electrodes, organic polymer-fullerene solar cells are semitransparent and may be combined to parallel-connected multijunction devices or used for innovative applications like power-generating windows. A challenging issue is the optimization of the electrodes, to combine high transparency with adequate electric properties. In the present work, we study the potential of sputter-deposited aluminum-doped zinc oxide as an alternative to the widely used but relatively expensive indium tin oxide (ITO) as cathode material in semitransparent polymer-fullerene solar cells. Concerning the anode, we utilized an insulator-metal-insulator structure based on ultrathin Au films embedded between two evaporated MoO3 layers, with the outer MoO3 film (capping layer) serving as a light coupling layer. The performance of the ITO-free semitransparent polymer-fullerene solar cells was systematically studied as dependent on the thickness of the capping layer and the active layer as well as the illumination direction. These variations were found to have strong impact on the obtained photocurrent densities. We performed optical simulations of the electric field distribution within the devices using the transfer-matrix method, to analyze the origin of the current density variations in detail and provide deep insight into the device physics. With the conventional absorber materials studied here, optimized ITO-free and semitransparent devices reached 2.0% power conversion efficiency and a maximum optical transmission of 60%, with the device concept being potentially transferable to other absorber materials.

  2. Molecular Design of TPD-based Organic Dyes for Dye-sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    CAO Xing-bo

    2013-01-01

    An interesitng class of organic A-π-D-π-A dyes based on an N,N,N',N'-tetraphenylbenzidine(TPD) unit as donor was designed and synthesized for dye-sensitized solar cells(DSSCs).TPD-4-based DSSCs gave a short circuit photocurrent density(Jsc) of 16.67 mA/cm2,a open circuit voltage(Voc) of 0.635 V and a fill factor(ff) of 0.68,achieving a solar-to-electricity conversion efficiency(η) of 7.22% in preliminary tests.The N3-sensitized device gave an η value of 8.02% with a Jsc of 18.81 mA/cm2,a Voc of 0.630 V and an ffof 0.68 under the same conditions.The incident photo-to-current efficiency(IPCE) values above 70% observed in a range of 460 to 600 nm with a maximum value of 80% at 500 nm indicate that the TPD-4-based DSSC shows a high performance.Under the same conditions,the DSSC based on N3 provided the IPCE values above 70% in a range of 490 to 580 nm with a maximum value of 76% at 500 nm.Both further optimization of the device processing and structural modification of these dyes are anticipated to make the device give even better performances.

  3. Material effects in manufacturing of silicon based solar cells and modules

    Energy Technology Data Exchange (ETDEWEB)

    Schieferdecker, Anja; Sachse, Jens-Uwe; Mueller, Torsten; Seidel, Ulf; Bartholomaeus, Lars; Germershausen, Sven; Perras, Reinhold; Meissner, Rita; Hoebbel, Helmut; Schenke, Andreas; Bhatti, A.K.; Kuesters, Karl Heinz [Conergy Solar Module GmbH and Co. KG, Conergy Str. 8, 15236 Frankfurt/Oder (Germany); Richter, Hans [IHP, Im Technologiepark 25, 15236 Frankfurt/Oder (Germany); GFWW, Im Technologiepark 1, 15236 Frankfurt/Oder (Germany)

    2011-03-15

    The performance and efficiency of solar cells depends strongly on influence of materials. Key topics for solar cell optimisation are presently silicon material properties and materials for cell metallisation. Optimisation of silicon is focussed e.g. on material properties such as impurity content, density of dislocation and grain boundaries in multi-crystalline silicon which influence parameters like carrier lifetime, and therefore the cell efficiency. Improved characterisation methods of solar cells like electroluminescence and photoluminescence are combined with techniques such as thermography and LBIC to improve production process and materials. As a result cell efficiency will be increased. Optimisation of cell metallisation and module interconnects is strongly related to progress in paste materials for front side metallisation. Improved materials enable the use of higher emitter resistance and the printing of smaller metal lines, while reducing the series resistance of the solar cell. Progress in paste materials leads to increased solar cell efficiency for the standard cell process. The introduction of new metal pastes has to be combined with careful optimisation of the process window in soldering during module built-up. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Bioinspired solar water splitting, sensitized solar cells, and ultraviolet sensor based on semiconductor nanocrystal antenna/graphene nanoassemblies

    Science.gov (United States)

    Chang, Haixin; Lv, Xiaojun; Zheng, Zijian; Wu, Hongkai

    2012-02-01

    Graphene, two-dimensional carbon crystal with only one atom thickness, provides a general platform for nanoscale even atomic scale optoelectronics and photonics. Graphene has many advantages for optoelectronics such as high conductivity, high electronic mobility, flexibility and transparency. However, graphene also has disadvantages such as low light absorption which are unfavorable for optoelectronic devices. On the other hand, many natural photonic systems provide wonderful solution to enhance light absorption for solar energy harvesting and conversion, such as chlorophyll in green plants. Herein, learning from nature, we described bioinspired photocatalytic solar-driven water splitting, sensitized solar cells and ultraviolet optoelectronic sensors enabled by introducing photosensitive semiconductor nanocrystal antenna to graphene for constructing a series of graphene/nanocrystal nanoassemblies. We have demonstrated that high performance optoelectronic devices can come true with the introducing of photosensitive nanocrystal antenna elements.

  5. Preparation of conjugated polymer-based composite thin film for application in solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang-Yen, E-mail: yyyu@mail.mcut.edu.tw [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Center for Thin Film Technologies and Applications, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Chien, Wen-Chen [Department of Chemical Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Ko, Yu-Hsin [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Chen, Chih-Ping [Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Road, Taishan, New Taipei City 243, Taiwan (China); Chang, Chao-Ching [Department of Chemical and Materials Engineering, Tamkang University, 151, Yingzhuan Rd., Tamsui Dist., New Taipei City 25137, Taiwan (China)

    2015-06-01

    This paper reports on the enhanced cell efficiency of structures and properties of regioregular poly(3-hexylthiophene) (P3HT)/multiwalled carbon nanotube (MWNT) hybrid materials. The prepared hybrid materials were characterized using ultraviolet–visible absorption spectroscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Different concentrations of these MWNTs were suspended in polymer solutions and spin-cast onto indium tin oxide (ITO) glass. Solar cells with a device structure of ITO/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) /P3HT:MWNTs/aluminum were then produced using evaporated aluminum as the back contact. The results showed that the ratio of P3HT to MWNTs considerably influenced the performance of the fabricated solar cells. The efficiency of the solar cells increased with the ratio of carbon nanotubes. Monochromatic incident photon-to-electron conversion efficiency analysis was performed and the results indicated that at the optimal P3HT/MWNTs ratio (= 1/1), the solar cells demonstrated a high-quality conversion of 2.16% with a fill factor of 42.22%, an open circuit voltage of 0.56 V, and a short circuit current of 9.12 mA/cm{sup 2}. - Highlights: • Solar cells ITO/PEDOT:PSS(DMSO)/P3HT:MWNT/Al were fabricated. • Optimal ratio of P3HT to MWNT was investigated. • Solar cell with 2.16% efficiency was obtained.

  6. Theoretical results on the tandem junction solar cell based on its Ebers-Moll transistor model

    Science.gov (United States)

    Goradia, C.; Vaughn, J.; Baraona, C. R.

    1980-01-01

    A one-dimensional theoretical model of the tandem junction solar cell (TJC) with base resistivity greater than about 1 ohm-cm and under low level injection has been derived. This model extends a previously published conceptual model which treats the TJC as an npn transistor. The model gives theoretical expressions for each of the Ebers-Moll type currents of the illuminated TJC and allows for the calculation of the spectral response, I(sc), V(oc), FF and eta under variation of one or more of the geometrical and material parameters and 1MeV electron fluence. Results of computer calculations based on this model are presented and discussed. These results indicate that for space applications, both a high beginning of life efficiency, greater than 15% AM0, and a high radiation tolerance can be achieved only with thin (less than 50 microns) TJC's with high base resistivity (greater than 10 ohm-cm).

  7. Prediction model for the diffusion length in silicon-based solar cells

    Institute of Scientific and Technical Information of China (English)

    Cheknane A; Benouaz T

    2009-01-01

    d to predict the diffusion length in mono-crystalline silicon solar cells. Furthermore, the computation of the diffusion length and the comparison with measurement data, using the infrared injection method, are presented and discussed.

  8. All-solid, flexible solar textiles based on dye-sensitized solar cells with ZnO nanorod arrays on stainless steel wires

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Youngjin [Department of Clothing and Textiles, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, Jung Tae; Koh, Jong Kwan [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Jong Hak, E-mail: jonghak@yonsei.ac.kr [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Eunae, E-mail: eakim@yonsei.ac.kr [Department of Clothing and Textiles, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2013-10-01

    Highlights: • All-solid, flexible solar textile fabricated with DSSCs is demonstrated. • DSSCs woven into a satin structure and transparent PET film are used. • Solar textile showed a high efficiency of 2.57%. -- Abstract: An all-solid, flexible solar textile fabricated with dye-sensitized solar cells (DSSCs) woven into a satin structure and transparent poly(ethylene terephthalate) (PET) film was demonstrated. A ZnO nanorod (NR) vertically grown from fiber-type conductive stainless steel (SS) wire was utilized as a photoelectrode, and a Pt-coated SS wire was used as a counter electrode. A graft copolymer, i.e. poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom transfer radical polymerization (ATRP) and used as a solid electrolyte. The conditions for the growth of ZnO NR and sufficient dye loading were investigated to improve cell performance. The adhesion of PET films to DSSCs resulted in physical stability improvements without cell performance loss. The solar textile with 10 × 10 wires exhibited an energy conversion efficiency of 2.57% with a short circuit current density of 20.2 mA/cm{sup 2} at 100 mW/cm{sup 2} illumination, which is the greatest account of an all-solid, ZnO-based flexible solar textile. DSSC textiles with woven structures are applicable to large-area, roll-to-roll processes.

  9. UP-scaling of inverted small molecule based organic solar cells

    DEFF Research Database (Denmark)

    Patil, Bhushan Ramesh; Madsen, Morten

    Organic solar cells (OSC), in spite of being a promising technology, still face challenges regarding large-scale fabrication. Although efficiencies of up to 12 % has been reached for small molecule OSC, their performance, both in terms of device efficiency and stability, is significantly reduced...... during up-scaling processes. The work presented here is focused on an approach towards up-scaling of small molecule based OSC with inverted device configuration. Bilayer OSC from Tetraphenyldibenzoperiflanthene (DBP) and Fullerenes (C70), as electron donor and acceptor respectively, with cell area...... ranging on a scale from a few mm2 to cm2, are produced by organic molecular beam deposition (OMBD). All the layers in the device are fabricated from a highly sophisticated vacuum cluster deposition system that includes electrode, interfacial layer and organic layer deposition in one high-vacuum deposition...

  10. Optical modeling of organic solar cells based on CuPc and C60.

    Science.gov (United States)

    Monestier, Florent; Simon, Jean-Jacques; Torchio, Philippe; Escoubas, Ludovic; Ratier, Bernard; Hojeij, Wassim; Lucas, Bruno; Moliton, André; Cathelinaud, Michel; Defranoux, Christophe; Flory, François

    2008-05-01

    We have investigated the influence of the poly(3,4-ethylenedioxythiophene)-blend-poly(styrene-sulfonate) (PEDOT:PSS) layer on the short-circuit current density (J(sc)) of single planar heterojunction organic solar cells based on a copper phthalocyanine (CuPc)-buckminsterfullerene (C(60)) active layer. Complete optical and electrical modeling of the cell has been performed taking into account optical interferences and exciton diffusion. Comparison of experimental and simulated external quantum efficiency has allowed us to estimate the exciton diffusion length to be 37 nm for the CuPc and 19 nm for the C(60). The dependence of short-circuit current densities versus the thickness of the PEDOT:PSS layer is analyzed and compared with experimental data. It is found that the variation in short-circuit current densities could be explained by optical interferences.

  11. Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Chu Sheng

    2011-01-01

    Full Text Available Abstract Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices.

  12. Carrier density effect on recombination in PTB7-based solar cell.

    Science.gov (United States)

    Moritomo, Yutaka; Yonezawa, Kouhei; Yasuda, Takeshi

    2015-09-01

    Organic solar cells (OSCs) are promising alternatives to the conventional inorganic solar cells due to their low-cost processing and compatibility with flexible substrates. The development of low band-gap polymer, e.g., poly-[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3]thiophenediyl

  13. Efficient, Semitransparent Neutral-Colored Solar Cells Based on Microstructured Formamidinium Lead Trihalide Perovskite.

    Science.gov (United States)

    Eperon, Giles E; Bryant, Daniel; Troughton, Joel; Stranks, Samuel D; Johnston, Michael B; Watson, Trystan; Worsley, David A; Snaith, Henry J

    2015-01-02

    Efficient, neutral-colored semitransparent solar cells are of commercial interest for incorporation into the windows and surfaces of buildings and automobiles. Here, we report on semitransparent perovskite solar cells that are both efficient and neutral-colored, even in full working devices. Using the microstructured architecture previously developed, we achieve higher efficiencies by replacing methylammonium lead iodide perovskite with formamidinium lead iodide. Current-voltage hysteresis is also much reduced. Furthermore, we apply a novel transparent cathode to the devices, enabling us to fabricate neutral-colored semitransparent full solar cells for the first time. Such devices demonstrate over 5% power conversion efficiency for average visible transparencies of almost 30%, retaining impressive color-neutrality. This makes these devices the best-performing single-junction neutral-colored semitransparent solar cells to date. These microstructured perovskite solar cells are shown to have a significant advantage over silicon solar cells in terms of performance at high incident angles of sunlight, making them ideal for building integration.

  14. Efficiency Investigations of Organic/Inorganic Hybrid ZnO Nanoparticles Based Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Satbir Singh

    2016-01-01

    Full Text Available The present research study focuses upon the synthesis, characterization, and performances of optoelectronic properties of organic-inorganic (hybrid ZnO based dye sensitized solar cells. Initially, polymer dye A was synthesized using condensation reaction between 2-thiophenecarboxaldehyde and polyethylenimine and was capped to ZnO nanoparticles. Size and morphology of polymer dye A capped ZnO nanoparticles were analyzed using DLS, SEM, and XRD analysis. Further, the polymer dye was added to ruthenium metal complex (RuCl3 to form polymer-ruthenium composite dye B. Absorption and emission profiles of polymer dye A and polymer-ruthenium composite dye B capped ZnO nanoparticles were monitored using UV-Vis and fluorescence spectroscopy. Polymer dye A and polymer-ruthenium composite dye B capped ZnO nanoparticles were further processed to solar cells using wet precipitation method under room temperature. The results of investigations revealed that, after addition of ruthenium chloride (RuCl3 metal complex dye, the light harvesting capacity of ZnO solar cell was enhanced compared to polymer dye A capped ZnO based solar cell. The polymer-ruthenium composite dye B capped ZnO solar cell exhibited good photovoltaic performance with excellent cell parameters, that is, exciting open circuit voltage (Voc of 0.70 V, a short circuit current density (Jsc of 11.6 mA/cm2, and a fill factor (FF of 0.65. A maximum photovoltaic cell efficiency of 5.28% had been recorded under standard air mass (AM 1.5 simulated solar illuminations for polymer-ruthenium composite dye B based hybrid ZnO solar cell. The power conversion efficiency of hybrid ZnO based dye sensitized solar cell was enhanced by 1.78% and 3.88% compared to polymer dye A (concentrated and polymer dye A (diluted capped ZnO based dye sensitized solar cells, respectively. The hybrid organic/inorganic ZnO nanostructures can be implemented in a variety of optoelectronic applications in the future of clean and

  15. Advances in Perovskite Solar Cells.

    Science.gov (United States)

    Zuo, Chuantian; Bolink, Henk J; Han, Hongwei; Huang, Jinsong; Cahen, David; Ding, Liming

    2016-07-01

    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite-based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non-PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large-scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed.

  16. Advances in Perovskite Solar Cells

    Science.gov (United States)

    Zuo, Chuantian; Bolink, Henk J.; Han, Hongwei; Huang, Jinsong

    2016-01-01

    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite‐based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non‐PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large‐scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed.

  17. Ruthenium based metallopolymer grafted reduced graphene oxide as a new hybrid solar light harvester in polymer solar cells

    Science.gov (United States)

    Vinoth, R.; Babu, S. Ganesh; Bharti, Vishal; Gupta, V.; Navaneethan, M.; Bhat, S. Venkataprasad; Muthamizhchelvan, C.; Ramamurthy, Praveen C.; Sharma, Chhavi; Aswal, Dinesh K.; Hayakawa, Yasuhiro; Neppolian, B.

    2017-01-01

    A new class of pyridyl benzimdazole based Ru complex decorated polyaniline assembly (PANI-Ru) was covalently grafted onto reduced graphene oxide sheets (rGO) via covalent functionalization approach. The covalent attachment of PANI-Ru with rGO was confirmed from XPS analysis and Raman spectroscopy. The chemical bonding between PANI-Ru and rGO induced the electron transfer from Ru complex to rGO via backbone of the conjugated PANI chain. The resultant hybrid metallopolymer assembly was successfully demonstrated as an electron donor in bulk heterojunction polymer solar cells (PSCs). A PSC device fabricated with rGO/PANI-Ru showed an utmost ~6 fold and 2 fold enhancement in open circuit potential (Voc) and short circuit current density (Jsc) with respect to the standard device made with PANI-Ru (i.e., without rGO) under the illumination of AM 1.5 G. The excellent electronic properties of rGO significantly improved the electron injection from PANI-Ru to PCBM and in turn the overall performance of the PSC device was enhanced. The ultrafast excited state charge separation and electron transfer role of rGO sheet in hybrid metallopolymer was confirmed from ultrafast spectroscopy measurements. This covalent modification of rGO with metallopolymer assembly may open a new strategy for the development of new hybrid nanomaterials for light harvesting applications. PMID:28225039

  18. TCO-free, flexible, and bifacial dye-sensitized solar cell based on low-cost metal wires

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yongping; Lv, Zhibin; Hou, Saocong; Wu, Hongwei; Wang, Dan; Zhang, Chao; Zou, Dechun [Beijing National Laboratory for Molecular Sciences (China). Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering; Peking University, Beijing (China)

    2012-01-15

    A flexible, dye-sensitized solar cell based on low-cost metal fibers as the substrates is designed. This cell provides a breakthrough on the traditional sandwich-type flat-cell structure. It has good flexibility even without a transparent conductive oxide. Moreover, the new solar cell can generate electric power with illumination on in either side, and mass production is possible using weaving technology. At present, the efficiency of 1.50 cm{sup 2} of the solar-cell module under AM 1.5 G (100 mW cm{sup -2}) reaches 2.41%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Carbon-Based Perovskite Solar Cells without Hole Transport Materials: The Front Runner to the Market?

    Science.gov (United States)

    Chen, Haining; Yang, Shihe

    2017-02-21

    Organometal trihalide perovskite solar cells (PSCs) have garnered recent interest in the scientific community. In the past few years, they have achieved power conversion efficiencies comparable to traditional commercial solar cells (e.g., crystalline Si, CuInGaSe and CdTe) due to their low-cost of production via solution-processed fabrication techniques. However, the stability of PSCs must be addressed before their commercialization is viable. Among various kinds of PSCs, carbon-based PSCs without hole transport materials (C-PSCs) seem to be the most promising for addressing the stability issue because carbon materials are stable, inert to ion migration (which originates from perovskite and metal electrodes), and inherently water-resistant. Despite the significant development of C-PSCs since they were first reported in 2013, some pending issues still need to be addressed to increase their commercial competitiveness. Herein, recent developments in C-PSCs, including (1) device structure and working principles, (2) categorical progress of and comparison between meso C-PSCs, embedment C-PSCs and paintable PSCs, are reviewed. Promising research directions are then suggested (e.g., materials, interfaces, structure, stability measurement and scaling-up of production) to further improve and promote the commercialization of C-PSCs.

  20. Plasmonic Effect in Au-Added TiO2-Based Solar Cell

    Science.gov (United States)

    Van Hong, Le; Cat, Do Tran; Chi, Le Ha; Thuy, Nguyen Thi; Van Hung, Tran; Tai, Ly Ngoc; Long, Pham Duy

    2016-10-01

    TiO2 nano thin films have been fabricated on fluoride tin oxide (FTO) film electrodes by hydrothermal synthesis at temperatures of 80°C, 120°C, 150°C, and 200°C for different synthesis times of 1 h, 2 h, and 3 h in 2.5 mol, 5 mol, and 7.5 mol NaOH solution. X-ray diffraction patterns and field-emission scanning electron microscopy (FESEM) images were recorded for all the film samples, and the results confirmed that TiO2 anatase phase was generally formed in nanowire form. The influence of synthesis temperature, processing time, and NaOH content on the structure and morphology of the TiO2 material was studied. Au nanoparticles with size of around 2 × 10-8 m were added into the TiO2 thin films by thermal evaporation in vacuum combined with thermal annealing. Based on photocurrent-voltage ( I- V) characteristics measured under irradiation with visible light, the short-circuit current, open-circuit voltage, and efficiency of solar cells with FTO/Au-added TiO2/(I-/I2-) electrolyte/Pt configuration were evaluated. The short-circuit current and efficiency of the Au-added solar cell were greatly improved, which is supposed to be related to a contribution of the surface plasmon resonance effect.

  1. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Liwen, E-mail: SANG.Liwen@nims.go.jp [International Center for Material Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); JST-PRESTO, The Japan Science and Technology Agency, Tokyo 102-0076 (Japan); Liao, Meiyong; Koide, Yasuo [Wide Bandgap Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sumiya, Masatomo [Wide Bandgap Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); JST-ALCA, The Japan Science and Technology Agency, Tokyo 102-0076 (Japan)

    2015-03-14

    In{sub x}Ga{sub 1−x}N, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In{sub 0.08}Ga{sub 0.92}N is achieved with a high hole concentration of more than 10{sup 18 }cm{sup −3}. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  2. Progress in Thin Film Solar Cells Based on Cu2ZnSnS4

    Directory of Open Access Journals (Sweden)

    Hongxia Wang

    2011-01-01

    Full Text Available The research in thin film solar cells has been dominated by light absorber materials based on CdTe and Cu(In,GaSe2 (CIGS in the last several decades. The concerns of environment impact of cadmium and the limited availability of indium in those materials have driven the research towards developing new substitute light absorbers made from earth abundant, environment benign materials. Cu2ZnSnS4 (CZTS semiconductor material has emerged as one of the most promising candidates for this aim and has attracted considerable interest recently. Significant progress in this relatively new research area has been achieved in the last three years. Over 130 papers on CZTS have been published since 2007, and the majority of them are on the preparation of CZTS thin films by different methods. This paper, will review the wide range of techniques that have been used to deposit CZTS semiconductor thin films. The performance of the thin film solar cells using the CZTS material will also be discussed.

  3. Electroplated contacts and porous silicon for silicon based solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Kholostov, Konstantin, E-mail: kholostov@diet.uniroma1.it [Department of information engineering, electronics and telecommunications, University of Rome “La Sapienza”, Via Eudossiana 18, 00184 Rome (Italy); Serenelli, Luca; Izzi, Massimo; Tucci, Mario [Enea Casaccia Research Centre Rome, via Anguillarese 301, 00123 Rome (Italy); Balucani, Marco [Department of information engineering, electronics and telecommunications, University of Rome “La Sapienza”, Via Eudossiana 18, 00184 Rome (Italy); Rise Technology S.r.l., Lungomare Paolo Toscanelli 170, 00121 Rome (Italy)

    2015-04-15

    Highlights: • Uniformity of the Ni–Si interface is crucial for performance of Cu–Ni contacts on Si. • Uniformly filled PS is the key to obtain the best performance of Cu–Ni contacts on Si. • Optimization of anodization and electroplating allows complete filling of PS layer. • Highly adhesive and low contact resistance Cu–Ni contacts are obtained on Si. - Abstract: In this paper, a two-layer metallization for silicon based solar cells is presented. The metallization consists of thin nickel barrier and thick copper conductive layers, both obtained by electrodeposition technique suitable for phosphorus-doped 70–90 Ω/sq solar cell emitter formed on p-type silicon substrate. To ensure the adhesion between metal contact and emitter a very thin layer of mesoporous silicon is introduced on the emitter surface before metal deposition. This approach allows metal anchoring inside pores and improves silicon–nickel interface uniformity. Optimization of metal contact parameters is achieved varying the anodization and electrodeposition conditions. Characterization of contacts between metal and emitter is carried out by scanning electron microscopy, specific contact resistance and current–voltage measurements. Mechanical strength of nickel–copper contacts is evaluated by the peel test. Adhesion strength of more than 4.5 N/mm and contact resistance of 350 μΩ cm{sup 2} on 80 Ω/sq emitter are achieved.

  4. Dye-Sensitized Nanocrystalline ZnO Solar Cells Based on Ruthenium(II Phendione Complexes

    Directory of Open Access Journals (Sweden)

    Hashem Shahroosvand

    2011-01-01

    Full Text Available The metal complexes (RuII (phen2(phendione(PF62(1, [RuII (phen(bpy(phendione(PF62 (2, and (RuII (bpy2(phendione(PF62 (3 (phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine and phendione = 1,10-phenanthroline-5,6-dione have been synthesized as photo sensitizers for ZnO semiconductor in solar cells. FT-IR and absorption spectra showed the favorable interfacial binding between the dye-molecules and ZnO surface. The surface analysis and size of adsorbed dye on nanostructure ZnO were further examined with AFM and SEM. The AFM images clearly show both, the outgrowth of the complexes which are adsorbed on ZnO thin film and the depression of ZnO thin film. We have studied photovoltaic properties of dye-sensitized nanocrystalline semiconductor solar cells based on Ru phendione complexes, which gave power conversion efficiency of (η of 1.54% under the standard AM 1.5 irradiation (100 mW cm−2 with a short-circuit photocurrent density (sc of 3.42 mA cm−2, an open-circuit photovoltage (oc of 0.622 V, and a fill factor (ff of 0.72. Monochromatic incident photon to current conversion efficiency was 38% at 485 nm.

  5. Optimization of the design of extremely thin absorber solar cells based on electrodeposited ZnO nanowires.

    Science.gov (United States)

    Lévy-Clément, Claude; Elias, Jamil

    2013-07-22

    The properties of the components of ZnO/CdSe/CuSCN extremely thin absorber (ETA) solar cells based on electrodeposited ZnO nanowires (NWs) were investigated. The goal was to study the influence of their morphology on the characteristics of the solar cells. To increase the energy conversion efficiency of the solar cell, it was generally proposed to increase the roughness factor of the ZnO NW arrays (i.e. to increase the NW length) with the purpose of decreasing the absorber thickness, improving the light scattering, and consequently the light absorption in the ZnO/CdSe NW arrays. However, this strategy increased the recombination centers, which affected the efficiency of the solar cell. We developed another strategy that acts on the optical configuration of the solar cells by increasing the diameter of the ZnO NW (from 100 to 330 nm) while maintaining a low roughness factor. We observed that the scattering of the ZnO NW arrays occurred over a large wavelength range and extended closer to the CdSe absorber bandgap, and this led to an enhancement in the effective absorption of the ZnO/CdSe NW arrays and an increase in the solar cell characteristics. We found that the thicknesses of CuSCN above the ZnO/CdSe NW tips and the CdSe coating layer were optimized at 1.5 μm and 30 nm, respectively. Optimized ZnO/CdSe/CuSCN solar cells exhibiting 3.2% solar energy conversion efficiency were obtained by using 230 nm diameter ZnO NWs.

  6. Investigation of optical spacer layers from solution based precursors for polymer solar cells using X-ray reflectometry

    DEFF Research Database (Denmark)

    Andersen, Philip Hvidthøft Delff; Skårhøj, Jakob; Andreasen, Jens Wenzel

    2009-01-01

    Optical spacer layers based on titaniumalkoxide precursor solutions were prepared by spin-coating on top of bulk heterojunction layers based on poly-3-hexylthiophene (P3HT) and phenyl-C61-butyric acid methylester (PCBM). Models and experiment have shown that the performance of polymer solar cells...

  7. Optoelectronics of solar cells

    CERN Document Server

    Smestad, Greg P

    2002-01-01

    With concerns about worldwide environmental security, global warming, and climate change due to emissions of carbon dioxide from the burning of fossil fuels, it is desirable to have a wide range of energy technologies in a nation's portfolio. Photovoltaics, or solar cells, are a viable option as a nonpolluting renewable energy source. This text is designed to be an overview of photovoltaic solar cells for those in the fields of optics and optical engineering, as well as those who are interested in energy policy, economics, and the requirements for efficient photo-to-electric energy conversion.

  8. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Electrical and Communications Engineering

    1998-10-01

    Photovoltaic research in the Electron Physics Laboratory started in 1993, when laboratory joined the national TEKES/NEMO 2 research program. Since the beginning of the project, characterization as well as experimentally orientated development of the fabrication process of the solar cells were carried out parallery. The process development research started by the initiatives of the Finnish industry. At the moment a large amount of the laboratory personnel works on solar cell research and the financing comes mainly from external projects. The funding for the research has come from TEKES, Ministry of Education, Finnish Academy, GETA graduate school, special equipment grants of the university, and from the laboratory

  9. Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Bat-El; Gamliel, Shany; Etgar, Lioz, E-mail: lioz.etgar@mail.huji.ac.il [Institute of Chemistry, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem 90400 (Israel)

    2014-08-01

    Perovskite is a promising light harvester for use in photovoltaic solar cells. In recent years, the power conversion efficiency of perovskite solar cells has been dramatically increased, making them a competitive source of renewable energy. An important parameter when designing high efficiency perovskite-based solar cells is the perovskite deposition, which must be performed to create complete coverage and optimal film thickness. This paper describes an in-depth study on two-step deposition, separating the perovskite deposition into two precursors. The effects of spin velocity, annealing temperature, dipping time, and methylammonium iodide concentration on the photovoltaic performance are studied. Observations include that current density is affected by changing the spin velocity, while the fill factor changes mainly due to the dipping time and methylammonium iodide concentration. Interestingly, the open circuit voltage is almost unaffected by these parameters. Hole conductor free perovskite solar cells are used in this work, in order to minimize other possible effects. This study provides better understanding and control over the perovskite deposition through highly efficient, low-cost perovskite-based solar cells.

  10. Parameters Influencing the Growth of ZnO Nanowires as Efficient Low Temperature Flexible Perovskite-Based Solar Cells

    Directory of Open Access Journals (Sweden)

    Alex Dymshits

    2016-01-01

    Full Text Available Hybrid organic-inorganic perovskite has proved to be a superior material for photovoltaic solar cells. In this work we investigate the parameters influencing the growth of ZnO nanowires (NWs for use as an efficient low temperature photoanode in perovskite-based solar cells. The structure of the solar cell is FTO (SnO2:F-glass (or PET-ITO (In2O3·(SnO2 (ITO on, polyethylene terephthalate (PET/ZnAc seed layer/ZnO NWs/CH3NH3PbI3/Spiro-OMeTAD/Au. The influence of the growth rate and the diameter of the ZnO NWs on the photovoltaic performance were carefully studied. The ZnO NWs perovskite-based solar cell demonstrates impressive power conversion efficiency of 9.06% on a rigid substrate with current density over 21 mA/cm2. In addition, we successfully fabricated flexible perovskite solar cells while maintaining all fabrication processes at low temperature, achieving power conversion efficiency of 6.4% with excellent stability for over 75 bending cycles.

  11. Facile Synthesis and High performance of a New Carbazole-Based Hole Transporting Material for Hybrid Perovskite Solar Cells

    KAUST Repository

    Wang, Hong

    2015-06-26

    Perovskite solar cells are very promising for practical applications owing to their rapidly rising power conversion efficiency and low cost of solution-based processing. 2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine) 9,9’-spirobifluorene (Spiro-OMeTAD) is most widely used as hole transporting material (HTM) in perovskite solar cells. However, the tedious synthesis and high cost of Spiro-OMeTAD inhibit its commercial-scale application in the photovoltaic industry. In this article, we report a carbazole-based compound (R01) as a new HTM in efficient perovskite solar cells. R01 is synthesized via a facile route consisting of only two steps from inexpensive commercially available materials. Furthermore, R01 exhibits higher hole mobility and conductivity than the state-of-the-art Spiro-OMeTAD. Perovskite solar cells fabricated with R01 produce a power conversion efficiency of 12.03%, comparable to that obtained in devices using Spiro-OMeTAD in this study. Our findings underscore R01 as a highly promising HTM with high performance, and its facile synthesis and low cost may facilitate the large-scale applications of perovskite solar cells.

  12. Annealing Kinetic Model Using Fast and Slow Metastable Defects for Hydrogenated-Amorphous-Silicon-Based Solar Cells

    Directory of Open Access Journals (Sweden)

    Seung Yeop Myong

    2007-01-01

    Full Text Available The two-component kinetic model employing “fast” and “slow” metastable defects for the annealing behaviors in pin-type hydrogenated-amorphous-silicon- (a-Si:H- based solar cells is simulated using a normalized fill factor. Reported annealing data on pin-type a-Si:H-based solar cells are revisited and fitted using the model to confirm its validity. It is verified that the two-component model is suitable for fitting the various experimental phenomena. In addition, the activation energy for annealing of the solar cells depends on the definition of the recovery time. From the thermally activated and high electric field annealing behaviors, the plausible microscopic mechanism on the defect removal process is discussed.

  13. Stable and null current hysteresis perovskite solar cells based nitrogen doped graphene oxide nanoribbons hole transport layer

    Science.gov (United States)

    Kim, Jeongmo; Mat Teridi, Mohd Asri; Mohd Yusoff, Abd. Rashid Bin; Jang, Jin

    2016-06-01

    Perovskite solar cells are becoming one of the leading technologies to reduce our dependency on traditional power sources. However, the frequently used component poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) has several shortcomings, such as an easily corroded indium-tin-oxide (ITO) interface at elevated temperatures and induced electrical inhomogeneity. Herein, we propose solution-processed nitrogen-doped graphene oxide nanoribbons (NGONRs) as a hole transport layer (HTL) in perovskite solar cells, replacing the conducting polymer PEDOT:PSS. The conversion efficiency of NGONR-based perovskite solar cells has outperformed a control device constructed using PEDOT:PSS. Moreover, our proposed NGONR-based devices also demonstrate a negligible current hysteresis along with improved stability. This work provides an effective route for substituting PEDOT:PSS as the effective HTL.

  14. Optoelectronic and Photovoltaic Performances of Pyridine Based Monomer and Polymer Capped ZnO Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Singh, Satbir; Raj, Tilak; Singh, Amarpal; Kaur, Navneet

    2016-06-01

    The present research work describes the comparative analysis and performance characteristics of 4-pyridine based monomer and polymer capped ZnO dye-sensitized solar cells. The N, N-dimethyl-N4-((pyridine-4yl)methylene) propaneamine (4,monomer) and polyamine-4-pyridyl Schiff base (5, polymer) dyes were synthesized through one step condensation reaction between 4-pyridinecarboxaldehyde 1 and N, N-dimethylpropylamine 2/polyamine 3. Products obtained N, N-dimethyl-N4-((pyridine-4yl)methylene)propaneamine (4) and polyamine-4-pyridyl Schiff base (5) were purified and characterized using 1H, 13C NMR, mass, IR and CHN spectroscopy. Both the dyes 4 and 5 were further coated over ZnO nanoparticles and characterized using SEM, DLS and XRD analysis. Absorption profile and emission profile was monitored using fluorescence and UV-Vis absorption spectroscopy. A thick layer of these inbuilt dye linked ZnO nanoparticles of dyes (4) and (5) was pasted on one of the conductive side of ITO glass followed with a liquid electrolyte and counter electrode of the same conductive glass. Polyamine-4-pyridyl Schiff base polymer (5) decorated dye sensitized solar cell has shown better exciting photovoltaic properties in the form of short circuit current density (J(sc) = 6.3 mA/cm2), open circuit photo voltage (V(oc) = 0.7 V), fill factor (FF = 0.736) than monomer decorated dye sensitized solar cell. Polymer dye (5) based ZnO solar cell has shown a maximum solar power to electrical conversion efficiency of 3.25%, which is enhanced by 2.16% in case of monomer dye based ZnO solar cell under AM 1.5 sun illuminations.

  15. The correlation of open-circuit voltage with bandgap in amorphous silicon-based pin solar cells

    Science.gov (United States)

    Crandall, R. S.; Schiff, E. A.

    1996-01-01

    We briefly review the correlation of open-circuit voltages VOC with the bandgap of the intrinsic layer in amorphous silicon based pin solar cells. We discuss two mechanisms which limit VOC: intrinsic layer recombination, and the built-in potential VBI. In particular we discuss Li's proposal that the open-circuit voltages in higher bandgap cells (EG>1.9 eV) are VBI-limited. Based on computer simulations of pin solar cells we propose that VBI limitation occurs when the recombination limit to VOC exceeds the cell's field-reversal voltage VR. For a-Si:H based cells this field-reversal voltage occurs at about VBI-0.3 V. This proposal would account for the observation that VBI limitation occurs for VOC significantly smaller than VBI.

  16. Solar electron source and thermionic solar cell

    Directory of Open Access Journals (Sweden)

    Parham Yaghoobi

    2012-12-01

    Full Text Available Common solar technologies are either photovoltaic/thermophotovoltaic, or use indirect methods of electricity generation such as boiling water for a steam turbine. Thermionic energy conversion based on the emission of electrons from a hot cathode into vacuum and their collection by an anode is also a promising route. However, thermionic solar conversion is extremely challenging as the sunlight intensity is too low for heating a conventional cathode to thermionic emission temperatures in a practical manner. Therefore, compared to other technologies, little has been done in this area, and the devices have been mainly limited to large experimental apparatus investigated for space power applications. Based on a recently observed “Heat Trap” effect in carbon nanotube arrays, allowing their efficient heating with low-power light, we report the first compact thermionic solar cell. Even using a simple off-the-shelf focusing lens, the device delivered over 1 V across a load. The device also shows intrinsic storage capacity.

  17. All-Nonvacuum-Processed CIGS Solar Cells Using Scalable Ag NWs/AZO-Based Transparent Electrodes.

    Science.gov (United States)

    Wang, Mingqing; Choy, Kwang-Leong

    2016-07-06

    With record cell efficiency of 21.7%, CIGS solar cells have demonstrated to be a very promising photovoltaic (PV) technology. However, their market penetration has been limited due to the inherent high cost of the cells. In this work, to lower the cost of CIGS solar cells, all nonvacuum-processed CIGS solar cells were designed and developed. CIGS absorber was prepared by the annealing of electrodeposited metallic layers in a chalcogen atmosphere. Nonvacuum-deposited Ag nanowires (NWs)/AZO transparent electrodes (TEs) with good transmittance (92.0% at 550 nm) and high conductivity (sheet resistance of 20 Ω/□) were used to replace the vacuum-sputtered window layer. Additional thermal treatment after device preparation was conducted at 220 °C for a few of minutes to improve both the value and the uniformity of the efficiency of CIGS pixel cell on 5 × 5 cm substrate. The best performance of the all-nonvacuum-fabricated CIGS solar cells showed an efficiency of 14.05% with Jsc of 34.82 mA/cm(2), Voc of 0.58 V, and FF of 69.60%, respectively, which is comparable with the efficiency of 14.45% of a reference cell using a sputtered window layer.

  18. Radial junction solar cells based on heterojunction with intrinsic thin layer (HIT) structure

    Science.gov (United States)

    Shen, Haoting

    conformality of a-Si:H deposited by PECVD using SiH4 and H 2 on high aspect ratio trench structures. Experimentally, it was found that the a-Si:H growth rate increased with increasing SiH4 flow rate up to a point after which it saturated at a maximum growth rate. In addition, it was found that higher SiH4 flow rates resulted in improved thickness uniformity along the trenches. A model based on gas transport and surface reaction of SiH3 in trenches was developed and was used to explain the experimental results and predict conditions that would yield improved thickness uniformity. The knowledge gained in the PECVD deposition studies was then used to prepare HIT radial junction Si pillar array solar cell devices. Deep reactive ion etching (DRIE) was used to prepare Si pillar arrays on p-type (111) c-Si wafers. A process was developed to prepare n-type a-Si:H films from SiH 4 and H2, with PH3 as doping gas. Indium tin oxide (ITO) deposited by sputter deposition and Al-doped ZnO deposited by atomic layer deposition (ALD) were evaluated as transparent conductive top contacts to the n-type a-Si:H layer. By adjusting the SiH4/H2 gas flow ratio, intrinsic a-Si:H was grown on the c-Si surface without epitaxial micro-crystalline growth. Continuous and pulsed deposition modes were investigated for deposition of the intrinsic and n-type a-Si:H layers on the c-Si pillars. The measurements of device light performance shown that slightly lower short circuit current density (Jsc, 32 mA/cm2 to 35 mA/cm 2) but higher open circuit voltage (Voc, 0.56 V to .47 V) were obtained on the pulsed devices. As the result, higher efficiency (11.6%) was achieved on the pulsed devices (10.6% on the continuous device). The improved performance of the pulsed deposition devices was explained as arising from a higher SiH3 concentration in the initial plasma which lead to a more uniform layer thickness. Planar and radial junction Si wire array HIT solar cell devices were then fabricated and the device performance

  19. Plastic solar cells based on fluorenone-containing oligomers and regioregular alternate copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Demadrille, R.; Rannou, P.; Pron, A. [Laboratoire de Physique des Metaux Synthetiques, UMR5819-SPrAM (CEA-CNRS-Univ.Grenoble I), DRFMC CEA-Grenoble, 17 rue des Martyrs F-38054 Grenoble Cedex 9 (France); Firon, M.; Leroy, J. [Laboratoire Cellules et Composants, DRT-LITEN, CEA-Saclay, F-91191 Gif sur Yvette Cedex (France)

    2005-09-01

    Oligomers and regioregular copolymers based on fluorenone subunits are synthesized and used in bulk-heterojunction photovoltaic cells. These are 2,7-bis(5-[(E)-1,2-bis(3-octylthien-2-yl)ethylene])-fluoren-9-one (TVF), the product of its oxidative polymerization, that is, poly[(5,5'-(bis-(E)-1,2-bis(3-octylthien-2-yl)ethylene)-alt-(2,7-fluoren-9-one)]) (PTVF), and an alternate copolymer of fluoren-9-one and di-n-alkylbithiophene, namely poly[(5,5'-(3,3'-di-n-octyl-2,2'-bithiophene))-alt-(2,7-fluoren-9-one)] (PDOBTF). The interpenetrating networks of active layers consisting of these new compounds as electron donors and of methanofullerene [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) as an acceptor exhibit an extended absorption band in the visible part of the spectrum with an absorption edge close to 700 nm. The external power conversion efficiencies (EPCEs) and the external quantum efficiency of the various TVF-, PTVF-, and PDOBTF-based photovoltaic cells have been determined. EPCE values of up to 1 % have been achieved, which demonstrate the potential of fluorenone-based materials in solar cells. It has also been demonstrated that fluorenone subunits are efficient photon absorbers for the conversion. Interestingly, some cell parameters such as, for example, the fill factor, have been improved as compared to photovoltaic cells with a ''classical'' poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene]/PCBM active layer, fabricated and studied under the same experimental conditions. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  20. Optical losses in multi-junction a-Si:H based solar cells and modules

    Science.gov (United States)

    Wiedeman, S.; Morris, J.; Yang, L.

    A comprehensive optical model is described which is applicable to glass/textured CTO/a-Si:H/a-SiGe:H-based multijunction cells and allows the calculation of optical absorption in each layer of the solar cell. The major optical losses which limit the output current density of tandem cells using 1.72-eV/1.50-eV bandgap a-Si:H/a-SiGe:H and an ITO/Ag rear contact to about 20.8 mA/sq cm (sum of both junctions) are identified and discussed. It is shown that improvements in the reflectivity and scattering properties of the rear contact may be expected to result in current densities of 22.3 mA/sq cm in this type of cell using intrinsic layers of limited thickness. The use of low-cost materials, such as soda-lime glass and the aluminum rear contacts typically employed in the manufacture of large-area modules, should reduce the total current density available to 18.5 mA/sq cm.

  1. Effect of annealing on bulk heterojunction organic solar cells based on copper phthalocyanine and perylene derivative

    KAUST Repository

    Kim, Inho

    2012-02-01

    We investigated the effects of annealing on device performances of bulk heterojunction organic solar cells based on copper phthalocyanine (CuPc) and N,N′-3,4,9,10-perylenetetracarboxylic diimide (PTCDI-C6). Blended films of CuPc and PTCDI-C6 with annealing at elevated temperature were characterized by measuring optical absorption, photoluminescence, and X-ray diffraction. Enhanced molecular ordering and increments in domain sizes of donor and acceptor for the blended films were observed, and their influences on device performances were discussed. Annealing led to substantial improvements in photocurrent owing to enhanced molecular ordering and formation of percolation pathways. © 2011 Elsevier B.V. All rights reserved.

  2. Enhanced Photovoltaic Properties of the Solar Cells Based on Cosensitization of CdS and Hydrogenation

    Directory of Open Access Journals (Sweden)

    Hongcai He

    2015-01-01

    Full Text Available The hydrogenated TiO2 porous nanocrystalline film is modified with CdS quantum dots by successive ionic layer adsorption and reaction (SILAR method to prepare the cosensitized TiO2 solar cells by CdS quantum dots and hydrogenation. The structure and topography of the composite photoanode film were confirmed by X-ray diffraction and scanning electron microscopy. With deposited CdS nanoparticles, UV absorption spectra of H:TiO2 photoanode film indicated a considerably enhanced absorption in the visible region. The cosensitized TiO2 solar cell by CdS quantum dots and hydrogenation presents much better photovoltaic properties than either CdS sensitized TiO2 solar cells or hydrogenated TiO2 solar cells, which displays enhanced photovoltaic performance with power conversion efficiency (η of 1.99% (Jsc=6.26 mA cm−2, Voc=0.65 V, and FF = 0.49 under full one-sun illumination. The reason for the enhanced photovoltaic performance of the novel cosensitized solar cell is primarily explained by studying the Nyquist spectrums, IPCE spectra, dark current, and photovoltaic performances.

  3. Modeling and simulation of CuIn1-xGaxSe2 based thin film solar cell

    Science.gov (United States)

    Kumari, S.; Singh, P.; Gautam, R.; Verma, A. S.

    2014-04-01

    In this work, CIGS (Copper Indium Gallium Diselenide) based solar cell structure has been simulated. We have been calculated short circuit current, open circuit voltage and efficiency of the cell. The thickness of the absorption layer is varied from 400 to 3000 nm, keeping the thickness of other layers unchanged. The effect of absorption layer thickness over cell performance has been analyzed and found that the efficiency increases upto 22% until the thickness of the absorption layer reaches around 2000 nm.

  4. Improving Performance via Blocking Layers in Dye-Sensitized Solar Cells Based on Nanowire Photoanodes.

    Science.gov (United States)

    Li, Luping; Xu, Cheng; Zhao, Yang; Chen, Shikai; Ziegler, Kirk J

    2015-06-17

    Electron recombination in dye-sensitized solar cells (DSSCs) results in significant electron loss and performance degradation. However, the reduction of electron recombination via blocking layers in nanowire-based DSSCs has rarely been investigated. In this study, HfO2 or TiO2 blocking layers are deposited on nanowire surfaces via atomic layer deposition (ALD) to reduce electron recombination in nanowire-based DSSCs. The control cell consisting of ITO nanowires coated with a porous shell of TiO2 by TiCl4 treatment yields an efficiency of 2.82%. The efficiency increases dramatically to 5.38% upon the insertion of a 1.3 nm TiO2 compact layer between the nanowire surface and porous TiO2 shell. This efficiency enhancement implies that porous sol-gel coatings on nanowires (e.g., via TiCl4 treatment) result in significant electron recombination in nanowire-based DSSCs, while compact coatings formed by ALD are more advantageous because of their ability to act as a blocking layer. By comparing nanowire-based DSSCs with their nanoparticle-based counterparts, we find that the nanowire-based DSSCs suffer more severe electron recombination from ITO due to the much higher surface area exposed to the electrolyte. While the insertion of a high band gap compact layer of HfO2 between the interface of the conductive nanowire and TiO2 shell improves performance, a comparison of the cell performance between TiO2 and HfO2 compact layers indicates that charge collection is suppressed by the difference in energy states. Consequently, the use of high band gap materials at the interface of conductive nanowires and TiO2 is not recommended.

  5. Renewable Electricity Generation via Solar-Powered Methanol Reforming: Hybrid Proton Exchange Membrane Fuel Cell Systems Based on Novel Non-Concentrating, Intermediate-Temperature Solar Collectors

    Science.gov (United States)

    Real, Daniel J.

    Tremendous research efforts have been conducted studying the capturing and conversion of solar energy. Solar thermal power systems offer a compelling opportunity for renewable energy utilization with high efficiencies and excellent cost-effectiveness. The goal of this work was to design a non-concentrating collector capable of reaching temperatures above 250 °C, use this collector to power methanol steam reforming, and operate a proton exchange membrane (PEM) fuel cell using the generated hydrogen. The study presents the construction and characterization of a non-concentrating, intermediate-temperature, fin-in-tube evacuated solar collector, made of copper and capable of reaching stagnation temperatures of 268.5 °C at 1000 W/m2 irradiance. The collector was used to power methanol steam reforming, including the initial heating and vaporization of liquid reactants and the final heating of the gaseous reactants. A preferential oxidation (PROX) catalyst was used to remove CO from simulated reformate gas, and this product gas was used to operate a PEM fuel cell. The results show 1) that the outlet temperature is not limited by heat transfer from the absorber coating to the heat transfer fluid, but by the amount of solar energy absorbed. This implicates a constant heat flux description of the heat transfer process and allows for the usage of materials with lower thermal conductivity than copper. 2) It is possible to operate a PEM fuel cell from reformate gas if a PROX catalyst is used to remove CO from the gas. 3) The performance of the fuel cell is only slightly decreased (~4%) by CO2 dilution present in the reformate and PROX gas. These results provide a foundation for the first renewable electricity generation via solar-powered methanol reforming through a hybrid PEM fuel cell system based on novel non-concentrating, intermediate-temperature solar collectors.

  6. Star-shaped carbazole derivative based efficient solid-state dye sensitized solar cell

    Science.gov (United States)

    Michaleviciute, Asta; Degbia, Martial; Tomkeviciene, Ausra; Schmaltz, Bruno; Gurskyte, Egle; Grazulevicius, Juozas Vidas; Bouclé, Johan; Tran-Van, François

    2014-05-01

    Two new star-shaped carbazole molecules, including tri(9-(methoxyphenyl)carbazol-3-yl)amine named TMPCA having molecular glasses properties and hole transport properties were synthesized. Their thermal, optical, photophysical and electrochemical properties were studied. The carbazole based molecules exhibit high thermal stability with 5% weight loss temperatures over 480 °C with higher glass temperature transitions 164-175 °C than the classical spiro-OMeTAD reference molecule. Their optical band gaps (2.76 eV) are low enough not to hinder neither the absorption of the indoline sensitizer (D102) nor its photoexcitation and charge transfer. Solid state ionization potential (IPs) of TMPCA is well adapted to that of D102 and ensure a driving force ΔrG >0.2 eV for an efficient transfer and regeneration of the photo-oxidized dye. Solid-state dye sensitized solar cells ITO/TiO2/D102/T4MPCA/Au showed a power conversion efficiency of 2.23% with Jsc of 8.85 mA cm-2 under standard AM 1.5 simulated solar irradiation.

  7. Stability Comparison of Perovskite Solar Cells Based on Zinc Oxide and Titania on Polymer Substrates.

    Science.gov (United States)

    Dkhissi, Yasmina; Meyer, Steffen; Chen, Dehong; Weerasinghe, Hasitha C; Spiccia, Leone; Cheng, Yi-Bing; Caruso, Rachel A

    2016-04-07

    Device scale-up and long-term stability constitute two major hurdles that the emerging perovskite solar technology will have to overcome before commercialization. Here, a comparative study was performed between ZnO and TiO2 electron-selective layers, two materials that allow the low-temperature processing of perovskite solar cells on polymer substrates. Although the use of TiO2 is well established on glass substrates, ZnO was chosen because it can be readily printed at low temperature and offers the potential for the large-scale roll-to-roll manufacturing of flexible photovoltaics at a low cost. However, a rapid degradation of CH3 NH3 PbI3 was observed if it was deposited on ZnO, therefore, the influence of the perovskite film preparation conditions on its morphology and degradation kinetics was investigated. This study showed that CH3 NH3 PbI3 could withstand a higher temperature on TiO2 than ZnO and that TiO2-based perovskite devices were more stable than their ZnO analogues.

  8. Preparation and Characterization of Chitosan Binder-Based Electrode for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    En Mei Jin

    2013-01-01

    Full Text Available A chitosan binder-based TiO2 photoelectrode is used in dye-sensitized solar cells (DSSCs. Field-emission scanning electron microscope (FE-SEM images revealed that the grain size, thickness, and distribution of TiO2 films are affected by the chitosan content. With addition of 2.0 wt% chitosan to the TiO2 film (D2, the surface pore size became the smallest, and the pores were fairly evenly distributed. The electron transit time, electron recombination lifetime, diffusion coefficient, and diffusion length were analyzed by IMVS and IMPS. The best DSSC, with 2.0 wt% chitosan addition to the TiO2 film, had a shorter electron transit time, longer electron recombination lifetime, and larger diffusion coefficient and diffusion length than the other samples. The results of 2.0 wt% chitosan-added TiO2 DSSCs are an electron transit time of  s, electron recombination lifetime of  s, diffusion coefficient of  cm2 s−1, diffusion length of 14.81 μm, and a solar conversion efficiency of 4.18%.

  9. Performance improvement in flexible polymer solar cells based on modified silver nanowire electrode

    Science.gov (United States)

    Wang, Danbei; Zhou, Weixin; Liu, Huan; Ma, Yanwen; Zhang, Hongmei

    2016-08-01

    In this work, an efficient flexible polymer solar cell was achieved by controlling the UV-ozone treatment time of silver nanowires (Ag NWs) used in the electrode and combined with other modification materials. Through optimizing the time of UV-ozone treatment, it is shown that Ag NWs electrode treated by UV-ozone for 10 s improves the power conversion efficiency (PCE) of the device based on the blend of poly(3-hexylthiophene)(P3HT): [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) from 0.76% to 1.34%. After treatment by UV-ozone, Ag NWs electrodes exhibit several promising characteristics, including high optical transparency, low sheet resistance and superior surface work function. As a consequence, the performance of devices utilizing 10 s UV-ozone-treated Ag NWs with PEDOT:PSS or MoO3 as composite anode showed higher PCEs of 2.77% (2.73%) compared with that for Ag NW electrodes without UV-ozone treatment. In addition, a PCE of 5.97% in flexible polymer solar cells based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl](PBDTTT-EFT):[6, 6]-phenyl C71-butyric acid methyl ester (PC71BM) as a photoactive layer was obtained.

  10. Wire-shaped quantum dots-sensitized solar cells based on nanosheets and nanowires.

    Science.gov (United States)

    Chen, Haining; Zhu, Liqun; Wang, Meng; Liu, Huicong; Li, Weiping

    2011-11-25

    Wire-shaped quantum dots-sensitized solar cells (WS-QDSCs) based on nanosheets and nanowires were fabricated and investigated for this paper. The nanosheets grown on stainless steel (SS) wire by electrodeposition were mainly composed of Zn₅(OH)₈Cl₂·H₂O and most of the Zn₅(OH)₈Cl₂·H₂O was converted to ZnO by post-treatment, and ZnO nanowires were directly grown on SS wire by the hydrothermal method. CdS QDs were deposited on nanosheets and nanowires by successive ionic layer adsorption and reaction method. The results of photoelectrochemical performance indicated that WS-QDSCs showed a similar conversion efficiency in polysulfide and Na₂SO₄ electrolytes, while the WS-QDSCs based on the Cu2S counter electrode achieved much higher performance than those based on SS and Cu counter electrodes. By optimizing electrodeposition duration, the WS-QDSCs based on nanosheets presented the highest conversion efficiency of 0.60% for the duration of 20 min. Performance comparison indicated that the WS-QDSC based on nanosheets showed very superior performance to that based on the nanowires with similar film thickness.

  11. Characterization of Air-Based Photovoltaic Thermal Panels with Bifacial Solar Cells

    OpenAIRE

    P. Ooshaksaraei; K. Sopian; R. Zulkifli; Saleem H. Zaidi

    2013-01-01

    Photovoltaic (PV) panels account for a majority of the cost of photovoltaic thermal (PVT) panels. Bifacial silicon solar panels are attractive for PVT panels because of their potential to enhance electrical power generation from the same silicon wafer compared with conventional monofacial solar panels. This paper examines the performance of air-based bifacial PVT panels with regard to the first and second laws of thermodynamics. Four air-based bifacial PVT panels were designed. The maximum ef...

  12. Photoelectrochemical Characterizations Of ZnO Based Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    P. K. Baviskar

    2010-07-01

    Full Text Available Dye-sensitized solar cells (DSSCs based on organic dyes adsorbed on nano-particles of zinc oxide (ZnO electrode have received considerable attention because of their high incident solar light to power conversion efficiency and low production cost. Multiple organic dyes with different chemical structure have been developed so far. They have been tested for their photovoltaic performances with combinations of different photo-anodes. In order to produce efficient DSSCs, it is imperative to develop effective organic sensitizers. The sensitizers need to be optimized for the chemical structures to provide beneficial electron communication between a ZnO electrode and electrolyte for good light-harvesting future. . The current investigation focuses on synthesis of ZnO photo-anode by simple and inexpensive chemical bath deposition method at room temperature, which can be potentially used for mass production. The photoelectrochemical characteristic of ZnO based DSSCs with liquid electrolyte as hole conductor & platinum as a counter electrode was also studied. Different types of dyes e.g. Rose Bengal (metal free and N3 (Ru-metal dyes were examined as sensitizers for ZnO based DSSCs. The photoelectrochemical characteris­tics were measured under simulated sunlight with the radiant power of 100 mW/cm2 at AM 1.5 (1 sun conditions. The photocurrent density versus photovoltage char­acteristics was measured with electrochemical analyzer (Potentiostat/Galvanostat. Moreover, two types of dyes (metallic and metal free were adsorbed on photoanode to examine its photoelectrochemical behavior. It was found that metal free Rose Bengal dye has better photoelectrochemical performance than N3 dye. The calculated efficiencies for ZnO based DSSCs are 0.34 % and 0.68 % for N3 and Rose Bengal dyes respectively with the structure FTO/ZnO/Dye/Electrolyte/Pt.

  13. Graphene-based Materials for Photoanodes in Dye-sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Xiaoru eGuo

    2015-12-01

    Full Text Available This article reviews the research on the use of graphene and related materials in the photoanode of dye-sensitized solar cells (DSSCs. Graphene-based materials, such as pristine graphene, graphene oxide, and reduced graphene oxide, have properties attractive for various components of the DSSC photoanode. We first provide a brief introduction to graphene properties and analyze requirements for making a high-performance photoanode. Then we introduce applications of graphene-based materials in each part of the DSSC photoanode, i.e., the transparent conducting electrode, the sensitizing material, and the semiconducting layer. Particularly, we discuss how the incorporation of graphene-based materials in those components can enhance the photoanode performance. It is clear that the outstanding properties of graphene, such as the fast electron transfer ability, high Young’s modulus, and good transparency, benefit DSSC photoanode research, and doping or surface modifications of graphene nanosheets with other materials can also improve the photoanode and thus the resulting cell performance. Finally, we present an outlook for current issues and further trends for using graphene materials in DSSC photoanodes.

  14. Nanoimprinted polymer solar cell.

    Science.gov (United States)

    Yang, Yi; Mielczarek, Kamil; Aryal, Mukti; Zakhidov, Anvar; Hu, Walter

    2012-04-24

    Among the various organic photovoltaic devices, the conjugated polymer/fullerene approach has drawn the most research interest. The performance of these types of solar cells is greatly determined by the nanoscale morphology of the two components (donor/acceptor) and the molecular orientation/crystallinity in the photoactive layer. A vertically bicontinuous and interdigitized heterojunction between donor and acceptor has been regarded as one of the ideal structures to enable both efficient charge separation and transport. Synergistic control of polymer orientation in the nanostructured heterojunction is also critical to improve the performance of polymer solar cells. Nanoimprint lithography has emerged as a new approach to simultaneously control both the heterojunction morphology and polymer chains in organic photovoltaics. Currently, in the area of nanoimprinted polymer solar cells, much progress has been achieved in the fabrication of nanostructured morphology, control of molecular orientation/crystallinity, deposition of acceptor materials, patterned electrodes, understanding of structure-property correlations, and device performance. This review article summarizes the recent studies on nanoimprinted polymer solar cells and discusses the outstanding challenges and opportunities for future work.

  15. NASA Facts, Solar Cells.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    The design and function of solar cells as a source of electrical power for unmanned space vehicles is described in this pamphlet written for high school physical science students. The pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook. Review…

  16. Efficient inverted polymer solar cells based on conjugated polyelectrolyte and zinc oxide modified ITO electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Tao; Zhu, Xiaoguang; Tu, Guoli, E-mail: tgl@hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhou, Lingyu [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory of Clean Energy, Dalian 116023 (China); Zhang, Jian, E-mail: jianzhang@guet.edu.cn [Department of Material Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China)

    2015-02-23

    Efficient inverted polymer solar cells (PSCs) were constructed by utilizing a conjugated polyelectrolyte PF{sub EO}SO{sub 3}Na and zinc oxide to modify the indium tin oxide (ITO) electrode. The ITO electrode modified by PF{sub EO}SO{sub 3}Na and zinc oxide possesses high transparency, increased electron mobility, smoothened surface, and lower work function. PTB7:PC{sub 71}BM inverted PSCs containing the modified ITO electrode achieved a high power conversion efficiency (PCE) of 8.49%, exceeding that of the control device containing a ZnO modified ITO electrode (7.48%). Especially, PCE-10:PC{sub 71}BM inverted polymer solar cells achieved a high PCE up to 9.4%. These results demonstrate a useful approach to improve the performance of inverted polymer solar cells.

  17. Cu{sub 2}ZnSn(S,Se){sub 4} solar cells based on chemical bath deposited precursors

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chao, E-mail: chao.gao@kit.edu [Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Schnabel, Thomas; Abzieher, Tobias [Zentrum für Sonnenenergie-und Wasserstoff-Forschung Baden-Württemberg (ZSW), 70565 Stuttgart (Germany); Krämmer, Christoph [Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Powalla, Michael [Zentrum für Sonnenenergie-und Wasserstoff-Forschung Baden-Württemberg (ZSW), 70565 Stuttgart (Germany); Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Kalt, Heinz; Hetterich, Michael [Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany)

    2014-07-01

    A low-cost method has been developed to fabricate Cu{sub 2}ZnSn(S,Se){sub 4} solar cells. By this method, firstly SnS, CuS, and ZnS layers are successively deposited on a molybdenum/soda lime glass (Mo/SLG) substrate by chemical bath deposition. The Cu{sub 2}ZnSn(S,Se){sub 4} thin films are obtained by annealing the precursor in a selenium atmosphere utilizing a graphite box in the furnace. The obtained Cu{sub 2}ZnSn(S,Se){sub 4} thin films show large crystalline grains. By optimizing the preparation process, Cu{sub 2}ZnSn(S,Se){sub 4} solar cells with efficiencies up to 4.5% are obtained. The results imply that the Cu{sub 2}ZnSn(S,Se){sub 4}/CdS interface and the back contact may be limiting factors for solar cell efficiency. - Highlights: • A chemical bath deposition method is developed to prepare Cu{sub 2}ZnSn(S,Se){sub 4} thin films. • The Cu{sub 2}ZnSn(S,Se){sub 4} thin films show good crystallization. • Solar cells with efficiencies up to 4.5% can be prepared based on the Cu{sub 2}ZnSn(S,Se){sub 4} layer. • The limiting factors for the solar cell efficiency are analyzed.

  18. Fabrication and characterization of perovskite based solar cells using phthalocyanine and naphthalocyanine as hole-transporting layer

    Science.gov (United States)

    Okada, Yuki; Suzuki, Atsushi; Yamasaki, Yasuhiro; Oku, Takeo

    2017-01-01

    Organic-inorganic hybrid heterojunction solar cells containing CH3NH3PbI3 perovskite compound were fabricated using TiO2 as an electronic transporting layer and spirobifluorence as a hole-transporting layer. The purpose of the present study is to investigate a role of the hole-transporting layer on the photovoltaic properties and microstructures of CH3NH3PbI3 perovskite solar cells. The X-ray diffraction identified crystal structures of the perovskite layer in the solar cells. Optical microscopy showed different surface morphologies, and the perovskite structures on the TiO2 mesoporous structure depended on addition of phthalocyanine into the hole-transporting layer. The photovoltaic properties and hole-transporting behavior was depending on carrier mobility, electron structures of the perovskite crystal and band gaps related with the photovoltaic parameters. Energy diagram and photovoltaic mechanism of the perovskite solar cells using hole-transporting layers were discussed by experimental results. Perovskite based solar cells using phthalocyanines as hole-transporting layers have advantages to provide a high photovoltaic performance with a wide region of optical absorption.

  19. CH(3)NH(3)PbI(3) perovskite / silicon tandem solar cells: characterization based optical simulations.

    Science.gov (United States)

    Filipič, Miha; Löper, Philipp; Niesen, Bjoern; De Wolf, Stefaan; Krč, Janez; Ballif, Christophe; Topič, Marko

    2015-04-06

    In this study we analyze and discuss the optical properties of various tandem architectures: mechanically stacked (four-terminal) and monolithically integrated (two-terminal) tandem devices, consisting of a methyl ammonium lead triiodide (CH(3)NH(3)PbI(3)) perovskite top solar cell and a crystalline silicon bottom solar cell. We provide layer thickness optimization guidelines and give estimates of the maximum tandem efficiencies based on state-of-the-art sub cells. We use experimental complex refractive index spectra for all involved materials as input data for an in-house developed optical simulator CROWM. Our characterization based simulations forecast that with optimized layer thicknesses the four-terminal configuration enables efficiencies over 30%, well above the current single-junction crystalline silicon cell record of 25.6%. Efficiencies over 30% can also be achieved with a two-terminal monolithic integration of the sub-cells, combined with proper selection of layer thicknesses.

  20. Thin, Lightweight Solar Cell

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Weinberg, Irving

    1991-01-01

    Improved design for thin, lightweight solar photovoltaic cells with front contacts reduces degradation of electrical output under exposure to energetic charged particles (protons and electrons). Increases ability of cells to maintain structural integrity under exposure to ultraviolet radiation by eliminating ultraviolet-degradable adhesives used to retain cover glasses. Interdigitated front contacts and front junctions formed on semiconductor substrate. Mating contacts formed on back surface of cover glass. Cover glass and substrate electrostatically bonded together.

  1. Effect of Dopant Concentrations on Conversion Efficiency of SiC-Based Intermediate Band Solar Cells

    Science.gov (United States)

    Heidarzadeh, H.; Rostami, A.; Dolatyari, M.; Rostami, G.

    It was recognized that the introducing of a narrow metallic band states in the crystal structure of semiconductors make materials that they can be used as intermediate band materials for improving the power conversion efficiency of high band gap single junction solar cells. In these structures intermediate bands would serve as a "stepping stone" for photons with different energies to excite electrons from the valence to the conduction bands. Low-energy photons can be captured by this method that would pass through a conventional solar cell. An optimal IBSC (intermediate band solar cells) has a total band gap of about 1.95 eV and 3C-SiC has the closest band gap to this value (band gap of 2.2 eV). Excellent electronic properties of 3C-SiC such as high electron mobility and saturated electron drift velocity and its suitable band gap makes it an important alternative material for light harvesting technologies instead of conventional semiconductors like silicon. In this condition detailed balance analysis predicts a limiting efficiency of more than 55 % for an optimized, single junction intermediate band solar cell that it is higher than efficiency of an optimized two junction tandem solar cell. In this study we have analyzed Fe doped 3C-SiC by ab initio calculations for Fe concentration of 1.05, 1.85, 3.22, and 5.55 %. The results show conversion efficiency for designed solar cell change with altering in Fe contents. The maximum efficiency has been obtained for crystals with 3 % Fe3+ as dopant in 3C-SiC structure.

  2. Quantification of Solar Cell Failure Signatures Based on Statistical Analysis of Electroluminescence Images

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2017-01-01

    We demonstrate a method to quantify the extent of solar cell cracks, shunting, or damaged cell interconnects, present in crystalline silicon photovoltaic (PV) modules by statistical analysis of the electroluminescence (EL) intensity distributions of individual cells within the module. From the EL...... operation. The method can be easily automated for quality control by module manufacturers or installers, or as a diagnostic tool by plant operators and diagnostic service providers....

  3. Degradation of CIGS solar cells

    NARCIS (Netherlands)

    Theelen, M.J.

    2015-01-01

    Thin film CIGS solar cells and individual layers within these solar cells have been tested in order to assess their long term stability. Alongside with the execution of standard tests, in which elevated temperatures and humidity levels are used, the solar cells have also been exposed to a combinatio

  4. Surface-charge accumulation effects on open-circuit voltage in organic solar cells based on photoinduced impedance analysis.

    Science.gov (United States)

    Zang, Huidong; Hsiao, Yu-Che; Hu, Bin

    2014-03-14

    The accumulation of dissociated charge carriers plays an important role in reducing the loss occurring in organic solar cells. We find from light-assisted capacitance measurements that the charge accumulation inevitably occurred at the electrode and photovoltaic layer interface for bulk-heterojunction ITO/PEDOT:PSS/P3HT:PCBM/Ca/Al solar cells. Our results indicate, for the first time through impedance measurements, that the charge accumulation exists at the anode side of the device, and more importantly, we successfully identify the type of charge accumulated. Further study shows that the charge accumulation can significantly affect open circuit voltage and short circuit current. As a result, our experimental results from light assisted capacitance measurements provide a new understanding of the loss in open-circuit voltage and short-circuit photocurrent based on charge accumulation. Clearly, controlling charge accumulation presents a new mechanism to improve the photovoltaic performance of organic solar cells.

  5. The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells.

    Science.gov (United States)

    Dymshits, Alex; Henning, Alex; Segev, Gideon; Rosenwaks, Yossi; Etgar, Lioz

    2015-03-03

    Cross-sections of a hole-conductor-free CH3NH3PbI3 perovskite solar cell were characterized with Kelvin probe force microscopy. A depletion region width of about 45 nm was determined from the measured potential profiles at the interface between CH3NH3PbI3 and nanocrystalline TiO2, whereas a negligible depletion was measured at the CH3NH3PbI3/Al2O3 interface. A complete solar cell can be realized with the CH3NH3PbI3 that functions both as light harvester and hole conductor in combination with a metal oxide. The band diagrams were estimated from the measured potential profile at the interfaces, and are critical findings for a better understanding and further improvement of perovskite based solar cells.

  6. Inverted organic solar cells based on Cd-doped TiO2 as an electron extraction layer

    Science.gov (United States)

    Ranjitha, A.; Muthukumarasamy, N.; Thambidurai, M.; Velauthapillai, Dhayalan; Madhan Kumar, A.; Gasem, Zuhair M.

    2014-10-01

    Nanocrystalline Cd-doped TiO2 thin films have been prepared by sol-gel method. X-ray diffraction analysis reveals that TiO2 and Cd-doped TiO2 nanocrystalline thin films are of anatase phase. The average grain size of TiO2 and Cd-doped TiO2 nanocrystalline thin films was found to lie in the range of 15-18 nm. Solar cells have been fabricated with a device structure of ITO/Cd-doped TiO2/P3HT:PC71BM/MoO3/Al configuration. The power conversion efficiency of the inverted organic solar cell with Cd-doped TiO2 is 3.06% and is higher than that of TiO2 based organic solar cell (2.64%).

  7. Solar cell circuit and method for manufacturing solar cells

    Science.gov (United States)

    Mardesich, Nick (Inventor)

    2010-01-01

    The invention is a novel manufacturing method for making multi-junction solar cell circuits that addresses current problems associated with such circuits by allowing the formation of integral diodes in the cells and allows for a large number of circuits to readily be placed on a single silicon wafer substrate. The standard Ge wafer used as the base for multi-junction solar cells is replaced with a thinner layer of Ge or a II-V semiconductor material on a silicon/silicon dioxide substrate. This allows high-voltage cells with multiple multi-junction circuits to be manufactured on a single wafer, resulting in less array assembly mass and simplified power management.

  8. Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters

    Directory of Open Access Journals (Sweden)

    Carole Grätzel

    2013-01-01

    Full Text Available Mesoscopic solar cells are one of the most promising photovoltaic technologies among third generation photovoltaics due to their low cost and high efficiency. The morphology of wide-band semiconductors, sensitized with molecular or nanosized light harvesters, used as electron collectors contribute substantially to the device performance. Recent developments in the use of organic–inorganic layer structured perovskites as light absorbers and as electron or hole transport materials allows reduction in the thickness of photoanodes to the submicron level and have raised the power conversion efficiency of solid state mesoscopic solar cells above the 10% level.

  9. Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters

    KAUST Repository

    Grätzel, Carole

    2013-01-01

    Mesoscopic solar cells are one of the most promising photovoltaic technologies among third generation photovoltaics due to their low cost and high efficiency. The morphology of wide-band semiconductors, sensitized with molecular or nanosized light harvesters, used as electron collectors contribute substantially to the device performance. Recent developments in the use of organic-inorganic layer structured perovskites as light absorbers and as electron or hole transport materials allows reduction in the thickness of photoanodes to the submicron level and have raised the power conversion efficiency of solid state mesoscopic solar cells above the 10% level.

  10. Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS.

    Science.gov (United States)

    Sharma, Manisha; Pudasaini, Pushpa Raj; Ruiz-Zepeda, Francisco; Elam, David; Ayon, Arturo A

    2014-03-26

    Recently, free-standing, ultrathin, single-crystal silicon (c-Si) membranes have attracted considerable attention as a suitable material for low-cost, mechanically flexible electronics. In this paper, we report a promising ultrathin, flexible, hybrid solar cell based on silicon nanowire (SiNW) arrays and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The free-standing, ultrathin c-Si membranes of different thicknesses were produced by KOH etching of double-side-polished silicon wafers for various etching times. The processed free-standing silicon membranes were observed to be mechanically flexible, and in spite of their relatively small thickness, the samples tolerated the different steps of solar cell fabrication, including surface nanotexturization, spin-casting, dielectric film deposition, and metallization. However, in terms of the optical performance, ultrathin c-Si membranes suffer from noticeable transmission losses, especially in the long-wavelength region. We describe the experimental performance of a promising light-trapping scheme in the aforementioned ultrathin c-Si membranes of thicknesses as small as 5.7 μm employing front-surface random SiNW texturization in combination with a back-surface distribution of silver (Ag) nanoparticles (NPs). We report the enhancement of both the short-circuit current density (JSC) and the open-circuit voltage (VOC) that has been achieved in the described devices. Such enhancement is attributable to the plasmonic backscattering effect of the back-surface Ag NPs, which led to an overall 10% increase in the power conversion efficiency (PCE) of the devices compared to similar structures without Ag NPs. A PCE in excess of 6.62% has been achieved in the described devices having a c-Si membrane of thickness 8.6 μm. The described device technology could prove crucial in achieving an efficient, low-cost, mechanically flexible photovoltaic device in the near future.

  11. Fabrication of Copper(I) Bipyridyl Complex Based Dye Sensitized Solar Cells

    Science.gov (United States)

    Vuong, Son; Nguyen-Dang, Ha-My; Tran, Quang Thinh; Luong, Thi Thu Thuy; Pham, Trang T. T.; Nguyen-Tran, Thuat; Mai, Anh Tuan

    2017-01-01

    This study investigates the performance of dye-sensitized solar cells (DSSC) based on a copper(I) complex. A simple form of copper(I) complex dye was synthesized with a structure of [Cu(L)(CH3CN)], where L is the 6,6'-dimethyl-4,4'-bis(phenylethynyl)-2,2'-bipyridine ligand. The full structure of DSSC investigated in this study is as follows: FTO/TiO2/dye Cu(I) bipyridyl/3I-/I3 - electrolyte/graphite/FTO. The TiO2 photoanodes were deposited from apoly(vinylpyrrolidone)-based paste using a spin coating technique. Different conditions of fabrication, such as paste dispersion time and total TiO2 thickness, were systematically studied in order to optimize the performance of the DSSC. The trigonal planar complex [Cu(L)CH3CN] was revealed to be suitable for applications in DSSC. The highest exhibited short circuit current density was found to be 0.48 mA/cm2, with an open voltage of 477 mV, a form factor of 34% and a power conversion efficiency of 0.08% for the cell with photoanodes thickness of about 2.2 μm. It was shown that the dye and the paste formulation had great potential for applications in DSSC.

  12. Degradation of cyanoacrylic acid-based organic sensitizers in dye-sensitized solar cells.

    Science.gov (United States)

    Chen, Cheng; Yang, Xichuan; Cheng, Ming; Zhang, Fuguo; Sun, Licheng

    2013-07-01

    Organic dyes have become widely used in dye-sensitized solar cells (DSSCs) because of their good performance, flexible structural modifications, and low costs. To increase the photostability of organic dye-based DSSCs, we conducted a full study on the degradation mechanism of cyanoacrylic acid-based organic sensitizers in DSSCs. The results showed that with the synergy between water and UV light, the sensitizer could desorb from the TiO2 surface and the cyanoacrylic acid unit of the sensitizer was transformed into the aldehyde group. It was also observed that the water content had a great effect on the degradation process. Our experiments conducted using (18) O-labeled water demonstrated that the oxygen atom of the aldehyde group identified in the degraded dye came from the solvent water in the DSSCs. Therefore, controlling the water content during DSSC fabrication, good sealing of cells, and filtering the UV light are crucial to produce DSSCs that are more durable and robust.

  13. Long-term stability for cobalt-based dye-sensitized solar cells obtained by electrolyte optimization.

    Science.gov (United States)

    Gao, Jiajia; Bhagavathi Achari, Muthuraaman; Kloo, Lars

    2014-06-14

    A significant improvement in the long-term stability for cobalt-based dye-sensitized solar cells (DSCs) under light-soaking conditions has been achieved by optimization of the composition of tris(2,2'-bipyridine) Co(ii)/Co(iii) electrolytes. The effects of component exchanges and changes were also studied during the optimization process.

  14. Direct comparison of highly efficient solution- and vacuum-processed organic solar cells based on merocyanine dyes

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, Nils M.; Steinmann, Vera; Hertel, Dirk; Meerholz, Klaus [Department fuer Chemie, Universitaet Koeln, Luxemburger Strasse 116, 50939 Koeln (Germany); Buerckstuemmer, Hannah; Wuerthner, Frank [Institut fuer Organische Chemie and Roentgen Research Center for Complex Material Systems, Universitaet Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Hwang, Jaehyung [BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen (Germany)

    2010-10-01

    Identically configured bulk heterojunction organic solar cells based on merocyanine dye donor and fullerene acceptor compounds are manufactured either from solution or by vacuum deposition, to enable a direct comparison. Whereas the former approach is more suitable for screening purposes, the latter approach affords higher short-circuit current density and power conversion efficiency. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. Direct comparison of highly efficient solution- and vacuum-processed organic solar cells based on merocyanine dyes.

    Science.gov (United States)

    Kronenberg, Nils M; Steinmann, Vera; Bürckstümmer, Hannah; Hwang, Jaehyung; Hertel, Dirk; Würthner, Frank; Meerholz, Klaus

    2010-10-01

    Identically configured bulk heterojunction organic solar cells based on merocyanine dye donor and fullerene acceptor compounds (see figure) are manufactured either from solution or by vacuum deposition, to enable a direct comparison. Whereas the former approach is more suitable for screening purposes, the latter approach affords higher short-circuit current density and power conversion efficiency.

  16. Advances in thin-film solar cells

    CERN Document Server

    Dharmadasa, I M

    2012-01-01

    This book concentrates on the latest developments in our understanding of solid-state device physics. The material presented is mainly experimental and based on CdTe thin-film solar cells. It extends these new findings to CIGS thin-film solar cells and presents a new device design based on graded bandgap multilayer solar cells. This design has been experimentally tested using the well-researched GaAs/AlGaAs system and initial devices have shown impressive device parameters. These devices are capable of absorbing all radiation (UV, visible, and infra-red) within the solar spectrum and combines

  17. Water-based thixotropic polymer gel electrolyte for dye-sensitized solar cells.

    Science.gov (United States)

    Park, Se Jeong; Yoo, Kichoen; Kim, Jae-Yup; Kim, Jin Young; Lee, Doh-Kwon; Kim, Bongsoo; Kim, Honggon; Kim, Jong Hak; Cho, Jinhan; Ko, Min Jae

    2013-05-28

    For the practical application of dye-sensitized solar cells (DSSCs), it is important to replace the conventional organic solvents based electrolyte with environmentally friendly and stable ones, due to the toxicity and leakage problems. Here we report a noble water-based thixotropic polymer gel electrolyte containing xanthan gum, which satisfies both the environmentally friendliness and stability against leakage and water intrusion. For application in DSSCs, it was possible to infiltrate the prepared electrolyte into the mesoporous TiO2 electrode at the fluidic state, resulting in sufficient penetration. As a result, this electrolyte exhibited similar conversion efficiency (4.78% at 100 mW cm(-2)) and an enhanced long-term stability compared to a water-based liquid electrolyte. The effects of water on the photovoltaic properties were examined elaborately from the cyclic voltammetry curves and impedance spectra. Despite the positive shift in the conduction band potential of the TiO2 electrode, the open-circuit voltage was enhanced by addition of water in the electrolyte due to the greater positive shift in the I(-)/I3(-) redox potential. However, due to the dye desorption and decreased diffusion coefficient caused by the water content, the short-circuit photocurrent density was reduced. These results will provide great insight into the development of efficient and stable water-based electrolytes.

  18. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    Science.gov (United States)

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-05-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4‧-(2,2-dicyanovinyl)-[1,1‧-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up.

  19. Semi-transparent solar cells

    Science.gov (United States)

    Sun, J.; Jasieniak, J. J.

    2017-03-01

    Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies.

  20. Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells.

    Science.gov (United States)

    Lang, Felix; Gluba, Marc A; Albrecht, Steve; Rappich, Jörg; Korte, Lars; Rech, Bernd; Nickel, Norbert H

    2015-07-16

    Perovskite solar cells with transparent contacts may be used to compensate for thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers with high electrical conductivity and optimal transparency. We address this challenge by implementing large-area graphene grown by chemical vapor deposition as a highly transparent electrode in perovskite solar cells, leading to identical charge collection efficiencies. Electrical performance of solar cells with a graphene-based contact reached those of solar cells with standard gold contacts. The optical transmission by far exceeds that of reference devices and amounts to 64.3% below the perovskite band gap. Finally, we demonstrate a four-terminal tandem device combining a high band gap graphene-contacted perovskite top solar cell (Eg = 1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg = 1.12 eV).

  1. Optimization of solution-processed oligothiophene:fullerene based organic solar cells by using solvent additives.

    Science.gov (United States)

    Schulz, Gisela L; Urdanpilleta, Marta; Fitzner, Roland; Brier, Eduard; Mena-Osteritz, Elena; Reinold, Egon; Bäuerle, Peter

    2013-01-01

    The optimization of solution-processed organic bulk-heterojunction solar cells with the acceptor-substituted quinquethiophene DCV5T-Bu 4 as donor in conjunction with PC61BM as acceptor is described. Power conversion efficiencies up to 3.0% and external quantum efficiencies up to 40% were obtained through the use of 1-chloronaphthalene as solvent additive in the fabrication of the photovoltaic devices. Furthermore, atomic force microscopy investigations of the photoactive layer gave insight into the distribution of donor and acceptor within the blend. The unique combination of solubility and thermal stability of DCV5T-Bu 4 also allows for fabrication of organic solar cells by vacuum deposition. Thus, we were able to perform a rare comparison of the device characteristics of the solution-processed DCV5T-Bu 4 :PC61BM solar cell with its vacuum-processed DCV5T-Bu 4 :C60 counterpart. Interestingly in this case, the efficiencies of the small-molecule organic solar cells prepared by using solution techniques are approaching those fabricated by using vacuum technology. This result is significant as vacuum-processed devices typically display much better performances in photovoltaic cells.

  2. Optimization of solution-processed oligothiophene:fullerene based organic solar cells by using solvent additives

    Directory of Open Access Journals (Sweden)

    Gisela L. Schulz

    2013-10-01

    Full Text Available The optimization of solution-processed organic bulk-heterojunction solar cells with the acceptor-substituted quinquethiophene DCV5T-Bu4 as donor in conjunction with PC61BM as acceptor is described. Power conversion efficiencies up to 3.0% and external quantum efficiencies up to 40% were obtained through the use of 1-chloronaphthalene as solvent additive in the fabrication of the photovoltaic devices. Furthermore, atomic force microscopy investigations of the photoactive layer gave insight into the distribution of donor and acceptor within the blend. The unique combination of solubility and thermal stability of DCV5T-Bu4 also allows for fabrication of organic solar cells by vacuum deposition. Thus, we were able to perform a rare comparison of the device characteristics of the solution-processed DCV5T-Bu4:PC61BM solar cell with its vacuum-processed DCV5T-Bu4:C60 counterpart. Interestingly in this case, the efficiencies of the small-molecule organic solar cells prepared by using solution techniques are approaching those fabricated by using vacuum technology. This result is significant as vacuum-processed devices typically display much better performances in photovoltaic cells.

  3. Neat C₇₀-based bulk-heterojunction polymer solar cells with excellent acceptor dispersion.

    Science.gov (United States)

    Gasparini, Nicola; Righi, Sara; Tinti, Francesca; Savoini, Alberto; Cominetti, Alessandra; Po, Riccardo; Camaioni, Nadia

    2014-12-10

    The replacement of common fullerene derivatives with neat-C70 could be an effective approach to restrain the costs of organic photovoltaics and increase their sustainability. In this study, bulk-heterojunction solar cells made of neat-C70 and low energy-gap conjugated polymers, PTB7 and PCDTBT, are thoroughly investigated and compared. Upon replacing PC70BM with C70, the mobility of positive carriers in the donor phase is roughly reduced by 1 order of magnitude, while that of electrons is only slightly modified. It is shown that the main loss mechanism of the investigated neat-C70 solar cells is a low mobility-lifetime product. Nevertheless, PCDTBT:C70 devices undergo a limited loss of 7.5%, compared to the reference PCDTBT:PC70BM cells, reaching a record efficiency (4.44%) for polymer solar cells with unfunctionalized fullerenes. The moderate efficiency loss of PCDTBT:C70 devices, due to an unexpected excellent miscibility of PCDTBT:C70 blends, demonstrates that efficient solar cells made of neat-fullerene are possible. The efficient dispersion of C70 in the PCDTBT matrix is attributed to an interaction between fullerene and the carbazole unit of the polymer.

  4. A DP based scheme for real-time reconfiguration of solar cell arrays exposed to dynamic changing inhomogeneous illuminations

    DEFF Research Database (Denmark)

    Shi, Liping; Brehm, Robert

    2016-01-01

    efficiency is drastically reduced. Dynamic real-time reconfiguration of the solar panel array can reduce effects on the output efficiency due to partial shading. This results in a maximized power output of the panel array when exposed to dynamic changing illuminations. The optimal array configuration......The overall energy conversion efficiency of solar cell arrays is highly effected by partial shading effects. Especially for solar panel arrays installed in environments which are exposed to inhomogeneous dynamic changing illuminations such as on roof tops of electrical vehicles the overall system...... with respect to shading patterns can be stated as a combinatorial optimization problem and this paper proposes a dynamic programming (DP) based algorithm which finds the optimal feasible solution to reconfigure the solar panel array for maximum efficiency in real-time with linear time complexity. It is shown...

  5. ITO-Free Semitransparent Organic Solar Cells Based on Silver Thin Film Electrodes

    Directory of Open Access Journals (Sweden)

    Zhizhe Wang

    2014-01-01

    Full Text Available ITO-free semitransparent organic solar cells (OSCs based on MoO3/Ag anodes with poly(3-hexylthiophene and [6,6]-phenyl-C61-butyric acid methyl ester films as the active layer are investigated in this work. To obtain the optimal transparent (MoO3/Ag anode, ITO-free reference OSCs are firstly fabricated. The power conversion efficiency (PCE of 2.71% is obtained for OSCs based on the optimal MoO3 (2 nm/Ag (9 nm anode, comparable to that of ITO-based reference OSCs (PCE of 2.85%. Then based on MoO3 (2 nm/Ag (9 nm anode, ITO-free semitransparent OSCs with different thickness combination of Ca and Ag as the cathodes are investigated. It is observed from our results that OSCs with Ca (15 nm/Ag (15 nm cathode have the optimal transparency. Meanwhile, the PCE of 1.79% and 0.67% is obtained for illumination from the anode and cathode side, respectively, comparable to that of similar ITO-based semitransparent OSCs (PCE of 1.59% and 0.75% for illumination from the anode and cathode side, resp. (Sol. Energy Mater. Sol. Cells, 95, pp. 877–880, 2011. The transparency and PCE of ITO-free semitransparent OSCs can be further improved by introducing a light couple layer. The developed method is compatible with various substrates, which is instructive for further research of ITO-free semitransparent OSCs.

  6. Advancements in n-type base crystalline silicon solar cells and their emergence in the photovoltaic industry.

    Science.gov (United States)

    ur Rehman, Atteq; Lee, Soo Hong

    2013-01-01

    The p-type crystalline silicon wafers have occupied most of the solar cell market today. However, modules made with n-type crystalline silicon wafers are actually the most efficient modules up to date. This is because the material properties offered by n-type crystalline silicon substrates are suitable for higher efficiencies. Properties such as the absence of boron-oxygen related defects and a greater tolerance to key metal impurities by n-type crystalline silicon substrates are major factors that underline the efficiency of n-type crystalline silicon wafer modules. The bi-facial design of n-type cells with good rear-side electronic and optical properties on an industrial scale can be shaped as well. Furthermore, the development in the industrialization of solar cell designs based on n-type crystalline silicon substrates also highlights its boost in the contributions to the photovoltaic industry. In this paper, a review of various solar cell structures that can be realized on n-type crystalline silicon substrates will be given. Moreover, the current standing of solar cell technology based on n-type substrates and its contribution in photovoltaic industry will also be discussed.

  7. Advancements in n-Type Base Crystalline Silicon Solar Cells and Their Emergence in the Photovoltaic Industry

    Directory of Open Access Journals (Sweden)

    Atteq ur Rehman

    2013-01-01

    Full Text Available The p-type crystalline silicon wafers have occupied most of the solar cell market today. However, modules made with n-type crystalline silicon wafers are actually the most efficient modules up to date. This is because the material properties offered by n-type crystalline silicon substrates are suitable for higher efficiencies. Properties such as the absence of boron-oxygen related defects and a greater tolerance to key metal impurities by n-type crystalline silicon substrates are major factors that underline the efficiency of n-type crystalline silicon wafer modules. The bi-facial design of n-type cells with good rear-side electronic and optical properties on an industrial scale can be shaped as well. Furthermore, the development in the industrialization of solar cell designs based on n-type crystalline silicon substrates also highlights its boost in the contributions to the photovoltaic industry. In this paper, a review of various solar cell structures that can be realized on n-type crystalline silicon substrates will be given. Moreover, the current standing of solar cell technology based on n-type substrates and its contribution in photovoltaic industry will also be discussed.

  8. Radial junctions formed by conformal chemical doping for innovative hole-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Garozzo, C.; Giannazzo, F.; Italia, M.; La Magna, A.; Privitera, V. [Consiglio Nazionale delle Ricerche – Istituto per la Microelettronica e Microsistemi, Ottava Strada 5, Zona Industriale, 95121 Catania (Italy); Puglisi, R.A., E-mail: rosaria.puglisi@imm.cnr.it [Consiglio Nazionale delle Ricerche – Istituto per la Microelettronica e Microsistemi, Ottava Strada 5, Zona Industriale, 95121 Catania (Italy)

    2013-05-15

    In this paper an innovative approach for Si solar cells based on radial junctions is presented. It consists of fabricating the junction in quasi one-dimensional structures like holes. The hole-based architecture, while maintaining the decoupling between the light absorption and the electrical collection typical of the more common wires and rods, ensures more robustness, numerous waveguide coupling modes and possibility to form non-conformal top contact. Nanosizes also provide the possibility to tune the band gap by quantum effects. Doping of the nanoholes, like in the case of nanowires, presents critical issues like conformality and control of the dopant dose and junction depth at nanometric level. We propose to dope the nanoholes by using a chemical method based on the use of a dopant containing molecules dispersed in solution. We apply the procedure on an array of holes of micrometric sizes fabricated to test and study the method and to properly scale it down and implement it on the nanostructures. Results show that the method provides junction depths in the nm scale with dopant peak concentrations as high as 10{sup 19} cm{sup −3} and that the doping is conformal on the vertical surfaces of the hole.

  9. Tuning the photovoltage of dye-sensitized solar cells based on electrodeposited ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Oekermann, Torsten [Institute of Physical Chemistry and Electrochemistry, Leibniz Universitaet Hannover, Callinstrasse 3- 3A, 30167 Hannover (Germany); Peter, Laurence [Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Yoshida, Tsukasa [Graduate School of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193 (Japan)

    2007-07-01

    Nanoporous, fully crystalline ZnO films can be prepared by cathodic electrodeposition from aqueous solutions of Zn salts under the influence of structure-directing agents such as surfactants. Dye-sensitized solar cells (DSSC) based on such films have emerged as a possible alternative for nanocrystalline TiO2-based DSSC due to the very high porosity and good electron transport properties of the films. In this study, we have investigated the influence of the sensitizer dye molecules on the photovoltage of the ZnO-based DSSC. Impedance measurements show that the adsorbed dye molecules lead to a shift of the flatband potential of the ZnO. Electron pushing or withdrawing effects of the dye molecules and protonation or deprotonation of the ZnO surface are discussed as possible explanations. The shifts in the flatband potential partly explain the differences in the photovoltages caused by different dyes, however, differences in the electron injection efficiency and the blocking of electron back reaction by the dye molecules have to be taken into account, too, for a complete description.

  10. 3,4-Phenylenedioxythiophene (PheDOT) Based Hole-Transporting Materials for Perovskite Solar Cells.

    Science.gov (United States)

    Chen, Jian; Chen, Bai-Xue; Zhang, Fang-Shuai; Yu, Hui-Juan; Ma, Shuang; Kuang, Dai-Bin; Shao, Guang; Su, Cheng-Yong

    2016-04-05

    Two new electron-rich molecules based on 3,4-phenylenedioxythiophene (PheDOT) were synthesized and successfully adopted as hole-transporting materials (HTMs) in perovskite solar cells (PSCs). X-ray diffraction, absorption spectra, photoluminescence spectra, electrochemical properties, thermal stabilities, hole mobilities, conductivities, and photovoltaic parameters of PSCs based on these two HTMs were compared with each other. By introducing methoxy substituents into the main skeleton, the energy levels of PheDOT-core HTM were tuned to match with the perovskite, and its hole mobility was also improved (1.33×10(-4)  cm(2)  V(-1)  s(-1) , being higher than that of spiro-OMeTAD, 2.34×10(-5)  cm(2)  V(-1)  s(-1)). The PSC based on MeO-PheDOT as HTM exhibits a short-circuit current density (Jsc) of 18.31 mA cm(-2) , an open-circuit potential (Voc ) of 0.914 V, and a fill factor (FF) of 0.636, yielding an encouraging power conversion efficiency (PCE) of 10.64 % under AM 1.5G illumination. These results give some insight into how the molecular structures of HTMs affect their performances and pave the way for developing high-efficiency and low-cost HTMs for PSCs.

  11. Characterization of precursor-based ZnO transport layers in inverted polymer solar cells

    NARCIS (Netherlands)

    Grossiord, N.; Bruyn, P. de; Moet, D.J.D.; Andriessen, R.; Blom, P.W.M.

    2014-01-01

    A wide range of characterization techniques are used to study spin-coated films of zinc oxide (ZnO) obtained from thermal decomposition of zinc acetylacetonate hydrate. Inverted organic solar cells with ZnO transport layers were prepared. Deposition conditions of the solution onto the substrate (e.g

  12. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte.

    Science.gov (United States)

    Wang, Peng; Zakeeruddin, Shaik M; Exnar, Ivan; Grätzel, Michael

    2002-12-21

    An ionic liquid polymer gel containing 1-methyl-3-propylimidazolium iodide (MPII) and poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) has been employed as quasi-solid-state electrolyte in dye-sensitized nanocrystalline TiO2 solar cells with an overall conversion efficiency of 5.3% at AM 1.5 illumination.

  13. Understanding polycarbazole-based polymer:CdSe hybrid solar cells.

    Science.gov (United States)

    Lek, Jun Yan; Lam, Yeng Ming; Niziol, Jacek; Marzec, Mateusz

    2012-08-10

    We report for the first time the fabrication and characterization of organic-inorganic bulk heterojunction (BHJ) hybrid solar cells made of poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and pyridine-capped CdSe nanorods. By optimizing both CdSe loading and active layer film thickness, the power conversion efficiencies (PCEs) of PCDTBT:CdSe hybrid solar cells were able to reach 2%, with PCDTBT:CdSe devices displaying an open-circuit voltage (V(OC )) that is 35% higher than P3HT:CdSe devices due to the deeper HOMO level of PCDTBT polymer. The performance of PCDTBT:CdSe devices is limited by its morphology and also its lower LUMO energy offset compared to P3HT:CdSe devices. Hence, the performance of PCDTBT:CdSe solar cells could be further improved by modifying the morphology of the films and also by including an interlayer to generate a built-in voltage to encourage exciton dissociation. Our results suggest that PCDTBT could be a viable alternative to P3HT as an electron donor in hybrid BHJ solar cells for high photovoltage application.

  14. Analytical study of PPV-oligomer- and C60-based devices for optimising organic solar cells

    NARCIS (Netherlands)

    Geens, Wim; Poortmans, Jef; Jain, Suresh C.; Nijs, Johan; Mertens, Robert; Veenstra, Sjoerd C.; Krasnikov, Viktor V.; Hadziioannou, Georges

    2000-01-01

    A blend of a 5-ring n-octyloxy-substituted oligo(p-phenylene vinylene) and C60, sandwiched between two electrodes, has been used as the active layer for an organic solar cell. It delivered external quantum efficiencies up to 60% in the visible and 70% in the UV part of the spectrum. To unambiguously

  15. Temperature dependent characteristics of poly(3 hexylthiophene)-fullerene based heterojunction organic solar cells

    NARCIS (Netherlands)

    Chirvase, D; Chiguvare, Z; Knipper, M; Parisi, J; Dyakonov, [No Value; Hummelen, JC

    2003-01-01

    Electrical and optical properties of poly(3-hexylthiophene-2.5diyl) (P3HT) used as the main component in a polymer/fullerene solar cell were studied. From the study of space-charge limited current behavior of indium-tin-oxide (ITO)/P3HT/Au hole-only devices, the hole mobility and density were estima

  16. Ultrabroadband time-resolved THz spectroscopy of polymer-based solar cells

    DEFF Research Database (Denmark)

    Cooke, David G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2011-01-01

    We have developed ultrabroadband THz spectroscopy in reflection mode for characterization of conductivity dynamics in conductive polymer samples used in organic solar cells. The spectrometer is designed to have a time resolution limited only by the duration of the optical pump pulse, thus enabling...

  17. Analytical study of PPV-oligomer- and C-60-based devices for optimising organic solar cells

    NARCIS (Netherlands)

    Geens, W.; Poortmans, J.; Jain, S.C.; Nijs, J.; Mertens, R.; Veenstra, S.C.; Krasnikov, V.V.; Hadziioannou, G

    2000-01-01

    A blend of a 5-ring n-octyloxy-substituted oligo(p-phenylene vinylene) and C60, sandwiched between two electrodes, has been used as the active layer for an organic solar cell. It delivered external quantum efficiencies up to 60% in the visible and 70% in the UV part of the spectrum. To unambiguously

  18. Organic ternary solar cells: a review.

    Science.gov (United States)

    Ameri, Tayebeh; Khoram, Parisa; Min, Jie; Brabec, Christoph J

    2013-08-21

    Recently, researchers have paid a great deal of attention to the research and development of organic solar cells, leading to a breakthrough of over 10% power conversion efficiency. Though impressive, further development is required to ensure a bright industrial future for organic photovoltaics. Relatively narrow spectral overlap of organic polymer absorption bands within the solar spectrum is one of the major limitations of organic solar cells. Among different strategies that are in progress to tackle this restriction, the novel concept of ternary organic solar cells is a promising candidate to extend the absorption spectra of large bandgap polymers to the near IR region and to enhance light harvesting in single bulk-heterojunction solar cells. In this contribution, we review the recent developments in organic ternary solar cell research based on various types of sensitizers. In addition, the aspects of miscibility, morphology complexity, charge transfer dynamics as well as carrier transport in ternary organic composites are addressed.

  19. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye

    Science.gov (United States)

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  20. Phthaloylchitosan-Based Gel Polymer Electrolytes for Efficient Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    S. N. F. Yusuf

    2014-01-01

    Full Text Available Phthaloylchitosan-based gel polymer electrolytes were prepared with tetrapropylammonium iodide, Pr4NI, as the salt and optimized for conductivity. The electrolyte with the composition of 15.7 wt.% phthaloylchitosan, 31.7 wt.% ethylene carbonate (EC, 3.17 wt.% propylene carbonate (PC, 19.0 wt.% of Pr4NI, and 1.9 wt.% iodine exhibits the highest room temperature ionic conductivity of 5.27 × 10−3 S cm−1. The dye-sensitized solar cell (DSSC fabricated with this electrolyte exhibits an efficiency of 3.5% with JSC of 7.38 mA cm−2, VOC of 0.72 V, and fill factor of 0.66. When various amounts of lithium iodide (LiI were added to the optimized gel electrolyte, the overall conductivity is observed to decrease. However, the efficiency of the DSSC increases to a maximum value of 3.71% when salt ratio of Pr4NI : LiI is 2 : 1. This cell has JSC, VOC and fill factor of 7.25 mA cm−2, 0.77 V and 0.67, respectively.

  1. Dye-sensitized solar cells based on dyes extracted from dried plant leaves

    OpenAIRE

    Sofyan A. Taya; Taher M. El-Agez; ELREFI, Kamal S.

    2015-01-01

    In this work, natural dyes were extracted from dried plant leaves of plant cream, apricot, figs, apples, sage, thyme, mint, Ziziphus jujuba, orange, shade tree, basil, berry, Mirabelle plum, Victoria plum, peach, mango, pomegranate, banana, guava, and fluoridation-treated plant. The extracts were used as photosensitizers for dye-sensitized solar cells (DSSCs). The cells were assembled using nanostructured TiO2 films. The best performance was observed for the DSSC sensitized with Ziziphus juju...

  2. Quantum Dot Solar Cells

    Science.gov (United States)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-01-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  3. Photochemical solar cells based on dye-sensitization of nanocrystalline TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Deb, S.K.; Ellingson, R.; Ferrere, S.; Frank, A.J.; Gregg, B.A.; Nozik, A.J.; Park, N.; Schlichthoerl, G. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    A photoelectrochemical solar cell that is based on the dye-sensitization of thin nanocrystalline films of TiO{sub 2} (anatase) nanoparticles in contact with a non-aqueous liquid electrolyte is described. The cell, fabricated at NREL, shows a conversion efficiency of {approximately} 9.2% at AM1.5, which approaches the best reported value of 10--11% by Graetzel at EPFL in Lausanne, Switzerland. The femtosecond (fs) pump-probe spectroscopy has been used to time resolve the injection of electrons into the conduction band of nanocrystalline TiO{sub 2} films under ambient conditions following photoexcitation of the adsorbed Ru(II)-complex dye. The measurement indicates an instrument-limited {minus}50 fs upper limit on the electron injection time. The authors also report the sensitization of nanocrystalline TiO{sub 2} by a novel iron-based dye, CIS-[Fe{sup II}(2,2{prime}-bipyridine-4,4,{prime}-dicarboxylic acid){sub 2}(CN){sub 2}], a chromophore with an extremely short-lived, nonemissive excited state. The dye also exhibits a unique band selective sensitization through one of its two absorption bands. The operational principle of the device has been studied through the measurement of electric field distribution within the device structure and studies on the pH dependence of dye-redox potential. The incorporation of WO{sub 3}-based electrochromic layer into this device has led to a novel photoelectrochromic device structure for smart window application.

  4. Panchromatic quantum-dot-sensitized solar cells based on a parallel tandem structure.

    Science.gov (United States)

    Zhou, Na; Yang, Yueyong; Huang, Xiaoming; Wu, Huijue; Luo, Yanhong; Li, Dongmei; Meng, Qingbo

    2013-04-01

    A tandem-structure sensitized solar cell, comprising different inorganic semiconductor quantum dots (QDs) as sensitizers in two different compartments, has been designed for the first time with the aim of extending the light-absorption range of current technologies. In this system, the CdS/CdSe co-sensitized quantum-dot solar cell (QDSC) is in the upper part, whereas the PbS/CdS co-sensitized QDSC is in the lower part; these are connected in parallel with each other. In the middle of the tandem solar cell, a Cu2 S mesh counter electrode is employed. By optimizing the electrode thickness and QD-deposition time, short-circuit photocurrent density values of as high as 25.12 mA cm(-2) have been achieved; this value is nearly equal to the sum of the two constituent QD-sensitized devices and gives rise to a solar power-conversion efficiency of 5.06 %.

  5. Triazoloisoquinoline-based dual functional dyestuff for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Che-Lung, E-mail: chelung168@gmail.com [Department of Electrical Engineering, Nation Cheng Kung University, No. 1, Daxue Rd., East Dist., Tainan City 70101, Taiwan, ROC (China); Lee, Wen-Hsi [Department of Electrical Engineering, Nation Cheng Kung University, No. 1, Daxue Rd., East Dist., Tainan City 70101, Taiwan, ROC (China); Yang, Cheng-Hsien, E-mail: jasonyang@fusol-material.com [ShiFeng Technology Co., Ltd. Rm. 410, Bldg. R2, No. 31, Gongye 2nd Rd., Annan District, Tainan, 70955, Taiwan, ROC (China); Yang, Hao-Hsun [ShiFeng Technology Co., Ltd. Rm. 410, Bldg. R2, No. 31, Gongye 2nd Rd., Annan District, Tainan, 70955, Taiwan, ROC (China); Chang, Jia-Yaw, E-mail: jychang@mail.ntust.edu.tw [Department of Chemical Engineering, Nation Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Da’an Dist., Taipei City 106, Taiwan, ROC (China)

    2013-01-15

    Graphical abstract: They consist of treating triazoloisoquinolines substituted tetramethyl-dioxaborolane (2) with 5-formyl-2-bromothiophene under conditions for Suzuki coupling to produce 5-(4-(3-oxo-[1,2,4]triazolo[3,4-a]isoquinolin-2(3H)-yl)phenyl) thiophene-2-carbaldehyde (3). Knoevenagel condensation of compound 3 with cyanoacrylic acid is carried out in the presence of piperidine, and after precipitation and purification with silica gel chromatography, the final dyestuff 4L is obtained as a yellow powder. This product has been characterized by spectroscopic analyses. Display Omitted Highlights: ► This new dyestuff investigated the role of triazoloisoquinoline dyestuffs as co-adsorbents and co-sensitizers with N719. ► The results show that co-adsorption of N719 sensitizer with dyestuff 5 increases the photocurrent in 1–0.25 molar ratio. ► This improved conversion efficiency is attributed to the insulating molecular layer, and the light harvesting effect at shorter-wavelength regions. -- Abstract: Triazoloisoquinoline contains electron-rich nitrogen and oxygen heteroatoms in a heterocyclic structure with high electron-donating ability. By utilizing this feature, two organic dyesutffs containing triazoloisoquinoline were synthesized and used in the fabrication of dye-sensitized solar cells (DSSCs), overcoming the deficiency of ruthenium dyestuff absorption in the blue part of the visible spectrum. This method also fills the blanks of ruthenium dyestuff sensitized TiO{sub 2} film, and forms a compact insulating molecular layer due to the nature of small molecular organic dyestuffs. The incident photon-to-electron conversion efficiency of N719 at shorter wavelength regions is 35%. After addition of triazoloisoquinoline-based dyestuff for co-sensitization, the IPCE at 350–500 nm increased significantly. This can be attributed to the increased photocurrent of the cells, which improves the dye-sensitized photoelectric conversion efficiency from 4.49% to 5

  6. Synchrotron-based analysis of chromium distributions in multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Mallory Ann; Hofstetter, Jasmin; Morishige, Ashley E.; Coletti, Gianluca; Lai, Barry; Fenning, David P.; Buonassisi, Tonio

    2015-05-18

    Chromium (Cr) can degrade silicon wafer-based solar cell efficiencies at concentrations as low as 10(10) cm(-3). In this contribution, we employ synchrotron-based X-ray fluorescence microscopy to study chromium distributions in multicrystalline silicon in as-grown material and after phosphorous diffusion. We complement quantified precipitate size and spatial distribution with interstitial Cr concentration and minority carrier lifetime measurements to provide insight into chromium gettering kinetics and offer suggestions for minimizing the device impacts of chromium. We observe that Cr-rich precipitates in as-grown material are generally smaller than iron-rich precipitates and that Cri point defects account for only one-half of the total Cr in the as-grown material. This observation is consistent with previous hypotheses that Cr transport and CrSi2 growth are more strongly diffusion-limited during ingot cooling. We apply two phosphorous diffusion gettering profiles that both increase minority carrier lifetime by two orders of magnitude and reduce [Cr-i] by three orders of magnitude to approximate to 10(10) cm(-3). Some Cr-rich precipitates persist after both processes, and locally high [Cri] after the high-temperature process indicates that further optimization of the chromium gettering profile is possible. (C) 2015 AIP Publishing LLC.

  7. Perovskite solar cells: an emerging photovoltaic technology

    Directory of Open Access Journals (Sweden)

    Nam-Gyu Park

    2015-03-01

    Full Text Available Perovskite solar cells based on organometal halides represent an emerging photovoltaic technology. Perovskite solar cells stem from dye-sensitized solar cells. In a liquid-based dye-sensitized solar cell structure, the adsorption of methylammonium lead halide perovskite on a nanocrystalline TiO2 surface produces a photocurrent with a power conversion efficiency (PCE of around 3–4%, as first discovered in 2009. The PCE was doubled after 2 years by optimizing the perovskite coating conditions. However, the liquid-based perovskite solar cell receives little attention because of its stability issues, including instant dissolution of the perovskite in a liquid electrolyte. A long-term, stable, and high efficiency (∼10% perovskite solar cell was developed in 2012 by substituting the solid hole conductor with a liquid electrolyte. Efficiencies have quickly risen to 18% in just 2 years. Since PCE values over 20% are realistically anticipated with the use of cheap organometal halide perovskite materials, perovskite solar cells are a promising photovoltaic technology. In this review, the opto-electronic properties of perovskite materials and recent progresses in perovskite solar cells are described. In addition, comments on the issues to current and future challenges are mentioned.

  8. Quinoxaline-based π-conjugated donor polymer for highly efficient organic thin-film solar cells

    Science.gov (United States)

    Kitazawa, Daisuke; Watanabe, Nobuhiro; Yamamoto, Shuhei; Tsukamoto, Jun

    2009-08-01

    A quinoxaline-based π-conjugated donor polymer, poly[2,7-(9,9-dioctylfluorene)-alt-5,5-(5',8'-di-2-thienyl-2',3'-diphenylquinoxaline)] (N-P7), was synthesized to achieve a high power conversion efficiency (PCE) of bulk heterojunction (BHJ)-based solar cells. The optical band-gap and highest occupied molecular orbital level of N-P7 were 1.95 and -5.37 eV, respectively. BHJ-based solar cells using N-P7 as a donor and phenyl C71 butyric acid methyl ester as an acceptor gave a PCE as high as 5.5% under AM 1.5G 100 mW/cm2 illumination. We also investigated the effects of substituent groups of quinoxaline-based polymers on the morphology of the BHJ layer.

  9. High-Efficiency Glass and Printable Flexible Dye-Sensitized Solar Cells with Water-Based Electrolytes

    Directory of Open Access Journals (Sweden)

    Omar Moudam

    2014-01-01

    Full Text Available The performance of a flexible and glass dye-sensitized solar cell (DSSC with water-based electrolyte solutions is described. High concentrations of alkylamidazoliums were used to overcome the deleterious effect of water and, based on this variable, pure water-based electrolyte DSSCs were tested displaying the highest recorded efficiency so far of 3.45% and 6% for flexible and glass cells, respectively, under a simulated air mass 1.5 solar spectrum illumination at 100 mWcm−2. An improvement in the Jsc with high water content and the positive impact of GuSCN on the enhancement of the performance of pure water-based electrolytes were also observed.

  10. Plasma treatment of ITO films for the formation of nanoparticles toward scalable production of novel nanostructure-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Cigang; Bailey, Louise R.; Proudfoot, Gary; Cooke, Mike [Oxford Instruments Plasma Technology, Bristol (United Kingdom); Eisenhawer, Bjoern; Jia, Guobin; Bergmann, Joachim; Falk, Fritz [Leibniz Institute of Photonic Technology, Jena (Germany); Ulyashin, Alexander [Department of Industrial Processes, SINTEF, Oslo (Norway)

    2015-01-01

    Plasma treatment of indium tin oxide (ITO) has been studied to form metallic nanoparticles (NPs) for nanostructure-based solar cells. It is demonstrated that NPs can be formed at temperatures as low as 100 C, and the size of NPs increases with temperature. An ITO layer treated at 100 C has higher transmission than that treated at 200 C for the same time. It is suggested that such NPs can be used for the conversion efficiency enhancement of ITO/Si heterojunction solar cells. It is also shown that NPs can be produced on different substrates covered by an ITO layer, such as ITO/Al foil, ITO/glass, ITO/stainless steel, and ITO/Si, where the resulting NPs were used for catalytic growth of Si nanowires (NWs). The morphology and density of Si NWs depend on a substrate. It is established that p-doped Si NWs show larger diameters, and n-doped Si NWs do not show obvious change of diameters compared to undoped Si NWs. New types of solar cell structures with combined radial and axial junctions have been proposed. As an example, p-n junction-based 3D structures using the NPs obtained from treatment of ITO film are presented. Finally, a potentially scalable process flow for fabrication of nanostructure-based solar cells is discussed. Schematic illustration of fabrication steps to produce the proposed novel solar cell with combined radial and axial junctions. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Double-Cell Type Solar Meridional Circulation Based on Mean-Field Hydrodynamic Model

    CERN Document Server

    Bekki, Yuto

    2016-01-01

    The main object of the paper is to present the condition of the non-diffusive part of the Reynolds stress for driving the double-cell structure of the solar meridional circulation, which has been revealed by recent helioseismic observations. By conducting a set of mean-field hydrodynamic simulations, we confirm for the first time that the double-cell meridional circulation can be achieved along with the solar-like differential rotation when the Reynolds stress transports the angular momentum upward in the lower part and downward in the upper part of the convection zone. It is concluded that, in a stationary state, the accumulated angular momentum via the Reynolds stress in the middle layer is advected to both the upper and lower parts of the convection zone by each of the two meridional circulation cells, respectively.

  12. Design of Semiconductor-Based Back Reflectors for High Voc Monolithic Multijunction Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, I.; Geisz, J.; Steiner, M.; Olson, J.; Friedman, D.; Kurtz, S.

    2012-06-01

    State-of-the-art multijunction cell designs have the potential for significant improvement before going to higher number of junctions. For example, the Voc can be substantially increased if the photon recycling taking place in the junctions is enhanced. This has already been demonstrated (by Alta Devices) for a GaAs single-junction cell. For this, the loss of re-emitted photons by absorption in the underlying layers or substrate must be minimized. Selective back surface reflectors are needed for this purpose. In this work, different architectures of semiconductor distributed Bragg reflectors (DBR) are assessed as the appropriate choice for application in monolithic multijunction solar cells. Since the photon re-emission in the photon recycling process is spatially isotropic, the effect of the incident angle on the reflectance spectrum is of central importance. In addition, the DBR structure must be designed taking into account its integration into the monolithic multijunction solar cells, concerning series resistance, growth economics, and other issues. We analyze the tradeoffs in DBR design complexity with all these requirements to determine if such a reflector is suitable to improve multijunction solar cells.

  13. Silicon heterojunction solar cells

    CERN Document Server

    Fahrner, W R; Neitzert, H C

    2006-01-01

    The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made

  14. A tetraphenylethylene core-based 3D structure small molecular acceptor enabling efficient non-fullerene organic solar cells.

    Science.gov (United States)

    Liu, Yuhang; Mu, Cheng; Jiang, Kui; Zhao, Jingbo; Li, Yunke; Zhang, Lu; Li, Zhengke; Lai, Joshua Yuk Lin; Hu, Huawei; Ma, Tingxuan; Hu, Rongrong; Yu, Demei; Huang, Xuhui; Tang, Ben Zhong; Yan, He

    2015-02-01

    A tetraphenylethylene core-based small molecular acceptor with a unique 3D molecular structure is developed. Bulk-heterojunction blend films with a small feature size (≈20 nm) are obtained, which lead to non-fullerene organic solar cells (OSCs) with 5.5% power conversion efficiency. The work provides a new molecular design approach to efficient non-fullerene OSCs based on 3D-structured small-molecule acceptors.

  15. Influence of radiation on the properties of solar cells

    OpenAIRE

    Zdravković Miloš R.; Vasić Aleksandra I.; Radosavljević Radovan Lj.; Vujisić Miloš Lj.; Osmokrović Predrag V.

    2011-01-01

    The wide substitution of conventional types of energy by solar energy lies in the rate of developing solar cell technology. Silicon is still the mostly used element for solar cell production, so efforts are directed to the improvement of physical properties of silicon structures. There are several trends in the development of solar cells, but mainly two directions are indicated: the improvement of the conventional solar cell characteristics based on semiconductor materials, and explorin...

  16. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    Science.gov (United States)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman

    2016-05-01

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatch between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or

  17. Asymmetric tandem organic solar cells

    Science.gov (United States)

    Howells, Thomas J.

    Organic photovoltaics (OPVs) is an area that has attracted much attention recently as a potential low cost, sustainable source of energy with a good potential for full-scale commercialisation. Understanding the factors that determine the efficiency of such cells is therefore a high priority, as well as developing ways to boost efficiency to commercially-useful levels. In addition to an intensive search for new materials, significant effort has been spent on ways to squeeze more performance out of existing materials, such as multijunction cells. This thesis investigates double junction tandem cells in the context of small molecule organic materials. . Two different organic electron donor materials, boron subphthalocyanine chloride (SubPc) and aluminium phthalocyanine chloride (ClAlPc) were used as donors in heterojunctions with C60 to create tandem cells for this thesis. These materials have been previously used for solar cells and the absorption spectra of the donor materials complement each other, making them good candidates for tandem cell architectures. The design of the recombination layer between the cells is considered first, with silver nanoparticles demonstrated to work well as recombination centres for charges from the front and back sub-cells, necessary to avoid a charge build-up at the interface. The growth conditions for the nanoparticles are optimised, with the tandem cells outperforming the single heterojunction architecture. Optical modelling is considered as a method to improve the understanding of thin film solar cells, where interference effects from the reflective aluminium electrode are important in determining the magnitude of absorption a cell can achieve. The use of such modelling is first demonstrated in hybrid solar cells based on a SubPc donor with a titanium oxide (TiOx) acceptor; this system is ideal for observing the effects of interference as only the SubPc layer has significant absorption. The modelling is then applied to tandem cells

  18. Cd-free heterojunctions in chalcopyrite based thin film solar cells; Cd-freie Heterokontakte in Chalkopyrit-basierten Duennschichtsolarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Kieven, David

    2012-02-06

    This thesis took care of the problem to replace the buffer layers Cds and i-ZnO in thin-film solar cells of the layer system p-Cu(In,Ga)(Se,S){sub 2}/CdS/i-ZnO/n{sup +} by a Cd-free buffer layer. The synthesis of the material layers. The synthesis was carried out by the method of cathode sputtering established in the deposition of the n{sup +}-ZnO window layer. Aim was to modify the electronic properties of the studied materials either by the choice of the applied bonding elements or by the choice of the composition in such a way that the basic conditions for buffer layers are fulfilled: Optical transparency and suited band fitting to the absorber material. The analysis of the interfaces between the potential buffer materials and the Cu(In,Ga)(Se,S){sub 2} absorber material considering the conduction-band fitting important for solar cells formed a main topic. Finally suited materials came into application as buffer layers in Cu(In,Ga)(Se,S){sub 2}-based thin-film solar cells. Thereby was of interest, whether efficient solar cells can be fabricated, and whether the photovoltaic parameters open-circuit voltage and short-circuit current density are dominantly influenced by possible interface defects, as they are especially discussed in connection with the sputtering deposition.

  19. Enhanced power efficiency of ZnO based organic/inorganic solar cells by surface modification

    Science.gov (United States)

    Tang, Shuangshuang; Tang, Ning; Meng, Xiuqing; Huang, Shihua; Hao, Yafei

    2016-09-01

    We present series of strategies to enhance efficiency of ZnO nanorods based organic/inorganic solar cells with spin-coated P3HT:PCBM blend as active layer. The performance of the as-fabricated devices is improved by controlling the size of ZnO nanorods, annealing temperature and time of active layer, surface modification of ZnO with PSBTBT. Optimized device of ITO/ZnO nanorod/P3HT:PCBM/Ag device with PSBTBT surface modification and air exposure reaches an efficiency of 2.02% with a short-circuit current density, open-circuit voltage and fill factor of 13.23 mA cm-2, 0.547 V and 28%, respectively, under AM 1.5 irradiation of 100 mW m-2, the increase in efficiency is 7-fold of the PSBTBT surface modified ITO/ZnO nanorods/P3HT:PCBM/Ag device compared with the unmodified one, which is own to the increased interface contact, expanded light absorption, tailored band alignment attributed to PSBTBT. We found exposure to air and surface modification is crucial to improve the device performance, and we discussed the mechanisms that affect the performance of the devices in detail.

  20. Organic Gelators as Growth Control Agents for Stable and Reproducible Hybrid Perovskite-Based Solar Cells

    KAUST Repository

    Masi, Sofia

    2017-03-03

    Low-molecular-weight organic gelators are widely used to influence the solidification of polymers, with applications ranging from packaging items, food containers to organic electronic devices, including organic photovoltaics. Here, this concept is extended to hybrid halide perovskite-based materials. In situ time-resolved grazing incidence wide-angle X-ray scattering measurements performed during spin coating reveal that organic gelators beneficially influence the nucleation and growth of the perovskite precursor phase. This can be exploited for the fabrication of planar n-i-p heterojunction devices with MAPbI3 (MA = CH3NH3+) that display a performance that not only is enhanced by ≈25% compared to solar cells where the active layer is produced without the use of a gelator but that also features a higher stability to moisture and a reduced hysteresis. Most importantly, the presented approach is straightforward and simple, and it provides a general method to render the film formation of hybrid perovskites more reliable and robust, analogous to the control that is afforded by these additives in the processing of commodity “plastics.”

  1. Rational Design of Diketopyrrolopyrrole-Based Small Moleculesas Donating Materials for Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Ruifa Jin

    2015-08-01

    Full Text Available A series of diketopyrrolopyrrole-based small molecules have been designed toexplore their optical, electronic, and charge transport properties as organic solar cell(OSCs materials. The calculation results showed that the designed molecules can lowerthe band gap and extend the absorption spectrum towards longer wavelengths.The designed molecules own the large longest wavelength of absorption spectra,the oscillator strength, and absorption region values. The optical, electronic, and chargetransport properties of the designed molecules are affected by the introduction of differentπ-bridges and end groups. We have also predicted the mobility of the designed moleculewith the lowest total energies. Our results reveal that the designed molecules are expectedto be promising candidates for OSC materials. Additionally, the designed molecules areexpected to be promising candidates for electron and/or hole transport materials. On thebasis of our results, we suggest that molecules under investigation are suitable donors for[6,6]-phenyl-C61-butyric acid methyl ester (PCBM and its derivatives as acceptors of OSCs.

  2. Rational Design of Diketopyrrolopyrrole-Based Small Molecules as Donating Materials for Organic Solar Cells

    Science.gov (United States)

    Jin, Ruifa; Wang, Kai

    2015-01-01

    A series of diketopyrrolopyrrole-based small molecules have been designed to explore their optical, electronic, and charge transport properties as organic solar cell (OSCs) materials. The calculation results showed that the designed molecules can lower the band gap and extend the absorption spectrum towards longer wavelengths. The designed molecules own the large longest wavelength of absorption spectra, the oscillator strength, and absorption region values. The optical, electronic, and charge transport properties of the designed molecules are affected by the introduction of different π-bridges and end groups. We have also predicted the mobility of the designed molecule with the lowest total energies. Our results reveal that the designed molecules are expected to be promising candidates for OSC materials. Additionally, the designed molecules are expected to be promising candidates for electron and/or hole transport materials. On the basis of our results, we suggest that molecules under investigation are suitable donors for [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and its derivatives as acceptors of OSCs. PMID:26343640

  3. Study of Small Molecule Organic Solar Cells Performance Based on Boron Subphthalocyanine Chloride and C60

    Directory of Open Access Journals (Sweden)

    Jhong-Ciao Ke

    2013-01-01

    Full Text Available The small molecule organic solar cells based on boron subphthalocyanine chloride (SubPc and C60 by varying the SubPc layer thickness from 3 nm to 21 nm were fabricated. The maximum power conversion efficiency (PCE of 1.47% was obtained at the 9 nm SubPc layer under 100 mW/cm2 AM1.5G illumination, which is attributed to reach the optimal balance between the light absorption efficiency and the carrier collection efficiency in the device. To increase the open-circuit voltage (Voc of device, the molybdenum oxide (MoO3 and poly(3,4-ethylenedioxythiophene:poly(styrene sulfonate were inserted between the indium tin oxide and the SubPc layer, respectively. Finally, the Voc of device increased from 0.46 V to 1 V by using MoO3 buffer layer, resulting in the fact that the PCE of device increased from 1.47% to 2.52%.

  4. Thermally exfoliated graphene based counter electrode for low cost dye sensitized solar cells

    Science.gov (United States)

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2011-06-01

    Graphene obtained from thermal exfoliation of graphite oxide are highly wrinkled and have large surface area. Their wrinkled nature is expected to give them excellent catalytic activity. Herein, we demonstrate the use of thermally exfoliated graphene (TEG) as cost effective electrocatalyst for the tri-iodide reduction in dye sensitized solar cells (DSSCs). X-ray diffraction, Raman and Infra red spectroscopy and electron microscopy studies confirm the defective and wrinkled nature of TEG. BET surface area measurement show a large surface area of ˜ 470 m2/g. The counter electrode was fabricated by drop casting a slurry of TEG dispersed in a Nafion:Ethanol solution on fluorine doped tin oxide (FTO) substrates. The use of Nafion prevented film "peel off," thus ensuring a good substrate adhesion. Electrochemical impedance spectroscopy reveals that TEG had a catalytic performance comparable to that of Pt, suggesting its use as counter electrode material. As expected, the DSSC fabricated with Nafion solubilized TEG/FTO as counter electrode shows an efficiency of about 2.8%, comparable to Pt counter electrode based DSSC which has an efficiency of about 3.4%.

  5. Thin film solar cells based on layered chalcogenides: Fundamentals and perspectives of van der Waals epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Jaegermann, W.; Pettenkofer, C.; Lang, O.; Schlaf, R.; Tiefenbacher, S.; Tomm, Y. [Hahn-Meitner-Inst., Berlin (Germany)

    1994-12-31

    The preparation of thin films of layered chalcogenide semiconductors as MX and MX{sub 2} (X = S, Se) based on the concept of van der Waals epitaxy (VDWE) is presented for different substrate/overlayer combinations as GaSe, InSe, SnSe{sub 2}, WS{sub 2} on WSe{sub 2}, GaSe, MoTe{sub 2}, graphite and mica. In all cases stoichiometric films are formed either as epitaxial layers or strongly textured films with the c-axis aligned in spite of strong lattice mismatch. The interfaces are non-reactive and atomically abrupt. The electronic properties of the interfaces are mostly ideal showing band offsets according to the electron affinity rule and no operative interface states. However, doping of the films is still a problem which limits the band bending and the attainable surface photovoltage. The perspectives and preconditions for the further development of layered semiconductor VDWE films for solar cells will be critically discussed.

  6. Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles.

    Science.gov (United States)

    Zhang, Wei; Saliba, Michael; Stranks, Samuel D; Sun, Yao; Shi, Xian; Wiesner, Ulrich; Snaith, Henry J

    2013-09-11

    Recently, inorganic and hybrid light absorbers such as quantum dots and organometal halide perovskites have been studied and applied in fabricating thin-film photovoltaic devices because of their low-cost and potential for high efficiency. Further boosting the performance of solution processed thin-film solar cells without detrimentally increasing the complexity of the device architecture is critically important for commercialization. Here, we demonstrate photocurrent and efficiency enhancement in meso-superstructured organometal halide perovskite solar cells incorporating core-shell Au@SiO2 nanoparticles (NPs) delivering a device efficiency of up to 11.4%. We attribute the origin of enhanced photocurrent to a previously unobserved and unexpected mechanism of reduced exciton binding energy with the incorporation of the metal nanoparticles, rather than enhanced light absorption. Our findings represent a new aspect and lever for the application of metal nanoparticles in photovoltaics and could lead to facile tuning of exciton binding energies in perovskite semiconductors.

  7. Hysteresis analysis in dye-sensitized solar cells based on external bias field effects

    Science.gov (United States)

    Wu, Fan; Li, Xiaoyi; Tong, Yanhua; Zhang, Tiansheng

    2017-02-01

    The current density-voltage (J-V) hysteresis phenomenon occurs in perovskite solar cells as well as dye-sensitized solar cells (DSCs); however, it has received little attention in DSCs. We consider that the trapping-detrapping-induced variation of the charge collection efficiency might cause J-V hysteresis. Therefore, we conduct a systematic study on the influence of an external bias field during and before J-V measurements in typical DSCs. We find that the J-V performance of DSCs significantly depends on the scan bias direction and the external bias field before and during measurements. Our results indicate that the external-bias-field-modulated charge injection, trapping-detrapping, and accumulation processes in DSCs are possible causes for the anomalous J-V behavior.

  8. Minimization of the effect of the collecting grid in a solar cell based silicon

    Energy Technology Data Exchange (ETDEWEB)

    Cheknane, A.; Benyoucef, B. [Laboratoire des Materiaux et Energies Renouvelables, Tlemcen (Algeria); Charles, J.-P. [MOPS, SUPELEC, Metz (France); Zerdoum, R. [Riyadh College of Technology, Riyadh (Saudi Arabia); Trari, M. [Laboratoire de Stockage et de Valorisation des Energies Renouvelables, Alger (Algeria)

    2005-05-01

    The solar cells collecting grids present a serious problem and more particularly under solar concentration. Our contribution in this article is to seek the best compromise between shadow effect and series resistance effect. The cell considered here is of Si (silicon) type, n{sup +}p with circular geometry (radius {alpha} = 4.9cm), a silver metallization ({rho}M = 1.6 x 10{sup -6} {omega}cm), and a contact resistivity of {rho}C = 10{sup -5} {omega}cm. Our calculations are made under the condition of AM1.5 with 1 sun concentration. The various power losses caused by this grid are: losses due to the grid shadow, losses in grain boundaries due to the metal/semiconductor contact, power dissipated in the resistance of layer between bars, and losses in the grid metallization. (author)

  9. Yttrium-substituted nanocrystalline TiO 2 photoanodes for perovskite based heterojunction solar cells

    KAUST Repository

    Qin, Peng

    2014-01-01

    We report the use of Y3+-substituted TiO2 (0.5%Y-TiO2) in solid-state mesoscopic solar cells, consisting of CH3NH3PbI3 as the light harvester and spiro-OMeTAD as the hole transport material. A power conversion efficiency of 11.2% under simulated AM 1.5 full sun illumination was measured. A 15% improvement in the short-circuit current density was obtained compared with pure TiO2, due to the effect of Y3+ on the dimensions of perovskite nanoparticles formed on the semiconductor surface, showing that the surface modification of the semiconductor is an effective way to improve the light harvesters\\' morphology and electron transfer properties in the solid-state mesoscopic solar cells. © 2013 The Royal Society of Chemistry.

  10. Dye-Sensitized Solar Cells Based on Bi4Ti3O12

    Directory of Open Access Journals (Sweden)

    Zeng Chen

    2011-01-01

    Full Text Available Bismuth titanate (Bi4Ti3O12 particles were synthesized by hydrothermal treatment and nanoporous thin films were prepared on conducting glass substrates. The structures and morphologies of the samples were examined with X-ray diffraction and scanning electron microscope (SEM. Significant absorbance spectra emerged in visible region which indicated the efficient sensitization of Bi4Ti3O12 with N3 dye. Surface photovoltaic properties of the samples were investigated by surface photovoltage. The results further indicate that N3 can extend the photovoltaic response range of Bi4Ti3O12 nanoparticles to the visible region, which shows potential application in dye-sensitized solar cell. As a working electrode in dye-sensitized solar cells (DSSCs, the overall efficiency reached 0.48% after TiO2 modification.

  11. Optimization of absorption bands of dye-sensitized and perovskite tandem solar cells based on loss-in-potential values.

    Science.gov (United States)

    Sobuś, Jan; Ziółek, Marcin

    2014-07-21

    A numerical study of optimal bandgaps of light absorbers in tandem solar cell configurations is presented with the main focus on dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs). The limits in efficiency and the expected improvements of tandem structures are investigated as a function of total loss-in-potential (V(L)), incident photon to current efficiency (IPCE) and fill factor (FF) of individual components. It is shown that the optimal absorption onsets are significantly smaller than those derived for multi-junction devices. For example, for double-cell devices the onsets are at around 660 nm and 930 nm for DSSCs with iodide based electrolytes and at around 720 nm and 1100 nm for both DSSCs with cobalt based electrolytes and PSCs. Such configurations can increase the total sunlight conversion efficiency by about 35% in comparison to single-cell devices of the same VL, IPCE and FF. The relevance of such studies for tandem n-p DSSCs and for a proposed new configuration for PSCs is discussed. In particular, it is shown that maximum total losses of 1.7 V for DSSCs and 1.4 V for tandem PSCs are necessary to give any efficiency improvement with respect to the single bandgap device. This means, for example, a tandem n-p DSSC with TiO2 and NiO porous electrodes will hardly work better than the champion single DSSC. A source code of the program used for calculations is also provided.

  12. Industrial n-type solar cells with >20% cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Romijn, I.G.; Anker, J.; Burgers, A.R.; Gutjahr, A.; Koppes, M.; Kossen, E.J.; Lamers, M.W.P.E.; Heurtault, Benoit; Saynova-Oosterling, D.S.; Tool, C.J.J. [ECN Solar Energy, Petten (Netherlands)

    2013-03-15

    To realize high efficiencies at low costs, ECN has developed the n-Pasha solar cell concept. The n-Pasha cell concept is a bifacial solar cell concept on n-Cz base material, with which average efficiencies of above 20% have been demonstrated. In this paper recent developments at ECN to improve the cost of ownership (lower Euro/Wp) of the n-Pasha cell concept are discussed. Two main drivers for the manufacturing costs of n-type solar cells are addressed: the n-type Cz silicon material and the silver consumption. We show that a large resistivity range between 2 and 8 cm can be tolerated for high cell efficiency, and that the costs due to the silver metallization can be significantly reduced while increasing the solar cell efficiency. Combining the improved efficiency and cost reduction makes the n-Pasha cell concept a very cost effective solution to manufacture high efficient solar cells and modules.

  13. Adaptive Critic Based Neuro-Fuzzy Tracker for Improving Conversion Efficiency in PV Solar Cells

    Directory of Open Access Journals (Sweden)

    Halimeh Rashidi

    2012-08-01

    Full Text Available The output power of photovoltaic systems is directly related to the amount of solar energy collected by the system and it is therefore necessary to track the sun’s position with high accuracy. This study proposes multi-agent adaptive critic based nero fuzzy solar tracking system dedicated to PV panels. The proposed tracker ensures the optimal conversion of solar energy into electricity by properly adjusting the PV panels according to the position of the sun. To evaluate the usefulness of the proposed method, some computer simulations are performed and compared with fuzzy PD controller. Obtained results show the proposed control strategy is very robust, flexible and could be used to get the desired performance levels. The response time is also very fast. Simulation results that have been compared with fuzzy PD controller show that our method has the better control performance than fuzzy PD controller.

  14. Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10.

    Science.gov (United States)

    Liu, Tao; Guo, Yuan; Yi, Yuanping; Huo, Lijun; Xue, Xiaonan; Sun, Xiaobo; Fu, Huiting; Xiong, Wentao; Meng, Dong; Wang, Zhaohui; Liu, Feng; Russell, Thomas P; Sun, Yanming

    2016-12-01

    Two different nonfullerene acceptors and one copolymer are used to fabricate ternary organic solar cells (OSCs). The two acceptors show unique interactions that reduce crystallinity and form a homogeneous mixed phase in the blend film, leading to a high efficiency of ≈10.3%, the highest performance reported for nonfullerene ternary blends. This work provides a new approach to fabricate high-performance OSCs.

  15. ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells

    Science.gov (United States)

    Bhattacharya, Raghu N.

    2009-11-03

    The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.

  16. Oxide-Based Solar Cell: Impact of Layer Thicknesses on the Device Performance.

    Science.gov (United States)

    Panigrahi, Shrabani; Nunes, Daniela; Calmeiro, Tomás; Kardarian, Kasra; Martins, Rodrigo; Fortunato, Elvira

    2017-02-13

    A ZnO/Cu2O-based combinatorial heterojunction device library was successfully fabricated by a simple spray pyrolysis technique using ITO-coated glass as the substrate. The combinatorial approach was introduced to analyze the impact of the ZnO and Cu2O layer thicknesses on the performance of the solar cells. The thickness of the ZnO layer was varied from ∼50 to 320 nm, and the Cu2O layer was deposited orthogonal to the ZnO thickness gradient. In the case of Cu2O, the thickness varied from ∼200 to 800 nm. The photovoltaic performance of the cells is strongly dependent on the absorber layer thickness for a particular window layer thickness and reaches a maximum short-circuit current density of 3.9 mA/cm(2) when the absorber layer thickness just crosses ∼700 nm. Reducing the thicknesses of the active layers leads to a sharp decrease in the device performance. It is shown that the entire built-in bias of the heterojunction is created in the absorber layer due to low carrier density. The poor performance of the devices having lower thicknesses is attributed to different interfacial phenomena such as optical losses due to the thin Cu2O layer, back-contact recombination of the carriers due to the low layer thickness because a minimum heterojunction thickness is required for the formation of the full built-in bias that slows down the recombination of the carriers, and other factors.

  17. Characterization of anthocyanin based dye-sensitized organic solar cells (DSSC) and modifications based on bio-inspired ion mobility improvements

    Science.gov (United States)

    Mawyin, Jose Amador

    The worldwide electrical energy consumption will increase from currently 10 terawatts to 30 terawatts by 2050. To decrease the current atmospheric CO2 would require our civilization to develop a 20 terawatts non-greenhouse emitting (renewable) electrical power generation capability. Solar photovoltaic electric power generation is thought to be a major component of proposed renewable energy-based economy. One approach to less costly, easily manufactured solar cells is the Dye-sensitized solar cells (DSSC) introduced by Greatzel and others. This dissertation describes the work focused on improving the performance of DSSC type solar cells. In particular parameters affecting dye-sensitized solar cells (DSSC) based on anthocyanin pigments extracted from California blackberries (Rubus ursinus) and bio-inspired modifications were analyzed and solar cell designs optimized. Using off-the-shelf materials DSSC were constructed and tested using a custom made solar spectrum simulator and photoelectric property characterization. This equipment facilitated the taking of automated I-V curve plots and the experimental determination of parameters such as open circuit voltage (V OC), short circuit current (JSC), fill factor (FF), etc. This equipment was used to probe the effect of various modifications such as changes in the annealing time and composition of the of the electrode counter-electrode. Solar cell optimization schemes included novel schemes such as solar spectrum manipulation to increase the percentage of the solar spectrum capable of generating power in the DSSC. Solar manipulation included light scattering and photon upconversion. Techniques examined here focused on affordable materials such as silica nanoparticles embedded inside a TiO2 matrix. Such materials were examined for controlled scattering of visible light and optimize light trapping within the matrix as well as a means to achieve photon up-energy-conversion using the Raman effect in silica nano-particles (due

  18. Silicon Carbide Solar Cells Investigated

    Science.gov (United States)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  19. Methodologies for high efficiency perovskite solar cells

    Science.gov (United States)

    Park, Nam-Gyu

    2016-06-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  20. High Radiation Resistance IMM Solar Cell

    Science.gov (United States)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  1. Methodologies for high efficiency perovskite solar cells.

    Science.gov (United States)

    Park, Nam-Gyu

    2016-01-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  2. Recent Advances in Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Thomas Kietzke

    2007-01-01

    Full Text Available Solar cells based on organic semiconductors have attracted much attention. The thickness of the active layer of organic solar cells is typically only 100 nm thin, which is about 1000 times thinner than for crystalline silicon solar cells and still 10 times thinner than for current inorganic thin film cells. The low material consumption per area and the easy processing of organic semiconductors offer a huge potential for low cost large area solar cells. However, to compete with inorganic solar cells the efficiency of organic solar cells has to be improved by a factor of 2-3. Several organic semiconducting materials have been investigated so far, but the optimum material still has to be designed. Similar as for organic light emitting devices (OLED small molecules are competing with polymers to become the material of choice. After a general introduction into the device structures and operational principles of organic solar cells the three different basic types (all polymer based, all small molecules based and small molecules mixed with polymers are described in detail in this review. For each kind the current state of research is described and the best of class reported efficiencies are listed.

  3. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Xi; Jiang, Hongrui

    2015-03-09

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.

  4. High-performance cadmium sulphide-based planar perovskite solar cell and the cadmium sulphide/perovskite interfaces

    Science.gov (United States)

    Peng, Haitao; Sun, Weihai; Li, Yunlong; Yan, Weibo; Yu, Pingrong; Zhou, Huanping; Bian, Zuqiang; Huang, Chunhui

    2016-04-01

    Planar heterojunction perovskite solar cell is one of the most competitive photovoltaic technologies, while charge transport materials play a crucial role. We successfully demonstrated an effective electron transport material, namely chemical bath deposited cadmium sulphide (CdS) film under low temperature, in perovskite-based solar cells. Power conversion efficiency of 16.1% has been achieved, which is comparable to that of devices based on TiO2 film prepared via low-temperature processes. Electronic impedance spectra reveal that the CdS-based device presents a higher recombination resistance than TiO2-based devices, which reduces carrier recombination and increases the open circuit voltage. The interface between CdS and perovskite was characterized with improved characteristics when compared to TiO2, e.g., efficient carrier extraction and reduced surface defect-associated degradation in the devices, which help to alleviate anomalous hysteresis and long-term instability. Furthermore, the entire device was fabricated via solution process with a processing temperature below 100°C, suggesting a promising method of further development of perovskite solar cells and commercial manufacturing.

  5. New π-Conjugated Materials Based on Furylenevinylene Candidate for Organic Solar Cells Application: A DFT Study

    Directory of Open Access Journals (Sweden)

    El Alamy Aziz

    2015-12-01

    Full Text Available The specific properties of organic-conjugated molecules and polymers are of great importance since they have become the most promising materials for the optoelectronic device technology such as solar cells. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The control of the parameters of these materials is a research issue of ongoing interest. In this work, a quantum chemical investigation was performed to explore the optical and electronic properties of a series of different compounds based on furylenevinylene. Different electron side groups were introduced to investigate their effects on the electronic structure. The theoretical knowledge of the highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO energy levels of the components is basic in studying organic solar cells; so the HOMO, LUMO, Gap energy and open circuit voltage (Voc of the studied compounds have been calculated and reported. These properties suggest that these materials behave as good candidate for organic solar cells. DOI: http://dx.doi.org/10.17807/orbital.v7i4.763 

  6. Simulation study of a new InGaN p-layer free Schottky based solar cell

    CERN Document Server

    Adaine, Abdoulwahab; Fressengeas, Nicolas

    2016-01-01

    On the road towards next generation high efficiency solar cells, the ternary Indium Gallium Nitride (InGaN) alloy is a good passenger since it allows to cover the whole solar spectrum through the change in its Indium composition. The choice of the main structure of the InGaN solar cell is however crucial. Obtaining a high efficiency requires to improve the light absorption and the photogenerated carriers collection that depend on the layers parameters, including the Indium composition, p-and n-doping, device geometry.. . Unfortunately, one of the main drawbacks of InGaN is linked to its p-type doping, which is very difficult to realize since it involves complex technological processes that are difficult to master and that highly impact the layer quality. In this paper, the InGaN p-n junction (PN) and p-in junction (PIN) based solar cells are numerically studied using the most realistic models, and optimized through mathematically rigorous multivariate optimization approaches. This analysis evidences optimal e...

  7. High-Performance Organic Solar Cells Based on a Non-Fullerene Acceptor with a Spiro Core.

    Science.gov (United States)

    Sun, Hua; Sun, Po; Zhang, Cong; Yang, Yingguo; Gao, Xingyu; Chen, Fei; Xu, Zongxiang; Chen, Zhi-Kuan; Huang, Wei

    2017-01-26

    Derived from perylenediimide (PDI) building blocks, 3D PDI molecules are considered as a type of promising structure to overcome molecular aggregation, thus improving the performance of organic solar cells. Herein, we report a novel PDI-based derivative, SCPDT-PDI4 , with four PDI units connected to a unique spiro core. Attributed to this novel molecular design, SCPDT-PDI4 exhibits a rigid 3D structure, in which the aggregation tendency of PDI chromophores could be effectively attenuated. Additionally, strong intramolecular charge transfer and high charge mobility are achieved due to the well-conjugated structure and electron-rich property of SCPDT. Therefore, fullerene-free organic solar cells based on SCPDT-PDI4 and PTB7-Th achieve a remarkable high efficiency of 7.11 %. Such an excellent result demonstrates the opportunity of SCPDT to be a promising building block for non-fullerene acceptors.

  8. The Layer Boundary Effect on Multi-Layer Mesoporous TiO2 Film Based Dye Sensitized Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Feng; Zhu, Kai; Zhao, Yixin

    2016-10-01

    Multi-layer mesoporous TiO2 prepared by screen printing is widely used for fabrication of high-efficiency dye-sensitized solar cells (DSSCs). We compare the three types of ~10 um thick mesoporous TiO2 films, which were screen printed as 1-, 2- and 4-layers using the same TiO2 nanocrystal paste. The layer boundary of the multi-layer mesoporous TiO2 films was observed in the cross-section SEM. The existence of a layer boundary could reduce the photoelectron diffusion length with the increase of layer number. However, the photoelectron diffusion lengths of the Z907 dye sensitized solar cells based on these different layered mesoporous TiO2 films are all longer than the film thickness. Consequently, the photovoltaic performance seems to have little dependence on the layer number of the multi-layer TiO2 based DSSCs.

  9. Bifacial tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wojtczuk, Steven J.; Chiu, Philip T.; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2016-06-14

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  10. Hierarchical porous photoanode based on acid boric catalyzed sol for dye sensitized solar cells

    Science.gov (United States)

    Maleki, Khatereh; Abdizadeh, Hossein; Golobostanfard, Mohammad Reza; Adelfar, Razieh

    2017-02-01

    The hierarchical porous photoanode of the dye sensitized solar cell (DSSC) is synthesized through non-aqueous sol-gel method based on H3BO3 as an acid catalyst and the efficiencies of the fabricated DSSC based on these photoanodes are compared. The sol parameters of 0.17 M, water mole ratio of 4.5, acid mole ratio of 0.45, and solvent type of ethanol are introduced as optimum parameters for photoanode formation without any detectable cracks. The optimized hierarchical photoanode mainly contains anatase phase with slight shift toward higher angles, confirming the doping of boron into titania structure. Moreover, the porous structure involves two ranges of average pore sizes of 20 and 635 nm. The diffuse reflectance spectroscopy (DRS) shows the proper scattering and blueshift in band gap. The paste parameters of solid:liquid, TiO2:ethyl cellulose, and terpineol:ethanol equal to 11:89, 3.5:7.5, and 25:64, respectively, are assigned as optimized parameters for this novel paste. The photovoltaic properties of short circuit current density, open circuit voltage, fill factor, and efficiency of 5.89 mA/cm2, 703 mV, 0.7, and 2.91% are obtained for the optimized sample, respectively. The relatively higher short circuit current of the main sample compared to other samples is mainly due to higher dye adsorption in this sample corresponding to its higher surface area and presumably higher charge transfer confirmed by low RS and Rct in electrochemical impedance spectroscopy data. Boric acid as a catalyst in titania sol not only forms hierarchical porous structure, but also dopes the titania lattice, which results in appreciated performance in this device.

  11. Space Solar Cell Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Measures, characterizes, and analyzes photovoltaic materials and devices. The primary focus is the measurement and characterization of solar cell response...

  12. Dye Sensitized Solar Cell, DSSC

    Directory of Open Access Journals (Sweden)

    Pongsatorn Amornpitoksuk

    2003-07-01

    Full Text Available A dye sensitized solar cell is a new type of solar cell. The operating system of this solar cell type is similar to plant’s photosynthesis process. The sensitizer is available for absorption light and transfer electrons to nanocrystalline metal oxide semiconductor. The ruthenium(II complexes with polypyridyl ligands are usually used as the sensitizers in solar cell. At the present time, the complex of [Ru(2,2',2'’-(COOH3- terpy(NCS3] is the most efficient sensitizer. The total photon to current conversion efficiency was approximately 10% at AM = 1.5.

  13. A model for the operation of perovskite based hybrid solar cells: formulation, analysis, and comparison to experiment\\ud

    OpenAIRE

    Foster, Jamie M.; Snaith, Henry J.; Leijtens, Tomas; Richardson, Giles

    2014-01-01

    This work is concerned with the modeling of perovskite based hybrid solar cells formed by sandwiching a slab of organic lead halide perovskite (CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$) photo-absorber between (n-type) acceptor and (p-type) donor materials---typically titanium dioxide and spiro. A model for the electrical behavior of these cells is formulated based on drift-diffusion equations for the motion of the charge carriers and Poisson's equation for the electric potential. It is closed by (i) int...

  14. Parameter study for polymer solar modules based on various cell lengths and light intensities

    Energy Technology Data Exchange (ETDEWEB)

    Slooff, L.H.; Burgers, A.R.; Bende, E.E.; Kroon, J.M. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Veenstra, S.C. [ECN Solar Energy, Solliance, High Tech Campus 5, P63, 5656AE Eindhoven (Netherlands)

    2013-10-15

    Polymer solar cells may be applied in portable electronic devices, where light intensity and spectral distribution of the illuminating source can be very different compared to outdoor applications. As the power output of solar cells depends on temperature, light intensity and spectrum, the design of the module must be optimized for the specific illumination conditions in the different applications. The interconnection area between cells in a module must be as narrow as possible to maximize the active area, also called geometrical fill factor, of the module. Laser scribing has the potential to realize this. The optimal width of the interconnection zone depends both on technological limitations, e.g. laser scribe width and the minimal distance between scribes, and electrical limitations like resistive losses. The latter depends on the generated current in the cell and thus also on illumination intensity. Besides that, also the type of junction, i.e. a single or tandem junction, will influence the optimal geometry. In this paper a calculation model is presented that can be used for electrical modeling of polymer cells and modules in order to optimize the performance for the specific illumination conditions.

  15. Synthesis and characterization of quinoxaline-based polymers for bulk-heterojunction polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bathula, Chinna [Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305–600 (Korea, Republic of); Song, Chang Eun [Department of Materials Science and Engineering, Korea Advanced Instituted of Science and Technology, Daejeon 305–701 (Korea, Republic of); Lee, Woo-Hyung [Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743 (Korea, Republic of); Lee, Jaemin; Badgujar, Sachin; Koti, Rajesh [Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305–600 (Korea, Republic of); Kang, In-Nam [Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 420–743 (Korea, Republic of); Shin, Won Suk [Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305–600 (Korea, Republic of); Ahn, Taek, E-mail: taekahn@ks.ac.kr [Department of Chemistry, Kyungsung University, Busan 608–736 (Korea, Republic of); Lee, Jong-Cheol [Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305–600 (Korea, Republic of); Moon, Sang-Jin, E-mail: moonsj@krict.re.kr [Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305–600 (Korea, Republic of); Lee, Sang Kyu, E-mail: skyulee@krict.re.kr [Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305–600 (Korea, Republic of)

    2013-06-30

    A series of quinoxaline (Qx)-based copolymers, poly[2,7-(9,9-bis(2-ethylhexyl)dibenzosilole)-alt-5,5-(5′, 8′-di-2-thienyl-2,3-bis(4-octyloxyl)phenyl)quinoxaline] (P1), poly[4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b′]dithiophene-alt-5,5-(5′, 8′-di-2-thienyl-2,3-bis(4-octyloxyl)phenyl)quinoxaline] (P2), and poly[4,4′-bis(2-ethylhexyl)-dithieno[3,2-b:2′,3′-d]silole-alt-5,5-(5′, 8′-di-2-thienyl-2,3-bis(4-octyloxyl)phenyl)quinoxaline] (P3), were synthesized and characterized for use in polymer solar cells (PSCs). We describe the effects of the various donor segments on the optical, electrochemical, field-effect carrier mobilities, and photovoltaic characteristics of the resulting Qx-based copolymers. The results indicated that the donor units in the copolymers significantly influenced the band gap, electronic energy levels, carrier mobilities, and photovoltaic properties of the copolymers. The band gaps of the copolymers were 1.71–2.03 eV. Under optimized conditions, the Qx-based polymers showed power conversion efficiencies for the PSCs of 0.87–2.15% under AM 1.5 illumination (100 mW/cm{sup 2}). Among the studied Qx-based copolymers, P2, which contained a benzo[1,2-b:4,5-b′]dithiophene unit, showed a power conversion efficiency of 2.15% with a short circuit current of 7.06 mA/cm{sup 2}, an open-circuit voltage of 0.67 V, and a fill factor of 0.46, under AM 1.5 illumination (100 mW/cm{sup 2}). - Highlights: • A series of quinoxaline (Qx)-based copolymers were synthesized. • We described the effects of the donor segments on photovoltaic characteristics. • The Qx-based polymers showed power conversion efficiencys in the range 0.87–2.15%.

  16. GaAsPN-based PIN solar cells MBE-grown on GaP substrates: toward the III-V/Si tandem solar cell

    Science.gov (United States)

    Da Silva, M.; Almosni, S.; Cornet, C.; Létoublon, A.; Levallois, C.; Rale, P.; Lombez, L.; Guillemoles, J.-F.; Durand, O.

    2015-03-01

    GaAsPN semiconductors are promising material for the elaboration of high efficiencies tandem solar cells on silicon substrates. GaAsPN diluted nitride alloy is studied as the top junction material due to its perfect lattice matching with the Si substrate and its ideal bandgap energy allowing a perfect current matching with the Si bottom cell. We review our recent progress in materials development of the GaAsPN alloy and our recent studies of some of the different building blocks toward the elaboration of a PIN solar cell. A lattice matched (with a GaP(001) substrate, as a first step toward the elaboration on a Si substrate) 1μm-thick GaAsPN alloy has been grown by MBE. After a post-growth annealing step, this alloy displays a strong absorption around 1.8-1.9 eV, and efficient photoluminescence at room temperature suitable for the elaboration of the targeted solar cell top junction. Early stage GaAsPN PIN solar cells prototypes have been grown on GaP (001) substrates, with 2 different absorber thicknesses (1μm and 0.3μm). The external quantum efficiencies and the I-V curves show that carriers have been extracted from the GaAsPN alloy absorbers, with an open-circuit voltage of 1.18 V, while displaying low short circuit currents meaning that the GaAsPN structural properties needs a further optimization. A better carrier extraction has been observed with the absorber displaying the smallest thickness, which is coherent with a low carriers diffusion length in our GaAsPN compound. Considering all the pathways for improvement, the efficiency obtained under AM1.5G is however promising.

  17. A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program

    Science.gov (United States)

    Simya, O. K.; Mahaboobbatcha, A.; Balachander, K.

    2015-06-01

    A comparative study of thin film solar cells based on CZTS, CZTSe, and CZTSSe (Copper Zinc Tin Sulphur Selenium) absorbers layers were simulated with Cadmium Sulphide (CdS) as buffer layer and Zinc Oxide (ZnO) as window layer using a solar cell capacitance simulator (SCAPS). The influences of series resistance, band to band recombination, defects and interfaces, thickness of (CZTS|CZTSe|CZTSSe) absorber layer, (CdS) buffer layer and transparent conductive oxide layer (ZnO) on the photovoltaic cell parameters were studied in detail. Improvements in efficiency were achieved by changing the back contact metal work function (BMWF) and choosing the flat band option in SCAPS software. Based on the best possible optimisation, an efficiency (η) of 12.03%, 13.16% and 15.77% were obtained for CZTS, CZTSe, and CZTSSe respectively. The performance of thin film photovoltaic devices (TFPV), for Mo back contact before optimisation and the SCAPS simulated values (flat band) after optimisation were described in detail to have in-depth understanding for better design of experiments (DOE) to obtain high efficiency solar cells.

  18. Highly efficient organic multi-junction solar cells with a thiophene based donor material

    Energy Technology Data Exchange (ETDEWEB)

    Meerheim, Rico, E-mail: rico.meerheim@iapp.de; Körner, Christian; Leo, Karl, E-mail: karl.leo@iapp.de [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01062 Dresden (Germany)

    2014-08-11

    The efficiency of organic solar cells can be increased by serial stacked subcells even upon using the same absorber material. For the multi-junction devices presented here, we use the small molecule donor material DCV5T-Me. The subcell currents were matched by optical transfer matrix simulation, allowing an efficiency increase from 8.3% for a single junction up to 9.7% for a triple junction cell. The external quantum efficiency of the subcells, measured under appropriate light bias illumination, is spectrally shifted due to the microcavity of the complete stack, resulting in a broadband response and an increased cell current. The increase of the power conversion efficiency upon device stacking is even stronger for large area cells due to higher influence of the resistance of the indium tin oxide anode, emphasizing the advantage of multi-junction devices for large-area applications.

  19. Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio

    Science.gov (United States)

    Babayigit, Aslihan; Duy Thanh, Dinh; Ethirajan, Anitha; Manca, Jean; Muller, Marc; Boyen, Hans-Gerd; Conings, Bert

    2016-01-01

    Intensive development of organometal halide perovskite solar cells has lead to a dramatic surge in power conversion efficiency up to 20%. Unfortunately, the most efficient perovskite solar cells all contain lead (Pb), which is an unsettling flaw that leads to severe environmental concerns and is therefore a stumbling block envisioning their large-scale application. Aiming for the retention of favorable electro-optical properties, tin (Sn) has been considered the most likely substitute. Preliminary studies have however shown that Sn-based perovskites are highly unstable and, moreover, Sn is also enlisted as a harmful chemical, with similar concerns regarding environment and health. To bring more clarity into the appropriateness of both metals in perovskite solar cells, we provide a case study with systematic comparison regarding the environmental impact of Pb- and Sn-based perovskites, using zebrafish (Danio Rerio) as model organism. Uncovering an unexpected route of intoxication in the form of acidification, it is shown that Sn based perovskite may not be the ideal Pb surrogate.

  20. Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Juan; Shi, Jiangjian; Li, Dongmei; Luo, Yanhong; Meng, Qingbo, E-mail: qbmeng@iphy.ac.cn [Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing 100190 (China); Beijing Key Laboratory for New Energy Materials and Devices, Beijing 100190 (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-08-17

    The mechanism of charge recombination at the interface of n-type electron transport layer (n-ETL) and perovskite absorber on the carrier properties in the perovskite solar cell is theoretically studied. By solving the one dimensional diffusion equation with different boundary conditions, it reveals that the interface charge recombination in the perovskite solar cell can be suppressed by adjusting the conduction band offset (ΔE{sub C}) at ZnO ETL/perovskite absorber interface, thus leading to improvements in cell performance. Furthermore, Mg doped ZnO nanorods ETL has been designed to control the energy band levels. By optimizing the doping amount of Mg, the conduction band minimum of the Mg doped ZnO ETL has been raised up by 0.29 eV and a positive ΔE{sub C} of about 0.1 eV is obtained. The photovoltage of the cell is thus significantly increased due to the relatively low charge recombination.

  1. Influence of the polymer matrix on the efficiency of hybrid solar cells based on silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ben Dkhil, S., E-mail: sadok.bendekhil@gmail.com [Laboratoire Physique des Materiaux: Structures et Proprietes Groupe Physique des Composants et Dispositifs Nanometriques, 7021 Jarzouna, Bizerte (Tunisia); Ingenierie des Materiaux Polymeres: IMP, UMR CNRS 5223, Universite Claude Bernard Lyon 1, 15 boulevard Latarjet, 69622 Villeurbanne (France); Bourguiga, R. [Laboratoire Physique des Materiaux: Structures et Proprietes Groupe Physique des Composants et Dispositifs Nanometriques, 7021 Jarzouna, Bizerte (Tunisia); Davenas, J. [Ingenierie des Materiaux Polymeres: IMP, UMR CNRS 5223, Universite Claude Bernard Lyon 1, 15 boulevard Latarjet, 69622 Villeurbanne (France); Cornu, D. [Institut Europeen des Membranes, UMR CNRS 5635, Ecole Nationale superieure de Chimie, Universite de Montpellier, 1919 route de Mende, 34000 Montpellier (France)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Hybrid solar cells based on silicon nanowires have been fabricated. Black-Right-Pointing-Pointer The relation between the morphology of the composite thin films and the charge transfer between the polymer matrices and SiNWs has been examined. Black-Right-Pointing-Pointer We have investigated the effect of the polymer matrix on the photovoltaic characteristics. - Abstract: Poly (N-vinylcarbazole) (PVK):SiNWs and poly (2-methoxy, 5-(2-ethyl-hexyloxy)-p-phenyl vinylene) (MEH-PPV):SiNWs bulk-heterojunctions (BHJ) have been elaborated from blends of SiNWs and the polymer in solution from a common solvent. Optical properties of these nanocomposites have been investigated by UV-vis absorption and photoluminescence (PL) spectral measurements. We have studied the charge transfer between SiNWs and the two polymers using the photoluminescence quenching of PVK and MEH-PPV which is a convenient signature of the reduced radiative recombination of the generated charge pairs upon exciton dissociation. We found that PVK and SiNWs constitutes the better donor-acceptor system. In order to understand the difference between PVK:SiNWs or MEH-PPV:SiNWs behaviours, photoluminescence responses were correlated with the topography (SEM) of the thin films. The photovoltaic effect of ITO/PEDOT:PSS/SiNWs:PVK/Al and ITO/PEDOT:PSS/SiNWs:MEH-PPV/Al structures was studied by current-voltage (I-V) measurements in dark and under illumination and interpreted on the basis of the charge transfer differences resulting from the morphologies.

  2. Plasmonic nanostructures based on block copolymer templates for efficient organic solar cells

    Science.gov (United States)

    Go, Seung Jae; Lee, Dong-Eun; Lee, Dong Hyun; Chin, Byung Doo

    2016-01-01

    Plasmonic nanostructures fabricated from self-assembled patterns of block copolymers (BCPs) were applied for organic solar cells (OSCs). A thin film of a cylinder-forming polystrene- block-poly(2-vinylpyridine) copolymer (PS- b-P2VP) was spin-coated on the transparent electrode of the OSCs, where nanostructures such as dot, dot with mixed line, and line patterns emerged during different solvent annealing processes. Selective conversion of hydrogen tetrachloroaurate (III) (HAuCl4) in P2VP blocks yielded gold (Au) nanostructures, which were used to trigger the localized surface plasmonic resonance (LSPR) effect at the OSCs. Plasmonic nanostructures with almost similar scales of BCP patterns were formed at the anode/buffer interface at the OSC, showing no-table enhancements of the short circuit current ( J sc) and the power conversion efficiency (3.57% for the reference compared to 4.35% for the optimum LSPR-OSC) as the size and the anisotropy of Au patterns changed from a simple dot through an integrated dot-line pattern to a line pattern. Based on the experimental analyses of the light absorption, photoluminescence, and exciton lifetime of OSC, such an enhancement would be mainly attributed to size-dependent LSPR-induced scattering and absorption at the OSC's active layer, which is not in intimate contact with the Au nanostructures. Up to a 26% increase in the power conversion efficiency could be observed at the plasmonic structures from BCP template, providing an accurately tuning and powerful tailoring of the LSPR-enhancing patterns for the OSCs.

  3. Comparison between P25 and anatase-based TiO2 quasi-solid state dye sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    LUO Fen; WANG LiDuo; QIU Yong

    2008-01-01

    Pure anatase TiO2 films have been made via hydration of titanium isopropoxide using a sol-gel tech-nique, while mixed TiO2 films which contained both anatase and rutile TiO2 were made from commercial P25 powder. Quasi-solid state dye-sensitized solar cells were fabricated with these two kinds of mesoporous films and a comparison study was carried out. The result showed that the open-circuit photovoltages (Voc) for both kinds of cells were essentially the same, whereas the short-circuit photo-currents (Isc) of the anatase-based cells were about 33% higher than that of the P25-based cells. The highest photocurrent intensity of the anatase-based cell was 6.12 mA/cm2 and that of the P25-based cell was 4.60 mA/cm2. Under an illumination with the light intensity of 30 mW/cm2, the corresponding en-ergy conversion efficiencywas measured to be 7.07% and 6.89% for anatase-based cells and P25-based cells, respectively.

  4. Carbon nanotube solar cells.

    Directory of Open Access Journals (Sweden)

    Colin Klinger

    Full Text Available We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement.

  5. Modeling and Optimization of Advanced Single- and Multijunction Solar Cells Based on Thin-Film a-Si:H/SiGe Heterostructure

    OpenAIRE

    Peyman Jelodarian; Abdolnabi Kosarian

    2011-01-01

    In amorphous thin-film p-i-n solar cell, a thick absorber layer can absorb more light to generate carriers. On the other hand, a thin i-layer cannot absorb enough light. Thickness of the i-layer is a key parameter that can limit the performance of solar cell. Introducing Ge atoms to the Si lattice in Si-based solar cells is an effective approach in improving their characteristics. Especially, current density of the cell can be enhanced without deteriorating its open circuit voltage, due to th...

  6. Effect of “CdCl2 Treatment” on Properties of CdTe-Based Solar Cells Prepared by Physical Vapor Deposition and Close-Spaced Sublimation Methods

    Science.gov (United States)

    Hajimammadov, Rashad; Fathi, Nasser; Bayramov, Ayaz; Khrypunov, Genady; Klochko, Nataliya; Li, Tatyana

    2011-05-01

    CdTe is regarded as one of the most promising materials for fabricating CdTe/CdS thin film solar cells with efficiencies up to 16.5%. In this paper we present a comparative analysis of CdTe-based solar cells fabricated by physical vapor deposition (PVD) and close-spaced sublimation (CSS) methods. The structural properties of CdTe base layers and the output parameters of CdS/CdTe solar cells are presented, and the influence of “CdCl2-treatment” on these properties are discussed. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses were used in the studies.

  7. Oxygen-Induced Degradation in C60-Based Organic Solar Cells: Relation Between Film Properties and Device Performance.

    Science.gov (United States)

    Bastos, João P; Voroshazi, Eszter; Fron, Eduard; Brammertz, Guy; Vangerven, Tim; Van der Auweraer, Mark; Poortmans, Jef; Cheyns, David

    2016-04-20

    Fullerene-based molecules are the archetypical electron-accepting materials for organic photovoltaic devices. A detailed knowledge of the degradation mechanisms that occur in C60 layers will aid in the development of more stable organic solar cells. Here, the impact of storage in air on the optical and electrical properties of C60 is studied in thin films and in devices. Atmospheric exposure induces oxygen-trap states that are 0.19 eV below the LUMO of the fullerene C60. Moreover, oxygen causes a 4-fold decrease of the exciton lifetime in C60 layers, resulting in a 40% drop of short-circuit current from optimized planar heterojunction solar cells. The presence of oxygen-trap states increases the saturation current of the device, resulting in a 20% loss of open-circuit voltage. Design guidelines are outlined to improve air stability for fullerene-containing devices.

  8. Roll-coating fabrication of ITO-free flexible solar cells based on a non-fullerene small molecule acceptor

    DEFF Research Database (Denmark)

    Liu, Wenqing; Shi, Hangqi; Andersen, Thomas Rieks;

    2015-01-01

    We report organic solar cells (OSCs) with non-fullerene small molecule acceptors (SMAs) prepared in large area via a roll coating process. We employ all solution-processed indium tin oxide (ITO)-free flexible substrates for inverted solar cells with a new SMA of F(DPP)(2)B-2. By utilizing poly(3......-hexylthiophene) as donor blended with F(DPP)(2)B-2 as acceptor, ITO-free large-area flexible SMA based OSCs were produced under ambient conditions with the use of slot-die coating and flexographic printing methods on a lab-scale compact roll-coater that is readily transferrable to roll-to-roll processing...

  9. Natural Pigments from Plants Used as Sensitizers for TiO2 Based Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Reena Kushwaha

    2013-01-01

    Full Text Available Four natural pigments, extracted from the leaves of teak (Tectona grandis, tamarind (Tamarindus indica, eucalyptus (Eucalyptus globulus, and the flower of crimson bottle brush (Callistemon citrinus, were used as sensitizers for TiO2 based dye-sensitized solar cells (DSSCs. The dyes have shown absorption in broad range of the visible region (400–700 nm of the solar spectrum and appreciable adsorption onto the semiconductor (TiO2 surface. The DSSCs made using the extracted dyes have shown that the open circuit voltages (Voc varied from 0.430 to 0.610 V and the short circuit photocurrent densities (Jsc ranged from 0.11 to 0.29 mA cm−2. The incident photon-to-current conversion efficiencies (IPCE varied from 12–37%. Among the four dyes studied, the extract obtained from teak has shown the best photosensitization effects in terms of the cell output.

  10. Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides.

    Science.gov (United States)

    Yoon, Jongseung; Li, Lanfang; Semichaevsky, Andrey V; Ryu, Jae Ha; Johnson, Harley T; Nuzzo, Ralph G; Rogers, John A

    2011-06-14

    Unconventional methods to exploit monocrystalline silicon and other established materials in photovoltaic (PV) systems can create new engineering opportunities, device capabilities and cost structures. Here we show a type of composite luminescent concentrator PV system that embeds large scale, interconnected arrays of microscale silicon solar cells in thin matrix layers doped with luminophores. Photons that strike cells directly generate power in the usual manner; those incident on the matrix launch wavelength-downconverted photons that reflect and waveguide into the sides and bottom surfaces of the cells to increase further their power output, by more than 300% in examples reported here. Unlike conventional luminescent photovoltaics, this unusual design can be implemented in ultrathin, mechanically bendable formats. Detailed studies of design considerations and fabrication aspects for such devices, using both experimental and computational approaches, provide quantitative descriptions of the underlying materials science and optics.

  11. Incorporation of Cu in Cu(In,Ga)Se{sub 2}-based thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong-Duck; Cho, Dae-Hyung; Han, Won-Seok; Park, Nae-Man; Lee, Kyu-Seok; Kim, Je-Ha [Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of)

    2010-12-15

    We have fabricated Cu(In,Ga)Se{sub 2} (CIGS)-based thin-film solar cells by using a cluster-type deposition system. The system is composed of a DC sputter for the Mo back electrode, a co-evaporator for the CIGS absorption layer, and a RF sputter for the ZnO and the transparent-conductive-oxide (TCO) window layers. The deposition of the CdS buffer layer was performed separately. Two solar cells with an effective area of 0.47 cm{sup 2} were fabricated using different processes. One cell, which was prepared with a 1-step process, had a larger atomic concentration of In-Ga than of Cu in the absorption layer and showed a conversion efficiency of 11.1%. The other prepared with a 3-step process had nearly the same In-Ga and Cu concentrations and showed a conversion efficiency of 15.5%. We discuss the incorporation of Cu in the two types of thin-film solar cells.

  12. Improve photovoltaic performance of titanium dioxide nanorods based dye-sensitized solar cells by Ca-doping

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weixin; Yang, Junyou, E-mail: jyyang@mail.hust.edu.cn; Zhang, Jiaqi; Gao, Sheng; Luo, Yubo; Liu, Ming

    2014-09-15

    Highlights: • TiO{sub 2} nanorods doped with Ca ions were synthesized by one-step hydrothermal method. • The flat band edge of rutile TiO{sub 2} shifted positively via Ca-doping. • The photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs) based on TiO{sub 2} electrode was much enhanced by Ca-doping. • A relatively high open circuit voltage was obtained by adopting Ca-doped TiO{sub 2} nanorods electrode. - Abstract: Ca-doped TiO{sub 2} nanorod arrays were prepared via the one-step hydrothermal method successfully, and the effect of Ca ions content on the photovoltaic conversion efficiency of dye-sensitized solar cells has been fully discussed in the paper. Although no obvious change on the microstructure and morphology was observed by field emission scanning electron microscope and transmission electron microscope for the Ca-doped samples, the results of X-ray diffraction and X-ray photoelectron spectroscopy confirmed that Ti{sup 4+} was substituted with Ca{sup 2+} successfully. UV–vis spectroscopy results revealed that the flat band edge shifted positively by Ca ions doping. The photovoltaic conversion efficiency of the dye-sensitized solar cells based on the 2 mol% Ca-doped TiO{sub 2} electrode was 43% higher than that of the undoped one due to the less recombination possibility.

  13. The correlation of open-circuit voltage with bandgap in amorphous silicon-based {ital pin} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, R.S. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Schiff, E.A. [Department of Physics, Syracuse University, Syracuse, New York 13244-1130 (United States)

    1996-01-01

    We briefly review the correlation of open-circuit voltages {ital V}{sub OC} with the bandgap of the intrinsic layer in amorphous silicon based {ital pin} solar cells. We discuss two mechanisms which limit {ital V}{sub OC}: intrinsic layer recombination, and the built-in potential {ital V}{sub BI}. In particular we discuss Li{close_quote}s proposal that the open-circuit voltages in higher bandgap cells ({ital E}{sub G}{gt}1.9 eV) are {ital V}{sub BI}-limited. Based on computer simulations of {ital pin} solar cells we propose that {ital V}{sub BI} limitation occurs when the recombination limit to {ital V}{sub OC} exceeds the cell{close_quote}s field-reversal voltage {ital V}{sub R}. For {ital a}-Si:H based cells this field-reversal voltage occurs at about {ital V}{sub BI}-0.3 V. This proposal would account for the observation that {ital V}{sub BI} limitation occurs for {ital V}{sub OC} significantly smaller than {ital V}{sub BI}. {copyright} {ital 1996 American Institute of Physics.}

  14. Thin-film monocrystalline-silicon solar cells based on a seed layer approach with 11% efficiency

    Science.gov (United States)

    Gordon, I.; Qiu, Y.; Van Gestel, D.; Poortmans, J.

    2010-09-01

    Solar modules made from thin-film crystalline-silicon layers of high quality on glass substrates could lower the price of photovoltaic electricity substantially. Almost half of the price of wafer-based silicon solar modules is currently due to the cost of the silicon wafers themselves. Using crystalline-silicon thin-film as the active material would substantially reduce the silicon consumption while still ensuring a high cell-efficiency potential and a stable cell performance. One way to create a crystalline-silicon thin film on glass is by using a seed layer approach in which a thin crystalline-silicon layer is first created on a non-silicon substrate, followed by epitaxial thickening of this layer. In this paper, we present new solar cell results obtained on 10-micron thick monocrystalline-silicon layers, made by epitaxial thickening of thin seed layers on transparent glass-ceramic substrates. We used thin (001)-oriented silicon single-crystal seed layers on glass-ceramic substrates provided by Corning Inc. that are made by a process based on anodic bonding and implant-induced separation. Epitaxial thickening of these seed layers was realized in an atmospheric-pressure chemical vapor deposition system. Simple solar cell structures in substrate configuration were made from the epitaxial mono-silicon layers. The Si surface was plasma-textured to reduce the front-side reflection. No other light trapping features were incorporated. Efficiencies of up to 11% were reached with Voc values above 600 mV indicating the good electronic quality of the material. We believe that by further optimizing the material quality and by integrating an efficient light trapping scheme, the efficiency potential of these single-crystal silicon thin films on glass-ceramics should be higher than 15%.

  15. Efficiency dip observed with InGaN-based multiple quantum well solar cells

    KAUST Repository

    Lai, Kunyu

    2014-01-01

    The dip of external quantum efficiency (EQE) is observed on In0.15Ga0.85N/GaN multiple quantum well (MQW) solar cells upon the increase of incident optical power density. With indium composition increased to 25%, the EQE dip becomes much less noticeable. The composition dependence of EQE dip is ascribed to the competition between radiative recombination and photocurrent generation in the active region, which are dictated by quantum-confined Stark effect (QCSE) and composition fluctuation in the MQWs.

  16. Conducting polymers based counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Veerender, P.; Saxena, Vibha; Gusain, Abhay; Jha, P.; Koiry, S. P.; Chauhan, A. K.; Aswal, D. K.; Gupta, S. K.

    2014-04-01

    Conducting polymer films were synthesized and employed as an alternative to expensive platinum counter electrodes for dye-sensitized solar cells. poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin films were spin-coated and polypyrrole films were electrochemically deposited via cyclic voltammetry method on ITO substrates. The morphology of the films were imaged by SEM and AFM. These films show good catalytic activity towards triiodide reduction as compared to Pt/FTO electrodes. Finally the photovoltaic performance of DSSC fabricated using N3 dye were compared with PT/FTO, PEDOT/ITO, and e-PPy counter electrodes.

  17. New processing approaches for Cu2ZnSnSe4-based solar cells

    OpenAIRE

    López Mariño, Simón

    2016-01-01

    The present thesis focuses on the promising semiconductor material kesterite, Cu2ZnSn(S,Se)4, known as CZTS(e), which is used in the second generation of solar cells, generally known as thin film photovoltaics (PV). This material relies on earth-abundant, low-cost and low toxic elements which certainly attract the interest of both research community and industry. Kesterite could replace its well known and already commercialised thin film counterpart, CuIn(1-x)Gax(SySe1-y)2 (CIGS), since it ha...

  18. Dye-Sensitized Solar Cells Based on High Surface Area Nanocrystalline Zinc Oxide Spheres

    Directory of Open Access Journals (Sweden)

    Pavuluri Srinivasu

    2011-01-01

    Full Text Available High surface area nanocrystalline zinc oxide material is fabricated using mesoporous nanostructured carbon as a sacrificial template through combustion process. The resulting material is characterized by XRD, N2 adsorption, HR-SEM, and HR-TEM. The nitrogen adsorption measurement indicates that the materials possess BET specific surface area ca. 30 m2/g. Electron microscopy images prove that the zinc oxide spheres possess particle size in the range of 0.12 μm–0.17 μm. The nanocrystalline zinc oxide spheres show 1.0% of energy conversion efficiency for dye-sensitized solar cells.

  19. Conducting polymers based counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Veerender, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Saxena, Vibha, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gusain, Abhay, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Jha, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Koiry, S. P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Chauhan, A. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Aswal, D. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gupta, S. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085 (India)

    2014-04-24

    Conducting polymer films were synthesized and employed as an alternative to expensive platinum counter electrodes for dye-sensitized solar cells. poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin films were spin-coated and polypyrrole films were electrochemically deposited via cyclic voltammetry method on ITO substrates. The morphology of the films were imaged by SEM and AFM. These films show good catalytic activity towards triiodide reduction as compared to Pt/FTO electrodes. Finally the photovoltaic performance of DSSC fabricated using N3 dye were compared with PT/FTO, PEDOT/ITO, and e-PPy counter electrodes.

  20. An Introduction to Solar Cells

    Science.gov (United States)

    Feldman, Bernard J.

    2010-01-01

    Most likely, solar cells will play a significant role in this country's strategy to address the two interrelated issues of global warming and dependence on imported oil. The purpose of this paper is to present an explanation of how solar cells work at an introductory high school, college, or university physics course level. The treatment presented…

  1. Designs of solar voltaic cells based on carbon nano-tubes II

    Science.gov (United States)

    Shen, Yin-Lin; Dai, Jong-Horng; Ou, Kenneth; Reinhardt, Kit; Szu, Harold

    2009-04-01

    Inspired by Asian rice-paddy and Firefighter spiraling steps staircase, we employ a nano-manipulator augmented with CAD as a nano-robot water-buffalo, promised to improve by an order of the magnitude the pioneer work of GE Solar voltaic cell (SVC) made of one Carbon NanoTube (CNT) enjoyed QECNT~5%. Our CNT was made of the semiconductor at NIR wavelength EBG= 1.107 eV which can absorb any photon whose wavelength λ tiny diameter 0.66 nm. It allows us to construct 3D structure, called volume pixel, "voxel," in a much efficient spiraling steps staircase fashion to capture the solar spectral energy spreading naturally by a simple focusing lens without occlusion. For real-estate premium applications, in Space or Ocean, we designed a volume pixel (Voxel) housing a stack of 16 CNTs steps spiraling 22° each like the fire house staircase occupying the height of 16 x dCNT =16 x 0.66nm= 10.56 nm and covering over 360°. The total SVC had the size 2x2 meter2, consisting of 100×100 lenslet array. Each lens was made of Pb-Crown glass which was inexpensive simple spherical lens having the diameter of Dlens=2 cm and F#=0.7. It can focus the sunlight a millionth times stronger in a smallest possible focal spot size, λYellow=0.635 μm< λMax photons <λRed=0.73 μm, where the largest number of solar photons, 68%, according to the Plank radiation spectrum at 6000°K and the Lord Rayleigh diffraction limit. The solar panel seals individually such an array of 3D cavities of SVC enjoying theoretically from the UV 12% (wasted in passing through) visible 68% to the infrared 20% at a total of 16x5%~80% total QECNT per cell. The solar panel is made of light-weight carbon composite tolerating about 20% inactive fill factor and 10% dead pixels.

  2. Quasi-solid-state nanocrystalline TiO2 solar cells using gel network polymer electrolytes based on polysiloxanes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A quasi-solid-state dye-sensitized nanocrystalline porous TiO2 film solar cell was fabricated using a novel gel network polymer electrolyte based on polysiloxanes with both polyethylene oxide internal plasticized side chains and quaternary ammonium groups. The cell exhibited better photoelectrical conversion performance under 60 mW/cm2 irradiation. The short photocurrent (Isc) of 5.0 mA/cm2 and open voltage (Voc) of 0.68 V were achieved, and the energy conversion efficiency (η) and fill factor (ff) were 3.4% and 0.60, respectively.

  3. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...... and characterized for comparison. Power conversion eciency of 16.5% was obtained for this batch of RIE-textured Si solar cells. The eciency of the KOH-textured reference cell was 17.8%. Quantum Efficiency measurements and carrier loss analysis show that the lower eciency of the RIE-textured cells is primarily due...

  4. High Performance Perovskite Solar Cells.

    Science.gov (United States)

    Tong, Xin; Lin, Feng; Wu, Jiang; Wang, Zhiming M

    2016-05-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long-term stable all-solid-state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost-effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole-transporting materials (HTMs) and electron-transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction.

  5. High efficiency cadmium telluride and zinc telluride based thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, A.; Sudharsanan, R.; Ringel, S.A.; Chou, H.C. (Georgia Inst. of Tech., Atlanta, GA (United States))

    1992-10-01

    This report describes work to improve the basic understanding of CdTe and ZnTe alloys by growing and characterizing these films along with cell fabrication. The major objective was to develop wide-band-gap (1.6--1.8 eV) material for the top cell, along with compatible window material and transparent ohmic contacts, so that a cascade cell design can be optimized. Front-wall solar cells were fabricated with a glass/SnO{sub 2}/CdS window, where the CdS film is thin to maximize transmission and current. Wide-band-gap absorber films (E{sub g} = 1.75 eV) were grown by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD) techniques, which provided excellent control for tailoring the film composition and properties. CdZnTe films were grown by both MBE and MOCVD. All the as-grown films were characterized by several techniques (surface photovoltage spectroscopy, Auger electron spectroscopy (AES), and x-ray photoelectron spectroscopy (XPS)) for composition, bulk uniformity, thickness, and film and interface quality. Front-wall-type solar cells were fabricated in collaboration with Ametek Materials Research Laboratory using CdTe and CdZnTe polycrystalline absorber films. The effects of processing on ternary film were studied by AES and XPS coupled with capacitance voltage and current voltage measurements as a function of temperature. Bias-dependent spectral response and electrical measurements were used to test some models in order to identify and quantify dominant loss mechanisms.

  6. HYBRID FUEL CELL-SOLAR CELL SPACE POWER SUBSYSTEM CAPABILITY.

    Science.gov (United States)

    This report outlines the capabilities and limitations of a hybrid solar cell- fuel cell space power subsystem by comparing the proposed hybrid system...to conventional power subsystem devices. The comparisons are based on projected 1968 capability in the areas of primary and secondary battery, fuel ... cell , solar cell, and chemical dynamic power subsystems. The purpose of the investigation was to determine the relative merits of a hybrid power

  7. Boosting the photocurrent density of p-type solar cells based on organometal halide perovskite-sensitized mesoporous NiO photocathodes.

    Science.gov (United States)

    Wang, Huan; Zeng, Xianwei; Huang, Zhanfeng; Zhang, Wenjun; Qiao, Xianfeng; Hu, Bin; Zou, Xiaoping; Wang, Mingkui; Cheng, Yi-Bing; Chen, Wei

    2014-08-13

    The p-n tandem design of a sensitized solar cell is a novel concept holding the potential to overcome the efficiency limitation of conventional single-junction sensitized solar cells. Significant improvement of the photocurrent density (Jsc) of the p-type half-cell is a prerequisite for the realization of a highly efficient p-n tandem cell in the future. This study has demonstrated effective photocathodes based on novel organometal halide perovskite-sensitized mesoporous NiO in liquid-electrolyte-based p-type solar cells. An acceptably high Jsc up to 9.47 mA cm(-2) and efficiency up to 0.71% have been achieved on the basis of the CH3NH3PbI3/NiO solar cell at 100 mW cm(-2) light intensity, which are significantly higher than those of any previously reported liquid-electrolyte-based p-type solar cells based on sensitizers of organic dyes or inorganic quantum dots. The dense blocking layer made by spray pyrolysis of nickel acetylacetonate holds the key to determining the current flow direction of the solar cells. High hole injection efficiency at the perovskite/NiO interface and high hole collection efficiency through the mesoporous NiO network have been proved by time-resolved photoluminescence and transient photocurrent/photovoltage decay measurements. The limitation of these p-type solar cells primarily rests with the adverse light absorption by the NiO mesoporous film; the secondary limitation arises from the highly viscous ethyl acetate-based electrolyte, which is helpful for the solar cell stability but hinders fluent diffusion into the pore channels, giving rise to a nonlinear dependence of Jsc on the light intensity.

  8. Upconversion in solar cells.

    Science.gov (United States)

    van Sark, Wilfried Gjhm; de Wild, Jessica; Rath, Jatin K; Meijerink, Andries; Schropp, Ruud Ei

    2013-02-15

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells.

  9. Local Structure Analysis of Materials for Solar Cell Absorber Layer

    OpenAIRE

    Jewell, Leila Elizabeth

    2016-01-01

    This dissertation examines solar cell absorber materials that have the potential to replace silicon in solar cells, including several copper-based sulfides and perovskites. Earth-abundant absorbers such as these become even more cost-effective when used in a nanostructured solar cell. Atomic layer deposition (ALD) and chemical vapor deposition (CVD) deposit highly conformal films and hence are important tools for developing extremely thin absorber solar cells with scalability. Thus, the prima...

  10. Supramolecular photochemistry and solar cells

    Directory of Open Access Journals (Sweden)

    IHA NEYDE YUKIE MURAKAMI

    2000-01-01

    Full Text Available Supramolecular photochemistry as well as solar cells are fascinating topics of current interest in Inorganic Photochemistry and very active research fields which have attracted wide attention in last two decades. A brief outline of the investigations in these fields carried out in our Laboratory of Inorganic Photochemistry and Energy Conversion is given here with no attempt of an exhaustive coverage of the literature. The emphasis is placed on recent work and information on the above mentioned subjects. Three types of supramolecular systems have been the focus of this work: (i cage-type coordination compounds; (ii second-sphere coordination compounds, exemplified by ion-pair photochemistry of cobalt complexes and (iii covalently-linked systems. In the latter, modulation of the photoluminescence and photochemistry of some rhenium complexes are discussed. Solar energy conversion and development of thin-layer photoelectrochemical solar cells based on sensitization of nanocrystalline semiconductor films by some ruthenium polypyridyl complexes are presented as an important application that resulted from specifically engineered artificial assemblies.

  11. Solar cells based on block copolymer semiconductor nanowires: effects of nanowire aspect ratio.

    Science.gov (United States)

    Ren, Guoqiang; Wu, Pei-Tzu; Jenekhe, Samson A

    2011-01-25

    The solution-phase self-assembly of nanowires (NWs) from diblock copolymer semiconductors, poly(3-butylthiophene)-block-poly(3-octylthiophene), of different block compositions gave crystalline NWs of similar width (13-16 nm) but a tunable average aspect ratio (length/width) of 50-260. The power conversion efficiency of bulk heterojunction solar cells comprising the diblock copolythiophene NWs and PC(71)BM was found to increase with increasing aspect ratio, reaching 3.4% at the highest average aspect ratio of 260. The space charge limited current mobility of holes in neat films of the copolymer NWs and in copolymer NWs/PC(71)BM films (∼1.0 × 10(-4) cm(2)/(V s)) was invariant with aspect ratio, reflecting the parallel orientation of the NWs to the substrate. The enhancement of photovoltaic efficiency with increasing aspect ratio of NWs was explained in terms of increased exciton and charge photogeneration and collection in the bulk heterojunction solar cells.

  12. New Method of Depositing the Nanostructured Amorphous Carbon for Carbon Based Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    A. N. Fadzilah

    2013-01-01

    Full Text Available Nanostructured amorphous carbon (a-C solar cells were successfully deposited via a self-designed aerosol-assisted chemical vapor deposition (AACVD. The fabricated solar cell with the configuration of Au/p-C/n-Si/Au achieved efficiency ( of % for device deposited at 500°C, % for 450°C, and % for 400°C. Photoresponse characteristic was highlighted under illumination (AM 1.5 illuminations: 100 mW/cm2, 25°C, where conductivity increased when the sample was being hit by light. Transmittance spectrum exhibits a large transmittance value (85% and absorption coefficient value of  cm−1 at the visible range from 390 to 790 nm. The nanostructured a-C thin film deposited at higher temperature possesses lower transmittance due to higher absorption as a result of the higher content of sp2-bonded carbon atoms. From Tauc’s plot, optical band gap ( was determined, and decreased as deposition temperature increased (1.2 eV, 1.0 eV, 0.7 eV. On the other hand, FESEM images exhibited a nanostructured sized a-C with the particle size less than 100 nm. To the best of our knowledge, the presence of nanostructured particle of a-C by a self-prepared AACVD has not frequently been reported.

  13. Hybrid AgNP–TiO2 thin film based photoanode for dye sensitized solar cell

    Directory of Open Access Journals (Sweden)

    Jayraj V. Vaghasiya

    2016-09-01

    Full Text Available This article addresses two major issues in the plasmonic dye solar cell; (i protection of plasmonic nanoparticles from electrolyte attack and (ii design of appropriate molecular dye to harvest photon near the plasmonic resonance. This report reveals the synthesis of D-π-A carbazole dye and incorporation of plasmonic Ag nanoparticles (AgNPs into TiO2 film using Ag–TiO2 gel. We have designed and synthesized an efficient D-π-A carbazole dye molecule whose absorption maxima matches the plasmonic resonance of AgNPs leading to augmented near field effect, enhancing photon harvesting property of dye molecule. This article also describes a strategy to incorporate AgNPs into the TiO2 photoelectrode by Ag–TiO2 gel. The plasmonic photoanode was characterized using SEM and optical spectroscopy. Dye solar cells were characterized by J–V characteristics and electrochemical impedance technique in order to take insight into photovoltaic performance and electron transfer kinetic. This engineered DSSC achieves 45% enhancement in current due to the plasmon enhanced near field effect at thin film (3 μm.

  14. Novel organic dyes based on phenyl-substituted benzimidazole for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saltan, Gözde Murat [Department of Chemistry, Faculty of Arts and Science, Celal Bayar University, Yunus Emre, 45140 Manisa (Turkey); Dinçalp, Haluk, E-mail: haluk.dincalp@cbu.edu.tr [Department of Chemistry, Faculty of Arts and Science, Celal Bayar University, Yunus Emre, 45140 Manisa (Turkey); Kıran, Merve; Zafer, Ceylan [Solar Energy Institute, Ege University, Bornova, 35100 Izmir (Turkey); Erbaş, Seçil Çelik [Celal Bayar University, Materials Engineering Department, Faculty of Engineering, Yunus Emre, 45140 Manisa (Turkey)

    2015-08-01

    Two new sensitizers derived from benzimidazole core for dye-sensitized solar cell (DSSC) applications were designed and synthesized as D–π–A structures, in which two phenyl-substituted benzimidazole group, a phenyl ring and a cyanoacrylic acid were used as the electron donor, π-conjugated linkage and the electron acceptor, respectively. Effect of methoxy- and N,N-dimetylamino- moieties attached to the phenyl groups of benzimidazole were investigated by means of optical and photovoltaic measurements. The compounds exhibit broad absorption maximum at 387 nm with the tail extending up to 500 nm on TiO{sub 2}-coated thin film. The longer wavelength absorption band around 360 nm and the much longer decay components could be attributed to the existence of charge transfer state of the dyes in solutions. DSSC device fabricated by using methoxy substituted dye (BI5a) as a sensitizer shows much better incident photon-to-current conversion efficiency (IPCE) of 64% giving cell efficiency of 2.68%. - Graphical abstract: Display Omitted - Highlights: • Long decay times suggest the delayed fluorescence caused by the existence of ICT. • The best solar energy conversion efficiency was obtained for BI5a dye (2.68%). • More fluorescent BI5a dye gives higher photocurrent generation.

  15. Recent Advances in Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Umer Mehmood

    2014-01-01

    Full Text Available Solar energy is an abundant and accessible source of renewable energy available on earth, and many types of photovoltaic (PV devices like organic, inorganic, and hybrid cells have been developed to harness the energy. PV cells directly convert solar radiation into electricity without affecting the environment. Although silicon based solar cells (inorganic cells are widely used because of their high efficiency, they are rigid and manufacturing costs are high. Researchers have focused on organic solar cells to overcome these disadvantages. DSSCs comprise a sensitized semiconductor (photoelectrode and a catalytic electrode (counter electrode with an electrolyte sandwiched between them and their efficiency depends on many factors. The maximum electrical conversion efficiency of DSSCs attained so far is 11.1%, which is still low for commercial applications. This review examines the working principle, factors affecting the efficiency, and key challenges facing DSSCs.

  16. Energy Conversion: Nano Solar Cell

    Science.gov (United States)

    Yahaya, Muhammad; Yap, Chi Chin; Mat Salleh, Muhamad

    2009-09-01

    Problems of fossil-fuel-induced climate change have sparked a demand for sustainable energy supply for all sectors of economy. Most laboratories continue to search for new materials and new technique to generate clean energy at affordable cost. Nanotechnology can play a major role in solving the energy problem. The prospect for solar energy using Si-based technology is not encouraging. Si photovoltaics can produce electricity at 20-30 c//kWhr with about 25% efficiency. Nanoparticles have a strong capacity to absorb light and generate more electrons for current as discovered in the recent work of organic and dye-sensitized cell. Using cheap preparation technique such as screen-printing and self-assembly growth, organic cells shows a strong potential for commercialization. Thin Films research group at National University Malaysia has been actively involved in these areas, and in this seminar, we will present a review works on nanomaterials for solar cells and particularly on hybrid organic solar cell based on ZnO nanorod arrays. The organic layer consisting of poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEHPPV) and [6, 6]-phenyl C61-butyric acid 3-ethylthiophene ester (PCBE) was spin-coated on ZnO nanorod arrays. ZnO nanorod arrays were grown on FTO glass substrates which were pre-coated with ZnO nanoparticles using a low temperature chemical solution method. A gold electrode was used as the top contact. The device gave a short circuit current density of 2.49×10-4 mA/cm2 and an open circuit voltage of 0.45 V under illumination of a projector halogen light at 100 mW/cm2.

  17. Investigation of the nanomorphology and device performance of organic solar cells based on polymer: fullerene bulk heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Madena, Thomas; Wischnath, Uli; Kittel, Achim; Parisi, Juergen; Riedel, Ingo [Energy- and Semiconductor Research Laboratory, Department of Physics, University of Oldenburg (Germany)

    2009-07-01

    The coherences between structural layout of P3HT:PCBM bulk heterojunction (BHJ) solar cells and the electrical properties are not fully understood so far. The morphology of such BHJ-thin films determines the efficiency balance between separation of electron hole pairs at the phase boundary of PCBM and P3HT and the charge transport along continuous paths in the pure materials. The optimization of both fundamental mechanisms is a challenge and plays a crucial role for the efficiency of the photovoltaic device. In this presentation we investigate the interplay of nanomorphology and device properties of P3HT: PCBM solar cells. AFM measurements were carried out to profile the nanomorphology of differently composed polymer: fullerene composite films. In these films we observed substantial growth of micron-sized crystallites in the PCBM moiety upon thermal annealing which severely limits the device performance. Based on these studies we discuss the influence of the nanomorphology of different thin film formulations on the electrical characteristics of P3HT:PCBM solar cells.

  18. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts.

    Science.gov (United States)

    Bai, Yu; Cao, Yiming; Zhang, Jing; Wang, Mingkui; Li, Renzhi; Wang, Peng; Zakeeruddin, Shaik M; Grätzel, Michael

    2008-08-01

    Low-cost excitonic solar cells based on organic optoelectronic materials are receiving an ever-increasing amount of attention as potential alternatives to traditional inorganic photovoltaic devices. In this rapidly developing field, the dye-sensitized solar cell (DSC) has achieved so far the highest validated efficiency of 11.1% (ref. 2) and remarkable stability. However, the cells with the best performance use volatile solvents in their electrolytes, which may be prohibitive for outdoor solar panels in view of the need for robust encapsulation. Solvent-free room-temperature ionic liquids have been pursued as an attractive solution to this dilemma, and device efficiencies of over 7% were achieved by using some low-viscosity formulations containing 1-ethyl-3-methylimidazolium thiocyanate, selenocyanate, tricyanomethide or tetracyanoborate. Unfortunately, apart from tetracyanoborate, all of these low-viscosity melts proved to be unstable under prolonged thermal stress and light soaking. Here, we introduce the concept of using eutectic melts to produce solvent-free liquid redox electrolytes. Using a ternary melt in conjunction with a nanocrystalline titania film and the amphiphilic heteroleptic ruthenium complex Z907Na (ref. 10) as a sensitizer, we reach excellent stability and an unprecedented efficiency of 8.2% under air-mass 1.5 global illumination. Our results are of importance to realize large-scale outdoor applications of mesoscopic DSCs.

  19. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells.

    Science.gov (United States)

    Han, Lihao; Abdi, Fatwa F; van de Krol, Roel; Liu, Rui; Huang, Zhuangqun; Lewerenz, Hans-Joachim; Dam, Bernard; Zeman, Miro; Smets, Arno H M

    2014-10-01

    A hybrid photovoltaic/photoelectrochemical (PV/PEC) water-splitting device with a benchmark solar-to-hydrogen conversion efficiency of 5.2% under simulated air mass (AM) 1.5 illumination is reported. This cell consists of a gradient-doped tungsten-bismuth vanadate (W:BiVO4 ) photoanode and a thin-film silicon solar cell. The improvement with respect to an earlier cell that also used gradient-doped W:BiVO4 has been achieved by simultaneously introducing a textured substrate to enhance light trapping in the BiVO4 photoanode and further optimization of the W gradient doping profile in the photoanode. Various PV cells have been studied in combination with this BiVO4 photoanode, such as an amorphous silicon (a-Si:H) single junction, an a-Si:H/a-Si:H double junction, and an a-Si:H/nanocrystalline silicon (nc-Si:H) micromorph junction. The highest conversion efficiency, which is also the record efficiency for metal oxide based water-splitting devices, is reached for a tandem system consisting of the optimized W:BiVO4 photoanode and the micromorph (a-Si:H/nc-Si:H) cell. This record efficiency is attributed to the increased performance of the BiVO4 photoanode, which is the limiting factor in this hybrid PEC/PV device, as well as better spectral matching between BiVO4 and the nc-Si:H cell.

  20. Web based Measurement System for Solar Radiation

    Directory of Open Access Journals (Sweden)

    Shachi Awasthi

    2012-06-01

    Full Text Available We present in this paper, the principles of the measurement system for solar radiation, and our implementation using Web based data logging concept. The photocurrent produced by Silicon PN junction is used as a solar radiation transducer, to make it more viable we have used commercially available solar panels as our transducers. Using a silicon solar cell as sensor, a low cost solar radiometer can be constructed. The photocurrent produced by solar cell is electronically tailored to be measured and stored by our web based data acquisition and monitoring system. Measurement using real solar cell array gives a good measure of actual producible energy by solar arrays. Our portable instrument can be used in remote sites and substitutes the solar monitor and integrator, Current data of solar radiation can be monitored using Ethernet interface available in all PC, Laptops. We store the data into a secure digital card which can be retrieved to plot and analyse the data. We have developed system hardware and software based on ATmega32 AVR Microcontrollers and ENC28J60 Ethernet PHY and MAC network interface chip by Microchip. So the global irradiance data are obtained after correction using the instantaneous measurement of ambient temperature which allows us to calculate the junction temperature and consequently improve the precision of measurement of our data acquisition system.

  1. Preparation of Composited Graphene/PEDOT:PSS Film for Its Possible Application in Graphene-based Organic Solar Cells

    Institute of Scientific and Technical Information of China (English)

    YU Yue; LI Meicheng; CHU Lihua; YU Hakki; Wodtke A M; ZHAO Yan; ZHANG Zhongmo

    2015-01-01

    The interface between graphene and organic layers is a key factor responsible for the performance of gra-phene-based organic solar cells (OSCs). In this paper, we focus on coating PEDOT:PSS onto the surface of graphene. We demonstrate two approaches, applying UV/Ozone treatment on graphene and modifying PEDOT:PSS with Zonyl, to get a PEDOT:PSS well-coated graphene film . Our results prove that both methods can be effective to solve the interface issue between graphene and PEDOT: PSS. Thereby it shows a positive application of the composited gra-phene/PEDOT:PSS film on graphene-based OSCs.

  2. Preparation of Composited Graphene/PEDOT:PSS Film for Its Possible Application in Graphene-based Organic Solar Cells

    Institute of Scientific and Technical Information of China (English)

    YU; Yue; LI; Meicheng; CHU; Lihua; YU; Hakki; Wodtke; A.M.; ZHAO; Yan; ZHANG; Zhongmo

    2015-01-01

    The interface between graphene and organic layers is a key factor responsible for the performance of graphene-based organic solar cells(OSCs). In this paper, we focus on coating PEDOT:PSS onto the surface of graphene. We demonstrate two approaches, applying UV/Ozone treatment on graphene and modifying PEDOT:PSS with Zonyl, to get a PEDOT:PSS well-coated graphene film. Our results prove that both methods can be effective to solve the interface issue between graphene and PEDOT: PSS. Thereby it shows a positive application of the composited graphene/PEDOT:PSS film on graphene-based OSCs.

  3. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells.

    Science.gov (United States)

    Ananth, S; Vivek, P; Arumanayagam, T; Murugakoothan, P

    2014-07-15

    Natural dye extract of lawsonia inermis seed were used as photo sensitizer to fabricate titanium dioxide nanoparticles based dye sensitized solar cells. Pure titanium dioxide (TiO2) nanoparticles in anatase phase were synthesized by sol-gel technique and pre dye treated TiO2 nanoparticles were synthesized using modified sol-gel technique by mixing lawsone pigment rich natural dye during the synthesis itself. This pre dye treatment with natural dye has yielded colored TiO2 nanoparticles with uniform adsorption of natural dye, reduced agglomeration, less dye aggregation and improved morphology. The pure and pre dye treated TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Dye sensitized solar cells (DSSC) fabricated using the pre dye treated and pure TiO2 nanoparticles sensitized by natural dye extract of lawsonia inermis seed showed a promising solar light to electron conversion efficiency of 1.47% and 1% respectively. The pre dye treated TiO2 based DSSC showed an improved efficiency of 47% when compared to that of conventional DSSC.

  4. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells

    Science.gov (United States)

    Ananth, S.; Vivek, P.; Arumanayagam, T.; Murugakoothan, P.

    2014-07-01

    Natural dye extract of lawsonia inermis seed were used as photo sensitizer to fabricate titanium dioxide nanoparticles based dye sensitized solar cells. Pure titanium dioxide (TiO2) nanoparticles in anatase phase were synthesized by sol-gel technique and pre dye treated TiO2 nanoparticles were synthesized using modified sol-gel technique by mixing lawsone pigment rich natural dye during the synthesis itself. This pre dye treatment with natural dye has yielded colored TiO2 nanoparticles with uniform adsorption of natural dye, reduced agglomeration, less dye aggregation and improved morphology. The pure and pre dye treated TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Dye sensitized solar cells (DSSC) fabricated using the pre dye treated and pure TiO2 nanoparticles sensitized by natural dye extract of lawsonia inermis seed showed a promising solar light to electron conversion efficiency of 1.47% and 1% respectively. The pre dye treated TiO2 based DSSC showed an improved efficiency of 47% when compared to that of conventional DSSC.

  5. Photon management in solar cells

    CERN Document Server

    Rau, Uwe; Gombert, Andreas

    2015-01-01

    Written by renowned experts in the field of photon management in solar cells, this one-stop reference gives an introduction to the physics of light management in solar cells, and discusses the different concepts and methods of applying photon management. The authors cover the physics, principles, concepts, technologies, and methods used, explaining how to increase the efficiency of solar cells by splitting or modifying the solar spectrum before they absorb the sunlight. In so doing, they present novel concepts and materials allowing for the cheaper, more flexible manufacture of solar cells and systems. For educational purposes, the authors have split the reasons for photon management into spatial and spectral light management. Bridging the gap between the photonics and the photovoltaics communities, this is an invaluable reference for materials scientists, physicists in industry, experimental physicists, lecturers in physics, Ph.D. students in physics and material sciences, engineers in power technology, appl...

  6. A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer

    NARCIS (Netherlands)

    Bruyn, P. de; Moet, D.J.D.; Blom, P.W.M.

    2010-01-01

    Inverted polymer:fullerene solar cells with ZnO and MoO3 transport layers are demonstrated. ZnO films are prepared through spin casting of a zinc acetylacetonate hydrate solution, followed by low temperature annealing under ambient conditions. The performance of solar cells with an inverted structur

  7. A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer

    NARCIS (Netherlands)

    de Bruyn, P.; Moet, D. J. D.; Blom, P. W. M.

    2010-01-01

    Inverted polymer: fullerene solar cells with ZnO and MoO(3) transport layers are demonstrated. ZnO films are prepared through spin casting of a zinc acetylacetonate hydrate solution, followed by low temperature annealing under ambient conditions. The performance of solar cells with an inverted struc

  8. Investigations into alterntive substrate, absorber, and buffer layer processing for Cu(In,Ga)Se{sub 2}-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tuttle, J.R.; Berens, T.A.; Keane, J. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    High-performance Cu(In,Ga)Se{sub 2}(CIGS)-based solar cells are presently fabricated within a narrow range of processing options. In this contribution, alternative substrate, absorber, and buffer layer processing is considered. Cell performance varies considerably when alternative substrates are employed. These variations are narrowed with the addition of Na via a Na{sub 2}S compound. Sputtered and electrodeposited CIGS precursors and completed absorbers show promise as alternatives to evaporation. A recrystallization process is required to improve their quality. (In,Ga){sub y}Se buffer layers contribute to cell performance above 10. Further improvements in these alternatives will lead to combined cell performance greater than 10% in the near term.

  9. Ab initio based Monte Carlo studies of Cu-depleted CIS phases for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Christian; Gruhn, Thomas; Felser, Claudia [Institut fuer Anorganische and Analytische Chemie, Johannes Gutenberg-Universitaet Mainz (Germany); Windeln, Johannes [IBM Mainz (Germany)

    2011-07-01

    Thin film solar cells with a CuInSe{sub 2} (CIS) absorber layer have an increasing share of the solar cell market because of their low production costs and the high efficiency. One interesting aspect of CIS is the inherent resilience to defects and composition fluctuations. Beside the stable CuInSe{sub 2} phase, there are various Cu-poor phases along the Cu{sub 2}Se-In{sub 2}Se{sub 3} tie line, including the CuIn{sub 3}Se{sub 5} and the CuIn{sub 5}Se{sub 8} phase. We have used ab initio calculations of Cu-poor CIS configurations to make a cluster expansion of the configurational energy. In the configurations, Cu atoms, In atoms, and vacancies are distributed over the Cu and In sites of a CIS cell with fixed Se atoms. With the resulting energy expression, CuIn{sub 3}Se{sub 5} and CuIn{sub 5}Se{sub 8} systems have been studied in the canonical ensemble. By analyzing the free energy landscape the transition temperature between a low-temperature ordered and a high-temperature disordered CuIn{sub 5}Se{sub 8} phase has been determined. Furthermore, grandcanonical ensemble simulations have been carried out, which provide the equilibrium Cu and In concentrations as a function of the chemical potentials {mu}{sub Cu} and {mu}{sub In}. Plateau regions for the CuInSe{sub 2} and the CuIn{sub 5}Se{sub 8} phases have been found and analyzed for different temperatures.

  10. Dye-sensitized Solar Cells for Solar Energy Harvesting

    Science.gov (United States)

    Roy, M. S.; Deol, Y. S.; Kumar, Manish; Prasad, Narottam; Janu, Yojana

    2011-10-01

    Dye-sensitized solar cells (DSSCs) also known as Gratzel cells, have attracted the interests of researchers to a great extent because of its cost effective and easy manufacturing process without involving highly sophisticated lithographic technique and high cost raw materials as usually seen in conventional solar cell. Based on simple photo-electrochemical process, it has got immense potential in converting solar energy to electrical power in remote and desert area where the supply of conventional power is not possible. The overall peak power-production efficiency of dye-sensitized solar cells has been reported around 11 percent, so they are best suited to low-density applications and the price-to-performance ratio obtained through these solar cells is superior to others. DSSCs have ability to absorb even diffused sunlight and therefore work in cloudy whether as well without much impact over the efficiency. The present communication deals with a review of our work on DSSCs wherein we have used cost effective natural dyes/pigments as a sensitizer of nc-TiO2 and discussed about various key factors affecting the conversion efficiency of DSSC.

  11. High-efficiency cadmium and zinc-telluride-based thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, A.; Sudharsanan, R.; Ringel, S. (Georgia Inst. of Tech., Atlanta, GA (United States))

    1992-02-01

    This report describes research into polycrystalline CdTe solar cells grown by metal-organic chemical vapor deposition. Efficiencies of {approximately}10% were achieved using both p-i-n and p-n structures. A pre-heat treatment of CdS/SnO{sub 2}/glass substrates at 450{degrees}C in hydrogen atmosphere prior to the CdTe growth was found to be essential for high performance because this heat treatment reduces oxygen-related defects from the CdS surface. However, this treatment also resulted in a Cd-deficient CdS surface, which may in part limit the CdTe cell efficiency to 10% due to Cd vacancy-related interface defects. Preliminary model calculations suggest that removing these states can increase the cell efficiency from 10% to 13.5%. Photon absorption in the CdS film also limits the cell performance, and eliminating this loss mechanism can result in CdTe efficiencies in excess of 18%. Polycrystalline, 1.7-e, CdZnTe films were also grown for tandem-cell applications. CdZnTe/CdS cells processed using the standard CdTe cell fabrication procedure resulted in 4.4% efficiency, high series resistance, and a band-gap shift to 1.55 eV. The formation of Zn-O at and near the CdZnTe surface is the source of high contact resistance. A saturated dichromate each prior to contact deposition was found to solve the contact resistance problem. The CdCl{sub 2} treatment was identified as the cause of the observed band-gap shift due to the preferred formation of ZnCl{sub 2}. 59 refs.

  12. Effect of porous silicon on the performances of silicon solar cells during the porous silicon-based gettering procedure

    Energy Technology Data Exchange (ETDEWEB)

    Nouri, H.; Bessais, B. [Laboratoire de Nanomateriaux et des Systemes pour l' Energie, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Bouaicha, M. [Laboratoire de Photovoltaique, des Semi-conducteurs et des Nanostructures, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2009-10-15

    In this work we analyse the effect of porous silicon on the performances of multicrystalline silicon (mc-Si) solar cells during the porous silicon-based gettering procedure. This procedure consists of forming PS layers on both front and back sides of the mc-Si wafers followed by an annealing in an infrared furnace under a controlled atmosphere at different temperatures. Three sets of samples (A, B and C) have been prepared; for samples A and B, the PS films were removed before and after annealing, respectively. In order to optimize the annealing temperature, we measure the defect density at a selected grain boundary (GB) using the dark current-voltage (I-V) characteristics across the GB itself. The annealing temperature was optimized to 1000 C. The effect of these treatments on the performances of mc-Si solar cells was studied by means of the current-voltage characteristic (at AM 1.5) and the internal quantum efficiency (IQE). The results obtained for cell A and cell B were compared to those obtained on a reference cell (C). (author)

  13. Black Silicon Solar Cells with Black Ribbons

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io;

    2016-01-01

    We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average...... reflectance below 0.5% across a 156x156 mm2 silicon (Si) wafer. Black interconnecting ribbons were realized by oxidizing copper resulting in reflectance below 3% in the visible wavelength range. Screen-printed Si solar cells were realized on 156x156 mm2 black Si substrates with resulting efficiencies...... in the range 15.7-16.3%. The KOH-textured reference cell had an efficiency of 17.9%. The combination of black Si and black interconnecting ribbons may result in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells....

  14. A simple recipe for an efficient TiO2 nanofiber-based dye-sensitized solar cell.

    Science.gov (United States)

    Nair, A Sreekumaran; Jose, Rajan; Shengyuan, Yang; Ramakrishna, Seeram

    2011-01-01

    Development of highly efficient dye-sensitized solar cells (DSSCs) with good photovoltaic parameters is an active research area of current global interest. In this article, we provide a simple recipe for the fabrication of electrospun TiO(2) nanorod-based efficient dye-sensitized solar cell using a Pechini-type sol. The Pechini-type sol of TiO(2) nanofibers produces a highly porous and compact layer of TiO(2) upon doctor-blading and sintering without the need for an adhesion and scattering layers or TiCl(4) treatment. The best nanofiber DSSCs with an area of ~0.28 cm(2) shows an efficiency of ~4.2% under standard test conditions (100 mW/cm(2), 25°C and AM1.5 G) and an incident photon-to-electron conversion efficiency (IPCE) of ~50%. Impedance measurements show lower charge transfer resistance that improved the fill factor. We believe that simple approaches such as the present one to develop nanofiber DSSCs would open up enormous possibilities in effective harvesting of solar energy for commercial applications, considering the fact that electrospinning is a cost-effective method for the mass scale production of nanofibers and nanorods.

  15. Organic-Ruthenium(II Polypyridyl Complex Based Sensitizer for Dye-Sensitized Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Lingamallu Giribabu

    2011-01-01

    Full Text Available A new high molar extinction coefficient organic-ruthenium(II polypyridyl complex sensitizer (RD-Cou that contains 2,2,6,6-tetramethyl-9-thiophene-2-yl-2,3,5,6,6a,11c-hexahydro1H,4H-11oxa-3a-aza-benzoanthracene-10-one as extended -conjugation of ancillary bipyridine ligand, 4,4-dicaboxy-2,26,2-bipyridine, and a thiocyanate ligand in its molecular structure has been synthesized and completely characterized by CHN, Mass, 1H-NMR, UV-Vis, and fluorescence spectroscopies as well as cyclic voltammetry. The new sensitizer was tested in dye-sensitized solar cells using a durable redox electrolyte and compared its performance to that of standard sensitizer Z-907.

  16. Dye-sensitized solar cells based on electrospun polymer blends as electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Hae; Choi, Hyung-Ju; Hwang, Won-Pil; Kim, Jung-Heon; Lee, Jin-Kook; Kim, Mi-Ra [Department of Polymer Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Won, Du-Hyun [Department of Polymer Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Solchem Co., Ltd., Busan 609-735 (Korea, Republic of); Jang, Sung-il [Solchem Co., Ltd., Busan 609-735 (Korea, Republic of); Jeong, Seong-Hoon; Kim, Ji-Un [EAGUN WINDOW and DOOR SYSTEMS Co., Ltd., Incheon 967-3 (Korea, Republic of)

    2011-01-15

    We prepared electrospun polymer nanofibers by the electrospinning method and investigated about their applications to dye-sensitized solar cells (DSSCs). Electrospun poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) and PVDF-HFP/polystyrene (PS) blend nanofibers were prepared and examined the uptake, the ionic conductivity, and the porosity by impedance measurement and Scanning Electron Microscope (SEM). The best results of V{sub oc}, J{sub sc}, FF, and efficiency of the DSSC devices using the electrospun PVDF-HFP/PS(3:1) blend nanofibers were 0.76 V, 11.8 mA/cm{sup 2}, 0.66, and 5.75% under AM 1.5. (author)

  17. Achieving High Performance Perovskite Solar Cells

    Science.gov (United States)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  18. Semiconductor Nanocrystals as Light Harvesters in Solar Cells

    Directory of Open Access Journals (Sweden)

    Lioz Etgar

    2013-02-01

    Full Text Available Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered.

  19. Challenge of replacing CdS in CuInSe{sub 2}-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, L.C.; Addis, F.W.; Lei, W.; Aguilar, H. [Washington State University at Tri-Cities, 100 Sprout Rd., Richland, Washington 99352 (United States)

    1997-02-01

    This paper discusses some key issues concerning the replacement of CdS buffer layers in CIS solar cell structures, and describes investigations of alternative buffer layers deposited by MOCVD. One apparently unique property of CdS buffer layers grown by CBD is that a ZnO TCO can be deposited on top of a CdS/CIS structure without significantly degrading the photovoltaic properties of the CdS-CIS junction. Investigation of alternative buffer materials such as high resistance ZnO (i-ZnO), ZnSe and InSe have first identified MOCVD growth procedures that yield Al/X/CIS test structures (X=i-ZnO, ZnSe and InSe) with good properties, and then addressed the challenge of fabricating efficient, complete cells with conductive ZnO top contact layers. These studies have been conducted with Siemens CIS and CIGSS substrates, and with NREL CIGS substrates. A total area efficiency of 12.7{percent} and estimated active area efficiency of 13.4{percent} is reported for a CIGS cell with an i-ZnO buffer layer grown by MOCVD. {copyright} {ital 1997 American Institute of Physics.}

  20. Challenge of replacing CdS in CuInSe2-based solar cells

    Science.gov (United States)

    Olsen, Larry C.; Addis, F. William; Lei, Wenhua; Aguilar, Heriberto

    1997-02-01

    This paper discusses some key issues concerning the replacement of CdS buffer layers in CIS solar cell structures, and describes investigations of alternative buffer layers deposited by MOCVD. One apparently unique property of CdS buffer layers grown by CBD is that a ZnO TCO can be deposited on top of a CdS/CIS structure without significantly degrading the photovoltaic properties of the CdS-CIS junction. Investigation of alternative buffer materials such as high resistance ZnO (i-ZnO), ZnSe and InSe have first identified MOCVD growth procedures that yield Al/X/CIS test structures (X=i-ZnO, ZnSe and InSe) with good properties, and then addressed the challenge of fabricating efficient, complete cells with conductive ZnO top contact layers. These studies have been conducted with Siemens CIS and CIGSS substrates, and with NREL CIGS substrates. A total area efficiency of 12.7% and estimated active area efficiency of 13.4% is reported for a CIGS cell with an i-ZnO buffer layer grown by MOCVD.

  1. Web based Measurement System for Solar Radiation

    Directory of Open Access Journals (Sweden)

    Shachi Awasthi

    2012-06-01

    Full Text Available We present in this paper, the principles of themeasurement system for solar radiation, and ourimplementation using Web based data loggingconcept.The photocurrent produced by Silicon PNjunction is used as a solar radiation transducer, tomake it more viable we have used commerciallyavailable solar panels as our transducers. Using asilicon solar cell as sensor, a low cost solarradiometer can be constructed. The photocurrentproduced by solar cell is electronically tailored to bemeasured and stored by our web based dataacquisition and monitoring system. Measurementusing real solar cell array gives a good measure ofactual producible energy by solar arrays. Ourportable instrument can be used in remote sites andsubstitutes the solar monitor and integrator,Current data of solar radiation can be monitoredusing Ethernet interface available in all PC,Laptops. We store the data into a secure digital cardwhich can be retrieved to plot and analyse the data.We have developed system hardware andsoftware based on ATmega32 AVR Microcontrollersand ENC28J60 Ethernet PHY and MAC networkinterface chip by Microchip.So the global irradiance data are obtained aftercorrection using the instantaneous measurement ofambient temperature which allows us to calculatethe junction temperature and consequently improvethe precision of measurement of our dataacquisition system

  2. Radial n-i-p structure SiNW-based microcrystalline silicon thin-film solar cells on flexible stainless steel.

    Science.gov (United States)

    Xie, Xiaobing; Zeng, Xiangbo; Yang, Ping; Li, Hao; Li, Jingyan; Zhang, Xiaodong; Wang, Qiming

    2012-11-12

    Radial n-i-p structure silicon nanowire (SiNW)-based microcrystalline silicon thin-film solar cells on stainless steel foil was fabricated by plasma-enhanced chemical vapor deposition. The SiNW solar cell displays very low optical reflectance (approximately 15% on average) over a broad range of wavelengths (400 to 1,100 nm). The initial SiNW-based microcrystalline (μc-Si:H) thin-film solar cell has an open-circuit voltage of 0.37 V, short-circuit current density of 13.36 mA/cm2, fill factor of 0.3, and conversion efficiency of 1.48%. After acid treatment, the performance of the modified SiNW-based μc-Si:H thin-film solar cell has been improved remarkably with an open-circuit voltage of 0.48 V, short-circuit current density of 13.42 mA/cm2, fill factor of 0.35, and conversion efficiency of 2.25%. The external quantum efficiency measurements show that the external quantum efficiency response of SiNW solar cells is improved greatly in the wavelength range of 630 to 900 nm compared to the corresponding planar film solar cells.

  3. Elucidating double aggregation mechanisms in the morphology optimization of diketopyrrolopyrrole-based narrow bandgap polymer solar cells.

    Science.gov (United States)

    Gao, Jing; Chen, Wei; Dou, Letian; Chen, Chun-Chao; Chang, Wei-Hsuan; Liu, Yongsheng; Li, Gang; Yang, Yang

    2014-05-21

    The power conversion efficiency (PCE) of a DPP-based polymer solar cell is significantly improved by using DIO or DCB as processing additives. The discovery that DCB outperforms DIO with a significantly wider solvent mixture operation window suggests different optimization mechanisms. Although both solvent mixture systems involve double aggregation processes, including a similar solution-to-film aggregation, however, two distinct solution-stage aggregations are observed: relatively amorphous polymer aggregates form in the CF-DIO solution, while more crystalline polymer aggregates form in CF-DCB solution.

  4. Electrical characterization of fluorinated benzothiadiazole based conjugated copolymer – a promising material for high-performance solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Toušek, J., E-mail: jiri.tousek@mff.cuni.cz; Toušková, J.; Chomutová, R. [Charles University in Prague, Faculty of Mathematics and Physics, V Holešovičkách 2, 182 00 Prague 8 (Czech Republic); Remeš, Z.; Čermák, J. [Institute of Physics of the Academy of Sciences, Cukrovarnická 10, 162 53 Prague 6 (Czech Republic); Helgesen, M.; Carlé, J. E.; Krebs, F. C. [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2015-12-15

    Measurements of electrical conductivity, electron work function, carrier mobility of holes and the diffusion length of excitons were performed on samples of conjugated polymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazole based conjugated copolymer (PBDT{sub THD} − DTBTff) was studied and benchmarked against the reference polymer poly-3-hexylthiophene (P3HT). We employed, respectively, four electrode conductivity measurements, Kelvin probe work function measurements, carrier mobility using charge extraction by linearly increasing voltage (CELIV) measurements and diffusion length determinaton using surface photovoltage measurements.

  5. Effects of Au nanoparticle addition to hole transfer layer in organic solar cells based on copper naphthalocyanine and fullerene

    Institute of Scientific and Technical Information of China (English)

    Akihiko Nagata; Takeo Okun; Tsuyoshi Akiyaman; Atsushi Suzuki

    2014-01-01

    Organic solar cells based on copper naphthalocyanine (CuNc) and fullerene (C60) were fabricated, and their photovoltaic properties were investigated. C60 and CuNc were used as n-type and p-type semiconductors, respectively. In addition, the effect of Au nanoparticle addition on a hole transfer layer was investigated, and the power conversion efficiency of the devices was improved after blending the Au nanoparticles into the hole transport layer. Nanostructures of Au nanoparticles were investigated by transmission electron microscopy and X-ray diffraction. Energy levels of molecules were calculated by molecular orbital calculations, and the nanostructure and electronic properties were discussed.

  6. Electrical characterization of fluorinated benzothiadiazole based conjugated copolymer – a promising material for high-performance solar cells

    Directory of Open Access Journals (Sweden)

    J. Toušek

    2015-12-01

    Full Text Available Measurements of electrical conductivity, electron work function, carrier mobility of holes and the diffusion length of excitons were performed on samples of conjugated polymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazole based conjugated copolymer (PBDTTHD − DTBTff was studied and benchmarked against the reference polymer poly-3-hexylthiophene (P3HT. We employed, respectively, four electrode conductivity measurements, Kelvin probe work function measurements, carrier mobility using charge extraction by linearly increasing voltage (CELIV measurements and diffusion length determinaton using surface photovoltage measurements.

  7. Effects of Au nanoparticle addition to hole transfer layer in organic solar cells based on copper naphthalocyanine and fullerene

    Directory of Open Access Journals (Sweden)

    Akihiko Nagata

    2014-06-01

    Full Text Available Organic solar cells based on copper naphthalocyanine (CuNc and fullerene (C60 were fabricated, and their photovoltaic properties were investigated. C60 and CuNc were used as n-type and p-type semiconductors, respectively. In addition, the effect of Au nanoparticle addition on a hole transfer layer was investigated, and the power conversion efficiency of the devices was improved after blending the Au nanoparticles into the hole transport layer. Nanostructures of Au nanoparticles were investigated by transmission electron microscopy and X-ray diffraction. Energy levels of molecules were calculated by molecular orbital calculations, and the nanostructure and electronic properties were discussed.

  8. A quantum chemistry study on the performance of porphyrin-based solar cell sensitisers; Zinc and anchor group position effects

    Science.gov (United States)

    Arkan, Foroogh; Izadyar, Mohammad; Nakhaeipour, Ali

    2015-12-01

    In this work, ten porphyrin derivatives, including free-base zinc-metalised compounds were studied by varying the position of the carboxyl anchoring group and the alkyl substituents length on the remaining three phenyl rings with the aim of the cell efficiency investigation. Theoretical performances of the sensitisers in the dye-sensitised solar cell systems have been discussed by analysis of the optical absorption, the oxidised potential of ground and excited states, light-harvesting efficiency and electron injection efficiency. Due to lower symmetry of free-based porphyrins, they showed broader bands than zinc porphyrins. The second group sensitisers are better than the first one due to the smaller oxidation potential energy, higher open-circuit voltage and light-harvesting efficiency. The influence of long alkyl substituents on the photovoltaic parameters is not perceptible but ortho and meta positions of anchoring group modify the solar cell performance. Finally, some correlations between the quantum reactivity indices and photovoltaic parameters have obtained and discussed.

  9. Dust Removal from Solar Cells

    Science.gov (United States)

    Ashpis, David E. (Inventor)

    2015-01-01

    A solar panel cleaning device includes a solar panel having a plurality of photovoltaic cells arranged in rows and embedded in the solar panel with space between the rows. A transparent dielectric overlay is affixed to the solar panel. A plurality of electrode pairs each of which includes an upper and a lower electrode are arranged on opposite sides of the transparent dielectric and are affixed thereto. The electrodes may be transparent electrodes which may be arranged without concern for blocking sunlight to the solar panel. The solar panel may be a dielectric and its dielectric properties may be continuously and spatially variable. Alternatively the dielectric used may have dielectric segments which produce different electrical field and which affects the wind "generated."

  10. Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cells

    KAUST Repository

    Kroon, Renee

    2015-09-08

    In this work, we compare the effect of incorporating selenophene versus thienothiophene spacers into pentacyclic lactam-based conjugated polymers for organic solar cells. The two cyclic lactam-based copolymers were obtained via a new synthetic method for the lactam moiety. Selenophene incorporation results in a broader and red-shifted optical absorption while retaining a deep highest occupied molecular orbital level, whereas thienothienophene incorporation results in a blue-shifted optical absorption. Additionally, grazing-incidence wide angle X-ray scattering data indicates edge- and face-on solid state order for the selenophene-based polymer as compared to the thienothiophene-based polymer, which orders predominantly edge-on with respect to the substrate. In polymer:PCBM bulk heterojunction solar cells both materials show a similar open-circuit voltage of ∼0.80-0.84 V, however the selenophene-based polymer displays a higher fill factor of ∼0.70 vs. ∼0.65. This is due to the partial face-on backbone orientation of the selenophene-based polymer, leading to a higher hole mobility, as confirmed by single-carrier diode measurements, and a concomitantly higher fill factor. Combined with improved spectral coverage of the selenophene-based polymer, as confirmed by quantum efficiency experiments, it offers a larger short-circuit current density of ∼12 mA cm. Despite the relatively low molecular weight of both materials, a very robust power conversion efficiency ∼7% is achieved for the selenophene-based polymer, while the thienothiophene-based polymer demonstrates only a moderate maximum PCE of ∼5.5%. Hence, the favorable effects of selenophene incorporation on the photovoltaic performance of pentacyclic lactam-based conjugated polymers are clearly demonstrated.

  11. Fundamentals of thin solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yablonovitch, E. [Univ. of California, Los Angeles, CA (United States)

    1995-08-01

    It is now widely recognized that thin solar cells can present certain advantages for performance and cost. This is particularly the case when light trapping in the semiconductor film is incorporated, as compensation for the diminished single path thickness of the solar cell. In a solar cell thinner than a minority carrier diffusion length, the current collection is of course very easy. More importantly the concentration of an equivalent number of carriers in a thinner volume results in a higher Free Energy, or open circuit voltage. This extra Free Energy may be regarded as due to the concentration factor, just as it would be for photons, electrons, or for any chemical species. The final advantage of a thin solar cell is in the diminished material usage, a factor of considerable importance when we consider the material cost of the high quality semiconductors which we hope to employ.

  12. Solar cell with back side contacts

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

    2013-12-24

    A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

  13. Bilayer film electrode of brookite TiO2 particles with different morphology to improve the performance of pure brookite-based dye-sensitized solar cells

    Science.gov (United States)

    Xu, Jinlei; Wu, Shufang; Ri, Jin Hyok; Jin, Jingpeng; Peng, Tianyou

    2016-09-01

    A novel bilayer brookite TiO2 film photoanode consisting of quasi nanocube film as underlayer and rice-like submicrometer particle film as overlayer are fabricated for improving the photovoltaic properties of the pure brookite-based dye-sensitized solar cells (DSSCs). The brookite TiO2 nanocubes have a mean size of ∼50 nm, and the brookite TiO2 rice-like particles have diameter of ∼600 nm and length of ∼1100 nm. An optimal photovoltaic conversion efficiency of 5.51% is obtained from the bilayer brookite-based solar cell, with ∼41% improvement in the efficiency as compared to the single brookite nanocube film-based one (3.91%) under AM 1.5G one sun irradiation. The bilayer brookite-based solar cell shows not only reduced charge recombination and dark current, but also prolonged electron lifetime compared to the single brookite nanocube film-based one. All these lead to a higher photocurrent and voltage, and then to the improved efficiency of the brookite-based solar cell. The present results demonstrate a clear advance towards efficient improvement of the photovoltaic performance of pure brookite-based solar cells.

  14. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with t

  15. 16.1% Efficient Hysteresis-Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays

    KAUST Repository

    Mahmood, Khalid

    2015-06-01

    Significant efficiency improvements are reported in mesoscopic perovskite solar cells based on the development of a low-temperature solution-processed ZnO nanorod (NR) array exhibiting higher NR aspect ratio, enhanced electron density, and substantially reduced work function than conventional ZnO NRs. These features synergistically result in hysteresis-free, scan-independent, and stabilized devices with an efficiency of 16.1%. Electron-rich, nitrogen-doped ZnO (N:ZnO) NR-based electron transporting materials (ETMs) with enhanced electron mobility produced using ammonium acetate show consistently higher efficiencies by one to three power points than undoped ZnO NRs. Additionally, the preferential electrostatic interaction between the -nonpolar facets of N:ZnO and the conjugated polyelectrolyte polyethylenimine (PEI) has been relied on to promote the hydrothermal growth of high aspect ratio NR arrays and substantially improve the infiltration of the perovskite light absorber into the ETM. Using the same interactions, a conformal PEI coating on the electron-rich high aspect ratio N:ZnO NR arrays is -successfully applied, resulting in a favorable work function shift and altogether leading to the significant boost in efficiency from <10% up to >16%. These results largely surpass the state-of-the-art PCE of ZnO-based perovskite solar cells and highlight the benefits of synergistically combining mesoscale control with doping and surface modification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Perovskite solar cells: from materials to devices.

    Science.gov (United States)

    Jung, Hyun Suk; Park, Nam-Gyu

    2015-01-07

    Perovskite solar cells based on organometal halide light absorbers have been considered a promising photovoltaic technology due to their superb power conversion efficiency (PCE) along with very low material costs. Since the first report on a long-term durable solid-state perovskite solar cell with a PCE of 9.7% in 2012, a PCE as high as 19.3% was demonstrated in 2014, and a certified PCE of 17.9% was shown in 2014. Such a high photovoltaic performance is attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths. Nevertheless, there are lots of puzzles to unravel the basis for such high photovoltaic performances. The working principle of perovskite solar cells has not been well established by far, which is the most important thing for understanding perovksite solar cells. In this review, basic fundamentals of perovskite materials including opto-electronic and dielectric properties are described to give a better understanding and insight into high-performing perovskite solar cells. In addition, various fabrication techniques and device structures are described toward the further improvement of perovskite solar cells.

  17. Nanostructures for Organic Solar Cells

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jarosław

    2016-01-01

    The experimental work in this thesis is focused on the fabrication of nanostructures that can be implemented in organic solar cell (OSC) architecture for enhancement of the device performance. Solar devices made from organic material are gaining increased attention, compared to their inorganic......, easily replicable and scalable technique using PAA templates. Control of the anodization parameters allows control over the dimensions of the structures and therefore easy control of the underlying dimples dimensions. The area exposed to the acidic electrolyte is the only factor limiting scalability...... for organic solar cell applications, opening new patterning possibilities....

  18. Bringing some photonic structures for solar cells to the fore.

    Science.gov (United States)

    Escoubas, Ludovic; Simon, Jean-Jacques; Torchio, Philippe; Duché, David; Vedraine, Sylvain; Vervisch, Wilfried; Le Rouzo, Judikaël; Flory, François; Rivière, Guillaume; Yeabiyo, Gizachew; Derbal, Hassina

    2011-03-20

    A review on the use of photonic structures enabling a better absorption of solar radiation within solar cells is proposed. Specific geometric configurations, such as folded solar cells or fiber-based architectures, are shown to be promising solutions to reach better light absorption. Electromagnetic optimization of thin-film solar cells and the use of angular thin-film filters, proposed by several research groups, also provide solutions to better concentrate solar radiation within the active layers of solar cells. Finally, results on "photonized" solar cells comprising gratings or more advanced photonic components, such as photonic crystals or plasmonic structures, and their effects on light-matter interaction in solar cells are highlighted.

  19. Antimony selenide thin-film solar cells

    Science.gov (United States)

    Zeng, Kai; Xue, Ding-Jiang; Tang, Jiang

    2016-06-01

    Due to their promising applications in low-cost, flexible and high-efficiency photovoltaics, there has been a booming exploration of thin-film solar cells using new absorber materials such as Sb2Se3, SnS, FeS2, CuSbS2 and CuSbSe2. Among them, Sb2Se3-based solar cells are a viable prospect because of their suitable band gap, high absorption coefficient, excellent electronic properties, non-toxicity, low cost, earth-abundant constituents, and intrinsically benign grain boundaries, if suitably oriented. This review surveys the recent development of Sb2Se3-based solar cells with special emphasis on the material and optoelectronic properties of Sb2Se3, the solution-based and vacuum-based fabrication process and the recent progress of Sb2Se3-sensitized and Sb2Se3 thin-film solar cells. A brief overview further addresses some of the future challenges to achieve low-cost, environmentally-friendly and high-efficiency Sb2Se3 solar cells.

  20. Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer.

    Science.gov (United States)

    Chen, Hong-Yan; Lu, Hong-Liang; Ren, Qing-Hua; Zhang, Yuan; Yang, Xiao-Feng; Ding, Shi-Jin; Zhang, David Wei

    2015-10-07

    Inverted pyramid-based nanostructured black-silicon (BS) solar cells with an Al2O3 passivation layer grown by atomic layer deposition (ALD) have been demonstrated. A multi-scale textured BS surface combining silicon nanowires (SiNWs) and inverted pyramids was obtained for the first time by lithography and metal catalyzed wet etching. The reflectance of the as-prepared BS surface was about 2% lower than that of the more commonly reported upright pyramid-based SiNW BS surface over the whole of the visible light spectrum, which led to a 1.7 mA cm(-2) increase in short circuit current density. Moreover, the as-prepared solar cells were further passivated by an ALD-Al2O3 layer. The effect of annealing temperature on the photovoltaic performance of the solar cells was investigated. It was found that the values of all solar cell parameters including short circuit current, open circuit voltage, and fill factor exhibit a further increase under an optimized annealing temperature. Minority carrier lifetime measurements indicate that the enhanced cell performance is due to the improved passivation quality of the Al2O3 layer after thermal annealing treatments. By combining these two refinements, the optimized SiNW BS solar cells achieved a maximum conversion efficiency enhancement of 7.6% compared to the cells with an upright pyramid-based SiNWs surface and conventional SiNx passivation.

  1. Enhancing Solar Cell Efficiencies through 1-D Nanostructures

    Directory of Open Access Journals (Sweden)

    Yu Kehan

    2008-01-01

    Full Text Available Abstract The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

  2. Opto-electronic properties of a TiO2/PS/mc-Si heterojunction based solar cell

    Science.gov (United States)

    Janene, N.; Ghrairi, N.; Allagui, A.; Alawadhi, H.; Khakani, M. A. El; Bessais, B.; Gaidi, M.

    2016-04-01

    In this work, we show the results of our investigation on the photoelectric properties of heterojunction solar cells based on Au/PS/mc-Si/Al and Au/TiO2/PS/mc-Si/Al structures. Porous silicon (PS) were prepared by an electrochemical etching process with different values of current density. The surface porosity was found to increase with the increase of current density. Pulsed laser deposition was used to deposit 80 nm TiO2 thin films. Surface morphology and structural properties of TiO2/PS were characterized by using scanning electron microscopy (SEM) and atomic force microscopy (AFM). An enhancement of the electrical properties of the TiO2/PS/mc-Si heterojunction was observed after coating with TiO2. As a consequence, the solar cell efficiencies increased from 1.4% for the uncoated PS/mc-Si structure to 5% for the TiO2 coated one. Impedance spectroscopy confirmed the passivation effect of TiO2 through the improvement of the elaborated cells' electron lifetime and the formation of a TiO2/PS/Au heterojunction with the appearance of a second semi-circle in the Nyquist plot.

  3. Dye-sensitized solar cells based on anatase TiO 2 hollow spheres/carbon nanotube composite films

    Science.gov (United States)

    Yu, Jiaguo; Fan, Jiajie; Cheng, Bei

    Dye-sensitized solar cells (DSSCs) based on anatase TiO 2 hollow spheres (TiO2HS)/multi-walled carbon nanotubes (CNT) nanocomposite films are prepared by a directly mechanical mixing and doctor blade method. The prepared samples are characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV-vis absorption spectroscopy and N 2 adsorption-desorption isotherms. The photoelectric conversion performances of the DSSCs based on TiO2HS/CNT composite film electrodes are also compared with commercial-grade Degussa P25 TiO 2 nanoparticles (P25)/CNT composite solar cells at the same film thickness. The results indicate that the photoelectric conversion efficiencies (η) of the TiO2HS/CNT composite DSSCs are dependent on CNT loading in the electrodes. A small amount of CNT clearly enhances DSSC efficiency, while excessive CNT loading significantly lowers their performance. The former is because CNT enhance the transport of electrons from the films to FTO substrates. The latter is due to high CNT loading shielding the visible light from being adsorbed by dyes.

  4. Efficiency enhancement of perovskite solar cells via incorporation of phenylethenyl side arms into indolocarbazole-based hole transporting materials

    Science.gov (United States)

    Petrikyte, Ieva; Zimmermann, Iwan; Rakstys, Kasparas; Daskeviciene, Maryte; Malinauskas, Tadas; Jankauskas, Vygintas; Getautis, Vytautas; Nazeeruddin, Mohammad Khaja

    2016-04-01

    Small-molecule hole transporting materials based on an indolocarbazole core were synthesized and incorporated into perovskite solar cells, which displayed a power conversion efficiency up to 15.24%. The investigated hole transporting materials were synthesized in three steps from commercially available and relatively inexpensive starting materials without using expensive catalysts. Various electro-optical measurements (UV-vis, CV, hole mobility, DSC, TGA, ionization potential) have been carried out to characterize the new hole transporting materials.Small-molecule hole transporting materials based on an indolocarbazole core were synthesized and incorporated into perovskite solar cells, which displayed a power conversion efficiency up to 15.24%. The investigated hole transporting materials were synthesized in three steps from commercially available and relatively inexpensive starting materials without using expensive catalysts. Various electro-optical measurements (UV-vis, CV, hole mobility, DSC, TGA, ionization potential) have been carried out to characterize the new hole transporting materials. Electronic supplementary information (ESI) available: Synthesis procedures, device construction and characterisation details. See DOI: 10.1039/c6nr01275b

  5. Thermally reactive Thiazolo[5,4-d]thiazole based copolymers for high photochemical stability in polymer solar cells

    DEFF Research Database (Denmark)

    Helgesen, Martin; Vesterager Madsen, Morten; Andreasen, Birgitta

    2011-01-01

    New thermally reactive copolymers based on dithienylthiazolo[5,4-d]thiazole (DTZ) and silolodithiophene (SDT) have been synthesized and explored in bulk heterojunction solar cells as mixtures with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). In thin films the polymers had optical band gaps...... in the range of 1.64-1.80 eV. For solubility the polymers have incorporated alkyl groups on the SDT unit and thermally removable ester groups on the DTZ unit that can be eliminated around 200 °C for improved photochemical stability in thin films. The bulkiness of the alkyl chains on the SDT unit proved...... to be very significant in terms of photovoltaic performance of the polymer:PCBM solar cells. Polymers based on 4,4-dihexyl-4H-silolo[3,2-b:4,5-b′]dithiophene reached power conversion efficiencies (PCEs) up to 1.45% but changing the alkyl groups to more bulky ethylhexyl chains reduced the PCE to 1.17%. More...

  6. Experimental determination of vacuum-level band alignments of SnS-based solar cells by photoelectron yield spectroscopy

    Science.gov (United States)

    Sugiyama, Mutsumi; Shimizu, Tsubasa; Kawade, Daisuke; Ramya, Kottadi; Ramakrishna Reddy, K. T.

    2014-02-01

    Energy band offsets of SnS-based solar cell structure using various n-type semiconductors, such as CdS, SnS2, In2S3, ZnIn2Se4, ZnO, and Mg0.3In0.7O, are evaluated by photoelectron yield spectroscopy. The valence band discontinuities are estimated to be 1.6 eV for both SnS/CdS and SnS/SnS2, 0.9 eV for SnS/In2S3, 1.7 eV for SnS/ZnIn2Se4, and 1.8 eV for both SnS/ZnO and SnS/Mg0.3Zn0.7O. Using the valence band discontinuity values and the corresponding energy bandgaps of the layers, energy band diagrams are developed. This study implied a type-I heterostructure, appropriate for SnS-based solar cell, for the ZnIn2Se4 or MgxZn1-xO (0 ≤ x ≤ 0.3) interface and type-II for other junctions.

  7. A Model for the Operation of Perovskite Based Hybrid Solar Cells: Formulation, Analysis, and Comparison to Experiment

    KAUST Repository

    Foster, J. M.

    2014-01-01

    This work is concerned with the modeling of perovskite based hybrid solar cells formed by sandwiching a slab of organic lead halide perovskite (CH3NH3PbI3-xClx) photo-absorber between (n-type) acceptor and (p-type) donor materialstypically titanium dioxide and spiro. A model for the electrical behavior of these cells is formulated based on drift-diffusion equations for the motion of the charge carriers and Poisson\\'s equation for the electric potential. It is closed by (i) internal interface conditions accounting for charge recombination/generation and jumps in charge carrier densities arising from differences in the electron affinity/ionization potential between the materials and (ii) ohmic boundary conditions on the contacts. The model is analyzed by using a combination of asymptotic and numerical techniques. This leads to an approximateyet highly accurateexpression for the current-voltage relationship as a function of the solar induced photocurrent. In addition, we show that this approximate current-voltage relation can be interpreted as an equivalent circuit model consisting of three diodes, a resistor, and a current source. For sufficiently small biases the device\\'s behavior is diodic and the current is limited by the recombination at the internal interfaces, whereas for sufficiently large biases the device acts like a resistor and the current is dictated by the ohmic dissipation in the acceptor and donor. The results of the model are also compared to experimental current-voltage curves, and good agreement is shown.

  8. Mechanically stacked concentrator tandem solar cells

    Science.gov (United States)

    Andreev, V. M.; Rumyantsev, V. D.; Karlina, L. B.; Kazantsev, A. B.; Khvostikov, V. P.; Shvarts, M. Z.; Sorokina, S. V.

    1995-01-01

    Four-terminal mechanically stacked solar cells were developed for advanced space arrays with line-focus reflective concentrators. The top cells are based on AlGaAs/GaAs multilayer heterostructures prepared by low temperature liquid phase epitaxy. The bottom cells are based on heteroepitaxial InP/InGaAs liquid phase epitaxy or on homo-junction GaSb, Zn-diffused structures. The sum of the highest reached efficiencies of the top and bottom cells is 29.4 percent. The best four-terminal tandems have an efficiency of 27 to 28 percent. Solar cells were irradiated with 1 MeV electrons and their performances were determined as a function of fluence up to 10(exp 16) cm(exp-2). It was shown that the radiation resistance of developed tandem cells is similar to the most radiative stable AlGaAs/GaAs cells with a thin p-GaAs photoactive layer.

  9. Electrical characterization of fluorinated benzothiadiazole based conjugated copolymer – a promising material for high-performance solar cells

    DEFF Research Database (Denmark)

    Toušek, J.; Toušková, J.; Remeš, Z.;

    2015-01-01

    Measurements of electrical conductivity, electron work function, carrier mobility ofholes and the diffusion length of excitons were performed on samples of conjugatedpolymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazolebased conjugated copolymer (PBDTTHD − DTBTff...

  10. The effect of anneal, solar irradiation and humidity on the adhesion/cohesion properties of P3HT:PCBM based inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.

    2012-06-01

    We use a thin-film adhesion technique that enables us to precisely measure the energy required to separate adjacent layers in OPV cells. We demonstrate the presence of weak interfaces in prototypical inverted polymer solar cells, either prepared by spin, spray or slot-die coating, including flexible and non flexible solar cells. In all cases, we observed adhesive failure at P3HT:PCBM/PEDOT:PSS interface, indicating the intrinsic material dependence of this mechanism. The impact of temperature, solar irradiation and humidity on the adhesion and cohesion properties of this particular interface is discussed. First, we have found that post-deposition annealing increases the adhesion significantly. Annealing changes the morphology in the photoactive layer and consequently alters the chemical properties at the interface. Second, solar irradiation on fully encapsulated solar cells has no damaging but in contrast an enhancing effect on the adhesion properties, due to the heat generated from IR radiation. Finally, the synergetic effect of stress and an environmental species like moisture greatly accelerates the decohesion rate in the weak hygroscopic PEDOT:PSS layer. This results in a loss of mechanical integrity and device performance. The insight into the mechanisms of delamination and decohesion yields general guidelines for the design of more reliable organic electronic devices. © 2012 IEEE.

  11. Amorphous SiC layers for electrically conductive Rugate filters in silicon based solar cells

    Science.gov (United States)

    Janz, S.; Peters, M.; Künle, M.; Gradmann, R.; Suwito, D.

    2010-05-01

    The subject of this work is the development of an electrically conductive Rugate filter for photovoltaic applications. We think that the optical as well as the electrical performance of the filter can be adapted especially to the requirements of crystalline Si thin-film and amorphous/crystalline silicon tandem solar cells. We have deposited amorphous hydrogenated Silicon Carbide layers (a-SixC1-x:H) with the precursor gases methane (CH4), silane (SiH4) and diborane (B2H6) applying Plasma Enhanced Chemical Vapour Deposition (PECVD). Through changing just the precursor flows a floating refractive index n from 1.9 to 3.5 (at 633 nm) could be achieved quite accurately. Different complex layer stacks (up to 200 layers) with a sinusoidal refractive index variation normal to the incident light were deposited in just 80 min on 100x100 mm2. Transmission measurements show good agreement between simulation and experiment which proofs our ability to control the deposition process, the good knowledge of the optical behaviour of the different SiC single layers and the advanced stage of our simulation model. The doped single layers show lateral conductivities which were extremely dependent on the Si/C ratio.

  12. Photoanode Activity of ZnO Nanotube Based Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    R. Ranjusha; P. Lekha; K.R.V. Subramanian; V. Nair Shantikumar; A. Balakrishnant

    2011-01-01

    Vertical ZnO nanotube (ZNT) arrays were synthesized onto an indium doped tin oxide (ITO) glass substrate by a simple electrochemical deposition technique followed by a selective etching process. Scanning electron microscopy (SEM) showed formation of well-faceted hexagonal ZNT arrays spreading uniformly over a large area. X-ray diffraction (XRD) of ZNT layer showed substantially higher intensity for the (0002) diffraction peak, indicating that the ZnO crystallites were well aligned with their c-axis. Profilometer measurements of the ZNT layer showed an average thickness of -7 μm. Diameter size distribution (DSD) analysis showed that ZNTs exhibited a narrow diameter size distribution in the range of 65-120 nm and centered at -75 nm. The photoluminescence (PL) spectrum measurement showed violet and blue luminescence peaks that were centered at 410 and 480 nm, respectively, indicating the presence of internal defects. Ultra-violet (UV) spectroscopy showed major absorbance peak at ,-348 nm, exhibiting an increase in energy gap value of 3.4 eV. By employing the formed ZNTs as the photo-anode for a dye-sensitized solar cell (DSSC), a full-sun conversion efficiency of 1.01% was achieved with a fill factor of 54%. Quantum efficiency studies showed the maximum of incident photon-to-electron conversion efficiency in a visible region located at 590-550 nm range.

  13. The emergence of copper(I)-based dye sensitized solar cells.

    Science.gov (United States)

    Housecroft, Catherine E; Constable, Edwin C

    2015-12-01

    Since the discovery of Grätzel-type dye sensitized solar cells (DSCs) in the early 1990s, there has been an exponential growth in the number of publications dealing with their optimization and new design concepts. Conventional Grätzel DSCs use ruthenium(II) complexes as sensitizers, and the highest photon-to-electrical current conversion efficiency for a ruthenium dye is ≈12%. However, ruthenium is both rare and expensive, and replacement by cheaper and more sustainable metals is desirable. In this Tutorial Review, we describe strategies for assembling copper(I) complexes for use as dyes in DSCs, a research area that has been active since ≈2008. We demonstrate design principles for (I) ligands to anchor the complex to a semiconductor surface and promote electron transfer from dye to semiconductor, and (II) ancillary ligands to tune the light absorption properties of the dye and facilitate electron transfer from electrolyte to dye in the DSC. We assess the progress made in terms of light-harvesting and overall photoconversion efficiencies of copper(I)-containing DSCs and highlight areas that remain ripe for development and improvement.

  14. Synthesis, photophysical, electrochemical and thermal studies on carbazole-based acceptor molecules for heterojunction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Shibdas; Ali, Farman [Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Nayak, Pabitra K., E-mail: pabitra.nayak@weizmann.ac.il [Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100 (Israel); Agarwal, Neeraj, E-mail: na@cbs.ac.in [Centre for Excellence in Basic Sciences, University of Mumbai, Kalina campus, Santacruz(E), Mumbai 400098 (India)

    2012-01-31

    Five small molecules, 3-tricyanovinyl-N-alkylcarbazoles (6-10) have been synthesized in a cost-effective way and characterized. The molecules have high thermal stability, good thin film formation ability and are also air stable. The change of alkyl chain length altered the aggregation pattern in the thin film. Their photophysical and electrochemical studies promise a compatible highest occupied molecular orbital - lowest unoccupied molecular orbital energy level to be potentially useful as good electron acceptor materials in heterojunction solar cell in combination with copper(II)phthalocyanine or poly-3-hexylthiophene (P3HT) as donor. Significant photoluminescence quenching of P3HT in P3HT:6-10 blends were observed. - Highlights: Black-Right-Pointing-Pointer 3-tricyanovinyl-N-alkylcarbazoles have been synthesized and characterized. Black-Right-Pointing-Pointer Aggregation properties of these compounds in thin film showed the role of alkyl chain. Black-Right-Pointing-Pointer Photoluminescence quenching with the P3HT blends of these compounds were studied.

  15. Electro-optical characterization and analysis of CuPc-based solar cells with high photovoltage

    Indian Academy of Sciences (India)

    V P Singh; R S Singh; A M Hermann

    2006-07-01

    Organic solar cells using the CuPc and PTCBI semiconductor layers were studied. A high open circuit voltage of 1.15 V was obtained in a device with ITO/PEDOT:PSS/CuPc (15 nm)/PTCBI (7 nm)/Al structure. Results were interpreted in terms of a modified CuPc–Al Schottky diode for the thin PTCBI case and a CuPc–PTCBI heterojunction for the thick PTCBI case. Also, the formation of a thin aluminum oxide layer under the aluminum electrode was postulated. This layer has a beneficial aspect wherein shunting losses are reduced and a high photovoltage is enabled. However, it adds greatly to the series resistance to a point where the short circuit current density is reduced. CuPc Schottky diodes with an ITO/PEDOT:PSS/CuPc/Al structure yielded a high oc of 900 mV for a CuPc layer of thickness 140 nm. The oc increased with increase in CuPc layer thickness.

  16. Carbazole-based sensitizers for potential application to dye sensitized solar cells

    Indian Academy of Sciences (India)

    Naresh Duvva; Ravi Kumar Kanaparthi; Jaipal Kandhadi; Gabriele Marotta; Paolo Salvatori; Filippo De Angelis; Lingamallu Giribabu

    2015-03-01

    Two push-pull molecules employing carbazole and alkyl thiophene (CAR-THIOHX) or carbazole and triphenylamine (CAR-TPA) as donor moieties, with the cyanoacrylic group as the acceptor, have been designed and synthesized by simple organic transformations. Photophysical and electrochemical studies revealed the potential of these two systems in dye sensitized solar cells (DSSC). Under standard irradiation conditions, CAR-TPA and CAR-THIOHX exhibited 2.12 and 1.83% of overall power conversion efficiencies respectively. The moderate photovoltaic efficiency of the sensitizers has been attributed to the poor light absorption of the sensitizers in the visible region. Density functional theory (DFT) calculations have shown a strong intramolecular charge transfer character, with the HOMOs of both the sensitizers exclusively localized on the corresponding donor moieties and LUMOs on the cyanoacrylic acid acceptor. On the other hand, the calculated high dihedral angle between the carbazole donor and the phenyl bridge for these sensitizers impedes the conjugation along the dyes backbone, and thus leads to less extended and intense absorption spectra in the visible region.

  17. Effect of piezoelectric field on carrier dynamics in InGaN-based solar cells

    Science.gov (United States)

    Lee, Seunga; Honda, Yoshio; Amano, Hiroshi

    2016-01-01

    To understand the effect of piezoelectric fields on carrier dynamics, we numerically investigated a simple p-GaN/i-\\text{I}{{\\text{n}}x}\\text{G}{{\\text{a}}1-x}\\text{N} /n-GaN solar cell structure. A reliable simulation model was obtained by comparing the experimental and simulated results in advance. The same p-i-n InGaN structures were re-simulated with and without the piezoelectric field effect, as spontaneous polarization remained unchanged. The sample with the piezoelectric field effect showed higher short current density ({{J}\\text{sc}} ), a staircase-like feature in its I-V curve, and higher open circuit voltage ({{V}\\text{oc}} ) with a lower fill factor (F.F.) and reduced conversion efficiency (C.E.) than the sample with no piezoelectric fields. In addition, with increasing In fraction (x), the {{V}\\text{oc}} value gradually increased while the {{J}\\text{sc}} value significantly decreased, correspondingly leading to a reduction in C.E. and F.F. values of the structure with the piezoelectric field effect. To solve the current loss problem, we applied various piezoelectric field elimination techniques to the simulated structures.

  18. Anthracene/phenothiazine π-conjugated sensitizers for dye-sensitized solar cells using redox mediator in organic and water-based solvents.

    Science.gov (United States)

    Lin, Ryan Yeh-Yung; Chuang, Tzu-Man; Wu, Feng-Ling; Chen, Pei-Yu; Chu, Te-Chun; Ni, Jen-Shyang; Fan, Miao-Syuan; Lo, Yih-Hsing; Ho, Kuo-Chuan; Lin, Jiann T

    2015-01-01

    Metal-free dyes (MD1 to MD5) containing an anthracene/phenothiazine unit in the spacer have been synthesized. The conversion efficiency (7.13 %) of the dye-sensitized solar cell using MD3 as the sensitizer reached approximately 85 % of the N719-based standard cell (8.47 %). The cell efficiency (8.42 %) of MD3-based dye-sensitized solar cells (DSSCs) with addition of chenodeoxycholic acid is comparable with that of N719-based standard cell. The MD3 water-based DSSCs using a dual-TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl)/iodide electrolyte exhibited very promising cell performance of 4.96 % with an excellent Voc of 0.77 V.

  19. Piezo-Phototronic Effect Enhanced Flexible Solar Cells Based on n-ZnO/p-SnS Core-Shell Nanowire Array.

    Science.gov (United States)

    Zhu, Laipan; Wang, Longfei; Xue, Fei; Chen, Libo; Fu, Jianqiang; Feng, Xiaolong; Li, Tianfeng; Wang, Zhong Lin

    2017-01-01

    The piezo-phototronic effect is about the enhanced separation, transport, and recombination of the photogenerated carriers using the piezoelectric polarization charges present in piezoelectric-semiconductor materials. Here, it is presented that the piezo-phototronic effect can be effectively applied to improve the relative conversion efficiency of a flexible solar cell based on n-ZnO/p-SnS core-shell nanowire array for 37.3% under a moderate vertical pressure. The performance of the solar cell can be effectively enhanced by a gentle bending of the device, showing its potential for application in curly geometries. This study not only adds further understanding about the concept of increasing solar energy conversion efficiency via piezo-phototronic effect, but also demonstrates the great potential of piezo-phototronic effect in the application of large-scale, flexible, and lightweight nanowire array solar cells.

  20. Gel polymer electrolyte based on LiBOB and PAN for the application in dye-sensitized solar cells

    Science.gov (United States)

    Arof, A. K.; Jun, H. K.; Sim, L. N.; Kufian, M. Z.; Sahraoui, B.

    2013-11-01

    Dye-sensitized solar cells (DSSCs) have been fabricated using metal complex N3 dye coupled with LiBOB and PAN-based gel polymer electrolyte (GPE). Conductivity of the GPE at room temperature was 1.2 × 10-2 S cm-1. The deconvoluted vibration spectra at different temperatures between 1000 and 970 cm-1 show the existence of ion pairs and free ions. Overall efficiency and fill factor of the DSSC with LiBOB-BMII-PAN-I2 GPE system is 0.65% and 48% respectively. The cell with LiBOB-BMII-PAN-I2 GPE system appears to be stable under varied light intensity attributed to the presence of redox couple mediator in the GPE. Impedance measurements show that the DSSC with LiBOB-BMII-PAN-I2 GPE has longer electron lifetime which suggests a lower electron recombination rate.

  1. Roll coated large area ITO- and vacuum-free all organic solar cells from diketopyrrolopyrrole based non-fullerene acceptors with molecular geometry effects

    DEFF Research Database (Denmark)

    Brandt, Rasmus Guldbaek; Zhang, Fei; Andersen, Thomas Rieks

    2016-01-01

    In this paper, we investigate three diketopyrrolopyrrole (DPP) based small molecular non-fullerene acceptors, namely Ph(DPP)3, Ph(DPP)2, and PhDMe(DPP)2, focusing on molecular geometry effects on the frontier orbital level, light absorption, molecular configuration, electron mobility, thin film...... morphology, and photovoltaic performance of both spin-coated ITO based and roll coated large area, ITO- and vacuum-free organic solar cells (OSCs). For spin-coated devices based on P3HT as the donor polymer the solar cells gave power conversion efficiencies (PCEs) in the following order for (P3HT:PhDMe(DPP)2...

  2. Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance

    Science.gov (United States)

    Desta, Derese; Ram, Sanjay K.; Rizzoli, Rita; Bellettato, Michele; Summonte, Caterina; Jeppesen, Bjarke R.; Jensen, Pia B.; Tsao, Yao-Chung; Wiggers, Hartmut; Pereira, Rui N.; Balling, Peter; Larsen, Arne Nylandsted

    2016-06-01

    A new back-reflector architecture for light-management in thin-film solar cells is proposed that includes a morphologically smooth top surface with light-scattering microstructures buried within. The microstructures are pyramid shaped, fabricated on a planar reflector using TiO2 nanoparticles and subsequently covered with a layer of Si nanoparticles to obtain a flattened top surface, thus enabling growth of good quality thin-film solar cells. The optical properties of this back-reflector show high broadband haze parameter and wide angular distribution of diffuse light-scattering. The n-i-p amorphous silicon thin-film solar cells grown on such a back-reflector show enhanced light absorption resulting in improved external quantum efficiency. The benefit of the light trapping in those solar cells is evidenced by the gains in short-circuit current density and efficiency up to 15.6% and 19.3% respectively, compared to the reference flat solar cells. This improvement in the current generation in the solar cells grown on the flat-topped (buried pyramid) back-reflector is observed even when the irradiation takes place at large oblique angles of incidence. Finite-difference-time-domain simulation results of optical absorption and ideal short-circuit current density values agree well with the experimental findings. The proposed approach uses a low cost and simple fabrication technique and allows effective light manipulation by utilizing the optical properties of micro-scale structures and nanoscale constituent particles.

  3. Crossed BiOI flake array solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kewei; Jia, Falong; Zhang, Lizhi [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan (China); Zheng, Zhi [Institute of Surface Micro and Nano Materials, Xuchang University (China)

    2010-12-15

    We report a new kind of solar cell based on crossed flake-like BiOI arrays for the first time. The BiOI flake arrays were fabricated on an FTO glass with a TiO{sub 2} block layer at room temperature by successive ionic layer adsorption and reaction (SILAR) method. The resulting BiOI flake array solar cell exhibited enhanced photovoltaic performance under solar illumination. This work provides an attractive and new solar cell system and a facile route to fabricate low cost and non-toxic solar cell. (author)

  4. Highly efficient and thermally stable polymer solar cells with dihydronaphthyl-based [70]fullerene bisadduct derivative as the acceptor

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangyue; Ma, Yihan [Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Wenqing; Tan, Zhan' ao [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, The New and Renewable Energy of Beijing Key Laboratory, North China Electric Power University, Beijing 102206 (China); Li, Yongfang [Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Taishan; Jiang, Li; Shu, Chunying; Wang, Chunru [Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-05-23

    The efficiency of polymer solar cells (PSCs) can be essentially enhanced by improving the performance of electron-acceptor materials, including by increasing the lowest unoccupied molecular orbital (LUMO) level, improving the optical absorption, and tuning the material solubility. Here, a new soluble C{sub 70} derivative, dihydronaphthyl-based C{sub 70} bisadduct (NC{sub 70}BA), is synthesized and explored as acceptor in PSCs. The NC{sub 70}BA has high LUMO energy level that is 0.2 eV higher than [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM), and displays broad light absorption in the visible region. Consequently, the PSC based on the blend of poly(3-hexylthiophene) (P3HT) and NC{sub 70}BA shows a high open-circuit voltage (V{sub oc} = 0.83 V) and a high power conversion efficiency (PCE = 5.95%), which are much better than those of the P3HT:PCBM-based device (V{sub oc} = 0.60 V; PCE = 3.74%). Moreover, the amorphous nature of NC{sub 70}BA effectively suppresses the thermally driven crystallization, leading to high thermal stability of the P3HT:NC{sub 70}BA-based solar cell devices. It is observed that the P3HT:NC{sub 70}BA-based device retains 80% of its original PCE value against thermal heating at 150 C over 20 h. The results unambiguously indicate that the NC{sub 70}BA is a promising acceptor material for practical PSCs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Interdigitated back contact solar cells

    Science.gov (United States)

    Lundstrom, M. S.; Schwartz, R. J.

    1980-08-01

    The interdigitated back contact solar cell (IBC cell) was shown to possess a number of advantages for silicon solar cells, which operate at high concentration. A detailed discussion of the factors which need to be considered in the analysis of semiconducting devices which utilize heavily doped regions such as those which are found in solar cells in both the emitter and in the back surface field regions is given. This discussion covers the questions of: how to handle degeneracy, how to compute carrier concentrations in the absence of knowledge of the details of the band structure under heavily doped conditions, and how to reconcile the usual interpretation of heavy doping as a rigid shift of the bands with the band tailing and impurity level conduction models. It also discusses the reasons for the observed discrepancies between various experimental measurements of bandgap narrowing.

  6. Consistent static and small-signal physics-based modeling of dye-sensitized solar cells under different illumination conditions.

    Science.gov (United States)

    Cappelluti, Federica; Ma, Shuai; Pugliese, Diego; Sacco, Adriano; Lamberti, Andrea; Ghione, Giovanni; Tresso, Elena

    2013-09-21

    A numerical device-level model of dye-sensitized solar cells (DSCs) is presented, which self-consistently couples a physics-based description of the photoactive layer with a compact circuit-level description of the passive parts of the cell. The opto-electronic model of the nanoporous dyed film includes a detailed description of photogeneration and trap-limited kinetics, and a phenomenological description of nonlinear recombination. Numerical simulations of the dynamic small-signal behavior of DSCs, accounting for trapping and nonlinear recombination mechanisms, are reported for the first time and validated against experiments. The model is applied to build a consistent picture of the static and dynamic small-signal performance of nanocrystalline TiO2-based DSCs under different incident illumination intensity and direction, analyzed in terms of current-voltage characteristic, Incident Photon to Current Efficiency, and Electrochemical Impedance Spectroscopy. This is achieved with a reliable extraction and validation of a unique set of model parameters against a large enough set of experimental data. Such a complete and validated description allows us to gain a detailed view of the cell collection efficiency dependence on different operating conditions. In particular, based on dynamic numerical simulations, we provide for the first time a sound support to the interpretation of the diffusion length, in the presence of nonlinear recombination and non-uniform electron density distribution, as derived from small-signal characterization techniques and clarify its correlation with different estimation methods based on spectral measurements.

  7. CZTSSe thin film solar cells: Surface treatments

    Science.gov (United States)

    Joglekar, Chinmay Sunil

    Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques. Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the thickness of sintered CZTSSe film. The etching treatment creates recombination centers which lead to poor device performance. Various after treatments were used to improve the performance of the devices. It was observed that the performance of the solar cell devices could not be improved by any of the after treatment steps. Other surface treatment processes are explored including KCN etching and gaseous H2S treatments. Hybrid solar cells which included use of CIGS nanoparticles at the interface between CZTSSe and CdS are also explored.

  8. Solution-processed solar cells based on inorganic bulk heterojunctions with evident hole contribution to photocurrent generation.

    Science.gov (United States)

    Qiu, Zeliang; Liu, Changwen; Pan, Guoxing; Meng, Weili; Yue, Wenjin; Chen, Junwei; Zhou, Xun; Zhang, Fapei; Wang, Mingtai

    2015-05-14

    To develop solution-processed and novel device structures is of great importance for achieving advanced and low-cost solar cells. In this paper, we report the solution-processed solar cells based on inorganic bulk heterojunctions (BHJs) featuring a bulk crystalline Sb2S3 absorbing layer interdigitated with a TiO2 nanoarray as an electron transporter. A solution-processed amorphous-to-crystalline transformation strategy is used for the preparation of Sb2S3/TiO2-BHJs. Steady-state and dynamic results demonstrate that the crystalline structure in the Sb2S3 absorbing layer is crucial for efficient devices, and a better Sb2S3 crystallization favors a higher device performance by increasing the charge collection efficiency for a higher short-circuit current, due to reduced interfacial and bulk charge recombinations, and enhancing the open-circuit voltage and fill factor with the reduced defect states in the Sb2S3 layer as well. Moreover, an evident contribution to photocurrent generation from the photogenerated holes in the Sb2S3 layer is revealed by experimental and simulated dynamic data. These results imply a kind of potential non-excitonic BHJ for energy conversion.

  9. Effect of tellurium deposition rate on the properties of Cu-In-Te based thin films and solar cells

    Science.gov (United States)

    Mise, Takahiro; Nakada, Tokio

    2011-01-01

    To investigate the effects of tellurium (Te) deposition rate on the properties of Cu-In-Te based thin films (Cu/In=0.30-0.31), the films were grown on both bare and Mo-coated soda-lime glass substrates at 200 °C by co-evaporation using a molecular beam epitaxy system. The microstructural properties were examined by means of scanning electron microscopy and X-ray diffraction. The crystalline quality of the films was improved with increase in the deposition rate of Te, and exhibited a single CuIn 3Te 5 phase with a highly preferred (1 1 2) orientation. Te-deficient film (Te/(Cu+In)=1.07) grown with a low Te deposition rate showed a narrow bandgap of 0.99 eV at room temperature. The solar cell performance was affected by the deposition rate of Te. The best solar cell fabricated using CuIn 3Te 5 thin films grown with the highest deposition rate of Te (2.6 nm/s) yielded a total area (0.50 cm 2) efficiency of 4.4% ( Voc=309 mV, Jsc=28.0 mA/cm 2, and FF=0.509) without light soaking.

  10. Solution-Processed Organic Solar Cells with Power Conversion Efficiencies of 2.5% using Benzothiadiazole/Imide-Based Acceptors

    KAUST Repository

    Bloking, Jason T.

    2011-12-27

    A new series of electron-deficient molecules based on a central benzothiadiazole moiety flanked with vinylimides has been synthesized via Heck chemistry and used in solution-processed organic photovoltaics (OPV). Two new compounds, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (PI-BT) and 4,7-bis(4-(N-hexyl-naphthalimide)vinyl)benzo[c]1,2,5-thiadiazole (NI-BT), show significantly different behaviors in bulk heterojunction (BHJ) solar cells using poly(3-hexylthiophene) (P3HT) as the electron donor. Two-dimensional grazing incidence X-ray scattering (2D GIXS) experiments demonstrate that PI-BT shows significant crystallization in spin-coated thin films, whereas NI-BT does not. Density functional theory (DFT) calculations predict that while PI-BT maintains a planar structure in the ground state, steric interactions cause a twist in the NI-BT molecule, likely preventing significant crystallization. In BHJ solar cells with P3HT as donor, PI-BT devices achieved a large open-circuit voltage of 0.96 V and a maximum device power-conversion efficiency of 2.54%, whereas NI-BT containing devices only achieved 0.1% power-conversion efficiency. © 2011 American Chemical Society.

  11. Basella alba rubra spinach pigment-sensitized TiO2 thin film-based solar cells

    Science.gov (United States)

    Gokilamani, N.; Muthukumarasamy, N.; Thambidurai, M.; Ranjitha, A.; Velauthapillai, Dhayalan

    2015-03-01

    Nanocrystalline TiO2 thin films have been prepared by sol-gel dip coating method. The X-ray diffraction results showed that TiO2 thin films annealed at 400, 450 and 500 °C are of anatase phase and the peak corresponding to the (101) plane is present in all the samples. The grain size of TiO2 thin films was found to increase with increasing annealing temperature. The grain size is found to be 20, 25 and 33 nm for the films annealed at 400, 450 and 500 °C. The structure of the TiO2 nanocrystalline thin films have been examined by high-resolution transmission electron microscope, Raman spectroscopy and FTIR spectroscopy. TiO2 thin films were sensitized by natural dyes extracted from basella alba rubra spinach. It was found that the absorption peak of basella alba rubra extract is at about 665 nm. The dye-sensitized TiO2-based solar cell sensitized using basella alba rubra exhibited a J sc of 4.35 mA cm-2, V oc of 0.48 V, FF of 0.35 and efficiency of 0.70 %. Natural dyes as sensitizers for dye-sensitized solar cells are promising because of their environmental friendliness, low-cost production and fully biodegradable.

  12. Semi-transparent polymer solar cells

    Science.gov (United States)

    Romero-Gómez, Pablo; Pastorelli, Francesco; Mantilla-Pérez, Paola; Mariano, Marina; Martínez-Otero, Alberto; Elias, Xavier; Betancur, Rafael; Martorell, Jordi

    2015-01-01

    Over the last three decades, progress in the organic photovoltaic field has resulted in some device features which make organic cells applicable in electricity generation configurations where the standard silicon-based technology is not suitable, for instance, when a semi-transparent photovoltaic panel is needed. When the thin film solar cell performance is evaluated in terms of the device's visible transparency and power conversion efficiency, organic solar cells offer the most promising solution. During the last three years, research in the field has consolidated several approaches for the fabrication of high performance semi-transparent organic solar cells. We have grouped these approaches under three categories: devices where the absorber layer includes near-infrared absorption polymers, devices incorporating one-dimensional photonic crystals, and devices with a metal cavity light trapping configuration. We herein review these approaches.

  13. Solar cells based on organic materials%有机太阳能电池研究进展

    Institute of Scientific and Technical Information of China (English)

    曲波; 张世勇; 谢星; 陈志坚; 肖立新; 龚旗煌; 李福山; 郭太良

    2011-01-01

    Recently, more and more effort has been devoted to organic solar cells because of their many advantages, such as ease of fabrication, low cost, flexibility, etc. As their power conversion efficiency increass, they have the potential to become efficient solar energy converters. A review of organic solar cells is presented with regard to materials based on small molecule and polymer, as well as possible methods for optimizing the photovoltaic energy conversion efficiency.%为了减轻当前能源危机所带来的压力,各国在太阳能电池等清洁能源领域投入了大量的人力、物力和财力.由于有机太阳能电池具有独特的优点(有机材料易于修饰,器件制备方法简便且可制备出柔韧器件),并且随着相关研究的深入,有机太阳能电池的能量转换效率逐步得到提高,这昭示了有机太阳能电池商业化的美好前景,目前已经有大批科研工作者投身于有机太阳能电池领域的研发工作.文章从太阳能电池小分子材料、聚合物材料和提高有机太阳能电池能量转换效率的方法这三方面人手,对有机太阳能电池领域进行综述.

  14. Towards 15% energy conversion efficiency: a systematic study of the solution-processed organic tandem solar cells based on commercially available materials

    DEFF Research Database (Denmark)

    Li, Ning; Baran, Derya; Forberich, Karen

    2013-01-01

    in organic tandem solar cells. All the devices are processed under environmental conditions using doctor-blading, which is highly compatible with mass-production coating technologies. Power conversion efficiencies (PCE) of 6–7% are obtained for OPV devices based on different active layers. Optical...... simulations based on experimental data are performed for all realized tandem solar cells. An efficiency potential of ∼10% is estimated for these compounds in combination with phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor. In addition, we assume a hypothetical, optimized acceptor to understand...... the limitation of donors. It is suggested that a PCE of >14% is realistic for tandem solar cells based on these commercially available donor materials. Along with the demonstration of novel intermediate layers we believe that this systematic study provides valuable insight for those attempting to realize...

  15. Monolithic cells for solar fuels.

    Science.gov (United States)

    Rongé, Jan; Bosserez, Tom; Martel, David; Nervi, Carlo; Boarino, Luca; Taulelle, Francis; Decher, Gero; Bordiga, Silvia; Martens, Johan A

    2014-12-07

    Hybrid energy generation models based on a variety of alternative energy supply technologies are considered the best way to cope with the depletion of fossil energy resources and to limit global warming. One of the currently missing technologies is the mimic of natural photosynthesis to convert carbon dioxide and water into chemical fuel using sunlight. This idea has been around for decades, but artificial photosynthesis of organic molecules is still far away from providing real-world solutions. The scientific challenge is to perform in an efficient way the multi-electron transfer reactions of water oxidation and carbon dioxide reduction using holes and single electrons generated in an illuminated semiconductor. In this tutorial review the design of photoelectrochemical (PEC) cells that combine solar water oxidation and CO2 reduction is discussed. In such PEC cells simultaneous transport and efficient use of light, electrons, protons and molecules has to be managed. It is explained how efficiency can be gained by compartmentalisation of the water oxidation and CO2 reduction processes by proton exchange membranes, and monolithic concepts of artificial leaves and solar membranes are presented. Besides transferring protons from the anode to the cathode compartment the membrane serves as a molecular barrier material to prevent cross-over of oxygen and fuel molecules. Innovative nano-organized multimaterials will be needed to realise practical artificial photosynthesis devices. This review provides an overview of synthesis techniques which could be used to realise monolithic multifunctional membrane-electrode assemblies, such as Layer-by-Layer (LbL) deposition, Atomic Layer Deposition (ALD), and porous silicon (porSi) engineering. Advances in modelling approaches, electrochemical techniques and in situ spectroscopies to characterise overall PEC cell performance are discussed.

  16. Fabrication and Optimization of Polymer Solar Cells Based on P3HT:PC70BM System

    Directory of Open Access Journals (Sweden)

    Huangzhong Yu

    2016-01-01

    Full Text Available Efficient bulk heterojunction (BHJ polymer solar cells (PSCs based on P3HT:PC70BM were fabricated by optimizing the processing parameters. The optimized thickness and annealing temperature have been found to be about 200 nm and 130°C. The effect of cathode interfacial layers on device performance is related to the formation of interfacial dipole. Furthermore, the effect of optimum ZnO interfacial thickness (~30 nm on device performance is attributed to good interfacial conductivity and its optical property. The metal electrode deposited in the slow rate has a better influence on device performance. Based on these optimal conditions, the best power conversion efficiency (PCE of 3.91% was obtained under AM 1.5G and 100 mW/cm2 illumination. This detailed investigation provides an important reference for the fabrication and optimization of polymer photovoltaic devices.

  17. Electron Transport Layer-Free Solar Cells Based on Perovskite-Fullerene Blend Films with Enhanced Performance and Stability.

    Science.gov (United States)

    Pascual, Jorge; Kosta, Ivet; Tuyen Ngo, T; Chuvilin, Andrey; Cabanero, German; Grande, Hans J; Barea, Eva M; Mora-Seró, Iván; Delgado, Juan Luis; Tena-Zaera, Ramon

    2016-09-22

    The solution processing of pinhole-free methylammonium lead triiodide perovskite-C70 fullerene (MAPbI3 :C70 ) blend films on fluorine-doped tin oxide (FTO)-coated glass substrates is presented. Based on this approach, a simplified and robust protocol for the preparation of efficient electron-transport layer (ETL)-free perovskite solar cells is described. Power conversion efficiency (PCE) of 13.6 % under AM 1.5 G simulated sunlight is demonstrated for these devices. Comparative impedance spectroscopy and photostability analysis of the MAPbI3 :C70 and single MAPbI3 films compared with conventional compact TiO2 ETL-based devices are shown. The beneficial impact of using MAPbI3 :C70 blend films is emphasized.

  18. Synthesis and Characterization of Phenothiazine-Based Platinum(II)-Acetylide Photosensitizers for Efficient Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Siu, Chi-Ho; Lee, Lawrence Tien Lin; Yiu, Sze-Chun; Ho, Po-Yu; Zhou, Panwang; Ho, Cheuk-Lam; Chen, Tao; Liu, Jianyong; Han, Keli; Wong, Wai-Yeung

    2016-03-07

    Three new unsymmetrical phenothiazine-based platinum(II) bis(acetylide) complexes PT1-PT3 with different electron-donating arylacetylide ligands were synthesized and characterized. Their photophysical, electrochemical, and photovoltaic properties have been fully investigated and the density functional theory (DFT) calculations have been carried out. Under AM 1.5 irradiation (100 mW cm(-2)), the PT1-based dye-sensitized solar cell (DSSC) device exhibited an attractive power conversion efficiency (η) up to 5.78 %, with a short-circuit photocurrent density (J(sc)) of 10.98 mA cm(-2), an open-circuit photovoltage (V(oc)) of 0.738 V, and a fill factor (ff) of 0.713. These findings provide strong evidence that platinum-acetylide complexes have great potential as promising photosensitizers in DSSC applications.

  19. Effects of optical interference and annealing on the performance of poly (3-hexylthiophene):fullerene based solar cells

    Institute of Scientific and Technical Information of China (English)

    You Hai-Long; Zhang Chun-Fu

    2009-01-01

    In this paper, the effects of optical interference and annealing on the performance of P3HT:PCBM based organic solar cells are studied in detail. Due to the optical interference effect, short circuit current density (JSC) shows obvious oscillatory behaviour with the variation of active layer thickness. With the help of the simulated results, the devices are optimized around the first two optical interference peaks. It is found that the optimized thicknesses are 80 and 208 nm. The study on the effect of annealing on the performance indicates that post-annealing is more favourable than pre-annealing. Based on post-annealing, different annealing temperatures are tested. The optimized annealing condition is 160℃ for 10 min in a nitrogen atmosphere. The device shows that the open circuit voltage VOC achieves about 0.65V and the power conversion efficiency is as high as 4.0 % around the second interference peak.

  20. Dependence of ZnO-based dye-sensitized solar cell characteristics on the layer deposition method

    Indian Academy of Sciences (India)

    Anca Dumbrava; Gabriel Prodan; Adrian Georgescu; Florin Moscalu

    2015-02-01

    The selection of a proper method for the semiconductor layer deposition is an important requirement towards a high efficiency for dye-sensitized solar cells (DSSCs). We compared three techniques for deposition of the semiconductor thin layer in ZnO-based DSSCs, in order to determine the dependence between the deposition method, the ZnO film properties and finally the DSSCs characteristics. For this purpose, we varied the method used for deposition of the semiconductor film and we replaced ZnO with Al-doped ZnO. The nanostructured films morphology was analysed by transmission electron microscopy, high-resolution transmission electron microscopy and selected area electron diffraction. The optical properties were examined by UV–visible spectroscopy and the bandgap energies were calculated using the Tauc equation. The higher fill factor value was registered for DSSCs based on the ZnO film obtained by electrochemical method, but the higher efficiency was registered for doctorblading method.

  1. Triphenylamine based organic dyes for dye sensitized solar cells: A theoretical approach

    Science.gov (United States)

    Mohankumar, V.; Pandian, Muthu Senthil; Ramasamy, P.

    2016-05-01

    The geometry, electronic structure and absorption spectra for newly designed triphenylamine based organic dyes were investigated by density functional theory (DFT) and time dependent density functional theory (TD-DFT) with the Becke 3-Parameter-Lee-Yang-parr(B3LYP) functional, where the 6-31G(d,p) basis set was employed. All calculations were performed using the Gaussian 09 software package. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecule. Ultraviolet-visible (UV-vis) spectrum was simulated by TD-DFT in gas phase. The calculation shows that all of the dyes can potentially be good sensitizers for DSSC. The LUMOs are just above the conduction band of TiO2 and their HOMOs are under the reduction potential energy of the electrolytes (I-/I3-) which can facilitate electron transfer from the excited dye to TiO2 and charge regeneration process after photo oxidation respectively. The simulated absorption spectrum of dyes match with solar spectrum. Frontier molecular orbital results show that among all the three dyes, the "dye 3" can be used as potential sensitizer for DSSC.

  2. Preparation and characterization of core-shell electrodes for application in gel electrolyte-based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Avellaneda, Cesar O.; Goncalves, Agnaldo D.; Benedetti, Joao E. [Laboratorio de Nanotecnologia e Energia Solar (LNES), Instituto de Quimica, Universidade Estadual de Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas/SP (Brazil); Nogueira, Ana F., E-mail: anaflavia@iqm.unicamp.b [Laboratorio de Nanotecnologia e Energia Solar (LNES), Instituto de Quimica, Universidade Estadual de Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas/SP (Brazil)

    2010-01-25

    Core-shell electrodes based on TiO{sub 2} covered with different oxides were prepared and characterized. These electrodes were applied in gel electrolyte-based dye-sensitized solar cells (DSSC). The TiO{sub 2} electrodes were prepared from TiO{sub 2} powder (P25 Degussa) and coated with thin layers of Al{sub 2}O{sub 3}, MgO, Nb{sub 2}O{sub 5}, and SrTiO{sub 3} prepared by the sol-gel method. The core-shell electrodes were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy measurements. J-V curves in the dark and under standard AM 1.5 conditions and photovoltage decay measurements under open-circuit conditions were carried out in order to evaluate the influence of the oxide layer on the charge recombination dynamics and on the device's performance. The results indicated an improvement in the conversion efficiency as a result of an increase in the open circuit voltage. The photovoltage decay curves under open-circuit conditions showed that the core-shell electrodes provide longer electron lifetime values compared to uncoated TiO{sub 2} electrodes, corroborating with a minimization in the recombination losses at the nanoparticle surface/electrolyte interface. This is the first time that a study has been applied to DSSC based on gel polymer electrolyte. The optimum performance was achieved by solar cells based on TiO{sub 2}/MgO core-shell electrodes: fill factor of approx0.60, short-circuit current density J{sub sc} of 12 mA cm{sup -2}, open-circuit voltage V{sub oc} of 0.78 V and overall energy conversion efficiency of approx5% (under illumination of 100 mW cm{sup -2}).

  3. A multiscale modeling study of loss processes in block-copolymer-based solar cell nanodevices

    Science.gov (United States)

    Donets, Sergii; Pershin, Anton; Christlmaier, Martin J. A.; Baeurle, Stephan A.

    2013-03-01

    Flexible photovoltaic devices possess promising perspectives in opto-electronic technologies, where high mobility and/or large-scale applicability are important. However, their usefulness in such applications is currently still limited due to the low level of optimization of their performance and durability. For the improvement of these properties, a better understanding and control of small-scale annihilation phenomena involved in the photovoltaic process, such as exciton loss and charge carrier loss, is necessary, which typically implicates multiple length- and time-scales. Here, we study the causes for their occurrence on the example of nanostructured diblock- and triblock-copolymer systems by making use of a novel solar-cell simulation algorithm and explore new routes to optimize their photovoltaic properties. A particular focus is set on the investigation of exciton and charge carrier loss phenomena and their dependence on the inter-monomeric interaction strength, chain architecture, and external mechanical loading. Our simulation results reveal that in the regime from low up to intermediate χ-parameters an increasing number of continuous percolation paths is created. In this parameter range, the internal quantum efficiency (IQE) increases up to a maximum, characterized by a minimum in the number of charge losses due to charge recombination. In the regime of high χ-parameters both block-copolymer systems form nanostructures with a large number of bottlenecks and dead ends. These lead to a large number of charge losses due to charge recombination, charge trapping, and a deteriorated exciton dissociation, resulting in a significant drop in the IQE. Moreover, we find that the photovoltaic performance of the triblock-copolymer material decreases with increasing mechanical loading, caused by a growing number of charge losses due to charge recombination and charge accumulation. Finally, we demonstrate that the process of charge trapping in defects can be reversed

  4. Infrared Harvesting Colloidal Quantum Dot Solar Cell Based on Multi-scale Disordered Electrodes

    KAUST Repository

    Tian, Yi

    2015-06-23

    Colloidal quantum dot photovoltaics (CQDPV) offer a big potential to be a renewable energy source due to low cost and tunable band-gap. Currently, the certified power conversion efficiency of CQDPV has reached 9.2%. Compared to the 31% theoretical efficiency limit of single junction solar cells, device performances have still have a large potential to be improved. For photovoltaic devices, a classical way to enhance absorption is to increase the thickness of the active layers. Although this approach can improve absorption, it reduces the charge carriers extraction efficiency. Photo-generated carriers, in fact, are prone to recombine within the defects inside CQD active layers. In an effort to solve this problem, we proposed to increase light absorption from a given thickness of colloidal quantum dot layers with the assistance of disorder. Our approach is to develop new types of electrodes with multi-scale disordered features, which localize energy into the active layer through plasmonic effects. We fabricated nanostructured gold substrates by electrochemical methods, which allow to control surface disorder as a function of deposition conditions. We demonstrated that the light absorption from 600 nm to 800 nm is impressively enhanced, when the disorder of the nanostructured surface increases. Compared to the planar case, the most disorder case increased 65% light absorption at the wavelength of λ = 700nm in the 100 nm PbS film. The average absorption enhancement across visible and infrared region in 100 nm PbS film is 49.94%. By developing a photovoltaic module, we measured a dramatic 34% improvement in the short-circuit current density of the device. The power conversion efficiency of the tested device in top-illumination configuration showed 25% enhancement.

  5. Organic dopant added polyvinylidene fluoride based solid polymer electrolytes for dye-sensitized solar cells

    Science.gov (United States)

    Senthil, R. A.; Theerthagiri, J.; Madhavan, J.

    2016-02-01

    The effect of phenothiazine (PTZ) as dopant on PVDF/KI/I2 electrolyte was studied for the fabrication of efficient dye-sensitized solar cell (DSSC). The different weight percentage (wt%) ratios (0, 20, 30, 40 and 50%) of PTZ doped PVDF/KI/I2 electrolyte films were prepared by solution casting method using DMF as a solvent. The following techniques such as Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometer (XRD) and AC-impedance analysis have been employed to characterize the prepared polymer electrolyte films. The FT-IR studies revealed the complex formation between PVDF/KI/I2 and PTZ. The crystalline and amorphous nature of polymer electrolytes were confirmed by DSC and XRD analysis respectively. The ionic conductivities of polymer electrolyte films were calculated from the AC-impedance analysis. The undoped PVDF/KI/I2 electrolyte exhibited the ionic conductivity of 4.68×10-6 S cm-1 and this value was increased to 7.43×10-5 S cm-1 when PTZ was added to PVDF/KI/I2 electrolyte. On comparison with different wt% ratios, the maximum ionic conductivity was observed for 20% PTZ-PVDF/KI/I2 electrolyte. A DSSC assembled with the optimized wt % of PTZ doped PVDF/KI/I2 electrolyte exhibited a power conversion efficiency of 2.92%, than the undoped PVDF/KI/I2 electrolyte (1.41%) at similar conditions. Hence, the 20% PTZ-PVDF/KI/I2 electrolyte was found to be optimal for DSSC applications.

  6. Polymer tandem solar cells

    NARCIS (Netherlands)

    Hadipour, Afshin

    2007-01-01

    The global demand for energy is expanding continually. Therefore, realization of green power sources are needed since combustion of fossil fuels will have serious consequences for the climate on the Earth. With a photovoltaic device, the solar light can be converted into electricity which is the mos

  7. Solar physical vapor deposition preparation and microstructural characterization of TiO2 based nanophases for dye-sensitized solar cell applications.

    Science.gov (United States)

    Negrea, Denis; Ducu, Catalin; Moga, Sorin; Malinovschi, Viorel; Monty, Claude J A; Vasile, Bogdan; Dorobantu, Dorel; Enachescu, Marian

    2012-11-01

    Titanium dioxide exists in three crystalline phases: anatase, rutile and brookite. Although rutile is thermodynamically more stable, anatase is considered as the most favorable phase for photocatalysis and solar energy conversion. Recent studies have shown a significant improvement of light harvesting and overall solar conversion efficiency of anatase nanoparticles in dye-sensitized solar cells (DSSCs) when using a mixture of anatase and rutile phases (10-15% rutile). TiO2 nanopowders have been prepared by a solar physical vapor deposition process (SPVD). This method has been developed in Odeillo-Font Romeu France using "heliotron" solar reactors working under concentrated sunlight in 2 kW solar furnaces. By controlling reactor's atmosphere type (air/argon) and gas pressure, several types of anatase/rutile nanophases have been obtained with slightly different microstructural properties and morphological characteristics. X-ray diffraction analyses (XRD) were performed on precursor and on the SPVD obtained nanopowders. Information concerning their phase composition and coherence diffraction domain (crystallites size and strain) was obtained. Nanopowders morphology has been studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  8. Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells

    KAUST Repository

    Qin, Peng

    2014-07-15

    Novel low band gap oligothiophenes incorporating S,N-heteropentacene central units were developed and used as hole-transport materials (HTMs) in solid-state perovskite-based solar cells. In addition to appropriate electronic energy levels, these materials show high photo-absorptivity in the low energy region, and thus can contribute to the light harvesting of the solar spectrum. Solution-processed CH3NH3PbI3-based devices using these HTMs achieved power conversion efficiencies of 9.5-10.5% in comparison with 7.6% obtained by reference devices without HTMs. Photoinduced absorption spectroscopy gave further insight into the charge transfer behavior between photoexcited perovskites and the HTMs. This journal is © the Partner Organisations 2014.

  9. Solar cell is not absolutely ecologically sound

    Energy Technology Data Exchange (ETDEWEB)

    Van Calmthout, M.

    1988-11-01

    The University of Utrecht, Netherlands, inventorized the social costs of a large-scale solar cell industry in particular with regard to the environmental impacts. During production and dismantlement of photovoltaic systems hazardous wastes and dangerous situations can be released respectively can occur. The most important results are discussed. Four solar cell technologies are highlighted: the crystalline silicon solar cell, the amorphous silicon solar cell, the CdS/CuInSe/sub 2/ solar cell, and the GaAs solar cell. 1 fig., 1 tab.

  10. Highly efficient organic solar Cells based on a robust room-temperature solution-processed copper iodide hole transporter

    KAUST Repository

    Zhao, Kui

    2015-07-30

    Achieving high performance and reliable organic solar cells hinges on the development of stable and energetically suitable hole transporting buffer layers in tune with the electrode and photoactive materials of the solar cell stack. Here we have identified solution-processed copper(I) iodide (CuI) thin films with low-temperature processing conditions as an effective hole–transporting layer (HTL) for a wide range of polymer:fullerene bulk heterojunction (BHJ) systems. The solar cells using CuI HTL show higher power conversion efficiency (PCE) in standard device structure for polymer blends, up to PCE of 8.8%, as compared with poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, for a broad range of polymer:fullerene systems. The CuI layer properties and solar cell device behavior are shown to be remarkably robust and insensitive to a wide range of processing conditions of the HTL, including processing solvent, annealing temperature (room temperature up to 200 °C), and film thickness. CuI is also shown to improve the overall lifetime of solar cells in the standard architecture as compared to PEDOT:PSS. We further demonstrate promising solar cell performance when using CuI as top HTL in an inverted device architecture. The observation of uncommon properties, such as photoconductivity of CuI and templating effects on the BHJ layer formation, are also discussed. This study points to CuI as being a good candidate to replace PEDOT:PSS in solution-processed solar cells thanks to the facile implementation and demonstrated robustness of CuI thin films.

  11. Research on high-bandgap materials and amorphous silicon-based solar cells. Annual technical report, 15 May 1995--15 May 1996

    Energy Technology Data Exchange (ETDEWEB)

    Schiff, E.A.; Gu, Q.; Jiang, L.; Rao, P. [Syracuse, New York, NY (United States)

    1997-01-01

    We have developed a technique based on electroabsorption measurements for obtaining quantitative estimates of the built-in potential in a-Si:H based heterostructure solar cells incorporating microcrystalline or a-SiC:Hp layers. This heterostructure problem has been a major limitation in application of the electroabsorption technique. The new technique only utilizes measurements from a particular solar cell, and is thus a significant improvement on earlier techniques requiring measurements on auxiliary films. Using this new electroabsorption technique, we confirmed previous estimates of V{sub bi} {approx} 1.0 V in a-Si:H solar cells with {open_quotes}conventional{close_quotes} intrinsic layers and either microcrystalline or a-SiC:Hp layers. Interestingly, our first measurements on high V{sub oc} cells grown with {open_quotes}high hydrogen dilution{close_quotes} intrinsic layers yield a much larger value for V{sub bi} {approx} 1.3 V. We speculate that these results are evidence for a significant interface dipole at the p/i heterostructure interface. Although we believe that interface dipoles rationalize several previously unexplained effects on a-Si:H based cells, they are not currently included in models for the operation of a-Si:H based solar cells.

  12. Numerical design of thin perovskite solar cell with fiber array-based anti-reflection front electrode for light-trapping enhancement

    Science.gov (United States)

    Khang Nguyen, Truong; Dang, Phuc Toan; Le, Khai Q.

    2016-12-01

    Perovskite has recently drawn substantial interest in photovoltaic research owing to its unique potentials of low cost fabrication and high power conversion efficiency. In this paper, a thin solar cells made of perovskite photoactive layer is introduced. The proposed perovskite-based solar cell with atop antireflection front electrode (p-ARFE) made of fiber arrays is calibrated to generate lensing/anti-reflecting effects and thus resulting in improved absorption efficiency. Theoretical and numerical results have demonstrated that the overall integrated AM1.5 G absorption in an optimal configuration yields a maximum short circuit current density of 20.2 mA cm-2 and an enhancement up to 6.3% compared to its flat solar cell counterpart with a same perovskite thickness of 200 nm. The proposed p-ARFE solar cell also presents a relative broadband absorption characteristic with zero reflection at multiple visible frequencies, i.e., 360-750 nm, thus more benefiting associated with next-generation perovskite-based solar cell applications.

  13. Thin-film solar cell

    OpenAIRE

    Metselaar, J.W.; Kuznetsov, V. I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with the light-collecting surface. In this context, the relationships 45 < alpha < 135 degrees and 45 < beta < 135 degrees apply. The invention also relates to a panel provided with a plurality of such t...

  14. Porphyrins and phthalocyanines in solar photovoltaic cells

    OpenAIRE

    Walter, Michael G.; Rudine, Alexander B.; Wamser, Carl C.

    2010-01-01

    This review summarizes recent advances in the use of porphyrins, phthalocyanines, and related compounds as components of solar cells, including organic molecular solar cells, polymer cells, and dye-sensitized solar cells. The recent report of a porphyrin dye that achieves 11% power conversion efficiency in a dye-sensitized solar cell indicates that these classes of compounds can be as efficient as the more commonly used ruthenium bipyridyl derivatives.

  15. Current-Enhanced Quantum Well Solar Cells

    Institute of Scientific and Technical Information of China (English)

    LOU Chao-Gang; SUN Qiang; XU Jun; ZHANG Xiao-Bing; LEI Wei; WANG Bao-Ping; CHEN Wen-Jun; QIAO Zai-Xiang

    2006-01-01

    We present the experimental results that demonstrate the enhancement of the short-circuit current of quantum well solar cells. The spectral response shows that the introduction of quantum wells extends the absorption spectrum of solar cells. The current densities under different truncated spectrums significantly increase, showing that quantum well solar cells are suitable to be the middle cells of GaInP/GaAs/Ge triple-junction solar cells to increase their overall conversion efficiency.

  16. Stability Issues on Perovskite Solar Cells

    OpenAIRE

    2015-01-01

    Organo lead halide perovskite materials like methylammonium lead iodide (CH3NH3PbI3) and formamidinium lead iodide (HC(NH2)2PbI3) show superb opto-electronic properties. Based on these perovskite light absorbers, power conversion efficiencies of the perovskite solar cells employing hole transporting layers have increased from 9.7% to 20.1% within just three years. Thus, it is apparent that perovskite solar cell is a promising next generation photovoltaic technology. However, the unstable natu...

  17. Recent Approaches to Controlling the Nanoscale Morphology of Polymer-Based Bulk-Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdulra'uf Lukman Bola

    2013-11-01

    Full Text Available The need for clean, inexpensive and renewable energy has increasingly turned research attention towards polymer photovoltaic cells. However, the performance efficiency of these devices is still low in comparison with silicon-based devices. The recent introduction of new materials and processing techniques has resulted in a remarkable increase in power-conversion efficiency, with a value above 10%. Controlling the interpenetrating network morphology is a key factor in obtaining devices with improved performance. This review focuses on the influence of controlled nanoscale morphology on the overall performance of bulk-heterojunction (BHJ photovoltaic cells. Strategies such as the use of solvents, solvent annealing, polymer nanowires (NWs, and donor–acceptor (D–A blend ratios employed to control the active-layer morphologies are all discussed.

  18. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul

    2016-10-25

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure) with improved reproducibility was obtained from blade-coated P3HT:PC71BM solar cells, compared to spin-coated ones. Furthermore, by demonstrating 3.10% efficiency flexible solar cells using blade-coated PBDTTT-EFT:PC71BM films on the plastic substrates, we suggest the potential applicability of blade coating technique to the high throughput roll-to-roll fabrication systems.

  19. A special issue on solar cells

    Institute of Scientific and Technical Information of China (English)

    Yi-Bing CHENG

    2011-01-01

    @@ The increasing demand for renewable energy has made the solar cell technology as one of the most significantresearch and development areas of today.Silicon based solar cells are the dominant photovoltaic products at the present time, but the relatively high costs are barriers for their broad applications.Research has been active worldwide in developing other photovoltaic technologies that use cheap materials and can be easily manufactured.Organic solar cells have attracted a lot of interests recently due to their potential to be low cost photovoltaic technologies.This special issue of the Frontiers of Optoelectronics in China has collected research articles by a number of Chinese and international experts.It is aimed to broaden the readers' view about some of the recent developments and challenges in this important R&D field.Thirteen excellent papers are in this special issue including 4 review articles and 9 research articles.

  20. Stability Issues on Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2015-11-01

    Full Text Available Organo lead halide perovskite materials like methylammonium lead iodide (CH3NH3PbI3 and formamidinium lead iodide (HC(NH22PbI3 show superb opto-electronic properties. Based on these perovskite light absorbers, power conversion efficiencies of the perovskite solar cells employing hole transporting layers have increased from 9.7% to 20.1% within just three years. Thus, it is apparent that perovskite solar cell is a promising next generation photovoltaic technology. However, the unstable nature of perovskite was observed when exposing it to continuous illumination, moisture and high temperature, impeding the commercial development in the long run and thus becoming the main issue that needs to be solved urgently. Here, we discuss the factors affecting instability of perovskite and give some perspectives about further enhancement of stability of perovskite solar cell.